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Abstract
In this paper, we present the results of three different classification models on a handwritten digit
recognition task. We employ Random Forests and a Convolutional neural network (CNN) and compare
the performance these models achieve to a Linear Regression model serving as a baseline. For
the baseline and the Random Forest, hand-crafted features were utilized. It is found that the CNN
performed better than the other models with an overall error rate of 1.4% on the test data, while the
Random Forest achieved an error rate of 3.4%.
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I. INTRODUCTION

Since 1998, the MNIST database of handwritten digits has
become one of the most popular benchmarking datasets in ma-
chine learning [1]. A similar but smaller dataset of handwritten
digits is the CEDAR-CDROM database, which was first used
in [2]. This dataset is used in the current project to compare
the performance of three different machine learning methods
(linear regression, random forests, and convolutional neural
networks) in terms of classification error. Additionally, there
is a consideration of which specific classification mistakes the
models tend to make, and whether there is a notable difference
between the models on this account.

II. DATA

The data used for the chosen models consists of handwritten
digits along with ground truth labels for each digit. There
were 2000 examples of 16 × 15 gray-scale images of digits
arranged in n = 240 dimensional vectors, examples of which
can be seen in Figure 1. These images were encoded in integer
steps of 0 to 6, where 0 was white and 6 was black. Of
the 2000 samples in the dataset, there are 200 examples of
each digit from 0 to 9. In order to be able to properly test
the performance of the models, 1000 of the samples from
the dataset were set aside for testing once a best-performing
model was found, while the other 1000 samples were used for
training and validation.

Fig. 1: Examples of the handwritten digits found in the dataset.

III. METHODS

In the present paper, two different models were built and
compared to a baseline in order to properly evaluate their
performance. For the baseline, Linear Regression was used and
compared to a Random Forest model as well as a Convolu-
tional Neural Network. For both the Linear Regression model
and the Random Forest model, handcrafted features were
designed to reduce dimensionality and improve performance.
Additionally, the data was augmented due to the dataset
being relatively small. The implementation details will now
be explained.

A. Data Augmentation

Due to the relatively small amount of data found in the train-
ing set, some data augmentations were considered. With the
training set containing just 1000 samples the risk of overfitting
is large, especially for powerful models such as Convolutional
Neural Networks. One way to reduce the amount of overfitting
with machine learning models is to augment the data to
produce more datapoints [3]. Two methods were considered
for this data, namely rotation and adding noise. However,
the training data and the testing data used for the models
is very clean and have little mismatch between them, which
discouraged the idea of adding noise. In the case of rotations,
using small random rotations (between -20 and 20 degrees) is
a sensible idea for handwritten digit recognition [3]. Though
with the small resolution of the images used, rotations of that
magnitude sometimes caused some unwanted alterations to the
certain samples like seen in Figure 2. Using smaller rotations
on a range of -10 to 10 produced more consistent images with
less artifacting as seen in Figure 3.

Fig. 2: Artifacting seen with large rotations.

Fig. 3: Smaller rotations produce better augmentations of the data.

In order to confirm that the augmentations sufficiently help
the model perform better, a small analysis was performed.
A CNN model with two convolutional layers and two dense
layers was used in 3 fold cross validation to make sure the
performance would not decrease. Results of this analysis can
be seen in Table I. It is clear that using the augmented
dataset led to a slight increase in performance. Therefore the
additional rotated images are used in training the final models.

B. Handcrafted features

The aim while developing handcrafted features was to find
features with distinctive distributions between classes. The

interesting, this could have featured in the abstract



Dataset Fold 1 Fold 2 Fold 3 Avg. accuracy
Original 0.949 0.994 1.0 0.981
Rotated 0.993 0.999 1.0 0.997

TABLE I: Accuracies from K-fold cross validation runs to determine
the effectiveness of image rotations.

implemented features are Vertical ratio, Islands, Laplacian,
Fourier, Regression on row averages, Mixture of Gaussians,
Mean brightness, and Prototype matching. Except for the last
feature, the output distributions of the features per class are
shown in Figure 4.

The training dataset consists of 1000 labelled data
points (xi, yi)i=1,...,1000, with xi ∈ R240 and yi ∈ R.
18 features were designed to reduce the dimensionality
of the input data. Combined, the features form a feature
map (f1, ..., f18)

′ =: f : R240 → R18 of input vectors to
feature vectors. Some of the features do not operate on
the vector representations xi of the images, but rather on
the corresponding matrices Xi ∈ R16×15 to which this
representation can be reshaped.

1) Vertical ratio: The original idea for this feature was to
measure the symmetry between the top half and the bottom
half of the image. However, it was found that this feature was
more informative when using different splits instead of using
the middle row. This feature first thresholds all elements in the
input vector to {0, 1}. Here this means that all pixels with a
value of 6 become 0, while other pixels become 1. Then ratio
between the number of non-zero pixels in rows 1 to k and
the total number of non-zero pixels in the image is calculated,
which is

f(X, k) =

∑k
i=1

∑15
j=1 Xi,j∑16

i=1

∑15
j=1 Xi,j

. (1)

Calculating the value distributions of this feature for
k ∈ {1, ..., 15} showed that the best results are obtained
for k = 3, and k = 8. Therefore two features f1(X) and
f2(X) were created, which respectively use k = 3 and
k = 8. Figure 4-A shows that the digit 7 can be distinguished
with hyperparameter k = 3, and Figure 4 B shows that the
digits 4 and 6 can be distinguished with hyperparameter k = 8.

2) Islands: The islands feature counts the number of iso-
lated white areas in an image. In general, the digits 1-5, and
7 have no islands, digits 0, 6, and 9 have one island, and the
digit 8 has two islands. To prevent that islands are identified at
the borders of the image, the image is padded with zero-valued
pixels. Each pixel with value lower than a certain threshold is
mapped to one, and the other elements are mapped to zero.
The algorithm visits each pixel in the image. If a pixel has
value one, a white area has been found. The eight adjacent
pixels are then recursively visited. If an adjacent pixel within
the image boundaries has value one, its value is changed such
that it is not one. Else, the recursive function returns. Because

all border pixels have value one, at least one isolated area will
be found for each image. The final feature value for image x
then is calculated as

f3(x) = areas(x)− 1. (2)

It was found that a threshold value of three led to the best
performance. Figure 4-C shows the result of the feature on
the training data.

3) Laplacian: The Laplacian feature responds to large dif-
ferences in pixel values in an input image, which approximates
the amount of edges a digit has. It is expected that digit 1
has less edges than the digit 8, for example, because it has
less transitions from dark to light pixels, and vice versa. The
function first pads white pixels around the image to properly
detect all edges. Then the image is blurred with a (5 × 5)
Gaussian kernel to reduce the response on irregularities of
the digits. Finally, the image is transformed with a Laplacian
kernel of (3×3) which highlights the sharpness of edges. The
result of the feature is

f4(X) =

∑16
i=1

∑15
j=1 Laplace (Gaussian(Xi,j))∑16

i=1

∑15
j=1 Xi,j

. (3)

Here, the numerator calculates the sum of all elements in the
transformed matrix X , and the denominator calculates the
sum of all elements in the matrix X . Kernel sizes of (3× 3)
up to and including (11 × 11) were considered in the search
for the Gaussian and Laplacian kernels that resulted in the
best performance. The results are shown in Figure 4-D. As
expected, the digit 1 can be distinguished from the other digits.

4) Fourier: The Fourier feature is developed for similar
reasons as for the Laplacian feature. It transforms the images
to the frequency domain with a discrete Fourier transformation
(DFT) to measure the number and sharpness of edges in the
image.

As a simplified one-dimensional example to illustrate how
DFT works, row 13 of the digit 6 shown in Figure 5-A is
analysed. The pixel values for the row are shown in plot B,
on which the DFT is as shown by the blue curve in plot
C. The curve shows three peaks: at the frequencies 0 (DC
component), 2 and 13 “oscillations per row”. The sum of only
these three sine waves (see plot D) already approximates the
original curve in plot B quite well (see plots E and F).

The DFT on a 2D matrix is calculated with

F (k, l) =
N−1∑
i=0

N−1∑
j=0

f(i, j)e−i2π( ki
N + lj

N ), (4)

which is performed by the dft-function of OpenCV [4].
Although we lack the understanding to explain this equation, it
transforms the image to its frequency domain, which consists
of a real image F1 and a complex image F2. The feature
calculates the average log of the magnitude of all pixels in the
frequency domain with

f5(X) =
1

240
1′
16 log

(
1 +

√
F 2
1 + F 2

2

)
115. (5)



Fig. 4: Outputs of handcrafted features per class.

In this equation, the magnitude is simply calculated by
the Euclidean norm of the real and complex image, and
then scaled by the log functions. The sum of the result is
calculated, which is divided by the total number of elements.
The effect of this feature on the training data set is shown in
Figure 4-E, which shows that the feature has some similarities
with the Laplacian feature. This can be expected given that
both features are in some form a way of detecting edges.
Nevertheless, the Fourier feature distinguishes the digit 7
better than the Laplacian feature.

5) Regression on row averages: Each row in the image
of a digit contains a different number of black pixels. For
example, an image of the digit 9 contains more black pixels
for the rows that make up the ‘circle’, than the rows that make
up the ‘tail’. This feature distinguishes digits by calculating
the average black pixels value per row, and then calculates the
weight of a linear regression curve on it. If the weight is zero,
the digit is vertically symmetric, such as a perfect digit 0 or

8. If the weight is positive, there are more black pixels in the
top rows compared to the bottom rows, which is the case for
the digits 7 and 9. When the weight is negative, the bottom
rows have more black pixels than the top rows, for the digits
4 and 6 for example. The arctangent of the weight is calculate
to normalize the output. The calculation is done by

f6(X) = atan

argmin
a∗

16∑
i=1

(
a∗i−

∑16
i=1 Xi,∗

16

)2
 , (6)

in which a ∈ R.
∑16

i=1 Xi,∗ is the sum of all elements in
row i, which is then divided by 16 to get the average value
per row. The weight a for which the sum of squared errors
is lowest is then selected. Finally, the arctangent of a is
the result of the feature. As shown in Figure 4-F, the digits
6 and 4 can be distinguished from the digits 7 and 9 quite well.

6) Mixture of Gaussians: The probability distribution of
the dataset was approximated using a mixture of Gaus-
sians (MoG). The MoG was optimized using an expectation-



Fig. 5: A digit 6 (A) with its pixel values of row 13 (B), on which a
DFT is calculated (C). The main components of the frequency domain
(D) are summed (E), which approximated the original signal (F).

maximization (EM) algorithm. The EM algorithm iterated until
the change in likelihood was less than 0.001 per iteration. The
optimal number of Gaussians was found by calculating the
Akaike information criterion (AIC) for MoGs with between 10
and 40 Gaussians (see Figure 6). The MoG with 20 Gaussians
was found to have the highest quality in relation to the other
MoGs. For each image in the dataset, it was calculated from
which Gaussian it was most likely sampled. Each Gaussian
was then labelled by the most frequent class of the images
that were most likely sampled from it. It was then calculated
from which Gaussian i a new image x most likely originated,
after which x received the same label as this Gaussian:

f7(x) = Label

[
argmax
1≤i≤20∈N

(P (Y = i|X = x))

]
. (7)

The predictions of the model on the training data are shown
in 4-G. The graph shows that the digit 5 is estimated most
accurately, and the digit 7 is estimated least accurately. The
task of the decision forest is to take these different accuracy
into account.

7) Mean brightness: The mean value of all pixels in an im-
age is a rough indication about how much ink is representing
a digit, and is calculated by

f8(x) = 1′nx/n, (8)

where n is the number of dimensions of x. As shown in 4-H,
the distributions per class are not very distinctive from each
other. However, they could occasionally support decision
making.

8) Prototype matching: The prototype matching feature
is a collection of ten features, f9(x), ..., f18(x), each one
indicating the similarity between an image x and a prototype

Fig. 6: AIC estimation of models with different mixture components.

digit. Each prototype πi is created by calculating the mean of
all training images per class, which is

πi =
1

100

100∑
j=1

x(100i+j), 0 ≤ i ≤ 9, i ∈ N. (9)

Each feature f9+i then calculates the dot product between x
and the prototype of digit class i as a measure of similarity:

f9+i(x) = x · πi, 0 ≤ i ≤ 9, i ∈ N. (10)

Although the results of the features are not visualized, it is easy
to see why these features would work well. Essentially, these
features compare the images to the best possible estimate we
have of what each number looks like. In other words, these
feature are about as close as one can get to asking: ‘How
much does this number look like a zero?’, ‘How much does
this number look like a one?’, etc. If the number is not too
atypical, it should always be the most similar to the prototype
of the class it belongs to. Additionally, the dissimilarity to a
number is also useful. If a number does not look like a zero
at all, it is also unlikely to be a six or an eight.

C. Linear regression

To compare the errors of the models to a baseline, a linear
regression model is calculated for on both the pixel values of
the training set, and on the feature vector of the handcrafted
features. Linear regression aims to find a linear map from
the input to the output. This linear map is represented as a
regression weight vector, and can be calculated as

(w,b) = argmin
w∗,b∗

N∑
i=1

(w∗xi + b∗ − yi)
2, (11)

where w is the linear map, b is a bias, w∗ and b∗ are
proposed values for the regression weight vector and bias
respectively, and xi and yi are the input vectors and output
values, respectively. In this case, the input vectors are either



pixel values or feature vectors, and the output values are the
classes the sample belongs to.

In both models, linear regression without regularization has
been used because a quick and dirty 5-fold cross validation
parameter search for Ridge regression pointed out that the
accuracy improvement is negligible.

In order to calculate the weight matrix for linear regression
of the handcrafted features, features with the categorical
outputs where first transformed to dummy variables.

The linear regression is expected to work poorly on the
pixel values. This is because it is highly unlikely that there is
a linear relationship between the pixel values of an image and
the class it belongs to. By extracting features from the image,
which is nonlinear, the linear regression should improve.

D. Random Forest

The second classification algorithm that was tried on the
dataset was a random forest [5]. A random forest is a collection
of decision trees. A decision tree can classify a sample by
querying a feature of that sample at every node of the tree. In
this case, the decision tree could classify images using either
the pixel values of the image, or by first extracting features
from the image. An example of a feature that could be queried
is the amount of islands in the image. If the image contains
two islands, it can be classified as the number 8, since that is
the only number from 0-9 containing two islands. Luckily, a
decision tree does not have to be created manually. Instead, a
simple algorithm exists [6]. The goal is to create a decision
tree with “pure” leaf nodes. This means that, at the nodes at
the bottom of the tree, only images of the same class end up.
This would lead to perfect classification of the training data.
To achieve this, the right features should be queried at the
right time. To decide which features should be queried, and
how they should be queried, the information gain is calculated.
The information gain for a node is calculated as

∆ientropy(v,Q) = ientropy(v)−
∑

l=1,...,k

nl

n
ientropy(vl), (12)

where v is a node, Q is the feature that has k attributes, n is
the size of the sample set in the current node, and nl, ..., nk

are the sizes of the k child nodes v1, ..., vk. ientropy measures
how pure a node v is as

ientropy(v) = −
∑

i=1,...,q

ni

n
log2(

ni

n
), (13)

where q is the number of classes in the training data at node
v, which are represented by subsets of sizes n1, ..., nq . An
alternative way to measure how pure a node is, is using the
Gini impurity. The Gini impurity for node v is calculated as

iGini(v) = 1−
∑

1≤i≤q

(
ni

n
)2. (14)

To calculate the information gain using the Gini impurity,
ientropy in Equation 12 can be replaced by iGini. By cal-
culating the information gain for every possible feature that
can be queried, the best feature to query can be determined.

This is the query that has the highest information gain. The
version of the decision tree algorithm that was explained here
is deterministic and greedy. This means that using the same
hyperparameters on the same feature vectors will always give
the same decision tree, and the tree will likely be overfit.

The idea of a random forest is to combine the predictions
of a number of different decision trees, and for example use
a majority voting scheme to decide on the final classification
of an input image. Using multiple version of the same tree
would give exactly the same results as just using a single tree.
This is why the decision trees in the random forest need to be
different. To ensure that different decision trees are created,
two things can be done. The first, is giving each decision tree
a different set of bootstrapped data. This means that every
tree uses only a part of the training data, and the differences
in the data that each tree uses will then lead to different
trees. This is also called bagging. The second method is to
only use part of the features each time the information gain
is calculated. This means that the feature with the maximum
information gain is not always queried, since that feature might
not be in the subset of considered features. Both of these
methods are likely to make the single decision trees sub-
optimal, but allow for more different decision trees, which
leads to a better random forest. To create a random forest,
scikit-learn’s RandomForestClassifier was used. This is an
implementation of Breimans random forests [5] in Python. It
allows the user to change the number of trees in the forest,
what impurity measure to use (entropy or Gini), stopping
criteria of the trees, and the number of features that is used
when determining a split. When creating the random forest, the
performance using the default values for the hyperparameters
was examined first, to verify that everything worked the way
it should, and to get familiar with the process. For this, a
80-20 train-test split was used on the original training data,
so without using the hand crafted features. After verifying
that everything worked correctly, the handcrafted features were
used. For the rest of this section, data will always refer to
the feature vectors created using the hand crafted features,
unless stated otherwise. First, the mean decrease in impurity
of the features is used to measure their importance. The more a
feature decreases the impurity of a node on average, the more
important it is. The feature importance was measured using
a 10-fold cross validation on the training data. This way, any
features that were deemed unimportant could be removed. As
can be seen in Table II, the most important feature is the
Mixture of Gaussians, followed by the number of islands. The
least important feature is the average pixel value. These results
correspond to what was expected from the class distributions in
Figure 4. Because there were no features with an exceptionally
low importance, none of the features were removed.

After determining the features to be used, an exhaustive
grid search using 10-fold cross validation on the training data
was performed to find the best hyperparameters to use for
the random forest. The grid search looked at the performance
of using 10, 50, 100, 250, or 500 trees, using entropy or
Gini impurity for calculating the information gain, different



TABLE II: The impurity-based importance values for the hand-
crafted features using a random forest.

Feature Mean importance value

Vertical Ratio x=3 0.05230371
Vertical Ratio x=8 0.06983256
Islands 0.1375078
Lapalacian 0.05548731
Fourier 0.0254011
Regression on row averages 0.06843745
Mixture of Gaussians 0.22206059
Average Pixel Value 0.01105021
Similarity to 0 0.03700622
Similarity to 1 0.02854172
Similarity to 2 0.03701364
Similarity to 3 0.04428705
Similarity to 4 0.03829522
Similarity to 5 0.03106872
Similarity to 6 0.05395421
Similarity to 7 0.03973339
Similarity to 8 0.02463343
Similarity to 9 0.02338566

ways of splitting the trees, and different stopping criteria for
creating the trees. Through the grid search it was found that
it was best to use a random forest consisting of 250 trees that
uses the Gini impurity as the impurity measure. Additionally,
every tree should have a maximum depth of 50, while not
having a maximum allowed amount of leaf nodes. A node
should only be considered a leaf node when it has at least
1 sample. Finally, at least 2 samples are necessary to split a
node, and the amount of features that should be considered
for a split should be equal to log2(18) ≈ 4. As a final step
in finding the optimal random forest, the randomness of the
algorithm was manipulated. This was done to ensure that the
model was reproducible. A 10-fold cross validation was done
using different seeds for creating the random forest. The mean
accuracies were recorded to determine which seed led to the
best results. In Figure 7, a small part of the 125th tree of the
random forest can be seen. Note that, because of the bagging,
there are no longer 100 samples per class. The colors of the
nodes indicate to what class the samples in that node belong
to. The brightness of the color depends on the purity of the
node, with purer nodes having brighter colors. In this figure,
the purple color indicates that most of the samples in that node
are sevens, while pink indicates the samples are nines. Despite
being such a small part of a single decision tree, it does show
how and why misclassifications happen in a random forest.
Even when querying things like the similarity to a number, or
the amount of islands in the figure, some unwanted samples
‘slip through’. This can be seen at the root node of the figure,
where the samples are split up by looking at the number of
islands. The samples with 0 islands go to the left, while the
samples with 1 or more islands go to the right. Contrary to
what one would expect, three zeros and a nine end up on the
left side, while two ones, a two, and a four end up on the right
side. Another interesting thing to note is how the similarity to
4 is used to split up most of the nines from the rest. This
happens at the right-most node in the second row.
To evaluate the performance of the random forest, it was used

to classify the 1000 numbers in the testing set. The random
forest is expected to perform quite well, since a 10-fold cross
validation on the testing set gives a mean classification error
of 3.2%

E. Convolutional Neural Network

A Convolutional Neural Network (CNN) is a type of neural
network that is mainly applied to data that has a grid-like
structure, such as images [7]. A CNN learns to extract features
from images without human supervision, for example to be
used in classification tasks. With more layers, the CNN can
extract more complex features based on the earlier extracted
simpler features. There are three main types of layers in a
CNN: convolutional layers, pooling layers, and fully connected
or dense layers. Features are extracted in the convolutional
layers. In feature extraction, a filter (commonly with dimen-
sions 2x2 or 3x3) slides over the input image, and at each
point the convolution between this filter and the pixels that
the filter covers is calculated. This convolution operation is
essentially a sum of element wise products between the filter
elements and the pixels covered by the filter. The output is
a matrix containing these summed products, and is called a
feature map. The operation is described by

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(i+m, j + n)K(m,n),

(15)

where S is the feature map, I is a two-dimensional image,
K is a two-dimensional filter or kernel, and m and n are the
width and height of K.

Pooling layers downsize the feature maps. This reduces the
number of weights to be trained, which allows for deeper
networks resulting in more complex feature extraction. For
example, a max pooling layer slides a pooling window over
a feature map, and only retains the maximum value inside
the window at each point. The neurons in a fully connected
layer are connected to all of the neurons in the previous layer.
The main purpose of the fully connected layers is to perform
classification based on the calculated feature values.

The architecture of the implemented network is outlined in
Figure 8. This architecture was decided on based on a 5-fold
cross-validation search across various architectures. It was se-
lected because it was able to overfit, but still showed adequate
performance. In similar 5-fold cross-validation searches, the
number of training epochs was set to 60, and the number of
filters in the convolutional layers was set to 62. These settings
were selected because the average validation error did not
improve much for larger amounts of epochs and filters. The
number of filters in the first convolutional layer was set to half
of the number of filters in the other layers in all searches. The
reasoning for this decision is that are not as many possible
(simple) features to extract in the first layer in relation to
the number of possible (more complex) features to extract in
deeper layers. Adding more filters in the first layer would then
mostly require more weights to be trained without much effect
on performance. The ReLU activation function was applied to



Fig. 7: A small part of tree 125 of the random forest.

each layer, except for the output layer to which no activation
function was applied. The network was implemented using the
Tensorflow and Keras libraries.

For optimization purposes, the Adam algorithm was selected
[8]. In general in neural networks, the aim of optimization
algorithms is to aid the (stochastic) gradient descent algorithm
in converging to a minimum [9]. One class of such optimiza-
tion algorithms is concerned with adapting the learning rate
to the curvature of the error landscape. Adam is one of those
algorithms. It combines ideas from optimizers such as gradient
descent with momentum and Adadelta.

The standard gradient descent update rule is

∆w(n+1) = −α∇F (w(n)), (16)

where w is a vector of trainable weights, F is some loss
function, α is a fixed learning rate, and n is the current step
[10]. In (parts of) the error landscape where there is much
more curvature in one dimension than in others, this process
of updating the weights can lead to slow and oscillatory con-
vergence, if that is even achieved at all. Adding a momentum
term to gradient descent is a simple method of reducing the
oscillations. By adding past weight updates to the current
one, movements in the directions that the weight updates have
in common are amplified, while movements in perpendicular
directions are averaged out. The update rule then becomes

∆w(n+1) = −α∇F (w(n)) + γ∆w(n), (17)

where the momentum term γ is generally set to some positive
value below 1, such that weight updates that lie further in the
past have less influence.

Adadelta is an optimization method that uses a different
learning rate for each parameter [11]. The learning rate for
each weight is scaled by the exponentially decaying sum of

squared gradients with regard to the weights. In this way, the
learning rates of weights for which the gradient is large are
small, and the learning rates of weights for which the gradient
is small are large. For each step, the weights are then updated
as follows:

gn+1 = ∇F (w(n)) (18)

E[g2]n+1 = ρE[g2]n + (1− ρ)g2
n (19)

∆w(n+1) = − α√
E[g2]n+1 + ϵ

gn+1, (20)

where E[g2]n+1 is a running average of past and current
sqaured gradients, ρ is a fixed decay factor, α is a fixed global
learning rate, and ϵ is a small positive value to avoid division
by zero.

Adam utilises both a decaying average of past gradients
and a decaying average of past squared gradients, such as
momentum and Adadelta respectively use. After calculating
these averages, a correction is applied because they tend to
be biased towards their initial values. Then the update is as
follows:

mn+1 = β1mn + (1− β1)gn+1 (21)

vn+1 = β2vn + (1− β2)g
2
n+1 (22)

m̂n+1 =
mn+1

1− βn+1
1

(23)

v̂n+1 =
vn+1

1− βn+1
2

(24)

∆w(n+1) = − α√
v̂n+1 + ϵ

m̂n+1, (25)

where β1 and β2 are fixed decay factors.
Sparse categorical cross-entropy was implemented as the

loss function [12]. In this loss function, it is assumed that the



Fig. 8: The architecture of the implemented CNN.

softmax function has been applied to the model output. This
transforms the output to a probability vector p. Given these
predicted output probabilities and the target output values t,
the categorical cross-entropy is then calculated as

CCE(p, t) = −
C∑

c=1

log(pc)tc, (26)

where C is the number of classes. Because only one tc is
equal to 1 instead of 0 (namely, for the actual class of the
input data), this simplifies to

CCE(p, t) = −log(pc∗)tc∗ , (27)

where c∗ is the true class of the input data. Note that “sparse”
refers to the encoding of the target outputs as integer values
in Keras, while a one-hot encoding would be the standard.

L2-norm weight regularization was applied to each layer,
except for the output layer. This consists of adding a penalty
to the loss function that is proportional to the L2-norm on
the weights of a model , with the underlying idea that this
leads to “simpler” models that are less prone to overfitting
[7], [13]. Initial searches revealed that a combination with L1-
norm activation regularization on only the output layer tended
to lead to an additional error decrease. This method not only
tends to lead to smaller activations, but also to more activations
being exactly zero (sparse). Similar to large weights indicating
an overfitted model, large activations are also a sign of a model
that will not generalize well [14]. The desire to have sparse
activations is partly inspired by the small amount of neurons
in the brain being activated at any moment, which is more
energy efficient [15]. A 5-fold cross-validation search was
performed to find the regularization factors that lead to the
lowest validation error. To save on computational costs, the
same factor was used on each layer’s weight regularization.
This resulted in a weight regularization factor of 10−5, and an
activation regularization factor of 0.005.

TABLE III

Method Classification error

Linear regression on pixel values 78.8%
Linear regression on handcrafted features 30.2%
Random forest 3.4%
Convolutional neural network 1.4%

IV. RESULTS

The performance of each implemented method on the test
data can be observed in Table III. The CNN performs best,
with a classification error of 1.4%, and is followed by the
random forest at 3.4%. Figure 9 and Figure 10 contain the
confusion matrices for the random forest model and the CNN,
respectively.

V. DISCUSSION

In this section, the results for the linear regression, random
forest, and CNN will first be discussed individually, and then
compared to each other. The comparison mainly involves the
random forest and the CNN, since these methods were deemed
the most interesting, and since the linear regression model was
meant more as a baseline.

A. Linear Regression

As expected, linear regression performed poorly when using
the pixel values. When using the feature vectors, performance
was a lot better, but not nearly on par with the other methods.
Since linear regression was meant more as a baseline, the poor
performance was expected and not unwelcome. Spending more
time on the linear regression and adding ridge regression might
have improved its performance, but it would likely not be
comparable with the random forest, and especially not with
the CNN.

B. Random Forest

As can be seen in Figure 9, the random forest was best at
classifying sevens and eights, while being worst at classifying
threes and sixes. It is interesting to note that the mean



importance value for the similarity to 3 and similarity to 6
were higher than the other similarity features. This might
indicate that those features are important to separate the threes
and sixes from other numbers, because the other features
might not do this well enough. This dependency on a single
feature would then lead to the lower accuracy for those
numbers. When examining the misclassifcations, some are
easy to explain, such as when a number does not have the
expected amount of islands, such as an eight having only one
island, and nines and sixes with zero islands. Other seemingly
typical examples of numbers are misclassified for no apparent
reason. It also seems like the random forest has issues with
rotated numbers. Examples of numbers that were classified
and seem to be slightly rotated can be seen in Figure 11.
This rotation can lead to atypical results for the vertical ratio
features. Most of the features that were used are sensitive to
rotation. Adding more rotation-invariant features, such as the
islands feature, might help the random forest classify these
numbers correctly.

C. Convolutional neural network

The CNN achieved at least a nearly perfect accuracy for
each class, but it did not perform equally well on each class.
It achieved a perfect accuracy for the twos and fours, while it
made the most misclassifications for the sixes.

D. Comparison

While for both the random forest and the CNN the sixes
were among the classes for which the accuracy was lowest,
there is no overlap in the classes for which they achieved the
highest accuracies. It is not clear why this difference arises.

Both the random forest and the CNN only misclassify the
sixes as fours or eights, with a larger proportion of eights
for the random forest. Additionally, the only time the random
forest misclassifies an eight it is misclassified as a six, while
for the CNN it is misclassified as a four. Notably, the fours are
never misclassified as sixes or eights. Thus there seems to be
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Fig. 9: Confusion matrix for the random forest.

Fig. 10: Confusion matrix for the Convolutional Neural Network

Fig. 11: Nine samples that were misclassified by the random forest.

some relation between fours, sixes, and eights. Even though
the random forest was worse at classifying the numbers than
the CNN, the random forest is a lot less complex. This makes
it easier to understand how the random forest works, and can
help with improving the model further.

E. Further work

As some digits in the dataset already appeared upside down
before augmentation, it would be interesting to explore image
rotations beyond 10 degrees. Figure 12 for example shows an
obviously upside-down three being misclassified as a two by
the CNN, which signifies that the CNN is not robust against
large rotations. While using the current method of rotating
images, increasing the range of possible rotations would cause
unwanted artifacts in the augmented data. And with the low
resolution of the images, some rotations could potentially
become cropped. However, this could possibly be solved by



Fig. 12: A three rotated by about 180 degrees misclassified as a two
by the CNN.

rotating images only after padding them. Doing this could help
the model recognize flipped digits like highlighted above and
reduce overall error.

For the random forest, it would be interesting to try more
handcrafted features. Especially adding more rotation-invariant
features could help eliminating most of the errors the random
forest currently makes. Additionally, adding more features
could prevent the random forest from being over-reliant on
some features. This mainly happened with the islands fea-
ture, where atypical samples having the ‘wrong’ amount of
islands would be misclassified. By adding more features, such
samples could be classified correctly. To achieve even better
classification, the models could also be combined. Since the
current models give poor classifications for the same numbers,
this might not help much, but the models could be tweaked to
‘fill in the gaps’ of the other models. Adding more models to
compare would also be interesting. Especially trying different
neural networks to compare to the CNN.
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