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Abstract. The paper gives a novel account of quick decision making for
maximising delayed reward in a stochastic world. The approach rests on
observable operator models of stochastic systems, which generalize hidden
Markov models. A particular kind of decision situations is outlined, and
an algorithm is presented which allows to estimate the probability of
future reward with a computational cost of only O(im), where i is the
number of action alternatives and m is the model dimension.

1 Introduction

Humans can roughly assess the future benefit of an action very quickly and in
novel situations. I give two examples. (1) An expert chess player who sees a novel
chess configuration can judge “at a glance” the potential benefit of a particular
move. (2) A football player during a developing attack runs toward a position
where he feels he might be needed some ten seconds later.

These examples have several traits in common:

1. Reward of current action is delayed by an unknown amount of time.
2. The consequences of action are only stochastically predictable. The subject’s

performance capabilities result from long-time experience and appear to be
linked to some (probabilistic) learning capability.

3. The current situation is a novel constellation which was not encountered in
prior experience.

4. Decisions are taken very quickly.

Many attempts have been made to model decision-making for achieving a
goal or reward, among them the following.

– In cognitive science and artificial intelligence, looking ahead for maximizing
reward is often framed as a symbolic, rational planning problem. The plan-
ning paradigm is well-suited to model points 1 and 3. However, the current
state of the art does not permit to account for both points 2 and 4: either one
has stochastic world models with slow (Bayesian) inference, or deterministic
world models with fast inference (Kautz & Selman, 1996).
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– In machine learning and robotics, determining reward-optimal decisions is
often achieved by using reinforcement learning in general and Q-learning
in particular (Sutton, 1991). In a learning phase, a random exploration of
action-situation sequences enables the agent to build a probabilistic finite
state machine model of the world. In the application phase, this models
allows to take immediate decisions. A serious shortcoming is bad scaling of
learning time with size of world models. Reinforcement learning accounts for
points 1, 2, 4 but not for 3.

– In biocybernetics and neurobiology, several neural network architectures
have been proposed to model the learning of action sequences with delayed
reward (Corbacho & Arbib, 1995) (Klopf, Morgan, & Weaver, 1993). Typ-
ically these neural networks account for classical or operand conditioning
of short, highly stereotyped action sequences. Points 1, 2, 4 are elegantly
explained, but 3 leads out of the realm of stereotyped behavior.

In this article I make a new attempt to answer the old question of how op-
timising delayed reward. The new approach grows from a recently discovered
mathematical model of stochastic systems, named “observable operator mod-
els” (OOMs) (Jaeger, 1999). From an information theoretic perspective, OOMs
describe stochastic time series prediction as the evolution of a knowledge state
which in a strict sense is the agent’s expectation about the future, as learnt from
the past. All of the above four points are accounted for (of course that is why I
listed just those).

The article is structured as follows. First I further clarify the scope of phe-
nomena that the paper addresses (section 2). After a sketch of OOM theory
(section 3), the main result in section 4 describes how one can quickly compute
an estimate of the future reward brought about by a present action.

2 What kind of phenomena, exactly, is addressed

A single, universal cognitive model of how humans assess the consequences of
their actions can hardly be expected to exist. The four points given in the in-
troduction circumscribe only roughly the particular kind of future assessment
envisaged in this article. In this section, I will highlight two characteristic prop-
erties of the particular kind of assessment processes that the OOM approach
aims to model.

Self-image. Human experts not only know how situations typically change
through their actions. They also know how they themselves will typically
act in given situations. They have a self-image about how they respond to
situations. This is heavily exploited by the OOM model. Therefore, it cannot
capture assessment processes in novices, who have yet to learn how they will
typically act.

Forward vs. recurrent decisions. I can discern (at least) two kinds of action
decisions, which I would like to call tentatively “forward” and “recurrent”
decisions. Forward decisions are the kind of decisions that we take almost



all of the time in the situated action (Suchman, 1987) everyday life, for
instance when we decide to turn the ignition key when we are seated in
the car. Forward decisions occur in non-novel situations and involve no ex-
plicit reasoning about their consequences. Recurrent decisions, by contrast,
have the property that their expected consequences explicitly feed back into
the decision process. They are triggered by novelty in situations. From a
mathematical prespective, the outcome of forward decisions is a (stochastic)
function of the current situation and its prior history. Recurrent decisions,
then, should be mathematically featured as dynamical systems with a state;
their outcome depends on a decision-internal, autonomous process which
circles around models of the predicted futures implied by current decision
(extensive theoretical treatment in (Rosen, 1985), connectionist model in
(Townsend & Busemeyer, 1995)). Arguably, human experts operate in for-
ward decision mode most of the time. The OOM model of future assessment
models a single recurrent decision, assuming that in the relevant future only
forward decisions will occur.

Thus, in sum, this article aims at scenarios where long situated action se-
quences of forward decisions are separated by rare, singular recurrent decisions;
and where the subject’s inclinations for particular forward decisions are part of
his/her self-image. The OOM model describes how a single recurrent decision
can be made such that maximal reward can be expected during some extended
lapse of future, but not later than the next recurrent decision.

3 Background: observable operator models

In this section, I sketch some essentials of OOMs. A detailed treatment is given
in (Jaeger, 1999).

OOMs are mathematical models of stochastic processes. The most elemen-
tary OOMs, which suffice for the present purpose, describe processes that un-
fold in time as a stochastic sequence of finitely many observable events O =
{a1, . . . , an}. Thus, an empirically observed (or mentally envisaged) system his-
tory would be a sequence S = ai1 . . . aiN , where aij ∈ O. A k-sequence is a
sequence of length k. Ok denotes the set of all k-sequences. A nonempty subset
A ⊂ Ok is called a k-event. For example, taking O = {a, b, c}, the set {aa, ab, ac}
is a 2-event.

An OOM has three ingredients: (i) a state space Rm, (ii) a family (τa)a∈O of
linear operators τa : Rm → R

m, and (iii) a starting vector w0 ∈ Rm. The oper-
ators τa must obey certain regularity conditions. Note that for every observable
event a ∈ O there exists an operator τa.

The m axes of an OOM state space can be labeled by k-events which partition
Ok. For instance, a two-dimensional OOM with O = {a, b, c} could be labeled by
the 2-events A1 = {aa, ab, ac, ba, ca}, A2 = {bb, bc, cc}. The events A1, . . . , Am
pertaining to the labelling of the m dimensions are called the characteristic
events of the OOM. We use the notation A(A1, . . . , Am) = (Rm, (τa)a∈O, w0)



to denote an m-dimensional OOM with characteristic events A1, . . . , An and
observables O.

The observable operators, being linear maps on Rm, can be represented by
m×m matrices. I will not distinguish between matrices and formal operators.

I use an example to demonstrate how an OOM can be used to compute
probabilities of future observations. Assume that one wishes to compute the
probability that the sequence aab will occur. We use the shorthand P [aab] to
denote this probability. The central law of OOMs is exemplified in the following
equation:

P [aab] = 1 ◦ τb ◦ τa ◦ τa ◦ w0, (1)

where ◦ denotes matrix-matrix or matrix-vector multiplication, and 1 is the
m−unit-row vector (1, . . . , 1).

Alternatively, P [aab] can be obtained by first computing τaab = τb ◦ τa ◦ τa,
and then obtaining P [aab] = 1◦τaab◦w0. If one wishes to compute the probability
that the 3-event A = {aab, aba} will occur, one can similarly put τA = τaab+τaba
and obtain P [A] = 1 ◦ τA ◦ w0. “Compiling” sequences or k-events into single
operators in this fashion is useful if the probability of this sequence or k-event
has to be estimated repeatedly.

Two OOMs are equivalent when they yield the same probabilities for event
sequences. For any given OOM there are (very) many equivalent ones. Given
two partitions Ok = A1 ∪ · · · ∪ Am = B1 ∪ · · · ∪ Bm, the OOM A(A1, . . . , Am)
can be transformed into an equivalent OOM A(B1, . . . , Bm) essentially with the
cost of computing the “compiled” operators τBi .

The example in equation (1) brings out clearly how sequences of operators
correspond to sequences of observable events in OOM theory, and why the math-
ematical model is called “observable operator model”.

OOMs are a generalization of the widely used hidden Markov models (HMMs).
Every HMM can be directly transformed into an equivalent OOM. Thus, the re-
sults reported in the next section straightforwardly apply also in cases where
the learnt world model is a HMM, (or, equivalently, a probabilistic finite-state
machine).

Of course, the probabilities P [ai1 . . . aiN ] that one obtains from a particular
OOM depend on the particular matrices τa and the starting vector w0. In order
to model an observed empirical system with an OOM, these matrices and the
starting vector have to be estimated (= learnt) from empirical observations in the
first place. A very efficient, asymptotically correct learning algorithm is available
for OOMs: given a teaching sequence ai1 . . . aiN , an m-dimensional OOM can be
estimated with time complexity O(N + nm3). The algorithm is described in
(Jaeger, 1999).

In equation (1), the starting state w0 is successively transformed into w̃1 =
τa◦w0, w̃2 = τa◦w̃1, w̃3 = τb◦w̃2. We put w1 = P [a]−1w̃1, w2 = P [aa]−1w̃2, w3 =
P [aab]−1w̃3. The sequence w1, w2, w3 is called a sequence of state vectors of the
OOM, which corresponds to the sequence of observations a, a, b.



State vectors of an OOM can be interpreted as knowledge states. Imagine that
an agent (human or robot) has learnt from experience an OOM A(A1, . . . , Am)
for some domain with observable events O. Assume that after learning, the OOM
is used to monitor an ongoing process for some time – for instance, an initial
sequence aab is empirically observed, and the OOM is taken through the state
vectors w0, w1, w2, w3 concurrently, and is finally in state w3. Then, the agent
can use the current state w3 to compute probabilities of what is going to be
observed next. For instance, P [c |aab] = 1 ◦ τc ◦w3 is the conditional probability
that c is going to happen next, given that aab has happend so far. Likewise,
the agent can use w3 to compute the conditional probability of any other future
event. Thus, w3 comprises all the prediction-relevant knowledge the agent has,
at this moment, about the world state.

4 Algorithm: fast computation of optimal action

The state vector w3 = (w1
3, . . . , w

m
3 ) obtained at time t = 3 has an important

additional property. Namely, its i-th component is the probability that the i-th
characteristic event will be observed in the next k time steps: wi3 = P [Ai |aab].
This leads to an algorithm for selecting a reward-optimal action. I will explain
it along the lines of the running example.

Assume again that the agent has learnt an OOM A(A1, . . . , Am). This OOM
contains the agent’s statistical knowledge about the unfolding of situated action
sequences, i.e. of forward decision driven agent-environment interaction histories.
Assume that the occurence of c is a rewarding event. Assume further that the
agent at time t = 3 (after the initial world development aab) wishes to make
a recurrent decision, and that the agent has the option to make either a or b
happen, and that the agent wishes to maximise the chances of c to happen within
the next l time steps. Assume furthermore that after t = 3, the agent will not
further recurrently interfere with the going of things (i.e., will make only forward
decisions).

Let C = {x1 . . . xl |x1 . . . xl contains at least one c} be the l-event “reward c
occurs”. Then, this is an algorithm to decide between a vs. b:

1. Compute τC . Due to the particular form of C, this incurs essentially 4l matrix
multiplications.

2. Transform the OOM A(A1, . . . , Am) into a version A′(C,A′2, . . . , A′m) =
(Rm, (τ ′a)a∈O, w′0) with characteristic l-events, the first of which is C, and the
others are arbitrary. This essentially incurs m further matrix multiplications.

3. Transform τC from the original OOM A to the equivalent version A′ (one
more matrix multiplication).

4. Transform the state vector w3 into its equivalent state w′3 in A′ (one vector-
matrix multiplication).

5. Compute the first component α of the vector 1 ◦ τ ′a ◦ w′3, and the first com-
ponent β of the vector 1 ◦ τ ′b ◦w′3. This can be done by 4m float operations.
It holds that α = P [C | aaba], β = P [C | aabb], i.e. α, β are the estimated



probabilities that a reward event c will occur in the next l time steps after
either a or b has been effected by the agent.

The main costs of this procedure stem from the computation of τC and the
transformation fromA to A′. These “compilation” computations have to be done
only once if if the reward event c and the reward “horizon” l remain fixed. Then,
only the last step has to be re-computed at each upcoming recurrent decision
point – with only 2im float operations.

5 Summary

This article proposes an algorithm for fast decision making which optimizes
reward in a stochastic world. It rests on a novel representation of stochastic
systems, OOMs, which can be efficiently learned from experiential data. The
algorithm models a particular (but apparently widespread) kind of decision sit-
uations, namely, when a single complex, novel kind of decision is to be followed
by a sequence of decisions of a kind which the agent has taken before, such that
experiential knowledge about this kind of decisions is available. The algorithm
accounts for a combination of factors which was unaddressable so far: (i) delayed
reward, (ii) stochastic consequences of action, (iii) novelty of current situation,
(iv) quickness of decisions, i.e. low computational complexity.
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