
Completing Bach’s Unfinished Contrapunctus XIV
With Machine Learning:

Linear Regression, Multilayer Perceptron, and Echo State
Networks

author 1
author 2
author 3
author 4

ABSTRACT
In this project we set out to complete Bach’s famous unfinished
fugue (Contrapunctus XIV) using three different machine learn-
ing models: linear regression, a multilayer perceptron, and an echo
state network. The fugue consists of four voices. A specific input en-
coding with attention to perceived similarity is used to favourably
organize the data points for the learning models. The output for
each model is represented as probability distributions over the
possible notes for each channel. These probability distribution are
post-processed by infusing human knowledge about music in the
selection procedure of the best possible note. The linear regression
model yielded the highest validation accuracy on the predicted
notes (87.5%), but the multilayer perceptron did not give a much
worse performance (84.5%). The echo state network gave a signifi-
cantly lower accuracy of (48.2%). However, such validation accuracy
metric is not necessarily correlated to ‘good’ or Bach-like sounding
music. Nonetheless, it appears that more training data is required,
beyond a single piece of music, such that the model is able to learn
more general musical patterns.

KEYWORDS
machine learning, time series prediction, Bach

1 INTRODUCTION
The last fugue of Johann Sebastian Bach (1685-1750), Contrapunctus
XIV from Die Kunst der Fuge, is one of the most enigmatic uncom-
pleted works in music history. This fugue is a summation of Bach’s
mastermind - a collection of fugal art including 14 fugues, 2 fugal
inversions, and 4 cannons, which are linked to a single theme, and
gradually undergo subtle developments and variations in rhythm
and melody over 4 separate voices. Over the centuries, many have
attempted to complete the fugue. More recently in 1992, it had been
revisited by the organizers of the Santa Fe Time Series Analysis
and Prediction Competition, but this time as a testing ground for
methods of statistics, machine learning and artificial intelligence.
No specific goal was set for this challenge.

It is generally believed that Bach applied strict musical rules to
produce the masterpiece. As remarked by a round table discussion
from the Santa Fe Institute, “the art of the fugue is basically an
attempt to construct largemusical structures based on very rigorous
limitations on thematic material. . . You run the string backwards
at great, long expanse; you dilate it; you shrink it; you turn it
upside down; you run it backwards. But the whole thing is very

self-similar in that, anywhere you look, it’s some variant of this
thing” [1]. In this line of thought, some modelers have tackled Bach
through expert knowledge. An initial collection of context-free rules
are summarized from a large musical collection, before machine
learning is applied to find out the particular Bach-like probability
subspace. A notable example is Kulitta, which applied probabilistic
temporal graph grammars for this purpose, and claimed to have
passed the Turing test [2].

However, an expert system is after all a coarse space reduction
of the multifold that actually exists in reality – for instance, Bach
hurried down some notes while the clock cuckooed. For the pur-
pose of demonstrating generalization capacity of machine learning
algorithms, it is more interesting to lose the a priori assumption of
an expert system, and to apply the same machine learning princi-
ples to learn and generate, in this case, a piece of Bach music from
scratch. Echoing the original challenge of the Santa Fe institute,
in this report, we are working exactly on this purpose - to treat
the Bach fugue as a testing ground, to demonstrate and compare
generalization capacities of machine learning models.

1.1 Machine Learning Models
We have selected three different models in this report. The first
model is based on standard multiple linear regression. In this model,
the input vector is directly regressed to the output vector. In the
next two models, the lower dimensional input vector is transformed
in some way to a higher dimensional state vector. In a multilayer
perceptron model, the input vector is fed into hidden layers of
artificial neurons; whereas in an echo state network, the input
vector is broadcast onto a reservoir of nodes. In the following, we
will discuss each one of the models briefly.

1.1.1 Regularized Multiple Linear Regression. Standard multiple
linear regression (MR) describes the relationship between an out-
come vector paired with a number of regressors. In our case, the
regressors are linear inputs. The role of MR is to find the best linear
combinations of input regressors to predict the corresponding out-
come vector. However, though directly applying standard multiple
regression will result in the optimal loss, it would also likely lead
to overfitting of the trained pattern. To prevent overfitting and
increase expectation in test pattern, some regularization measures
need to be included. One popular example is the Ridge regulariza-
tion, which adjusts the linear function to maximize expectation
over cross-validation.

Remco. F. Leijenaar, Jeroen Oude Vrielink, Lukas M. Kinder, and Yang Ji

1.1.2 Multilayer Perceptron. The multilayer perceptron (MLP) is a
multilayer generalization of the perceptron – one of the simplest
architectures in the class of feedforward neural networks. The
MLP consists of at least three layers of neuronal units: the input
layer, the hidden layer, and the output layer. Each unit is densely
connected to the next layer, meaning that its activation is forwarded
to every unit in the following layer scaled by some weight. Some
units in the MLP typically have a non-linear activation function,
which opens the gate to the capacity for separating non-linear data.
Regrettably, any linear algebraic procedure to minimize empirical
risk, as applicable with the likes of linear regression, will no longer
suffice. Fortunately, iterative gradient-descent based methods using
the backpropagation algorithm makes the optimization objective
computationally tractable. It allows to compute the (stochastic)
gradient of a differentiable loss function with respect to the weights,
i.e., the trainable parameters, in a supervised setting, by successive
applications of the chain rule such that the error is ‘back propagated’
into the network on a layer-by-layer basis.

1.1.3 Echo State Network. Reservoir computing (RC) is an overar-
ching term that refers to a number of methods and approaches for
designing recurrent neural networks (RNN). One of the flavours of
RC computing are echo state networks (ESN) [3]. Echo state net-
works differ from their popular deep learning counterparts (such
as long short-term memory networks) as learning the optimal in-
ternal weights can be analytically computed using simple linear
regression, rather than relying on complicated and expensive gra-
dient descent algorithms. Additionally, a large part of the weights
that define an ESN do not have be determined at all, and can be
generated randomly. This makes ESN conceptually simple and easy
to implement. Nevertheless, squeezing the maximum performance
out of an ESN requires some expert insight and practical experience
[4].

The basic gist of an ESN is that an input signal is first fed into
a reservoir. Signals can then be harvested from the reservoir, and
linearly combined to model a target signal. The reservoir adds non-
linearity to the learning equation, whilst the readout weights can
be computed linearly and analytically. Additionally, the reservoir
adds a memory effect.

1.2 General Processing Pipeline
To be consistent in our report, we apply the same preprocessing
steps to convert the original data file in MIDI format to an input
vector. The input vector is then fed into each of the three optimized
machine learning models to generate an output vector. Lastly, the
model outputs are fed into the same postprocessing stream to pro-
duce playable music. The optimization process is slightly different
for MR and MLP as compared to ESN. Standard cross-validation
procedure is applied to MR and MLP, since both models are not
dependent on their previous states. Nevertheless, a different op-
timization procedure must be applied in ESN, since the current
reservoir node state also relies on the previous node states across
a moving window of trained input and output vectors (compared
to recurrent networks). Other than necessary differences in opti-
mization, the processing pipelines are kept as similar as possible
for comparison across different models.

1.2.1 Preprocessing. The provided data file contains the MIDI note
numbers for each channel over time. Each one of these values is
converted to a 5-dimensional input vector. This vector encodes
the logarithm of the pitch, and the coordinates (𝑥 and 𝑦) of the
notes on the chroma circle and circle of fifths. The data file is also
the source of the teacher output vectors. For this, each MIDI note
number is encoded into a one-hot vector encoding based on the
bounded chromatic range for each channel. With these input and
output vectors, the learning task is comprehended as a time series
prediction task with a difference in the encoding between the input
and output vectors.

1.2.2 Optimization. The individual learning models were opti-
mized by solving for the least squares in the case of MR and ESN
with a discount on model complexity through a Ridge parameter.
The MLP was optimized on multi categorical cross-entropy with
the analogous 𝐿2 regularization using mini-batch gradient descent.
Additional hyperparameters for the models were tuned by employ-
ing a cross-validation scheme in the case of MR and the MLP. For
the ESN a manual tuning approach was exploited.

1.2.3 Postprocessing. The implemented models can generate a se-
quence of notes by feeding back their output as an input. However,
the generated music requires postprocessing to sound pleasant for
the human ear. During postprocessing the output vectors of the
models are converted into probability vectors for each note, that
can be manipulated. The goal during the postprocessing was to
adapt the model outputs such that five different patterns of the gen-
erated music are the same as for Bach’s fugue. These patterns are:
The distribution of note lengths, the distribution of note starting
positions within a measure, the distribution of pitches, the distribu-
tion of pitch changes in regard to the last pitch and the amount of
harmonies and disharmonious between voices. The most important
adaptation to make produced music sound like Bach, was to have
the correct distributions of note length and to reduce disharmony
between voices.

2 MUSIC ENCODINGS
2.1 Input Encoding
The data file that was delivered by the Sante Fé competition con-
sists of four channels, each consisting of a sequence of MIDI note
numbers (MID), which are related to a unique pitch:

𝑓 (MID) = 440 · 2(MID−69)/12 (1)

The file does not specify a duration for each note, it is rather encoded
through a repeated sequence of the same MIDI value. A single MIDI
value (not repeated) relates to a note being played for the duration
of a 16th of a measure, or a quarter of a beat for this particular piece.
A rest in the music is encoded by a zero entry.

From here, one could decide to provide this representation as
an input to the learning models. However, other representations
might yield a favourable organization, or separation for that matter,
of the structures in the input space. In particular, the MIDI value
for each channel 0 ≤ 𝑐 < 𝐶 , with 𝐶 = 4, at time step 𝑛 ∈ N = {𝑛 <

𝑁𝑚𝑎𝑥 |𝑛 ∈ N}, with𝑁𝑚𝑎𝑥 the length of the sequence of MIDI values,
has been encoded into a 5-dimensional vector u𝑐 (𝑛), as described
by Kuqi [5]. In this representation, the first element encodes the

Completing Bach’s Unfinished Contrapunctus XIV
With Machine Learning:
Linear Regression, Multilayer Perceptron, and Echo State Networks

offset logarithm of the pitch. The second and third elements encode
the (𝑥, 𝑦) coordinates of the position of the note on the chroma
circle. Similarly, the fourth and fifth elements encode the (𝑥, 𝑦)
coordinates of the position of the note on the circle of fifths. The
appeal of this encoding comes from the conception that ‘similarly’
sounding notes should be represented by points in a space that lie
close to each other considering Euclidean geometry. This is not
necessarily the case when one considers an encoding of only the
MIDI note numbers.

‘Similarly’ is put between quotation marks, as it is poorly defined.
The original representation distances notes from each other based
on the difference in the MIDI value or analogously on the difference
in the logarithm of the pitch. However, when one considers tonal
fusion due to the perceived consonance of two or more notes, then
the similarity between notes is organized differently [6]. Tonal
fusion can be associated with a similarity measure, as it quantifies
the degree to which tones with different pitches are perceived as
unitary. Notably, tones with frequency components that overlap
to a greater extent are perceived as more unitary. Notes in unison,
octaves, and perfect fifths can be identified as intervals with this
property.

The combination of the logarithm of the pitch and the coor-
dinates on the chromatic circle and circle of fifths provides an
encoding that takes into account these aspects of similarity when
recognizing the euclidean distance between notes in the encoded
format as a means of quantifying the similarity. The relative impor-
tance of each can be tuned by scaling the individual elements. We
define u𝑐 (𝑛) more precisely:

u𝑐 (𝑛) =
[
𝑓𝑛𝑜𝑟𝑚,𝑐 𝑐1,𝑥 𝑐1,𝑦 𝑐5,𝑥 𝑐5,𝑦

] ′ (2)

with 𝑓𝑛𝑜𝑟𝑚,𝑐 the normalized frequency given by:

𝑓𝑛𝑜𝑟𝑚,𝑐 (MID) = 2 log2 𝑓 (MID) + 𝑓𝑜 𝑓 𝑓 𝑠𝑒𝑡 (𝑐) (3)

the offset is defined by the minimum 𝑓𝑚𝑖𝑛 (𝑐) and maximum pitch
𝑓𝑚𝑎𝑥 (𝑐) for each channel 𝑐:

𝑓𝑜 𝑓 𝑓 𝑠𝑒𝑡 (𝑐) =
2 log2 𝑓𝑚𝑎𝑥 (𝑐) − 2 log2 𝑓𝑚𝑖𝑛 (𝑐)

2
− 2 log2 𝑓𝑚𝑎𝑥 (𝑐) (4)

The coordinates on the chroma circle are defined by the following
equations:

𝜃1 = (2𝜋 (MID mod 12)/12) (5)
𝜃5 = (2𝜋 ((7MID) mod 12)/12) (6)

𝑐1,𝑥 (MID) = 𝑟 cos𝜃1, 𝑐1,𝑦 (MID) = 𝑟 sin𝜃1 (7)
𝑐5,𝑥 (MID) = 𝑟 cos𝜃5, 𝑐5,𝑦 (MID) = 𝑟 sin𝜃5 (8)

𝑟 is a scaling that is set to 𝑟 = 1, i.e., the points are on the unit circle.
Furthermore, the points are spaced apart with a radial distance
2𝜋/12. After all, there are 12 semitones in an octave.

2.2 Output Encoding
The task of generating music is best recognized as a time series
prediction task. Although there is only an input signal u(𝑛)𝑛∈N , a
corresponding teacher output can be identified by the input signal
at the next time step y(𝑛)𝑛∈N = u(𝑛 + 1)𝑛∈N . With this approach
the problem is reorganized to a supervised learning task. However,
similar to the representation of the MIDI values that was deemed
undesired as a direct input to the statistical models, this representa-
tion might likewise be undesired as an output of the model.

Voice Channel MIDI min MIDI max Range
- 𝑐 MID𝑚𝑖𝑛 (𝑐) MID𝑚𝑎𝑥 (𝑐) MID𝑟𝑎𝑛𝑔𝑒 (𝑐)

Soprano 1 54 76 23
Alto 2 45 71 27
Tenor 3 40 62 23
Bass 4 28 54 27

Table 1: The chromatic range for each voice. The range rep-
resents the number of MIDI values (semitones) that can be
played by each voice. MIDI min and MIDI max are the mini-
mum and maximumMIDI values for each voice respectively.

The major concern with dealing with the output data, is that it
must be in a format that proves to be suitable for post-processing.
The problems outlined for the input encoding, namely regarding
organization of the data points in space, applies to the output encod-
ing and how it relates to a loss function as well. The encoding that
is used for the inputs can in principle be used to encode the output
signal. However, it is not natural to decode vectors in this represen-
tation, in particular in consideration of a post-processing procedure;
let alone finding a suitable loss function for it. When recognizing
the limited set of outputs for each channel, that is, the bounded
chromatic range for each channel, the problem appears respectable
for a reduction to a classification problem. Closer inspection of the
channels reveals that different channels have a different chromatic
range, albeit with a slight overlap between them. Although there
are disagreements on how The Art of Fugue was intended to be
played, if at all, the four-voice fugue is typically annotated with
a soprano, alto, tenor and bass voice. The exact ranges that were
kept in mind for these voices are not known. However, there is
little incentive to assume a chromatic range that goes beyond the
notes that are played in the uncompleted fugue. These notes will be
unrepresented in the dataset and therefore are precarious under the
recruitment of statistical models. The range of MIDI note numbers
for each channel is shown in Table 1.

To comply with the different chromatic ranges of the channels,
a one-hot vector encoding on a per channel basis is employed. This
establishes a per channel classification problem and accommodates
the model predictions of (pseudo-) probability distributions over the
MIDI values. Such distributions over the possible MIDI values are
pragmatic, especially as it gives more control over note selection
compared to directly produced MIDI values.

The teacher vectors will be encoded from the y𝑐 (𝑛) from the
MIDI values (MID) corresponding to u𝑐 (𝑛 + 1). The one-hot vector
encoding takes the values:

y𝑐 (𝑛) ∈ {0, 1}𝑚 ; 𝑚 := MID𝑟𝑎𝑛𝑔𝑒 (𝑐) (9)

where MID𝑟𝑎𝑛𝑔𝑒 (𝑐) is the MIDI value range for channel 𝑐 as listed
in Table 1.

y𝑐 (𝑛) = e𝑖 ; 𝑖 := MID − MID𝑚𝑖𝑛 (𝑐) + 1 (10)

where e𝑖 is the standard basis vector with 0’s everywhere, except a
value of 1 at the index i.

In addition, we have experimented with an additional encoding
of the duration of the notes, which was treated as a secondary classi-
fication variable. This has been implemented and tested for a single

Remco. F. Leijenaar, Jeroen Oude Vrielink, Lukas M. Kinder, and Yang Ji

channel signal. Difficulties arise, however, when multiple channels
are involved. In particular, not every note starts and ends at the
same time steps. Therefore, the model does not need to produce
a new output for each channel every time step. This complicates
the design. In addition, concerns should be raised with the addi-
tion of duration vectors for each channel in light of the curse of
dimensionality. Keeping these matters in mind, we omitted the
duration encoding and instead allow the model to produce longer
duration notes through the repetition of the same note – similar to
the format of the raw input data.

3 MACHINE LEARNING MODELS
3.1 Multilayer Perceptron
3.1.1 Model definition. The multilayer perceptron is a densely
connected feedforward neural network with atleast one hidden
layer. An MLP ℎ : R𝐾 ↦→ R𝑀 implements a map from input ū ∈ R𝐾
to output ŷ ∈ R𝑀 . The input to the network will be a windowed
view of the signal u(𝑛):

u(𝑛) = u1 (𝑛) ⊕ u2 (𝑛) ⊕ · · · ⊕ u𝐶 (𝑛) (11)

where u𝑐 (𝑛) is the 5-dimensional vector encoding for channel 𝑐 at
time step 𝑛, and 𝐶 = 4 because there are four channels. ⊕ is the
concatenation operator. A sliding window view of length 𝑁𝑤 is
created from this signal:

ū(𝑛) = u(𝑛 − 𝑁𝑤 + 1) ⊕ u(𝑛 − 𝑁𝑤) ⊕ · · · ⊕ u(𝑛) (12)

The windowed view ū ∈ R𝐾 in this flattened representation, is
forwarded to set the activations of the units in the input layer of
the MLP ℎ. As a result, the number of units in the input layer is
𝐾 = 𝑁𝑤 ·𝐶 · 5.

The output of the network ŷ ∈ R𝑀 is comprised of the probability
distributions over the MIDI values:

ŷ(𝑛) = ŷ1 (𝑛) ⊕ ŷ2 (𝑛) ⊕ · · · ⊕ ŷ𝐶 (𝑛) (13)

with ŷ𝑐 (𝑛) and 0 ≤ 𝑐 < 𝐶 the probability distribution over the
MIDI values in the chromatic range of channel c. Therefore, the
number of units𝑀 in the output layers is:

𝑀 = MID𝑟𝑎𝑛𝑔𝑒 (0) · MID𝑟𝑎𝑛𝑔𝑒 (1) · · · · · MID𝑟𝑎𝑛𝑔𝑒 (𝐶) (14)

Unlike the input layer that represents the flattened window view of
the signal, the output layer constitutes 𝐶 heads. The concatenation
of the heads will yield ŷ(𝑛) ∈ R𝑀 , as in Equation 13. Although this
is not relevant for the actual computation or implementation, it
makes the notation more transparent, as will be revealed later.

The activation of the units in the hidden and output layers is
computed as follows:

𝑥𝜅𝑖 = 𝜎
©­«
𝐿𝜅−1∑︁
𝑗=1

𝑤𝜅𝑖 𝑗𝑥
𝜅−1
𝑗 +𝑤𝜅𝑖0

ª®¬ (15)

where 𝑥𝜅
𝑖
is the activation of the 𝑖th unit in layer 1 < 𝜅 ≤ 𝑘 ; and

𝑤𝜅
𝑖 𝑗
the weight between the 𝑗th unit in layer 𝜅 − 1 and the 𝑖th unit

in layer 𝜅;𝑤𝜅
𝑖0 is the weight between the bias unit (activation of 1)

in layer 𝜅 − 1 to the 𝑖th unit in layer 𝜅 . The number of units in the
𝜅th layer is given by 𝐿𝜅 . 𝜎 is the activation function of the unit.

Parameter Distribution or set Selected
𝑁 {2𝑛 |4 ≤ 𝑛 ≤ 9;𝑛 ∈ N} 32
𝐿2 {𝑛 |4 ≤ 𝑛 ≤ 210;𝑛 ∈ N} 410
𝛽 log-uniform(10−8, 10−1) 4.9 × 10−2

𝑁𝑤 {𝑛 |1 ≤ 𝑛 ≤ 400;𝑛 ∈ N} 31
Table 2: The hyperparameters of the multilayer perceptron.
The distribution column contains either the set from which
was a parameter is uniformly sampled or a distribution from
which is sampled.

The units in the hidden layer apply the sigmoid function: 𝜎 (𝑎) =
(1 + 𝑒−𝑎)−1. The output units apply the softmax function per head:

(ŷ𝑐)𝑖 = (𝜎𝑐 (a))𝑖 =
𝑒𝑎𝑖∑𝐾𝑐

𝑗=1 𝑒
𝑎 𝑗

; 𝐾𝑐 := MID𝑟𝑎𝑛𝑔𝑒 (𝑐) (16)

where (ŷ𝑐)𝑖 is the activation of the 𝑖th unit in the head 𝑐 in the
output layer 𝑘 . The softmax activation ensures that each head in
the output layer produces a probability vector over the MIDI values
for that channel.

3.1.2 (hyper-)parameter optimization. The parameters of the MLP
ℎ were optimized on the objective of minimizing the sum of several
loss functions. The main loss function is the mean categorical cross
entropy of the prediction of each head in the output layer.

CCE(𝑐) = − 1
𝑁

𝑁∑︁
𝑛=1

𝐾𝑐∑︁
𝑖=1

(y𝑐 (𝑛))𝑖 · log (ŷ𝑐 (𝑛))𝑖 (17)

In addition, the 𝐿2 loss function is included for flexible regulariza-
tion:

𝐿2 (𝜃) = 𝛽2
∑︁
𝑤∈𝜃

𝑤2 (18)

where 𝜃 is the set of all weights of the models.
Combining these losses yields the summed loss as described in

Equation 19.

Loss =
𝐶∑︁
𝑐=1

CCE(𝑐) + 𝐿2 (𝜃) (19)

The weights 𝜃 were initialized by sampling from the Glorot nor-
malized uniform distribution [7]. The Adam optimization algorithm
[8] with the default decay rate for the moments, and a learning
rate of 𝜆 = 1.0 × 10−7. In addition, mini-batch gradient descent was
used with a batch size of 𝑁 . The MLP was kept fixed to one hidden
layer (layer 2). Additional hidden layers were not considered, as this
would likely contribute to overfitting. One hidden layer is expected
to suffice, unless it is very non-linearly organized. The number of
hidden units 𝐿2, the batch size 𝑁 , the 𝐿2 regularization parameter
𝛾 , and the window length 𝑁𝑤 were optimized by using 5-fold cross-
validation. Random search over 100 iterations was applied and the
data set was split up into 80% training and 20% validation points
by shuffle splitting the data into 5-folds. The MLP was trained for
a maximum of 100 epochs, but if the validation accuracy did not
increase for 3 epochs it would stop early. Table 2 shows the distri-
butions from which the parameters were sampled and the resulting
parameter that showed the lowest accuracy score as described by

Completing Bach’s Unfinished Contrapunctus XIV
With Machine Learning:
Linear Regression, Multilayer Perceptron, and Echo State Networks

Parameter Distribution or set Selected
𝛽 log-uniform(10−5, 103) 2.6
𝑁𝑤 {𝑛 |1 ≤ 𝑛 ≤ 400;𝑛 ∈ N} 378

Table 3: The hyperparameters for ridge regression. The dis-
tribution column contains either the set from which was
a parameter is uniformly sampled or a distribution from
which is sampled.

Equation 21 over the validation set.

𝑝 (𝑐, 𝑖) =
{

1, if arg max (ŷ𝑐 (𝑛)) = arg max (y𝑐 (𝑛))
0, otherwise

(20)

𝑎𝑐𝑐 =
1
𝑁𝐶

𝑁∑︁
𝑛=1

𝐶∑︁
𝑐=1

𝑝 (𝑐, 𝑖) (21)

3.2 Linear Regression
3.2.1 Model definition. Standard multiple linear regression finds
a linear combination of input ū ∈ R𝐾 (Equation 12) that produces
an estimated ŷ ∈ R𝑀 (Equation 13), which approximates the ac-
tual output y ∈ R𝑀 by solving for least squares on the training
data. In our case, we define U as the concatenation of the vectors
ū𝑏 (𝑛) = ū(𝑛) ⊕ 1 – the padded 1 gives us an affine linear map (bias
component) – as columns into a 𝐾 × 𝑁𝑚𝑎𝑥 matrix; and Y as the
concatenation of the outputs y(𝑛) as row vectors into a 𝑁𝑚𝑎𝑥 ∗𝑀
matrix, i.e:

U =
[
ū(1) ū(2) · · · ū(𝑁𝑚𝑎𝑥)

]
(22)

Y =
[
y(1)′ y(2)′ · · · y(𝑁𝑚𝑎𝑥)′

] ′ (23)
Given the matrices U and Y, the (𝐾 + 1) ×𝑀 coefficient (or weight)
matrix W can be estimated as follows:

W′ = (U′U)−1U′Y (24)

However, though this estimation achieves minimal loss on the
training data, it may also become overfitted to the trained y(𝑛)𝑛∈N
biased by random errors, leading to the lower expectation of squared
errors. To downregulate overfitting, we add an 𝐿2 term (equation 18),
or under linear regression more commonly dubbed Ridge parameter
𝛽 , as follows:

WRidge
′ = (U′U + 𝛽2I)−1U′Y (25)

The Ridge parameter is adjusted such that it minimizes the accu-
racy (Equation 21) during 5-fold cross-validation. In addition, the
window length 𝑁𝑤 is optimized using the same random search
cross-validation procedure as described for the MLP in Subsection
3.1. The resulting sampling distributions and best parameters are
shown in Table 3.

3.3 Echo State Network
3.3.1 Model definition. Rather than the windowed input (Equation
12) used by the MLP and the MR, the ESN accepts the input signal
u as defined by Equation 11. For clarity, the definition of this input
signal is restated: at every time step 𝑛, the input signal u (Equation
26) is a vector of length 𝑁𝑢 , where 𝑁𝑢 = 𝐶 · 5. All channels were
used. Thus, 𝐶 = 4.

u(𝑛) =
[
u0 u1 · · · u𝑁𝑢

]
(26)

Given an input signal, the ESN will generate an output signal
ŷ. This signal is defined by Equation 13. Again, for clarity, the
definition of signal ŷ is restated: at every time step 𝑛, the output
signal ŷ (Equation 27), is a vector of length 𝑁𝑦 , where as 𝑁𝑦 = 𝑀

(Equation 14). Note that in this section, the signal ŷ refers to the
signal generated by the ESN, wheres the signal y refers to the
teacher signal used during training. Both ŷ(𝑛) and y(𝑛) are part of
R𝑁𝑦 .

ŷ(𝑛) =
[
y0 y1 · · · y𝑁𝑦

]
(27)

The internal state of the networks reservoir is defined by the
signal x. At every time step𝑛, the internal signal is a vector of length
𝑁𝑥 (Equation 28). Each value 𝑥𝑖 ∈ x(𝑛) represents the activation
level of the 𝑖-th neuron, whose value can lie in the range [−1, 1], or
[0, 1].

x(𝑛) =
[
x0 x1 · · · x𝑁𝑥

]
(28)

The ESN is further defined by the following weight matrices:

W𝑖𝑛 = (𝑤𝑖𝑛𝑖 𝑗) W = (𝑤𝑖 𝑗) W𝑜𝑢𝑡 = (𝑤𝑜𝑢𝑡𝑖 𝑗) W𝑓 𝑏 = (𝑤 𝑓 𝑏
𝑖 𝑗

)
(29)

The matrix W𝑖𝑛 holds to input-to-reservoir connections that
can feed the signal u into the reservoir, and is of size 𝑁𝑥 × 𝑁𝑢 .
The weight matrix W stores the internal reservoir connections,
and is of dimensions 𝑁𝑥 × 𝑁𝑥 . The matrix W𝑜𝑢𝑡 stores the output
weights that can linearly transform the internal signal x into an
output signal ŷ. Lastly, the matrixW𝑓 𝑏 contains the weights that
can feed the generated output signal back into the reservoir, and is
of dimensions 𝑁𝑥 × 𝑁𝑦 .

The transition of internal state vector x(𝑛) into x(𝑛 + 1) is gov-
erned by Equation 30. Note that in this equation all signals at time
step 𝑛 are column vectors. The function 𝑓 denotes the component-
wise application of the activation function to each entry in the
vector x(𝑛+1). This activation function is a sigmoid function which
will squish each entry into to the range [−1, 1], or [0, 1]. The vector
b refers to a bias and is of length 𝑁𝑥 .

x(𝑛 + 1) = 𝑓 (W𝑖𝑛u(𝑛 + 1) +Wx(𝑛) +W𝑓 𝑏y(𝑛) + b) (30)

Equation 30 can be extended to include a leaking rate 𝛼 , as
specified by Equation 31. The leaking rate can either be a vector
𝛼 ∈ [0, 1]𝑁𝑥 , or a scalar 𝛼 ∈ [0, 1].
x(𝑛 + 1) = (1−𝛼)x(𝑛) +𝛼 𝑓 (W𝑖𝑛u(𝑛 + 1) +Wx(𝑛) +W𝑓 𝑏y(𝑛) + b)

(31)
The internal state vector x(𝑛) can be exploited to produce a out-

put vector ŷ(𝑛) using weight matrixW𝑜𝑢𝑡 , as specified by equation
32.

ŷ(𝑛) = W𝑜𝑢𝑡x(𝑛) (32)

3.3.2 Producing a model. The learning task for the ESN can be
stated as follows: given an input training signal u, and a teacher
signal y, determine the weight matrices W𝑖𝑛 , W, W𝑜𝑢𝑡 , W𝑓 𝑏 , and
bias vector b such that the output signal ŷ approximates the teacher
signal y. The following subsection will highlight the necessary steps
to complete this task.

The weight matrices W𝑖𝑛 , W, and W𝑓 𝑏 can be generated ran-
domly by sampling each weight𝑤𝑖 𝑗 from some distribution. These
distributions are typically the Gaussian distribution N(0, 1), or the
uniform distributionU(−0.5, 0.5) [4]. The entries in bias vector b
can be determined in similar fashion.

Remco. F. Leijenaar, Jeroen Oude Vrielink, Lukas M. Kinder, and Yang Ji

However, the weight matrix W needs to be scaled properly in
order for the reservoir to possess the so-called echo state property:
that is, for a long enough input signal u, the internal state of the
reservoir x(𝑛) should no longer depend on the randomly initial state
x(0). This property can be ensured by scaling the spectral radius
of W (i.e. its maximum absolute eigenvalue). The spectral radius is
denoted by 𝜌 (W), and ensuring that 𝜌 (W) < 1 guarantees the echo
state property in most cases [4]. In practice, W is typically divided
by its maximum eigenvalue such that a matrix with unit spectral
radius is obtained. 𝜌 (W) can then be scaled with convenience.

In contrast to the previously mentioned matrices, the weight
matrixW𝑜𝑢𝑡 needs to be determined analytically. This can be done
by driving the network with input signal u, and collecting all inter-
nal state vectors x(𝑛) as rows into a matrix U. The corresponding
output teacher vectors y𝑡 (𝑛) should be similarly collected into a
matrix Y. Next, all rows in matrix U (and the corresponding rows
in Y) should be discarded where x(𝑛) still depends on the random
initial state x(0) in order not to pollute the weights inW𝑜𝑢𝑡 . The
optimal weight matrix W𝑜𝑢𝑡 can then be computed by minimizing
the MSE using ridge regression (Equation 33), as previously de-
scribed in section 3.2. The parameter 𝛽 refers to the regularization
parameter, and I to the identity matrix. In order to add a bias, the
matrix X can be extended by an extra column, whose entries have
a constant value of one.

W𝑜𝑢𝑡 ′ = (U′U + 𝛽2I)−1U′Y (33)

3.3.3 Parameter selection. In contrast to the ridge regressionmodel
and the MLP, no automatic parameter search with a K-fold cross-
validation scheme was used to determine the optimal parameters.
Due to time limitations, it was not feasible to adapt the exiting
cross-validation setup such that it respects the memory effects of
the reservoir. Instead, the network was tuned by hand according to
the method and wisdom as stated in [4]. This section will highlight
the influence of a number of parameters on the behaviour of the
network, and explain how the optimal parameters were selected.

In order to simplify the tuning task, a number of parameters were
kept constant. As such, the randomly generated weight matrices
and the bias vector were sampled from the uniform distribution
U(−0.5, 0.5); no other distributions were tested. The activation
function was set to tanh. Additionally, to simplify the behaviour of
the network, the feedback weights were disabled by scaling them
to zero. The parameters that remained to be determined were the
size 𝑁𝑥 of the reservoir and its spectral radius 𝜌 (W), the scaling of
weight matrix Win and bias vector b, the leaking parameter 𝛼 , and
the regularization parameter 𝛽 .

The size of the reservoir determines the model flexibility. A
bigger reservoir results in a better approximation of the teacher
signal given that the model is appropriately regularized. A lower
limit for the reservoir size can be roughly determined by the number
of real values that the reservoir must remember from the input to
generate an output [4].

The spectral radius of the reservoir influences the speed of the
dynamic of internal signal x. 𝜌 (W) should be set small for tasks
where y(𝑛) depends more heavily on the current input u(𝑛), and
large for tasks that require long memory of the input. However,
𝜌 (W) should be small enough to ensure the echo state property.

𝑁𝑥 𝑠 ·Win 𝑠 · b 𝜌 (W) 𝛼 𝛽 𝑡𝑤𝑎𝑠ℎ𝑜𝑢𝑡
Default 500 1.0 1.0 1.0 1.0 0 0
Optimal 2000 0.3 0.9 1.0 0.1 10 140

Table 4: The default and optimal parameters for the Echo
State Network. ’s’ denotes the scalar that scales the proceed-
ing tensor.

The scaling of Win and bias vector b determine how non-linear
the reservoir responses are. For very linear tasks,Win and b should
be small. This ensures that the entries of x(𝑛) operate around the
zero point, where their activation is virtually linear (given the tanh
activation function). For large values in Win and b, the entries
in x(𝑛) will get saturated and pushed to the boundaries of their
activation. 𝜌 (W), also affects the non-linearity of the reservoir, but
it can only scaled so much before the network becomes unstable.
Ideally, the columns of Win are scaled individually [4], but for
simplicity we scale the matrix with a single value.

The leaking rate 𝛼 can be seen as the speed of the reservoir
update dynamics discretized in time [4]. The leaking rate should be
tuned such that it matches the speed of the dynamics of input signal
u and teacher signal y. 𝛼 can be adapted to be a vector such that
each entry in x(𝑛) has its own leaking rate. However, for simplicity
we stick to a single scalar.

The paper [4] recommends changing one parameter at a time
when tuning the ESN by hand. As such, this method was adopted.
The parameters were tuned in the following order: Win scaling,
b scaling, 𝜌 (W), and lastly 𝛼 . The reservoir size 𝑁𝑥 was kept at
a constant, rather small value, and will only be up-scaled when
the optimal parameters are found. Generally, good parameters that
apply to smaller reservoir sizes also apply to networks with larger
reservoir sizes [4].

Since it was observed in earlier testing stages that the ESN does
not obtain a 100% training accuracy (Equation 21) for smaller 𝑁𝑥 ,
all parameters were optimized with respect to the training accu-
racy rather than a validation accuracy. For each parameter value
that was tested, the network was initialized and trained five times.
The obtained training accuracy was then averaged over these five
runs. This was done to correct for varying performance due to the
randomly generated weight matrices. The parameter that yielded
the highest averaged training accuracy was selected, and the next
parameter was optimized.

Only when all optimal parameters were found, the reservoir
size 𝑁𝑥 was up-scaled such that the network could obtain a 100%
training accuracy. The optimal regularization parameter 𝛽 was then
obtained with an 80/20 validation split. Only in this stage was the
washout time determined, and the collected states x(𝑛) dependent
on x(0) were discarded before training. All default and optimal
parameter values can be found in table 4.

4 POST-PROCESSING
For every time-step, themodels output a vector for each voice. Every
value in the vector corresponds to one possible note that could be
played. We convert these vectors into probability vectors by first
setting every negative value to 0. Afterwards, we take every value
to an power 𝑝 and normalize the vector afterwards. The reason we

Completing Bach’s Unfinished Contrapunctus XIV
With Machine Learning:
Linear Regression, Multilayer Perceptron, and Echo State Networks

take to values to a power is to have control over the entropy of the
vector. For the linear regression model and ESN we choose 𝑝 = 2
and for the MLP 𝑝 = 0.5.

We could always choose the note that corresponds to the highest
value in the probability vectors and let the model run while feed-
ing back its output as an input. In this case, we observe that the
produced music can run in a loop. Alternatively, we can randomly
choose the notes such that the probability to choose a note is the
corresponding value in the probability vector. This prevents loops
but the produced music usually does not sound very well. In order
to improve we can post-process the probability vectors. We do this
based on 5 criteria explained in the following sections.

4.1 Distribution of note length
Without post-processing the models produce notes that are very
short. A long note would mean that the same note is chosen over
multiple time steps, which is unlikely. We can compensate for this
by increasing the probability of continuing the same note.

However, some lengths of notes are more or less likely. For ex-
ample, a note that goes on for exactly 8 time-steps is likely because
this corresponds to half a measure. A note going on for 7 time-steps
is very unlikely. Ideally, the distribution of the length of the notes
should be the same as in Figure 1a. Here we plot the frequencies
of notes based on their length in the first half of Bach’s 14th fugue.
We observe that some lengths are never appearing (3

16 or 5
16 of a

measure for example). The ridged regression model without post-
processing produced the distribution in Figure 1b. After carefully
tuning the post-processing the resulting distribution is shown in
Figure 1c, which is almost the same as for Bach. Note that we some-
times ignored the output of the model altogether. For example, we
know that a note which goes on for 3 time-steps should not happen.
Therefore we set all probabilities for other notes to 0 if a note is
already ongoing for 3 time-steps.

4.2 Note beginning positions in measure
Within a measure there are some positions in which a note is likely
to start and other positions for which it is unlikely that a new note
is starting. Figure 2a shows the distribution of starting positions in
Bach’s Fugue. Most frequent positions in which notes often start
are the beginning of the measured and positions that are fractions
with 4 in the denominator. The same plot for the ridged regression
model without post-processing is shown in Figure 2b. All positions
within a measure seem to be equally likely to start a new note. We
have a similar picture for the ESN or MLP. This is expected, since
the models does not know what a measure is or the current position
within the measure. However, we can post-process the probability
vectors such that time-steps that are unlikely to start a new note
have a higher probability to continue with the current note. The
post-processed results can be seen in Figure 2c.

4.3 Distribution of notes
Bach’s 14th fugue is written in D-minor which consists of the
pitches 𝐷 , 𝐸, 𝐹 , 𝐺 , 𝐴, 𝐵𝑏 , and 𝐶 . Therefore we expect that these
pitches are more common to appear. This is indeed shown in Fig-
ure 3a where the frequencies for each pitch is shown for the first
part of the fugue. The models are usually able to generate similar

(a)

(b)

(c)

Figure 1: Frequency of length of notes. The x-axis corre-
sponds to number of time-steps, for which there are 16 in
each measure. (a): For Bach’s 14th Fugue. (b): For the ridge
regression model with no post-processing(c): For the ridge
regression model with post-processing.

Remco. F. Leijenaar, Jeroen Oude Vrielink, Lukas M. Kinder, and Yang Ji

(a)

(b)

(c)

Figure 2: Frequency of the notes starting-positions within a
measure. (a): For Bach’s 14th Fugue. (b): For the ridge regres-
sion model with no post-processing(c): For the ridge regres-
sion model with post-processing.

distributions of pitches after training. For example Figure 3b shows
the distribution of pitches using ride regression. A difference we
observe, is that notes that are not part of D-minor are a little bit
too frequent. We can compensate for this by slightly lowering the
values in the probability vectors that correspond to non D-minor
pitches. With post-processing the pitch-frequencies for regression
model is shown in Figure 3c which is a bit more similar to 3a.

4.4 Pitch difference compared to last note
The pitch of a note has a strong connection to the pitch of the
note that was played before. Figure 4a shows the frequencies of
absolute pitch differences between sequential notes in Bach’s fugue.
The x-axis encodes the difference in the 12-tone scale (for example
from 𝐶 to 𝐵 is a difference of 1). Bach’s music contains a lot of
differences of 1 or 2. Other differences that are common are 5, 7
and 10. Our models that are trained using the first half of Bach’s
fugue are usually able to generate music with a similar distribution.
Figure 4b shows the result using the ridge regression model with
no post-processing. What is not the same is that differences of 3, 4
and 9 appear more often than in Bach’s fugue. We can compensate
this in the post-processing which is shown in Figure 4c.

4.5 Pitch difference between voices
When two notes are played at the same time, their difference in pitch
can sound harmonic or disharmonic. We used the data of Bach’s
14th fugue and show the frequencies of absolute pitch differences
between voices in Figure 5a. This plot was created by taking every
time-step of the song (16 time-steps per measure) and counted the
differences in pitch between all possible pairs of voices (there are
4 voices which means that there are 6 possible ways to compare
two voices). Pitches with a difference of 1, 6, 11, 13, 18, 23 and 25
are very unlikely. These differences are disharmonic. For example
if one voice plays a 𝐶 and at the same time another voice plays a
𝐵 the difference is just 1 which sound very wrong (Try it, if you
have a piano!). On the other hand, differences of 3, 7, 9 or 12 are
harmonic and sound much better.

The distributions for the ridge regression model without post-
processing is shown in Figure 5b. The model has a tendency to play
harmonics more often than disharmonics, but not as much as it
should. A key method to make the music generated by the model
sound better, is to reduce disharmony during post-processing. To
do this we take every combination of notes in regard to the voices.
Based on the note ranges discussed in Table 1 there are 23 ∗ 27 ∗
23 ∗ 27 = 385641 possible combinations. According to the model,
the probability of a combination is the product of corresponding
probabilities of the individual notes. During post-processing we can
make combinationsmore likely that contain harmony and less likely
if the combination contains disharmony. After post-processing the
results for the ridge regression model is shown in Figure 5c.

4.6 Dummy Model
During post-processing the outputs of the models are changed enor-
mously and without these changes the produced music would not
sound good. This begs the question if the model outputs are actually
important at all. As an experiment we created a Dummy-Model
that always predicts equal probabilities for every note. Afterwards,

Completing Bach’s Unfinished Contrapunctus XIV
With Machine Learning:
Linear Regression, Multilayer Perceptron, and Echo State Networks

(a)

(b)

(c)

Figure 3: Frequency of each note. (a): For Bach’s 14th Fugue.
(b): For the ridge regressionmodel with no post-processing(c):
For the ridge regression model with post-processing.

(a)

(b)

(c)

Figure 4: Difference in pitch compared to the last note (a):
For Bach’s 14th Fugue. (b): For the ridge regression model
with no post-processing(c): For the ridge regression model
with post-processing.

Remco. F. Leijenaar, Jeroen Oude Vrielink, Lukas M. Kinder, and Yang Ji

(a)

(b)

(c)

Figure 5: Difference in pitch between voices at the same time
(a): For Bach’s 14th Fugue. (b): For the ridge regression model
with no post-processing(c): For the ridge regression model
with post-processing.

we post-processed the outputs such that the 5 patterns mentioned
in sections 4.1 - 4.5 are the same as for Bach’s 14th fugue. The
resulting music can be found under “dummy_model.mp3” with the
corresponding first page of the score sheet in Figure 9. We invite
you to listen to it and ask yourself: Does this sound worse than the
music produced by the other models? And does it sound more or
less like music composed by Bach?

5 RESULTS
5.1 MR and MLP
The ridge regression model using the hyperparameters from Table
3 gave a training accuracy of 100% and a validation accuracy of
87.5%. The MLP with the hyperparameters from Table 2 gave a
training accuracy of 88.1% and a validation accuracy of 84.5%.

To generate a sequence of music with these models, as a contin-
uation to the unfinished musical piece, a procedure is used where
the MIDI values after post-processing are encoded and concate-
nated to the window of inputs. The oldest signal in the window
is subsequently dropped to keep a window of length 𝑁𝑤 . By re-
peating this for 4 · 121 = 484 steps, the piece will be extended
by a minute, since the piece is supposed to be played at 121 BPM
(beats per minute) and there are 4 symbols encoded per beat. The
first page of the score sheet corresponding to this generated music
is shown in Figure 10 and Figure 11 for the ridge regression and
multilayer perceptron respectively. The associated music files are
named “pred_ridge_mc.mid” and “pred_mlp_mc.mid” respectively.

5.2 Echo State Network
The obtained model according to the method specified in section
3.3.3, and with parameter values specified in table 4, the model
obtained a validation accuracy of 48.2%, and a training accuracy of
66.3%.

Figure 6 shows the activation signals of the first three entries
in reservoir signal x, with two randomly generated starting states
x(0), sampled from U(−0.5, 0.5). The figure shows how the activa-
tion signals for each neuron eventually converge. This happens at
roughly 𝑛 = 140.

Figure 6: Figure showing the activation signals of the first
three neurons from the reservoir. The hue of the lines indi-
cate the index of the neurons, whilst the line style indicates
a run with different initial state x(0).

Figure 7 shows another run with different states x(0). However,
this time the signals are plotted over 500 time steps. The Figure
gives an indication of the reservoir dynamics.

Figure 8 shows a histogram of the values𝑤𝑖 𝑗 ∈ W𝑜𝑢𝑡 . All values
are in the range [-0.047, 0.038], showing the regularization effect of
parameter 𝛽 .

To generate music the trained ESN was driving with the input
signal u. When the last entry in the input signal was reached, the

Completing Bach’s Unfinished Contrapunctus XIV
With Machine Learning:
Linear Regression, Multilayer Perceptron, and Echo State Networks

Figure 7: Figure showing the activation signals of the first
three neurons from the reservoir.

Figure 8: Histogram of the weights in W𝑜𝑢𝑡 .

output vector ŷ of the network was converted to a MIDI value for
each respective channel using post processing. The selected MIDI
values were then converted into the input vector u(𝑛 + 1), and a
new output was generated. This process was then continued for
a predefined number of time steps. The sheet music for the ESN
is shown in Figure 12, and the corresponding music file is named
“pred_esn_mc.mid”

What is noteworthy is that the regularization parameter 𝛽 was
set to a value of 1 for the ESN that was used to produce the mu-
sic. This allowed the model to overfit more to the training data,
and thus achieved a lower validation accuracy compared to the
aforementioned results. Nevertheless, decreasing the regularization
resulted in better music. The parameter setting 𝛽 = 1 still had a
regularization effect as all values 𝑤𝑖 𝑗 ∈ W𝑜𝑢𝑡 were in the range
[-0.512, 0.436].

6 CONCLUSION
Generating music using machine learning models is a very com-
plicated task. A music generating model that sound like Bach can
not be expected as a result of a student project that only took a few
weeks. Nevertheless, we believe that we generated music that is
somewhat pleasant for the human ear. We were able to successfully
do this with linear regression, an MLP and an ESN. The models
could reproduce some of the characteristics of Bach’s Fugue. The

key aspect to make the models output sound like music was the
post-processing step. With post-processing we could control the
speed of the generated music and could reduce disharmony. We
belief that in order to improve performance, it is necessary to use
more training data that includes music example other than Con-
trapunctus XIV. Incorporating extensive expert knowledge about
music theory seems unavoidable for this type of task.

REFERENCES
[1] Murray Gell-Mann. Complex adaptive systems. 1994.
[2] Donya Quick. Kulitta: A framework for automated music composition. Yale Uni-

versity, 2014.
[3] Herbert Jaeger. The “echo state” approach to analysing and training recurrent

neural networks-with an erratum note.
[4] Mantas Lukoševičius. A Practical Guide to Applying Echo State Networks, pages

659–686. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012. doi: 10.1007/978-
3-642-35289-8_36. URL https://doi.org/10.1007/978-3-642-35289-8_36.

[5] Aulon Kuqi. Art in echo state networks: Music generation. unpublished thesis,
2017.

[6] Gavin M Bidelman. The role of the auditory brainstem in processing musically
relevant pitch. Frontiers in psychology, 4:264, 2013.

[7] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep
feedforward neural networks. In Proceedings of the thirteenth international confer-
ence on artificial intelligence and statistics, pages 249–256. JMLR Workshop and
Conference Proceedings, 2010.

[8] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

https://doi.org/10.1007/978-3-642-35289-8_36

Remco. F. Leijenaar, Jeroen Oude Vrielink, Lukas M. Kinder, and Yang Ji

Dummy	Model

Contrapunctus	XIV	-	Continuation

8

4

B

B

Bass

T

T

Tenor

A

A

Alto

S

S

Soprano



























 











 

  



 







 

  

 

 

  

  

 

   

 

 

 

  

     

 

 

 

 

 

  





    
























































	=	121



Figure 9: The first page of the score sheet of the generated music by the dummy model as an immediate continuation from the
‘ending’ of the original piece.

Completing Bach’s Unfinished Contrapunctus XIV
With Machine Learning:
Linear Regression, Multilayer Perceptron, and Echo State Networks

Ridge	Regression

Contrapunctus	XIV	-	Continuation

9

5

B

B

Bass

T

T

Tenor

A

A

Alto

S

S

Soprano

 





















  



  







 



 

 



 

   

 

   



  

    

   

   



  

 







 



 





    
































































 























	=	121 

Figure 10: The first page of the score sheet of the generated music by the ridge regression model as an immediate continuation
from the ‘ending’ of the original piece.

Remco. F. Leijenaar, Jeroen Oude Vrielink, Lukas M. Kinder, and Yang Ji

Multilayer	Perceptron

Contrapunctus	XIV	-	Continuation

14

7

B

B

Bass

T

T

Tenor

A

A

Alto

S

S

Soprano











 



 

   





 



  





  

 



  



 

 





 









 

























































  



 

	=	121









































Figure 11: The first page of the score sheet of the generated music by the multilayer perceptron as an immediate continuation
from the ‘ending’ of the original piece.

Completing Bach’s Unfinished Contrapunctus XIV
With Machine Learning:
Linear Regression, Multilayer Perceptron, and Echo State Networks

Echo	State	Network

Contrapunctus	XIV	-	Continuation

10

6

B

B

Bass

T

T

Tenor

A

A

Alto

S

S

Soprano



























 

 

 













   

  



 

  

 

  



  

 

 

 





 

 

 



 



   











































































	=	121


















Figure 12: The first page of the score sheet of the generated music by the echo state network as an immediate continuation
from the ‘ending’ of the original piece.

	Abstract
	1 Introduction
	1.1 Machine Learning Models
	1.2 General Processing Pipeline

	2 Music encodings
	2.1 Input Encoding
	2.2 Output Encoding

	3 Machine learning models
	3.1 Multilayer Perceptron
	3.2 Linear Regression
	3.3 Echo State Network

	4 Post-processing
	4.1 Distribution of note length
	4.2 Note beginning positions in measure
	4.3 Distribution of notes
	4.4 Pitch difference compared to last note
	4.5 Pitch difference between voices
	4.6 Dummy Model

	5 Results
	5.1 MR and MLP
	5.2 Echo State Network

	6 Conclusion
	References
	Blank Page

