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Summary

Observable operator models (OOMs), a recently developed matrix model class of
stochastic processes [6], possesses several advantages over hidden Markov models
(HMMs). Nevertheless, there is a critical issue, the negative probability problem
(NPP), which remains unsolved in OOMs theory; and which has heavily prevented
it from being an alternative to HMMs in practice. To avoid the NPP we introduce
in this report a variation of OOM, the norm observable operator models (norm-
OOMs).

Like OOMs, norm-OOMs describe stochastic processes also using linear ob-
servable operators. But norm-OOMs differ from OOMs in that they employ a
nonlinear function acting on the state vectors, instead of the linear one used by
OOMs, to compute probabilities. Under this nonlinear map, the family of all
probability distributions can be embedded into a special inner product space.
This provides novel insights into the relationship between the stochastic processes
theory and linear algebra; and enables us to study stochastic processes by concepts
and methods from linear algebra, a more convenient field of mathematics.

In this report the basic theory of norm-OOMs is set up; an iterative method
for learning norm-OOMs is developed based upon the maximum likelihood (ML)
principle; the advantages and limitations of norm-OOMs are discussed; and some
problems for future investigation are outlined.
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1 Introduction

Observable operator models (OOMs) are matrix models for describing stochastic
processes developed recently [6]. Compared with hidden Markov models (HMMs),
another model class of stochastic processes that has been widely and successfully
used in many applications, OOMs have several attractive properties [7].

• OOMs are mathematically simpler than HMMs for they can be defined and
manipulated in the framework of linear algebra.

• OOMs are more expressive in that any HMM has an equivalent OOM but
not vice versa. Here the word “equivalent” means the two models describe
the same stochastic process.

• The linear algebra nature of OOMs gives rise to a family of constructive,
asymptotically consistent algorithms for estimating OOMs from empirical
data [6, 8, 7]; whereas HMMs are typically trained by the (iterative) EM
algorithm.

However, there is a crucial problem in OOMs theory remaining unsolved, namely
the negative probability problem (NPP). More concretely, up to now no algebraic
criterion is known for verifying whether an OOM-like system is indeed a valid OOM
or not and, as the result, all the learning algorithms of OOMs usually obtain invalid
models which might assign negative probabilities to some (rare) events, instead of
small positive numbers. It is proven that the NPP can be reduced to verifying the
existence of a common invariant convex cone under some given linear operators
(the observable operators), which itself is also a very difficult problem, even from
the viewpoint of mathematics.

In this report, we do not intend to address the NPP, but will set up another
model class called norm observable operator models (norm-OOMs) in which the
NPP is avoided. The idea of norm-OOMs is quite straightforward: the way that
OOMs model stochastic processes can be extended for describing arbitrary numer-
ical functions, so one can avoid the NPP by applying a nonnegative function on
the state vectors of OOMs. In more detail, an OOM of some process can be seen as
a dynamical system with state vectors wt uniquely determined by the initial real-
ization a1a2 · · ·at of the process up to time t and the probability that a1a2 · · ·at is
observed computed via a linear function on wt: the sum of all elements of wt. So a
natural way to get rid of “negative probabilities” is to use a nonnegative function
σ(wt) instead of the linear one used by OOMs. In particular, for norm-OOMs we
use σ(wt) = ‖wt‖2, as indicated by its name.

While the NPP becomes a nonissue in norm-OOMs, new problems arise. First,
as models of stochastic processes, norm-OOMs should satisfy all constraints from
probability measures. So like the case of OOMs, here an important problem is

(P1) whether we can characterize a valid norm-OOM in an algebraic way.

Second, unlike an OOM living in the vector space spanned by the future condi-
tional distributions of the underlying process (cf. Section 4 of [6]), which only has
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the linear structure, a norm-OOM requires a normed vector space, involving both
a linear structure and a topological structure. So the second important problem
that should be discussed is

(P2) on which normed vector space norm-OOMs can be defined.

This report gives a general yet rigorous introduction to norm-OOMs, including
the study of the above two theoretical problems and a maximum likelihood (ML)
learning algorithm for estimating norm-OOMs from data. The report has the
following organization. First we briefly review the construction of OOMs and the
NPP in Section 2. Then a detailed introduction to the theory of norm-OOMs
is presented in Section 3. In Section 4 we introduce the ML learning algorithm
of norm-OOMs, whose performance is investigated in Section 5 through some
numerical experiments. Finally, we make the conclusion and point out some future
works in Section 6.

2 An Overview of OOM Theory

In this report we only consider discrete-time stochastic processes with values from
a finite alphabet, say O = {1, 2, · · · , ℓ}. Such a stochastic process can be seen as a
sequence of random variables (Yt)t∈N defined on some probability space (Ω,A, µ)
and taking values on the same codomain O. To fully characterize the process (Yt)
one needs only to know the following family of finite joint distributions:

{

Pr (Y1 = a1, · · · , Yn = an) := µ
(
⋂n

i=1
Y −1

i (ai)
)}

n∈N,ai∈O
. (2.1)

Other quantities can be computed from these joint probabilities, for example,

Pr(Y2 = b) =
∑

a∈O Pr(Y1 = a, Y2 = b) ,
Pr(Y2 = b|Y1 = a) = Pr(Y1 = a, Y2 = b)/Pr(Y1 = a) .

As (conditional) probabilities such as Pr(Y1 = a1, Y2 = a2, · · · , Yn = an) and
Pr(Yn+1 = b1, · · · , Yn+k = bk|Y1 = a1, · · · , Yn = an) will be used very often in
this report, it is convenient to introduce some shorthand notations for later use.
Following the conventions of formal language theory, we denote by On the set of
all sequence of length n of symbols from O; by O∗ the set of all finite sequences
of symbols in O, including the empty sequence ε, the sequences of length 0 which
“consists” of no symbol at all. Thus O0 = {ε} and O∗ =

⋃

n>0O
n. We shall use

small letters with a bar (e.g., ā, x̄, · · · ) to denote any element in O∗, i.e., any finite
sequence a1 · · ·an. For any two finite sequences ā = a1 · · ·an and b̄ = b1 · · · bk, we
write P (ā) for the joint probability Pr(Y1 = a1, · · · , Yn = an) and P (b̄|ā) for the
conditional probability Pr(Yn+1 = b1, · · · , Yn+k = bk|Y1 = a1, · · · , Yn = an). With
these shorthands we can rewrite the family (2.1) as {P (ā)}ā∈O∗ , which may be, and
sometimes is, seen as a numerical function on the set O∗. Thus, the distribution
of (Yt) is uniquely characterized by the function P : O∗ → R.
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2.1 Linear dependent functions and processes

We denote by F the family of all real-valued functions defined on O∗. By the
discussion above it is clear that F contains the family of all discrete processes in
the sense that each process is uniquely characterized by a member of F . Moreover,
constructing an OOM from a given stochastic process is actually the procedure of
deriving an OOM-like system from the function h ∈ F defined by h(ā) = P (ā),
the probability distribution of the given process. In the following we will briefly
review this procedure, see Section 4 of [6] for the detail.

The set F canonically becomes a real vector space in which the vector addition
and scalar multiplication are defined pointwise. For each symbol a ∈ O we define
a left appending operator la on the space F by setting (laf)(x̄) = f(ax̄) for all
f ∈ F and x̄ ∈ O∗. One can easily see that each la is a linear operator: for any
f, g ∈ F and α ∈ R it holds that

(la(f + g))(x̄) = (f + g)(ax̄) = f(ax̄) + g(ax̄) = (laf + lag)(x̄)

and (la(αf))(x̄) = (αf)(ax̄) = αf(ax̄) = α(laf)(x̄) = (αlaf)(x̄)

for all x̄ ∈ O∗. So la(f + g) = laf + lag and la(αf) = αlaf , which is what we
want to prove. Iteratively applying left appending operators la on a fixed function
h ∈ F , we can evaluate the value of h on any sequence ā = a1a2 · · ·an ∈ O∗, as
follows:

h(a1a2 · · ·an) = (la1
h)(a2 · · ·an) = (la2

la1
h)(a3 · · ·an)

= · · · = (lan
· · · la2

la1
h)(ε) := σlāh ,

(2.2)

where lā denotes the composition of la1
, la2

, · · · , lan
in reverse order; and σ is the

linear functional on F which maps each f ∈ F to the real f(ε). By (2.2) we see
that the structure (F , {la}a∈O, σ) provides another (algebraic) representation of
the family F , which allows us to calculate any h ∈ F . This is natural and trivial
since nothing is “thrown away” or “compressed” in the derivation of the structure
(F , {la}a∈O, σ). This structure, however, can be reduced to a smaller one if we are
only interested in a single function h ∈ F with a special property, as shown below.

Let h ∈ F be a fixed function and H the subspace of F spanned by the vectors
{lāh : ā ∈ O∗}. It is clear that H is invariant under the operation of each la, that
is, f ∈ H implies laf ∈ H. So we can restrict the domain of la’s and σ to the
vector space H, getting a new set of linear operators and a new linear functional
on H which we denote by the same symbols la and σ, respectively, trusting to
the reader’s good sense to avoid confusion. Therefore, we obtain a smaller system
(H, {la}a∈O, h, σ) specially for the function h ∈ F in which h(ā) = σlāh for any
sequence ā ∈ O∗.

In practice, for computational reasons we are more interested in those functions
h for which the linear space H = span{lāh : ā ∈ O∗} is of finite, say m, dimension.
Such functions will be called linearly dependent functions (LDFs) in this report.
For any LDF h of dimension m, we select a basis {g1, g2, · · · , gm} of H such that
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gi(ε) = 1 for all i = 1, 2, · · · , m. 1 Under this basis, the space H is isomorphic to
R

m, in which the linear functional σ is represented by 1, the row vector of units
with its size determined by the context; each operator la is represented by a matrix
τa ∈ R

m×m and the function h is represented by some w0 ∈ R
m, called the initial

state. All in all, the abstract system (H, {la}a∈O, h, σ) is now represented by the
concrete one (Rm, {τa}a∈O,w0), where the “standard” functional 1 is omitted. It
follows from (2.2) that, for any ā = a1a2 · · ·an ∈ O∗,

h(a1a2 · · ·an) = 1τan
· · · τa2

τa1
w0 := 1τāw0 , (2.3)

where, like the operator lā, τā denotes the composition τan
· · · τa2

τa1
, with the

agreement that τε = Im, the identity matrix of order m.

Definition 1 A stochastic process (Yt) is called a linearly dependent process
(LDP) [3, 5, 6] if its distribution P (ā), when seen as a numerical function h(ā) :=
P (ā), is a LDF. A triple (Rm, {τa}a∈O,w0) is an observable operator model (OOM)
of (Yt), if (2.3) holds for all ā ∈ O∗. In an OOM (Rm, {τa}a∈O,w0), the linear
operators τa are called observable operators and w0 is the initial state.

It follows from the above discussion that any LDP (Yt) has an OOM. But a
LDP (Yt) can be described by different OOMs via (2.3). These OOMs are said to
be equivalent to each other. An OOM (Rm, {τa}a∈O,w0) is minimal if it has the
minimal dimension m in its equivalence class.

By the above construction of OOMs from the distribution h(ā) := P (ā) one
easily sees that any minimal OOM of a LDP (Yt) has the same dimension m as the
abstract vector space H. Furthermore, by mapping the function h defined by (2.3)
back to the space F and then constructing its subspace H = span{lāh : ā ∈ O∗}
one gets a systematic routine for minimizing a given OOM, as shown in Section
14.5 of [7]. This allows us to only consider minimal OOMs in the sequel.

As two equivalent minimal OOMs are just two different representations of the
same abstract structure (H, {la}a∈O, h, σ) under different bases, they are related
to each other via a basis transition matrix ̺ which maps the standard functional
1 to itself. Thus,

Theorem 1 Two minimal OOMs (Rm, {τa}a∈O,w0) and (Rm, {τ ′a}a∈O,w
′
0) are

equivalent if and only if there is a linear bijection ̺ : R
m → R

m, such that (i)
1̺ = 1; (ii) w′

0 = ̺w0 and (iii) ̺τa̺
−1 = τ ′a for all a ∈ O.

— See Proposition 14.6 of [7] for the proof.

We now characterize the family of all m-dimensional LDFs, i.e., all functions
h ∈ F with dimH = rank{lāh : ā ∈ O∗} = m. Since such a function is uniquely
determined by some triple (Rm, {τa}a∈O,w0), which has finitely many (ℓm2 + m

1This can be done in three steps: first select an arbitrary basis {g1, g2, · · · , gm}, then there
must be some k for which gk(ε) 6= 0, pick one such k; next let gi ← gi + gk for any i satisfying
gi(ε) = 0, so that gi(ε) 6= 0 for all i; finally set gi ← gi/gi(ε) for all i.
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for the case here) free parameters, we conclude that an m-dimensional LDF h
can be reconstructed from its values on a finite subset of O∗. To obtain an in-
tuitive feeling of the situation we consider the number of constraints that the
function h should satisfy. Assume that {lā1

h, lā2
h, · · · , lām

h} is a basis of H and
that h =

∑m
j=1 αj(lāj

h). Then h(x̄) =
∑m

j=1 αjh(āj x̄) for all x̄ ∈ O∗. So if there

exist x̄ = b̄1, b̄2, · · · , b̄m such that the resulting m equations (on the parameters
α1, α2, · · · , αm) are linearly independent, one can compute αi’s from the values
h(b̄i) and h(āj b̄i) (i, j = 1, 2, · · · , m). Now it becomes clear that the function h
should satisfy infinitely many constraints h(x̄) =

∑m
j=1 αjh(āj x̄). So the degree of

freedom of h might be finite — actually it is, as we will see soon. Here the re-
maining problem is: can we find x̄ = b̄1, b̄2, · · · , b̄m to get m independent equations
on αj’s? The answer is summarized in the following theorem.

Theorem 2 (1) For any linearly independent functions g1, g2, · · · , gm in F there
exist b̄1, b̄2, · · · , b̄m ∈ O∗ such that the matrix [gj(b̄i)]i,j=1,2,··· ,m is invertible.

(2) Let h be an m-dimensional LDF and σ the linear functional defined on
H = span{lāh : ā ∈ O∗} that maps each f ∈ H to the real f(ε). For any two
finite subsets A = {āj}j=1,2,··· ,M and B = {b̄i}i=1,2,··· ,N of O∗, we write h(A,B)
for the N ×M matrix with h(āj b̄i) as its (i, j)-th entry. Then (a) dimG = m,
where G = span{σlā : ā ∈ O∗}; (b) rankh(A,B) 6 m for any finite subsets
A,B ⊆ O∗; and (c) there exist A,B ⊆ O<m such that rankh(A,B) = m, where
O<m :=

⋃

k<mO
k denotes the set of sequences of length < m.

— See Appendix A.1 for the proof.

2.2 Learning algorithms of OOMs

The parts (2-b,c) of Theorem 2 represent an essential algebraic criterion should
be fulfilled by any m-dimensional LDF h(ā). When used to describe some LDP
(Yt) via P (ā) = h(ā), the function h(ā) should satisfy three more conditions:

1. h(ε) = 1; (the probability of the whole space is 1)

2.
∑

a∈O h(x̄a) = h(x̄) for all x̄ ∈ O∗; (additivity of probability measure)

3. h(ā) > 0 for all ā ∈ O∗. (nonnegativity of probability measure)

In any minimal OOM (Rm, {τa}a∈O,w0) of (Yt), these conditions can be equiva-
lently restated as (i) 1w0 = 1; (ii) 1

∑

a∈O τa = 1; and (iii) 1τāw0 > 0 for any
ā ∈ O∗. Furthermore, by the definition of m-dimensional LDPs and Theorem
2-(2a), the minimality of (Rm, {τa}a∈O,w0) requires that (iv) the vector spaces
span{τāw0 : ā ∈ O∗} and span{1τā : ā ∈ O∗} both have dimension m. Conversely,
the discussion in Subsection 2.1 shows that any m-dimensional LDP (Yt) can be
modelled by such a structure (Rm, {τa}a∈O,w0) via P (ā) = 1τāw0. This gives us
the following theorem, which can be seen as an algebraic definition of OOMs.

Theorem 3 A triple (Rm, {τa}a∈O,w0) with τa ∈ R
m×m and w0 ∈ R

m is an OOM
if, and only if, (i) 1w0 = 1; (ii) 1

∑

a∈O τa = 1 and (iii) 1τāw0 > 0 for any ā ∈ O∗.
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It is a minimal OOM iff further (iv) the vector spaces span{τāw0 : ā ∈ O∗} and
span{1τā : ā ∈ O∗} both have dimension m.

The above three theorems play a fundamental role when deriving a general
procedure for reconstructing minimal OOMs of a given m-dimensional LDP (Yt)
from its distribution P (ā) and a basic algorithm for learning OOMs from training
data. We first consider the reconstructing procedure. Given an m-dimensional
LDP (Yt) and its distribution h(ā) = P (ā), by Theorem 2-(2c) we can select two
subsets of O∗, say A = {āj}Mj=1 and B = {b̄i}Ni=1, such that the matrix h(A,B) (cf.
Theorem 2) has rank m. Besides this condition, we also require that

1h(A,B) = h(A, {ε}) = 1
∑

a∈O h(A, aB) and 1h({ε}, B) = 1 ,

where aB denotes, for each a ∈ O, the subset {ab̄i}Ni=1 of O∗. A possible choice of
such a subset B is B = Or with r being sufficiently large.

Assume (Rm, {τa}a∈O,w0) is a minimal OOM of (Yt), then by the definition of
h(A,B) and (2.3) we can compute

h(A,B) =
[

h(āj b̄i)
]

i6N,j6M
=

[

1τb̄i
· τāj

w0

]

i6N,j6M
=: π(B)ω(A) ,

h(A, {ε}) =
[

h(āj)
]

j6M
=

[

1 · τāj
w0

]

j6M
= 1ω(A) ,

h({ε}, B) =
[

h(b̄i)
]

i6N
=

[

1τb̄i
·w0

]

i6N
= π(B)w0 ,

h(A, aB) =
[

h(ājab̄i)
]

i6N,j6M
=

[

1τb̄i
τaτāj

w0

]

i6N,j6M
= π(B)τaω(A) ,

where π(B) is the N×m matrix with i-th row 1τb̄i
, ω(A) is the m×M matrix with

τāj
w0 as its j-th column. Then by 1h(A,B) = h(A, {ε}) we know 1π(B)ω(A) =

1ω(A). As h(A,B), and hence ω(A), has rank m, we conclude that 1π(B) = 1.
Since the matrix h(A,B) has rank m, there exists U ∈ R

m×N such that (1)
Uh(A,B) has rank m; and (2) 1U = 1. Let Q := [Uh(A,B)]† be the pseudo-
inverse of Uh(A, b) and ̺ := Uπ(B) ∈ R

m×m. Then, as Uh(A,B) is of full row
rank, Uh(A,B)Q = Uπ(B)ω(A)Q = Im; and 1̺ = 1Uπ(B) = 1π(B) = 1. Now it
is clear that ̺−1 = ω(A)Q, and that

̺τa̺
−1 = Uπ(B)τaω(A)Q = U · h(A, aB) ·Q , (2.4)

̺w0 = Uπ(B)w0 = U · h({ε}, B) . (2.5)

By Theorem 1, we actually have constructed, from the distribution h(ā) = P (ā)
of the process (Yt), an equivalent OOM (Rm, {̺τa̺−1}a∈O, ̺w0) of the “original”
model (Rm, {τa}a∈O,w0).

For the learning task, the distribution h(ā) is unknown and so one cannot
reconstruct OOMs of (Yt) via (2.4), (2.5). Instead, a sampling path s̄ = s1s2 · · ·
of (Yt) is provided, based on which one is required to estimate an OOM of (Yt).
A natural idea for this learning problem is to use the training data s̄ to estimate
the interesting probabilities h(ā) = P̂ (ā), by counting the occurrence number of ā
in s̄; and then construct an OOM by (2.4) and (2.5). The overall procedure can
be described as follows.
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1. Select (depending on the training data s̄) two subsets A = {āj}Mj=1 and

B = {b̄i}Ni=1 of O∗; and estimate the probabilities P̂ (ā) by

P̂ (ā) =
occurrence number of ā in s̄

|s̄| − |ā|+ 1
,

where |s̄| denotes the length of s̄ and the sequence ā runs over b̄i, āj b̄i and

ājab̄i (a ∈ O), so that we can construct the matrices P̂ (A,B), P̂ (A, aB) and

the vector P̂ ({ε}, B). Note that, here the selection of A, B should satisfy

1P̂ (A,B) = 1
∑

a∈O P̂ (A, aB) , (2.6)

1P̂ ({ε}, B) = 1 ; (2.7)

and make P̂ (A,B) have rank larger than m, the model dimension.

2. Design a matrix U ∈ R
m×N such that rank{UP̂ (A,B)} = m and 1U = 1.

3. Estimate the observable operators and the initial state respectively by

τ̂a = UP̂ (A, aB)[UP̂ (A,B)]† , (2.8)

ŵ0 = UP̂ ({ε}, B) . (2.9)

This basic learning algorithm has some variations, for example,

• For stationary LDPs, the corresponding minimal OOMs have the property
(
∑

a∈O τa)w0 = w0. This condition, together with the condition (i) from
Theorem 3, uniquely determines the initial state w0. So for stationary pro-
cesses one needs only to estimate the observable operators τa.

• In practice, one can use the counting matrices [#(A,B)], [#(A, aB)] etc.
instead of the probability matrices P̂ (A,B), P̂ (A, aB). But one should
keep the same counting factor for P̂ (A,B) and P̂ (A, aB). That is, one
gets [#(A,B)] from the sample except the last symbol but [#(A, aB)] from
the whole sequence.

2.3 The negative probability problem of OOMs

In the preceding subsection we introduced the basic procedure for reconstructing
or learning OOMs from the known distribution h(ā) or a sampling path s̄ of an
m-dimensional LDP (Yt). If the accurate values of h(ā) are known, then by the
fact that (Yt) is a LDP of dimension m we know the structure evaluated by (2.4)
and (2.5) is a valid OOM according to Theorem 3. In the learning task, however,
only approximated values of h(ā) can be obtained from the training data s̄. So
a natural and crucial problem here is whether such approximation of h(ā) will
violate the conditions from Theorem 3. In other words, we would ask whether the
system computed by (2.8) and (2.9) is a valid OOM.
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By Equations (2.6)–(2.9), one should have no difficulty to verify that 1ŵ0 = 1
and 1

∑

a∈O τ̂a = 1. Unfortunately, the third condition of Theorem 3: 1τāw0 > 0
for any ā ∈ O∗, does not always hold for (actually is usually violated by) the
structure (Rm, {τ̂a}a∈O, ŵ0). More precisely, the learnt structure may produce
negative values as the probability of some rare paths ā of the underlying process.
We call this phenomenon the negative probability problem (NPP) of OOMs. As the
learning algorithms of OOMs developed so far are all based the basic algorithm
presented in Subsection 2.2 — roughly speaking, they only differ in the design of
the auxiliary matrix U — it is fair to say up to now no theoretically satisfying
algorithm for estimating OOMs from data has been developed.

When trying to repair the above NPP of OOMs, we immediately meet the
problem of how to characterize the class of valid OOMs. In other words, we need
a general method for checking whether a given a given structure (Rm, {τa}a∈O,w0)
is a valid OOM. The frustrating thing is even this verification problem is proven
very hard — note that, one cannot directly use Theorem 3 since the condition (iii)
actually consists of infinitely many inequalities. In this direction, the following
proposition gives us an equivalent statement of the condition (iii), in terms of
(invariant) convex cones.

Theorem 4 A triple (Rm, {τa}a∈O,w0), in which τa ∈ R
m×m, w0 ∈ R

m and the
conditions (i, ii, iv) from Theorem 3 hold, forms an OOM if and only if there
is a proper convex cone K ⊆ R

m (i.e., K is closed under vector addition and
scalar multiplication by a nonnegative real; and satisfies K ∩ (−K) = {0} and
spanK = R

m), such that (i) w0 ∈ K; (ii) 1v > 0 for all v ∈ K and (iii) K is
invariant under each operator τa, that is, τav ∈ K for any a ∈ O and v ∈ K.

See Proposition 6 of [6] for a detailed discussion about this theorem. It should
be noticed that, the theorem also provides no means to decide whether a given
system (Rm, {τa}a∈O,w0) is a valid OOM, since it is non-constructive w.r.t. K.
In fact, even in mathematics the problem of whether a common invariant convex
cone K under a given family of linear operators τa exists or not is still an open
problem, at least as the authors know.

As the conclusion, the NPP of OOMs consists of two parts:

• practically, the existing algorithms can only learn “almost OOMs” which
sometimes produce “negative probabilities”;

• theoretically, there is no general means known to decide whether a given
system (Rm, {τa}a∈O,w0) is an OOM of some LDP or not.

The previous discussion indicates that neither of the above two problems can be
attacked at the current stage. This difficult situation motivated us to study other
variations of OOMs to avoid the NPP.
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3 Norm Observable Operator Models

To avoid the NPP of OOMs, we introduce in this section another similar model
class, norm observable operator models (norm-OOMs), which computes the prob-
ability of an initial sequence ā ∈ O∗ by P (ā) = ‖τāw0‖2, where, for vectors x in

R
m, ‖x‖ denotes the Euclidean norm, i.e., ‖x‖ :=

√
xTx. To distinguish the two

kinds of OOMs, we will use (Rm, {ϕa}a∈O,u0) to denote a norm-OOM throughout
the report. It is obvious that a norm-OOM always produces nonnegative values
and so does not suffer from the NPP. However, as stated in Section 1, the func-
tion P : O∗ → R, at the same time as the probability measure of some process,
should satisfy P (ε) = 1 and the condition P (x̄) =

∑

a∈O P (x̄a) for all x̄ ∈ O∗. For
norm-OOMs, these two conditions are equivalent to

Theorem 5 The triple (Rm, {ϕa}a∈O,u0) forms a norm-OOM of some process iff
(i) ‖u0‖ = 1 and (ii)

∑

a∈O ‖ϕaϕx̄v0‖2 = ‖ϕx̄v0‖2 for all x̄ ∈ O∗.

While the nonnegativity of probabilities is automatically satisfied by norm-OOMs,
it seems that the condition (ii) of Theorem 5 is more difficult to cope with than the
analogous part of OOMs which can be reduced to the constraint 1(

∑

a∈O τa) = 1.
However, the condition (ii) from Theorem 5 can be rewritten as

(ϕx̄u0)
T(

∑

a∈O ϕ
T

aϕa)(ϕx̄u0) = (ϕx̄u0)
T(ϕx̄u0) , (∀x̄ ∈ O∗)

for which an obvious sufficient condition is
∑

a∈O ϕ
T

aϕa = Im. Conversely, from
any stochastic process with certain properties we can construct its norm-OOM
(Rm, {ϕa}a∈O,u0) such that

∑

a∈O ϕ
T

aϕa = Im, as presented in Subsection 3.2.
These two facts lead to the following definition of standard norm-OOMs.

Definition 2 A standard norm-OOM is any triple (Rm, {ϕa}a∈O,u0) with the
properties (i) ‖u0‖ = 1; and (ii)

∑

a∈O ϕ
T

aϕa = Im.

Unlike the definition of OOMs, this definition of standard norm-OOMs is simple
enough to serve as a practical algebraic criterium for verifying whether a given
triple (Rm, {ϕa}a∈O,u0) is a standard norm-OOM. According to the discussion
above, we will only consider standard norm-OOMs and simply call them norm-
OOMs in the sequel.

In the following we will set up the basic theory of norm-OOMs which includes
(1) defining an inner-product space D on which norm-OOMs can be constructed;
(2) constructing norm-OOMs (Rm, {ϕa}a∈O,u0) on the space D from the distribu-
tion P (ā) of some process such that P (ā) = ‖ϕāu0‖2 for all finite sequences ā in
O∗; (3) using norm-OOMs as generators and predictors; and (4) the expressiveness
of norm-OOMs.

3.1 The inner-product space D
In this subsection we construct the inner-product space D according to the follow
procedure: (1) first the set S of all nonnegative functions f : O∗ → R

+ such that
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P (ā) = f 2(ā) is a probability distribution is considered; (2) as S is not a vector
space, it is then embedded into a vector space B which serves as the underlying
space; (3) next the family S is extended to a convex cone D+

0 in B, on which a
binary linear function Q is defined; (4) the function Q is extended to the subspace
D0 spanned by D+

0 , and a subspace N of D0 is defined via Q; (5) finally we define
D to be the quotient space D0/N and induce an inner product on D from the
function Q. Now we discuss these objects one by one.

The vector space B. As mentioned above, the family S consists of all functions
f : O∗ → R

+ such that P (ā) = f 2(ā) is a probability distribution. In other words,
here the family S is defined by

S := {f ∈ F : f(ε) = 1, f(x̄) > 0, f 2(x̄) =
∑

a∈O f
2(x̄a) for all x̄ ∈ O∗} . (3.1)

It is clear that each f ∈ S specifies a stochastic process with P (ā) = f 2(ā) as its
distribution; and that each process (Yt) determines an f ∈ S via f(ā) =

√

P (ā).
In this sense, we can identify the family of stochastic processes with the set S.
However, the family S, as a subset of F , is not a convenient object to operate from
the viewpoint of linear algebra, for it is neither a vector space nor invariant under
the left appending operators la. So we need to construct another vector space B
which contains S as a subset and is invariant under the operation of la’s.

For each n > 0, define a (nonlinear) mapping Sn from F to R by setting

Sn(f) =
∑

ā∈On f 2(ā) for all f ∈ F . (3.2)

One can easily see that Sn(f) = 1 for all f ∈ S and nonnegative integers n. Let
B be the family of those functions f ∈ F for which the set {Sn(f)}n>0 is upper
bounded by some constant Cf ∈ R, then S is clearly a subset of B. Moreover, B
forms a subspace of F that is invariant under the operation of la’s, as stated by
Theorem 6. This allows us to restrict the operators la on the space B.

Theorem 6 The set B = {f ∈ F : Sn(f) 6 Cf < ∞} is a subspace of F that is
invariant under the left appending operators la, i.e., laf ∈ B for all f ∈ B.
— See Appendix A.2 for the proof.

Now for each n = 0, 1, · · · we define a binary function on F by

Qn(f, g) =
∑

ā∈On f(ā)g(ā) . (∀f, g ∈ F) (3.3)

It follows from the proof of Theorem 6 that Qn(f, g) 6 1
2
[Sn(f) + Sn(g)] for any

f, g ∈ B, which means there is a constant Cf,g ∈ R such that Qn(f, g) 6 Cf,g for
all n. Conversely, by the definition of Qn and Sn we have Sn(f) = Qn(f, f) for all
f ∈ F . So the family B is also characterized by the inequalities Qn(f, g) 6 Cf,g

with n = 0, 1, 2, · · · .
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The subspace D0 of B. Let D+
0 be the subset of F consisting of those functions

f ∈ F which are nonnegative and f 2(x̄) >
∑

a∈O f
2(x̄a) for all x̄ ∈ O∗, i.e.,

D+
0 := {f ∈ F : f(x̄) > 0, f 2(x̄) >

∑

a∈O f
2(x̄a) for ∀x̄ ∈ O∗} . (3.4)

By (3.1) (3.4) we know S ⊆ D+
0 . Furthermore, it follows from the definition of Sn:

Sn(f) =
∑

ā∈On f 2(ā) that {Sn(f)}n=0,1,2,··· forms a decreasing sequence for any
f ∈ D+

0 ; thus Sn(f) 6 S0(f) for all n and hence D+
0 is a subset of B.

Theorem 7 D+
0 is a convex cone in B pointed at 0 (the zero function). That is,

for any f, g ∈ D+
0 and any α > 0, (i) −f ∈ D+

0 implies f = 0; (ii) αf ∈ D+
0 and

(iii) f + g ∈ D+
0 . Furthermore, D+

0 is invariant under the operators la, that is,
laf ∈ D+

0 whenever f ∈ D+
0 . — See Appendix A.3 for the proof.

Now let D0 be the subspace of B spanned by D+
0 . By Theorem 7, D0 is the set

of those functions h ∈ B which can be written as h = f − g with f, g ∈ D+
0 :

D0 = spanD+
0 = {f − g : f, g ∈ D+

0 } . (3.5)

Since D+
0 is invariant under the linear operators la, by (3.5) we see that D0 is also

invariant under la. So in the sequel we will restrict the operation of la’s on the
space D0. For any f, g ∈ D+

0 , the summation of f(x̄)g(x̄) >
∑

a∈O f(x̄a)g(x̄a)
(cf. eqn (A.2)) over all x̄ ∈ On reveals that {Qn(f, g)}n=0,1,2,··· forms a decreasing
sequence lower bounded by 0, so the binary function

Q(f, g) := limn→∞Qn(f, g) (3.6)

is well defined on the set D+
0 × D+

0 and takes values from [0,∞). To extend the
domain of the function Q(f, g) to D0 ×D0, we need the following lemma.

Lemma 1 Let {ai
n}n=0,1,2,···, {bin}n=0,1,2,··· (i = 1, 2, · · · , k) be 2k sequences of real

numbers such that
∑k

i=1 a
i
n =

∑k
i=1 b

i
n and limn→∞ ai

n = ci for all i 6 k. Then

{∑k
i=1 a

i
n}n=0,1,2,··· and {∑k

i=1 b
i
n}n=0,1,2,··· are two convergent sequences with the

same limit
∑k

i=1 c
i. — The proof is trivial and omitted here.

For any f, g ∈ D0, let f = f1 − f2 and g = g1 − g2 with fi, gi ∈ D+
0 (i = 1, 2) be

one of their decompositions, respectively. Then, by the linearity of Qn,

Qn(f, g) = Qn(f1, g1) +Qn(f2, g2)−Qn(f1, g2)−Qn(f2, g1) . (3.7)

When n tends to infinity, the four items on the right hand side (r.h.s.) of equality
(3.7) each converge to a nonnegative number since fi, gi ∈ D+

0 ; and their sum
Qn(f, g) is independent of the choice of f1, f2, g1, g2. So by Lemma 1 the limit
Q(f, g) = limn→∞Qn(f, g) exists and, by (3.7), assumes values in R.

So far we have defined the vector space D0 and the binary function Q(·, ·) on
D0 ×D0 which clearly has the following three properties.
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Theorem 8 For any f, g ∈ D0, (i) Q(f, f) > 0; (ii) Q(f, g) = Q(g, f); and (iii)
Q(f, g) is linear in f , i.e., Q(αf1 + βf2, g) = αQ(f1, g) + βQ(f2, g).

Theorem 8 shows the function Q is nonnegative definite, symmetric and bilinear,
only “one step” from being an inner product on the vector space D. 2 We call
any such function Q a semi-definite inner product on D. More generally,

Definition 3 Let V be a vector space over R. A binary function Q : V × V → R

is a semi-definite inner product (on V ) if, for any x, y, z ∈ V and α, β ∈ R, (i)
Q(x, x) > 0; (ii) Q(x, y) = Q(y, x); and (iii) Q(αx+βy, z) = αQ(x, z)+βQ(y, z).

Next we discuss some properties of the above “abstract” semi-definite inner
product space (V,Q). Like inner products, semi-definite inner products are also
interesting and useful from both theoretical and practical aspects. For instance,
each semi-definite inner product Q on some vector space V induces a pseudo norm
q on the same space V via q(x) =

√

Q(x, x). Here, by “pseudo norm” we mean
any function q : V → R such that (i) q(x) > 0; (ii) q(αx) = |α| · q(x) and (iii)
q(x+ y) 6 q(x) + q(y) for any x, y ∈ V and α ∈ R. To see that q(x) =

√

Q(x, x)
is indeed a pseudo norm on V , we first prove an inequality, namely

Lemma 2 (Cauchy-Schwarz inequality for semi-definite inner products) Let Q be
any semi-definite inner product on the vector space V and q the unitary function
on V defined by q(x) =

√

Q(x, x). Then, for any x, y ∈ V , |Q(x, y)| 6 q(x)q(y).

— See Appendix A.4 for the proof.

Now we are ready to show that q(x) is a pseudo norm. The conditions q(x) > 0
and q(αx) = |α| · q(x) are easy to verify. For the third condition, we calculate
q2(x+ y) = q2(x) + 2Q(x, y) + q2(y) 6 q2(x) + 2q(x)q(y) + q2(y) = [q(x) + q(y)]2,
where the second inequality follows from Lemma 2. So q(x+ y) 6 q(x) + q(y).

The quotient space D. Return to our concrete vector space D0, on which we
have shown the function Q defined by (3.6) is a semi-definite inner product, and
so induces the pseudo norm q : D0 → R with

q(f) :=
√

Q(f, f) = lim
n→∞

{
∑

ā∈On f 2(ā)
}

1

2 = lim
n→∞

{Sn(f)} 1

2 . (3.8)

For any f ∈ S, by (3.1) we know Sn(f) = 1 and hence q(f) = 1. As the pseudo
norm q(f) can be explained as the “length” of the vector f , we get a geometrical
description of the family of stochastic processes: any process (Yt), described by
some function f ∈ S via P (ā) = f 2(ā) and seen to be identical to f , lies on
the unit sphere of the semi-definite inner product space (D0, Q). Similarly, the

2An inner product on a vector space V is any function Q : V × V → R that has all the
properties from Definition 3 and is positive definite: Q(x, x) = 0 if and only if x = 0.
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quantity q(f − g) can be regarded as the “distance” between f and g. When f, g
are members of S, i.e., they describe two processes, we have

q2(f − g) = q2(f)− 2Q(f, g) + q2(g) = 2 [1−Q(f, g)] . (3.9)

So the quantity Q(f, g) can be seen as the degree of similarity between f and g
(note that 0 6 Q(f, g) 6 1 for any f, g ∈ S).

We call a function f ∈ D0 a null function if q(f) = 0; and denote by N the
set of all null functions. By the inequality q(f + g) 6 q(f) + q(g) and the identity
q(αf) = |α| · q(f) one can easily see that N is a subspace of D0. So we can define
the quotient space

D := D0/N = {[f ] : f ∈ D0} , (3.10)

where [f ] denotes, for any f ∈ D0, the equivalence class {g ∈ D0 : f − g ∈ N} of
f . It is well known that, D canonically becomes a vector space over R under the
addition and scalar multiplication

[f ] + [g] := [f + g] , α[f ] := [αf ] ; (∀f, g ∈ D0, ∀α ∈ R)

whose definitions are independent of the choice of the “representative” elements
f, g in their corresponding equivalence class [f ] or [g].

On the vector space D define a binary function 〈·, ·〉 : D ×D → R by setting

〈[f ], [g]〉 := Q(f, g) for any f, g ∈ D0 . (3.11)

Here we should show the value of the r.h.s. of (3.11) is independent of the choice
of f and g (in their equivalence class), i.e., Q(f ′, g′) = Q(f, g) for any f ′ ∈ [f ] and
g′ ∈ [g]. Noting that f ′ ∈ [f ] iff f ′ − f ∈ N iff q(f ′ − f) = 0, we know that

Q(f ′, h) = Q(f, h) +Q(f ′ − f, h) = Q(f, h)

for any h ∈ D0 since, by Lemma 2, |Q(f ′ − f, h)| 6 q(f ′ − f)q(g) = 0. Similarly,
Q(h, g) = Q(h, g′) for any h ∈ D0. Thus, Q(f ′, g′) = Q(f, g′) = Q(f, g). Since
Q is a semi-definite inner product (on D0), by (3.11) one can easily verify that
〈·, ·〉 is also a semi-definite inner product (on D). Now assume 〈[f ], [f ]〉 = 0, i.e.,
Q(f, f) = q2(f) = 0, then f ∈ N = [0] and so [f ] = [0]. This means 〈·, ·〉 is
actually an inner product on D, which naturally induces the norm

‖[f ]‖ =
√

〈[f ], [f ]〉 =
√

Q(f, f) = q(f) . (∀f ∈ D0) (3.12)

Thus far we have finished the first step towards the construction of norm-OOMs:
defining the inner product space D.

Members of D that describes some stochastic process. We now consider
the members [f ] (f ∈ D0) of D that actually represent a stochastic process. In
other words, we want to characterize the subset DS := {[f ] : f ∈ S} of D.
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Firstly, if f ∈ S, then by (3.12) and (3.8), we have ‖[f ]‖ = 1. This means DS

is located on the unit sphere of D. To describe the subset DS in more detail, we
define D+ to be the set of equivalence classes [f ] in D induced by members f from
D+

0 , i.e., D+ := {[f ] : f ∈ D+
0 }. As S ⊆ D+

0 , we know DS ⊆ D+. Furthermore,

Theorem 9 For any f ∈ D+
0 with ‖[f ]‖ = 1, there exists a g ∈ S such that

[f ] = [g], or equivalently, q(f − g) = 0. — See Appendix A.5 for the proof.

So DS is the intersection of the unit sphere in D and the subset D+.
Secondly, by Theorem 7 we know D+

0 is a convex cone in the space D0. A
natural problem is whether the subset D+ = {[f ] : f ∈ D+

0 } is also a convex cone
in the corresponding space D = {[f ] : f ∈ D0}. The answer is yes, as stated in
the following theorem.

Theorem 10 (i) Let f, g ∈ D+
0 be such that q(f + g) = 0, then q(f) = q(g) = 0;

(ii) D+ is a convex cone in D pointed at [0]. — See Appendix A.6 for the proof.

Finally, as pointed out earlier, each stochastic process can be characterized by
a function f ∈ S, which is now represented in the space D by the equivalence class
[f ]. From mathematics view, here the bracket [·] can be seen as a function from D0

onto D; and the image of S under this function is DS. Intuitively, this means the
subset DS is “rich” enough to contain all stochastic processes and “pure” enough
to exclude any unnecessary objects. Like the family S, one may ask

“can we also identify the family of stochastic processes with the subset DS?”.

An equivalent statement of the above problem is whether the function [·], when
restricted on S, is injective; or, whether it is possible for two different members
f, g of S to have the same representation [f ] = [g] in DS? This problem is indeed
crucial because it actually ask whether DS is “fine” enough to distinguish any two
different processes.

Theorem 11 For any f, g ∈ S, if [f ] = [g], i.e., if q(f − g) = 0, then f = g.

— See Appendix A.7 for the proof.

The above three theorems give us a clear insight into the relationship between
the family of stochastic processes and the families S and DS; and the structure of
the subsets DS and D+ in the space D.

• The family S is isomorphic (i.e., one-to-one corresponding) to DS via the
function [·]; and both S and DS can be identified with the family of stochastic
processes.

• DS is the intersection of the unit sphere and the convex cone D+ in the space
D. This means the family of stochastic processes can be embedded into the
inner product space D, with each process represented (uniquely) by a point
on the unit sphere and in the “positive orthant” D+.

14



3.2 Constructing norm-OOMs in the space D
In Theorem 7 we have illustrated that all left appending operators la leave the
subspace D0 invariant, so we can restrict the operation of la’s on the space D0.
It is well known that each such restricted operator la induces naturally a linear
operator [la] on the quotient space D via

[la][f ] := [laf ] for all f ∈ D0 . (3.13)

Now let f ∈ S and ā ∈ O∗ be fixed. By the definition of Sn one can easily verify
that, for any n = 0, 1, 2, · · · , f 2(ā) =

∑

x̄∈On f 2(āx̄) = Sn(lāf). Letting n → ∞,
we get f(ā) = q(lāf) = ‖[lāf ]‖. Assume ā = a1a2 · · ·an, then by (3.13),

[lāf ] = [lan
· · · la1

f ] = [lan
][lan−1

· · · la1
f ] = · · · = [lan

] · · · [la1
][f ] . (3.14)

So if we write [l]ā for the composition [lan
] · · · [la1

], then the identity (3.14) shows
that [lāf ] = [lā][f ] = [l]ā[f ] and therefore

Theorem 12 For any f ∈ S and ā ∈ O∗, f(ā) = ‖[lā][f ]‖ = ‖[l]ā[f ]‖.

Furthermore, the function Q defined by (3.6) has the following property.

Theorem 13 for any f, g ∈ D0, it holds that
∑

a∈O Q(laf, lag) = Q(f, g), i.e.,
∑

a∈O〈[la][f ], [la][g]〉 = 〈[f ], [g]〉. — See Appendix A.8 for the proof.

The above two theorems make the foundation for constructing norm-OOMs of
a stochastic process (Yt) from its distribution P (ā). Let h be the function on O∗

defined by h(ā) =
√

P (ā), then h ∈ S and Theorem 12 tells us h(ā) = ‖[l]ā[h]‖
for all ā ∈ O∗. To get a matrix/vector representation of [l]ā and [h], we consider
the space H := span{lāh : ā ∈ O∗} and the subset Dh := {[f ] : f ∈ H} of D.
Since D0 is invariant under la’s and since h ∈ S ⊆ D0, by its definition we know H
is a subspace of D0 which is also invariant under the operation of la’s. It follows
that Dh is a subspace of D = {[f ] : f ∈ D0} and that Dh is invariant under [la]’s.
Thus, we can restrict the linear operators [la] on the space Dh.

Assume the vector space Dh is of finite, say m, dimension; and select an or-
thonormal basis ofDh, i.e., a basis {[gi] : gi ∈ H, i = 1, 2, · · · , m} with the property
〈[gi], [gj]〉 = δij, where δij is the Kronecker symbol defined by δij = 1 if i = j and
δij = 0 otherwise. It is well known that each [f ] ∈ Dh can be uniquely represented
as a linear combination of {[g1], [g2], · · · , [gm]}:

[f ] =
∑m

i=1 αi(f)[gi] , ∀ [f ] ∈ Dh

which actually defines a linear map π : Dh → R
m that sends each [f ] to the vector

π[f ] = [α1(f), α2(f), · · · , αm(f)]T. Since the basis {[gi]}mi=1 is orthonormal, by the
linearity of the inner product 〈·, ·〉 we have

〈[f ], [g]〉 = ∑

i,j αi(f)αj(g)〈[gi], [gj]〉 =
∑

i,j αi(f)αj(g)δij =
∑m

i=1 αi(f)αi(g) ,
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i.e., 〈[f ], [g]〉 = {π[f ]}T{π[g]} =: 〈π[f ], π[g]〉 for any [f ], [g] ∈ Dh. It follows from
Theorem 13 that

∑

a∈O〈π[la][f ], π[la][g]〉 = 〈π[f ], π[g]〉 for any [f ], [g] ∈ Dh. Now
let ϕa ∈ R

m×m be the matrix representation of the linear operator π ◦ [la] ◦ π−1 :
R

m → R
m under the standard basis of R

m and u0 := π[h] ∈ R
m the initial state.

Then uT

0u0 = {π[h]}T{π[h]} = 〈[h], [h]〉 = 1 for h ∈ S; and

eT

i (
∑

a∈O ϕ
T

aϕa)ej =
∑

a∈O{π[la][gi]}T{π[la][gj]}
=

∑

a∈O〈[la][gi], [la][gj]〉
= 〈[gi], [gj]〉 (by Theorem 13)
= δij ,

where ei denotes the i-th unit vector in R
m. The above equality shows that

∑

a∈O ϕ
Tϕ = Im. Furthermore, for any ā ∈ O∗ it holds that π[l]ā[h] = ϕāu0, so by

Theorem 12 we can compute

P (ā) = h2(ā) = 〈[l]ā[h], [l]ā[h]〉 = {π[l]ā[h]}T{π[l]ā[h]} = (ϕāu0)
T(ϕāu0) .

In conclusion, from the distribution P (ā) of some process (Yt), we constructed

the structure (Rm, {ϕa}a∈O,u0) for which it holds that (1) ‖u0‖ :=
√

uT

0u0 = 1;
(2)

∑

a∈O ϕ
T

aϕa = Im; and (3) P (ā) = ‖ϕāu0‖2 for all ā ∈ O∗. Such structures, as
defined earlier, are called norm-OOMs of (Yt).

We now consider the problem of how to randomly construct a norm-OOM,
which is important for both theoretical investigation and numerical simulation.
The same problem exist for HMMs and OOMs. For HMMs, there is an easy and
efficient way to create a random HMM of given dimension (i.e., number of hidden
states) m over a given alphabet O = {1, 2, · · · , ℓ}: one first randomly creates an
m × m matrix A and an m × ℓ matrix B, both consisting only of nonnegative
entries; then normalize each row of A and B so that the two matrices both have
row sums 1; the resulting A and B are the transition matrix and the emission
matrix of the HMM, respectively. For OOMs, one can either create a HMM and
then convert it to its equivalent OOM — easy but trivial; or, by Theorem 4,
construct a proper convex cone K in R

m and then design τa’s such that τaK ⊆ K
and 1

∑

a∈O τa = 1 — not easy at all: in fact, only a simple nontrivial example
has been constructed so far, the “probability clock” [6]. So we actually have not
found a nontrivial general way for constructing valid OOMs from scratch so far.
Fortunately, a simple and efficient construction of random norm-OOMs is possible,
as shown below.

Let ϕ be the mℓ × m matrix created by stacking the matrices ϕa below one
another, i.e., ϕ := [ϕT

1 , ϕ
T

2 , · · · , ϕT

ℓ ]T. Then the condition (ii) from Definition 2
is equivalent to ϕTϕ = Im, which means the columns of ϕ form an orthonormal
set in R

mℓ. So here we can first randomly create m mℓ-dimensional vectors; then,
using the Gram-Schmidt process, make them an orthonormal set to get a mℓ×m
matrix ϕ satisfying ϕTϕ = Im; dividing ϕ into m blocks of equal size, we get the
desired observable operators ϕa (a ∈ O). The initial state u0 can be any vector
in R

m with norm 1.
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Like the class of OOMs, we say that two norm-OOMs (Rm, {ϕa}a∈O,u0) and
(Rn, {ϕ′

a}a∈O,u
′
0) are equivalent if they describe the same process (Yt). For the

equivalence of two norm-OOMs, we have the following sufficient condition.

Theorem 14 Let (Rm, {ϕa}a∈O,u0) and (Rn, {ϕ′
a}a∈O,u

′
0) be two norm-OOMs

such that n > m. Then they are equivalent to each other if there exists a matrix
̺ ∈ R

n×m such that ̺T̺ = Im, u′
0 = ̺u0 and ϕ′

a = ̺ϕa̺
T for all a ∈ O.

— The proof is obvious and omitted here.

3.3 Norm-OOMs as generators and predictors

We explain in this subsection how to generate and predict the paths of a process
(Yt) modelled by a norm-OOM (Rm, {ϕa}a∈O,u0) through P (ā) = ‖ϕāu0‖2.

In the generation task we are required to randomly produce, at time steps
t = 1, 2, · · · , outcomes a1, a2, · · · ∈ O, such that (i) at time t = 1, the probability
of producing b is equal to P (b) = ‖ϕbu0‖2, and (ii) at each time t = n+1 (n ∈ N),
the probability of producing b (assume ā := a1a2 · · ·an have already been created)
is equal to P (b|ā). From P (ā) = ‖ϕāu0‖2, the conditional probability P (b|ā) can
be expanded into

P (b|ā) =
P (āb)

P (ā)
=
‖ϕbϕāu0‖2
‖ϕāu0‖2

=: ‖ϕbuā‖2 , (3.15)

where uā = ϕāu0/‖ϕāu0‖ is the state vector of the norm-OOM on ā. Note that
all state vectors have norm 1 and can be incrementally calculated by

uε = u0 , ua1a2···an
=

ϕan
ua1a2···an−1

‖ϕan
ua1a2···an−1

‖ . (3.16)

Based on the above discussion, we summarize the procedure for generating sample
paths of a process from its norm-OOM (Rm, {ϕa}a∈O,u0): (1) at time t = 1,
generate a1 according to the probability distribution P (b) = ‖ϕbu0‖2 and compute
the state vector u1 = ϕbu0/‖ϕbu0‖; (2) assume we have got the (n − 1)-th state
vector un−1, then generate an according to the distribution P (b) = ‖ϕbun−1‖2 and
update the state vector by un = ϕbun−1/‖ϕbun−1‖.

Norm-OOMs can also be used as predictors: given an initial path ā = a1a2 · · ·an

of the process up to time t = n, we want to calculate the probability that the next
outcome is b. Again, this amounts to the computation of the conditional probabil-
ities P (b|ā); and eqns (3.15)(3.16) can be employed here. But note that now the
initial path ā is not generated by the norm-OOM itself but is externally given.

In next subsection we will show that any norm-OOM can be converted to an
equivalent OOM. So one can also first convert a given norm-OOM to its equivalent
OOM; and then use this OOM as the generator/predictor to create/predict the
outcome b that is going to occur at the next time step. See Section 3 of [6] for the
detailed procedure.
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Another usage of eqns (3.15)(3.16) is the evaluation of the probability P (ā)
of an initial path ā = a1a2 · · ·an. Notice that, here we cannot directly use the
formular P (ā) = ‖ϕāu0‖2, for the decrease of P (ā) with the increase of length n of
ā is so quick that numerically it is almost sure that P (ā) = 0, even for relatively
small n. So instead of directly calculating P (ā), one should evaluate its logarithm
L(ā) := logP (ā). This can be done using eqns (3.15)(3.16), as follows: (1) for
k = 1, 2, · · · , n compute xk = ϕak

uk−1, ck = ‖xk‖ and uk = c−1
k xk; (2) calculate

L(ā) = 2
∑n

k=1 log ck.

3.4 The expressiveness of norm-OOMs

In the last two subsections, we defined the class of norm-OOMs and presented a
general method for constructing norm-OOMs from the distribution of the under-
lying process. In this subsection we will study the family of stochastic processes
that can be described by (finite-dimensional) norm-OOMs.

We see an exemplary 2-dimensional norm-OOM over the alphabet O = {a, b}:

ϕa =

[

.6c −s

.6s c

]

, ϕb =

[

.8 0
0 0

]

; and u0 =

[

1
0

]

, (3.17)

with c = cos(0.5) and s = sin(0.5). Intuitively, the operation of ϕa on the state
vector u = [x, y]T is shrinking the value of x by factor 0.6 and then rotating the
resulted vector by an angle θ = 0.5; and that of ϕb is shrinking the value of x by
0.8 and discarding y, as depicted in Figure 1.

u

ϕau

ϕbu

0 1.00.6 0.8 x

y

θ

Figure 1: The operation of ϕa and ϕb on the vector u.

From Figure 1 we see that, after the operation of ϕb, one always obtains a
vector ϕbu lying on the x-axis. It then follows from (3.16) that

ux̄b = ϕbux̄/‖ϕbux̄‖ = [±1, 0]T ;
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and from (3.15) that

P (a|x̄b) = ‖ϕaux̄b‖2 = 0.36 = P (a|b) ,
P (b|x̄b) = ‖ϕbux̄b‖2 = 0.64 = P (b|b) ;

for any x̄ ∈ O∗. Thus, as u0 = [1, 0]T, the process described by the norm-OOM as
in (3.17) is completely characterized by the family of the conditional probabilities
{P (b|ban) = P (b|an) : n = 0, 1, 2, · · · }, where an denotes the sequence consisting
of n a’s. Iteratively using eqns (3.15)(3.16), we are able to compute the values
of P (b|an). These conditional probabilities are plotted in Figure 2, from which it
shows that the behavior of the norm-OOM specified by (3.17) is very similar to
that of the so called probability clock 3 . As explained in [6], such nonperiodic
oscillating behavior of P (b|an) cannot be captured by (finite) HMMs.

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4
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n = 0 to 30

V
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s 
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 P

(b
|a

n )

Figure 2: The curve of conditional probabilities P (b|an).

This simple example shows that norm-OOMs, like OOMs, can describe some
specific stochastic processes that cannot be modelled by HMMs. But norm-OOMs
provide no more than that provided by OOMs. In other words, each norm-OOM
can be equivalently converted to an OOM, as shown below.

Definition 4 For two matrices A ∈ R
m×n and B ∈ R

p×q, the Kronecker product
of A and B, denoted A ⊗ B, is the (blocked) matrix of size mp × nq with aijB
as its (i, j)-th block, where aij is the element of A at position (i, j). Furthermore,
we write vec(A) for the mn-dimensional column vector formed by stacking the
columns of A one below another.

3A 3-dimensional OOM which represents a stochastic process that cannot be described by
(finite) HMMs, see Section 6 of [6] for the detail.
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For example, given

A =

[

1 −1
2 0

]

and B =

[

1 2
3 4

]

,

their Kronecker product A⊗B and the vector vec(A) are

A⊗ B =









1 2 −1 −2
3 4 −3 −4
2 4 0 0
6 8 0 0









, vec(A) =









1
2
−1
0









,

respectively. The reader is referred to [4] for a detailed introduction to the Kro-
necker product A ⊗ B and the “stack operator” vec(A), and to [1] for a quick
reference. Here we only point out two facts that will be used when converting a
norm-OOM to its equivalent OOM.

Theorem 15 When dimensions are appropriate, (1) (A⊗C)(B⊗D) = AB⊗CD;
and (2) xTAy = [vec(A)]T(x ⊗ y). In particular, for x ∈ R

m, it holds that (3)
‖x‖2 = xTx = [vec(Im)]T(x⊗ x).

Now let (Rm, {ϕa}a∈O,u0) be a norm-OOM of some process (Yt). Then by
Theorem 15 the probabilities P (ā) for ā = a1a2 · · ·an can be evaluated by

P (ā) = ‖ϕan
· · ·ϕa2

ϕa1
u0‖2

= [vec(Im)]T(ϕan
· · ·ϕa2

ϕa1
u0 ⊗ ϕan

· · ·ϕa2
ϕa1
u0)

= [vec(Im)]T(ϕan
⊗ ϕan

) · · · (ϕa2
⊗ ϕa2

)(ϕa1
⊗ ϕa1

)(u0 ⊗ u0) .

Putting σ = [vec(Im)]T, τa = ϕa⊗ϕa and w0 = u0⊗u0, we get an “almost OOM”
(Rm2

, {τa}a∈O,w0,σ), which computes the probabilities P (ā) by P (ā) = στāw0,
and is only “one step (from the functional σ to the standard one 1)” from “real
OOMs”. But it is easy to find a basis transition matrix ̺ in the space R

m2

such
that 1̺ = σ, through which one gets an equivalent OOM (Rm2

, {̺τa̺−1}a∈O, ̺w0)
of the original norm-OOM (and can then minimize it to get an equivalent minimal
OOM).

For example, the norm-OOM defined by (3.17) is equivalent to a 3-dimensional
OOM with observable operators

τa =





−0.026 −0.243 1.166
0.386 0.420 −1.107

0 0.320 0.977



 , τb =





0.64 0.503 −0.036
0 0 0
0 0 0



 ;

and initial state w0 = [1, 0, 0]T. As the eigenvalues of τa are 0.6 and 0.386±0.460i
(complex numbers), the operation of τa includes a basis transition, vector rotation
under the new basis, and the inverse basis transition; while the operation of τb is
mapping any state vector w ∈ R

3 to a new one lying on the x-axis. This means
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the norm-OOM (3.17) actually represents a “non-standard probability clock”, as
depicted in Figure 2.

The above discussion shows that norm-OOMs can be seen as a subclass of
OOMs. Now we consider the problem in the reverse direction: which OOMs have
equivalent norm-OOMs? So far there is little significant result obtained on this
problem, except the following sufficient condition.

Theorem 16 Any OOM (Rm, {τa}a∈O,w0) with positive parameters in which each
row of each operator τa has at most one nonzero element has an equivalent norm-
OOM (Rm, {ϕa}a∈O,u0) defined by ϕa =

√
τa and u0 =

√
w0, where the square

root is defined entry-wise. — See Appendix A.9 for the proof.

Notice that anm-states Markov chain (MC) can be represented as anm-dimensional
OOM with each operator τa consisting of all but one zero columns. So by the above
theorem we know any Markov chain has equivalent norm-OOMs.

Based upon the above discussion, the relationship between MCs, HMMs, norm-
OOMs and OOMs can be expressed informally as

norm-OOMs 6⊆ HMMs , MCs ⊂ HMMs ⊂ OOMs ,
MCs ⊂ norm-OOMs ⊆ OOMs .

Thus far it is not clear whether or not “HMMs ⊆ norm-OOMs” and “norm-OOMs =
OOMs”. We end this section with a picture depicting these relations.

MCs

HMMs
OOMs

norm-OOMs

Figure 3: The relationships between MCs, HMMs, norm-OOMs and OOMs.

4 A Maximum-Likelihood Learning Algorithm

We introduce in this section an iterative algorithm for learning norm-OOMs from
data based on the maximum-likelihood (ML) principle. The ML principle is quite
simple: for our case it estimates a norm-OOM (Rm, {ϕa}a∈O,u0) from a given
training sequence s̄ = s1s2 · · · sN by maximizing the likelihood P (s̄|ϕa,u0). In
practice, for computational reasons we usually use the log-likelihood

L = 1
2
logP (s̄|ϕa,u0) = 1

2
log(uT

0ϕ
T

s1
ϕT

s2
· · ·ϕT

sN
ϕsN
· · ·ϕs2

ϕs1
u0) , (4.1)
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instead of the likelihood P (s̄|ϕa,u0), as the target function. Note that in (4.1) a
factor 1

2
is introduced to simplify the computation hereafter. By Definition 2 the

ML principle amounts to the following optimization problem

maximize L = 1
2
log(uT

0ϕ
T

s1
ϕT

s2
· · ·ϕT

sN
ϕsN
· · ·ϕs2

ϕs1
u0) ,

subject to
∑

a∈O ϕ
T

aϕa = Im , uT

0u0 = 1 ;
(4.2)

and the key point here is to develop an efficient method for this problem.

4.1 Two “local” operations on observable operators

As analytical solutions of (4.2) are unavailable, some (iterative) numerical method
should be employed. This numerical method should keep the two constraints of
(4.2) during the iterations, so that whenever the algorithm stops one immediately
gets a valid norm-OOM. As before, we write ϕ for the matrix formed by stacking
the matrices ϕa one below another. Then the identity

∑

a∈O ϕ
T

aϕa = Im can be
rewritten as ϕTϕ = Im. This means the columns of ϕ always form an orthonormal
set in the space R

mℓ. Now we see the log-likelihood L as a function of ϕ and u0

and assume (ϕ∗,u∗
0) is the optimal point of the problem (4.2). It is well known the

two orthonormal sets ϕ and ϕ∗ are related by some unitary matrix U of order mℓ,
i.e., a matrix U with the property UUT = Imℓ, through ϕ∗ = Uϕ. Furthermore,
concerning unitary matrices we have the following proposition.

Theorem 17 A square matrix U of order n > 2 is a unitary matrix iff it is the
product of some (simpler) matrices of the form G(i, j, θ) or G′(i, j, θ), where i 6= j
and G(i, j, θ) 4 , G′(i, j, θ) denote the matrices formed from the identity matrix In
by changing its 2× 2 submatrix at the cross of i-th and j-th rows/columns to

[

cos θ sin θ
− sin θ cos θ

]

,

[

− cos θ sin θ
sin θ cos θ

]

,

respectively. Note that G(i, j, θ) = G(j, i,−θ) and G′(i, j, θ) = G′(j, i, π− θ), so in
the above assertion we can require that i < j.

Furthermore, let D(i) be the diagonal matrix with all diagonal entries being 1
except the i-th one which is −1. Then G′(i, j, θ) = G(i, j, θ)D(i) and the theorem
can be equivalently stated as: U is a unitary matrix iff it is the product of several
G(i, j, θ)’s and D(i)’s.

Although (we believe) this theorem should be a known result in matrix theory, a
detailed proof (of our own) is provided in Appendix A.10 for completeness.

Let ϕi be the i-th row of the matrix ϕ. Then Theorem 17 tells us: starting
from any initial matrix ϕ, we are able to reach the optimal one ϕ∗ by (iteratively)
using the following two “local” operations.

4Such matrices G(i, j, θ) are called Givens matrices.
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• The operation D(i) — select a row ϕj of ϕ and reverse its direction, i.e.,
ϕi

+ ← (−ϕi), where the subscript + means the updated value.

• The operation G(i, j, θ) — select two rows ϕi, ϕj of ϕ and do the linear
combination ϕi

+ ← (ϕi cos θ +ϕj sin θ) and ϕj
+ ← (−ϕi sin θ +ϕj cos θ).

Furthermore, it is easy to verify that, after each of the above operations, the
resulting matrix ϕ+ still has the property ϕT

+ϕ+ = Im, representing observable
operators of a valid norm-OOM. From these observations we get a greedy scheme
for adjusting the matrix ϕ iteratively so that the log-likelihood L(ϕ,u0) increases
for each iteration, as outlined below.

1. Select (cyclically or randomly) two rows ϕi and ϕj of ϕ.

2. Put ϕi
+ ← (−ϕi) if this increases the value of L(ϕ,u0).

3. Fix other parameters and consider the operations

ϕi
+ ← (ϕi cos θ +ϕj sin θ) and ϕ

j
+ ← (−ϕi sin θ +ϕj cos θ) . (4.3)

Then the log-likelihood L is a function of the single parameter θ ∈ [−π, π);
and the gradient method can be used here. More precisely, we compute the
derivative L′(θ) = ∂L

∂θ
at θ = 0 and set θ = η · sgn{L′(0)} or θ = η · L′(0) in

(4.3) to update the matrix ϕ, where η > 0 is the learning rate.

4. Repeat the above procedure until some termination criterion is satisfied.

4.2 The forward-backward algorithm for norm-OOMs

This subsection is devoted to the calculation of the derivative ∂L
∂θ

when (4.3) is
applied to the matrix ϕ, as well as the derivative ∂L

∂u0
for deriving the update rule

of u0. To this end we need some short hand notations. For a numerical function
f defined on some matrix X, we write ∂f

∂X
for the matrix of the same size as X

with (i, k)-th entry ∂f

∂xik
, where xik is the (i, k)-th element of X; and for a matrix

function X defined on a single variable t, we use ∂X
∂t

to denote the matrix of the

same size as X with ∂xik

∂t
as its (i, k)-th element. Then, when ϕ is changed by

(4.3), we can compute

[

∂L

∂θ

]

θ=0

=

[

( ∂L

∂ϕi
+

)

·
(∂ϕi

+

∂θ

)T

+
( ∂L

∂ϕj
+

)

·
(∂ϕj

+

∂θ

)T

]

θ=0

=
( ∂L

∂ϕi

)

· (ϕj)T −
( ∂L

∂ϕj

)

· (ϕi)T . (4.4)

Let ψ := ∂L
∂ϕ

be the derivative of L w.r.t. ϕ and ψi the i-th row of ψ, then (4.4)

can be rewritten as ∂L
∂θ
|θ=0 = ψi · (ϕj)T − ψj · (ϕi)T. But by its definition ψ is

the mℓ ×m matrix created by stacking ψa := ∂L
∂ϕa

’s one below another, so to get
∂L
∂θ
|θ=0 we need to calculate ∂L

∂ϕa
’s.
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From its definition L = 1
2
log(uT

0ϕ
T

s1
ϕT

s2
· · ·ϕT

sN
ϕsN
· · ·ϕs2

ϕs1
u0) we know

∂L

∂ϕsk

=
ϕT

sk+1
· · ·ϕT

sN
ϕsN
· · ·ϕs1

u0u
T

0ϕ
T

s1
· · ·ϕT

sk−1

uT

0ϕ
T
s1
ϕT

s2
· · ·ϕT

sN
ϕsN
· · ·ϕs2

ϕs1
u0

. (4.5)

For k = 1, 2, · · · , N define

uk :=
ϕsk
· · ·ϕs1

u0

‖ϕsk
· · ·ϕs1

u0‖
, vk :=

ϕT

sk+1
· · ·ϕT

sN
uN

uT

k−1ϕ
T
sk
· · ·ϕT

sN
uN

.

Then (4.5) can be rewritten as

∂L

∂ϕsk

=
ϕT

sk+1
· · ·ϕT

sN
uNu

T

k−1

uT

k−1ϕ
T
sk
· · ·ϕT

sN
uN

= vku
T

k−1 ;

and it follows that ψa = ∂L
∂ϕa

=
∑

k:sk=a vku
T

k−1. By their definition the vectors uk

and vk can be iteratively calculated as follows:

1. forward procedure: starting from the initial vector u0, for k = 1, 2, · · · , N
compute u′

k = ϕsk
uk−1, ck = ‖u′

k‖ and uk = c−1
k u

′
k.

2. backward procedure: starting from vN = c−1
N uN , for k = N − 1, · · · , 2, 1

compute vk = c−1
k ϕT

sk+1
vk+1. — In fact, by the definition of ck we have

ϕsk
uk−1 = ckuk, thus

vk =
ϕT

sk+1
· · ·ϕT

sN
uN

cku
T

kϕ
T
sk+1
· · ·ϕT

sN
uN

= c−1
k ϕT

sk+1
vk+1 , (4.6)

with initial value vN = uN/(cNu
T

NuN) = c−1
N uN since ‖uN‖ = 1.

In this way, we are able to compute the derivative matrix ψ = ∂L
∂ϕ

. Furthermore,
using the auxiliary vectors uk and vk, we have

∂L

∂u0

=
ϕT

s1
· · ·ϕT

sN
ϕsN
· · ·ϕs1

u0

uT

0ϕ
T
s1
· · ·ϕT

sN
ϕsN
· · ·ϕs1

u0

=
ϕT

s1
· · ·ϕT

sN
uN

uT

0ϕ
T
s1
· · ·ϕT

sN
uN

= ϕT

s1
v1 . (4.7)

So if we define c0 = 1 in (4.6), then the above forward-backward procedure can be
used also to calculate the derivative v0 := ∂L

∂u0
of L w.r.t. the initial state u0. To

get each vector uk or vk we should multiply a matrix to a vector, which costs m2

flops; so the complexity of the forward-backward algorithm is O(Nm2).

4.3 Learning norm-OOMs from data

This subsection introduces in detail the learning algorithm of norm-OOMs. We
first clarify the learning task as follows: given the training data s̄ = s1s2 · · · sN

and the model dimension m, find a norm-OOM (Rm, {ϕa}a∈O,u0) so that the
likelihood P (s̄|ϕa,u0) is maximal.
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As was stated earlier, the learning algorithm modifies the observable operators
ϕa iteratively: at each iteration only 1 or 2 rows selected from these operators,
say ϕi and ϕj , are updated via (possibly) ϕi

+ ← (−ϕi) and (4.3), which should
increase the likelihood of the estimated model on the given training sequence. For
this we need to determine the parameter θ in (4.3). When seen as a function of θ,
the log-likelihood L(θ) has the Taylor expansion L(θ) = L(0) + θ · ∂L

∂θ
|θ=0 + o(θ).

Substituting ∂L
∂θ
|θ=0 = ψi(ϕj)T − ψj(ϕi)T into this expansion and omitting the

infinitesimal (i.e., infinitely small) item o(θ), we get

L(θ) ≈ L(0) + θ · [ψi(ϕj)T −ψj(ϕi)T] .

So to increase the value of L(θ) one should set θ so that it has the same sign as
ψi(ϕj)T−ψj(ϕi)T, e.g., θ = η ·{ψi(ϕj)T−ψj(ϕi)T} with η > 0. Furthermore, one
may want to increase L(θ) as quickly as possible, which means we should select
such indices i, j that make the absolute value of ψi(ϕj)T −ψj(ϕi)T largest.

Now we consider the modification of the initial state u0. Fix the observable
operators ϕa and let A = (ϕsN

· · ·ϕs1
)TϕsN

· · ·ϕs1
, then problem (4.2) is equivalent

to max{uT

0Au0 : uT

0u0 = 1}. Since A is a symmetric, positive-definite matrix, it is
well known that, when u0 is the dominant eigenvector of A, (i.e., the eigenvector
w.r.t. the largest eigenvalue λ1), u

T

0Au0 reaches its maximum which is exactly λ1.
However, the computation of A = (ϕsN

· · ·ϕs1
)TϕsN

· · ·ϕs1
(which costs O(Nm3)

flops) and the dominant eigenpair of A is too expensive to be used in our iterative
learning algorithm; and an efficient approximated method is demanded. Here we
employ the power method 5 and take the result of its first iteration as the updated
initial state (u0)+. More precisely, the initial state u0 is modified by

(u0)+ = ‖Au0‖−1Au0 = ‖v0‖−1v0 ,

where the second equality follows from (4.7) and the definition v0 := ∂L
∂u0

; and the
vector v0 has been calculated by the forward-backward algorithm. So we need not
to explicitly compute the matrix A and its eigenvectors.

Theorem 18 Let A ∈ R
m×m be a symmetric, positive-definite matrix. Let x ∈

R
m have norm 1 and y = ‖Ax‖−1Ax. Then xTAx 6 yTAy, with the equality

holds if and only if y = ±x. — See Appendix A.11 for the proof.

This theorem shows that, the updating law (u0)+ = ‖v0‖−1v0 always increases
the log-likelihood L(ϕ,u0) and the increase is nonzero if (u0)+ 6= ±u0.

Summing the above discussion up, we propose a greedy learning algorithm
which iteratively modifies the operators ϕa and the initial state u0, as below.

1. Randomly construct an m-dimensional norm-OOM (Rm, {ϕa}a∈O,u0); and
set the cyclic index i = 1.

5The power method is an iterative method for evaluating the dominant eigenpair of a matrix
A with distinct eigenvalues λ1, λ2, · · · , λn satisfying |λ1| > |λ2| > · · · > |λn|.
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2. Put ϕi
+ ← (−ϕi) if this increases the log-likelihood L of the model.

3. Compute the vectors {uk}Nk=0, {vk}Nk=0 by the forward-backward algorithm;
then construct the derivative matrix ψ = ∂L

∂ϕ
from these vectors.

4. Find the index j that makes the absolute value of ψi(ϕj)T−ψj(ϕi)T largest;
and modify ϕi, ϕj by (4.3) with θ = η · {ψi(ϕj)T −ψj(ϕi)T}, where η > 0
is small enough so that L is increased after the modification.

5. Re-compute the vector v0 and set (u0)+ = ‖v0‖−1v0.

6. Move the index i to the next row of ϕ and repeat the above steps 2–5, until
some termination condition is satisfied.

It is clear that each step of the above algorithm makes the target function L(ϕ,u0)
increase. It is also clear that if the algorithm reaches some local maximal point of
L(ϕ,u0), then ∂L

∂θ
|θ=0 = ψi(ϕj)T −ψj(ϕi)T 6= 0 for all indices i, j and

∂

∂u0

[L− λ(uT

0u0 − 1)] = v0 − 2λu0 = 0 ,

where λ is the Lagrange multiplier whose value is determined by the condition
‖u0‖ = 1. It follows that u0 = ±‖v0‖−1v0 = ±(u0)+. Thus, if the algorithm
does not reach a local maximal point of L(ϕ,u0), then the above steps 4 or 5
will make L larger; and we conclude that the algorithm converges to some local
maximal point of L(ϕ,u0). Furthermore, note that the steps 2, 5 are not restricted
to “local area” in the parameter space. This makes the algorithm differ from the
standard gradient method; and (hopefully) enables it to jump out of some local
optimum.

We end this section with an efficient variation of the above learning algorithm
of norm-OOMs. In the above algorithm, the derivative matrix ψ computed in Step
3 is not fully used. In fact, only two rows of ψ is employed in Step 4 to modify
the observable operators; and other rows are just ignored. So to make full use of
the derivative matrix ψ, one may modify Step 4 as follows.

4’. Find 2n indices and divide them into n pairs such that for each pair (i, j),
|ψi(ϕj)T − ψj(ϕi)T| is large enough; and modify the corresponding ϕi, ϕj

by (4.3) with θ = η · {ψi(ϕj)T − ψj(ϕi)T}, where η > 0 is small enough so
that L is increased after the modification.

One can easily see that the modified algorithm also converges to a local maximal
point of L(ϕ,u0).

5 Some Numerical Examples

In this section the performance of the presented learning algorithm of norm-OOMs
are checked on two artificial datasets generated respectively by the norm-OOM
specified by (3.17) and by a HMM with 5 hidden states and 3 outputs; and a real
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world dataset, the novel “The One-Million Pound Bank-Note” written by Mark
Twain. For comparison, we also trained HMMs from the same datasets using the
EM algorithm [2]. There are two kinds of HMMs: the (usually used) state-emission
HMMs (SE-HMMs), in which the outcomes are “emitted” by the hidden states;
and the transition-emission HMMs (TE-HMMs), in which the symbol emitted at
time t depends on the hidden states at times t and t+ 1.

The quality of learnt models is measured by the quantity description accuracy
(DA), which is defined by

DA(A, S) := f [1 + NLL(A, S)] := f
[

1 + (S#)−1 logℓ Pr(S|A)
]

,

where A is the model whose quality we want to measure; S is the dataset and S#

denotes the total number of symbols in S, i.e., the sum of length of all sequences
in S; ℓ is the alphabet size; and f is a nonlinear function which maps the infinite
interval (−∞, 1] to the finite one (−1, 1] via

f(x) =

{

x if x > 0 ,
(1− e−0.25x)/(1 + e−0.25x) if x < 0 .

Intuitively, NLL(A, S) is the normalized log-likelihood of A on the dataset S per
symbol and assumes values from −∞ to 0. Therefore the range of DA(A, S) is
the interval (−1, 1]: DA = 1 means the model describes the data S perfectly
well (it can predict the data with probability one); DA = 0 means the model
is irrelevant to the data for it provides no more information about the process
than just randomly “guessing” such a data set; DA < 0 means the model is even
worse than a randomly created one, which, as one can imagine, rarely happens
in practice. In short, the larger the DA-values are, the better the learnt model
is. In the following numerical experiments the quality of all learnt models will be
measured by their DA-values on the training sequence and testing sequences from
the same source as that of the training data.

Modelling artificial systems. In the first experiment, 30 sequences of length
1000 are procured by the norm-OOM (3.17). The first 20 are used as training
sequences from each of which several norm-OOMs (HMMs) with different dimen-
sions m ∈ {2, 3, · · · , 8} are learnt; the other 10 sequences are used as the testing
data on which the DA-values of each estimated model are computed and compared.
We plotted in Figure 4-(a,b) the distribution of training and testing DA-values of
the learnt models respectively; and in Figure 5-(a,b) the corresponding standard
deviation. From these figures we see that norm-OOMs have higher description
accuracy than that of HMMs. This is not surprising since the underlying system
cannot be captured by HMMs, as shown before. Also observe that both HMMs
and norm-OOMs suffer from the overfitting problem: when model dimension m
becoming larger, the training DA-values increase but the test DA-values decrease.
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In the second experiment, a HMM with transition matrix and emission matrix

A =













.93 .00 .02 .00 .05

.14 .05 .00 .00 .81

.62 .00 .00 .02 .36

.21 .22 .00 .53 .04

.00 .00 .74 .26 .00













, B =













.04 .42 .54

.29 .00 .71

.13 .00 .87

.87 .13 .00

.00 .98 .02













is used as the underlying system. Running this HMM we produced 20 training
sequences of length 2000 and 10 testing sequences of length 1000. As before, several
norm-OOMs and HMMs of dimensions m from 2 to 8 are trained and tested on the
dataset. The results are presented in Figure 6 and 7. For this dataset, norm-OOMs
show no significant advantages over HMMs, but the performance of norm-OOMs
are still comparable to that of HMMs.

Modelling “The One-Million Pound Bank-Note”. In this experiment norm-
OOMs are taken to model a real-world stochastic source, a text source. We split
the novel “The One-Million Pound Bank-Note” into two parts, the first half (of
length 21042) was used as training sequence, the second half (of length 20569)
as test sample. The text was simplified by putting all letters to lower case and
reducing the set of punctuations to blanks, which left an alphabet of size 27. From
this dataset, several norm-OOMs (HMMs) of dimension m ∈ {3, 6, · · · , 21} were
trained and tested. The training and test DA-values of these learnt models are
shown in Figure 8. From the figure we see that norm-OOMs and TE-HMMs have
higher DA-values than SE-HMMs on both the training sequence and the test sam-
ple. This is because SE-HMMs have fewer free parameters than TE-HMMs and
norm-OOMs of the same dimension. For high dimensional models, norm-OOMs
are a little better than TE-HMMs. In particular, for the case of m = 21, TE-HMM
has already overfitted the trainind data; whereas norm-OOM still works well. This
example, as well as the above two experiments, suggests that norm-OOMs may
be more expressive than HMMs.

6 Conclusion and Future Work

In this report we established the basic theory of norm-OOMs and proposed an
iterative learning algorithm for estimating norm-OOMs from data. It is shown
that any stochastic process can be represented by a point in an appropriate inner
product space, the space D. The inner product in D induces naturally a metric
between stochastic processes. It is also shown that from any process an “abstract”
norm-OOM can be constructed in the space D. All these facts enable us to study
stochastic processes in the space D, by means from linear algebra and analysis.

Based upon the maximum-likelihood principle, an iterative algorithm is pro-
posed for learning norm-OOMs from data. A significant feature of this algorithm
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is that it only produces valid norm-OOMs (after each iteration); and so one can
terminate the algorithm at any time. Two numerical experiments are implemented
to illustrate the performance of the presented algorithm. It turns out that norm-
OOMs are better than (at least comparable to) HMMs concerning the training
and testing likelihood.

In Section 3 we studied the linear structures of the space D and its subsets DS

and D+. It is also desirable to investigate their topological properties, which shed
more light on the relation between the theory of stochastic processes and functional
analysis. For instance, we have proven that the metric space D+ with its distance
induced by the inner product (3.11) is complete, i.e., each Cauchy sequence in
D+ is convergent. A more interesting and important theoretical problem is the
distribution of processes that can be modelled by m-dimensional norm-OOMs in
the space D, for it actually asks to which accuracy we can approximate an arbitrary
process by an m-dimensional norm-OOMs.

A Proofs

A.1 Proof of Theorem 2

(1) We induct on m. The case of m = 1 is trivial. Assume the assertion is true
for m = r and consider the case of m = r + 1. Let g1, g2, · · · , gm ∈ F be linearly
independent, then g1, g2, · · · , gr are also linearly independent. By the inductive
hypothesis, there are b̄1, b̄2, · · · , b̄r ∈ O∗ such that the matrix Ar = [gj(b̄i)]i,j=1,2,··· ,r

is invertible. We claim that, for these sequences b̄1, b̄2, · · · , b̄r, there is a b̄m ∈ O∗

which makes Am(b̄m) = [gj(b̄i)]i,j=1,2,··· ,m a nonsingular matrix. If this is not true,
then for any sequence b̄m in O∗, we have m > rankAm(b̄m) > rankAr = r and so
rankAm(b̄m) = r. It follows that Am(b̄m)x(b̄m) = 0 for some nonzero vector

x(b̄m) = [x1(b̄m), x2(b̄m), · · · , xm(b̄m)]T =: [yT(b̄m), xm(b̄m)]T . (A.1)

As rankAr = r, we know xm(b̄m) 6= 0. Without loss of generality, assume that
xm(b̄m) = −1 (otherwise we put x = −x/xm). It follows from Am(b̄m)x(b̄m) = 0
and (A.1) that Ar · y(b̄m) = [gm(b̄1), gm(b̄2), · · · , gm(b̄r)]

T and so

x(b̄m) =
[

[gm(b̄1), gm(b̄2), · · · , gm(b̄r)](A
−1
r )T,−1

]T

is a constant vector (not depending on b̄m). The last row of Am(b̄m)x = 0 shows
gm(b̄m) =

∑r
j=1 xjgj(b̄m) for any b̄m ∈ O∗, contradicting the linear independence

of g1, g2, · · · , gm. Therefore the assertion follows.
(2a) It is clear that G ⊆ H∗ and well known that dimH∗ = dimH = m,

where H∗ is the dual space of H consisting of all linear functionals on H. Thus
dimG 6 m. Assume that dimG = r < m. Let {σlb̄i

}i=1,2,··· ,r be a basis of G and
{lāj

h}j=1,2,··· ,m a basis of H. Then for any j 6 m and b̄ ∈ O∗,

(lāj
h)(b̄) = (lb̄lāj

)(ε) = σlb̄lāj
h =

(
∑r

i=1 αi(b̄)σlb̄i

)

(lāj
h)

=
∑r

i=1 αi(b̄)σlb̄i
lāj
h =

∑r
i=1 αi(b̄)(lāj

h)(b̄i) .
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Figure 4: Training (a) and testing (b) DA-values of SE-HMMs (blue, mark: �),
TE-HMMs (red, mark: ◦) and norm-OOMs (black, mark: ×), in which the 10%-
percentile, lower quantile, median, upper quantile and 90%-percentile positions
are marked.
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Figure 5: Standard deviation of DA-values for SE-HMMs, TE-HMMs and norm-
OOMs.
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Figure 6: Training (a) and testing (b) DA-values of SE-HMMs (blue, mark: �),
TE-HMMs (red, mark: ◦) and norm-OOMs (black, mark: ×) on the dataset
generated by a 5-state-3-output HMM.
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Figure 7: Standard deviation of DA-values for SE-HMMs, TE-HMMs and norm-
OOMs on the dataset generated by a 5-state-3-output HMM.
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Figure 8: Training (a) and test (b) DA-values of SE-HMMs TE-HMMs and norm-
OOMs on the text “The One-Million Pound Bank-Note”.
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This equality illustrates the vector [(lā1
h)(b̄), · · · , (lām

h)(b̄)] can be written as the
linear combination

∑r
i=1 αi(b̄)[(lā1

h)(b̄i), · · · , (lām
h)(b̄i)], which contradicts the fact

that {lāj
h}j=1,2,··· ,m is a basis of H and the statement (1). So dimG = m.

(2b) Since h is a LDF of dimension m, by (2.3) we know h(ā) = 1τāw0 for
some structure (Rm, {τa}a∈O,w0). It follows from the definition of h(A,B) that

h(A,B) =
[

h(āj b̄i)
]

i6N,j6M
=

[

1τb̄i
· τāj

w0

]

i6N,j6M
=: π(B)ω(A) ,

where π(B) is theN×mmatrix with i-th row 1τb̄i
and ω(A) them×M matrix with

τāj
w0 as its j-th column. So rankh(A,B) 6 min{rankπ(B), rankω(A)} 6 m.
(2c) Let Rn := span{τāw0 : ā ∈ O6n}. Then (i) dimR0 = 1; (ii) Rn ⊆ Rn+1

and so dimRn 6 dimRn+1; (iii) dimRn = dimRn+1 implies that Rn is invariant
under each τa and therefore Rn = Rn+1 = · · · = R := span{τāw0 : ā ∈ O∗};
and (iv) dimR = m, since R is a representation of the abstract vector space
H = span{lāh : ā ∈ O∗}, which, by the definition of m-dimensional LDFs, has
dimension m. These facts reveal that dimRn = m for some n < m and hence the
matrix ω(O6n) is of full (row) rank. Similary, π(O6r) is of full (column) rank for
some r < m. Thus, h(O6n, O6r) = π(O6r)ω(O6n) has rank m.

A.2 Proof of Theorem 6

It is obvious that f ∈ B implies αf ∈ B for any real number α. Now let f, g ∈ B,
then Sn(f + g) = Sn(f) + Sn(g) + 2

∑

ā∈On f(ā)g(ā) and so, since 2ab 6 a2 + b2

for any a, b ∈ R, Sn(f + g) 6 2[Sn(f) + Sn(g)]. This proves B is a vector space.
Furthermore, the space B is invariant under la because Sn(laf) 6 Sn+1(f).

A.3 Proof of Theorem 7

The assertions (i, ii) are clear. For (iii) we need only to show that f(x̄)g(x̄) >
∑

a∈O f(x̄a)g(x̄a). But by Cauchy’s inequality we have

[
∑

a∈O f(x̄a)g(x̄a)
]2

6
[
∑

a∈O f
2(x̄a)

] [
∑

a∈O g
2(x̄a)

]

6 f 2(x̄)g2(x̄) ; (A.2)

and the desired inequality follows. To see that D+
0 is invariant under la, it suffices

to show (laf)2(x̄) >
∑

b∈O(laf)2(x̄b), i.e., f 2(ax̄) >
∑

b∈O f
2(ax̄b) for any f ∈ D+

0

and any x̄ ∈ O∗, which is clear by the definition of D+
0 .

A.4 Proof of Lemma 2

By Definition 3, we see that for any α ∈ R and x, y ∈ V ,

0 6 Q(x− αy, x− αy) = q2(x)− 2αQ(x, y) + α2q2(y) . (A.3)

If q(y) = 0, it follows from q2(x) − 2αQ(x, y) > 0 (∀α ∈ R) that Q(x, y) = 0.
Interchanging the roles of x and y, we see that q(x) = 0 implies Q(x, y) = 0. So
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|Q(x, y)| 6 q(x)q(y) if one of q(x) and q(y) is zero. If q(x), q(y) both are nonzeros,
letting α = ±q(x)/q(y) in (A.3) we get ±Q(x, y)q(x)/q(y) 6 q2(x), which implies
|Q(x, y)| 6 q(x)q(y).

A.5 Proof of Theorem 9

Let f ∈ D+
0 be fixed with ‖[f ]‖ = q(f) = 1. For each n = 0, 1, 2, · · · we define a

function gn ∈ F by

gn(ā) :=
√

∑

x̄∈On f 2(āx̄) . (∀ā ∈ O∗)

It follows that g0 = f and gn > 0 for all n. Moreover, by the definition of D+
0

(see (3.4)),
∑

x̄∈On f 2(āx̄) >
∑

x̄∈On,b∈O f
2(āx̄b) =

∑

x̄∈On+1 f 2(āx̄), which implies
gn(ā) > gn+1(ā). Thus, for each ā ∈ O∗, {gn(ā)}n=0,1,2,··· is a decreasing number
sequence lower bounded by 0; and the function

g(ā) := lim
n→∞

gn(ā) = lim
n→∞

√

∑

x̄∈On f 2(āx̄) (∀ā ∈ O∗) (A.4)

is well defined and satisfies 0 6 g(ā) 6 f(ā) since g0 = f . Now we compute

∑

b∈O

g2(āb) = lim
n→∞

∑

b∈O

g2
n(āb) = lim

n→∞

∑

b∈O,x̄∈On

f 2(ābx̄) = lim
n→∞

g2
n+1(ā) = g2(ā) ,

and g2(ε) = lim
n→∞

g2
n(ε) = lim

n→∞

∑

x̄∈On f 2(x̄) = lim
n→∞

Sn(f) = q2(f) = 1 (see (3.2)

and (3.8)). Therefore, the function g defined by (A.4) is a member of S and, as
illustrated earlier, has the property ‖[g]‖ = q(g) = 1.

As f > g > 0, by (3.3) we have Qn(f, g) > Qn(g, g) for all n, which, together
with (3.6), implies Q(f, g) > Q(g, g) = q2(g) = 1. Thus,

q2(f − g) = q2(f)− 2Q(f, g) + q2(g) = 2[1−Q(f, g)] 6 0

and so q(f − g) = 0, i.e., [f ] = [g].

A.6 Proof of Theorem 10

Since f, g ∈ D+
0 , we know f, g > 0 and so q(f + g) > q(f) > 0. But q(f + g) = 0,

thus q(f) = 0. Similarly, q(g) = 0. This proves (i).
Let [f ], [g] ∈ D+. By the definition of D+, there are f ′, g′ ∈ D+

0 such that
[f ] = [f ′] and [g] = [g′]. As D+

0 is a convex cone, we have f ′ + g′ ∈ D+
0 and

αf ′ ∈ D+
0 for any α > 0. It follows that [f ] + [g] = [f ′] + [g′] = [f ′ + g′] and

α[f ] = α[f ′] = [αf ′] both belong to D+. So D+ is a convex cone.
Now let [h] ∈ D+ be such that −[h] = [−h] is also a member of D+. Then there

exist f, g ∈ D+
0 satisfying [f ] = [h] and [g] = [−h], i.e., q(f − h) = q(g + h) = 0.

So 0 6 q(f + g) 6 q(f −h)+ q(g+h) = 0. By (i) we know q(f) = 0, which means
[h] = [f ] = [0]. Therefore, D+ is pointed at [0].
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A.7 Proof of Theorem 11

By (3.9) we see that Q(f, g) = 1. As f, g ∈ D+
0 , {Qn(f, g)}n=0,1,2,··· (see (3.3) for

the definition of Qn) forms a decreasing sequence with Q0(f, g) = f(ε)g(ε) = 1
and limn→∞Qn(f, g) = Q(f, g) = 1. So Qn(f, g) = 1 for all n. By (3.2) we have
Sn(f−g) = Sn(f)−2Qn(f, g)+Sn(g) = 0, which means f(ā) = g(ā) for all ā ∈ On

(n = 0, 1, 2, · · · ) and so f = g.

A.8 Proof of Theorem 13

Derect computation shows that

∑

a∈O Q(laf, lag) =
∑

a∈O lim
n→∞

∑

x̄∈On f(ax̄)g(aā)

= lim
n→∞

∑

x̄∈On+1 f(x̄)g(x̄)

= Q(f, g) .

A.9 Proof of Theorem 16

Assume [τa]ik is the only (possibly) nonzero element in the i-th row of τa. Then for
any x = [x1, x2, · · · , xm]T ∈ R

m with all elements xj being nonnegative, the i-th

element of τax is [τa]ik ·xk; and its square root
√

[τa]ik
√
xk is just the i-th element of√

τa
√
x = ϕa

√
x. So

√
τax = ϕa

√
x for any a ∈ O and any nonnegative x ∈ R

m.
By inducting on the length of ā ∈ O∗, we can prove

√
τāw0 = ϕā

√
w0 = ϕāu0.

Now it is clear that ‖ϕāu0‖2 = ‖√τāw0‖2 = 1τāw0 and the assertion follows.

A.10 Proof of Theorem 17

The if part is clear since both G(i, j, θ) and G′(i, j, θ) are unitary and since the
product of two unitary matrices is also unitary. To prove the only if part, we need
two preparing propositions.

1. Any unitary matrix A of order 2 is either G(1, 2, α) or G′(1, 2, α). —
Assume that A = [a, b; c, d] in Matlab’s notation, then by AAT = I2 we know

a2 + b2 = c2 + d2 = 1 , ac + bd = 0 .

Thus a = cosα, b = sinα, c = sin β and d = cosβ for some α, β ∈ (−π, π]. It
follows that ac + bd = sin(α + β) = 0 and so α + β = kπ with k = −1, 0, 1, 2. If
k = 0 or 2, then A = G(1, 2, α); if k = ±1, then A = G′(1, 2, β).

2. For any vector x ∈ R
n (n > 2) there exists a matrix A which is the product

of G(i, j, θ)’s, such that Ax = ‖x‖e1, where e1 is the first unit vector in R
n. —

Write x = [x1, x2, · · · , xn]T. Let y2 =
√

x2
1 + x2

2 and α2 ∈ (−π, π] be such that
x1 = y2 cosα2 and x2 = y2 sinα2. Then G(1, 2, α2)x = [y2, 0, x3, · · · , xn]T. Next
let y3 =

√

y2
2 + x2

3 and α3 ∈ (−π, π] be such that y2 = y3 cosα3 and x3 = y3 sinα3.
Then G(1, 3, α3)G(1, 2, α2)x = [y3, 0, 0, x4, · · · , xn]T. Repeating this operation,
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we get G(1, n, αn) · · ·G(1, 3, α3)G(1, 2, α2)x = [yn, 0, · · · , 0]T with yn = ‖x‖. This
proves the assertion.

Now we prove the theorem by inducting on the order n of the matrix U . For
the case of n = 2, the theorem follows from the above assertion 1. Assume the
theorem is true for n = k. For n = k + 1, we write U = [u1, · · · ,uk,un]. By the
assertion 2 we know there exist α2, · · · , αn ∈ (−π, π] such that

G(1, n, αn) · · ·G(1, 3, α3)G(1, 2, α2)u1 = ‖u1‖e1 = e1 ,

for U is a unitary matrix and so ‖u1‖ = 1. It follows that

U ′ := G(1, n, αn) · · ·G(1, 2, α2)U =

[

1 cT

0 V

]

, (A.5)

where V ∈ R
k×k and c ∈ R

k. The matrices G(1, j, αj)’s and U in (A.5) are all
unitary matrices, so is U ′. By U ′(U ′)T = In we conclude V V T = Ik and c = 0.
By the induction hypothesis, the matrix V , and hence U ′, can be written as the
product of G(i, j, θ)’s and G′(i, j, θ)’s. Since [G(i, j, α)]−1 = G(i, j,−α), by (A.5)
we know U is also the product of G(i, j, θ)’s and G′(i, j, θ)’s.

A.11 Proof of Theorem 18

Since the matrix A ∈ R
m×m is symmetric and positive-definite, it has the singular

value decomposition A = UDUT, where U is a unitary matrix of order m, i.e.,
UTU = Im; and D = diag{σ1, σ2, · · · , σm} with σ1 > σ2 > · · · > σm > 0. For any
vector x in R

m and y = ‖Ax‖−1Ax, let x0 = UTx and y0 = UTy. It follows that
y0 = ‖Dx0‖−1Dx0, x

TAx = xT

0Dx0 and yTAy = yT

0Dy0. Furthermore, if x has
norm 1, so does x0. Thus, we can assume A = diag{σ1, σ2, · · · , σm} without loss
of generality.

As y = ‖Ax‖−1Ax and A is diagonal, the inequality xTAx 6 yTAy can be
rewritten as (xTAx)(xTA2x) 6 xTA3x. Assume that x = [x1, x2, · · · , xm]T and
let f(s) := s−1 log(xTAsx) = s−1 log(

∑m
i=1 x

2
iσ

s
i ), where s > 0. If we can prove

f(s) is an increasing function, then f(2) 6 f(3) and f(1) 6 f(3), i.e.,

(xTA2x)3
6 (xTA3x)2 , (xTAx)3

6 xTA3x .

The product of the above two inequalities implies (xTAx)(xTA2x) 6 xTA3x. To
show that f(s) is increase, we compute its derivative f ′(s) = s−2

∑m

i=1 x
2
i zi log(zi),

where zi = σs
i /(

∑m
k=1 x

2
kσ

s
k) for i = 1, 2, · · · , m. To prove that f ′(s) > 0, we need

the following finite form of Jensen’s inequality.

For a real convex function h, numbers zi in its domain, and nonnegative weights
wi such that

∑m

i=1
wi = 1, we have h(

∑m

i=1
wizi) 6

∑m

i=1
wih(zi), with the equality

holds iff there exists a constant c such that, for each i, either wi = 0 or zi = c.
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Set wi = x2
i (note that x has norm 1) and h(z) = z log(z), then Jensen’s inequality

implies f ′(s) = s−2
∑m

i=1 x
2
ih(zi) > s−2h(

∑m
i=1 x

2
i zi) = s−2h(1) = 0. This proves

the desired inequality.
Furthermore, (xTAx)(xTA2x) = xTA3x iff f ′(s) = 0 for s ∈ [1, 3], which

happens iff there is a constant cs such that, for each i, either xi = 0 or zi =
σs

i /(
∑m

k=1 x
2
kσ

s
k) = cs, i.e., σi = c (constant). It follows that y = ‖Ax‖−1Ax = ±x.
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