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Abstract� A recent development in behavior�oriented robotics is to view
behaviors in an agent as coupled dynamical subsystems� When one designs
such subsystems a di�culty arises� The desired dynamics of the subsystem is
likely to become qualitatively disrupted due to the superimposed dynamics
of the behavior�s interaction with other behaviors and the dynamics of sen�
sor input� A mathematical technique is presented for making subsystems to
some degree immune against such qualitative disruptions� By adding a suit�
able compensation term to the original ODE speci�cation of the subsystem�
the dynamics of its coupling variables lead to a benign modulation instead
of a potential disruption� For the combined modulative e�ects of shift� am�
plitude variation� and velocity variation� the compensation term is given in
an explicit� ready�to�use form� This is a step toward a modular design of
behavior systems from interacting subsystems�

Zusammenfassung� Ein j�ungerer Ansatz in der behavior�orientierten
Robotik besteht darin� Behaviors in einem Agenten als gekoppelte dynami�
sche Teilsysteme zu modellieren� Wenn man solche Teilsysteme im Zuge
einer Roboterkonstruktion entwirft� entsteht die Schwierigkeit� da	 die be�
absichtigte Dynamik des Teilsystems durch dessen Interaktion mit anderen
Teilsystemen und mit sensorischem Input qualitativ ver�andert wird� Die
vorliegende Arbeit beschreibt� wie Behavior�Subsysteme bis zu einem gewis�
sen Grad gegen solche qualitativen Ver�anderungen immun gemacht werden
k�onnen� Durch die Hinzuf�ugung eines geeigneten Kompensationsterms zu
den urspr�unglichen Systemgleichungen werden die Auswirkungen der Kop�
plungsdynamik auf Modulationen beschr�ankt� die den qualitativen Typ des
Systemverhaltens erhalten� F�ur einige solcher Modulationen 
Shift� Amplitu�
den� und Geschwindigkeitsvariation� wird der Kompensationsterm in einer
gebrauchsfertigen� expliziten Form angegeben� Dies stellt einen Schritt in
Richtung eines modularen Entwurfs von Behavior�Systemen aus gekoppelten
Teilsystemen dar�



� Introduction

Behavior�oriented robotics� albeit successful in many respects� is still lacking
a principled formal methodology� This seriously impedes progress in the
�eld� Continuous dynamical systems theory has been proposed for �lling
the methodological gap in several target articles �
� ���� The PDL language
for programming robots� which has been developed at the VUB AI Lab and
which is used in several European robotic labs� has been designed as a tool
for realising behaviors as semi�continuous processes of real� valued quantities
���� However� the target articles deal with the subject on a level that is too
general for practical use� and current PDL programming practice typically
clings to a traditional programming style that renders a system�theoretic
analysis impossible� A practical yet principled methodology for designing
behavior systems as dynamical systems is still missing�

Modeling agents as dynamical systems is quite a challenge 
comprehen�
sive discussion in ����� One of the problems lies in a general property of
dynamical systems� A system made up from nonlinearly coupled subsys�
tems usually cannot be understood in terms of the behavior exhibited by
the subsystems in isolation� This general phenomenon seriously obstructs a
modular design of robots� If one tries to design some behavior systems 
e�g��
for forward movement or obstacle avoidance� �rst� and then to couple them
together� one will typically �nd that they behave in a qualitatively di�erent�
unpremeditated fashion afterwards�

In spite of this general instability phenomenon in ad�hoc constructed dy�
namical systems� behaviors in animals often show a remarkable qualitative
stability� For instance� gait patterns typically maintain their qualitative iden�
tity over a wide range of internal and external conditions� A walking pattern
stays a walking pattern even though it might be sped up or slowed down�
or changed in its step length� or be otherwise modulated quite quickly and
strongly� Only when internal or external conditions drift beyond certain val�
ues� the walking pattern changes qualitatively� e�g� by turning into a running
pattern�

This paper describes a simple formal mechanism for making dynamical
subsystems to a certain degree �immune� against perturbations� as observed
in natural behavior systems� Due to this mechanism� arbitrarily fast and
reasonably strong variations in the coupling variable values do not result in
a qualitative disruption of the subsystem�s behavior� rather� they lead to a
�benign�� albeit possibly fast and strong modulation of its dynamics� I do

�



not make any claims concerning the biological relevance of the mechanism� It
is merely intended as a practically helpful contribution to a modular design
of behavior�based robots�

The article is organized as follows� Section � provides the formal frame�
work for modeling agents as continuous dynamical systems� and behaviors
as subsystems therein� Section � presents an example of how a subsystem�s
dynamics gets disrupted through a seemingly harmless interaction dynam�
ics� Section � speci�es the �qualitative stabilization� mechanism in detail
and generality� The basic idea is to add a compensation term to the original
subsystem speci�cation� This term measures the dynamics of the variables
used for coupling the subsystem with the rest of the system� and generates a
compensation for the potentially disruptive e�ects of these variables� dynam�
ics� A general theorem is presented which describes how the compensated�
coupled subsystem�s dynamics can be understood in terms of the dynamics
it shows when it is decoupled� In fact� this theorem boils down to an ex�
ercise in system transformations� it is not far from trivial� In section �� a
special case is treated which is relevant for many practical applications� A
ready�to�use mathematical recipe is given for a non�disruptive modulation of
dynamical systems with respect to shift� amplitude and velocity� Section 

discusses some limitations of the mechanism and relates it to ongoing work
in behavior�oriented robotics�

� A framework for modeling behaviors as dy�

namical subsystems

We follow �
� and ��� in the basic ideas on how to model an agent as a
continuous dynamical system� Namely� we describe it in terms of continuous
system variables x�� � � � � xn and coupling variables c�� � � � � cm�

If the model is used as a blueprint for design� the system variables must
denote quantities describing the agent proper� like proprioceptive sensor read�
ings� actuator control variables or motivational quantities� If the formal
model is to be used as a tool for the analysis of an already existing agent�
system variables can also refer to external descriptive dimensions� like po�
sition or direction of movement� We will be concerned with the �rst case
only�

The coupling variables refer to quantities whose dynamics is determined
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from outside the agent� and whose function it is to dynamically couple the
agent into its environment� The most important case of coupling variables
are sensor readings� One might also wish to take into account others� like
mechanical forces exerted on the agent body�

Given a suitable choice of system variables and coupling variables� the
general scheme of a dynamical system model for an agent is shown in 
���

�x� � f�
x�� � � � � xn� c�
t�� � � � � cm
t��

� � � 
��

�xn � fn
x�� � � � � xn� c�
t�� � � � � cm
t��

In vector notation� 
�� can be written more concisely as follows�

�x � f
x� c
t�� 
��

A concrete instantiation of this general scheme is given in 
���

�x � y � �c
t�

�y � �x� � c
t�

��

Some comments might be in place here for the bene�t of readers not yet
quite accustomed to dynamical systems�

� According to mathematical usage� the fact that all system variables
and coupling variables appear on the right�hand side in each line in the
general scheme 
�� does not imply that all of them have to appear in
every line of concrete instantiations of 
��� 
�� illustrates this fact�

� 
�� is� in fact� an instantiation of 
��� put x� � x� x� � y� c�
t� � c
t��
f�
x�� x�� c�
t�� � x� � �c�
t�� and f�
x�� x�� c�
t�� � �x�� � c�
t��

� The coupling variables are functions of time� They depend on time in
a manner that is not speci�ed within 
��� Therefore� the dependency
on time t is explicitly noted as cj
t��

� Of course� the system variables are also functions of time� However�
in their case� the dependency on time is speci�ed via 
��� In order
to arrive at explicit time functions xi
t�� the system 
�� of ordinary
di�erential equations must be solved�
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Coupling variables are formally similar to input parameters and distur�

bance parameters� as known from control theory� and to control parameters�
as used in system theories in the natural sciences or in the mathematical
theory of dynamical systems� All of them are free parameters in the rhs of
system equations� However� the intuitive perspective on these parameters�
and the appropriate mathematical methods for handling them� di�er in all
cases�

Input parameters� in a control theoretic setting� are used for an e�ective
control of the system� By varying them dynamically� the system is steered
towards a desired performance� The time scale on which the input parameters
vary can be the same as the time scale of the system variable dynamics�

Disturbance parameters� again in a control theoretic perspective� are typ�
ically considered to re�ect random �process noise�� They are handled with
stochastic methods� Non�random disturbances� which are also admitted into
the framework of control theory� are assumed to be su�ciently small� such
that they can be done with via local linearization 
cf� ���� p� ���� ���� Fur�
thermore� such disturbances do not appear in the form of free parameters�
they are thus not relevant for the present discussion�

Finally� control parameters are typically required to vary on a time scale
that is much slower than the system variable dynamics� In mathematical
analysis� they are treated as constants� Bifurcation theory � one of the
�nest parts of modern mathematical system theories � is concerned with the
comparison of system dynamics exhibited at di�erent� but constant� values
of control parameters�

Coupling variables are unlike all of these kinds of free parameters� First�
they are not �used� to achieve a desired agent performance� They cannot
be �controlled�� Thus� the methods of control theory for dealing with input
parameters are inapplicable� Second� they are not simply �noise�� It would
obviously be highly inappropriate to model sensor input or the in�uences of
interacting behavior subsystems as noise� Finally� coupling variables typically
vary on a time scale comparable to that of the system variables� Therefore�
the analytic tools developed in bifurcation theory are inappropriate�

Unfortunately� no mathematical methods at all seem available to deal
with coupling variables� This does not come as a surprise� One might argue as
follows� �The system dynamics depends on the coupling variable dynamics�
and the coupling variable dynamics is basically arbitrary � therefore� the
system dynamics is basically arbitrary � yet non�random �� and thus cannot
be the object of mathematical study�� Control theory has taken one route
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out of this impasse� by considering input parameters that are not arbitrary
but can be manipulated� and disturbance parameters that can be treated as
random processes� Bifurcation theory has taken another available route by
assuming that that control parameters are static� not dynamic�

The best what can be done for systems with arbitrary and dynamic cou�
pling in�uences seems to be an analysis of extremely general properties� An
example is provided by ���� where the occurence of chaotic states in such
systems is de�ned�

The present paper indicates that it is in fact possible to arrive at a prac�
tically useful perspective on arbitrarily and dynamically coupled systems�
The route that I wish to propose is to de�ne and investigate systems that
can cope with an arbitrary and fast coupling dynamics� in the sense of be�
coming modulated without getting qualitatively disrupted� This puts the
present paper into perspective� In control theory and bifurcation theory� the
restrictions necessary for enabling a mathematical investigation are applied
on the side of the coupling variables� dynamics 
controllable� or stochastic�
or static� respectively�� By contrast� I restrict the type of the very systems
under investigation�

What I mean by �modulated�� �qualitatively disrupted� etc� will become
clear in the following sections� I touched these points here only in order to
clarify the status of coupling variables�

The scheme 
�� describes an entire agent� However� in this paper I focus
on behaviors� which shall be modeled as subsystems of 
��� A subsystem of

�� is speci�ed by a subset of the system equations� say by the �rst k ones�

�x� � f�
x�� � � � � xn� c�
t�� � � � � cm
t��

� � � 
��

�xk � fk
x�� � � � � xn� c�
t�� � � � � cm
t��

where k � n� Taken as a system in its own right� the subsystem 
�� of

�� has system variables x�� � � � � xk� What are its coupling variables� There
are two kinds of them now� First� the subsystem 
�� inherits the coupling
variables c�
t�� � � � � cm
t� of the supersystem 
��� Second� the other super�
system variables xk��� � � � � xn� which appear in the rhs of 
��� assume the
role of additional coupling variables� They couple the subsystem 
�� into the
supersystem 
��� From the perspective of 
��� the dynamics of xk��� � � � � xn

is arbitrary and likely to lie on the same time scale as that of the subsystem
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variables x�� � � � � xk� Thus� from the subsystem�s perspective� they behave
essentially in the same way as the original coupling variables c�
t�� � � � � cm
t��
Therefore� we are justi�ed in rewriting 
�� as follows�

�x� � f�
x�� � � � � xk� xk��
t�� � � � � xn
t�� c�
t�� � � � � cm
t��

� � � 
��

�xk � fk
x�� � � � � xk� xk��
t�� � � � � xn
t�� c�
t�� � � � � cm
t��

Up to a renaming of variables� 
�� turns out to be equivalent to 
��� For
the purpose of mathematical investigation� we may therefore use the no�
tationally simpler form 
�� as a dynamical system scheme for a behavior�
interpreting c�
t�� � � � � cm
t� as variables that couple the behavior subsystem
into the agent supersystem� or as variables that couple it into the environ�
ment� Thus� in the sequel we will be concerned with dynamical systems like

���

� Qualitative disruption and qualitative sta�

bility� an example

In this section� the phenomenon of qualitative disruption� and a method for
preventing it� will be illustrated with an example�

Consider the following two�dimensional system�

�x� � �
x� � c�
t��

�x� � x� � c�
t�


�

This is a non�autonomous system which instantiaties 
��� 
The terms
autonomous system and non�autonomous system are used in this article in
the sense of dynamical systems theory� i�e� an autonomous system is a time�

invariant� or stationary� dynamical system� This has nothing to do with the
notion of autonomous systems in the sense of Arti�cial Life�� Let us �x the
coupling variables c�
t�� c�
t� at some values that remain constant over time�
i�e� let us consider the autonomous system

�x� � �
x� � c��

�x� � x� � c�

��






with constants c�� c�� It can be solved analytically� As solution curves for

��� we get circles that are concentric around the point 
c�� c��� which is the
only �xed point 
see �g� �
a��� The system displays a pure rotation around
this point with angular velocity �� i�e� one full revolution takes �� time units�
From �g� �
a� one sees that c� and c� can be interpreted as shift variables�

x1

S0

Sπ/2

x2

a) b) c)

x1

x2

c1

c2

-1

x1

x2

Figure �� An example of qualitative disruption� part �� For details compare
text�

Now we let the shift variables c� and c� vary in time in a particular
manner� namely� we let the point 
c�� c�� perform a circular motion around
the origin with radius � and angular velocity �� starting in 
��  � 
shaded
arrow in �g� �
b��� This shift motion can be expressed by

c�
t� � cos t

c�
t� � sin t�

��

which yields a non�autonomous system

�x� � �
x� � sin t�

�x� � x� � cos t�

!�

It would be nice if we could understand the dynamics of 
!� in terms of
some kind of superposition of the dynamics of stationary� shifted systems 
��
and the shift dynamics 
��� Naively� we might reason as follows� �the pure
rotational system is periodically shifted according to the shift operation�

�



since the shift dynamics 
�� means a periodic� cyclic displacement of the
plane�� In particular� we would expect the �xed point of the rotational
system� which in t �  lies at 
c�� c�� � 
��  �� to follow in time the shift
movement� i�e�� to follow the shaded trajectory in �g� �
b�� Continuing this
line of argumentation� we would end up with expecting the system 
!� to
exhibit trajectories like in �g� �
c��

In fact� something quite di�erent happens� 
� � provides the true solu�
tions of 
!�� One of them 
with integration constants C� � C� �  � is shown
in �g� ��

�
x�
t�

x�
t�

�
� C�

�
cos t

sin t

�
� C�

�
� sin t

cos t

�
�

�
t sin t

�t cos t

�

� �

x1

x2

ππ/2

Figure �� An example for qualitative disruption� part �� For details compare
text�

The trajectory shown in �g� � spirals to in�nity with t � ��� An
examination of 
� � reveals that all trajectories of 
!� have this property� By
contrast� trajectories in the autonomous systems 
�� are cyclic and hence stay
within a bounded region with t� ��� Furthermore� the shift dynamics 
��
periodically shifts a given point in the plane on a circle with radius �� i�e��
leads to a displacement that again stays in a bounded region with t� ���
Thus� to our mild surprise� we �nd that the combined e�ects of two spatially
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bounded movements result in an unbounded movement� The autonomous
system 
�� has been qualitatively disrupted by shifting it periodically�

Although it is intuitively clear that the system 
!� behaves qualitatively
di�erent from autonomous systems 
��� I am not able to give a general def�
inition of qualitative disruption� In the next section� however� a precise
de�nition for a particular kind of qualitative stability� a complementary phe�
nomenon� will be provided� Qualitatively stable� non�autonomous systems
in the sense of that de�nition cannot� for instance� have unbounded trajec�
tories where the associated autonomous systems dynamics and the coupling
dynamics are both bounded�

What has gone wrong with our argumentation that led us to expecting
the dynamics of �g� �
c�� Intuitively� we interpreted the shift dynamics as
a motion that is superimposed on the dynamics of the autonomous systems
" as �g� �
b� suggests� But in fact� the shift �movement� does not turn
up at all where it is required� namely� in 
!�# Intuitively� in �g�� 
b� we see
the point 
��  � �move� on the unit circle according to the shift operation�
This circular movement must be added to the rhs of 
!� in order to make the
system behave according to our intuitions� The shift dynamics 
�� has the
derivative

�c�
t� � � sin t

�c�
t� � cos t

���

If we add this compensation term to the non�autonomous system 
!�� we
get

�x� � �
x� � sin t� �� sin t � �x�

�x� � x� � cos t� cos t � x��

���

which now yields trajectories as in �g� �
c��

� Compensating for coupling dynamics

In this section� the observations from the previous example are rigorously
worked out� It is shown how and when a dynamical system with coupling
variables can be �compensated� for the e�ects of the coupling dynamics�
such that the resulting dynamics can be understood as a transparent su�
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perposition of the coupling dynamics and of the dynamics of a particular�
�representative� autonomous system�

As a preparation� we brie�y leave our topic of non�autonomous dynam�
ical systems with time�dependent coupling variables and take a closer look
at autonomous systems with constant control parameters� We start by re�
capitulating the well�known notion of qualitative equivalence 
or topological
equivalence� for a more detailed treatment cf� �����

De�nition �� Two autonomous dynamical systems that have the same
phase spaceD are qualitatively equivalent if there exists a continuous bijection
� � D � D which map the phase portrait of one onto that of another in such
a way as to preserve the orientation of the trajectories�

Qualitative equivalence is an equivalence relation on dynamical systems�
Therefore� all the members in a family of dynamical systems are pairwise
qualitatively equivalent if they are all qualitatively equivalent to any one
particular� representative member in the family� It should be noted that the
bijection � required in de�nition � is in general not uniquely determined�

A typical phenomenon in dynamical systems with control parameters� i�e�
systems of the form

�x � f
x� c� 
���

is that if the control parameters are selected from within a certain range
C� the resulting systems are qualitatively equivalent 
a phenomenon called
structural stability�� Only if control parameters surpass certain critical val�
ues� the system undergoes a qualitative change called a bifurcation� For the
remainder of the article� we assume that C is a range of control parameter
values that yields qualitatively equivalent systems for a scheme like 
����

We collect some further notations and standard assumptions� Let the
system 
��� be denoted by the shorthand notation Sc� and let 
Sc�c�C denote
the family of qualitatively equivalent systems that we get by allowing c to
be taken from C� Let Srep be a representant of that family� By convention�
the control parameters of Srep are denoted by c�� and the system variables
of Srep by $x� Let �rep�c �� �c � D � D be a bijection that maps Srep on
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Sc as required in de�nition �� Additionally we require that C is an open
set and that the parametrised family of mappings 
�c�c�C is continuously
di�erentiable� More precisely� the latter means that the function

�c�x�c
x� � C �D � D


c�x� 	� �c
x�

is continuously di�erentiable� 
The lambda notation for functions is not
common in di�erential geometry� but should be familiar to readers with an
AI background� I use it in this article because it clearly shows which param�
eters in a functional expression are considered as function arguments� and
which others as constants � this will be particularly handy further below in

���� where time occurs both as an argument and as a constant within one
functional expression�� We sum up what we have got so far in a de�nition�

De�nition �� A triple 

Sc�c�C� Srep� 
�c�c�C� that satis�es the conditions
in the above remarks is a C�family�

As an example� we reconsider the scheme of systems 
��� We have two
control parameters c�� c�� which means that C 
 ���� where � denotes the
reals� The domain of the systems is the plane� i�e��D � ���� The shorthand
notation for the system 
�� is S�c��c��� In fact� we have C � � � �� since all

members of the family 
S�c��c����c��c������ are qualitatively equivalent� Taking
the unshifted system S����� as our representant Srep� the bijections ��c��c�� can
be taken 
among other possibilities� as the shifts of the plane� i�e�

��c��c��
x�� x�� � 
x� � c�� x� � c��� 
���

After these preparations� we return to our main concern� non�autonomous
systems with time�dependent coupling variables� We consider a C�family


Sc�c�C� Srep� 
�c�c�C�� Now� we allow the variables c to vary in time� We
require this variation to be di�erentiable and to stay within C� but otherwise
we impose no restrictions on it� I�e�� we consider a di�erentiable time func�
tion� which we denote with the same symbol c that we used for the control
parameters�
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c � � � C

t 	� c
t��

Interpreting c
t� as coupling variables gives us again 
��� which is repeated
here for convenience�

�x � f
x� c
t�� 
���

According to our assumptions� for every t � � it holds that c
t� � C�
Thus� if we take snapshots of 
��� at various times ti� the resulting au�
tonomous systems �x � f
x� c
ti�� are all qualitatively equivalent� We have
learnt from our example in the previous section that the non�autonoumous
system 
��� need not display the same qualitative type of dynamics� How�
ever� as we will presently show� adding a suitable compensation term to 
���
will essentially achieve this goal� More precisely� this will give us a method
to project trajectories in the non�autonomous system on trajectories in the
representant system Srep�

In order to understand this compensation term� let us take a look at
the schematic diagram of an exemplary one�dimensional system in �g� �� In
the upper half� the �gure shows a trajectory $x
t� in the representant system
Srep� The vector �eld �$x is drawn into the upper diagram repeatedly at time
intervals of length � 
of course� they exist at every point on the time line�
since we have continuous time��

The lower half of the diagram shows the non�autonomous system as we
would like it to get with the help of the compensation term� The vector �elds
at times ti belong to the autonomous systems Sc�ti� 
cf� the shaded slice in
the �gure�� The mappings �

c�t� � D � D transform the phase space at time
t according to de�nition �� which in the simple case of �g� � boils down to
the requirement that the unique �xed point in Srep is mapped on the unique
�xed point of S

c�t��
Intuitively� what we want to achieve is that trajectories $x
t� in the rep�

resentant system are mapped on trajectories x
t� in the non�autonomous
system via �

c�t�� I�e�� we would like the following to be true�

x
t� � �
c�t�
$x
t�� 
�
�

��



t

t

(a)

(b)

a

b

( )x t

x t( )

ϕc( )t

Srep

S tic( )

σρ

σ’
ρ’

ti ti+1

Figure �� How the compensation term works� For details compare text�

��



It is clear what we have to do in order to arrive at this result� we have to
give the trajectories in the non�autonomous system an additional bend that
makes them follow the temporal bend of the phase space transformations
�c�t�
D�� This is achieved by additively superimposing on the vectors a of
Sc�t� a vector b that makes up for the phase space bending� The vector b is
our compensation term� It depends both on time and on the point x � D in
the non�autonomous system� Formally� it is the temporal derivative of �

c�t�

at the place ���
c�t�
x��

b
x� t� ��

�
d

dt

�
�� �

c���

�
���
c�t�
x�

���

t� 
���

By adding this compensation term to the rhs of 
a one�dimensional version
of� 
���� we arrive at our desired compensated system� for whose trajectories

�
� holds�

�x � f
x� c
t�� � b
x� t� 
���

By convention� the compensated system 
��� is denoted by S
c�t�� Note

that if the time function c
t� is a constant� i�e� if c
t� 
 c� then b
x� t�
vanishes and we get S

c�t� � Sc�
We have tacitly assumed in these considerations that the bijections �

c�t�

are time�preserving� i�e�� that they do map trajectories on trajectories not
only in an orientation�preserving� but also in a time�preserving way� Intu�
itively� this means that if the phase space is stretched through �

c�t� at some

point $x � D by some factor s� then the derivative �$x must be augmented
proportionally� In �g� �� this means that at all corresponding points $x and
�
c�t�
$x� the ratio ���� must be equal to the ratio 	��	� If we express these

ratios in terms of suitable derivatives� we �nd that �
c�t� is time�preserving if

the following holds for all $x�





$x
�c�t�
$x� �

f
�
c�t�
$x�� c
t��

f
$x� c��

�!�

This is a very special case� and we shall get rid of this restriction later�
However� for the time being we stick with it� since the present concern is
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understanding the basic nature of the compensation term� which can be seen
most clearly in the time�preserving case�

We collect our argumentation in a theorem� assuming the most simple
case that both D and C are one�dimensional�

Theorem �� Let 

Sc�c�C� Srep� 
�c�c�C� be a C�family� c � � � C a dif�
ferentiable time function� �x � f
x� c
t�� a one�dimensional system analogous
to 
���� b
x� t� a compensation term as speci�ed in 
���� Let the bijections
�c
t� be time�preserving as speci�ed in 
�!�� Then� the solutions x
t� of the
compensated system

�x � f
x� c
t�� � b
x� t� 
� �

are related to the solutions $x
t� according to

x
t� � �c�t�
$x
t��� 
���

Proof� All we have to do is to check that 
��� in fact solves 
� �� To this
end� we �rst observe that �c�t�
$x
t�� can be formally rewritten as a function
�
c
t�� $x
t�� with two arguments c
t� and $x
t�� which allows us to compute
its temporal derivative as follows�
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On the other hand� if we insert the rhs of 
��� into the rhs of 
� �� we get
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This is equal to the rhs of 
���� which completes the proof� �

Theorem � treats the simplest of all cases� However� it fully captures the
basic idea� and more general cases essentially only add technicalities� The
theorem 
and its generalizations� also formalizes what I mean� in a special
sense� by qualitative stability of non�autonomous systems� namely� that the
system�s vector �elds at di�erent times are all qualitatively equivalent 
which
holds for the uncompensated system� too�� plus that trajectories in the non�
autonomous system can be derived from trajectories in an autonomous rep�
resentant system by applying the same transformations that lead from the
representant system to the non�autonomous systems�

I shall now give� without spelling out the proof� the theorem in its full
glory� i�e� for n�dimensional phase space D� m�dimensional coupling variable
space C� and for non�time�preserving �c�

Theorem �� Let Let 

Sc�c�C� Srep� 
�c�c�C� be a C�family� c � � � C a
di�erentiable time function� and �x � f
x� c
t�� a system like in 
���� Let

b
x� t� �� D
�
�� �

c���

�
���
c�t�
x�

��

t� 
���

be the compensation term analogous to 
���� and

�x � f
x� c
t�� � b
x� t� 
���

the compensated system S
c�t�� Let x
t� be a solution of S

c�t� which passes
through x� in t�� Let $x
t� be the solution of Srep which passes through
���
c�t��


x�� in t�� Then� a monotonously increasing time rescaling function

T � � � � exists� such that

x
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T 
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�
Alternatively� with a di�erent time rescaling function T �� time can be

rescaled in the argument of x� and we get the following complementary ver�
sion of 
�
� and 
����

x
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���
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Like its simplicistic companion� theorem �� this theorem states that tra�
jectories in the compensated system essentially are of the same qualitative
type as trajectories in the representant system� The former can be derived
from the latter by applying the same transformation �

c�t� that also� loosely
speaking� transforms the representant system into the non�autonomous sys�
tem�

Things are complicated by the fact that the transformations �
c�t� need

not be time�preserving� This makes a time rescaling necessary� The formal
derivation of this rescaling can be done in the same vein as the arguments
that led to 
�!�� The fact that x
t� occurs in the rhs of 
��� is owed to the
circumstance that the transformations �

c�t� can induce di�erent speedups or
slowdowns at di�erent places in D� If the temporal speedup or slowdown
induced by these transformations is homogenous over D� 
��� is much sim�
pli�ed� In particular� it becomes independent from x
t� on its rhs� which
renders 
��� useful for an e�ective computation of x
t�� We will exploit this
in the next section� If� �nally� �c is time�preserving� we have T � T � � id�
which is the situation of theorem ��

The fact that we have to deal with an n�dimensional phase space D and
an m�dimensional coupling variable space C is re�ected in the occurence of
Jacobians D in 
���� 
���� and 
�!�� Applying the chain rule� and spelled out
in matrix form� the compensation term reads like follows�
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The functions �i� that appear in 
� � are the component functions of ���
Let us brie�y see how theorem � applies to the example from section ��

We take the unshifted system S����� as representant Srep� and the bijections
��c��c�� as in 
���� They are obviously time�preserving� and therefore� T � id�
Evaluation of 
�
� leads to the following result�

x
t� � ��c��c���t� $x
t�

� 
$x�
t� � c�
t�� $x�
t� � c�
t��

� 
$x�
t� � cos t� $x�
t� � sin t�

In particular� we see from this equation that the �xed point solution in
the origin of Srep is mapped on the unit circle solution of the non�autonomous
system� just as we intuitively wished it to happen in �g� �
c��

A �nal remark� The compensation term can stabilize the qualitative type
of a behavior subsystem only as long as the variations of the coupling vari�
ables stay within C� If these limits are transgressed� the compensated system
can� of course� be driven into bifurcations 
which remain to be formally de�
�ned for the kind of non�autonomous systems considered here#��

� Modulating velocity� amplitude� and shift

In this section� we treat a special case of theorem �� where the compensation
term and the time rescaling function are given in an explicit form that can be
directly used for numerical algorithms� This special case concerns the e�ects
of modulating a dynamical system with respect to the combined e�ects of
shift� amplitude� and velocity� It is shown how a behavior subsystem within
an robot system can be dynamically modulated with respect to these three

��



modes of variation by varying coupling variables at arbitrary time scales�
without qualitatively disrupting the subsystem� These are three important
characteristics of a behavior� and typically all of them vary dynamically in
animal behaviors� Thus� the results reported in this section have considerable
practical value�

We start from an n�dimensional� autonomous system�

�x� � f�
x�� � � � � xn�

� � � 
���

�xn � fn
x�� � � � � xn�

We call this system Srep� it will soon become clear that this system as�
sumes the role of a representant system in the sense of the previous section�
We wish to transform the vector �eld speci�ed by 
��� in three steps� They
are illustrated in �g� � with two exemplary vectors�

� First� the original system Srep 
�g� �
a�� is to be shifted by amounts
si � � in the dimensions xi� where i � �� � � � � n 
�g� �
b���

� Then� it is to be expanded homogenously by a factor of a 
  � which
yields an expansion of the trajectorie�s amplitudes� In �g� �
c�� this
factor takes a value of ��

� Finally� its vectors are multiplied by a scalar v 
  � which amounts to
changing the system�s velocity by a factor of v� In �g� �
c�� this factor
takes a value of ����

These transformations� executed in this order which leads to the total
transformation seen in �g��
d�� are realized in 
��� as follows�

�x� � vaf�
x��a� s�� � � � � xn�a� sn�

� � � 
���

�xn � vafn
x��a� s�� � � � � xn�a� sn�

In our terminology� the system 
��� is the system S�v�a�s������sn�� or Sc for
short� where c � 
v� a� s�� � � � � sn�� We �nd that the representant system Srep

�!
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Figure �� The e�ects of shift� amplitude variation� and velocity variation on
the vector �eld of Srep

from 
��� is the same as S�������������� which can also be expressed by stating
that c� � 
�� ��  � � � � �  ��

An obvious way to de�ne ��v�a�s������sn� �� �c � �n � �n is to put

�c
x�� � � � � xn� � 
a
x� � s��� � � � � a
xn � sn�� 
���

Finally� if we take C � �� � �� � � � � � � � �� it is easy to see that


Sc�c�C� Srep� 
�c�c�C� makes a C�family according to de�nition ��

De�nition �� A C�family of the kind just described is called a vas�
family�

The compensation term for non�autonomous systems formed from a vas�
family can be stated in explicit form� Let c
t� � 
v
t�� a
t�� s�
t�� � � � � sn
t��
be a time function� Then� a straightforward calculation shows that the com�
pensation term 
� � takes the following form�
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The time rescaling function 
��� depends only on the temporal develop�
ment of v� We get the following specialization of 
����
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Z t
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v
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The compensation term 
��� contains the temporal derivatives of a and
si� They must be e�ectively computed when a compensated vas�system is
used as a behavior module in a robot� A quick and dirty method for doing
this would be to let the subsystem lag behind in its response to the coupling
variable dynamics a bit� which allows one to use the history of the immediate
past for calculating the derivatives from the already observed history of these
variables� A rather more satisfying� but also more di�cult approach is to
estimate the derivatives by a suitable �lter� It seems to me that biological
behavior subsystems often combine the �ltering and the lagging strategy�

It should be noted that v can be allowed to vary over all reals� although
the bijections �c reverse the orientation of trajectories if v becomes negative�
and even lead to a complete standstill if v is zero� However� all the results
reported are still valid for any di�erentiable v � � � �� This is useful since
it allows to put the system into �reverse gear� while the trajectories can still
be understood in terms of 
�
� 
or 
���� to be more speci�c��

	 Conclusion

In this paper I have started to explore methods that help to design behaviors
as dynamical systems� I have developed an approach to making behaviors�
to some extent� immune against qualitative disruption due to coupling dy�
namics� The methods described enable the designer to construct behavior
subsystems as �modulated modules�� The important special case of shift�
amplitude and velocity modulation is worked out in a ready�to�use form�

The work reported here is only a beginning� Besides vas�families� other
standard modulations appear to be easily accessible to an explicit treatment�
e�g� rotations or amplitude variations that are di�erent in di�erent phase
space dimensions� The observation that v can be allowed to take negative
values cries for a closer investigation� since it might open the way for useful
generalizations of qualitative equivalence� It would also be very interest�
ing to investigate behavior systems that a�ord of several di�erent qualitative
dynamical modes with bifurcations in between� like e�g� gait patterns of walk�
ing systems� One might wish to stabilize each of the modes with separate
compensations� And last but not least� of course� one should compare the
compensation mechanism described here with biological mechanisms�

It seems to me that there exist at least two di�erent� equally important
functions of modulation mechanisms like the one described in this paper�

��



First� they are useful for the control of a behavior subsystem by others� For
instance� a motivation subsystem might increase running speed by increasing
the value of the velocity coupling variable v of the running subsystem� Sec�
ond� they can serve the adaptation of a behavior to external circumstances�
For instance� a walking behavior might adjust its stance length according to
variations in its amplitude factor a� which are e�ected through sensor input
corresponding to the ease of walking on di�erent types of ground� The di�er�
ence between these two functions is mainly one of perspective� If modulation
is viewed as a function of control� the focus lies on the active demands gen�
erated by external modules� If it is considered in the service of adaptation�
the focus is on the modulated behavior itself�

This may all be quite nice as far as it goes� One must not forget� however�
that the techniques reported in this paper cannot help with the design task
proper� which behaviors an agent should have� and how they should interact
with each other� Only after this basic design task has been accomplished�
compensation techniques can be applied to stabilize the qualitative type of
behaviors� But then� they should�
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