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Abstract: A recent development in behavior-oriented robotics is to view
behaviors in an agent as coupled dynamical subsystems. When one designs
such subsystems a difficulty arises. The desired dynamics of the subsystem is
likely to become qualitatively disrupted due to the superimposed dynamics
of the behavior’s interaction with other behaviors and the dynamics of sen-
sor input. A mathematical technique is presented for making subsystems to
some degree immune against such qualitative disruptions. By adding a suit-
able compensation term to the original ODE specification of the subsystem,
the dynamics of its coupling variables lead to a benign modulation instead
of a potential disruption. For the combined modulative effects of shift, am-
plitude variation, and velocity variation, the compensation term is given in
an explicit, ready-to-use form. This is a step toward a modular design of
behavior systems from interacting subsystems.

Zusammenfassung: Ein jiungerer Ansatz in der behavior-orientierten
Robotik besteht darin, Behaviors in einem Agenten als gekoppelte dynami-
sche Teilsysteme zu modellieren. Wenn man solche Teilsysteme im Zuge
einer Roboterkonstruktion entwirft, entsteht die Schwierigkeit, dafl die be-
absichtigte Dynamik des Teilsystems durch dessen Interaktion mit anderen
Teilsystemen und mit sensorischem Input qualitativ verandert wird. Die
vorliegende Arbeit beschreibt, wie Behavior-Subsysteme bis zu einem gewis-
sen Grad gegen solche qualitativen Veranderungen immun gemacht werden
konnen. Durch die Hinzufiigung eines geeigneten Kompensationsterms zu
den ursprunglichen Systemgleichungen werden die Auswirkungen der Kop-
plungsdynamik auf Modulationen beschrankt, die den qualitativen Typ des
Systemverhaltens erhalten. Fiir einige solcher Modulationen (Shift, Amplitu-
den- und Geschwindigkeitsvariation) wird der Kompensationsterm in einer
gebrauchsfertigen, expliziten Form angegeben. Dies stellt einen Schritt in
Richtung eines modularen Entwurfs von Behavior-Systemen aus gekoppelten
Teilsystemen dar.



1 Introduction

Behavior-oriented robotics, albeit successful in many respects, is still lacking
a principled formal methodology. This seriously impedes progress in the
field. Continuous dynamical systems theory has been proposed for filling
the methodological gap in several target articles [6] [2]. The PDL language
for programming robots, which has been developed at the VUB Al Lab and
which is used in several Furopean robotic labs, has been designed as a tool
for realising behaviors as semi-continuous processes of real- valued quantities
[7]. However, the target articles deal with the subject on a level that is too
general for practical use, and current PDL programming practice typically
clings to a traditional programming style that renders a system-theoretic
analysis impossible. A practical yet principled methodology for designing
behavior systems as dynamical systems is still missing.

Modeling agents as dynamical systems is quite a challenge (comprehen-
sive discussion in [4]). One of the problems lies in a general property of
dynamical systems: A system made up from nonlinearly coupled subsys-
tems usually cannot be understood in terms of the behavior exhibited by
the subsystems in isolation. This general phenomenon seriously obstructs a
modular design of robots. If one tries to design some behavior systems (e.g.,
for forward movement or obstacle avoidance) first, and then to couple them
together, one will typically find that they behave in a qualitatively different,
unpremeditated fashion afterwards.

In spite of this general instability phenomenon in ad-hoc constructed dy-
namical systems, behaviors in animals often show a remarkable qualitative
stability. For instance, gait patterns typically maintain their qualitative iden-
tity over a wide range of internal and external conditions. A walking pattern
stays a walking pattern even though it might be sped up or slowed down,
or changed in its step length, or be otherwise modulated quite quickly and
strongly. Only when internal or external conditions drift beyond certain val-
ues, the walking pattern changes qualitatively, e.g. by turning into a running
pattern.

This paper describes a simple formal mechanism for making dynamical
subsystems to a certain degree “immune” against perturbations, as observed
in natural behavior systems. Due to this mechanism, arbitrarily fast and
reasonably strong variations in the coupling variable values do not result in
a qualitative disruption of the subsystem’s behavior; rather, they lead to a
“benign”, albeit possibly fast and strong modulation of its dynamics. 1 do



not make any claims concerning the biological relevance of the mechanism. It
is merely intended as a practically helpful contribution to a modular design
of behavior-based robots.

The article is organized as follows. Section 2 provides the formal frame-
work for modeling agents as continuous dynamical systems, and behaviors
as subsystems therein. Section 3 presents an example of how a subsystem’s
dynamics gets disrupted through a seemingly harmless interaction dynam-
ics. Section 4 specifies the “qualitative stabilization” mechanism in detail
and generality. The basic idea is to add a compensation term to the original
subsystem specification. This term measures the dynamics of the variables
used for coupling the subsystem with the rest of the system, and generates a
compensation for the potentially disruptive effects of these variables’ dynam-
ics. A general theorem is presented which describes how the compensated,
coupled subsystem’s dynamics can be understood in terms of the dynamics
it shows when it is decoupled. In fact, this theorem boils down to an ex-
ercise in system transformations; it is not far from trivial. In section 5, a
special case is treated which is relevant for many practical applications. A
ready-to-use mathematical recipe is given for a non-disruptive modulation of
dynamical systems with respect to shift, amplitude and velocity. Section 6
discusses some limitations of the mechanism and relates it to ongoing work
in behavior-oriented robotics.

2 A framework for modeling behaviors as dy-
namical subsystems

We follow [6] and [2] in the basic ideas on how to model an agent as a
continuous dynamical system. Namely, we describe it in terms of continuous
system variables x1,...,x, and coupling variables cy,...,c,,.

If the model is used as a blueprint for design, the system variables must
denote quantities describing the agent proper, like proprioceptive sensor read-
ings, actuator control variables or motivational quantities. If the formal
model is to be used as a tool for the analysis of an already existing agent,
system variables can also refer to external descriptive dimensions, like po-
sition or direction of movement. We will be concerned with the first case
only.

The coupling variables refer to quantities whose dynamics is determined



from outside the agent, and whose function it is to dynamically couple the
agent into its environment. The most important case of coupling variables
are sensor readings. One might also wish to take into account others, like
mechanical forces exerted on the agent body.

Given a suitable choice of system variables and coupling variables, the
general scheme of a dynamical system model for an agent is shown in (1).

1 = filzr,.. o xn,alt), . en())
(1)
tn = folar, oo xn,e(t), . en(t))

In vector notation, (1) can be written more concisely as follows:

x = f(x,c(t)) (2)

A concrete instantiation of this general scheme is given in (3):

T = y+3c(t)
§ o= —at—e(t)

(3)

Some comments might be in place here for the benefit of readers not yet
quite accustomed to dynamical systems:

o According to mathematical usage, the fact that all system variables
and coupling variables appear on the right-hand side in each line in the
general scheme (1) does not imply that all of them have to appear in
every line of concrete instantiations of (1). (3) illustrates this fact.

e (3) is, in fact, an instantiation of (1): put @1 = x, 2 =y, ¢1(t) = ¢(1),

Filen,az,er(t) = a2+ 3e(t), and foler, 2z, ea(1)) = —at — 1 (1)

e The coupling variables are functions of time. They depend on time in
a manner that is not specified within (1). Therefore, the dependency
on time ¢ is explicitly noted as ¢;(t).

o Of course, the system variables are also functions of time. However,
in their case, the dependency on time is specified via (1). In order
to arrive at explicit time functions x;(¢), the system (1) of ordinary
differential equations must be solved.



Coupling variables are formally similar to input parameters and distur-
bance parameters, as known from control theory, and to control parameters,
as used in system theories in the natural sciences or in the mathematical
theory of dynamical systems. All of them are free parameters in the rhs of
system equations. However, the intuitive perspective on these parameters,
and the appropriate mathematical methods for handling them, differ in all
cases.

Input parameters, in a control theoretic setting, are used for an effective
control of the system. By varying them dynamically, the system is steered
towards a desired performance. The time scale on which the input parameters
vary can be the same as the time scale of the system variable dynamics.

Disturbance parameters, again in a control theoretic perspective, are typ-
ically considered to reflect random “process noise”. They are handled with
stochastic methods. Non-random disturbances, which are also admitted into
the framework of control theory, are assumed to be sufficiently small, such
that they can be done with via local linearization (cf. [8], p. 283, 74). Fur-
thermore, such disturbances do not appear in the form of free parameters;
they are thus not relevant for the present discussion.

Finally, control parameters are typically required to vary on a time scale
that is much slower than the system variable dynamics. In mathematical
analysis, they are treated as constants. Bifurcation theory — one of the
finest parts of modern mathematical system theories — is concerned with the
comparison of system dynamics exhibited at different, but constant, values
of control parameters.

Coupling variables are unlike all of these kinds of free parameters. First,
they are not “used” to achieve a desired agent performance. They cannot
be “controlled”. Thus, the methods of control theory for dealing with input
parameters are inapplicable. Second, they are not simply “noise”. It would
obviously be highly inappropriate to model sensor input or the influences of
interacting behavior subsystems as noise. Finally, coupling variables typically
vary on a time scale comparable to that of the system variables. Therefore,
the analytic tools developed in bifurcation theory are inappropriate.

Unfortunately, no mathematical methods at all seem available to deal
with coupling variables. This does not come as a surprise. One might argue as
follows: “The system dynamics depends on the coupling variable dynamics,
and the coupling variable dynamics is basically arbitrary — therefore, the
system dynamics is basically arbitrary — yet non-random —, and thus cannot
be the object of mathematical study”. Control theory has taken one route
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out of this impasse, by considering input parameters that are not arbitrary
but can be manipulated, and disturbance parameters that can be treated as
random processes. Bifurcation theory has taken another available route by
assuming that that control parameters are static, not dynamic.

The best what can be done for systems with arbitrary and dynamic cou-
pling influences seems to be an analysis of extremely general properties. An
example is provided by [3], where the occurence of chaotic states in such
systems is defined.

The present paper indicates that it is in fact possible to arrive at a prac-
tically useful perspective on arbitrarily and dynamically coupled systems.
The route that I wish to propose is to define and investigate systems that
can cope with an arbitrary and fast coupling dynamics, in the sense of be-
coming modulated without getting qualitatively disrupted. This puts the
present paper into perspective. In control theory and bifurcation theory, the
restrictions necessary for enabling a mathematical investigation are applied
on the side of the coupling variables’ dynamics (controllable, or stochastic,
or static, respectively). By contrast, I restrict the type of the very systems
under investigation.

What I mean by “modulated”, “qualitatively disrupted” etc. will become
clear in the following sections. I touched these points here only in order to
clarify the status of coupling variables.

The scheme (1) describes an entire agent. However, in this paper I focus
on behaviors, which shall be modeled as subsystems of (1). A subsystem of
(1) is specified by a subset of the system equations, say by the first k ones:

1 = filzr,.. o xn,alt), . en())
(4)

T = fk(xlv-"7xnvcl(t)7"'7cm(t))

where & < n. Taken as a system in its own right, the subsystem (4) of
(1) has system variables @1,...,2;. What are its coupling variables? There
are two kinds of them now. First, the subsystem (4) inherits the coupling
variables ¢1(1),...,cn(t) of the supersystem (1). Second, the other super-
system variables xyy1,...,2,, which appear in the rhs of (4), assume the
role of additional coupling variables. They couple the subsystem (4) into the
supersystem (1). From the perspective of (4), the dynamics of xp41,..., 2,
is arbitrary and likely to lie on the same time scale as that of the subsystem



variables x1,...,x;. Thus, from the subsystem’s perspective, they behave
essentially in the same way as the original coupling variables ¢1(t), ..., ¢ (?).
Therefore, we are justified in rewriting (4) as follows:

1 = fil@r, . 2 xppr (), xn(t),a(t), .o en(t))
(5)
= folwe, .o @ xppa (1), xa(t),a(t), .o en(t))

Up to a renaming of variables, (5) turns out to be equivalent to (1). For
the purpose of mathematical investigation, we may therefore use the no-
tationally simpler form (1) as a dynamical system scheme for a behavior,
interpreting ¢;(t), ..., ¢, (1) as variables that couple the behavior subsystem
into the agent supersystem, or as variables that couple it into the environ-
ment. Thus, in the sequel we will be concerned with dynamical systems like

(1).

3 Qualitative disruption and qualitative sta-
bility: an example

In this section, the phenomenon of qualitative disruption, and a method for
preventing it, will be illustrated with an example.
Consider the following two-dimensional system:

1 = —(r2— (1))
Ty = 11— ()

(6)

This is a non-autonomous system which instantiaties (1). (The terms
autonomous system and non-autonomous system are used in this article in
the sense of dynamical systems theory, i.e. an autonomous system is a time-
invariant, or stationary, dynamical system. This has nothing to do with the
notion of autonomous systems in the sense of Artificial Life). Let us fix the
coupling variables ¢;(¢), ¢2(?) at some values that remain constant over time,
i.e. let us consider the autonomous system

fl = —(1’2 —CQ)

Ty = T1—0

(7)



with constants ¢1, ¢y, It can be solved analytically. As solution curves for
(7), we get circles that are concentric around the point (¢1, ¢2), which is the
only fixed point (see fig. 1(a)). The system displays a pure rotation around
this point with angular velocity 1, i.e. one full revolution takes 27 time units.
From fig. 1(a) one sees that ¢; and ¢, can be interpreted as shift variables.
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Figure 1: An example of qualitative disruption, part 1. For details compare

text.

Now we let the shift variables ¢; and ¢; vary in time in a particular
manner, namely, we let the point (¢1,¢z) perform a circular motion around
the origin with radius 1 and angular velocity 1, starting in (1,0) (shaded
arrow in fig. 1(b)). This shift motion can be expressed by

c1(t) = cost

ex(t) = sint,

(8)
which yields a non-autonomous system

&y = —(xy—sint) (9)
Iy = x; — coslt.

It would be nice if we could understand the dynamics of (9) in terms of
some kind of superposition of the dynamics of stationary, shifted systems (7)
and the shift dynamics (8). Naively, we might reason as follows: “the pure
rotational system is periodically shifted according to the shift operation,



since the shift dynamics (8) means a periodic, cyclic displacement of the
plane”. In particular, we would expect the fixed point of the rotational
system, which in ¢ = 0 lies at (¢1,¢2) = (1,0), to follow in time the shift
movement, i.e., to follow the shaded trajectory in fig. 1(b). Continuing this
line of argumentation, we would end up with expecting the system (9) to
exhibit trajectories like in fig. 1(c).

In fact, something quite different happens. (10) provides the true solu-
tions of (9). One of them (with integration constants C; = Cy = 0) is shown

in fig. 2.
x1(t) cost —sint tsint
= 1
(xQ(t)) C1 (sint) + 02( cost ) + (—t COS t) (10)

Figure 2: An example for qualitative disruption, part 2. For details compare
text.

The trajectory shown in fig. 2 spirals to infinity with ¢ — 4+oco. An
examination of (10) reveals that all trajectories of (9) have this property. By
contrast, trajectories in the autonomous systems (7) are cyclic and hence stay
within a bounded region with ¢ — +o00. Furthermore, the shift dynamics (8)
periodically shifts a given point in the plane on a circle with radius 1, i.e.,
leads to a displacement that again stays in a bounded region with ¢ — +o0.
Thus, to our mild surprise, we find that the combined effects of two spatially



bounded movements result in an unbounded movement. The autonomous
system (7) has been qualitatively disrupted by shifting it periodically.

Although it is intuitively clear that the system (9) behaves qualitatively
different from autonomous systems (7), I am not able to give a general def-
inition of qualitative disruption. In the next section, however, a precise
definition for a particular kind of qualitative stability, a complementary phe-
nomenon, will be provided. Qualitatively stable, non-autonomous systems
in the sense of that definition cannot, for instance, have unbounded trajec-
tories where the associated autonomous systems dynamics and the coupling
dynamics are both bounded.

What has gone wrong with our argumentation that led us to expecting
the dynamics of fig. 1(c)? Intuitively, we interpreted the shift dynamics as
a motion that is superimposed on the dynamics of the autonomous systems
— as fig. 1(b) suggests. But in fact, the shift “movement” does not turn
up at all where it is required, namely, in (9)! Intuitively, in figl. (b) we see
the point (1,0) “move” on the unit circle according to the shift operation.
This circular movement must be added to the rhs of (9) in order to make the
system behave according to our intuitions. The shift dynamics (8) has the
derivative

é(t) = —sint
é(t) = cost

(11)

If we add this compensation term to the non-autonomous system (9), we
get

1 = —(xy—sint)+ —sint = —ux3 (12)

X9 = xy—cost+cost =y,

which now yields trajectories as in fig. 1(c).

4 Compensating for coupling dynamics

In this section, the observations from the previous example are rigorously
worked out. It is shown how and when a dynamical system with coupling
variables can be “compensated” for the effects of the coupling dynamics,
such that the resulting dynamics can be understood as a transparent su-



perposition of the coupling dynamics and of the dynamics of a particular,
“representative” autonomous system.

As a preparation, we briefly leave our topic of non-autonomous dynam-
ical systems with time-dependent coupling variables and take a closer look
at autonomous systems with constant control parameters. We start by re-
capitulating the well-known notion of qualitative equivalence (or topological
equivalence; for a more detailed treatment cf. [1]).

Definition 1. Two autonomous dynamical systems that have the same
phase space D are qualitatively equivalent if there exists a continuous bijection
@ : D — D which map the phase portrait of one onto that of another in such
a way as to preserve the orientation of the trajectories.

Qualitative equivalence is an equivalence relation on dynamical systems.
Therefore, all the members in a family of dynamical systems are pairwise
qualitatively equivalent if they are all qualitatively equivalent to any one
particular, representative member in the family. It should be noted that the
bijection @ required in definition 1 is in general not uniquely determined.

A typical phenomenon in dynamical systems with control parameters, i.e.
systems of the form

x = f(x,¢) (13)

is that if the control parameters are selected from within a certain range
C, the resulting systems are qualitatively equivalent (a phenomenon called
structural stability). Only if control parameters surpass certain critical val-
ues, the system undergoes a qualitative change called a bifurcation. For the
remainder of the article, we assume that C is a range of control parameter
values that yields qualitatively equivalent systems for a scheme like (13).

We collect some further notations and standard assumptions. Let the
system (13) be denoted by the shorthand notation Sc, and let (Se¢)cec denote
the family of qualitatively equivalent systems that we get by allowing ¢ to
be taken from C. Let S,., be a representant of that family. By convention,
the control parameters of S,., are denoted by ¢y, and the system variables
of Srep by X. Let ¢,epye =t e : D — D be a bijection that maps 5,., on
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Se as required in definition 1. Additionally we require that C is an open
set and that the parametrised family of mappings (¢c)eec is continuously
differentiable. More precisely, the latter means that the function

AcAxpe(x) + CxD—D
(€,%) = pe(x)

is continuously differentiable. (The lambda notation for functions is not
common in differential geometry, but should be familiar to readers with an
AT background. I use it in this article because it clearly shows which param-
eters in a functional expression are considered as function arguments, and
which others as constants - this will be particularly handy further below in
(17), where time occurs both as an argument and as a constant within one
functional expression). We sum up what we have got so far in a definition:

Definition 2. A triple ((S¢)cec, Srep, (¢c)eec) that satisfies the conditions
in the above remarks is a C-family.

As an example, we reconsider the scheme of systems (7). We have two
control parameters ¢y, ¢3, which means that C C R x R, where R denotes the
reals. The domain of the systems is the plane, i.e., D = R xR. The shorthand
notation for the system (7) is S, .,). In fact, we have C = R x R, since all

C1,62

members of the family (S, c))(c1,e2)enxn are qualitatively equivalent. Taking

the unshifted system S ) as our representant ,,, the bijections ¢, .,) can
be taken (among other possibilities) as the shifts of the plane, i.e.
99(01702)(1;171;2) = (1'1 —I_clvx?—l_c?)' (14)

After these preparations, we return to our main concern, non-autonomous
systems with time-dependent coupling variables. We consider a C-family
((Se¢)eecs Sreps (Ye)eec). Now, we allow the variables ¢ to vary in time. We
require this variation to be differentiable and to stay within C, but otherwise
we impose no restrictions on it. l.e., we consider a differentiable time func-
tion, which we denote with the same symbol ¢ that we used for the control
parameters,
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c : R—=C
t— c(t).

Interpreting c(t) as coupling variables gives us again (2), which is repeated
here for convenience:

x = f(x.c(t)) (15)

According to our assumptions, for every ¢ € R it holds that c(¢) € C.
Thus, if we take snapshots of (15) at various times ¢;, the resulting au-
tonomous systems x = f(x,c(¢;)) are all qualitatively equivalent. We have
learnt from our example in the previous section that the non-autonoumous
system (15) need not display the same qualitative type of dynamics. How-
ever, as we will presently show, adding a suitable compensation term to (15)
will essentially achieve this goal. More precisely, this will give us a method
to project trajectories in the non-autonomous system on trajectories in the
representant system .S,.,.

In order to understand this compensation term, let us take a look at
the schematic diagram of an exemplary one-dimensional system in fig. 3. In
the upper half, the figure shows a trajectory #(¢) in the representant system
Srep- The vector field 7 is drawn into the upper diagram repeatedly at time
intervals of length 1 (of course, they exist at every point on the time line,
since we have continuous time).

The lower half of the diagram shows the non-autonomous system as we
would like it to get with the help of the compensation term. The vector fields
at times ¢; belong to the autonomous systems Sc,) (cf. the shaded slice in
the figure). The mappings @) : D — D transform the phase space at time
t according to definition 1, which in the simple case of fig. 3 boils down to
the requirement that the unique fixed point in 5., is mapped on the unique
fixed point of S¢.

Intuitively, what we want to achieve is that trajectories #(¢) in the rep-
resentant system are mapped on trajectories x(¢) in the non-autonomous
system via @¢(. L.e., we would like the following to be true:

#(l) = @e(@(l)) (16)



Figure 3: How the compensation term works. For details compare text.
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It is clear what we have to do in order to arrive at this result: we have to
give the trajectories in the non-autonomous system an additional bend that
makes them follow the temporal bend of the phase space transformations
@ety(D). This is achieved by additively superimposing on the vectors a of
Sc(r) a vector b that makes up for the phase space bending. The vector b is
our compensation term. It depends both on time and on the point € D in
the non-autonomous system. Formally, it is the temporal derivative of @)
at the place c,o;é)(x):

ety = (g (Oren (o)) 0 (17

By adding this compensation term to the rhs of (a one-dimensional version
of) (15), we arrive at our desired compensated system, for whose trajectories

(16) holds:

& = flx,e(t)) + bla,t) (18)

By convention, the compensated system (18) is denoted by Sc). Note
that if the time function ¢(¢) is a constant, i.e. if c(f) = ¢, then b(x,1)
vanishes and we get Scy) = Se.

We have tacitly assumed in these considerations that the bijections ¢c ()
are time-preserving, i.e., that they do map trajectories on trajectories not
only in an orientation-preserving, but also in a time-preserving way. Intu-
itively, this means that if the phase space is stretched through ¢¢(;) at some
point # € D by some factor s, then the derivative # must be augmented
proportionally. In fig. 3, this means that at all corresponding points & and
@er)(T) the ratio o' /o must be equal to the ratio p'/p. If we express these
ratios in terms of suitable derivatives, we find that ¢¢( is time-preserving if
the following holds for all z:

Z o S(ee (E), e(t))
%%(t)(l') = f(#, o)

(19)

This is a very special case, and we shall get rid of this restriction later.
However, for the time being we stick with it, since the present concern is
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understanding the basic nature of the compensation term, which can be seen
most clearly in the time-preserving case.

We collect our argumentation in a theorem, assuming the most simple
case that both D and C are one-dimensional.

Theorem 1. Let ((S.)cec, Srep, (¢c)eec) be a C-family, ¢ : R — C a dif-
ferentiable time function, @ = f(x, ¢(?)) a one-dimensional system analogous
o (15), b(x,t) a compensation term as specified in (17). Let the bijections
@.(t) be time-preserving as specified in (19). Then, the solutions x(¢) of the
compensated system

@ = [z, e(t)) + b(x,1) (20)

are related to the solutions Z(¢) according to

2(t) = pon(2(1)). (21)

Proof. All we have to do is to check that (21) in fact solves (20). To this

end, we first observe that @) (Z()) can be formally rewritten as a function

(c(t), #(t)) with two arguments ¢(t) and Z(¢), which allows us to compute
its temporal derivative as follows:

d . dpde  dpd
4 iy = 220 G2l 2

On the other hand, if we insert the rhs of (21) into the rhs of (20), we get

Flpe(y(2(1)), (1)) + blepe(r) (2(1)),

it
AT = floun(a (dAr%T w&u<u»»)u>
- f<¢dw@xw»ca»-+(dgxr¢dﬂ<fa»)<w

= SO + 55
_ fleaw (@), e)) 4, - dp dc
ai T (L CILOR S
09 = G5+ 5 (23)
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This is equal to the rhs of (22), which completes the proof. O

Theorem 1 treats the simplest of all cases. However, it fully captures the
basic idea, and more general cases essentially only add technicalities. The
theorem (and its generalizations) also formalizes what 1 mean, in a special
sense, by qualitative stability of non-autonomous systems: namely, that the
system’s vector fields at different times are all qualitatively equivalent (which
holds for the uncompensated system, too), plus that trajectories in the non-
autonomous system can be derived from trajectories in an autonomous rep-
resentant system by applying the same transformations that lead from the
representant system to the non-autonomous systems.

I shall now give, without spelling out the proof, the theorem in its full
glory, i.e. for n-dimensional phase space D, m—dimensional coupling variable
space C, and for non-time-preserving ..

Theorem 2. Let Let ((Se)cecs Sreps (¢c)cec) be a C-family, ¢ : R — C a
differentiable time function, and x = f(x,¢(t)) a system like in (15). Let

bx,t) = D (M ge(r) (0aly(x))) (1) (24)

be the compensation term analogous to (17), and

x = f(x,c(t)) +b(x,1) (25)

the compensated system Sc(,). Let x(1) be a solution of Se(ry which passes
through x¢ in #o. Let x(¢) be the solution of S,., which passes through
c,o;(io)(xo) in tg. Then, a monotonously increasing time rescaling function
T : R — R exists, such that

X(t) = @y X(T(1)). (26)

The time rescaling function satisfies the following condition:

D (M iy () (x(7)) - F(x(r),e(r))
T(t) =to
(=1 —I_/fo f(‘Pg(lT) X(T)vCO)

dr (27)
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Alternatively, with a different time rescaling function 7", time can be
rescaled in the argument of x, and we get the following complementary ver-

sion of (26) and (27):

x(T'(1)) = e X(1). (28)

o=t [ (A e (&) (7)) - F(X(7), e0)

dr 29
T P 29)

Like its simplicistic companion, theorem 1, this theorem states that tra-
jectories in the compensated system essentially are of the same qualitative
type as trajectories in the representant system. The former can be derived
from the latter by applying the same transformation p.(;) that also, loosely
speaking, transforms the representant system into the non-autonomous sys-
tem.

Things are complicated by the fact that the transformations ¢¢) need
not be time-preserving. This makes a time rescaling necessary. The formal
derivation of this rescaling can be done in the same vein as the arguments
that led to (19). The fact that x(¢) occurs in the rhs of (27) is owed to the
circumstance that the transformations () can induce different speedups or
slowdowns at different places in D. If the temporal speedup or slowdown
induced by these transformations is homogenous over D, (27) is much sim-
plified. In particular, it becomes independent from x(¢) on its rhs, which
renders (27) useful for an effective computation of x(¢). We will exploit this
in the next section. If, finally, ¢ is time-preserving, we have T' = T" = id,
which is the situation of theorem 1.

The fact that we have to deal with an n-dimensional phase space D and
an m—dimensional coupling variable space C is reflected in the occurence of
Jacobians D in (24), (27), and (29). Applying the chain rule, and spelled out
in matrix form, the compensation term reads like follows:

D (A7 ge(r) (03y(x))) (1) =
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(2 A7 en(m)) (1)

The functions ¢;, that appear in (30) are the component functions of ¢,.

Let us briefly see how theorem 2 applies to the example from section 2.
We take the unshifted system S ) as representant S,.,, and the bijections
P(c1,e2) a8 in (14). They are obviously time-preserving, and therefore, T' = id.
Evaluation of (26) leads to the following result:

X(t) = Plerer)n) X(1)
T1(t) + ei(l), 2(t) + e2(1))
T1(t) + cost, ¥2(t) + sint)

In particular, we see from this equation that the fixed point solution in
the origin of 5,., is mapped on the unit circle solution of the non-autonomous
system, just as we intuitively wished it to happen in fig. 1(c).

A final remark. The compensation term can stabilize the qualitative type
of a behavior subsystem only as long as the variations of the coupling vari-
ables stay within C. If these limits are transgressed, the compensated system
can, of course, be driven into bifurcations (which remain to be formally de-
fined for the kind of non-autonomous systems considered herel!).

5 Modulating velocity, amplitude, and shift

In this section, we treat a special case of theorem 2, where the compensation
term and the time rescaling function are given in an explicit form that can be
directly used for numerical algorithms. This special case concerns the effects
of modulating a dynamical system with respect to the combined effects of
shift, amplitude, and velocity. It is shown how a behavior subsystem within
an robot system can be dynamically modulated with respect to these three
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modes of variation by varying coupling variables at arbitrary time scales,
without qualitatively disrupting the subsystem. These are three important
characteristics of a behavior, and typically all of them vary dynamically in
animal behaviors. Thus, the results reported in this section have considerable
practical value.

We start from an n-dimensional, autonomous system:

o o= filr,..,20)
(31)

&, = folwr,... )

We call this system 5,.,; it will soon become clear that this system as-
sumes the role of a representant system in the sense of the previous section.
We wish to transform the vector field specified by (31) in three steps. They
are illustrated in fig. 4 with two exemplary vectors:

e First, the original system S,., (fig. 4(a)) is to be shifted by amounts
s; € R in the dimensions x;, where 1 = 1,... n (fig. 4(b)).

e Then, it is to be expanded homogenously by a factor of @ > 0, which
yields an expansion of the trajectorie’s amplitudes. In fig. 4(c), this
factor takes a value of 2.

e Finally, its vectors are multiplied by a scalar v > 0, which amounts to
changing the system’s velocity by a factor of v. In fig. 4(c), this factor
takes a value of 1/3.

These transformations, executed in this order which leads to the total
transformation seen in fig.4(d), are realized in (31) as follows:

wll = Uafl(xl/a_517"'7xn/a_5n)
(32)
&, = wvafuxi/a—s1,...,x5/a— s,)
In our terminology, the system (32) is the system S(U7a7517...75n), or S, for

short, where ¢ = (v, a, s1,...,5,). We find that the representant system S,.,
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d)

Figure 4: The effects of shift, amplitude variation, and velocity variation on
the vector field of S,

from (31) is the same as 5(1,1,0,..,0, Which can also be expressed by stating
that ¢ = (1,1,0,...,0).
An obvious way to define @(yas,....5,) = Pc : B — K" is to put

Ve, oyan) = (alxy 4+ 81), .. a(a, + s,)) (33)

Finally, if we take C = RT x BT x R x --- x R, it is easy to see that
((S¢)eecs Sreps (Ye)eec) makes a C-family according to definition 2.

Definition 3. A C-family of the kind just described is called a vas-
family.

The compensation term for non-autonomous systems formed from a vas-
family can be stated in explicit form. Let ¢(t) = (v(?), a(t), s1(1), ..., su(t))
be a time function. Then, a straightforward calculation shows that the com-
pensation term (30) takes the following form:

d(t)% + a(t)s1(t)
.. (34)
d(t)% + a(t)s,(t)
The time rescaling function (27) depends only on the temporal develop-
ment of v. We get the following specialization of (27):

t

Tt)=to+ | v(r)dr (35)

to
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The compensation term (34) contains the temporal derivatives of ¢ and
8;. They must be effectively computed when a compensated vas-system is
used as a behavior module in a robot. A quick and dirty method for doing
this would be to let the subsystem lag behind in its response to the coupling
variable dynamics a bit, which allows one to use the history of the immediate
past for calculating the derivatives from the already observed history of these
variables. A rather more satisfying, but also more difficult approach is to
estimate the derivatives by a suitable filter. It seems to me that biological
behavior subsystems often combine the filtering and the lagging strategy.

It should be noted that v can be allowed to vary over all reals, although
the bijections @, reverse the orientation of trajectories if v becomes negative,
and even lead to a complete standstill if v is zero. However, all the results
reported are still valid for any differentiable v : & — R. This is useful since
it allows to put the system into “reverse gear” while the trajectories can still
be understood in terms of (26) (or (35), to be more specific).

6 Conclusion

In this paper I have started to explore methods that help to design behaviors
as dynamical systems. I have developed an approach to making behaviors,
to some extent, immune against qualitative disruption due to coupling dy-
namics. The methods described enable the designer to construct behavior
subsystems as “modulated modules”. The important special case of shift,
amplitude and velocity modulation is worked out in a ready-to-use form.

The work reported here is only a beginning. Besides vas-families, other
standard modulations appear to be easily accessible to an explicit treatment,
e.g. rotations or amplitude variations that are different in different phase
space dimensions. The observation that v can be allowed to take negative
values cries for a closer investigation, since it might open the way for useful
generalizations of qualitative equivalence. It would also be very interest-
ing to investigate behavior systems that afford of several different qualitative
dynamical modes with bifurcations in between, like e.g. gait patterns of walk-
ing systems. One might wish to stabilize each of the modes with separate
compensations. And last but not least, of course, one should compare the
compensation mechanism described here with biological mechanisms.

It seems to me that there exist at least two different, equally important
functions of modulation mechanisms like the one described in this paper.
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First, they are useful for the control of a behavior subsystem by others. For
instance, a motivation subsystem might increase running speed by increasing
the value of the velocity coupling variable v of the running subsystem. Sec-
ond, they can serve the adaptation of a behavior to external circumstances.
For instance, a walking behavior might adjust its stance length according to
variations in its amplitude factor a, which are effected through sensor input
corresponding to the ease of walking on different types of ground. The differ-
ence between these two functions is mainly one of perspective. If modulation
is viewed as a function of control, the focus lies on the active demands gen-
erated by external modules. If it is considered in the service of adaptation,
the focus is on the modulated behavior itself.

This may all be quite nice as far as it goes. One must not forget, however,
that the techniques reported in this paper cannot help with the design task
proper: which behaviors an agent should have, and how they should interact
with each other. Only after this basic design task has been accomplished,
compensation techniques can be applied to stabilize the qualitative type of
behaviors. But then, they should.
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