
Discrete-time, discrete-valued observable

operator models: a tutorial1

Herbert Jaeger
International University Bremen

Campus Ring 1, D-28759 Bremen
phone +49 421 200 3215

email: h.jaeger@iu-bremen.de

April 25, 2012

1This is a continued update from the printed 1998 version. See bottom of next
page for change history

Abstract

This tutorial gives a basic yet rigorous introduction to observable operator
models (OOMs). OOMs are a recently discovered class of models of stochas-
tic processes. They are mathematically simple in that they require only
concepts from elementary linear algebra. The linear algebra nature gives
rise to an efficient, consistent, unbiased, constructive learning procedure for
estimating models from empirical data. The tutorial describes in detail the
mathematical foundations and the practical use of OOMs for identifying and
predicting discrete-time, discrete-valued processes, both for output-only and
input-output systems.

key words: stochastic time series, system identification, observable operator
models

Zusammenfassung

Dies Tutorial bietet eine gründliche Einführung in observable operator Mod-
elle (OOMs). OOMs sind eine kürzlich entdeckte Klasse von Modellen
stochastischer Prozesse. Sie sind mit den Mitteln der elementaren linearen
Algebra darzustellen. Die Einfachheit der Darstellung führt zu einem ef-
fizienten, konsistenten, erwartungstreuen, konstruktiven Lernverfahren für
die Induktion von Modellen aus empirischen Daten. Das Tutorial beschreibt
im Detail die mathematischen Grundlagen und die praktische Verwendung
von OOMs für die Identifikation und die Vorhersage zeit- und wertdiskreter
Prozesse, sowohl für reine Output-Systeme (Generatoren) als auch für Input-
Output-Systeme.

Stichwörter: stochastische Zeitreihen, Systemidentifikation, Lernen, observ-
able operator models

Last change: April 26, 2012. Change history: July 2003: additional sec-
tion 10.8 which relates the input-output OOMs to the PSR models of con-
trolled stochastic processes recently developed by Littman, Sutton, Singh et
al. January 2004: correction of error in formula of online learning algo-
rithm described in Section 10.8. April 2004: new point added to section 10.8.
April 2012: corrected statement in Prop. 6(b), adding qualifier “minimal-

1

dimensional” (pointed out by M. Thon).

1 Introduction

In this introduction, I will briefly sketch the scope of applicability of OOMs
(subsection 1.1), remark on the historical roots of OOMs (subsection 1.2),
and explain the basic idea which gives rise to the notion of “observable op-
erator” (subsection 1.3).

1.1 What OOMs are (not) good for

In robotics and many other disciplines, identifying and predicting stochastic
systems is important. Consider the following examples:

1. A robot learns how the world responds to its actions, by constructing
a probabilistic model of action-sensing dependencies.

2. A robot with redundant and unreliable kinematics in a noisy environ-
ment learns a stochastic forward model of how its body responds to
motor signals.

3. A robot designer evaluates the robot’s performance by analysing stochas-
tic time series data generated by the robot in action.

4. An ethologist wants to detect informative patterns in the sequences of
actions performed by an animal.

5. A neuroethologist seeks for dynamic correlations between spike trains
of several neurons.

Numerous formal models of stochastic systems are available. They vary
in many aspects. I discuss a few, pointing out where OOMs fall in each case.

Discrete vs. continuous: A system can be observed in discrete time incre-
ments or in continuous time. It can be observed in discrete categories
or by real-valued measurements. For instance, modeling a sequence
of observations of elementary behaviors would require a discrete-time,
discrete-value model like a Markov chain, whereas the trajectories of a

2

robot arm might most appropriately be captured by a continous-time,
continuous-value stochastic differential equation.

This tutorial covers OOMs for discrete-time, discrete-value systems.
This is the case where the theory and learning algorithm is fully de-
veloped. OOMs can also be constructed for continuous time and/or
measurements [Jaeger, 1998b], but this extension is too immature for
inclusion in a tutorial.

Expressiveness: Some stochastic models can capture a greater number of
empirical phenomena than others. The former are more expressive
than the latter. For instance, every system which can be captured by
a Markov chain can also be correctly described by a hidden Markov
model, but not vice versa. Hidden Markov models are more expressive
than Markov chains in that they allow to describe memory effects. For
the action sequences of amoeba a Markov chain might suffice, but for
modeling human speech or an intelligent robot’s actions, memory is
crucial. The drawback of more expressive models is that they generally
are more expensive to learn and to use.

OOMs are more expressive than hidden Markov models (HMMs), the
most expressive class of models available so far for which an efficient
learning procedure existed. In spite of their greater expressiveness,
OOMs can be learnt easier than HMMs.

Input-output or output-only: A system’s output may or may not be in-
fluenced by input fed into the system. For instance, if an animal or a
robot learns a stochastic model of its environment, the robot’s actions
may be conceived as input into the environment system, while the sen-
sory feedback is the environment’s output. If, by contrast, an agent
passively observes its environment, it builds an output-only model of
the environment. Theoretically, output-only models are just a special
case of input-output models (case of null input), but in practice there
are substantial differences. Many stochastic models are formulated only
for either one of the two cases.

Like HMMs, OOMs can be formulated for both output-only and input-
output systems. The latter are a canonical extension of the former.
Likewise, the learning procedure for IO-models is a straightforward ex-
tension of the learning procedure for output-only systems. This tutorial
provides a detailed treatment of both cases.

3

Degree of stochasticity For many systems it is appropriate to cast them
as “essentially deterministic plus noise”. Examples abound in engineer-
ing and control. Such systems are often described by a deterministic
model to which a noise term is added. Other processes, like throwing
dice, are intrinsically random and have no practically relevant deter-
ministic core. Appropriate models for such systems are e.g. Markov
models or more complex stochastic automata. Robots and animals
and ethologists are often faced with systems which lie somewhere in be-
tween the almost deterministic and the completely random ones. The
appropriate degree of stochasticity for a model depends on how much
information is available which is relevant for understanding the system.
For instance, if one observes an animal for a short period of time, not
knowing much about its neural machinery, and not recording most of
the environmental factors which co-determine the animal’s actions, one
must resort to an intrinsically random model. If, by contrast, one gath-
ers data over a long period of time and/or has substantial knowledge
about the animal’s internal information processing and/or monitors a
lot of external factors, one might strive for an essentially deterministic
model.

OOMs (like HMMs) are intrinsically random models. They do not
explicitly address deterministic components in a system’s behavior.
Therefore, they are the best suited for intrinsically random systems, or
for obtaining models in the face of missing information. If one wishes
to obtain a “deterministic plus noise” type of model, one should not
consider pure OOMs1.

Stationary vs. non-stationary: A system might exhibit the same stochas-
tic regularities over time, i.e. be stationary, or change its behavior
due to learning, wear, change of environment or other factors (non-
stationary system behavior). Mathematical models of stochastic sys-
tems very often can capture both cases. However, the empirical data
required for learning stationary vs. nonstationary systems are different.
A model of a stationary process is usually acquired from a single (or
a few) long series of observations, whereas non-stationary models are
obtained from many short sequences of observations. For instance, a

1Hybrid “deterministic plus OOM”-models are being investigated by Dieter Kutzera
at GMD.

4

stochastic model of a grasp movement (which is nonstationary) must
be distilled from many trials of that movement, while a simple robot in
a simple, stable arena will reveal itself in a long, stationary sequence of
motions. Stationarity is relative to the chosen timescale: a long-range
stationary history is usually made from many, stochastically repeated
episodes of locally non-stationary character.

OOMs can be formulated (and learnt) for stationary and non-stationary
systems equally well. This tutorial covers both.

In sum, using OOMs is an option if one wishes to obtain expressive models
of discrete-time, discrete-valued systems which are intrinsically stochastic or
where available data are insufficient to learn deterministic-plus-noise models.
If one has continuous-time, continuous-value systems, or if one wishes to ex-
tract a deterministic core from one’s stochastic observations, other techniques
are currently better suited than OOMs.

This profile indicates many interesting applications of OOMs in robotics,
ethology and other “agent sciences”.

1.2 Historical notes

This section provides a brief overview of mathematical research which can
be considered ancestral to OOMs.

OOMs are a generalization of hidden Markov models (HMMs)[Bengio, 1999].
HMMs have been investigated mathematically long before they became a
popular tool in speech processing [Rabiner, 1990] and control engineering
[Elliott et al., 1995]. A particular strand of research on HMMs is of specific
interest for OOMs. This research was centered on the question to decide when
two HMMs are equivalent, i.e. describe the same process [Gilbert, 1959].
The problem was tackled by framing HMMs within a more general class of
stochastic processes, now termed linearly dependent processes (LDPs). De-
ciding the equivalence of HMMs amounts to characterising HMM-describable
processes as LDPs. This line of research came to a successful conclusion in
[Ito et al., 1992], where equivalence of HMMs was characterised algebraically,
and where a decision algorithm was provided. That article also gives an
overview of the work done in this area.

It should be emphasized that linearly dependent processes are unrelated
to linear systems in the standard sense, i.e. systems whose state sequences
are generated by some linear operator (e.g., [Narendra, 1995]). The term,

5

“linearly dependent processes”, refers to certain linear relationships between
conditional distributions that arise in the study of general stochastic pro-
cesses. LDP’s are thoroughly “nonlinear” in the standard sense of the word.

The class of LDPs has been characterized in various ways. The most
concise description was developed in [Heller, 1965], using methods from cat-
egory theory and algebra. This approach was taken up and elaborated in
a recent comprehensive account on LDPs and the mathematical theory of
HMMs, viewed as a subclass of LDPs [Ito, 1992].

All of this work on HMMs and LDPs was mathematically oriented, and
did not bear on the algorithmical question of learning models from data.

OOMs are just yet another characterization of LDPs. The advantage
of the OOM characterization is its unprecedented mathematical simplicity,
which gives rise to algorithmical efficiency.

1.3 Why they are called “observable operator models”

The name, “observable operator models”, stems from the very way of how
stochastic trajectories are mathematically modeled in this approach.

Traditionally, trajectories of discrete-time systems are seen as a sequence
of states, which is generated by the repeated application of a single (possibly
stochastic) operator T (fig. 1a). Metaphorically speaking, a trajectory is seen
as a sequence of locations in state space, which are visited by the system due
to the action of a time step operator.

In OOM theory, trajectories are perceived in a complementary fash-
ion. From a set of operators (say, {TA, TB}), one operator is stochasti-
cally selected for application at every time step. The system trajectory is
then identified with the sequence of operators. Thus, an observed piece of
trajectory . . . ABAA . . . would correspond to a concatenation of operators
. . . TA(TA(TB(TA . . .))) . . . (fig. 1b). The fact that the observables are the
operators themselves, led to the naming of this kind of stochastic models.
An appropriate metaphor would be to view trajectories as sequences of ac-
tions.

Stochastic sequences of operators are a well-known object of mathemati-
cal investigation [Iosifescu and Theodorescu, 1969]. OOM theory grows out
of the novel insight that the probability of selecting an operator can be com-
puted using the operator itself.

The sections of this tutorial cover the following topics: (2) how a ma-
trix representation of OOMs can be construed as a generalization of HMMs,

6

T T T

A B A A

(a) (b)

TA TA TA
TB

Figure 1: (a) The standard view of trajectories. A time step operator T
yields a sequence ABAA of states. (b) The OOM view. Operators TA, TB

are concatenated to yield a sequence ABAA of observables.

(3) how OOMs are used to generate and predict stochastic time series, (4)
how an information-theoretic version of OOMs can be obtained from any
stochastic process, (5) how these information-theoretic OOMs can be used
to prove a fundamental theorem which reveals when two OOMs in matrix rep-
resentation are equivalent, (6) that some low-dimensional OOMs can model
processes which can be modeled either only by arbitrarily high-dimensional
HMMs, or by none at all; and that one can model a conditional rise and fall
of probabilities in processes timed by “probability oscillators”, (7) what hap-
pens when instead of a memoryless Markov process, one “hides” a process
with memory behind probabilistic observations in a “hidden LDP model”,
(8) how one can use the fundamental equivalence theorem to obtain OOMs
whose state space dimensions can be interpreted as probabilities of certain
future events, and (9.1) how these interpretable OOMs directly yield a pro-
cedure to estimate OOMs from data, a method which is constructive and
gives unbiased estimates of defining parameters of a process, which is shown
in (9.2), while (9.3) describes how to determine the model dimension which
is appropriate for exploiting but not overfitting given data, and (9.4) indi-
cates a variation of the OOM construction procedure for adaptive system
identification. Section 10, which is very long, treats input-output OOMs in
full detail, and (11), which is very brief, gives a conclusion.

2 From HMMs to OOMs

In this section, OOMs are introduced by generalization from HMMs. In this
way it becomes immediately clear why the latter are a subclass of the former.

A basic HMM specifies the distribution of a discrete-time, stochastic pro-

7

cess (Yt)t∈N, where the random variables Yt have finitely many outcomes from
a set O = {a1, . . . , an}. HMMs can be defined in several equivalent ways. In
this article we will adhere to the definition which is customary in the speech
recognition community and other application areas. The specification is done
in two stages.

First, a Markov chain (Xt)t∈N produces sequences of hidden states from a
finite state set {s1, . . . , sm}. Second, when the Markov chain is in state sj at
time t, it “emits” an observable outcome, with a time-invariant probability
P [Yt = ai |Xt = sj].

Figure 2 presents an exemplary HMM.

s1 s2
3/4

1.0

1/4

a
b

: 1/2
: 1/2

a
b

: 1/5
: 4/52/3 1/3

Figure 2: A HMM with two hidden states s1, s2 and two outcomes O =
{a, b}. Fine arrows indicate admissible hidden state transitions, with their
corresponding probabilities marked besides. The initial state distribution
(2/3, 1/3) of the Markov chain is indicated inside the state circles. Emission
probabilities P [ai |sj] of outcomes are annotated besides bold grey arrows.

Formally, the state transition probabilities can be collected in a m × m
matrix M which at place (i, j) contains the transition probability from state
si to sj (i.e., M is a Markov matrix, or stochastic matrix). For every a ∈
O, we collect the emission probabilities P [Yt = a | Xt = sj] in a diagonal
observation matrix Oa of size m × m. Oa contains, in its diagonal, the
probabilities P [Yt = a |Xt = s1], . . . , P [Yt = a |Xt = sm]. For the example
from fig. 2, this gives

M =

(

1/4 3/4
1 0

)

, Oa =

(

1/2
1/5

)

, Ob =

(

1/2
4/5

)

. (1)

In order to fully characterize a HMM, one also must supply an initial
distribution w0 = (P [X0 = s1], . . . , P [X0 = sm])T (superscript ·T denotes
transpose of vectors and matrices. Vectors are assumed to be column vectors
throughout this article, unless noted otherwise). The process described by

8

the HMM is stationary if w0 is an invariant distribution of the Markov chain,
i.e. if it satisfies

MTw0 = w0. (2)

See [Doob, 1953] for details on Markov chains.
It is well-known that the matrices M and Oa (a ∈ O) can be used to com-

pute the probability of finite-length observable sequences. Let 1 = (1, . . . , 1)
denote the m-dimensional row vector of units, and let Ta := MTOa. Then the
probability to observe the sequence ai0 . . . aik among all possible sequences
of length k + 1 is equal to the number obtained by applying Tai0

, . . . , Taik
to

w0, and summing up the components of the resulting vector by multiplying
it with 1:

P [ai0 . . . aik] = 1Taik
· · ·Tai0

w0. (3)

The term P [ai0 . . . aik] in (3) is a shorthand notation for P [X0 = ai0, . . . , Xk =
aik], which will be used throughout this article.

(3) is a matrix notation of the well-known “forward algorithm” for deter-
mining probabilities of observation sequences in HMMs. Proofs of (3) may
be found e.g. in [Ito et al., 1992] and [Ito, 1992].

M can be recovered from the operators Ta by observing that

MT = MT · id = MT(Oa1
+ · · · + Oan

) = Ta1
+ · · · + Tan

. (4)

Eq. (3) shows that the distribution of the process (Yt) is specified by the
operators Tai

and the vector w0. Thus, the matrices Tai
and w0 contain the

same information as the original HMM specification in terms of M, Oai
, and

w0. I.e., one can rewrite a HMM as a structure (Rm, (Ta)a∈O, w0), where R
m

is the domain of the operators Ta. The HMM from the example, written in
this way, becomes

M = (R2, (Ta, Tb), w0) = (R2, (

(

1/8 1/5
3/8 0

)

,

(

1/8 4/5
3/8 0

)

), (2/3, 1/3)T).

(5)
Now, one arrives at the definition of an OOM by (i) relaxing the re-

quirement that MT be the transpose of a stochastic matrix, to the weaker
requirement that the columns of MT each sum to 1, and by (ii) requiring
from w0 merely that it has a component sum of 1. That is, negative entries

9

are now allowed in matrices and vectors, which are forbidden in stochastic
matrices and probability vectors. Using the letter τ in OOMs in places where
T appears in HMMs, and introducing µ =

∑

a∈O τa in analogy to (4), this
yields:

Definition 1 A m-dimensional OOM is a triple A = (Rm, (τa)a∈O, w0),
where w0 ∈ R

m and τa : R
m 7→ R

m are linear operators, satisfying

1. 1w0 = 1,

2. µ =
∑

a∈O τa has column sums equal to 1,

3. for all sequences ai0 . . . aik it holds that 1τaik
· · · τai0

w0 ≥ 0.

Conditions 1 and 2 reflect the relaxations (i) and (ii) mentioned previ-
ously, while condition 3 ensures that one obtains non-negative values when
the OOM is used to compute probabilities. Unfortunately, condition 3 is
useless for deciding or constructing OOMs. An alternative to condition 3,
which is suitable for constructing OOMs, will be introduced in Section 6.

Since function concatenations of the form τaik
◦ · · · ◦ τai0

will be used
very often in the sequel, we introduce a shorthand notation for handling
sequences of symbols. Following the conventions of formal language theory,
we shall denote the empty sequence by ε (i.e., the sequence of length 0 which
“consists” of no symbol at all), the set of all sequences of length k of symbols
from O, by Ok;

⋃

k≥1 Ok by O+; and the set {ε}∪O+ by O∗. We shall write
ā ∈ O+ to denote any finite sequence a0 . . . an, and τā to denote τan

◦ · · ·◦τa0
.

An OOM, as defined here, specifies a stochastic process, if one makes use
of an analog of (3):

Proposition 1 Let A = (Rm, (τa)a∈O, w0) be an OOM according to the pre-
vious definition. Let Ω = O∞ be the set of all infinite sequences over O, and
A be the σ-algebra generated by all finite-length initial events on Ω. Then, if
one computes the probabilities of initial finite-length events in the following
way:

P0[ā] := 1τāw0, (6)

the numerical function P0 can be uniquely extended to a probability mea-
sure P on (Ω, A), giving rise to a stochastic process (Ω, A, P, (Xt)t∈N), where
Xn(a1a2 . . .) = an. If w0 is an invariant vector of µ, i.e., if µw0 = w0, the
process is stationary.

10

The proof is given in appendix A.
Since we introduced OOMs here by generalizing away from HMMs, it is

clear that every process whose distribution can be specified by a HMM can
also be characterized by an OOM.

I conclude this section with a remark on LDPs and OOMs. It is known
that the distributions of LDPs can be characterized through matrix multi-
plications in a fashion which is very similar to (6) (cf. [Ito, 1992], theorem
1.8):

P [ai0 . . . aik] = 1QIaik
. . . QIai0

w0. (7)

The matrix Q does not depend on a, while the “projection matrices” Ia

do. If one puts Q = id, Ia = τa, one easily sees that the class of processes
which can be described by OOMs is the class of LDPs.

3 OOMs as generators and predictors

This section explains how to generate and predict the paths of a process
(Xt)t∈N, whose distribution is specified by an OOM A = (Rk, (τa)a∈O, w0).
We describe the procedures mathematically and illustrate them with an ex-
ample.

More precisely, the generation task consists in randomly producing, at
times t = 0, 1, 2, . . ., outcomes ai0 , ai1 , ai2 , . . ., such that (i) at time t = 0,
the probability of producing b is equal to 1τbw0 according to (6), and (ii) at
every time step t > 0, the probability of producing b (after ai0 , . . . , ait−1

have
already been produced) is equal to P [Xt = b | X0 = ai0 , . . . , Xt−1 = ait−1

].
Using (6), the latter amounts to calculating at time t, for every b ∈ O, the
conditional probability

P [Xt = b |X0 = ai0 , . . . , Xt−1 = ait−1
]

=
P [X0 = ai0 , . . . , Xt−1 = ait−1

, Xt = b]

P [X0 = ai0 , . . . , Xt−1 = ait−1
]

= 1τbτait−1
· · · τai0

w0/1τait−1
· · · τai0

w0

= 1τb(
τait−1

· · · τai0
w0

1τait−1
· · · τai0

w0
)

=: 1τbwt, (8)

11

and producing at time t the outcome b with this conditional probability.
Calculations of (8) can be carried out incrementally, if one observes that for
t ≥ 1, wt can be computed from wt−1:

wt =
τat−1

wt−1

1τat−1
wt−1

. (9)

Note that all vectors wt thus obtained have a component sum equal to 1.
Observe that the operation 1τb· in (8) can be done effectively by pre-

computing the vector vb := 1τb. Computing (8) then amounts to multiplying
the (row) vector vb with the (column) vector wt, or, equivalently, it amounts
to evaluating the inner product < vb, wt >.

The prediction task is completely analogous to the generation task. Given
an initial realization ai0 , . . . , ait−1

of the process up to time t− 1, one has to
calculate the probability by which an outcome b is going to occur at the next
time step t. This is again an instance of (8), the only difference being that
now the initial realization is not generated by oneself but is externally given.

Many-time-step probability predictions of collective outcomes can be cal-
culated by evaluating inner products, too. Let the collective outcome A =
{b̄1, . . . , b̄n} consist of n sequences of length s + 1 of outcomes (i.e., outcome
A is recorded when any of the sequences b̄i occurs). Then, the probability
that A is going to occur after an initial realization ā of length t − 1, can be
computed as follows:

P [(Xt, . . . , Xt+s) ∈ A |(X0, . . . , Xt−1) = ā]

=
∑

b̄∈A

P [(Xt, . . . , Xt+s) = b̄ |(X0, . . . , Xt−1) = ā]

=
∑

b̄∈A

1τb̄wt =:
∑

b̄∈A

< vb̄, wt >

= <
∑

b̄∈A

vb̄, wt > =: < vA, wt > . (10)

If one wants to calculate the future probability of a collective outcome
A repeatedly, utilization of (10) reduces computational load considerably
because the vector vA needs to be (pre-)computed only once.

The generation procedure shall now be illustrated using the exemplary
OOM M from (5). We first compute the vectors va, vb:

12

va = 1τa = 1

(

1/8 1/5
3/8 0

)

= (1/2, 1/5),

vb = 1τb = 1

(

1/8 4/5
3/8 0

)

= (1/2, 4/5).

Starting with w0 = (2/3, 1/3), we obtain probabilities < va, w0 > =
2/5, < vb, w0 > = 3/5 of producing a vs. b at the first time step. We make
a random decision for a vs. b, weighted according to these probabilities.
Let’s assume the dice fall for b. We now compute w1 = τbw0/1τbw0 =
(7/12, 5/12)T. For the next time step, we repeat these computations with w1

in place of w0, etc., etc.

4 From stochastic processes to OOMs

This section introduces OOMs again, but this time in a top-down fashion,
starting from general stochastic processes. This alternative route clarifies
the fundamental nature of observable operators. Furthermore, the insights
obtained in this section will yield a short and instructive proof of the central
theorem of OOM equivalence, to be presented in the next section. The
material presented here is not required after the next section and may be
skipped by readers with not so keen an interest in probability theory.

In Section 2, we have described OOMs as structures (Rm, (τa)a∈O, w0).
In this section, we will arrive at isomorphic structures (G, (ta)a∈O, gε), where
again G is a vector space, (ta)a∈O is a family of linear operators on G, and
gε ∈ G. However, the vector space G is now a space of certain numerical
prediction functions. In order to discriminate OOMs characterized on spaces
G from the “ordinary” OOMs, we shall call (G, (ta)a∈O, gε) an predictor-space
OOM.

Let (Xt)t∈N, or for short, (Xt) be a discrete-time stochastic process with
values in a finite set O. Then, the distribution of (Xt) is uniquely character-
ized by the probabilities of finite initial subsequences, i.e. by all probabilities
of the kind P [ā], where ā ∈ O+.

We introduce a shorthand for conditional probabilities, by writing P [ā | b̄]
for P [(Xn, . . . , Xn+s) = ā | (X0, . . . , Xn−1) = b̄]. We shall formally write the
unconditional probabilities as conditional probabilities, too, with the empty
condition ε, i.e. we use the notation P [ā |ε] := P [(X0 . . .Xs) = ā] = P [ā].

13

Thus, the distribution of (Xt) is also uniquely characterized by its condi-
tional continuation probabilities, i.e. by the conditional probabilities P [ā | b̄],
where ā ∈ O+, b̄ ∈ O∗.

For every b̄ ∈ O∗, we collect all conditioned continuation probabilities of
b̄ into a numerical function

gb̄ : O+ → R, (11)

ā 7→ P [ā | b̄], if P [̄b] 6= 0

7→ 0, if P [̄b] = 0.

The set {gb̄ | b̄ ∈ O∗} uniquely characterizes the distribution of (Xt), too.
Intuitively, a function gb̄ describes the future distribution of the process after
an initial realization b̄.

Let D denote the set of all functions from O+ into the reals, i.e. the
numerical functions on non-empty sequences. D canonically becomes a real
vector space if one defines scalar multiplication and vector addition as follows:
for d1, d2 ∈ D, α, β ∈ R, ā ∈ O+ put (αd1 + βd2)(ā) := α(d1(ā)) + β(d2(ā)).

Let G = 〈{gb̄ | b̄ ∈ O∗}〉D denote the linear subspace spanned in D by the
conditioned continuations. Intuitively, G is the (linear closure of the) space
of future distributions of the process (Xt).

Now we are halfway done with our construction of (G, (ta)a∈O, gε): we
have constructed the vector space G, which corresponds to R

m in the “ordi-
nary” OOMs from Section 2, and we have defined the initial vector gε, which
is the counterpart of w0. It remains for us to define the family of observable
operators.

In order to specify a linear operator on a vector space, it suffices to specify
the values the operator takes on a basis of the vector space. Choose O∗

0 ⊆ O∗

such that the set {gb̄ | b̄ ∈ O∗
0} is a basis of G. Define, for every a ∈ O, a

linear function ta : G → G by putting

ta(gb̄) := P [a | b̄]gb̄a (12)

for all b̄ ∈ O∗
0 (b̄a denotes the concatenation of the sequence b̄ with a). It

turns out that (12) carries over from basis elements b̄ ∈ O∗
0 to all b̄ ∈ O∗:

Proposition 2 For all b̄ ∈ O∗, a ∈ O, the linear operator ta satisfies the
condition

14

ta(gb̄) = P [a | b̄]gb̄a. (13)

The proof is given in appendix B. Intuitively, the operator ta describes
the change of knowledge about a process due to an incoming observation of
a. More precisely, assume that the process has initially been observed up
to time n. That is, an initial observation b̄ = b0 . . . bn has been made. Our
knowledge about the state of the process at this moment is tantamount to
the predictor function gb̄. Then assume that at time n + 1 an outcome a is
observed. After that, our knowledge about the process state is then expressed
by gb̄a. But this is (up to scaling by P [a | b̄]) just the result of applying ta to
the old state, gb̄.

The operators (ta)a∈O are the analog of the observable operators (τa)a∈O in
OOMs and can likewise be used to compute probabilities of finite sequences:

Proposition 3 Let {gb̄ | b̄ ∈ O∗
0} be a basis of G. Let ā := ai0 . . . aik be an

initial realization of (Xt) of length k + 1. Let
∑

i=1,...,n αigb̄i
= taik

. . . tai0
gε

be the linear combination of taik
. . . tai0

gε from basis vectors. Then it holds
that

P [ā] =
∑

i=1,...,n

αi. (14)

Note that (14) is valid for any basis {gb̄ | b̄ ∈ O∗
0}. The proof can be found

in appendix C. (14) corresponds exactly to (6), since left-multiplication of a
vector with 1 amounts to summing the vector components, which in turn are
the coefficients of that vector w.r.t. a vector space basis.

Due to (14), the distribution of the process (Xt) is uniquely characterized
by the observable operators (ta)a∈O. Conversely, these operators are uniquely
defined by the distribution of (Xt). I.e., the following definition makes sense:

Definition 2 Let (Xt)t∈N be a stochastic process with values in a finite set O.
The structure (G, (ta)a∈O, gε) is called the predictor-space observable operator
model of the process. The vector space dimension of G is called the dimension
of the process and is denoted by dim(Xt).

I remarked in the introduction that stochastic processes have previously
been characterized in terms of vector spaces. Although the vector spaces were
constructed in other ways than G, they lead to equivalent notions of process

15

dimension. [Heller, 1965] called finite-dimensional (in our sense) stochastic
processes finitary ; in [Ito et al., 1992] the process dimension (if finite) was
called minimum effective degree of freedom.

(13) clarifies the fundamental character of observable operators: ta de-
scribes how the knowledge about the process’s future changes through an
observation of a. The power of the observable operator idea lies in the fact
that these operators turn out to be linear (proposition 2). I have only treated
the discrete time, discrete value case here. However, predictor-space OOMs
can be defined in a similar way also for continuous-time, arbitrary-valued
processes (sketch in [Jaeger, 1998b]). It turns out that in those cases, the
resulting observable operators are linear, too. In a nutshell, the change of
knowledge about a process due to incoming observations is a fundamentally
linear phenomenon.

In the remainder of this section, I describe how the dimension of a process
is related to the dimensions of ordinary OOMs of that process.

Proposition 4 1. If (Xt) is a process with finite dimension m, then an
m-dimensional ordinary OOM of this process exists.

2. A process (Xt) whose distribution is described by a k-dimensional OOM
A = (Rk, (τa)a∈O, w0) has a dimension m ≤ k.

The proof is in the appendix. Thus, if a process (Xt) has dimension m,
and we have a k-dimensional OOM A of (Xt), we know that a m-dimensional
OOM A′ exists which is equivalent to A in the sense of specifying the same
distribution. Furthermore, A′ is minimal-dimensional in its equivalence class.
A minimal-dimensional OOM A′ can be constructively obtained from A in
several ways, all of which amount to an implicit construction of the predictor-
space OOM of the process specified by A. Since the learning algorithm pre-
sented in later sections can be used for this construction, too, I do not present
a dedicated procedure for obtaining minimal-dimensional OOMs here.

5 Equivalence of OOMs

Given two OOMs A = (Rk, (τa)a∈O, w0),B = (Rl, (τ ′
a)a∈O, w′

0), when are
they equivalent in the sense that they describe the same distribution? This
question can be answered using the insights gained in the previous section.

16

First, construct minimal-dimensional OOMs A′,B′ which are equivalent
to A and B, respectively. If the dimensions of A′,B′ are not equal, then A and
B are not equivalent. We can therefore assume that the two OOMs whose
equivalence we wish to ascertain have the same (and minimal) dimension.
Then, the answer to our question is given in the following proposition:

Proposition 5 Two minimal-dimensional OOMs A = (Rm, (τa)a∈O, w0),
B = (Rm, (τ ′

a)a∈O, w′
0) are equivalent iff there exists a bijective linear map

̺ : R
m → R

m, satisfying the following conditions:

1. ̺(w0) = w′
0,

2. τ ′
a = ̺τa̺

−1 for all a ∈ O,

3. 1v = 1̺v for all (column) vectors v ∈ R
m.

Sketch of proof: ⇐: trivial. ⇒: We have done all the hard work in
the previous section! Let σA, σB be the canonical projections from A,B on
the predictor-space OOM of the process specified by A (and hence by B).
Observe that σA, σB are bijective linear maps which preserve the component
sum of vectors. Define ̺ := σ−

B 1 ◦ σA. Then, (1) follows from σA(w0) =
σB(w′

0) = gε, (2) follows from ∀c̄ ∈ O+ : σ(τc̄w0) = σ(τ ′
c̄w0) = P [c̄]gc̄, and

(3) from the fact that σA, σB preserve component sum of vectors.

6 A non-HMM linearly dependent process

The question of when a LDP can be captured by a HMM has been fully
answered in the literature (original result in [Heller, 1965], refinements in
[Ito, 1992]), and examples of non-HMM LDPs have been given. I briefly re-
state the results, and then describe an example of such a process which is
simpler than the examples given in the literature. The aim is to provide an
intuitive insight in which sense the class of LDPs is “larger” than the class
of processes which can be captured by HMMs.

Characterizing HMMs as LDPs heavily draws on the theory of convex
cones and non-negative matrices. I first introduce some concepts, following
the notation of a standard textbook [Berman and Plemmons, 1979].

With a set S ⊆ R
n we associate the set SG, the set generated by S, which

consists of all finite nonnegative linear combinations of elements of S. A set

17

K ⊆ R
n is defined to be a convex cone if K = KG. A convex cone KG is

called n-polyhedral if K has n elements. A cone K is pointed if for every
nonzero v ∈ K, the vector −v is not in K. A cone is proper if it is pointed,
closed, and its interior is not empty.

Using these concepts, the following theorem in (a1), (a2) gives two con-
ditions which individually are equivalent to condition 3 in definition 1, and
(b) refines condition (a1) for determining when an OOM is equivalent to a
HMM. Finally, (c) states necessary conditions which every τa in an OOM
must satisfy.

Proposition 6 (a1) Let A = (Rm, (τa)a∈O, w0) be a structure consisting of
linear maps (τa)a∈O on R

m and a vector w0 ∈ R
m. Let µ :=

∑

a∈O τa. Assume
that the first two conditions from definition 1 hold, i.e. 1w0 = 1 and µ has
column sums equal to 1. Then A is an OOM if and only if there exist convex
cones (Ka)a∈O satisfying the following conditions:

1. 1v ≥ 0 for all v ∈ Ka (where a ∈ O),

2. w0 ∈ (
⋃

a∈O Ka)
G,

3. ∀a, b ∈ O : τbKa ⊆ Kb.

(a2) Using the same assumptions as before, A is an OOM if and only if
there exists a convex cone K satisfying the following conditions:

1. 1v ≥ 0 for all v ∈ K,

2. w0 ∈ K,

3. ∀a ∈ O : τaK ⊆ K.

(b) Assume that A is a minimal-dimensional OOM. Then there exists a
hidden Markov model equivalent to A if and only if a convex cone K according
to condition (a2) exists which is n-polyhedral for some n. n can be selected
such that it is not greater than the minimal state number for HMMs equivalent
to A.

(c) Let A be a minimal-dimensional OOM, and τa be one of its observable
operators, and K be a cone according to (a2). Then (i) the spectral radius
̺(τa) of τa is an eigenvalue of τa, (ii) the degree of ̺(τa) is greater or equal
to the degree of any other eigenvalue λ with | lambda |= ̺(τa), and (iii) an

18

eigenvector of corresponding to ̺(τa) lies in K. (The degree of an eigenvalue
λ of a matrix is the size of the largest diagonal block in the Jordan canonical
form of the matrix, which contains λ).

Notes on the proof. The proof of parts (a1) and (b) go back to [Heller, 1965]
and have been reformulated in [Ito, 1992]2. The equivalence of (a1) with
(a2) is an easy exercise. The conditions collected in (c) are equivalent to
the statement that τaK ⊆ K for some proper cone K (proof in theorems
3.2 and 3.5 in [Berman and Plemmons, 1979]). It is easily seen that for a
minimal-dimensional OOM, the cone K required in (a2) is proper. Thus,
(c) is a direct implication of (a2).

Proposition 6 has two simple but interesting implications: (i) every two-
dimensional OOM is equivalent to a HMM (since all cones in two dimensions
are polyhedral); (ii) every non-negative OOM (i.e., matrices τa have only
non-negative entries) is equivalent to a HMM (since non-negative matrices
map the positive orthant, which is a polyhedral cone, on itself).

Part (c) is sometimes useful to rule out a structure A as an OOM, by
showing that some τa fails to satisfy the conditions given. Unfortunately,
even if every τa of a structure A satisfies the conditions in (c), A need not be
a valid OOM. Imperfect as it is, however, (c) is the strongest result available
at this moment in the direction of characterising OOMs.

Proposition 6 is particularly useful to build OOMs from scratch, starting
with a cone K and constructing observable operators satisfying τaK ⊆ K.
Note, however, that the theorem provides no means to decide, for a given
structure A, whether A is a valid OOM, since the theorem is non-constructive
w.r.t. K.

More specifically, part (b) yields a construction of OOMs which are not
equivalent to any HMM. This will be demonstrated in the remainder of this
section.

Let τϕ : R
3 → R

3 be the linear mapping which right-rotates R
3 by an

angle ϕ around the first unit vector e1 = (1, 0, 0). Select some angle ϕ which
is not a rational multiple of 2π. Then, put τa := ατϕ, where 0 < α < 1. Any
3-dimensional process described by a 3-dimensional OOM containing such a
τa is not equivalent to any HMM: let Ka be a convex cone corresponding
to a according to proposition 6(a1). Due to condition 3, Ka must satisfy
τaKa ⊆ Ka. Since τa rotates any set of vectors around (1, 0, 0) by ϕ, this

2Heller and Ito use a different definition for HMMs, which yields a different version of
the minimality statement in part (b)

19

implies that Ka is rotation symmetric around (1, 0, 0) by ϕ. Since ϕ is a
non-rational multiple of 2π, Ka cannot be polyhedral. According to (b), this
implies that an OOM which features this τa cannot be equivalent to any
HMM.

I describe now such an OOM with O = {a, b}. The operator τa is fixed,
according to the previous considerations, by selecting α = 0.5 and ϕ = 1.0.
For τb, we take an operator which projects every v ∈ R

3 on a multiple of
(.75, 0, .25), such that µ = τa + τb has column vectors with component sums
equal to 1 (cf. definition 1(2)). The circular convex cone K whose border
is obtained from rotating (.75, 0, .25) around (1, 0, 0) obviously satisfies the
conditions in proposition 6(a2). Thus, we obtain a valid OOM provided
that we select w0 ∈ K. Using abbreviations s := sin(1.0), c := cos(1.0), the
matrices read as follows

τa = 0.5





1 0 0
0 c s
0 −s c





τb =





.75 · .5 .75(1 − .5c + .5s) .75(1 − .5s − .5c)
0 0 0

.25 · .5 .25(1 − .5c + .5s) .25(1 − .5s − .5c)



 . (15)

As starting vector w0 we take (.75, 0, .25), to obtain an OOM C = (R3, (τa, τb), w0).
I will briefly describe the phenomenology of the process generated by C. The
first observation is that every occurrence of b “resets” the process to the ini-
tial state w0. Thus, we only have to understand what happens after uninter-
rupted sequences of a’s. I.e., we should look at the conditional probabilities
P [· |ε], P [· |a], P [· |aa], . . . , i.e., at P [· |at], where t = 0, 1, 2 Figure 3 gives
a plot of P [a |at]. The process could amply be called a “probability clock”,
or “probability oscillator”!

Rotational operators can be exploited for “timing” effects. In our exam-
ple, for instance, if the process would be started in the state according to
t = 4 in fig. 3, there would be a high chance for two initial a’s to occur, with
a rapid drop in probability for a third or fourth. Such non-exponential-decay
duration patterns for identical sequences are difficult to achieve with HMMs.
Essentially, HMMs offer two possibilities for identical sequences: (i) recurrent
transitions into a state where a is emitted, (ii) transitions along sequences
of states, each of which can emit a. Option (i) is cumbersome because re-
current transitions imply exponential decay of state, which is unsuitable for

20

5 10 15 20 25 30

0.2

0.4

0.6

0.8

1

Figure 3: The rise and fall of probability to obtain a from the “probability
clock” C. Horizontal axis represents time steps t, vertical axis represents the
probabilities P [a | at] = 1τa(τ

t
aw0/1τ t

aw0), which are rendered as dots. The
solid line connecting the dots is given by f(t) = 1τa(τtw0/1τtw0), where τt is
the rotation by angle t described in the text.

many empirical processes; option (ii) blows up model size. A more detailed
discussion of this problem in HMMs can be found in [Rabiner, 1990].

If one defines a three-dimensional OOM C′ in a similar manner, but with
a rational fraction of 2π as an angle of rotation, one obtains a process which
can be modeled by a HMM. It follows from proposition 6(b) that the minimal
HMM state number in this case is at least k, where k is the smallest integer
such that kϕ is a multiple of 2π. Thus, the smallest HMM equivalent to a
suitably chosen 3-dimensional OOM can have an arbitrarily great number of
states. In a similar vein, any HMM which would give a reasonable approxi-
mation to the process depicted in fig. 3, would require at least 6 states, since
in this process it takes approximately 6 time steps for one full rotation.

7 Hidden LDP models

The basic metaphor of a HMM is one of a hidden stochastic process which is
indirectly observed by probabilistic measurements, viz., by emitted outcomes.
In this section I describe what happens when instead of a Markov chain, the
hidden process is a linearly dependent process.

Assume that one has a finite set S = {s1, . . . , sk} of “hidden” outcomes,
and a hidden m-dimensional linearly dependent process (Xt)t∈N specified by

21

an OOM H = (Rm, (τs)s∈S , w0). When the hidden process produces si, an
observable outcome aj from a finite set O = {a1, . . . , al} is emitted with a
fixed probability psiaj

:= P [Yt = aj |Xt = si].
It turns out that the observable process (Yt) is also a LDP, and has

dimension m at most. This has already been noted in a special case (unit
emission probabilities) in [Heller, 1965] (proposition 2.3). Here I explain why
it is generally true.

Consider the combined process (Zt) := (Xt, Yt) with values in S × O.
It is easy to see that the distribution of (Zt) is characterized by the OOM
(Rm, (τ(s,a))(s,a)∈S×O, w0), where τ(s,a) := psaτs. Define

τa :=
∑

s∈S

τ(s,a) =
∑

s∈S

psaτs. (16)

By a straightforward computation similar to the one in (10), it can be con-
cluded that (Yt) is modeled by the m-dimensional OOM A = (Rm, (τa)a∈O, w0).
Therefore, dim(Yt) ≤ m.

Loosely speaking, this means that the class of linearly dependent pro-
cesses is closed under uncertain observation.

In many applications of HMMs, one wishes to gain information about
most likely hidden state sequences, given a sequence of observable outcomes.
From a mathematical point of view, this is justified because it can be shown
(at least in some cases of interest) that the hidden Markov chain (Xt) is
uniquely determined in distribution by the observable process (Yt) ([Jaeger, 1997a],
proposition 18). However, if one allows the hidden process to be a LDP, this
is not longer warranted. For a given observable process (Yt), there exist
many non-equivalent hidden LDPs which can outwardly produce (Yt). Dif-
ferent assumptions about the emission probabilities lead to different hidden
processes. Therefore, the notion of “most likely hidden state sequence” is no
longer well-defined. This observation is likely to have some methodological
importance (especially for speech recognition) and shall now be described in
more detail.

Let the observable process (Yt) have an OOM A = (Rm, (τa)a∈O, w0). We
wish to find hidden LDPs H = (Rm, (τs)s∈S , w0), with appropriate emis-
sion probabilities psa, such that (Yt) is modeled by H and the emission
probabilities, as described above. To this end, we first treat the case that
O = {a1, . . . , an} and S = {s1, . . . , sn} each have n elements.

Choose emission probabilities arbitrarily, except for the constraint that

22

the n × n matrix (psiaj
) be nonsingular. According to (16), the to-be-found

observable operators τs of the hidden process must satisfy the following sys-
tem of linear equations:

τa1
= ps1a1

τs1
+ · · ·+ psna1

τsn

· · · (17)

τan
= ps1an

τs1
+ · · ·+ psnan

τsn
.

This system is solvable for the matrices τsi
since (psiaj

) is nonsingular.
The structure H = (Rm, (τs)s∈S , w0) thus obtained may or may not be a valid
OOM (condition 3 from definition 1 need not hold). However, if one chooses
(psiaj

) = id, one gets H = A, i.e. a valid OOM. By an argument of continuity,
one can expect at least that if one chooses (psiaj

) in some ε-neighborhood
of id, H will be a valid OOM. If this indeed holds for H, one has found a
hidden LDP model for the process (Yt) with emission probabilities psiaj

.
The following example demonstrates that indeed one can find hidden

LDPs that are markedly different from each other, yet give rise to the same
observable process. We take for A the exemplary HMM M from Section
2, eq. (5). It was obtained from a two-state Markov chain by the following
emission probabilities (cf. (1)):

(pMARKOV
siaj

) =

(

1/2 1/2
1/5 4/5

)

.

Now, if we choose the following quite different emission probabilities:

(pLDP
siaj

) =

(

3/4 1/4
0 1

)

,

solving (17) yields

H = (R2, (

(

1/6 4/15
1/2 0

)

,

(

1/12 11/15
1/4 0

)

), (2/3, 1/3)T),

which is a valid OOM, since the observable operators and the starting
vector are non-negative, which ensures condition 3 from definition 1. We
have thus obtained two quite different hidden processes (namely, the original
Markov chain and the process specified by H) which give rise to the same

23

observable process (namely, the process specified by M), by virtue of different
emission probabilities.

A similar multitude of hidden processes also occurs in cases where O =
{a1, . . . , al} and S = {s1, . . . , sk} have different numbers of elements. To
see this, assume that one has a hidden OOM H = (Rm, (τs)s∈S , w0) which
gives rise to an observable LPD characterized by A = (Rm, (τa)a∈O, w0), by
virtue of emission probabilities (psiaj

)1≤i≤k,1≤j≤l. According to the previous
arguments, it is typically possible to find an OOM H′ = (Rm, (τs′)s′∈S′, w0)
with S ′ = {s′1, . . . , s′k}, which gives rise to the process described by H by
virtue of emission probabilities (p′

s′
h
si
)1≤i,h≤k 6= id. It is easy to see that

H′ gives rise to the observable process described by A by virtue of emission
probabilities (ps′

h
aj

)1≤h≤k,1≤j≤l = (p′s′
h
si
)(psiaj

).

8 Interpretable OOMs

Some minimal-dimension OOMs have a remarkable property: their state
space dimensions can be interpreted as probabilities of certain future out-
comes. These interpretable OOMs will be described in this section.

First some terminology. Let (Xt)t∈N be an m-dimensional LDP. For some
suitably large k, let Ok = A1∪ · · · ∪Am be a partition of the set of sequences
of length k into m disjoint nonempty subsets. The collective outcomes Ai

are called characteristic events if some sequences b̄1, . . . , b̄m exist such that
the m × m matrix

(P [Ai | b̄j])i,j (18)

is nonsingular (where P [Ai | b̄j] denotes
∑

ā∈Ai
P [ā | b̄j]). Every LDP has

characteristic events:

Proposition 7 Let (Xt)t∈N be an m-dimensional LDP. Then there exists
some k ≥ 1 and a partition Ok = A1∪ · · · ∪Am of Ok into characteristic
events.

The proof is given in the appendix. Let A = (Rm, (τa)a∈O, w0) be an
m-dimensional OOM of the process (Xt). Using the characteristic events
A1, . . . , Am, we shall now construct from A an equivalent, interpretable OOM
A(A1, . . . , Am), which has the property that the m state vector compo-
nents represent the probabilities of the m characteristic events to occur.

24

More precisely, if during the generation procedure described in Section 3,
A(A1, . . . , Am) is in state wt = (w1

t , . . . , w
m
t) at time t, the probability

P [(Xt+1, . . . , Xt+k) ∈ Ai | wt] that the collective outcome Ai is generated
in the next k time steps, is equal to wi

t. In shorthand notation:

P [Ai |wt] = wi
t. (19)

We shall use proposition 5 to obtain A(A1, . . . , Am). Define τAi
:=

∑

ā∈Ai
τā. Define a mapping ̺ : R

m → R
m by

̺(x) := (1τA1
x, . . . , 1τAm

x). (20)

The mapping ̺ is obviously linear. It is also bijective, since the matrix
(P [Ai | b̄j]) = (1τAi

xj), where xj := τb̄j
w0/1τb̄j

w0, is nonsingular. Further-
more, ̺ preserves component sums of vectors, since for i = 1, . . . , m it holds
that 1xj = 1 = 1(P [A1 |xj], . . . , P [Am |xj]) = 1(1τA1

x, . . . , 1τAm
x) = 1̺(xj)

(note that a linear map preserves component sums if it preserves component
sums of basis vectors). Hence, ̺ satisfies the conditions of proposition 5. We
therefore obtain an OOM equivalent to A by putting

A(A1, . . . , Am) = (Rm, (̺τa̺
−1)a∈O, ̺w0) =: (Rm, (τ ′

a)a∈O, w′
0). (21)

In A(A1, . . . , Am), equation (19) holds. To see this, let w′
t be a state vec-

tor obtained in a generation run of A(A1, . . . , Am) at time t. Then conclude
w′

t = ̺̺−1w′
t = (1τA1

(̺−1w′
t), . . . , 1τAm

(̺−1w′
t)) = (P [A1 | ̺−1w′

t], . . . , P [Am |
̺−1w′

t]) (computed in A) = (P [A1 |w′
t], . . . , P [Am |w′

t]) (computed in A(A1, . . . , Am)).
The m × m matrix corresponding to ̺ can easily be obtained from the

original OOM A by observing that

̺ = (1τAi
ej), (22)

where ei is the i-th unit vector.
The following fact lies at the heart of the learning algorithm presented in

the next section:

Proposition 8 In an interpretable OOM A(A1, . . . , Am) it holds that

1. w0 = (P [A1], . . . , P [Am]),

2. τb̄w0 = (P [̄bA1], . . . , P [̄bAm]).

25

The proof is trivial.
The state dynamics of interpretable OOM can be graphically represented

in a standardized fashion, which allows to visually compare the dynamics of
different processes. Any state vector wt occurring in a generation run of an
interpretable OOM is a probability vector. It lies in the non-negative hyper-
plane H≥0 := {(v1, . . . , vm) ∈ R

m |v1 + · · ·+vm = 1, vi ≥ 0 for i = 1, . . . , m}.
Therefore, if one wishes to depict a state sequence w0, w1, w2 . . ., one only
needs to render the bounded area H≥0. Specifically, in the case m = 3, H≥0

is the triangular surface shown in fig. 4(a). We can use it as the drawing
plane, putting the point (1/3, 1/3, 1/3) in the origin. For our orientation,
we include the contours of H≥0 into the graphical representation. This is an
equilateral triangle whose edges have length

√
2. If w = (w1, w2, w3) ∈ H≥0

is a state vector, its components can be recovered from its position within
this triangle, by exploiting wi =

√

2/3di, where the di are the distances to
the edges of the triangle. A similar graphical representation of states was
first introduced in [Smallwood and Sondik, 1973] for HMMs.

H
w

1

1
1
x = P A |w[]11

x = P A |w[]22

x = P A |w[]
33

d1d2

d3

(a) (b)

Figure 4: (a) The positioning of H≥0 within state space. (b) State sequence
of the probability clock, corresponding to fig. 3. For details compare text.

When one wishes to graphically represent states of higher-dimensional,
interpretable OOMs (i.e. where m > 3), one can join some of the charac-
teristic events, until three merged events are left. State vectors can then be
plotted in a way similar to the one just outlined.

To see an instance of interpretable OOMs, consider the “probability
clock” example from (15). With k = 2, the following partition (among others)

26

of {a, b}2 yields characteristic events: A1 := {aa}, A2 := {ab}, A3 := {ba, bb}.
Using (22), one can calculate the matrix ̺, which we omit here, and compute
the interpretable OOM C(A1, A2, A3) using (21). These are the observable
operators τa and τb thus obtained:

τa =





0.645 −0.395 0.125
0.355 0.395 −0.125

0 1 0



 , τb =





0 0 0.218
0 0 0.329
0 0 0.452



 . (23)

Fig. 4(b) shows a 30-step state sequence obtained by iterated applications
of τa of this interpretable equivalent of the “probability clock”. This sequence
corresponds to fig. 3.

9 Learning OOMs

This section describes a constructive algorithm for learning OOMs from data.
The central idea behind this algorithm is proposition 8, which allows to
estimate state vectors from data by simple frequency counts. From these
estimated state vectors, to-be-learnt observable operators can be obtained
through elementary linear algebra constructions.

There are two standard situations where one wants to learn a model of a
stochastic system: (i) from a single long data sequence (or few of them) one
wishes to learn a model of a stationary process, and (ii) from many short
sequences one wants to induce a model of a non-stationary process. OOMs
can model both stationary and nonstationary processes, depending on the
initial state vector w0 (cf. proposition 1). The learning algorithms presented
here are applicable in both cases. For the sake of notational convenience,
we will however only treat the stationary case. I.e., we assume that a (long)
path S = a0a1 · · ·aN of a stationary process (Xt) is given. The task is to
construct an OOM which describes a process (X̃t) such that (X̃t) ≈ (Xt) in
a certain sense.

Subsection 9.1 treats the case where dim(Xt) = m is finite and known,
i.e. (Xt) is generated by an (unknown) m-dimensional OOM A. An almost
surely consistent estimation procedure for A is presented. In subsection
9.2, this technique is refined, endowing the learning algorithm with further
desirable properties, among them unbiasedness. In subsection 9.3, a heuristic
for determining the appropriate model dimension is described. Subsection

27

9.4 sketches an online version of the learning algorithm for adaptive system
identification.

9.1 The basic algorithm

This subsection has three parts. First, the basic learning algorithm is de-
scribed, and it is explained mathematically why it works. Second, its usage
is demonstrated with a simplistic toy example. Third, it is applied to the
“probability clock” process introduced in sections 6 and 8.

We shall address the following learning task. Assume that a sequence
S = a0a1 · · ·aN is given, and that S is a path of an unknown stationary
LDP (Xt). We assume that the dimension of (Xt) is known to be m (the
question of how to assess m from S is discussed in Subsection 9.3). We select
m characteristic events A1, . . . , Am of (Xt) (selection criteria are discussed
later in this section). Let A(A1, . . . , Am) be an OOM of (Xt) which is in-
terpretable w.r.t. A1, . . . , Am. The learning task, then, is to induce from S
an OOM Ã which is an estimate of A(A1, . . . , Am) = (Rm, (τa)a∈O, w0). We
require that the estimation be consistent almost surely, i.e. for almost every
infinite path S∞ = a0a1 · · · of (Xt), the sequence (Ãn)n≥n0

obtained from
estimating OOMs from initial sequences Sn = a0a1 · · ·an of S∞, converges to
A(A1, . . . , Am) (in some matrix norm).

An algorithm meeting these requirements shall now be described.
As a first step we estimate w0. Prop. 8(1) states that w0 = (P [A1], . . . , P [Am]).

Therefore, a natural estimate of w0 is w̃0 = (P̃ [A1], . . . , P̃ [Am]), where P̃ [Ai]
is the estimate for P [Ai] obtained by counting frequencies of occurrence of
Ai in S, as follows:

P̃ [Ai] =
number of ā ∈ Ai occurring in S

number of ā occurring in S
=

number of ā ∈ Ai occurring in S

N − k + 1
,

(24)
where k is the length of events Ai. In the second step, we estimate the

operators τa. According to prop. 8(2), for any sequence b̄j it holds that

τa(τb̄j
w0) = (P [̄bjaA1], . . . , P [̄bjaAm]). (25)

An m-dimensional linear operator is uniquely determined by the values it
takes on m linearly independent vectors. This basic fact from linear algebra

28

directly leads us to an estimation of τa, using (25). We estimate m linearly
independent vectors vj := τb̄j

w0 by putting ṽj = (P̃ [̄bjA1], . . . , P̃ [̄bjAm]) (j =
1, . . . , m). For the estimation we use a similar counting procedure as in 24:

P̃ [̄bjAi] =
number of b̄ā (where ā ∈ Ai) occurring in S

N − l − k + 1
, (26)

where l is the length of b̄j . Furthermore, we estimate the results v′
j :=

τa(τb̄j
w0) of applying τa to vi by ṽ′

j = (P̃ [̄bjaA1], . . . , P̃ [̄bjaAm]), where

P̃ [̄bjaAi] =
number of b̄aā (where ā ∈ Ai) occurring in S

N − l − k
. (27)

Thus we obtain estimates (ṽj, ṽ
′
j) of m argument-value pairs (vj , v

′
j) =

(vj, τavj) of applications of τa. From these estimated pairs, we can compute
an estimate τ̃a of τa through an elementary linear algebra construction: first
collect the vectors ṽj as columns in a matrix Ṽ , and the vectors ṽ′

j as columns

in a matrix W̃a, then obtain τ̃a = W̃aṼ
−1.

This basic idea can be augmented in two respects:

1. Instead of simple sequences b̄j , one can just as well take collective
events Bj of some common lenght l to construct Ṽ = (P̃ [BjAi]), W̃a =
(P̃ [BjaAi]) (exercise). We will call Bj indicative events.

2. Instead of constructing Ṽ , W̃a as described above, one can also use raw
count numbers, which saves the divisions on the rhs in (24),(26),(27).
That is, use V # = (#butlastBjAi), W

#
a = (#BjaAi), where #butlastBjAi

is the raw number of occurrences of BjAi in Sbutlast := s1 . . . sN−1, and
#BjaAi is the raw number of occurrences of BjaAi in S. It is easy to
see that this gives the same matrices τ̃a as the original procedure.

Assembled in an orderly fashion, the entire procedure works as follows
(assume that model dimension m, indicative events Bj , and characteristic
events Ai have already been selected).

Step 1 Compute the m × m matrix V # = (#butlastBjAi).

Step 2 Compute, for every a ∈ O, the m × m matrix W#
a = (#BjaAi).

Step 3 Obtain τ̃a = W#
a (V #)−1.

29

The computational demands of this procedure are modest compared to
today’s algorithms used in HMM parameter estimation. The counting for
V # and W#

a can be done by a single sweep of an inspection window (of
length k + l +1) over S. Multiplying or inverting m×m matrices essentially
has a computational cost of O(m3/p) (this can be slightly improved, but the
effects become noticeable only for very large m), where p is the degree of
parallelization. The counting and inverting/multiplying operations together
give a time complexity of this core procedure of O(N + nm3/p), where n is
the size of O.

For numerical stability and efficient exploitation of information contained
in S, it is important to choose characteristic and indicator events appropri-
ately. I cannot at the current state of the theory offer a method for “optimal”
choice. However, some helpful rules of thumb are obvious:

1. The characteristic (and indicative, respectively) events should occur in
the data with roughly equal frequencies. This minimizes the average
relative error in the sums of entries in the rows (columns, respectively)
of Ṽ and W̃a.

2. The matrix Ṽ should be “as regular as possible” to make its inversion
as insensitive as possible against error in the matrix entries. In terms
of numerical linear algebra, this means that the ratio σmin/σmax of the
smallest vs. the greatest singular value σmin of Ṽ should be as big as
possible (cf. [Golub and van Loan, 1996] for singular value decomposi-
tions).

3. The sequences ā contained in Ai should have a high mutual correlation
in the sense that if ā1, ā2 ∈ Ai, then the random variables χāx

t defined
by χāx

t = 1 if (Xt, . . . , Xt+k−1) = āx, else 0, are highly correlated (x =
1, 2). In plain words, this means that when ā1 is likely to occur next,
so is ā2, and vice versa. Conversely, members of different characteristic
events should have low mutual correlation. If the Ai have high inter-
variation and low intra-variation in this sense, then the characteristic
events are “correlational components” of the process’s k-step future
distribution. This suggests that PCA or other clustering techniques
might be instrumental in finding optimal characteristic events.

4. Similarly, indicative events should have high internal and low external
correlation in a related sense. Given characteristic events Ai, then

30

b̄1, b̄2 should be members of the same Bj if and only if the vectors
(P̃S[A1 | b̄x], . . . , P̃S[Am | b̄x]) (where x = 1, 2) have a small distance in
the 2-norm.

5. Indicative events should exhaust Ol for some l, i.e. B1 ∪ . . .∪Bm = Ol.
This warrants that when we move the inspection window over S, at
every position we get at least one count for Ṽ ; thus we exploit S best.

At the beginning of this subsection we assumed that characteristic events
Ai were given. We now see that the task of finding characteristic events in
the first place coincides with optimizing the numerical/information-theoretic
condition of Ṽ . It is easy to show (exercise) that if we choose any Ai, Bj

such that V is regular, then the Ai are characteristic events. We therefore
only have to solve the problem to find an “as regular as possible” counting
matrix Ṽ .

The estimation of A(A1, . . . , Am) by Ã is consistent almost surely in the
sense outlined at the beginning of this subsection. This is because (i) the
estimates Ṽ and W̃a converge to the true matrices V = (P [BjAi]), Wa =
(P [BjaAi]) almost surely with increasing N (e.g., in the 2-norm of matrices).

We shall now demonstrate the “mechanics” of the algorithm with an
artificial toy example. Assume that the following path S of length 20 is
given:

S = abbbaaaabaabbbabbbbb.

We estimate a two-dimensional OOM. We choose the simplest possi-
ble characteristic events A1 = {a}, A2 = {b} and indicative events B1 =
{a}, B2 = {b}.

First we estimate the invariant vector w0, by putting

w̃0 = (#a, #b)/N = (8/20, 12/20).

Then we obtain V # and W#
a , W#

b by counting occurrences of subse-
quences in S:

V # =

(

#butlastaa #butlastba
#butlastab #butlastbb

)

=

(

4 3
4 7

)

,

W#
a =

(

#aaa #baa
#aab #bab

)

=

(

2 2
2 1

)

,

31

W#
b =

(

#aba #bba
#abb #bbb

)

=

(

1 2
3 5

)

.

From these raw counting matrices we obtain estimates of the observable
operators by

τ̃a = W#
a (V #)−1 =

(

3/8 1/8
5/8 −1/8

)

,

τ̃b = W#
b (V #)−1 =

(

−1/16 5/16
1/16 11/16

)

.

That is, we have arrived at an estimate

Ã = (R2,

(

3/8 1/8
5/8 −1/8

)

,

(

−1/16 5/16
1/16 11/16

)

, (9/20, 11/20)). (28)

This concludes the presentation of the learning algorithm in its core ver-
sion.

We now illustrate the learning procedure with the “probability clock” C
introduced in sections 6 and 8. C was run to generate a path S of length
N = 3000. C was started in an invariant state (cf. prop. 1), therefore S is
stationary. We shall construct3 from S an estimate C̃ of C.

Assume that we know that the process dimension is m = 3 (cf. subsection
9.3). First we have to find good characteristic and indicative events Ai, Bj ,
being guided by our “rules of thumb”. Since we need three such events each,
the smallest length of events compatible with |O |= 2 is k = l = 2. That is,
for A1, A2, A3 we must partition O2 = {aa, ab, ba, bb} =: {ā1, ā2, ā3, ā4} into
three subsets. Similarly, we must distribute {ā1, ā2, ā3, ā4} over B1, B2, B3.
We set out by computing the 4×4 complete raw counting matrix V #

complete :=
(#S āj āi). In order to obtain A1, A2, A3, we must join two of the four se-
quences aa, ab, ba, bb into a single event. We compute the correlation coeffi-
cients between the row vectors of V #

complete and find that the third and fourth
row have the highest pairwise correlation (of .96). Therefore, following the
rule of thumb 3, we merge ba with bb and put A1 = {aa}, A2 = {ab}, A3 =

3The calculations were done using the Mathematica software package. Data and
Mathematica programs can be fetched from the author’s internet home page at
www.gmd.de/People/Herbert.Jaeger/

32

{ba, bb}. These are the characteristic events used in the interpretable ver-
sion C(A1, A2, A3) in section 8. After merging the third and fourth row in
V #

complete, a similar correlation analysis on the columns of the resulting 3 × 4
matrix reveals that ab and bb should be merged into a single indicative event,
since the corresponding column vectors correlate with .99 (rule of thumb 4).
This gives us B1 = {aa}, B2 = {ab, bb}, B3 = {ba}.

Using these characteristic and indicative events, V # is computed (it can
be obtained without further counting from V #

complete by merging columns 2

& 4 and rows 3 & 4). V # has row sums 486, 899, 1611 and column sums
486, 1612, 898, so rule of thumb 1 is not badly stretched. I emphasize that
the rules of thumb need not mutually agree; however, rules 3 and 4 intuitively
are the most important ones with respect to extracting information from S,
so they were given preference here over the others.

The computation steps that remain after choosing Ai and Bj are merely
mechanical and omitted here. We will briefly discuss the quality of the model
estimate C̃3000 = (R3, (τ̃a, τ̃b), w̃0) thus obtained.

The entries in the matrices τ̃a, τ̃b deviate from the entries in the true ma-
trices (23) by an average absolute error of .05 (≈ 22%). The prediction errors
made for P [a | bat] by the estimated OOM C̃3000 are graphically represented
in fig. 5(a). While the basic oscillatory character of the process has been
captured, its frequency is underestimated, and furthermore, the estimated
model exhibits a marked damping of the oscillation.

(a) 5 10 15 20 25 30

0.2

0.4

0.6

0.8

1

(b)

Figure 5: (a) Probabilities P [a |at] according to the “probability clock” C̃3000

estimated from a 3000 time step sequence. (b) State diagram of a 1000-step
run of C̃3000.

Fig. 5(b) shows a state plot of a 1000-step run of the estimated model.
Some points lie outside the triangular area H≥0, which implies that the model

33

assigns negative “probabilities” to certain future events. Thus, C̃3000 is not a
valid OOM, since the non-negativity condition 3 from definition 1 is violated.

We return to this disturbing fact after a look at another model C̃30000,
which was estimated from a 30000-step sequence, using the same character-
istic and indicative events as before.

The average absolute error of matrix entries C̃30000 was found to be .0038
(≈ 1.7%). Fig. 6 illustrates the performance of C̃30000. The probabilities
P [a | bat] are captured almost accurately within the plotted time horizon of
30 steps (fig. 6(a)). The states of a 100000-step run of C̃30000 almost perfectly
coincide with the most frequent states of the original OOM (23). The fact
that even after 100000 steps the states of C̃30000 remain in the close vicinity
of the true states indicates that C̃30000 does not violate condition 3 from
definition 1, i.e., it is a valid OOM.

(a) 5 10 15 20 25 30

0.2

0.4

0.6

0.8

1

(b) (c)

Figure 6: (a) same as fig. 5(a), now for a model estimated from a 30.000-step
sequence. (b) The eight most frequent states of the original “probability
clock”. (c) An overlay of (b) with a 100000-step run of the model estimated
from a 30000-step sequence. Every 100-th step of the 100000-step run was
additionally plotted into (b) to obtain (c).

The reason that C̃3000 is not a valid OOM lies in the mathematical nature
of the rotation map 1/2τ1.0 of the original OOM. In terms of dynamical
systems theory, a rotation R

3 → R
3 is structurally unstable [Strogatz, 1994].

I.e., any mapping τ̃1.0 which deviates from τ1.0 by an arbitrarily small amount
is not a rotation; it is either a “spiraling out” point repellor or a “spiraling
in” point attractor. The error made in estimating C̃3000 happened to turn the
rotation into a repellor (as can be guessed from fig. 5(b)); by pure coincidence,
the error made with C̃30000 ended up with τ̃a being of the attractor type.

Structural instability of operators is not the only reason why the estima-

34

tion of OOMs from data might yield models which violate the non-negativity
condition 3 from definition 1. Namely, if in an interpretable OOM, which is
a true model of some process (Xt), states occur which lie very close to or
even on the triangular boundary of H≥0, slight errors made by estimating
an OOM from a finite realization of (Xt) might push these states beyond
that boundary. This situation cries for a method which would enable one to
transform an estimated pseudo-OOM, which violates non-negativity, into a
“nearest” valid OOM. Or, for that matter, it would be desirable to have a
simple method for checking the non-negativity condition of a candidate OOM
in the first place. Unfortunately I cannot offer either of these methods.

In practical applications, however, this does no harm. If the estimated
model is used to predict the probability P [ā] of some sequence ā and returns
a negative value P [ā] = ǫ < 0, one can simply “correct” this prediction to
P [ā] = ! 0.

9.2 Refined algorithm: unbiased estimation of process
parameters

A standard requirement for a statistical estimator of some parameters p is
that it be unbiased, i.e., that the expected value of the estimated parameters
are the true values: E(p̃) = p. In the case at hand, we have a stationary,
m-dimensional process (Xt), which is described by an interpretable OOM
A(A1, . . . , Am) = (Rm, (τa)a∈O, w0). This OOM is characterized by the pa-
rameters p in the matrices τa (in the stationary case, w0 can be derived
from these matrices, so the parameters in w0 can be ignored). If we estimate
A(A1, . . . , Am) by Ã, as described in the previous subsection, the estimated
parameters p̃ of the matrices τ̃a give, as far as I can see, no unbiased estimates
of the true parameters p. The reason for this pessimism is that while Ṽ and
W̃a clearly are unbiased estimates of the matrices V and Wa, the inverting
of Ṽ in step 3 of the construction is a nonlinear operation, and unbiasedness
is not generally preserved under nonlinear operations.

However, unbiasedness of the matrix parameter estimation is actually
not what one would most desire. The major use of OOMs is to calculate
probabilities P [ā] via (6). It would be extremely nice if we knew that the
probabilities PÃ[ā], computed with estimated OOMs Ã using eq. (6), are
unbiased estimates of the true probabilities P [ā] in (Xt). I do not know
whether this generally holds, but first steps toward such a theorem shall be

35

done in this subsection. More specifically, we will see that if characteristic and
indicative events are chosen properly in the estimation procedure, for certain
defining events D it holds that P [D] = E(PÃ[D]). The defining events have
the special property that their probabilities uniquely specify (Xt). Thus,
the collection of probabilities P [D] can be considered an parametrization
q of (Xt) which is an alternative to the parametrization p afforded by the
matrix parameters of the τa. For these parameters q, the OOM construction
procedure yields unbiased estimates.

We start by observing that if one constructs Ã using characteristic events
A1, . . . , Am as described in the previous subsection, Ã is not generally an
interpretable OOM itself. However, by a suitable choice of characteristic
events A1, . . . , Am, one can guarantee that Ã = Ã(A1, . . . , Am). For a con-
venient formulation of this fact, we use the shorthand ā→k := {āb̄ | āb̄ ∈ Ok}
to denote complex events of length k which are characterized by a beginning
sequence ā.

Proposition 9 If for some 1 ≤ n ≤ m, the characteristic events A1, . . . , Am

can be grouped into n disjoint groups A1
1, . . . , A

1
l1
; A2

1, . . . , A
2
l2
; . . . ; An−1

1 , . . . , An−1
ln−1

;
An

1 = Am (where the last group consists only of Am), such that the following
conditions are satisfied:

1. each characteristic event from the first group is a union of complex
events characterized by beginning singletons, i.e., A1

x =
⋃{a→k

1 , . . . , a→k
r }

for some a1, . . . , ar ∈ O,

2. each characteristic event from the ν-th group (1 < ν < n) is of the form
Aν

x =
⋃{(b1c̄)

→k, . . . , (bsc̄)
→k | c̄→k ⊆ Aν−1

y } for some b1, . . . , bs ∈ O and
for some 1 ≤ y ≤ lν−1,

then an OOM Ã estimated from data, using these characteristic events,
is interpretable w.r.t. A1, . . . , Am, i.e., Ã = Ã(A1, . . . , Am).

The proof is given in the appendix. We proceed by considering the indica-
tive events B1, . . . , Bm used in constructing the matrices Ṽ and W̃a. Again, it
does not generally hold that the probabilities PÃ[Bj], obtained in the process
characterized by Ã, are equal to the estimates P̃S[Bj] of the same events, ob-
tained from counting in the training data. The following proposition shows
that by a suitable choice of indicative events, one can guarantee this and
more:

36

Proposition 10 Let A1, . . . , Am be characteristic events with the properties
from proposition 9. Let B1, . . . , Bm be indicative events which satisfy the
following conditions:

1. B1 = ε, the empty sequence.

2. For 1 < ν ≤ m, Bν has the form Bν = Cν
1 . . . Cν

xν
:= {c1 . . . cxν

| ci ∈
Cν

i ⊆ O for i = 1, . . . , xν}. Furthermore, some ν ′ < ν exists such that
Bν′ = Cν′

1 . . . Cν′

xν′
= Cν

1 . . . Cν
xν−1.

Then for all complex events D of the form BjAi, BjaAi, where a ∈ O,
it holds that PÃ[D] = P̃S[D]. In other words, the model Ã replicates in the
model-computed probabilities of the events used in constructing the matrices
Ṽ , W̃a, the empirical relative frequencies of them.

Corollary: Let B′
1, . . . , B

′
m be indicative events satisfying the above con-

ditions. Construct from them new indicative events B1, . . . , Bm by the oper-
ations of (i) joining disjoint sets, (ii) subtracting subsets (i.e., if X, Y are
given and X ⊆ Y , obtain Z = Y \X). Then the statement of the proposition
is true also for these new B1, . . . , Bm.

The proof is given in the appendix.
The characteristic and indicative events used for estimating the “proba-

bility clock” C(A1, A2, A3) in the previous subsection satisfy the conditions
in propositions 9 and the corollary of 10 (put A1

1 = {ba, bb}, A2
1 = {ab}, A3

1 =
{aa}, B′

1 = ε ≡ {aa, ab, ba, bb}(!), B′
2 = {b} ≡ {ab, bb}, B′

3 = ba, B1 = {aa} =
(B′

1 \ B′
2) \ B′

3, B2 = B′
2, B3 = B′

3). Therefore, the probabilities of events
BjAi, BjaAi obtained in the estimated models C̃3000, C̃30000 are identical with
the values obtained from counting in the 3000-step (30000-step, respectively)
sequences.

Propositions 9 and 10 have many implications. One concerns the no-
tion of degrees of freedom δm,M of an m-dimensional, M-symbol OOM. How
many parameters are actually needed to characterize an OOM? The val-
ues P̃S[BjAi], P̃S[BjaAi] (or equivalently, the values #SBjAi, #SBjaAi, or
the values PC̃[BjAi], PC̃[BjaAi], or the values P [BjAi], P [BjaAi]), are redun-
dant. Some of them are implied by others. One can show (exercise) that the
matrix Ṽ can be constructed from the matrices W̃a, if the characteristic and
indicative events are chosen according to the previous two propositions. But
even among the remaining Mm2 parameters in the latter matrices, many are
redundant. For instance, in the probability clock matrices we find W̃a(3, 2) =

37

P̃S[bab] = P̃S[babaa]+ P̃S[babab]+ P̃S [babb] = W̃b(1, 3)+W̃b(2, 3)+W̃b(3, 3). I
conjecture that an m-dimensional OOM (and thus, an m-dimensional process
(Xt)) can be characterized by δm,M = (M − 1)m2 parameters.

Another unanswered question is whether every finite-dimensional LDP
possesses characteristic and indicative events which satisfy the conditions
from the previous two propositions. I conjecture the answer is yes but have
been unable to prove this.

The bottom line of all of this is that among the events BjAi, BjaAi we
can often (maybe always), for a given process (Xt), select certain defining
events D1, . . . , Dδm,M

such that

1. (Xt) is uniquely determined by P [D1], . . . , P [Dδm,M
].

2. If from realizations S of the process, OOMs ÃS are estimated using the
events Di as characteristic/indicative events, these OOMs reproduce
the empirical frequencies P̃S[Di] of the events D1, . . . , Dδm,M

in the

respective training sequences, i.e. PÃ[Di] = P̃S[Di].

3.
E(PÃ[Di]) = P [Di]. (29)

In this sense, the OOM induction procedure affords an unbiased estima-
tion of model-defining parameters, if characteristic and indicative events are
chosen properly.

Note that (29) is valid even if the true dimension m′ of the process is
greater than the model dimension m. That is, OOM’s constructed according
to propositions 9 and 10 give unbiased estimates of at least δm,M of the δm′,M

parameters defining the true process.

9.3 Determination of model dimension

In the preceding subsections, it was assumed that the true process dimension
m was known, and the task was to learn an m-dimensional model. These
assumptions were the basis for an elementary statistical characterization of
learning algorithm’s properties.

But in real life the task usually is not to learn models with the true pro-
cess dimension. Empirical processes that are generated by complex physical
systems quite likely are very high-dimensional (even infinite-dimensional).

38

However, one can hope that only some few of the true dimensions are respon-
sible for most of the stochastic phenomena that appear in the data, and that
higher dimensions contribute with increasing residuality. Given finite data,
then, the question is to determine m such that learning an m-dimensional
model reveals m “significant” process dimensions, while any contributions of
higher process dimensions are insignificant in the face of the estimation error
due to finite data. Put bluntly, the task is to fix m such that data are neither
overfitted nor underexploited.

We shall now describe a practical method for dealing with the notion of
“significance”. Assume first that characteristic and indicative events for an
m × m raw counting matrix V # are given. What, precisely, does it mean to
say that V # captures m “significant” process dimensions?

A canonical approach is to consider the singular value decomposition
(SVD) σmax = σ1 ≥ σ2 ≥ · · · ≥ σm = σmin of V #. I assume that the
reader is familiar with the concept of SVD and its role in numerical linear
algebra (cf. [Golub and van Loan, 1996]). If the smallest singular value σmin

is “significantly” larger than 0, then V # has “numerical rank” m, and we are
justified in claiming that an OOM estimated using Ṽ captures m significant
process dimensions.

Any rigorous attempt to decide whether σmin > 0 by a “significant”
amount must take into account the distribution of σmin under the null hy-
pothesis that σmin = 0. This distribution depends on the distribution of
the matrix entries, i.e. of the random variables V #(ij) = #butlast[BjAi] de-
fined by counting the occurrences of BjAi in paths Sbutlast of length N − 1.
As a first approximation, one can assume that #butlast[BjAi] is binomi-
ally distributed, with expected value (N − 1)P [BjAi] and variance (N −
1)P [BjAi](1 − P [BjAi]).

Unfortunately, it is an unsolved (and difficult to analyze) problem in nu-
merical linear algebra to determine the distributions of singular values, given
the distribution of matrix entries [Sabine Van Huffel, personal communica-
tion]. Thus, what would be the canonical way to answer our question is
barred.

A practical escape from this deadlock is offered by heuristic methods
used in numerical linear algebra to decide σmin > 0 in the face of numerical
(small) perturbations. Following [Golub and van Loan, 1996] (section 5.5.8)
we accept the hypothesis σmin > 0, if σmin > ǫ‖V #‖∞, where the ∞-norm of
an m × m matrix (αij) is max1≤i≤m

∑

1≤j≤m | αij |. The constant ǫ is fixed
by convention: the greater ǫ is taken, the more likely it becomes to reject

39

σmin > 0. Golub and van Loan advise that ǫ should approximately amount
to the average relative error of the matrix entries.

While better alternatives are lacking, I suggest to adopt this strategy.
The value for ǫ that I use is the average relative error of the entries of V #,
which can be estimated from estimates of the variances by

ǫ̃ = 1/m2
∑

i,j

αi,j, (30)

where

αi,j =

{ √

#[BjAi](1 − #[BjAi]/N)/#[BjAi], if #[BjAi] > 0
0 if #[BjAi] = 0

(31)

If we find that the m-dimensional counting matrix V # is regular, us-
ing this criterion, then the information in S warrants the construction of a
model of dimension at least m. This is the core idea of determining model
dimension.

Theoretically, then, one could find the appropriate model dimension by
checking all possible counting matrices (i.e., all possible selections of charac-
teristic and indicative events) of dimensions m = 1, 2, 3, . . . and stop when
for some m0 all m0-dimensional counting matrices are found to be numeri-
cally singular. Then take m = m0 − 1 as the appropriate dimension. Al-
though this procedure terminates in finite time (due to the finiteness, there
are only finitely many ways to construct non-empty characteristic and in-
dicative events for each m), this is clearly impractical.

One has to find some way to keep in check the number of counting matri-
ces considered for each m. A simple method is to consider not the counting
matrices V # but instead the complete counting matrices introduced in sub-
section 9.1, namely, V #

complete = (#āj āi)1≤i≤|O|k,1≤j≤|O|l =: V #(k, l). Many

different counting matrices V # can be made from such V #(k, l) by merging
columns and rows, but only the latter has to be tested for its numerical rank.
This is because for the corresponding true k × l matrices V (k, l) = (P [ājāi])
it holds that

dim(Xt) = m ⇔ ∃l0, k0 : rank(V (l0, k0)) = rank(V (l0 + 1, k0 + 1)). (32)

This statement is proven in [Jaeger, 1997b]; it can also easily be obtained
as a consequence of a closely related theorem from [Gilbert, 1959] (Lemma 2).

40

(32) allows us to estimate the appropriate process dimension in a way which
circumvents the computation of matrices V #. Let σ1, . . . , σp be the singular
values of V #(k, k), ordered by decreasing size. Compute ǫ for V #(k, k) ac-
cording to (30). Take as the numerical rank m of V #(k, k) the minimal index
m such that σm > ǫ‖V #(k, k)‖. Repeat same procedure for V #(k + 1, k + 1)
to obtain numerical rank m′. If m′ = m, the appropriate dimension has been
found. If m′ > m, continue by increasing k.

This procedure is still potentially impractical because the size of V #(k, k)
explodes as k increases. Further simplifications suggest themselves. The most
important is that the procedure can be terminated without further increasing
k once m <| O |k, since higher k will in most cases not lead to any further
increase of m due to sharp increase in variance of matrix entries (relative to
absolute size of them), which drives ǫ up relative to singular values.

A side remark: at the end of section 4 I remarked that the learning
procedure can be used to construct a minimal-dimensional OOM from a given
OOM A. This is how: first, use (32) to determine the process dimension.
Second, replay the learning algorithm with precise matrices V, Wa, which can
be computed with A.

As a demonstration we reconsider the estimation of the probability clock.
The 4 × 4 matrix V #(2, 2), was obtained from sequences of different length
generated by the probability clock. Table 1 shows the findings. In this table,
the singular values corresponding to each sequence were re-scaled such that
the greatest one was set to 100; the cutoff value ǫ‖V #(k, k)‖ was proportion-
ally rescaled. The outcome justifies a 3-dimensional model for the 30000-step
sequence. But it turns out that for the 3000-step sequence, in subsection 9.1
we would have been better advised to construct only a 2-dimensional model,
since the effect of the third process dimension is too weak to become signifi-
cantly discernible in that short sequence.

9.4 Adaptive system identification

Assume that an ever-ongoing sequence S∞ = a1, a2, a3, . . . is generated by a
source which drifts on a slow timescale. A common task is to maintain online
a current model of the shifting process. This can be achieved with the OOM
learning algorithm, as follows:

1. In preliminary investigations of similar time series (or beginnings of S∞)
choose appropriate characteristic and indicative events. Build V #, W#

a

41

N SV cutoff m

300 (100 20 10 0.42) 29 1
1000 (100 12 10 1.5) 13 1
3000 (100 19 6.8 0.57) 8.6 2

10000 (100 15 7.2 1.5) 4.5 3
30000 (100 15 6.8 0.2) 2.5 3

Table 1: Determining appropriate model dimensions. N : length of sequence,
SV : rescaled singular values (σ1, . . . , σ4), cutoff : ǫ‖V #(2, 2)‖, m: appropri-
ate model dimension.

from a beginning of S∞, and compute an initial OOM.

2. Continually update the counting matrices V #, W#
a as new data come

in, attributing more weight to more recent data.

3. If V #, W#
a drift by more than a fixed tolerance threshold, recompute

the model.

In step 1 one has to determine an appropriate model dimension m. This
task is more intricate here than in the case of a finite, stationary sequence,
since an appropriate choice of m depends on the tolerance threshold, and on
the issue of whether the shift in the process concerns the “dominant” dimen-
sions and/or the “less significant” ones. A rule of thumb that suggests itself
is to choose m such that it is appropriate for subsequences of S∞ obtained
between the model updates.

Due to the pleasant computational properties of the recomputation 3,
this scheme will in many cases allow to recompute models on a faster than
the process drift timescale, thereby yielding adaptive system identification.

10 Input-output OOMs

In many applications one wishes to model stochastic systems which generate
stochastic output while they are influenced by stochastic inputs. Input-
output systems are most important in control theory, where it is investigated
how a piece of machinery (plant) can be made to behave optimally in some
sense by administering to it a suitable sequence of inputs (controls). Input-
output systems appear in many other areas besides control engineering, too.

42

For instance, in some approaches in robotics that a robot models its en-
vironment as a stochastic input-output-system. The input in this case is
constituted by the robot’s actions, and the output is the sensory feedback
the robot receives. Other instances of stochastic input-output systems are
found in signal processing (stochastic transducers) or as modules in speech
processing systems, to name but a few.

In this section it is shown how the OOM approach can be generalized to
cover input-output systems. We treat the case of finite-valued input which is
administered at the same temporal rate as output is generated. The terminol-
ogy used in this section is taken largely from [Gihman and Skorohod, 1979],
who first provided a comprehensive, general mathematical treatment of con-
trolled stochastic processes. Since the perspective in that book is systems
control, the terminology used here will inherit that flavor.

10.1 Formal description of controlled stochastic pro-

cesses

Let U = {r1, . . . , rk} be the set of possible inputs (or controls), and as before
let O = {a1, . . . , ak′} be the possible outputs.

In terms of stochastic processes, an input-output system (or controlled
object in the terminology of Gihman & Skorohod) can be most conveniently
characterized by a family of probability measures (µ

r
)
r∈U∞, which is indexed

by the infinite control sequences. For every such control sequence r, µ
r

is a
probability measure on (P(O))N, where P(O) is the power set σ-algebra on
O. Each measure µ

r
is almost certainly defined by its projections µn

r
(n ≥ 0)

on finite initial cylinders P(O)0 × · · · × P(O)n. µn
r
[(a0, . . . , an)] gives the

probability that an output sequence a0 . . . an is produced by the controlled
object if it is given the control sequence r0 . . . rn, where r0 . . . rn is an initial
sequence of r. If r and r′ coincide over the first n+1 time steps, it holds that
µn

r
= µn

r
′. This implies that a controlled object can also be characterized by

the family of finite-time-step initial probability distributions (µr̄)r̄∈U+, where
µr0...rn

[(a0, . . . , an)] is again the probability that an output sequence a0 . . . an

is produced if the controlled object is given the control sequence r0 . . . rn. We
shall use this latter characterization4.

4Gihman & Skorohod condition n+1 outputs a0, . . . , an on n controls r0, . . . , rn−1 up to
the last but one time step, which suggests a perspective of feedback control. Conditioning
output at time n on control input at time n, by contrast, suggests a direct control strategy.
This is a matter of taste. All definitions and results carry over to either of the alternative

43

An input-output OOM (IO-OOM) of a controlled object must allow to
compute the measures µr̄. The definition of an m-dimensional IO-OOM
is straightforward and analogous to the definition of input-output hidden
Markov models given in [Bengio, 1999]. The basic idea is that for every
input r one defines a separate OOM with operators (τ r

a)a∈O operating on
R

m. Then, if at time t the input rt is given to the system, the operators from
the collection (τ rt

a)a∈O are used to generate the next output, and update the
state vector wt−1 to wt. This yields the following definition:

Definition 3 An m-dimensional IO-OOM is a triple (Rm, ((τ r
a)a∈O)r∈U , w0),

where w0 ∈ R
m and all τ r

a : R
m 7→ R

m are linear operators, satisfying

1. 1w0 = 1,

2. for every r ∈ U , the matrix
∑

a∈O τ r
a has column sums equal to 1,

3. for all sequences (r0, a0) . . . (rk, ak) it holds that 1τ rk
ak

· · · τ r0

a0
w0 ≥ 0.

For every r ∈ U , the ordinary OOM (Rm, (τ r
a)a∈O, w0) is called the r-

constituent of the IO-OOM.

An IO-OOM defines measures µr0...rn
via

µr0...rn
[a0 . . . an] = 1τ rn

an
· · · τ r0

a0
w0, (33)

and thereby specifies a controlled object.
Control input is usually administered to a controlled object according to

some control strategy. Following again Gihman & Skorohod, and basically
repeating the considerations made above for the measures µ, we model a
control strategy by a family (νā)ā∈O∗ , where νa0...an−1

is a probability measure
on P(U)0×. . .×P(U)n for nonempty sequences a0 . . . an−1, and νε is a measure
on P(U). νε[r] gives the probability that r is selected as first control input;
νa0...an−1

[r0 . . . rn] is the probability that a control sequence r0 . . . rn is given
if output a0 . . . an−1 occurs. Note that in this formalization, control input
at time n depends on all prior controls and the output history up to the
previous time step n − 15.

formalizations.
5Gihman & Skorohod have control at time n depending on output at time n.

44

It is natural to describe a controlled process incrementally, considering (i)
the conditioned probabilities P [an | r0, . . . , rn, a0, . . . , an−1] of observing out-
put an after inputs r0, . . . , rn and prior output history a0, . . . , an−1, and (ii)
the conditioned probabilities P [rn | r0, . . . , rn−1, a0, . . . , an−1] of giving input
rn after an input-output history r0, . . . , rn−1, a0, . . . , an−1. These conditioned
probabilities can be computed from the µr̄’s and νā’s by observing

P [an |r0, . . . , rn, a0, . . . , an−1] = (34)

=
P [a0 . . . an |r0 . . . rn]

P [a0 . . . an−1 |r0 . . . rn]

=
P [a0 . . . an |r0 . . . rn]

P [a0 . . . an−1 |r0 . . . rn−1]

= µr0...rn
[a0 . . . an]/µr0...rn−1

[a0 . . . an−1],

P [rn |r0, . . . , rn−1, a0, . . . , an−1] = (35)

=
P [r0 . . . rn |a0 . . . an−1]

P [r0 . . . rn−1 |a0 . . . an−1]

=
P [r0 . . . rn |a0 . . . an−1]

P [r0 . . . rn−1 |a0 . . . an−2]

= νa0...an−1
[r0 . . . rn]/νa0...an−2

[r0 . . . rn−1],

which are defined if µr0...rn−1
[a0 . . . an−1] > 0 and νa0...an−2

[r0 . . . rn−1] >
0. Note that P [a0 | r0] = µr0

[a0], P [r0] = νε[r0], and P [r1 | r0, a0] =
νa0

[r0r1]/νε[r0]. Furthermore note that the µr̄’s and νā’s can be fully re-
covered from (34) and (35), which means that (34) is an alternative charac-
terization of a controlled object and (35) of a control strategy.

A control strategy together with a controlled object yield a stochastic
process (Vt)t≥0 with values in U ×O. The finite distributions of this process
are defined inductively via the incremental probabilities derived in (34) and
(35):

P [V0 = (r0, a0)] = νε[r0]µr0
[a0]

(36)

P [Vn = (rn, an) |V0 = (r0, a0), . . . , Vn−1 = (rn−1, an−1)] =

= P [V0 = (r0, a0), . . . , Vn−1 = (rn−1, an−1)]

·P [rn |r0, . . . , rn−1, a0, . . . , an−1]

45

·P [an |r0, . . . , rn, a0, . . . , an−1].

The process (Vt) describes the combined input-output sequence, as it
results from the application of some particular control strategy on a cer-
tain controlled object. This process is called a controlled stochastic process
(CSP) by Gihman and Skorohod. Note that a controlled object and a control
strategy yield a unique CSP. Conversely, a CSP specifies some or all of the
incremental probabilities in (34) and (35). Specifically, it holds that

P [an |r0, . . . , rn, a0, . . . , an−1] = (37)

=
P [V0 = (r0, a0), . . . , Vn = (rn, an)]

∑

b∈O P [V0 = (r0, a0), . . . , Vn−1 = (rn−1, an−1), Vn = (rn, b)]
,

P [rn |r0, . . . , rn−1, a0, . . . , an−1] = (38)

=

∑

b∈O P [V0 = (r0, a0), . . . , Vn−1 = (rn−1, an−1), Vn = (rn, b)]

P [V0 = (r0, a0), . . . , Vn−1 = (rn−1, an−1)]
.

These incremental probabilities are only defined for nonzero denominators
on the r.h.s. of (37) and (38). In particular, this implies that if the control
strategy omits certain input sequences, the CSP does not contain information
about the controlled object’s response to that input. If one wishes to infer a
complete model of the controlled object from such “defective” CSPs, further
assumptions must be made. Specifically, we shall see that if one assumes
that the controlled object is an IO-OOM, complete models can be inferred
from “defective” CSPs.

A treatment of stationarity involves some subtleties which are not neces-
sary in the case of ordinary stochastic processes and OOMs. First observe
that one cannot speak of a stationary controlled object, or a stationary IO-
OOM, since there is no stochastic process defined by a controlled object or
an IO-OOM alone. One must treat stationarity as a property of CSP’s. A
straightforward approach would be to investigate CSP’s which are station-
ary. However, given a controlled object, typically no stationary CSP exists
even for time-invariant, finite-past-depending control strategies. Therefore,
stationary CSP’s are of little use.

This important fact shall be illustrated with a little example. The insights
afforded by this example will later guide us in establishing a correct learning
procedure.

Specify a controlled object by a 2-input, 2-output, 2-dimensional IO-OOM
A = (R2, ((τ r

a)a∈{1,2})r∈{1,2}, (w
1
0, w

2
0)). As a control strategy, select control 1

46

vs. 2 with equal probability at time 0, and flip control ever afterwards, i.e.
select control 1 at time t + 1 iff at time t control 2 was selected. This gives
rise to a CSP which can be modeled by a 4-dimensional, 4-symbol OOM
BCSP = (R4, (τ(r,a))(r,a)∈{1,2}×{1,2}, v0), where the 4×4 matrices corresponding
to the observable operators are given by

τ(1,a) =

(

0 τ 1
a

0 0

)

(a = 1, 2),

τ(2,a) =

(

0 0
τ 2
a 0

)

(a = 1, 2),

where 0 indicates the 2 × 2 null matrix.
Obviously, the starting vector of BCSP is v0 = 1/2(w1

0, w
2
0, w

1
0, w

2
0). Typ-

ically, BCSP will not be stationary, i.e., v0 will not be an invariant vec-
tor of

∑

(r,a)∈{1,2}×{1,2} τ(r,a). Conversely, consider the invariant state vec-

tor u0 = (u1, u2, u3, u4) of
∑

(r,a)∈{1,2}×{1,2} τ(r,a), which renders Bstationary =

(R4, (τ(r,a))(r,a)∈{1,2}×{1,2}, u0) stationary. Typically, u0 will not be of the form
1/2(x, y, x, y). This implies that typically no starting vector (x, y) exists
which can be used with A instead of w0, such that the resulting CSP would
be stationary.

Nevertheless, the control strategy in this example has a distinctive “sta-
tionary” flavor, and the CSP modeled by BCSP quickly becomes stationary
after an initial transient. Control strategies which are intuitively stationary,
and ultimately stationary CSP’s occur very commonly. This motivates the
following definition:

Definition 4 1. A stochastic process (Xt) with values in a measure space
(B, B) is asymptotically stationary if for every finite sequence A0, . . . , An of
events from B the limit

lim
t→∞

P [Xt ∈ A0, . . . , Xt+n ∈ An]

exists.
2. A control strategy is called asymptotically stationary if for all r ∈

U , for all infinite sequences r0, r−1, r−2 . . . and a0, a−1, a−2 . . . of inputs and
outputs the limit

lim
t→∞

P [r |r−t, r−t+1, . . . , r0, a−t, a−t+1, . . . , a0]

47

exists, where P [· | ·] represents the control strategy according to (35).
3. First some notation: for a control sequence r̄ = r0 . . . rn and an output

sequence ā = a0 . . . an let vr̄
ā := τ rn

an
· · · τ r0

a0
w0/1τ rn

an
· · · τ r0

a0
w0 be the state vector

that occurs in an IO-OOM after a history of inputs r̄ and outputs ā.
An IO-OOM (Rm, ((τ r

a)a∈O)r∈U , w0) is called asymptotically detectable
w.r.t. a control strategy (νā)ā∈O∗, if in the resulting CSP (Ω, C, P, (Vt)t≥0)
there exists a set C ∈ C of paths of measure P [C] = 1, such that for every
path ω ∈ C, where Vt(ω) =: (rω

t , aω
t), it holds that

lim
n→∞

sup{‖vr̄
ā − vr̄′

ā′‖ | r̄ = rω
0 . . . rω

n , ā = aω
0 . . . aω

n ,

r̄′ = rω′

0 . . . rω′

l , ā′ = aω′

0 . . . aω′

l ,

ω′ ∈ C, l ≥ n,

rω′

l−nr
ω′

l−n+1 . . . rω′

l = r̄,

aω′

l−naω′

l−n+1 . . . aω′

l = ā}
= 0.

In simple words, an IO-OOM is asymptotically detectable if finite-past
knowledge about control and output history fixes the current state vector with
arbitrary precision when increasingly long pasts are considered.

Asymptotic detectability is a key concept for a deeper understanding of
IO-OOMs (and of OOMs, too). Preliminary investigations suggest that only
certain “pathological” IO-OOMs are not asymptotically detectable6. The
IO-OOM learning algorithm rests on asymptotic detectability. The three
concepts introduced in the definition above are connected. It is not difficult
to see that if an IO-OOM is asymptotically detectable and a control strat-
egy is asymptotically stationary, the corresponding CSP is asymptotically
stationary. Conversely, if a CSP is asymptotically stationary, the control
strategy is asymptotically stationary.

10.2 Interpretable IO-OOMs

In this subsection we introduce interpretable IO-OOMs. They are largely
analog to interpretable ordinary OOMs, and will be needed in the learning
algorithm for IO-OOMs.

6These issues are currently being investigated by Arend Streit at GMD

48

Two IO-OOMs A = (Rm, ((τ r
a)a∈O)r∈U , w0), A′ = (Rm′

, ((τ r ′
a)a∈O)r∈U , w′

0)
are said to be equivalent if they specify the same controlled object. A full
mathematical treatment of equivalence, which would correspond to the re-
sults obtained for ordinary OOMs, remains to be worked out. For the time
being, we shall make do with two conditions which together are obviously
sufficient for equivalence of A and A′:

1. m = m′, and

2. there exists a linear isomorphism ̺ : R
m → R

m, which preserves com-
ponent sums of vectors, and for which it holds that

̺w0 = w′
0

τ r ′
a = ̺τ r

a̺−1 for all r, a.
(39)

We will now investigate transformations ̺ which map A on an equivalent
version which is interpretable in a certain sense. Let Ok = A1∪̇ · · · ∪̇Am be
a collection of (output) events of length k, r̄ = r0 . . . rk−1 an input sequence
of length k, and τ r̄

Ai
:=

∑

a0...ak−1∈Ai
τ

rk−1

ak−1
◦ · · · ◦ τ r0

a0
. (The symbol ∪̇ denotes

disjoint union). Consider the mapping

̺A;r̄;A1,...,Am
: R

m → R
m

v 7→ (1τ r̄
A1

v, . . . , 1τ r̄
Am

v).
(40)

It is easy to see that ̺A;r̄;A1,...,Am
is linear and preserves component sums

of vectors. We assume that the output events A1, . . . , Am are selected such
that ̺A;r̄;A1,...,Am

is regular, in which case we call the events A1, . . . , Am char-
acteristic w.r.t. r̄. Then ̺A;r̄;A1,...,Am

maps A on an equivalent IO-OOM A′

according to (39).
States v′ of A′ are interpretable in the sense that the j-th component of

v′ is the probability that the output event Aj is observed during time steps
t, t+1, . . . , t+k−1, if A′ is in state v′ at time t and is given the input r̄ during
those time steps. We shall write A(r̄; A1, . . . , Am) to denote IO-OOMs which
are interpretable in this sense, and call (r̄; A1, . . . , Am) the characterization
frame of A(r̄; A1, . . . , Am):

49

10.3 Example of an IO-OOM, a control strategy, and
a CSP

In this subsection we describe a simple IO-OOM, specify a control strategy,
and describe the resulting CSP as an ordinary OOM. In the next subsection
we will see how the IO-OOM can be recovered (learnt) from the CSP7.

Let O = {1, 2} and U = {1, 2, 3} be the outputs and controls for a
controllable object, which is specified by the following 2-dimensional IO-
OOM:

A = (R2, (τ r
a)a∈{1,2})r∈{1,2,3}, (.5, .5)), (41)

where

τ 1
1 =

(

0 .5
.5 .5

)

τ 1
2 =

(

0 0
.5 0

)

τ 2
1 =

(

.1 .5

.1 0

)

τ 2
2 =

(

.4 .5

.4 0

)

τ 3
1 =

(

.25 .2

.25 0

)

τ 3
2 =

(

.25 .8

.25 0

)

.

As a control strategy, we select control 1 with probability 2/3 and control
2 with probability 1/3 at t = 0. For t > 0, we either leave the control un-
changed, i.e. rt = rt−1, or we increase it by 1 (mod 3), i.e. rt = rt−1(mod3)+1.
We make the probability of increasing the control depend on the previous
output, by putting rt = rt−1 with probability 1/3 if at−1 = 1, and with
probability 2/3 if at−1 = 2. In simple words, the control cycles through
1 . . . 12 . . . 23 . . . 31 . . . where the probability of increasing the control is cou-
pled to the prior output at a fixed rate. This is a simple control strategy
with stochastic feedback.

The control strategy depends only on finite (depth 1) pasts. This implies
that it is asymptotically stationary. Furthermore, it is easy to show that A
is asymptotically detectable (exploit that after application of τ 1

2 the state
vector is uniquely determined regardless of prior history, and that τ 1

2 occurs
in almost all paths of the CSP). As a consequence, the CSP is asymptotically
stationary.

7Mathematica files and notebooks containing all data, definitions and calculations per-
taining to this example can be obtained from the author.

50

The CSP in this example actually is a 6-dimensional LDP. I will now
describe a 6-dimensional OOM B = (R6, (τ(r,a))(r,a)∈{1,2}×{1,2,3}, v0) which
models the CSP. The idea to construct B is to partition the 6-dimensional
state vectors into 3 segments of two components x, y each. The segments
are indexed by the possible inputs. Thus, we write state vectors as v =
(x1, y1, x2, y2, x3, y3). Now we arrange matters such that if vt+1 is a state
vector obtained after a history (r0, a0), . . . , (rt, at), i.e.

vt+1 = τ(rt,at) · · · τ(r0,a0)v0/1τ(rt,at) · · · τ(r0,a0)v0,

then the following conditions are met:

1. The sum of components in the i-th segment indicates the probability
that the next input is i (i = 1, 2, 3). More precisely, we wish to achieve
that 1(τ(i,1) + τ(i,2))(x1, y1, x2, y2, x3, y3) = xi + yi.

2. If vt+1 = (x1, y1, x2, y2, x3, y3), and for some i ∈ {1, 2, 3} it holds that
(xi, yi) 6= (0, 0) , then (xi, yi)/1(xi, yi) is the state vector of the IO-
OOM after the input-output history r0, . . . , rt; a0, . . . , at.

Thus, state vectors vt transparently code both the information necessary
for determining the probabilities of the next control input, and the infor-
mation required for determining the probabilities of the next output of the
controlled object. The following 6 × 6 matrices satisfy our requirements:

τ11 =





2/3τ 1
1 0 0

1/3τ 1
1 0 0

0 0 0



 , τ12 =





1/3τ 1
2 0 0

2/3τ 1
2 0 0

0 0 0





τ21 =





0 0 0
0 2/3τ 2

1 0
0 1/3τ 2

1 0



 , τ22 =





0 0 0
0 1/3τ 2

2 0
0 2/3τ 2

2 0



 ,

τ31 =





0 0 1/3τ 3
1

0 0 0
0 0 2/3τ 3

1



 , τ32 =





0 0 2/3τ 3
2

0 0 0
0 0 1/3τ 3

2



 .

where again 0 denotes the 2 × 2 null matrix.
The reader may convince himself or herself that together with a starting

vector v0 = (1/3, 1/3, 1/6, 1/6, 0, 0) this OOM correctly models the CSP

51

which results from the controlled object A and the control strategy described
above.

Now consider the invariant vector vstat of component sum 1 of the sum
map τ(1,1) + · · · + τ(3,2). Using this vector as a starting vector instead of v0

yields a stationary version of B, namely, Bstat = (R6, (τ(r,a))(r,a)∈{1,2}×{1,2,3}, vstat).
Computing vstat numerically yields

vstat = (.18, .21, .14, .15, .21, .095).

It is easy to see that if the IO-OOM A is started with a starting vector
w0 = (x, y), then the resulting CSP can be modeled by B, with v0 replaced by
(2/3x, 2/3y, 1/3x, 1/3y, 0, 0). Clearly vstat is not of this form. This implies
that there exists no starting vector w∗

0 for A such that the resulting CSP
becomes stationary.

To sum up, we have described a controlled object with a particular start-
ing state and an asymptotically stationary control strategy, which give rise
to an asymptotically stationary CSP. Furthermore we have a model of the
stationary CSP. But, there exists no starting state of the controlled object
which would yield a stationary CSP. As we shall see in the next subsection,
this somewhat counterintuitive fact must be suitably acknowledged by the
learning algorithm for IO-OOMs.

10.4 Learning algorithm for IO-OOMs

This section describes a learning algorithm for IO-OOMs in mathematical
language.

We address the following learning task. Assume that an unknown IO-
OOM A is controlled according to a fixed control strategy, and a (long)
empirical trace S = (r0, a0), . . . , (rN , aN) from the resulting CSP is available.
Then, estimate an IO-OOM Ã of the controlled object from S.

The core idea of the learning algorithm is simple. It proceeds in two
major steps. First, an ordinary OOM B̃ of the CSP is estimated. Second,
B̃ is used to estimate probabilities of the kind P [Ai | r̄; r0, . . . , rn; a0, . . . , an],
i.e. the probability that an output event Ai is generated after a prior history
r0, . . . , rn; a0, . . . , an and a current control r̄. These probabilities correspond
to the components 1τ r̄

A1
v of state vectors v of an interpretable IO-OOM

A(r̄; A1, . . . , Am) according to (40). Ã(r̄; A1, . . . , Am) can be constructed
straightforwardly from the estimates of these probabilities.

52

The two steps are now described in detail. We assume that the dimension
m of the original IO-OOM is known (the topic of determining m from S is
deferred to the next subsection). Let r̄ = r0 . . . rk−1 be the control sequence of
the characterization frame (r̄; A1, . . . , Am) to be used. To obtain the matrices
τ̃ r
a (r̄; A1, . . . , Am), proceed as follows.

1. Construct from S a stationary OOM B̃ = (Rl, (τ̃(r,a))(r,a)∈U×O, v0) of the
CSP, using the techniques described in previous sections.

2. From B̃ construct the operators τ̃ r
a of Ã(r̄; A1, . . . , Am) in the following

substeps:

(a) Obtain m state vectors v1, . . . , vm of B̃ by computing m initial
input-output histories r̄i = ri

0 . . . ri
ki

, āi = ai
0 . . . ai

ki
, i.e. obtain

vi := vr̄i
āi

(i = 1, . . . , m, where vr̄i
āi

is defined as in definition 4(3)).

(b) For i = 1, .., m compute m-dimensional vectors

wi =
1

1τ̃(r̄,Ok)vi

(1τ̃(r̄,A1)vi, . . . , 1τ̃(r̄,Am)vi), (42)

where τ̃(r̄,Aj) :=
∑

a0...ak−1∈Aj
τ̃(rk−1,ak−1) ◦ · · · ◦ τ̃(r0,a0) and τ̃(r̄,Ok) :=

∑

a0...ak−1∈Ok τ̃(rk−1,ak−1)◦· · ·◦τ̃(r0,a0). wi is the state vector obtained

in Ã(r̄; A1, . . . , Am) after an input-output history r̄i, āi, provided
Ã(r̄; A1, . . . , Am) is asymptotically detectable and r̄i, āi is a suffi-
ciently long history.

(c) For i = 1, .., m, compute the probability

P [a |r, r̄i, āi] = 1τ̃(r,a)vi/1τ̃(r,O)vi, (43)

where τ̃(r,O) :=
∑

a∈O τ̃r,a. P [a | r, r̄i, āi] is the probability that

output a is produced, in the process described by B̃, after a prior
history of r̄i, āi and a current control input r.

(d) For i = 1, .., m, compute v′
i = τ̃(r,a)vi/1τ̃(r,a)vi. From these, com-

pute m-dimensional state vectors w′
i as in step 2b. w′

i is the state
vector obtained in Ã(r̄; A1, . . . , Am) after an input-output history
r̄ir, āia.

53

(e) Put w′′
i := P [a | r, r̄i, āi]w

′
i. It holds that τ̃ r

awi = w′′
i . Collect

w1, . . . , wm as columns in a m × m matrix V , and w′′
1 , . . . , w

′′
m as

columns in a m × m matrix W r
a . Now obtain τ̃ r

a = W r
aV −1.

This core version of the learning algorithm works only if the various de-
nominators occurring in steps 2b,2c,2d are nonzero. A closer inspection re-
veals that this is warranted if and only if the control strategy assigns a
nonzero probability to controls r̄ and rr̄ after prior histories r̄i, āi. Fur-
thermore it is necessary that the vectors w′′

i obtained in step 2e be linearly
independent.

Often there exist no prior histories r̄i, āi such that these requirements
of nonzero probabilities and linear independence are satisfied for all (r, a).
A more sophisticated version of the learning algorithm must then be used.
The idea is not to utilize a single characterization frame (r̄; A1, . . . , Am) uni-
formly for the construction of all τ̃ r

a , but to construct each τ̃ r
a with respect

to its own appropriate characterization frame (r̄(r, a); A1(r, a), . . . , Am(r, a)),
in the same way as indicated in the core version of the learning procedure.
This basically means that the τ̃ r

a are learnt for different but equivalent inter-
pretable IO-OOMs Ã(r̄(r, a); A1(r, a), . . . , Am(r, a)). In a novel, third step,
transformations ˜̺ between these equivalent IO-OOMs must be constructed,
which allow to translate the differently interpretable τ̃ r

a into a common char-
acterization frame, thereby arriving at a single IO-OOM.

Thus, assume that steps 1 and 2 have been carried out, using p different
characterization frames F i = (r̄i; Ai

1, . . . , A
i
m) (i = 1, . . . , p) for obtaining all

τ̃ r
a =: τ̃ r

a (r̄(r, a); A1(r, a), . . . , Am(r, a)), where (r̄(r, a); A1(r, a), . . . , Am(r, a)) =
F i for some i. I will now describe how in a third step, appropriate trans-
formations between these characterization frames can be constructed from
B̃.

3. Order the characterization frames in a tree. Write F i → F j to denote
that F i is a direct predecessor of F j . Let F ∗ be the terminal node
in this tree, i.e. from every F i there leads a path to F ∗. Construct,
for every pair F i → F j, a transformation between the characterization
frames F i and F j , i.e., a transformation ˜̺ij : Ã(r̄i; Ai

1, . . . , A
i
m) →

Ã(r̄j; Aj
1, . . . , A

j
m), according to (39), as follows:

(a) Select m state vectors v1, . . . , vm of B̃, which occur after reason-
ably long initial histories like in step 2a, such that the following
state vectors of Ã(F i) and Ã(F j), respectively,

54

wi
s =

1

1τ̃(r̄i,Ok)vs

(1τ̃(r̄i,Ai
1
)vs, . . . , 1τ̃(r̄i,Ai

m)vs),

wj
s =

1

1τ̃(r̄j ,Ok)vs

(1τ̃(r̄j ,A
j
1
)vs, . . . , 1τ̃(r̄j ,A

j
m)vs), (s = 1, . . . , m)

(44)

are well-defined (nonzero denominators are obtained), and such
that wi

1, . . . , w
i
m are linearly independent.

(b) Collect the vectors wi
s as columns into a matrix U i and the vectors

wj
s as columns into a matrix U j and obtain ˜̺ij = U j(U i)−1.

The maps ˜̺ij can be used to transform all τ̃ r
a (r̄(r, a); A1(r, a), . . . , Am(r, a))

obtained in steps 1 and 2, into operators of an IO-OOM with characteriza-
tion frame F ∗. More precisely, if τ̃ r

a (r̄(r, a); A1(r, a), . . . , Am(r, a)) = τ̃ r
a (F i0)

and F i0 → F i1 → · · · → F ix = F ∗, one obtains

τ̃ r
a (F ∗) = ˜̺ix−1ix · · · ˜̺i0i1 τ̃

r
a (F i0)˜̺−1

i0i1
· · · ˜̺−1

ix−1ix
. (45)

The vectors v required in step 3a can often be the same as the vectors v
used in step 2a, which streamlines the whole procedure. We shall adopt this
strategy in the next subsection.

The tree in step 3 should be as flat as possible, in order to avoid long
concatenations of transformations in (45), which accumulate error.

With some control strategies it is impossible to find any characterization
frames F i for which this algorithm works. In such cases there exist non-
equivalent IO-OOMs which are consistent with the observed CSP. A formal
characterizations of these cases remains to be found.

The learning algorithm generalizes from the particular control strategy
that was used in generating S. The learnt IO-OOM can be used to predict
system responses to control input which has zero probability in the original
control strategy. This will be demonstrated in the next subsection.

If the original sequence S was indeed generated by an m-dimensional,
asymptotically detectable IO-OOM A, and if the resulting CSP is an l-
dimensional LDP, then the learning algorithm is asymptotically consistent
almost certainly in the following sense. For almost every infinite path S∞ of
the CSP, it holds that if an m-dimensional interpretable IO-OOM ÃN(F) is
learnt from initial sequences SN of length N of S∞, using K initial steps for
generating the state vectors vi in steps 2a and 3a, then limN,K→∞ ÃN(F) =

55

̺(A, F)A in the sense of convergence of the observable operator matrices
entries.

Another learning task of interest would occur when many short initial
paths of the CSP are available, and we wish to identify an IO-OOM A in-
cluding an initial state. The techniques described above can trivially be
accomodated to this case. In the first step, learn a non-stationary OOM
B̃ with a starting vector v0. The second and third step essentially remain
unchanged. The vectors v required in steps 2a and 3a can be obtained from
arbitrarily short initial input-output sequences, since the complications in-
duced by asymptotic stationarity are no longer relevant. The starting vector
v0 directly corresponds to the starting vector w0 of the IO-OOM. The latter
can be obtained from the former by a calculation similar to the ones in steps
2a and 3a.

10.5 Determination of appropriate model dimension

For determining an appropriate dimension of the IO-OOM, I propose to use
a method which is largely similar to the one proposed for ordinary OOMs
in section 9.3. However, the situation is different now from what it was
then. Formerly the determination of model dimension relied on raw counting
matrices. Counting matrices are no longer available; they have essentially
been replaced by the matrix V described in step 2e of the learning procedure.
We will use the trick to transform a suitable version of V into a “pseudo”
counting matrix first, and then apply the familiar procedure for determining
an appropriate model dimension m.

Assume that step 1 of the learning procedure has been carried out, i.e.
an appropriate l-dimensional model B̃ of the CSP is available. It is easy to
see that m cannot be greater than l. Therefore, it suffices to exploit pseudo
counting matrices of dimension l. Proceed as follows:

1. Select l output events Ok = A1∪̇ · · · ∪̇Al and a control sequence r̄ ∈ Uk,
i.e., select a characterization frame F . Select l vectors v1, . . . , vl which
(i) occur after a reasonably long initial history, and (ii) satisfy the
condition 1τ̃(r̄,Ok)vi > 0. Furthermore, the ratio of the biggest vs. the
smallest singular value of the l × l matrix made from v1, . . . , vl should
not be too big, i.e. the v1, . . . , vl should be as “numerically l.i.” as
possible. For i = 1, . . . , l compute the vectors

56

wi =
1

1τ̃(r̄,Ok)vi

(1τ̃(r̄,A1)vi, . . . , 1τ̃(r̄,Al)vi), (46)

as in step 2b of the learning procedure. Collect them as columns in a
l× l matrix V . Normalize the sum of all entries of V to a value of 1 by
putting V ′ := 1/l V .

2. Multiply V ′ with a scalar to arrive at a pseudo counting matrix by
putting

V # := N(1τ̃(r̄,Ok)v0)V
′, (47)

where N is the length of the original training sequence S and v0 is the
starting vector of the stationary OOM B̃. Thus, 1τ̃(r̄,Ok)v0 gives the
relative frequency of the control sequence r̄ within S. The rationale
behind (47) is that the vectors in V contain information gained from
only that fraction of S where control r̄ occurs.

3. Use V # to determine an approximate model dimension m(F), as de-
scribed in section 9.3.

4. Repeat steps 1–3 with different input sequences r̄ ∈ Uk and different
events A1, . . . , Al, i.e. different characterization frames F ′ (which how-
ever share the length k of characteristic events and control). Do this
exhaustively (all possible frames) or by random probing. Take as ap-
propriate model dimension the maximal number m(F) found in this
way.

This method admittedly has a heuristic flavor, but seems to work well
in made-up examples where the correct model dimension is known. A more
mathematically justified procedure would be welcome.

10.6 An example of utilizing the learning algorithm

We shall now illustrate the use of the learning algorithm by applying it to
the example introduced in subsection 10.3.

The IO-OOM (41) was run with the control strategy described in subsec-
tion 10.3 to yield an input-output sequence S of length 10000. From S a 6-
dimensional stationary OOM B̃ was learnt, using singletons as characteristic

57

N SV cutoff m

10000 (100 55 35 8.2 4.3 1.6) 4.9 4

Table 2: Determining appropriate model dimension for B̃. Table is similar
to table 1. For detail compare text.

and indicative events ({(1, 1)}, {(1, 2)}, {(2, 1)}, {(2, 2)}, {(3, 1)}, {(3, 2)}). This
selection of characteristic events ensured that B̃ is itself interpretable, i.e. B̃ =
B̃({(1, 1)}, {(1, 2)}, {(2, 1)}, {(2, 2)}, {(3, 1)}, {(3, 2)}), by virtue of proposi-
tion 9.

The raw counting matrix V # was subjected to a test for appropriate
model dimension. The result is given in table 2.

It turned out that a 4-dimensional, maybe a 5-dimensional model would
be supported by S, but not a 6-dimensional one. However, in this case
the 6 singleton characteristic events were kept (and thus a 6-dimensional
model obtained) since these singletons are extremely convenient in the further
steps of the learning procedure, as will become apparent presently. Trading
appropriateness for convenience is justified here since we are not actually
interested in B̃ itself. For the construction of the IO-OOM from B̃ it is
irrelevant whether B̃ overfits S.

Next, the appropriate model dimension m was computed. To this end,
10 state vectors v1, . . . , v10 ∈ R

6 were obtained by performing 10 runs of B̃,
starting from B̃’s invariant starting vector, with vi being the 50-th state vec-
tor obtained in the i-th run. An initial history of length 50 is long enough to
ensure that the state vectors vi of correspond to state vectors of the unknown
IO-OOM (cf. the discussion on asymptotic stationarity and detectability in
section 10.1).

Now ten trials for estimating m were performed, each consisting of the
following steps:

1. A control sequence r1r2r3 was randomly chosen which occurs in the CSP
with nonzero probability. Six output events A1∪̇ · · · ∪̇A6 = {1, 2}3 were
arbitrarily chosen. From v1, . . . , v10, six vectors v1, . . . , v6 were chosen
such that 1τ̃(r1r2r3,Ai)v

j > 0 for at least one j ∈ {1, . . . , 6}.

2. For each vj, a vector wj was computed according to (46). These wj

were collected in a matrix V , which was transformed into a pseudo
counting matrix V # as described in the previous subsection.

58

SV cutoff m

1 (100 45 2.5 1.1) 19 2
2 (100 29 .52 .02) 6.2 2
3 (100 52 1.5 .08) 11 2
4 (100 33 7.4 .22) 26 2
5 (100 12 5.9 .44) 20 1
6 (100 9.5 5.4 1.2) 20 1
7 (100 28 2.2 .14) 23 2
8 (100 25 23 .80) 24 2
9 (100 19 7.1 2.4) 23 1
10 (100 19 5.7 1.9) 12 2

Table 3: Results from ten trials for determining the appropriate dimension for
the IO-OOM. Only nonzero singular values are shown. The table is organized
similar to table 9.3, with the exception of the first column, which gives the
trial Nr here.

3. V # was evaluated for an appropriate model dimension as described in
section 9.3.

Table 10.6 lists the results obtained from the 10 trials. The majority of
trials yielded m = 2 and a few m = 1. Note that the latter are no evidence
that the appropriate model dimension should be 1, since low outcomes can be
attributed to poorly distinguishing characteristic events, low probability of
the control sequence used, or ill-chosen vectors vi. Only the maximal values
obtained are indicative. It thus turns out that a model dimension of m = 2
should be adopted.

The next task was to estimate the maps τ̃ r
a . The simple version of the

learning algorithm, where all τ̃ r
a are estimated w.r.t. a common characteriza-

tion frame F = (r1 . . . rk; A1, A2), is inapplicable. This is because the control
strategy excludes, after control i at time t, a control i + 2 (mod 3) at time
t + 1. For input r with r1 = r + 2 (mod 3), this renders the expression
1τ̃(r̄,Ok)τ̃(r,a)v

′
i zero for a = 1, 2, which means a zero denominator in step 2d.

Therefore, the more sophisticated version of the learning algorithm has to be
used.

The maps τ̃ r
a were thus estimated w.r.t. different characterization frames.

Concretely, for each map τ̃ r
a the frame (r; {1}, {2}) was used (a = 1, 2). We

describe in detail the procedure for estimating τ̃ 2
1 (2; {1}, {2}).

59

Step 2a: Two state vectors v1, v2 of B̃ were selected, which occurred
after a 50-step initial sequence of B̃, and after which an input of 2 had
nonzero probability. Exploiting the fact that B̃ is interpretable, the latter
simply means that the third and fourth component of v1, v2 must not both be
zero. Some further heuristic considerations for selecting “good” v1, v2 were
that the probabilities of obtaining control 2 and output 1 at vi, i.e. 1τ̃(2,1)vi,
should be high. Furthermore v1 should be as different from v2 as possible.
For a concrete measure of “difference”, the 1-norm of R

6 was taken. The
first of these heuristic requirements aims at finding such vi where the future
distribution after input 2 and output 1 is modeled relatively precisely by B̃.
The second requirement aims at taking probes from as different as possible
states of the CSP, which again increases precision. From the ten vectors
used in the model dimension determination described before, the two were
selected which best satisfied these requirements. Concretely,

v1 = (0.345, 0, 0.306, 0.348, 0, 0),

v2 = (0, 0, 0.140, 0.240, 0.187, 0.433)

were selected.
Step 2b: w1 = (1τ̃(2,1)v1, 1τ̃(2,2)v1)/1τ̃(2,{1,2})v1 was computed. Note that

due to the interpretability of v1, w1 is simply the 2-vector obtained from the
middle two entries of v1, and dividing them by the sum of these two entries,
i.e., w1 = (v3

1 , v
4
1)/(v3

1 + v4
1). w2 is computed accordingly. One obtains

w1 = (0.467, 0.533),

w2 = (0.369, 0.6319).

Step 2c: For v1, the probability P [1 | . . .] = 1τ̃(2,1)v1/1τ̃(2,{1,2})v1 (cf.
(43)) was computed. Again, the fact that v1 is interpretable can be exploited
to obtain this probability as v3

1/(v3
1 +v4

1). P [2 | . . .] was treated analogously,
obtaining

P [1 | . . .] = 0.467,

P [2 | . . .] = 0.369.

Step 2d: w′
1 and w′

2 were computed from the vectors τ̃(2,1)v1/1τ̃(2,1)v1 and
τ̃(2,1)v2/1τ̃(2,1)v2 like w1 and w2 from v1 and v2.

60

Step 2e: w′′
1 and w′′

2 were then obtained as

w′′
1 = P [1 | . . .]w′

1 = (0.0907, 0.376),

w′′
2 = P [2 | . . .]w′

2 = (0.0878, 0.281).

w1, w2 were put as columns in a matrix V , and w′′
1 , w

′′
2 as columns in a

matrix W . Then the desired estimate was obtained by

τ̃ 2
1 (2; {1}, {2}) = WV −1 =

(

0.106 0.0774
0.895 −0.0774

)

.

The observable operator τ 2
1 (2; {1}, {2}) of the original IO-OOM A, inter-

preted w.r.t. the frame (2; {1}, {2}), is

τ 2
1 (2; {1}, {2}) = WV −1 =

(

0.15 0.05
0.85 −0.05

)

.

In a similar way, all τ̃ i
j (i; {1}, {2}) (i = 1, 2, 3, j = 1, 2) were constructed.

Thus, three characterization frames were used, namely, F i = (i; {1}, {2})
(i = 1, 2, 3). They were ordered by putting F 2 → F 1, F 3 → F 1. Now two
transformations ˜̺21, ˜̺31 had to be constructed for unifying the characteriza-
tion frames into a common frame F 1, according to steps 3a and 3b.

Step 3a: ˜̺21 was constructed from two of the ten state vectors vi originally
used for determining the model dimension. These two vectors v had to be
selected such that the probabilities 1τ̃(1,{1,2})v and 1τ̃(2,{1,2})v were nonzero.

Considering again the interpretability of B̃, this simply means that among
the first two and among the second two entries of v there must be nonzeros.
The following vectors were chosen:

v1 = (0.50, 0.16, 0.13, 0.22, 0, 0),

v2 = (0.35, 0, 0.31, 0.39, 0, 0).

The vectors w1
s , w

2
s (s = 1, 2) could have been constructed by direct com-

putation according to (44). However, interpretability of B̃ can again be
exploited, obtaining w1

1 = (v1
1, v

2
1)/(v1

1 + v2
1), w

1
2 = (v1

2, v
2
2)/(v1

2 + v2
2), w

2
1 =

(v3
1, v

4
1)/(v3

1 + v4
1), w

2
2 = (v3

2, v
4
2)/(v3

2 + v4
2).

Step 3b: Putting w1
1, w

1
2 as columns in a matrix U1 and w2

1, w
2
2 in U2, the

desired transformation was estimated as

61

˜̺21 = U1(U2)−1 =

(

2.281 −0.123
−1.28 1.12

)

.

For comparison: the correct transformation mapping would have been

̺21 =

(

1.833 0.166
−0.833 0.833

)

.

Finally, ˜̺21 was applied to τ̃ 2
1 (2; {1}, {2}) to give τ̃ 2

1 (1; {1}, {2}).
Similar transformations yielded uniform F 1 versions of all operator esti-

mates. They compare to the F 1 versions of the original operators as follows
(let δi

j := τ i
j(F

1) − τ̃ i
j (F

1)):

δ1
1 =

(

−0.007 0.03
0.007 −0.03

)

, δ1
2 =

(

0 0
0 0

)

,

δ2
1 =

(

0.09 −0.1
−0.06 −0.02

)

, δ2
2 =

(

0.02 0.1
−0.06 0.02

)

,

δ3
1 =

(

0.08 −0.1
−0.1 0.1

)

, δ3
2 =

(

0.03 −0.09
0.01 0.08

)

.

This amounts to an average absolute error in matrix entry estimates of
about 0.052.

B̃ was interpretable w.r.t. ({(1, 1)}, {(1, 2)}, {(2, 1)}, {(2, 2)}, {(3, 1)}, {(3, 2)})
in this example. This fact could be nicely exploited in order to avoid costly
matrix multiplications. There are many ways to make the characteristic
events of B̃ agree with the characterization frames used in constructing Ã,
such that matrix multiplications can be avoided in a similar way. A system-
atic treatment of this speed-up remains to be done.

Note that the induced model Ã allows to compute the response probabil-
ities of the controlled object for any possible control sequence. By contrast,
the original control strategy did not allow input 3 after 1, 2 after 3, or 1 after
2. In this sense, the learning algorithm generalizes from training data.

10.7 Discussion of learning IO-OOM procedure

The reader will have noticed that the learning algorithm described in this
section involves some heuristics. Specifically, this concerns the finding of

62

“good” state vectors vi of the OOM B̃ of the CSP. I could give only some
hints when I described the example. A mathematically founded strategy for
achieving optimal estimates τ̃ r

a is lacking.
Little is known about the length K of initial sequences of B̃ which have to

be run to generate state vectors vi which correspond with sufficient precision
to state vectors wi of the IO-OOM. In the example, K = 50 was used.
However, when the correct OOM B of the CSP, as described in subsection
10.3, was used instead of the estimated model B̃ as a basis for steps 2 and
3 of the learning procedure, it was found that K = 1 already gave perfectly
correct “estimates”! In other words, in this example the starting vector v0 of
the stationary CSP model B, which does not correspond to states of the IO-
OOM in the sense of (42), turns into states which do correspond to IO-OOM
states immediately after only one time step. Whether this is related to the
fact that the control strategy in this example also depends on only one prior
time step remains to be investigated.

Throughout this section, the notation Ã(F) was used to denote an esti-
mated IO-OOM which was constructed using the characterization frame F .
Actually, using F during the construction does not imply that the estimated
IO-OOM finally obtained is, in fact, interpretable w.r.t. F . A correlate of
proposition 9, which would provide us the means to ensure interpretability
of the estimated IO-OOM, remains to be found.

The computational cost of the learning algorithm comes from (i) estimat-
ing B̃ (step 1) and (ii) constructing Ã from B̃. Putting M :=| U | | O |, the
contribution of (i) is, as we already know, O(N +Ml3). A closer inspection of
the learning algorithm reveals that the computational load of (ii) is bounded
by O(KMml2), where K is the number of steps taken for initial histories to
generate state vectors vi of B̃. The example suggests that it might be possible
to keep K bounded under some constant. Since m ≤ l, this would lead to a
combined computational complexity ((i) and (ii)) of O(N +Ml3). Of course,
this measure omits costs of heuristics used for finding “good” vectors vi.

In many realistic cases, one has complete knowledge of the control strat-
egy. In such cases, the learning method described here is certainly inappropri-
ate, since such knowledge is not exploited. Furthermore, in some applications
one can even change the control strategy in order to gain specific informa-
tion about the controlled object. The methods described here do not allow
to take advantage of this possibility.

All in all, the results reported in this section mark only a beginning in
the art of estimating IO-OOMs, which appears to be a much wider field than

63

estimating ordinary OOMs.

10.8 IO-OOMs and PSRs

This subsection relates IO-OOMs to the predictive state representations
(PSRs) of controlled stochastic systems that were recently introduced by
Littman, Sutton, Singh et al [Littman et al., 2001] [Singh et al., 2003] . The
subsection is written in July 2003 and inserted into the original techreport
text from 1998, and addresses readers who already have read about PSRs.
PSRs have been partially inspired by the OOM article in Neural Computation
[Jaeger, 2000], but the authors were not aware of the treatment of IO-OOMs
in this techreport and thus independently developed basically similar math-
ematical objects introducing, however, a different terminology and working
out some interestingly different details. Here I provide “translation aids” to
mutually relate the underlying concepts.

A note on history. I abandoned the subject of IO-OOMs after 1998,
concentrating on ramifications of standard OOMs (continuous-valued OOMs
[Jaeger, 1998a], general OOM theory of stochastic processes [Jaeger, 1999b],
OOMs for optimal action selection [Jaeger, 1999a]) and, most importantly,
on the subtelties of learning OOMs from small data sets under the auspices of
statistical learning theory. Thanks mostly to the work of Klaus Kretzschmar
and Tobias Oberstein, the elementary learning algorithm is by now refined
to a degree that an automated learning procedure could be implemented
which extracts the information contained in (possibly poor) datasets in a
statistically and computationally very efficient way. The main ingredients
are (i) preprocessing the training sequence into a novel form of suffix tree
representation (called context trees), (ii) translating the statistical learning
problem into a problem of numerical linear algebra, namely, optimizing the
condition of a matrix related to the V matrix of the early learing procedure,
(iii) invoking a nonlinear optimizer to solve this optimization task. The re-
fined learning procedure outperforms by far the basic OOM learning method
reported in earlier sections of this techreport, and even more starkly sur-
passes EM-based learning methods for HMMs. These results are summed up
in [Kretzschmar, 2003] [ingredients (ii) and (iii)] and [Oberstein, 2002] [for
(i)]. The further refinement of the implementation, which has reached a size
of about 10,000 lines of code, is now pursued as an open source develop-
ment project at omk.sourceforge.net. The project of developing an optimal
learning method for standard OOMs is essentially completed.

64

PSRr and interpretable IO-OOMs are very close relatives. The connection
is established through the PSR-notion of tests and the IO-OOM notion of
characterization frames. Both concepts describe the current state of a con-
trolled object in terms of the probabilities that certain, pre-defined future
events will happen. There is a finite number of such events. In the following
I use the PSR terminology introduced in [Littman et al., 2001] when I speak
about PSRs.

Tests and predictive states. The tests of a PSR are q input-output
sequences

ti = ai
1, . . . , a

i
li
, oi

1, . . . , o
i
li
, (48)

where i = 1, . . . , q, the oi
j are output observations from a finite set O,

and the the ai
j are control actions (inputs to the controlled object) from

a finite set A. A prediction vector is a 1 × q-dimensional vector p(h) =
(P (t1 | h), . . . , P (tq | h)) containing the conditional probabilities P (t1 |
h) = P (oi

1, . . . , o
i
li
| h, ai

1, . . . , a
i
li
) that after an initial input-output history

h = o1, . . . , ot, a1, . . . , at the system produces outputs oi
1, . . . , o

i
li

when in-
put ai

1, . . . , a
i
li

is given. The probabilities collected in p(h) must form a
sufficient statistics for the prediction of the controlled object, that is, for
every finite input-output sequence t = a′

1, . . . , a
′
n, o′1, . . . , o

′
n, the probability

P (t | h) = P (o′1, . . . , o
′
n | h, a′

1, . . . , a
′
n) must be computable by a projection

function ft which does not depend on h, that is,

P (t | h) = ft(p(h)). (49)

A prediction vector p(h) with this sufficient statistics property is called a
predictive state representation (PSR), and the tests t1, . . . , tq that are used
in making it up are the core tests of a PSR. .

In a linear PSR, applying the projection function ft of a test t to a
prediction vector p(h) becomes multiplication with a projection vector mt:
ft(p(h)) = p(h)Tmt. The PSR approach is in principle open to both linear
and nonlinear PSTs. The first papers are all concerned with linear models.

Characterization frames. As introduced earlier in this section, a char-
acterization frame (r̄; A1, . . . , Am) for in interpretable IO-OOM is a sequence
r̄ = r0, . . . , rk−1 of inputs together with m characteristic events Ai, which
form a partition of Ok subject to a certain algebraic condition of linear in-
dependence, namely, that the transformation matrix ̺A;r̄;A1,...,Am

(cf. Sub-
section 10.2) is regular, i.e., invertible. It is easy to see that this regularity

65

condition holds iff m state vector vi of the IO-OOM exists such that the
1 × m vectors (P (A1 | vi, r̄), . . . , P (Am | vi, r̄)) are linearly independent.

Comparison of basic concepts.

1. First, a note on notation. In the PSR articles [Littman et al., 2001]
[Singh et al., 2003], the letter a refers to inputs and o refers to outputs,
whereas I use r for inputs and a for outputs. In order to avoid confusion,
I will henceforth use letters u ∈ U for controls and y ∈ Y for system
outputs, both for PSRs and IO-OOMs, in accordance with common
notation in the control engineering literature.

2. A PSR test ti = ui
1, . . . , u

i
li
, yi

1, . . . , y
i
li

tests whether a particular sin-
gle observation sequence yi

1, . . . , y
i
li

is observed under inputs ui
1, . . . , u

i
li
.

Such a test has the following counterpart in IO-OOMs: given a charac-
terization frame (ū; Y1, . . . , Ym) select one of the characteristic events Yi

and “test” whether any of the observation sequences y0, . . . , yk−1 ∈ Yi

is obtained under input ū. A pair t = (ū, Y), where ū is an input
sequence of some length l and Y ⊆ Ol, shall be called an IO-OOM
test.

3. The correlate in the IO-OOM framework of a PSR projection function
ft for a PSR test t is the linear function 1τ ū

Y for an IO-OOM test
t = (ū, Y).

4. A major difference between PSRs and IO-OOMs is that the PSRs in
principle admit arbitrary projection functions, whereas IO-OOMs con-
sider exclusively linear projection functions 1τ ū

Y . This is a very impor-
tant difference, whose implications remain to be understood. Here are
some relevant observations:

• Clearly, admitting nonlinear projection functions may lead to more
compact models (i.e., a smaller number of tests may be sufficient
to determine the probabilities of all possible tests when nonlinear
projection functions are allowed).

• An interesting question related to the sufficient statistics require-
ment for prediction vectors concerns their minimal dimension:
What is the minimal number of core tests needed for a PSR of a

66

given stochastic system? Clearly, if one admits nonlinear projec-
tion functions, this number might be smaller than when only linear
projection functions are allowed. It might turn out that when ar-
bitrary projection functions are admitted, even a one-dimensional
predictive state representation is generically possible, that is, a
single test t∗ generically exists such that the probability P (t∗ | h)
is sufficient to compute the probabilities P (t | h) of all other tests
t. In order to illustrate this eventuality, consider for simplicity a
degenerate controlled system which has only a single input value,
that is, U = {u}. Such a system can be considered a purely gener-
ative system whith no input at all, like a Markov chain, a HMM or
a standard OOM. A previous history h boils down to a sequence
ȳ of observations; likewise, tests are then of the form y1, . . . , yl.
Now consider the probability clock example introduced in Section
6. This is certainly not a trivial stochastic system: it cannot be
modelled by any finite-dimensional HMM, and the minimal OOM
dimension is 3. Consider the singleton test t∗ = a, i.e., the obser-
vation of an a, and the corresponding one-dimensional prediction
vector P (t∗ | h) = P (a | h). Consider again Figure 3. The y-
values of the dots mark the possible values that P (a | h) can take.
By virtue of the transcendent rotation angle of ϕ = 1/(2π), no two
such dots at different x-values (i.e. after a different prior history)
will have identical y-values. In other words, knowing the precise
value of P (a | h) amounts to knowing how many a’s have been
generated before the current time and after the last “reset” event
b. This amounts to full knowledge of the OOM’s current state, and
thus allows one to compute the probabilities of any other tests.

Note that this involves a highly nonlinear, infinite-precision com-
putation within the execution of the projection functions, namely,
going from the exact value of P (a | h) to the number of a’s gener-
ated previously in a row. The previous history is coded in the digit
sequence of the probability value P (a | h) in a complicated way;
using this value as a “sufficient statistics” amounts to decoding
this sequence of digits.

It seems plausible (or at least possible) that history coding in
infinite-precision single-test probabilities is a generic phenomenon.
If this turns out to be true, then the PSR idea of defining predic-

67

tive state representations through a sufficient statistics property
might need some further qualifications, e.g. by restricting the class
of projection functions.

• Linear projection functions are not only computationally conve-
nient, they are also only natural choice from the perspective of
abstract OOM theory (as introduced briefly in Section 4 in this
tutorial and more thoroughly in [Jaeger, 1999b]). The abstract
view on future event probabilities in terms of predictor functions,
and the resulting operator calculus for updating future distribu-
tion states (cf. Section 4), naturally leads to linear operators,
the fundamental equivalence theorem from Section 5, and from
there to the learning algorithm. All the advanced results obtained
in the last years by Klaus Kretzschmar depend on the fact that
one can cast a general theory of stochastic systems as a subthe-
ory of linear algebra ([Jaeger, 1999b]). The advantage of nonlin-
ear PSRs, namely, that they may be more compact than linear
PSRs, opposes the disadvantage that currently no general theory
or learning algorithm is available for nonlinear PSRs.

5. The similarity between PSRs and the OOM approach is further high-
lighted in the following observation. Given a prediction vector p(h)
after some history h and some arbitrary test t = u1, . . . , ul, y1, . . . , yl,
what is the probability of success for this test, that is, what is P (y1, . . . , yl |
h, u1, . . . , ul)? For linear PSRs derived from POMDPs, an answer is
given in Theorem 1 of [Littman et al., 2001]. In that theorem it is
shown how from the POMDP one can compute certain matrices Mui,yi

and a projection vector mul,yl
, such that P (y1, . . . , yl | h, u1, . . . , ul) =

p(h)Mu1,y1
· · ·Mul−1,yl−1

mul,yl
, which is essentially an IO-OOM repre-

sentation (up to reverse ordering and using an outcome-specific projec-
tion vector mul,yl

instead of the universal projection vector 1 found in
the OOM approach). The IO-OOM representation is more general in
that it is not restricted to systems equivalant to POMDPs.

6. In the available PSR papers, concrete linear PSRs are always derived
from POMDPs (or weaker models). It is shown that the dimension of
a PSR (i.e., the number of core tests) is bounded from above by the di-
mension of the original POMDP (i.e., number of hidden states). It is an
interesting question of whether linear PSRs (or IO-OOMs) exist which

68

are equivalent to a POMDP, but whose dimension is properly smaller
than the POMDP dimension. OOM theory provides an affirmative an-
swer: POMDPs of arbitrarily large minimal dimension exist that have
a three-dimensional IO-OOM (or PSR) representation. Consider again
for simplicity the degenerate case of a single input U = {u}, that is,
POMDPs which are in fact just HMMs (or IO-OOMs which are in fact
standard OOMs). The probability clock example introduced in Section
6 is an example of an OOM of dimension m = 3 which has no equivalent
OOM at all. By a slight modification, it can be turned into an OOM
which has equivalent HMMs, but where the minimal HMM dimension
mHMM is larger than 3 by an arbitrary factor, say, mHMM ≥ 3k for a
given k. Just put the rotation angle to a value of ϕ = 2π/3k. Then
the resulting analog of Figure 3 would be periodic after 3k steps. It
is clear that this process can be modelled by a HMM which however
would have to invest a minimum of 3k states to visit the steps of the
rotation (a formal argument would use the fact that the convex cone
K associated with this process would be 3k-polyhedral, see the remark
at the end at Section 6). Going back to proper IO-OOMs: If OOMs of
this type were used as r-constituents of a proper IO-OOM (as described
in Definition 3), the IO-OOM would be 3-dimensional but the minimal
dimension of an equivalent POMDP would be at least 3k.

7. (this point added in April 2004). In a recent manuscript8 it has been
pointed out that PSRs of controlled processes are more general than in-
terpretable IO-OOMs. The authors provide an example of a 4-dimensional
IO-OOM/PSR that has no interpretable version in the sense of the
definition given in Subsection 10.2. The reason is that characterization
frames rely on a single given sequence of inputs r̄; in cases when all ob-
servation operators belonging to a given input project the state vector
on a proper subspace (in the sense that the images of all τ r

a , where r is
fixed, fall in a proper subspace of the shared model space R

m, and this
holds for all r), the construction of an interpretable IO-OOM fails.

Learning. In [Singh et al., 2003] an online learning algorithm for linear
PSRs is presented. It is essentially an approximate (“myopic” in the words
of the authors) stochastic gradient descent algorithm and works as follows.

8Predictive State Representations: A New Theory for Modeling Dynamical Systems.
Satinder Singh, Michael R. James and Matthew R. Rudary. Submitted to UAI, 2004.

69

First, the set of core tests is extended to the set of extension tests by
adding a test of the form uyt = u, u1, . . . , uli, y, y1, . . . , yl for every core
test t = u1, . . . , uli, y1, . . . , yl, and adding single-step tests of the form uy.
The associated projection vectors mx (where x indexes the extension tests)
are initialized randomly to values m̂x(0). Then, as a training input-output
sequence is read in, the estimates m̂x(n) are updated at time n according to

m̂x(n + 1) = m̂x(n) − α
1

wπ
x(n)

[χx(n) − p̂T(n) m̂x(n)] p̂(n), (50)

where α is a learning rate (may depend on test and time), x = u1, . . . , ul, y1, . . . , yl

is an extension test that is applicable at time n (that is, the sequence
y(n + 1), . . . , y(n + l) of the next l inputs is the same as the input se-
quence of test t), π refers to a known policy of generating inputs, wπ

x(n) =
∏l

i=1 P (yi | hn+i, π) is the probability of the next input sequence under pol-
icy π, χx(n) = 1 if the sequence of next l outputs observed after time n is
equal to the output sequence of the test (else χx(n) = 0), and p̂(n) is the
estimated predictive state vector at time n (this estimation uses the currently
available estimates m̂x(n) for core test projection vectors). Projection vec-
tors of extension tests x which are not applicable at time n are not updated.
Some details are omitted here, the reader is referred to [Singh et al., 2003]
for a complete treatment.

Connections with the IO-OOM learning algorithm. Although the
PSR learing algorithm is an online algorithm and the IO-OOM is a batch
algorithm, they share some important details that again emphasize the close
relationship between the two approaches.

1. The introduction of extension tests is mirrored in the W u
y matrices used

in the IO-OOM learning algorithm (step 2(e)) and the W(u,y) matrices
used in step 1 (they were not explicitly introduced in Subsection 10.4).
This all reflects the need to obtain “statistics of change”, that is, statis-
tics about what happens to predictive states when at some time n + 1
an input/output pair (u, y) occurs.

2. In 2000, I investigated several versions of an online learning algorithm
for standard OOMs which is very closely related to the PSR learning
algorithm. In a simple special case, this OOM learning algorithm works

70

as follows. Assume that a process is generated by an m-dimensional
OOM, and that the number | Y | of observations is also m, that is, Y =
{y1, . . . , ym}. A training sequence S = y(1), y(2), . . . is generated by
this OOM. To learn from S an OOM that is interpretable with respect
to singleton characteristic events Ai = {yi}, start with initial random
estimates observable operators τ̂yi

(0) and a random state vector v̂(0).
The initialization τ̂yi

(0) of each operator must observe the constraint
that all column sums are zero except for the i-th column, which must
sum to 1 (this is a necessary condition for an interpretable OOM of this
sort). At time n, estimates τ̂yi

(n) and v̂(n) are available (i = 1, . . . , m).
Update the observable operator τ̂y(n)(n) and the state vector v̂(n), using
y(n) and y(n + 1), as follows:

(a) Compute a preliminary estimate of the next state vector through
v∗(n + 1) = τ̂y(n)(n)v̂(n)/1τ̂y(n)(n)v̂(n).

(b) Let i be the index of y(n + 1), that is yi = y(n + 1). Put w =
−v∗(n + 1) except at position i, where [w]i = 1− [v∗(n + 1)]i ([·]i
denotes i-th vector component). Note: the components of w sum
to zero because v∗(n + 1) sums to 1.

(c) Let j be the index of y(n). Update τ̂y(n)(n + 1) = τ̂y(n)(n) +
α w(v̂(n))T and v̂(n + 1) = τ̂y(n)(n + 1)v̂(n)/1τ̂y(n)(n + 1)v̂(n).
Notes: (i) This leaves the column sums unaffected. (ii) α is a
learning rate.

(d) If any values of v̂(n + 1) fall outside the range [0, 1], clip them
back into this range and renormalize the resulting clipped state
vector to unit sum. Note: This occurs frequently in the initial
learning phase when the model is still bad. Observe that in an
interpretable OOM, all state components are probabilities and
must fall into [0, 1].

This simple algorithm is “myopic” like the PSR learning algorithm. Its
basic idea is that the update changes τ̂yi

(n) in a way that increases the
component of the next state vector that corresponds to the probability
of the actually observed event y(n + 1). Technical (but manageable)
complications arise when | Y | is not equal to the OOM dimension.

The model estimates obtained during a learning run are all inter-
pretable w.r.t. Ai = {yi}. This means that the estimated observable

71

operator matrices can be directly compared with the known correct ma-
trices; the original interpretable OOM is the unique optimal solution
for the learning task.

The learning algorithm was found through heuristic considerations. It
looks like a stochastic gradient descent algorithm but was not formally
analyzed to be one.

This algorithm worked basically as expected. Define a prediction error
by ε(n) = [(v̂(n) − v(n))T(v̂(n) − v(n))]/m, where v(n) is the state
vector obtained in the correct OOM at time n. Because v(n) contains
the true probabilities of the next observations at time n + 1, this error
measures the accuracy of the model predictions of probabilities of next
observations. It typically goes down stochastically to values in the
order of 0.0001 after 100,000 update steps in experiments where three-
dimensional OOMs had to be learned.

However, I encountered several difficulties with this algorithm which
in the end let me abandon this line of investigation. The most salient
problem is the presence of many modes of convergence. This is an
intrinsic problem of stochastic gradient descent techniques. In prac-
tice this means that once a fairly low error is reached, further progress
can extremely slow down. A typical observation is that at error levels
of ε(n) = 0.0001, the estimated matrices still deviate from the cor-
rect ones by 5–10 per cent in some parameters. This reflects the fact
that some parameters have much smaller effects on the probabilities
computed by an OOM than others. Further convergence would require
enormously long training, because the error level (which drives the gra-
dient descent) is already very small, but the learning rate cannot not
be increased for stability reasons. This prevents one from effectively
testing experimentally whether a learning run would “in the end” con-
verge to the correct solution. Therfore, it is hard if not impossible to
practically rule out the possibility that the learning gets stuck in a local
minimum. All that I can say is that in all experiments, the algorithm
yielded models with small prediction errors after 100,000 steps.

Another difficulty, again characteristic for stochastic gradient descent
algorithms, is instability. In order to speed up learning, one wishes to
increase the learning rate. However, too large learning rates trigger
instability. If one has practical applications in mind, then a reasonably

72

low error must be reachable much faster than after the 100,000 or so
steps I had to wait. However, this seemed not easy to achieve in the
presence of luring instability. By comparison: the standard batch al-
gorithm requires a few hundred to thousand data points only to reach
similarly accurate models.

A third difficulty results from the circumstance that not only the model
parameters are updated online, but that also the state vector is only
available in the form of estimates which depend on the current model
estimate. Conversely, the model update depends on the (error-bearing)
state estimates. This mutual dependence renders a mathematical anal-
ysis of the convergence properties of the algorithm difficult.

I should mention here that in 1999, Vladislav Tadic (then a guest re-
searcher at my former institute) developed another kind of online learn-
ing algorithm for standard OOMs based on a combination of the LSM
algorithm and stochastic approximation. The algorithm maintains es-
timates of the matrices V and Wa, as defined in the batch algorithm
for standard OOMs, and does not need matrix inversions to compute
the observable operators from V and Wa. The algorithm almost surely
converges to the correct solution if it exists. Unfortunately, Vladislav
did not continue this work because he entered a research position in a
different field. His results are however documented in an unpublished
paper, and work could be resumed.

It is not immediately clear how my online learning algorithm for stan-
dard OOMs can be adapted to the IO-OOM case. One obvious way
would be to adopt the strategy of the PSR learning algorithm: fix
one characterization frame (say, with length one input, for instance
(u1; y1, . . . , ym) and then update the model only at times n when u(n+
1) = u1. However, this would grossly underexploit the training data.
An alternative might be to train different IO-OOM models, one for
each characterization frame (ui; y1, . . . , ym) (where i = 1, . . . , m) and
merge the resulting models online, by individually transforming them
all into a common characterization frame by algeabric means, comput-
ing the mean model, and re-transforming the mean model back into the
models with the different characterization frames used in the learning
run. However, this would increase the computational cost.

Comments on PSR and IO-OOM learning.

73

1. The outcome of the PSR learning algorithm is estimates for the pro-
jection vectors of the extension tests (and among them, the core tests).
It is not clear to me how from these projection vectors one can con-
struct projection vectors for other tests not among the extension tests.
The construction of such other projection vectors in Theorem 1 in
[Littman et al., 2001] exploits the knowledge of an underlying POMDP.
By contrast, the batch IO-OOM learning algorithm and Tadic’s IO-
OOM online learning algorithm yield estimates of the observable op-
erators, which can be used to calculate the probabilities of arbitrary
IO-OOM tests.

2. The PSR algorithm underexploits the training data because updates
occur only at times where some extension test is applicable. By con-
trast, the IO-OOM batch learning algorithm fully exploits the training
data (in step 1), and so does Tadic’s IO-OOM online learning algo-
rithm.

3. In the light of my experiences with slow residual convergence of my
versions of stochastic gradient descent algorithms for standard OOMs, I
suspect that the PSR algorithm likewise might suffer from this problem.
A more detailed analysis (both for PSR and online OOM learning) is
needed.

4. The IO-OOM batch learning algorithm is equipped with an add-on
mechanism for determining an appropriate model size that neither over-
fits nor underexploits training data (see Subsection 10.5). This is a
precious commodity in the light of statistical learning theory. Klaus
Kretzschmar has further refined this mechanism for standard OOMs
[Kretzschmar, 2003].

5. It is an open question whether the PSR learning algorithm (or my on-
line OOM learing algorithm) are guaranteed to converge to a correct
model even if it exists and the right model dimension is used in learning.
By contrast, the batch IO-OOM algorithm should inherit the asymp-
totic correctness property from its standard OOM counterpart: step
1 certainly leads to asymptotic correct estimates of the CSP, because
this is just a standard OOM estimation, and the remaining steps are
just algebraic transformations. However, I have not formally proven

74

that. The Newton method based online learning algorithm for stan-
dard OOMs developed by Vladislav Tadic is proven to converge almost
surely.

6. Despite their current weaknesses, the PSR learning algorithm and pos-
sible IO-OOM adaptations of my former OOM online learning algo-
rithm should not be discarded too quickly. First, they are the only
known computationally cheap online algorithms. Second, the slow
convergence problem may become mitigated by introducing techniques
known for speeding up LSM algorithms in the field of adaptive signal
processing. Third, in many applications one might be satisfied with
the initial fast convergence if the most salient properties of the system
are captured relatively quickly.

To conclude, I would like to point to a difficulty which has not yet surfaced in
the PSR literature, but which is of central importance from a statistical learn-
ing angle, and where OOM theory might contribute some insight. Namely,
how can one determine whether some set of predictive states is, in fact, lin-
early independent? With linear PSRs, this question is intimately connected
to detecting minimal-dimensional PSRs, because the minimal dimension m
of a linear PSR (or an IO-OOM, for that matter) is defined by the circum-
stance that m linearly independent (but not m+1 linearly independent) state
vectors can arise during the evolution of the process. In the presence of finite
training data, all models carry some error, and all computed state vectors
must be considered noisy. But, any set of noisy vectors is generically linearly
independent in the strict mathematical sense. This implies that one can-
not simply check for linear independence by Gaussian eliminiation or other
purely algebraic methods for determining matrix rank. Instead, one must
resort to methods developed in numerical linear algebra for determining the
numerical rank of noisy matrices, that is, reject the hypothesis that a set of
vectors is linearly dependent under assumptions about the size and distribu-
tion of their noise components. OOM theory offers a working solution, see
Subsections 9.3 and 10.5 for an introduction and [Kretzschmar, 2003] for a
more refined approach.

75

11 Conclusion

The theoretical and algorithmic results reported in this tutorial are all vari-
ations on a single insight: The change of predictive knowledge that we
have about a stochastic system, is a linear phenomenon. This leads to
the concept of observable operators, which has been detailed out here for
discrete-time, finite-valued processes, but is valid for every stochastic process
[Jaeger, 1998b]. The linear nature of observable operators allows to solve the
system identification task purely by means of numerical linear algebra, which
arguably is the best understood of all areas of applied mathematics. The tech-
niques reported in this tutorial still involve a good deal of heuristics and need
to be refined in many places. Nevertheless, considering the expressiveness of
OOMs (stronger than HMMs) and the efficiency of model estimation (es-
sentially O(model-dimension3) for output-only systems), I hope that OOMs
will soon be taken up and further developed in many fields. I would be very
happy indeed if this tutorial would enable practicians to use OOMs, and if
OOMs would turn out to be of real help in dealing with stochastic systems.

A Proof of theorem 1

A numerical function P on the set of finite sequences of observable events can
be uniquely extended to the probability distribution of a stochastic process,
if the following two conditions are met:

1. P is a probability measure on the set of initial sequences of length k+1
of observable events for all k ≥ 0. That is, (i) P [ai0 . . . aik] ≥ 0, and
(ii)

∑

ai0
...aik

∈Ok+1 P [ai0 . . . aik] = 1.

2. The values of P on the initial sequences of length k+1 agree with contin-
uation of the process in the sense that P [ai0 . . . aik] =

∑

b∈O P [ai0 . . . aikb].

The process is stationary, if additionally the following condition holds:

3. P [ai0 . . . aik] =
∑

b0...bs∈Os+1 P [b0 . . . bsai0 . . . aik] for all ai0 . . . aik inOk+1

and s ≥ 0.

Point 1(i) is warranted by virtue of condition 3 from definition 1. 1(ii) is a
consequence of conditions 1 and 2 from the definition (exploit that condition

76

2 implies that left-multiplying a vector by µ does not change the sum of
components of the vector):

∑

ā∈Ok+1

P [ā] =
∑

ā∈Ok

1τāw0 =

= 1(
∑

a∈O

τa) · · · (
∑

a∈O

τa)w0 (k + 1 terms (
∑

a∈O

τa))

= 1µ · · ·µw0 = 1w0 = 1.

For proving point 2, again exploit condition 2:
∑

b∈O

P [āb] =
∑

b∈O

1τbτāw0 = 1µτāw0 = 1τāw0 = P [ā].

Finally, the stationarity criterium 3 is obtained by exploiting µw0 = w0:

∑

b̄∈Os+1

P [̄bā] =
∑

b̄∈Os+1

1τāτb̄w0

= 1τāµ . . . µw0 (s + 1 terms µ)

= 1τāw0 = P [ā].

B Proof of proposition 2

Let b̄ ∈ O∗, and gb̄ =
∑n

i=1 αigc̄i
be the linear combination of gb̄ from basis

elements of G. Let d̄ ∈ O+. Then, we obtain the statement of the proposition
through the following calculation:

(ta(gb̄))(d̄) =

= (ta(

n
∑

i=1

αigc̄i
))(d̄) = (

∑

αita(gc̄i
))(d̄)

= (
∑

αiP [a | c̄i] gc̄ia)(d̄) =
∑

αiP [a | c̄i]P [d̄ | c̄ia]

=
∑

αiP [a | c̄i]
P [c̄iad̄]

P [a | c̄i]P [c̄i]
=

∑

αi

P [c̄i]P [ad̄ | c̄i]

P [c̄i]

= gb̄(ad̄) = P [ad̄ | b̄] = P [a | b̄] P [d̄ | b̄a]

= P [a | b̄] gb̄a(d̄).

77

C Proof of proposition 3

From an iterated application of (12) one obtains taik
. . . tai0

gε =P [ai0 . . . aik]gai0
...aik

.
Therefore, it holds that

gai0
...aik

=
∑

i=1,...,n

αi

P [ai0 . . . aik]
gb̄i

Interpreting the vectors gb̄i
and gai0

...aik
as probability distributions (cf.

(11)), it is easy to see that
∑

i=1,...,n
αi

P [ai0
...aik

]
= 1, from which the statement

immediately follows.

D Proof of proposition 4

To see 1, let (G, (ta)a∈O, gε) be the predictor-space OOM of (Xt). Choose
{b̄1, . . . , b̄m} ⊂ O∗ such that the set {gb̄i

| i = 1, . . . , m} is a basis of G. Then,
it is an easy exercise to show that an OOM A = (Rm, (τa)a∈O, w0) and an
isomorphism π : G → R

m exist such that (i) π(gε) = w0, (ii) π(gb̄i
) = ei,

where ei is the i-th unit vector, (iii) π(tad) = τaπ(d) for all a ∈ O, d ∈ G.
These properties imply that A is an OOM of (Xt).

In order to prove 2, let again (G, (ta)a∈O, gε) be the predictor-space OOM
of (Xt). Let Γ be the linear subspace of R

k spanned by the vectors {w0} ∪
{τāw0 | ā ∈ O+}. Let {τb̄1

w0, . . . , τb̄l
w0} be a basis of Γ. Define a linear

mapping σ from Γ to G by putting σ(τb̄i
w0) := P [̄bi] gb̄i

, where i = 1, . . . , l.
σ is called the canonical projection of A on the predictor-space OOM. By a
straightforward calculation, it can be shown that σ(w0) = gε and that for
all c̄ ∈ O+ it holds that σ(τc̄w0) = P [c̄]gc̄ (cf. [Jaeger, 1997a] for these and
other properties of σ). This implies that σ is surjective, which in turn yields
m ≤ k.

E Proof of proposition 7

From the definition of process dimension (def. 2) it follows that m sequences
ā1, . . . , ām and m sequences b̄1, . . . , b̄m exist such that the m × m matrix
(P [āj | b̄i]) is regular. Let k be the maximal length occurring in the sequences
ā1, . . . , ām. Define complex events Cj of length k by using the sequences aj

as initial sequences, i.e. put Cj := {āj c̄ | c̄ ∈ Ok−|̄aj|}, where | āj | denotes

78

the length of āj . It holds that (P [Cj | b̄i]) = (P [āj | b̄i]). We transform the
complex events Cj in two steps in order to obtain characteristic events.

In the first step, we make them disjoint. Observe that due to their con-
struction, two complex events Cj1, Cj2 are either disjoint, or one is properly
included in the other. We define new, non-empty, pairwise disjoint, complex
events C ′

j := Cj \
⋃

Cx⊂Cj
Cx by taking away from Cj all complex events

properly included in it. It is easily seen that the matrix (P [C ′
j | b̄i]) can be

obtained from (P [Cj | b̄i]) by subtracting certain rows from others. Therefore,
this matrix is regular, too.

In the second step, we enlarge the C ′
j (while preserving disjointness) in

order to arrive at complex events Aj which exhaust Ok. Put C ′
0 = Ok \

(C ′
1 ∪ . . . ∪ C ′

m). If C ′
0 = ∅, Aj := C ′

j (j = 1, . . . , m) are characteristic
events. If C ′

0 6= ∅, consider the m× (m + 1) matrix (P [C ′
j | b̄i])i=1,...,m,j=0,...,m.

It has rank m, and column vectors vj = (P [C ′
j | b̄1], . . . , P [C ′

j | b̄m]). If v0

is the null vector, put A1 := C ′
0 ∪ C ′

1, A2 := C ′
2, . . . , Am := C ′

m to obtain
characteristic events. If v0 is not the null vector, let v0 =

∑

ν=1,...,m ανvν

be its linear combination from the other column vectors. Since all vν are
non-null, non-negative vectors, some αν0

must be properly greater than 0.
A basic linear algebra argument (exercise) shows that the m × m matrix
made from column vectors v1, . . . , vν0

+ v0, . . . , vm has rank m. Put A1 :=
C ′

1, . . . , Aν0
:= C ′

ν0
∪ C ′

0, . . . , Am := C ′
m to obtain characteristic events.

F Proof of proposition 9

It suffices to show that for every column vector v = (#BA1, . . . , #BAm)
of the counting matrix V it holds that 1τ̃Ai

v = vi, where vi is the i-th
component of v. We show this first for Ai = A1

x =
⋃{a→k

1 , . . . , a→k
r } from

the first group:

1τ̃A1
x
v =

= 1τ̃a1
v + · · ·+ 1τ̃ar

v

= 1(#(Ba1A1), . . . , #(Ba1Am)) + · · ·+ 1(#(BarA1), . . . , #(BarAm))

= #(Ba1) + · · · + #(Bar) = #(BAi) = vi.

In the cases Ai = Aν
x =

⋃{(b1c̄)
→k, . . . , (bsc̄)

→k | c̄→k ⊆ Aν−1
y }, where

Aν−1
y = Aj , we use induction on ν to conclude

79

1τ̃Aν
x
v =

= 1τ̃Aν−1
y

(τ̃b1v + · · · + τ̃bs
v)

= (τ̃b1v + · · ·+ τ̃bs
v)j

= #(Bb1Aj) + · · ·+ #(BbsAj) = vi.

Finally, for Am the statement follows from

1τ̃Am
v = 1µ̃v −

m−1
∑

i=1

1τ̃Ai
v = 1v −

m−1
∑

i=1

vi = vm.

G Proof of proposition 10

In this proof, column vectors of Ṽ and W̃a are denoted by vi, w
a
i (i = 1, . . . , m).

Note that vi = (P̃ [BiA1], . . . , P̃ [BiAm]) and wa
i = (P̃ [BiaA1], . . . , P̃ [BiaAm]).

Case B1: (i) PÃ[Ai] = 1τ̃Ai
w̃0 = 1τ̃Ai

v1 = (by interpretability) (v1)
i =

P̃ [Ai].
(ii) PÃ[aAi] = 1τ̃Ai

τ̃aw̃0 = 1τ̃Ai
wa

1 = (wa
1)

i = P̃ [aAi].
Case Bν : (i) PÃ[Cν

1 . . . Cν
xν

Ai] =
∑

c∈Cν
xν

PÃ[Cν
1 . . . Cν

xν−1cAi] = (by induc-

tion on ν)
∑

c∈Cν
xν

P̃ [Cν
1 . . . Cν

xν−1cAi] = P̃ [Cν
1 . . . Cν

xν
Ai]. Note that τ̃Bν

w̃0 =

vν is a direct consequence of this equality.
(ii) PÃ[Cν

1 . . . Cν
xν

aAi] = 1τ̃Ai
τ̃aτ̃Bν

w̃0 = 1τ̃Ai
τ̃avν = 1τ̃Ai

wa
ν = (by inter-

pretability) (wa
ν)

i = P̃ [Cν
1 . . . Cν

xν
aAi].

The corollary follows directly if one observes that the set operations in
question correspond to adding and subtracting of corresponding columns in
the matrices Ṽ and W̃a, which does not alter the operators τ̃a obtained.

Acknowledgments I feel deeply grateful toward Thomas Christaller
for confidence and great support. This tutorial has benefitted enormously
from advice given by Hisashi Ito, Shun-Ichi Amari, Rafael Nuñez, Volker
Mehrmann, and two extremely constructive anonymous reviewers from Neu-
ral Computation, whom I heartily thank. The research described in this
tutorial was carried out under a postdoctoral grant from the German Na-
tional Research Center for Information Technology (GMD).

80

References

[Bengio, 1999] Y. Bengio. Markovian models for sequential data. Neural
Computing Surveys, 2:129–162, 1999.

[Berman and Plemmons, 1979] A. Berman and R.J. Plemmons. Nonnegative
Matrices in the Mathematical Sciences. Academic Press, 1979.

[Doob, 1953] J.L. Doob. Stochastic Processes. John Wiley & Sons, 1953.

[Elliott et al., 1995] R.J. Elliott, L. Aggoun, and J.B. Moore. Hidden Markov
Models: Estimation and Control, volume 29 of Applications of Mathemat-
ics. Springer Verlag, New York, 1995.

[Gihman and Skorohod, 1979] I.I. Gihman and A.V. Skorohod. Controlled
Stochastic Processes. Springer Verlag, 1979.

[Gilbert, 1959] E.J. Gilbert. On the identifiability problem for functions of
finite Markov chains. Annals of Mathematical Statistics, 30:688–697, 1959.

[Golub and van Loan, 1996] G.H. Golub and Ch.F. van Loan. Matrix Com-
putations, Third Edition. The Johns Hopkins University Press, 1996.

[Heller, 1965] A. Heller. On stochastic processes derived from Markov chains.
Annals of Mathematical Statistics, 36:1286–1291, 1965.

[Iosifescu and Theodorescu, 1969] M. Iosifescu and R. Theodorescu. Ran-
dom Processes and Learning, volume 150 of Die Grundlagen der mathe-
matischen Wissenschaften in Einzeldarstellungen. Springer Verlag, 1969.

[Ito et al., 1992] H. Ito, S.-I. Amari, and K. Kobayashi. Identifiability of
hidden Markov information sources and their minimum degrees of freedom.
IEEE transactions on information theory, 38(2):324–333, 1992.

[Ito, 1992] H. Ito. An algebraic study of discrete stochastic systems. Phd
thesis, Dpt. of Math. Engineering and Information Physics, Faculty of
Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, 1992. ftp’able
from http://kuro.is.sci.toho-u.ac.jp:8080/english/D/.

[Jaeger, 1997a] H. Jaeger. Observable operator models and conditioned
continuation representations. Arbeitspapiere der GMD 1043, GMD,

81

Sankt Augustin, 1997. http://www.gmd.de/People/ Herbert.Jaeger/Pub-
lications.html.

[Jaeger, 1997b] H. Jaeger. Observable operator models II: Interpretable
models and model induction. Arbeitspapiere der GMD 1083, GMD,
Sankt Augustin, 1997. http://www.gmd.de/People/ Herbert.Jaeger/Pub-
lications.html.

[Jaeger, 1998a] H. Jaeger. Modeling and learning continuous-valued stochas-
tic processes with OOMs. GMD Report 42, GMD, Sankt Augustin, 1998.
http://www.gmd.de/People/Herbert.Jaeger/Publications.html.

[Jaeger, 1998b] H. Jaeger. A short introduction to observable operator mod-
els of discrete stochastic processes. In R. Trappl, editor, Proceedings of
the Cybernetics and Systems 98 Conference, Vol.1, pages 38–43. Austrian
Society for Cybernetic Studies, 1998. http://www.gmd.de/People/ Her-
bert.Jaeger/Publications.html.

[Jaeger, 1999a] H. Jaeger. Action selection for delayed, stochastic reward. In
I. Wachsmuth and B. Jung, editors, Proc. 4th Annual Conf. of the German
Cognitive Science Society (KogWis99), pages 213–219. Infix Verlag, 1999.

[Jaeger, 1999b] H. Jaeger. Characterizing distributions of stochastic pro-
cesses by linear operators. GMD Report 62, German National Research
Center for Information Technology, 1999. http://www.gmd.de/publi-
cations/report/0062/.

[Jaeger, 2000] H. Jaeger. Observable operator models for discrete stochastic
time series. Neural Computation, 12(6):1371–1398, 2000.

[Kretzschmar, 2003] K. Kretzschmar. Learning symbol sequences with
Observable Operator Models. GMD Report 161, Fraunhofer In-
stitute AIS, 2003. ftp://borneo.ais.fraunhofer.de/pub/indy/publi-
cations klaus/OomLearn.pdf.

[Littman et al., 2001] M. L. Littman, R. S. Sutton, and S. Singh. Pre-
dictive representation of state. In Advances in Neural Informa-
tion Processing Systems 14 (Proc. NIPS 01), pages 1555–1561, 2001.
http://www.eecs.umich.edu/ baveja/Papers/psr.pdf.

82

[Narendra, 1995] K.S. Narendra. Identification and control. In M.A. Arbib,
editor, The Handbook of Brain Theory and Neural Networks, pages 477–
480. MIT Press/Bradford Books, 1995.

[Oberstein, 2002] T. Oberstein. Efficient Training of Observ-
able Operator Models. Master thesis, Köln University, 2002.
http://www.ais.fraunhofer.de/INDY/tobias/eloom.pdf.

[Rabiner, 1990] L.R. Rabiner. A tutorial on hidden Markov models and se-
lected applications in speech recognition. In A. Waibel and K.-F. Lee, ed-
itors, Readings in Speech Recognition, pages 267–296. Morgan Kaufmann,
San Mateo, 1990. Reprinted from Proceedings of the IEEE 77 (2), 257-286
(1989).

[Singh et al., 2003] S. Singh, M. Littman, N. Jong, D. Pardoe, and P. Stone.
Learning predictive state representations. In Proc.ICML 2003, to appear,
2003. http://www.eecs.umich.edu/ baveja/Papers/ICMLfinal.ps.gz.

[Smallwood and Sondik, 1973] R.D. Smallwood and E.J. Sondik. The opti-
mal control of partially observable markov processes over a finite horizon.
Operations Research, 21:1071–1088, 1973.

[Strogatz, 1994] S.H. Strogatz. Nonlinear Dynamics and Chaos. Addison
Wesley, 1994.

83

