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Abstract

A widely used class of models for stochastic systems is Hidden Markov models.
Systems which can be modeled by hidden Markov models are a proper sub-
class of linearly dependent processes, a class of stochastic systems known from
mathematical investigations carried out over the last four decades. This article
provides a novel, simple characterization of linearly dependent processes, called
observable operator models. The mathematical properties of observable oper-
ator models lead to a constructive learning algorithm for the identification of
linearly dependent processes. The core of the algorithm has a time complex-
ity of O(N + nm3), where N is the size of training data, n is the number of
distinguishable outcomes of observations, and m is model state space dimension.



1 Erratum note

This paper is identical to the one that appeared in Neural Computation in the
year 2000, except for a correction of the claim in Theorem 6 (a2). See footnote
comments there.

2 Introduction

Hidden Markov models (HMMs) (Bengio, 1999) of stochastic processes have
been investigated mathematically long before they became a popular tool in
speech processing (Rabiner, 1990) and engineering (Elliott, Aggoun, & Moore,
1995). A basic mathematical question was to decide when two HMMs are equiva-
lent, i.e. describe the same distribution (of a stochastic process) (Gilbert, 1959).
This problem was tackled by framing HMMs within a more general class of
stochastic processes, now termed linearly dependent processes (LDPs). Decid-
ing the equivalence of HMMs amounts to characterising HMM-describable pro-
cesses as LDPs. This strand of research came to a successful conclusion in (Ito,
Amari, & Kobayashi, 1992), where equivalence of HMMs was characterised al-
gebraically, and a decision algorithm was provided. That article also gives an
overview of the work done in this area.

It should be emphasized that linearly dependent processes are unrelated to
linear systems in the standard sense, i.e. systems whose state sequences are
generated by some linear operator (e.g., (Narendra, 1995)). The term, “linearly
dependent processes”, refers to certain linear relationships between conditional
distributions that arise in the study of general stochastic processes. LDP’s are
thoroughly “nonlinear” in the standard sense of the word.

The class of LDPs has been characterized in various ways. The most concise
description was developed in (Heller, 1965), using methods from category theory
and algebra. This approach was taken up and elaborated in a recent compre-
hensive account on LDPs and the mathematical theory of HMMs, viewed as a
subclass of LDPs (Ito, 1992).

All of this work on HMMs and LDPs was mathematically oriented, and did
not bear on the practical question of learning models from data.

In the present article, I develop an alternative, simpler characterization of
LDPs, called observable operator models (OOMs). OOMs require only concepts
from elementary linear algebra. The linear algebra nature of OOMs gives rise to
a constructive learning procedure, which makes it possible to estimate models
from data very efficiently.

The name, “observable operator models”, arises from the very way in which
stochastic trajectories are mathematically modeled in this approach.

Traditionally, trajectories of discrete-time systems are seen as a sequence
of states, which is generated by the repeated application of a single (possibly
stochastic) operator T (fig. 1a). Metaphorically speaking, a trajectory is seen
as a sequence of locations in state space, which are visited by the system due to
the action of a time step operator.
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In OOM theory, trajectories are perceived in a complementary fashion. From
a set of operators (say, {TA, TB}), one operator is stochastically selected for
application at every time step. The system trajectory is then identified with
the sequence of operators. Thus, an observed piece of trajectory . . . ABAA . . .
would correspond to a concatenation of operators . . . TA(TA(TB(TA . . .))) . . .
(fig. 1b). The fact that the observables are the operators themselves, led to the
naming of this kind of stochastic models. An appropriate metaphor would be
to view trajectories as sequences of actions.

T T T

A B A A
(a) (b)

TA TA TATB

Figure 1: (a) The standard view of trajectories. A time step operator T yields
a sequence ABAA of states. (b) The OOM view. Operators TA, TB are con-
catenated to yield a sequence ABAA of observables.

Stochastic sequences of operators are a well-known object of mathematical
investigation (Iosifescu & Theodorescu, 1969). OOM theory grows out of the
novel insight that the probability of selecting an operator can be computed using
the operator itself.

The sections of this paper cover the following topics: (2) how a matrix rep-
resentation of OOMs can be construed as a generalization of HMMs, (3) how
OOMs are used to generate and predict stochastic time series, (4) how an ab-
stract information-theoretic version of OOMs can be obtained from any stochas-
tic process, (5) how these abstract OOMs can be used to prove a fundamental
theorem which reveals when two OOMs in matrix representation are equivalent,
(6) that some low-dimensional OOMs can model processes which can be mod-
eled either only by arbitrarily high-dimensional HMMs, or by none at all; and
that one can model a conditional rise and fall of probabilities in processes timed
by “probability oscillators”, (7) how one can use the fundamental equivalence
theorem to obtain OOMs whose state space dimensions can be interpreted as
probabilities of certain future events, and (8) how these interpretable OOMs
directly yield a constructive procedure to estimate OOMs from data. (9) gives
a brief conclusion.

3 From HMMs to OOMs

In this section, OOMs are introduced by generalization from HMMs. In this
way it becomes immediately clear why the latter are a subclass of the former.

A basic HMM specifies the distribution of a discrete-time, stochastic process
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(Yt)t∈N, where the random variables Yt have finitely many outcomes from a
set O = {a1, . . . , an}. HMMs can be defined in several equivalent ways. In
this article we will adhere to the definition which is customary in the speech
recognition community and other application areas. The specification is done
in two stages.

First, a Markov chain (Xt)t∈N produces sequences of hidden states from a
finite state set {s1, . . . , sm}. Second, when the Markov chain is in state sj

at time t, it “emits” an observable outcome, with a time-invariant probability
P [Yt = ai |Xt = sj ].

Figure 2 presents an exemplary HMM.

s1 s2
3/4

1.0

1/4

a
b

: 1/2
: 1/2

a
b

: 1/5
: 4/52/3 1/3

Figure 2: A HMM with two hidden states s1, s2 and two outcomes O = {a, b}.
Fine arrows indicate admissible hidden state transitions, with their correspond-
ing probabilities marked besides. The initial state distribution (2/3, 1/3) of
the Markov chain is indicated inside the state circles. Emission probabilities
P [ai |sj ] of outcomes are annotated besides bold grey arrows.

Formally, the state transition probabilities can be collected in a m×m matrix
M which at place (i, j) contains the transition probability from state si to sj

(i.e., M is a Markov matrix, or stochastic matrix). For every a ∈ O, we collect
the emission probabilities P [Yt = a |Xt = sj ] in a diagonal observation matrix
Oa of size m×m. Oa contains, in its diagonal, the probabilities P [Yt = a |Xt =
s1], . . . , P [Yt = a |Xt = sm]. For the example from fig. 2, this gives

M =
(

1/4 3/4
1 0

)
, Oa =

(
1/2

1/5

)
, Ob =

(
1/2

4/5

)
. (1)

In order to fully characterize a HMM, one also must supply an initial distribution
w0 = (P [X0 = s1], . . . , P [X0 = sm])T (superscript ·T denotes transpose of
vectors and matrices. Vectors are assumed to be column vectors throughout
this article, unless noted otherwise). The process described by the HMM is
stationary if w0 is an invariant distribution of the Markov chain, i.e. if it satisfies

MTw0 = w0. (2)

See (Doob, 1953) for details on Markov chains.
It is well-known that the matrices M and Oa (a ∈ O) can be used to com-

pute the probability of finite-length observable sequences. Let 1 = (1, . . . , 1)
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denote the m-dimensional row vector of units, and let Ta := MTOa. Then the
probability to observe the sequence ai0 . . . aik

among all possible sequences of
length k + 1 is equal to the number obtained by applying Tai0

, . . . , Taik
to w0,

and summing up the components of the resulting vector by multiplying it with
1:

P [ai0 . . . aik
] = 1Taik

· · ·Tai0
w0. (3)

The term P [ai0 . . . aik
] in (3) is a shorthand notation for P [X0 = ai0 , . . . , Xk =

aik
], which will be used throughout this article.
(3) is a matrix notation of the well-known “forward algorithm” for deter-

mining probabilities of observation sequences in HMMs. Proofs of (3) may be
found e.g. in (Ito et al., 1992) and (Ito, 1992).

M can be recovered from the operators Ta by observing that

MT = MT · id = MT(Oa1 + · · ·+ Oan) = Ta1 + · · ·+ Tan . (4)

Eq. (3) shows that the distribution of the process (Yt) is specified by the oper-
ators Tai and the vector w0. Thus, the matrices Tai and w0 contain the same
information as the original HMM specification in terms of M,Oai , and w0. I.e.,
one can rewrite a HMM as a structure (Rm, (Ta)a∈O, w0), where Rm is the do-
main of the operators Ta. The HMM from the example, written in this way,
becomes

M = (R2, (Ta, Tb), w0) = (R2, (
(

1/8 1/5
3/8 0

)
,

(
1/8 4/5
3/8 0

)
), (2/3, 1/3)T).

(5)
Now, one arrives at the definition of an OOM by (i) relaxing the requirement
that MT be the transpose of a stochastic matrix, to the weaker requirement
that the columns of MT each sum to 1, and by (ii) requiring from w0 merely
that it has a component sum of 1. That is, negative entries are now allowed in
matrices and vectors, which are forbidden in stochastic matrices and probability
vectors. Using the letter τ in OOMs in places where T appears in HMMs, and
introducing µ =

∑
a∈O τa in analogy to (4), this yields:

Definition 1 A m-dimensional OOM is a triple A = (Rm, (τa)a∈O, w0), where
w0 ∈ Rm and τa : Rm 7→ Rm are linear operators, satisfying

1. 1w0 = 1,

2. µ =
∑

a∈O τa has column sums equal to 1,

3. for all sequences ai0 . . . aik
it holds that 1τaik

· · · τai0
w0 ≥ 0.

Conditions 1 and 2 reflect the relaxations (i) and (ii) mentioned previously,
while condition 3 ensures that one obtains non-negative values when the OOM is
used to compute probabilities. Unfortunately, condition 3 is useless for deciding
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or constructing OOMs. An alternative to condition 3, which is suitable for
constructing OOMs, will be introduced in Section 7.

Since function concatenations of the form τaik
◦ · · · ◦ τai0

will be used very
often in the sequel, we introduce a shorthand notation for handling sequences of
symbols. Following the conventions of formal language theory, we shall denote
the empty sequence by ε (i.e., the sequence of length 0 which “consists” of no
symbol at all), the set of all sequences of length k of symbols from O, by Ok;⋃

k≥1Ok by O+; and the set {ε}∪O+ by O∗. We shall write ā ∈ O+ to denote
any finite sequence a0 . . . an, and τā to denote τan ◦ · · · ◦ τa0 .

An OOM, as defined here, specifies a stochastic process, if one makes use of
an analog of (3):

Proposition 1 Let A = (Rm, (τa)a∈O, w0) be an OOM according to the previ-
ous definition. Let Ω = O∞ be the set of all infinite sequences over O, and A
be the σ-algebra generated by all finite-length initial events on Ω. Then, if one
computes the probabilities of initial finite-length events in the following way:

P0[ā] := 1τāw0, (6)

the numerical function P0 can be uniquely extended to a probability measure P on
(Ω,A), giving rise to a stochastic process (Ω,A, P, (Xt)t∈N), where Xn(a1a2 . . .) =
an. If w0 is an invariant vector of µ, i.e., if µw0 = w0, the process is stationary.

The proof is given in appendix A.
Since we introduced OOMs here by generalizing from HMMs, it is clear

that every process whose distribution can be specified by a HMM can also be
characterized by an OOM.

I conclude this section with a remark on LDPs and OOMs. It is known that
the distributions of LDPs can be characterized through matrix multiplications
in a fashion which is very similar to (6) (cf. (Ito, 1992), theorem 1.8):

P [ai0 . . . aik
] = 1QIaik

. . . QIai0
w0. (7)

The matrix Q does not depend on a, while the “projection matrices” Ia do. If
one puts Q = id, Ia = τa, one easily sees that the class of processes which can
be described by OOMs is the class of LDPs.

4 OOMs as generators and predictors

This section explains how to generate and predict the paths of a process (Xt)t∈N,
whose distribution is specified by an OOM A = (Rk, (τa)a∈O, w0). We describe
the procedures mathematically and illustrate them with an example.

More precisely, the generation task consists in randomly producing, at times
t = 0, 1, 2, . . ., outcomes ai0 , ai1 , ai2 , . . ., such that (i) at time t = 0, the probabil-
ity of producing b is equal to 1τbw0 according to (6), and (ii) at every time step
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t > 0, the probability of producing b (after ai0 , . . . , ait−1 have already been pro-
duced) is equal to P [Xt = b |X0 = ai0 , . . . , Xt−1 = ait−1 ]. Using (6), the latter
amounts to calculating at time t, for every b ∈ O, the conditional probability

P [Xt = b |X0 = ai0 , . . . , Xt−1 = ait−1 ]

=
P [X0 = ai0 , . . . , Xt−1 = ait−1 , Xt = b]

P [X0 = ai0 , . . . , Xt−1 = ait−1 ]
= 1τbτait−1

· · · τai0
w0/1τait−1

· · · τai0
w0

= 1τb(
τait−1

· · · τai0
w0

1τait−1
· · · τai0

w0
)

=: 1τbwt, (8)

and producing at time t the outcome b with this conditional probability (the
symbol =: denotes that the term on the rhs. is being defined by the equation).
Calculations of (8) can be carried out incrementally, if one observes that for
t ≥ 1, wt can be computed from wt−1:

wt =
τat−1wt−1

1τat−1wt−1
. (9)

Note that all vectors wt thus obtained have a component sum equal to 1.
Observe that the operation 1τb· in (8) can be done effectively by pre-computing

the vector vb := 1τb. Computing (8) then amounts to multiplying the (row) vec-
tor vb with the (column) vector wt, or, equivalently, it amounts to evaluating
the inner product < vb, wt >.

The prediction task is completely analogous to the generation task. Given
an initial realization ai0 , . . . , ait−1 of the process up to time t − 1, one has to
calculate the probability by which an outcome b is going to occur at the next
time step t. This is again an instance of (8), the only difference being that now
the initial realization is not generated by oneself but is externally given.

Many-time-step probability predictions of collective outcomes can be cal-
culated by evaluating inner products, too. Let the collective outcome A =
{b̄1, . . . , b̄n} consist of n sequences of length s + 1 of outcomes (i.e., outcome A
is recorded when any of the sequences b̄i occurs). Then, the probability that A
is going to occur after an initial realization ā of length t− 1, can be computed
as follows:

P [(Xt, . . . , Xt+s) ∈ A |(X0, . . . , Xt−1) = ā]

=
∑
b̄∈A

P [(Xt, . . . , Xt+s) = b̄ |(X0, . . . , Xt−1) = ā]

=
∑
b̄∈A

1τb̄wt =:
∑
b̄∈A

< vb̄, wt >

= <
∑
b̄∈A

vb̄, wt > =: < vA, wt > . (10)
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If one wants to calculate the future probability of a collective outcome A re-
peatedly, utilization of (10) reduces computational load considerably because
the vector vA needs to be (pre-)computed only once.

The generation procedure shall now be illustrated using the exemplary OOM
M from (5). We first compute the vectors va, vb:

va = 1τa = 1
(

1/8 1/5
3/8 0

)
= (1/2, 1/5),

vb = 1τb = 1
(

1/8 4/5
3/8 0

)
= (1/2, 4/5).

Starting with w0 = (2/3, 1/3), we obtain probabilities < va, w0 > = 2/5, <
vb, w0 > = 3/5 of producing a vs. b at the first time step. We make a random
decision for a vs. b, weighted according to these probabilities. Let’s assume the
dice fall for b. We now compute w1 = τbw0/1τbw0 = (7/12, 5/12)T. For the
next time step, we repeat these computations with w1 in place of w0, etc., etc.

5 From stochastic processes to OOMs

This section introduces OOMs again, but this time in a top-down fashion, start-
ing from general stochastic processes. This alternative route clarifies the fun-
damental nature of observable operators. Furthermore, the insights obtained in
this section will yield a short and instructive proof of the central theorem of
OOM equivalence, to be presented in the next section. The material presented
here is not required after the next section and may be skipped by readers with
not so keen an interest in probability theory.

In Section 2, we have described OOMs as structures (Rm, (τa)a∈O, w0). In
this section, we will arrive at isomorphic structures (G, (ta)a∈O, gε), where again
G is a vector space, (ta)a∈O is a family of linear operators on G, and gε ∈ G.
However, the vector space G is now a space of certain numerical prediction
functions. In order to discriminate OOMs characterized on spaces G from the
“ordinary” OOMs, we shall call (G, (ta)a∈O, gε) an predictor-space OOM.

Let (Xt)t∈N, or for short, (Xt) be a discrete-time stochastic process with
values in a finite set O. Then, the distribution of (Xt) is uniquely characterized
by the probabilities of finite initial subsequences, i.e. by all probabilities of the
kind P [ā], where ā ∈ O+.

We introduce a shorthand for conditional probabilities, by writing P [ā | b̄]
for P [(Xn, . . . , Xn+s) = ā | (X0, . . . , Xn−1) = b̄]. We shall formally write the
unconditional probabilities as conditional probabilities, too, with the empty
condition ε, i.e. we use the notation P [ā |ε] := P [(X0 . . . Xs) = ā] = P [ā].

Thus, the distribution of (Xt) is also uniquely characterized by its conditional
continuation probabilities, i.e. by the conditional probabilities P [ā | b̄], where
ā ∈ O+, b̄ ∈ O∗.

For every b̄ ∈ O∗, we collect all conditioned continuation probabilities of b̄
into a numerical function
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gb̄ : O+ → R, (11)
ā 7→ P [ā | b̄], if P [b̄] 6= 0

7→ 0, if P [b̄] = 0.

The set {gb̄ | b̄ ∈ O∗} uniquely characterizes the distribution of (Xt), too.
Intuitively, a function gb̄ describes the future distribution of the process after
an initial realization b̄.

Let D denote the set of all functions fromO+ into the reals, i.e. the numerical
functions on non-empty sequences. D canonically becomes a real vector space if
one defines scalar multiplication and vector addition as follows: for d1, d2 ∈ D,
α, β ∈ R, ā ∈ O+ put (αd1 + βd2)(ā) := α(d1(ā)) + β(d2(ā)).

Let G = 〈{gb̄ | b̄ ∈ O∗}〉D denote the linear subspace spanned in D by the
conditioned continuations. Intuitively, G is the (linear closure of the) space of
future distributions of the process (Xt).

Now we are halfway done with our construction of (G, (ta)a∈O, gε): we have
constructed the vector space G, which corresponds to Rm in the “ordinary”
OOMs from Section 2, and we have defined the initial vector gε, which is the
counterpart of w0. It remains for us to define the family of observable operators.

In order to specify a linear operator on a vector space, it suffices to specify
the values the operator takes on a basis of the vector space. Choose O∗0 ⊆ O∗
such that the set {gb̄ | b̄ ∈ O∗0} is a basis of G. Define, for every a ∈ O, a linear
function ta : G → G by putting

ta(gb̄) := P [a | b̄]gb̄a (12)

for all b̄ ∈ O∗0 (b̄a denotes the concatenation of the sequence b̄ with a). It turns
out that (12) carries over from basis elements b̄ ∈ O∗0 to all b̄ ∈ O∗:

Proposition 2 For all b̄ ∈ O∗, a ∈ O, the linear operator ta satisfies the
condition

ta(gb̄) = P [a | b̄]gb̄a. (13)

The proof is given in appendix B. Intuitively, the operator ta describes the
change of knowledge about a process due to an incoming observation of a. More
precisely, assume that the process has initially been observed up to time n. That
is, an initial observation b̄ = b0 . . . bn has been made. Our knowledge about the
state of the process at this moment is tantamount to the predictor function gb̄.
Then assume that at time n + 1 an outcome a is observed. After that, our
knowledge about the process state is then expressed by gb̄a. But this is (up to
scaling by P [a | b̄]) just the result of applying ta to the old state, gb̄.

The operators (ta)a∈O are the analog of the observable operators (τa)a∈O in
OOMs and can likewise be used to compute probabilities of finite sequences:
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Proposition 3 Let {gb̄ | b̄ ∈ O∗0} be a basis of G. Let ā := ai0 . . . aik
be an

initial realization of (Xt) of length k + 1. Let
∑

i=1,...,n αigb̄i
= taik

. . . tai0
gε be

the linear combination of taik
. . . tai0

gε from basis vectors. Then it holds that

P [ā] =
∑

i=1,...,n

αi. (14)

Note that (14) is valid for any basis {gb̄ | b̄ ∈ O∗0}. The proof can be found
in appendix C. (14) corresponds exactly to (6), since left-multiplication of a
vector with 1 amounts to summing the vector components, which in turn are
the coefficients of that vector w.r.t. a vector space basis.

Due to (14), the distribution of the process (Xt) is uniquely characterized
by the observable operators (ta)a∈O. Conversely, these operators are uniquely
defined by the distribution of (Xt). I.e., the following definition makes sense:

Definition 2 Let (Xt)t∈N be a stochastic process with values in a finite set O.
The structure (G, (ta)a∈O, gε) is called the predictor-space observable operator
model of the process. The vector space dimension of G is called the dimension
of the process and is denoted by dim(Xt).

I remarked in the introduction that stochastic processes have previously
been characterized in terms of vector spaces. Although the vector spaces were
constructed in other ways than G, they lead to equivalent notions of process
dimension. (Heller, 1965) called finite-dimensional (in our sense) stochastic
processes finitary ; in (Ito et al., 1992) the process dimension (if finite) was
called minimum effective degree of freedom.

(13) clarifies the fundamental character of observable operators: ta describes
how the knowledge about the process’s future after an observe past b̄ (i.e., the
predictor function gb̄) changes through an observation of a. The power of the
observable operator idea lies in the fact that these operators turn out to be
linear (proposition 2). I have only treated the discrete time, discrete value case
here. However, predictor-space OOMs can be defined in a similar way also for
continuous-time, arbitrary-valued processes (sketch in (Jaeger, 1999)). It turns
out that in those cases, the resulting observable operators are linear, too. In the
sense of updating predictor functions, the change of knowledge about a process
due to incoming observations is a linear phenomenon.

In the remainder of this section, I describe how the dimension of a process
is related to the dimensions of ordinary OOMs of that process.

Proposition 4 1. If (Xt) is a process with finite dimension m, then an m-
dimensional ordinary OOM of this process exists.

2. A process (Xt) whose distribution is described by a k-dimensional OOM
A = (Rk, (τa)a∈O, w0) has a dimension m ≤ k.

Thus, if a process (Xt) has dimension m, and we have a k-dimensional OOM
A of (Xt), we know that a m-dimensional OOM A′ exists which is equivalent to
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A in the sense of specifying the same distribution. Furthermore, A′ is minimal-
dimensional in its equivalence class. A minimal-dimensional OOM A′ can be
constructively obtained from A in several ways, all of which amount to an
implicit construction of the predictor-space OOM of the process specified by
A. Since the learning algorithm presented in later sections can be used for
this construction, too, I do not present a dedicated procedure for obtaining
minimal-dimensional OOMs here.

6 Equivalence of OOMs

Given two OOMs A = (Rk, (τa)a∈O, w0),B = (Rl, (τ ′a)a∈O, w′
0), when are they

equivalent in the sense that they describe the same distribution? This question
can be answered using the insights gained in the previous section.

First, construct minimal-dimensional OOMsA′,B′ which are equivalent toA
and B, respectively. If the dimensions of A′,B′ are not equal, then A and B are
not equivalent. We can therefore assume that the two OOMs whose equivalence
we wish to ascertain have the same (and minimal) dimension. Then, the answer
to our question is given in the following proposition:

Proposition 5 Two minimal-dimensional OOMs A = (Rm, (τa)a∈O, w0), B =
(Rm, (τ ′a)a∈O, w′

0) are equivalent iff there exists a bijective linear map % : Rm →
Rm, satisfying the following conditions:

1. %(w0) = w′
0,

2. τ ′a = %τa%−1 for all a ∈ O,

3. 1v = 1%v for all (column) vectors v ∈ Rm.

Sketch of proof: ⇐: trivial. ⇒: We have done all the hard work in the
previous section! Let σA, σB be the canonical projections from A,B on the
predictor-space OOM of the process specified by A (and hence by B). Observe
that σA, σB are bijective linear maps which preserve the component sum of
vectors. Define % := σ−B 1 ◦ σA. Then, (1) follows from σA(w0) = σB(w′

0) = gε,
(2) follows from ∀c̄ ∈ O+ : σ(τc̄w0) = σ(τ ′c̄w0) = P [c̄]gc̄, and (3) from the fact
that σA, σB preserve component sum of vectors.

7 A non-HMM linearly dependent process

The question of when a LDP can be captured by a HMM has been fully answered
in the literature (original result in (Heller, 1965), refinements in (Ito, 1992)),
and examples of non-HMM LDPs have been given. I briefly restate the results,
and then elaborate on a simple example of such a process. It was first described
in a slightly different version in (Heller, 1965). The aim is to provide an intuitive
insight in which sense the class of LDPs is “larger” than the class of processes
which can be captured by HMMs.
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Characterizing HMMs as LDPs heavily draws on the theory of convex cones
and non-negative matrices. I first introduce some concepts, following the nota-
tion of a standard textbook (Berman & Plemmons, 1979).

With a set S ⊆ Rn we associate the set SG, the set generated by S, which
consists of all finite nonnegative linear combinations of elements of S. A set
K ⊆ Rn is defined to be a convex cone if K = KG. A convex cone KG is called
n-polyhedral if K has n elements. A cone K is pointed if for every nonzero
v ∈ K, the vector −v is not in K. A cone is proper if it is pointed, closed, and
its interior is not empty.

Using these concepts, the following theorem in (a1 ), (a2 ) gives two condi-
tions which individually are equivalent to condition 3 in definition 1, and (b)
refines condition (a1 ) for determining when an OOM is equivalent to a HMM.
Finally, (c) states necessary conditions which every τa in an OOM must satisfy.

Proposition 6 (a1) Let A = (Rm, (τa)a∈O, w0) be a structure consisting of
linear maps (τa)a∈O on Rm and a vector w0 ∈ Rm. Let µ :=

∑
a∈O τa. Assume

that the first two conditions from definition 1 hold, i.e. 1w0 = 1 and µ has
column sums equal to 1. Then A is an OOM if and only if there exist pointed
convex cones (Ka)a∈O satisfying the following conditions:

1. 1v ≥ 0 for all v ∈ Ka (where a ∈ O),

2. w0 ∈ (
⋃

a∈O Ka)G,

3. ∀a, b ∈ O : τbKa ⊆ Kb.

(a2) Using the same assumptions as before, A is an OOM if and only if
there exists a convex cone1 K satisfying the following conditions:

1. 1v ≥ 0 for all v ∈ K,

2. w0 ∈ K,

3. ∀a ∈ O : τaK ⊆ K.

(b) Assume that A is an OOM. Then there exists a hidden Markov model
equivalent to A if and only if a pointed convex cone K according to condition
(a2) exists which is n-polyhedral for some n. n can be selected such that it is
not greater than the minimal state number for HMMs equivalent to A.

(c) Let A be a minimal-dimensional OOM, and τa be one of its observable
operators, and K be a cone according to (a2). Then (i) the spectral radius %(τa)
of τa is an eigenvalue of τa, (ii) the degree of %(τa) is greater or equal to the
degree of any other eigenvalue λ with | λ |= %(τa), and (iii) an eigenvector of

1The original claim additionally read: “if there exists a pointed convec cone...”. But
pointedness does not always hold, as witnessed by an example found by Mark Saaltink: Let
τa, τb be 3-dimensional diagonal matrices with diagonals (−1,−1, 0) and (2, 2, 1), and let
w0 = (−110)′. This is a valid OOM, but any cone containing w0 which is closed under τa

must contain (−1, 1, 0) and (1,−1, 0) and thus is not pointed.
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corresponding to %(τa) lies in K. (The degree of an eigenvalue λ of a matrix is
the size of the largest diagonal block in the Jordan canonical form of the matrix,
which contains λ).

Notes on the proof. The proof of parts (a1 ) and (b) go back to (Heller,
1965) and have been reformulated in (Ito, 1992)2. The equivalence of (a1 )
with (a2 ) is an easy exercise. The conditions collected in (c) are equivalent to
the statement that τaK ⊆ K for some proper cone K (proof in theorems 3.2
and 3.5 in (Berman & Plemmons, 1979)). It is easily seen that for a minimal-
dimensional OOM, the cone K required in (a2 ) is proper. Thus, (c) is a direct
implication of (a2 ).

Proposition 6 has two simple but interesting implications: (i) every two-
dimensional OOM is equivalent to a HMM (since all cones in two dimensions
are polyhedral); (ii) every non-negative OOM (i.e., matrices τa have only non-
negative entries) is equivalent to a HMM (since non-negative matrices map the
positive orthant, which is a polyhedral cone, on itself).

Part (c) is sometimes useful to rule out a structureA as an OOM, by showing
that some τa fails to satisfy the conditions given. Unfortunately, even if every
τa of a structure A satisfies the conditions in (c), A need not be a valid OOM.
Imperfect as it is, however, (c) is the strongest result available at this moment
in the direction of characterising OOMs.

Proposition 6 is particularly useful to build OOMs from scratch, starting
with a cone K and constructing observable operators satisfying τaK ⊆ K. Note,
however, that the theorem provides no means to decide, for a given structure
A, whether A is a valid OOM, since the theorem is non-constructive w.r.t. K.

More specifically, part (b) yields a construction of OOMs which are not
equivalent to any HMM. This will be demonstrated in the remainder of this
section.

Let τϕ : R3 → R3 be the linear mapping which right-rotates R3 by an angle
ϕ around the first unit vector e1 = (1, 0, 0). Select some angle ϕ which is
not a rational multiple of 2π. Then, put τa := ατϕ, where 0 < α < 1. Any
3-dimensional process described by a 3-dimensional OOM containing such a
τa is not equivalent to any HMM: let Ka be a convex cone corresponding to a
according to proposition 6(a1 ). Due to condition 3, Ka must satisfy τaKa ⊆ Ka.
Since τa rotates any set of vectors around (1, 0, 0) by ϕ, this implies that Ka

is rotation symmetric around (1, 0, 0) by ϕ. Since ϕ is a non-rational multiple
of 2π, Ka cannot be polyhedral. According to (b), this implies that an OOM
which features this τa cannot be equivalent to any HMM.

I describe now such an OOM with O = {a, b}. The operator τa is fixed,
according to the previous considerations, by selecting α = 0.5 and ϕ = 1.0. For
τb, we take an operator which projects every v ∈ R3 on a multiple of (.75, 0, .25),
such that µ = τa + τb has column vectors with component sums equal to 1
(cf. definition 1(2)). The circular convex cone K whose border is obtained
from rotating (.75, 0, .25) around (1, 0, 0) obviously satisfies the conditions in

2Heller and Ito use a different definition for HMMs, which yields a different version of the
minimality statement in part (b)
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proposition 6(a2 ). Thus, we obtain a valid OOM provided that we select w0 ∈
K. Using abbreviations s := sin(1.0), c := cos(1.0), the matrices read as follows

τa = 0.5

 1 0 0
0 c s
0 −s c


τb =

 .75 · .5 .75(1− .5c + .5s) .75(1− .5s− .5c)
0 0 0

.25 · .5 .25(1− .5c + .5s) .25(1− .5s− .5c)

 . (15)

As starting vector w0 we take (.75, 0, .25), to obtain an OOM C = (R3, (τa, τb), w0).
I will briefly describe the phenomenology of the process generated by C. The
first observation is that every occurrence of b “resets” the process to the ini-
tial state w0. Thus, we only have to understand what happens after uninter-
rupted sequences of a’s. I.e., we should look at the conditional probabilities
P [· | ε], P [· | a], P [· | aa], . . . , i.e., at P [· | at], where t = 0, 1, 2 . . .. Figure 3 gives
a plot of P [a |at]. The process could amply be called a “probability clock”, or
“probability oscillator”!

5 10 15 20 25 30

0.2

0.4

0.6

0.8

1

Figure 3: The rise and fall of probability to obtain a from the “probability
clock” C. Horizontal axis represents time steps t, vertical axis represents the
probabilities P [a | at] = 1τa(τ t

aw0/1τ t
aw0), which are rendered as dots. The

solid line connecting the dots is given by f(t) = 1τa(τtw0/1τtw0), where τt is
the rotation by angle t described in the text.

Rotational operators can be exploited for “timing” effects. In our example,
for instance, if the process would be started in the state according to t = 4 in
fig. 3, there would be a high chance for two initial a’s to occur, with a rapid
drop in probability for a third or fourth. Such non-exponential-decay duration
patterns for identical sequences are difficult to achieve with HMMs. Essentially,
HMMs offer two possibilities for identical sequences: (i) recurrent transitions
into a state where a is emitted, (ii) transitions along sequences of states, each of
which can emit a. Option (i) is cumbersome because recurrent transitions imply
exponential decay of state, which is unsuitable for many empirical processes;
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option (ii) blows up model size. A more detailed discussion of this problem in
HMMs can be found in (Rabiner, 1990).

If one defines a three-dimensional OOM C′ in a similar manner, but with a
rational fraction of 2π as an angle of rotation, one obtains a process which can
be modeled by a HMM. It follows from proposition 6(b) that the minimal HMM
state number in this case is at least k, where k is the smallest integer such that
kϕ is a multiple of 2π. Thus, the smallest HMM equivalent to a suitably chosen
3-dimensional OOM can have an arbitrarily great number of states. In a similar
vein, any HMM which would give a reasonable approximation to the process
depicted in fig. 3, would require at least 6 states, since in this process it takes
approximately 6 time steps for one full rotation.

8 Interpretable OOMs

Some minimal-dimension OOMs have a remarkable property: their state space
dimensions can be interpreted as probabilities of certain future outcomes. These
interpretable OOMs will be described in this section.

First some terminology. Let (Xt)t∈N be an m-dimensional LDP. For some
suitably large k, let Ok = A1∪ · · · ∪Am be a partition of the set of sequences
of length k into m disjoint nonempty subsets. The collective outcomes Ai are
called characteristic events if some sequences b̄1, . . . , b̄m exist such that the
m×m matrix

(P [Ai | b̄j ])i,j (16)

is nonsingular (where P [Ai | b̄j ] denotes
∑

ā∈Ai
P [ā | b̄j ]). Every LDP has char-

acteristic events:

Proposition 7 Let (Xt)t∈N be an m-dimensional LDP. Then there exists some
k ≥ 1 and a partition Ok = A1∪ · · · ∪Am of Ok into characteristic events.

The proof is given in the appendix. Let A = (Rm, (τa)a∈O, w0) be an m-
dimensional OOM of the process (Xt). Using the characteristic events A1, . . . , Am,
we shall now construct fromA an equivalent, interpretable OOMA(A1, . . . , Am),
which has the property that the m state vector components represent the
probabilities of the m characteristic events to occur. More precisely, if dur-
ing the generation procedure described in Section 4, A(A1, . . . , Am) is in state
wt = (w1

t , . . . , wm
t ) at time t, the probability P [(Xt+1, . . . , Xt+k) ∈ Ai |wt] that

the collective outcome Ai is generated in the next k time steps, is equal to wi
t.

In shorthand notation:

P [Ai |wt] = wi
t. (17)

We shall use proposition 5 to obtain A(A1, . . . , Am). Define τAi :=
∑

ā∈Ai
τā.

Define a mapping % : Rm → Rm by

%(x) := (1τA1x, . . . ,1τAmx). (18)
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The mapping % is obviously linear. It is also bijective, since the matrix (P [Ai |
b̄j ]) = (1τAi

xj), where xj := τb̄j
w0/1τb̄j

w0, is nonsingular. Furthermore, %
preserves component sums of vectors, since for j = 1, . . . ,m it holds that 1xj =
1 = 1(P [A1 |xj ], . . . , P [Am |xj ]) = 1(1τA1x, . . . ,1τAmx) = 1%(xj) (note that a
linear map preserves component sums if it preserves component sums of basis
vectors). Hence, % satisfies the conditions of proposition 5. We therefore obtain
an OOM equivalent to A by putting

A(A1, . . . , Am) = (Rm, (%τa%−1)a∈O, %w0) =: (Rm, (τ ′a)a∈O, w′
0). (19)

In A(A1, . . . , Am), equation (17) holds. To see this, let w′
t be a state vec-

tor obtained in a generation run of A(A1, . . . , Am) at time t. Then conclude
w′

t = %%−1w′
t = (1τA1(%

−1w′
t), . . . ,1τAm(%−1w′

t)) = (P [A1 | %−1w′
t], . . . , P [Am |

%−1w′
t]) (computed in A) = (P [A1 |w′

t], . . . , P [Am |w′
t]) (computed in A(A1, . . . , Am)).

The m×m matrix corresponding to % can easily be obtained from the original
OOM A by observing that

% = (1τAiej), (20)

where ei is the i-th unit vector.
The following fact lies at the heart of the learning algorithm presented in

the next section:

Proposition 8 In an interpretable OOM A(A1, . . . , Am) it holds that

1. w0 = (P [A1], . . . , P [Am]),

2. τb̄w0 = (P [b̄A1], . . . , P [b̄Am]).

The proof is trivial.
The state dynamics of interpretable OOM can be graphically represented in a

standardized fashion, which makes it possible to visually compare the dynamics
of different processes. Any state vector wt occurring in a generation run of an
interpretable OOM is a probability vector. It lies in the non-negative hyperplane
H≥0 := {(v1, . . . , vm) ∈ Rm | v1 + · · · + vm = 1, vi ≥ 0 for i = 1, . . . ,m}.
Therefore, if one wishes to depict a state sequence w0, w1, w2 . . ., one only needs
to render the bounded area H≥0. Specifically, in the case m = 3, H≥0 is
the triangular surface shown in fig. 4(a). We can use it as the drawing plane,
putting the point (1/3, 1/3, 1/3) in the origin. For our orientation, we include
the contours of H≥0 into the graphical representation. This is an equilateral
triangle whose edges have length

√
2. If w = (w1, w2, w3) ∈ H≥0 is a state

vector, its components can be recovered from its position within this triangle,
by exploiting wi =

√
2/3di, where the di are the distances to the edges of the

triangle. A similar graphical representation of states was first introduced in
(Smallwood & Sondik, 1973) for HMMs.

When one wishes to graphically represent states of higher-dimensional, in-
terpretable OOMs (i.e. where m > 3), one can join some of the characteristic
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x = P A |w[ ]11

x = P A |w[ ]22

x = P A |w[ ]33
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(a) (b)

Figure 4: (a) The positioning of H≥0 within state space. (b) State sequence of
the probability clock, corresponding to fig. 3. For details compare text.

events, until three merged events are left. State vectors can then be plotted in
a way similar to the one just outlined.

To see an instance of interpretable OOMs, consider the “probability clock”
example from (15). With k = 2, the following partition (among others) of
{a, b}2 yields characteristic events: A1 := {aa}, A2 := {ab}, A3 := {ba, bb}.
Using (20), one can calculate the matrix %, which we omit here, and compute the
interpretable OOM C(A1, A2, A3) using (19). These are the observable operators
τa and τb thus obtained:

τa =

 0.645 −0.395 0.125
0.355 0.395 −0.125

0 1 0

 , τb =

 0 0 0.218
0 0 0.329
0 0 0.452

 . (21)

Fig. 4(b) shows a 30-step state sequence obtained by iterated applications of
τa of this interpretable equivalent of the “probability clock”. This sequence
corresponds to fig. 3.

9 Learning OOMs

This section describes a constructive algorithm for learning OOMs from data.
For demonstration, it is applied to learn the “probability clock” from data.

There are two standard situations where one wants to learn a model of
a stochastic system: (i) from a single long data sequence (or few of them)
one wishes to learn a model of a stationary process, and (ii) from many short
sequences one wants to induce a model of a non-stationary process. OOMs can
model both stationary and nonstationary processes, depending on the initial
state vector w0 (cf. proposition 1). The learning algorithm presented here are

16



applicable in both cases. For the sake of notational convenience, we will only
treat the stationary case.

We shall address the following learning task. Assume that a sequence S =
a0a1 · · · aN is given, and that S is a path of an unknown stationary LDP (Xt).
We assume that the dimension of (Xt) is known to be m (the question of how
to assess m from S is discussed after the presentation of the basic learning
algorithm). We select m characteristic events A1, . . . , Am of (Xt) (again, se-
lection criteria are discussed after the presentation of the algorithm). Let
A(A1, . . . , Am) be an OOM of (Xt) which is interpretable w.r.t. A1, . . . , Am.
The learning task, then, is to induce from S an OOM Ã which is an estimate
of A(A1, . . . , Am) = (Rm, (τa)a∈O, w0). We require that the estimation be con-
sistent almost surely, i.e. for almost every infinite path S∞ = a0a1 · · · of (Xt),
the sequence (Ãn)n≥n0 obtained from estimating OOMs from initial sequences
Sn = a0a1 · · · an of S∞, converges to A(A1, . . . , Am) (in some matrix norm).

An algorithm meeting these requirements shall now be described.
As a first step we estimate w0. Prop. 8(1 ) states that w0 = (P [A1], . . . , P [Am]).

Therefore, a natural estimate of w0 is w̃0 = (P̃ [A1], . . . , P̃ [Am]), where P̃ [Ai] is
the estimate for P [Ai] obtained by counting frequencies of occurrence of Ai in
S, as follows:

P̃ [Ai] =
number of ā ∈ Ai occurring in S

number of ā occurring in S
=

number of ā ∈ Ai occurring in S

N − k + 1
,

(22)
where k is the length of events Ai. In the second step, we estimate the operators
τa. According to prop. 8(2 ), for any sequence b̄j it holds that

τa(τb̄j
w0) = (P [b̄jaA1], . . . , P [b̄jaAm]). (23)

An m-dimensional linear operator is uniquely determined by the values it takes
on m linearly independent vectors. This basic fact from linear algebra directly
leads us to an estimation of τa, using (23). We estimate m linearly independent
vectors vj := τb̄j

w0 by putting ṽj = (P̃ [b̄jA1], . . . , P̃ [b̄jAm]) (j = 1, . . . ,m). For
the estimation we use a similar counting procedure as in 22:

P̃ [b̄jAi] =
number of b̄ā (where ā ∈ Ai) occurring in S

N − l − k + 1
, (24)

where l is the length of b̄j . Furthermore, we estimate the results v′j := τa(τb̄j
w0)

of applying τa to vi by ṽ′j = (P̃ [b̄jaA1], . . . , P̃ [b̄jaAm]), where

P̃ [b̄jaAi] =
number of b̄aā (where ā ∈ Ai) occurring in S

N − l − k
. (25)

Thus we obtain estimates (ṽj , ṽ
′
j) of m argument-value pairs (vj , v

′
j) = (vj , τavj)

of applications of τa. From these estimated pairs, we can compute an estimate
τ̃a of τa through an elementary linear algebra construction: first collect the
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vectors ṽj as columns in a matrix Ṽ , and the vectors ṽ′j as columns in a matrix
W̃a, then obtain τ̃a = W̃aṼ −1.

This basic idea can be augmented in two respects:

1. Instead of simple sequences b̄j , one can just as well take collective events Bj

of some common lenght l to construct Ṽ = (P̃ [BjAi]), W̃a = (P̃ [BjaAi])
(exercise). We will call Bj indicative events.

2. Instead of constructing Ṽ , W̃a as described above, one can also use raw
count numbers, which saves the divisions on the rhs in (22),(24),(25). That
is, use V # = (#butlastBjAi),W#

a = (#BjaAi), where #butlastBjAi is the
raw number of occurrences of BjAi in Sbutlast := s1 . . . sN−1, and #BjaAi

is the raw number of occurrences of BjaAi in S. It is easy to see that this
gives the same matrices τ̃a as the original procedure.

Assembled in an orderly fashion, the entire procedure works as follows (as-
sume that model dimension m, indicative events Bj , and characteristic events
Ai have already been selected).

Step 1 Compute the m×m matrix V # = (#butlastBjAi).

Step 2 Compute, for every a ∈ O, the m×m matrix W#
a = (#BjaAi).

Step 3 Obtain τ̃a = W#
a (V #)−1.

The computational demands of this procedure are modest compared to to-
day’s algorithms used in HMM parameter estimation. The counting for V # and
W#

a can be done by a single sweep of an inspection window (of length k + l +1)
over S. Multiplying or inverting m × m matrices essentially has a computa-
tional cost of O(m3/p) (this can be slightly improved, but the effects become
noticeable only for very large m), where p is the degree of parallelization. The
counting and inverting/multiplying operations together give a time complexity
of this core procedure of O(N + nm3/p), where n is the size of O.

We shall now demonstrate the “mechanics” of the algorithm with an artificial
toy example. Assume that the following path S of length 20 is given:

S = abbbaaaabaabbbabbbbb.

We estimate a two-dimensional OOM. We choose the simplest possible charac-
teristic events A1 = {a}, A2 = {b} and indicative events B1 = {a}, B2 = {b}.

First we estimate the invariant vector w0, by putting

w̃0 = (#a,#b)/N = (8/20, 12/20).

Then we obtain V # and W#
a ,W#

b by counting occurrences of subsequences in
S:
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V # =
(

#butlastaa #butlastba
#butlastab #butlastbb

)
=

(
4 3
4 7

)
,

W#
a =

(
#aaa #baa
#aab #bab

)
=

(
2 2
2 1

)
,

W#
b =

(
#aba #bba
#abb #bbb

)
=

(
1 2
3 5

)
.

From these raw counting matrices we obtain estimates of the observable opera-
tors by

τ̃a = W#
a (V #)−1 =

(
3/8 1/8
5/8 −1/8

)
,

τ̃b = W#
b (V #)−1 =

(
−1/16 5/16
1/16 11/16

)
.

That is, we have arrived at an estimate

Ã = (R2,

(
3/8 1/8
5/8 −1/8

)
,

(
−1/16 5/16
1/16 11/16

)
, (9/20, 11/20)). (26)

This concludes the presentation of the learning algorithm in its core version.
Obviously, before one can start the algorithm, one has to fix the model di-
mension, and one has to select characteristic and indicative events. These two
questions shall now be briefly addressed.

In practice, the problem of determining the “true” model dimension seldom
arises. Empirical systems quite likely are very high-dimensional or even infinite-
dimensional. Given finite data, one cannot capture all of the true dimensions.
Rather, the task is to determine m such that learning an m-dimensional model
reveals m significant process dimensions, while any contributions of higher pro-
cess dimensions are insignificant in the face of estimation error. Put bluntly,
the task is to fix m such that data are neither overfitted nor underexploited.

A practical solution to this task capitalizes on the idea that a size m model
does not overfit data in S if the “noisy” matrix V # has full rank. Estimating
the true rank of a noisy matrix is a common task in numerical linear algebra,
for which heuristic solutions are known (Golub & Loan, 1996). A practical
procedure for determining an appropriate model dimension, which exploits these
techniques, is detailed out in (Jaeger, 1998).

Selecting optimal characteristic and indicative events is an intricate issue.
The quality of estimates Ã varies considerably with different characteristic and
indicative events. The ramifications of this question are not fully understood,
and only some preliminary observations can be supplied here.

A starting point toward a principled handling of the problem are certain
conditions on Ai, Bj reported in (Jaeger, 1998). If Ai, Bj are chosen according
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to these conditions, it is guaranteed that the resulting estimate Ã is itself inter-
pretable w.r.t. the chosen characteristic events A1, . . . , Am. I.e., it holds that
Ã = Ã(A1, . . . , Am). In turn, this warrants that Ã yields an unbiased estimate
of certain parameters which define (Xt).

A second observation is that the variance of estimates Ã depends on the
selection of Ai, Bj . For instance, characteristic events should be chosen such
that sequences āx, āy ∈ Ai collected in the same characteristic event have a
high correlation in the sense that the probabilities P̃S [āx |Bj ], P̃S [āy |Bj ] (where
j = 1, . . . ,m) correlate strongly. The better this condition is met, the smaller
is the variance of P̃S [Ai], and accordingly the variance of Ṽ and W̃a. Several
other rules of thumb similar to this one are discussed in (Jaeger, 1998).

A third and last observation is that characteristic events can be chosen such
that available domain knowledge is exploited. For instance, in estimating an
OOM of an written English text string S, one might collect in each charac-
teristic or indicative event such letter strings as belong to the same linguistic
(phonological or morphological) category. This would result in an interpretable
model whose state dimensions represent the probabilities for these categories to
be realized next in the process.

We now apply the learning procedure to the “probability clock” C introduced
in Sections 7 and 83. We provide only a sketch here. A more detailed account
is contained in (Jaeger, 1998).

C was run to generate a path S of length N = 30, 000. C was started in an
invariant state (cf. prop. 1), therefore S is stationary. We shall construct from
S an estimate C̃ of C.

Assume that we know that the process dimension is m = 3 (this value
was also obtained by the dimension estimation heuristics mentioned above).
The rules of thumb noted above lead to characteristic events A1 = {aa}, A2 =
{ab}, A3 = {ba, bb} and indicative events B1 = {aa}, B2 = {ab, bb}, B3 = {ba}
(details of how these events were selected are documented in (Jaeger, 1998)).

Using these characteristic and indicative events, an OOM C̃ = (R3, (τ̃a, τ̃b), w̃0)
was estimated, using the algorithm described in this section. We will briefly
highlight the quality of the model thus obtained.

First, we compare the operators C̃ with the operators of the interpretable
version C(A1, A2, A3) = (R3, (τa, τb), w0) of the probability clock (cf.(21)). The
average absolute error of matrix entries in τ̃a, τ̃b vs. τa, τb was found to be
approximately .0038 (1.7% of average correct value).

A comparison of the matrices τ̃a, τ̃b vs. τa, τb is not too illuminating, however,
because some among the matrix entries have little effect on the process (i.e.,
varying them greatly would only slightly alter the distribution of the process).
Conversely, information in S contributes only weakly to estimating these matrix
entries, which are therefore likely to deviate considerably from the corresponding
entries in the original matrices.

3The calculations were done using the Mathematica software package. Data and
Mathematica programs can be fetched from the author’s internet home page at
www.gmd.de/People/Herbert.Jaeger/

20



Figure 5: Comparison of estimated model vs. original ”probability clock”. (a)
Probabilities P (a|ā) as captured by the learnt model (dots) vs. the original
(solid line). (b) The most frequent states of the original. (c) States visited by
the learnt model. For details see text.

Indeed, taken as a sequence generator, the estimated model is much closer
to the original process than a matrix entry deviation of 1.7% might suggest.
Fig. 5 illustrates the fit of probabilities and states computed with C̃ vs. the true
values. Fig. 5(a) is a diagram similar to Figure 3, plotting the probabilities
PC̃ [a |at] against time steps t. The solid line represents the probabilities of the
original probabilitiy clock. Even after 30 time steps, the predictions are very
close to the true values. Fig. 5(b) is an excerpt of Figure 4(b) and shows the
eight most frequently taken states of the original probability clock. Fig. 5(c)
is an overlay of (b) with a 100000-step run of the estimated model C̃. Every
100-th step of the 100000-step run was additionally plotted into (b) to obtain
(c). The original states closely agree with the states of the estimated model.

I conclude this section by emphasizing a shortcoming of the learning algo-
rithm in its present form. An OOM is characterized by the three conditions
stated in definition 1. The learning algorithm only guarantees that the esti-
mated structure Ã satisfies the first two conditions (easy exercise). Unfortu-
nately, it may happen that Ã does not satisfy condition 3, and thus might not
be a valid OOM. That is, Ã might produce negative “probabilities” P [ā]. For
instance, the structure Ã estimated in (26) is not a valid OOM: one obtains
1τbτaτbτaτbw0 = −0.00029. A procedure for transforming an “almost-OOM”
into a nearest (in some matrix norm) valid OOM would be highly desirable.
Progress is currently blocked by the lack of a decision procedure for determin-
ing whether an “OOM-like” structure A satisfies condition 3.

In practice, however, even an “almost-OOM” can be useful. If the model
dimension is selected properly, the learning procedure yields either valid OOMs
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or pseudo ones which are close to valid ones. Even the latter ones yield good
estimates P̃ [ā] if ā is not too long and if P [ā] is not too close to zero. Further
examples and discussion can be found in (Jaeger, 1997b) and (Jaeger, 1998).

10 Conclusion

The results reported in this article are all variations on a single insight: The
change of predictive knowledge that we have about a stochastic system, is a
linear phenomenon. This leads to the concept of observable operators, which has
been detailed out here for discrete-time, finite-valued processes, but is applicable
to every stochastic process (Jaeger, 1999). The linear nature of observable
operators makes it possible to cast the system identification task purely in terms
of numerical linear algebra.

The proposed system identification technique proceeds in two stages: first,
determine the appropriate model dimension and choose characteristic and in-
dicative events; second, construct the counting matrices and from them, the
model. While the second stage is purely mechanical, the first involves some
heuristics. The situation is reminiscent of HMM estimation, where in a first
stage a model structure has to be determined – usually by hand; or of neural
network learning, where a network topology has to be designed before the me-
chanical parameter estimation can start. Although the second stage of model
construction for OOMs is transparent and efficient, it remains to be seen how
well the subtleties involved with the first stage can be mastered in real-life appli-
cations. Furthermore, the problem remains to be solved of how to deal with the
fact that the learning algorithm may produce invalid OOMs. One reason for op-
timism is that these questions can be posed in terms of numerical linear algebra,
which arguably is the best understood of all areas of applied mathematics.

A Proof of theorem 1

A numerical function P on the set of finite initial sequences of Ω can be uniquely
extended to the probability distribution of a stochastic process, if the following
two conditions are met:

1. P is a probability measure on the set of initial sequences of length k+1, for
all k ≥ 0. That is, (i) P [ai0 . . . aik

] ≥ 0, and (ii)
∑

ai0 ...aik
∈Ok+1 P [ai0 . . . aik

] =
1.

2. The values of P on the initial sequences of length k+1 agree with continu-
ation of the process in the sense that P [ai0 . . . aik

] =
∑

b∈O P [ai0 . . . aik
b].

The process is stationary, if additionally the following condition holds:

3. P [ai0 . . . aik
] =

∑
b0...bs∈Os+1 P [b0 . . . bsai0 . . . aik

] for all ai0 . . . aik
inOk+1

and s ≥ 0.
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Point 1(i) is warranted by virtue of condition 3 from definition 1. 1(ii) is
a consequence of conditions 1 and 2 from the definition (exploit that condi-
tion 2 implies that left-multiplying a vector by µ does not change the sum of
components of the vector):

∑
ā∈Ok+1

P [ā] =
∑

ā∈Ok

1τāw0 =

= 1(
∑
a∈O

τa) · · · (
∑
a∈O

τa)w0 (k + 1 terms (
∑
a∈O

τa))

= 1µ · · ·µw0 = 1w0 = 1.

For proving point 2, again exploit condition 2:∑
b∈O

P [āb] =
∑
b∈O

1τbτāw0 = 1µτāw0 = 1τāw0 = P [ā].

Finally, the stationarity criterium 3 is obtained by exploiting µw0 = w0:

∑
b̄∈Os+1

P [b̄ā] =
∑

b̄∈Os+1

1τāτb̄w0

= 1τāµ . . . µw0 (s + 1 terms µ)
= 1τāw0 = P [ā].

B Proof of proposition 2

Let b̄ ∈ O∗, and gb̄ =
∑n

i=1 αigc̄i be the linear combination of gb̄ from basis
elements of G. Let d̄ ∈ O+. Then, we obtain the statement of the proposition
through the following calculation:

(ta(gb̄))(d̄) =

= (ta(
n∑

i=1

αigc̄i))(d̄) = (
∑

αita(gc̄i))(d̄)

= (
∑

αiP [a | c̄i] gc̄ia)(d̄) =
∑

αiP [a | c̄i]P [d̄ | c̄ia]

=
∑

αiP [a | c̄i]
P [c̄iad̄]

P [a | c̄i]P [c̄i]
=

∑
αi

P [c̄i]P [ad̄ | c̄i]
P [c̄i]

= gb̄(ad̄) = P [ad̄ | b̄] = P [a | b̄] P [d̄ | b̄a]
= P [a | b̄] gb̄a(d̄).
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C Proof of proposition 3

From an iterated application of (12) it follows that taik
. . . tai0

gε =P [ai0 . . . aik
]gai0 ...aik

.
Therefore, it holds that

gai0 ...aik
=

∑
i=1,...,n

αi

P [ai0 . . . aik
]
gb̄i

.

Interpreting the vectors gb̄i
and gai0 ...aik

as probability distributions (cf. (11)),
it is easy to see that

∑
i=1,...,n

αi

P [ai0 ...aik
] = 1, from which the statement imme-

diately follows.

D Proof of proposition 4

To see 1, let (G, (ta)a∈O, gε) be the predictor-space OOM of (Xt). Choose
{b̄1, . . . , b̄m} ⊂ O∗ such that the set {gb̄i

| i = 1, . . . ,m} is a basis of G. Then,
it is an easy exercise to show that an OOM A = (Rm, (τa)a∈O, w0) and an
isomorphism π : G → Rm exist such that (i) π(gε) = w0, (ii) π(gb̄i

) = ei, where
ei is the i-th unit vector, (iii) π(tad) = τaπ(d) for all a ∈ O, d ∈ G. These
properties imply that A is an OOM of (Xt).

In order to prove 2, let again (G, (ta)a∈O, gε) be the predictor-space OOM of
(Xt). Let Γ be the linear subspace of Rk spanned by the vectors {w0} ∪ {τāw0 |
ā ∈ O+}. Let {τb̄1w0, . . . , τb̄l

w0} be a basis of Γ. Define a linear mapping σ
from Γ to G by putting σ(τb̄i

w0) := P [b̄i] gb̄i
, where i = 1, . . . , l. σ is called the

canonical projection of A on the predictor-space OOM. By a straightforward
calculation, it can be shown that σ(w0) = gε and that for all c̄ ∈ O+ it holds
that σ(τc̄w0) = P [c̄]gc̄ (cf. (Jaeger, 1997a) for these and other properties of σ).
This implies that σ is surjective, which in turn yields m ≤ k.

E Proof of proposition 7

From the definition of process dimension (def. 2) it follows that m sequences
ā1, . . . , ām and m sequences b̄1, . . . , b̄m exist such that the m×m matrix (P [āj |
b̄i]) is nonsingular. Let k be the maximal length occurring in the sequences
ā1, . . . , ām. Define collective events Cj of length k by using the sequences aj

as initial sequences, i.e. put Cj := {āj c̄ | c̄ ∈ Ok−|̄aj|}, where | āj | denotes the
length of āj . It holds that (P [Cj | b̄i]) = (P [āj | b̄i]). We transform the collective
events Cj in two steps in order to obtain characteristic events.

In the first step, we make them disjoint. Observe that due to their con-
struction, two collective events Cj1 , Cj2 are either disjoint, or one is properly
included in the other. We define new, non-empty, pairwise disjoint, collective
events C ′

j := Cj \
⋃

Cx⊂Cj
Cx by taking away from Cj all collective events prop-

erly included in it. It is easily seen that the matrix (P [C ′
j | b̄i]) can be obtained

from (P [Cj | b̄i]) by subtracting certain rows from others. Therefore, this matrix
is nonsingular, too.
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In the second step, we enlarge the C ′
j (while preserving disjointness) in order

to arrive at collective events Aj which exhaustOk. Put C ′
0 = Ok\(C ′

1∪. . .∪C ′
m).

If C ′
0 = ∅, Aj := C ′

j (j = 1, . . . ,m) are characteristic events. If C ′
0 6= ∅,

consider the m× (m+1) matrix (P [C ′
j | b̄i])i=1,...,m,j=0,...,m. It has rank m, and

column vectors vj = (P [C ′
j | b̄1], . . . , P [C ′

j | b̄m]). If v0 is the null vector, put
A1 := C ′

0 ∪ C ′
1, A2 := C ′

2, . . . , Am := C ′
m to obtain characteristic events. If v0

is not the null vector, let v0 =
∑

ν=1,...,m ανvν be its linear combination from
the other column vectors. Since all vν are non-null, non-negative vectors, some
αν0 must be properly greater than 0. A basic linear algebra argument (exercise)
shows that the m×m matrix made from column vectors v1, . . . , vν0 +v0, . . . , vm

has rank m. Put A1 := C ′
1, . . . , Aν0 := C ′

ν0
∪ C ′

0, . . . , Am := C ′
m to obtain

characteristic events.
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