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Abstract

Humans are able to collect and process biometric information – that is, unique physiological features defining a person – at impressive
speeds. Recent developments in the field of deep learning have also shown that machine learning models have the potential to mimic
human performance on certain tasks and, more often, even outperform humans doing the same tasks. Intrigued by these advancements
we decided to tackle the challenge of inferring biometric data, specifically age, gender, and skin color, from dorsal and palmar images
of hands. For that purpose, two different types of deep learning architectures were implemented, namely ResNet and MobileNet.
The models were trained with cross-validation on the ”11K Hands” dataset (Afifi, 2019), which includes dorsal and palmar images of
hands. Evaluation of test performance was done through various measures, including F1 scores, R2 scores as well as mean squared and
mean absolute error. Furthermore, the decision-making process behind the algorithm was explored through gradient saliency mapping.
Reported results show promising performance, although overfitting cannot be entirely ruled out.

Keywords: Convolutional Neural Networks; MobileNets; ResNet; Biometrics; Image Classification
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Introduction

The phenomenon of pareidolia describes the tendency of hu-
mans to interpret meaningful patterns in ambiguous stimuli,
without there being any pattern to speak of. Particularly com-
mon stimuli are faces of other humans - due to evolution, our
brains have practically become hard-wired to facilitate this ef-
fect (Caruana & Seymour, 2022). Pareidolia is not restricted
to faces, however. It can also include other vaguely perceived
patterns (e.g., Figure 1). Pareidolia has also previously been
implemented in computer vision (Chalup et al., 2010). In
contrast to this phenomenon of fallibility, however, humans
are capable of effortlessly collecting and classifying informa-
tion about others simply from their looks. We were fascinated
by the efficiency of humans in detection and categorisation,
and wondered if this behaviour could be implemented with
machine learning - as it has proven capable of outperforming
humans before (Fiel & Sablatnig, 2011). Hence, we delved
deeper into the topic.

After some additional research, we were inspired by the
scientific field of biometrics: biometrics is the extraction and
study of unique physiological human features, which can then
be used to reveal further information about a given person
(Dantcheva et al., 2015). It is a field in which convolutional
neural networks (CNN), perhaps unsurprisingly, have become
an increasingly common sight (Afifi, 2019); a fact that we
believe serves as strong evidence in favour of our idea.

On that note, we will shortly outline the task we set our-
selves: our goal was to design a CNN that could infer various
details about a person based solely on a picture of their palm
or the back of their hand. This single CNN would, ideally,
be able to successfully identify a person’s age, gender and
skin colour by extracting the relevant visual features - these
particular attributes were chosen simply because they struck
us as interesting and because we had already chosen a suffi-
cient number of prediction targets. Our network was trained
on roughly 11,076 pictures of numerous different hands from
the ”11k Hands” datatset, the details of which will be dis-
cussed more thoroughly in the following section.

CNNs can be defined as follows: they are, in essence,
multi-layer perceptrons (MLP) containing several layers of
”feature maps”, in addition to the typical processing, input
and output layers seen in standard MLPs. Feature maps,
which take their inspiration from the visual mechanisms in
organic brains, are collections of ”feature-detecting” neurons.
These neurons learn specific patterns which they can later
identify within a given input, thereby making CNNs naturally
suited for image recognition tasks. A more in-depth descrip-
tion is given in the methods section later in our report.

It was this propensity for image recognition, as well as the
inherently feature-based nature of CNNs, that led us to con-
sider their capabilities as feature extractors. Our hope was
that a CNN, having been trained on a sufficiently large set of
data, could learn to extract features from a particular image
and make accurate classifications based on those features.

Figure 1: An example of pareidolia

Data

The dataset used for our project, the ”Hands and palm im-
ages dataset”, was found on kaggle. This dataset was, in turn,
taken from Mahmoud Afifi - the original author of the pa-
per which proposed the dataset (Afifi, 2019). The dataset is
named ”11k Hands” and can also be found online along with
the original analyses, results and CNN structures built around
it.

The dataset consists of 11,076 hand images coming from
190 different people, each yielding a resolution of 1600 x
1200 pixels. The subjects were in the age range of 18 to
75 years old, but we thought it prudent to remove some out-
liers. Consequentially, the age range shrank to 18 to 30 years
while retaining about 99% of the data. To generate a variety
of images, the participants were asked to randomly open or
close their fingers, resulting in a multitude of hand images
with spread fingers. During this process a video was taken,
recording both the palmar and dorsal sides of the hands. That
is, from the back and front of the hands. Both hands of the
subjects were video taped. Structural similarity was inves-
tigated to determine suitably different frames to use as end-
image results. The original authors removed oversaturated,
cropped or blurry images from the dataset. After this evalua-
tion, an average of 58 images per subject were obtained.

The raw data is accompanied by metadata. Namely, a
subject ID (integer) was recorded along with the age (inte-
ger) of each person. Gender (”male”/”female”), skin colour
information (”very fair”/”fair”/”medium”/”dark”) as well
as the aspect of hand (”dorsal right”/”dorsal left”/”palmar
right”/”palmar left”) were stored as strings. Truth values (in-
teger values ”0”/”1”) are used to flag potential accessories
(such as rings, watches etc.), nail polish or irregularities (such
as bandages, missing parts of fingers or deformed nails).
Naturally the images have file names (”Hand 0000062.jpg”)
which are, admittedly, less useful for our classification task.

https://www.kaggle.com/datasets/shyambhu/hands-and-palm-images-dataset
https://www.kaggle.com/datasets/shyambhu/hands-and-palm-images-dataset
https://sites.google.com/view/11khands
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Figure 2: Distribution for Age

Figure 3: Distribution for Gender

Figure 4: Distribution for Skin Colour

Figure 5: Batch visualisation after data augmentation. The
second image shows an unaugmented original image

Methods & Architecture
In the following section we will discuss the various strategies
we have used to tackle the uneven distributions in our dataset,
build our models and the metrics with which we will be eval-
uating them. Specifically, we cover data pre-processing, the
architectures and hyperparameters used and our chosen per-
formance measures.

Data Pre-processing
Unfortunately, the dataset is riddled with skewed distributions
(see Figure 2 to Figure 4 for a graphical overview of the dis-
tributions of interest of the data). We therefore had to use
data augmentation methods to acquire additional versions of
the less represented groups. We oversampled groups that are
underrepresented in our dataset and undersampled the over-
represented ones in order to get a balanced training set within
each iteration of our 10-fold cross-validation. Oversampling
was done by horizontal and vertical flipping of images as well
as rotation. Finally, we cropped the images back to the stan-
dard size.

Additionally, normalisation of pixel values was performed
to bring all images into a closer range. The normalisation
mapped all pixel values to floating point values in range [0,
1] and RGB scale. Figure 5 shows a batch visualisation after
our augmentation and pre-processing has taken place. After
the preparation of the data, the training of our various models
could begin.

Cross-validation
Cross-validation is a process by which one can more easily
detect, and reduce the risk of, over and under-fitting - hence
our decision to use it in building our own model. It involves
dividing an initial dataset into two subsets, T and V; the for-
mer is the ”reduced training set”, and is used (predictably) to
train the model. The latter is the ”validation set”, and is used
for testing within training.

Naturally, the first step in implementing cross-validation
was to split our dataset into the previously defined subsets T
and V. To do so accurately (rather than arbitrarily) we made
use of 10-fold cross validation. The idea behind k-fold cross
validation can be broadly summarised as follows: first, your
initial dataset S is broken up into k number of subsets, all of
which should be of roughly equal size. You then assemble ev-
ery possible combination of these subsets iteratively (in other
words, some are placed in the reduced training set and others
in the validation set) and, for each one, examine the training
error of your model given that combination. This process,
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Figure 6: Typical sequence of the layers and operations
within a CNN

although computationally expensive, typically gives a good
indication of how your initial dataset should be divided up in
order to minimize the validation risk.

Our own 10-fold cross validation, for instance, led us to
distribute our initial training sample in the following manner:
80% (8860) of our images were placed in the reduced train-
ing set, 12% (1330) were placed in the validation set and the
remaining 8% (886) were later used for testing.

Conventional Convolutional Neural Networks
Convolutional neural networks, as described briefly at the be-
ginning of our report, are a particularly interesting kind of
MLP. In between their input and output layers, CNNs are pri-
marily comprised of a sequence of convolutional and subsam-
pling (or pooling) layers - the length of which varies from
network to network.

The convolutional layers are made up of a number of learn-
able filters, each of which has a predetermined width and
height. These filters convolute an incoming input (such as
an image or earlier feature map) into a new feature map: in
other words, the filters calculate the dot product of a portion
of the input and add that dot product to the feature map, re-
peating this process until the entirety of the original input has
been convoluted. The limited scale of the filters means that,
once learned, they will only respond to specific patterns (or
features).

The subsampling layers are comparatively simple: they re-
ceive a number of feature maps, all of the same width and
height, and send forward a ”minimized” version of each one
by combining clusters of neurons into single neurons. There
are numerous reasons as to why subsampling layers are such
an integral component of CNNs: for one thing they reduce
the size of the input, which has the direct benefit of reducing
computational cost. Furthermore, they place less of an em-
phasis on a feature’s exact location and more of an emphasis
on its general location with respect to other features. This is
extremely useful in reducing the risk of overfitting.

All of our models were trained with similar parameters.
Training was done for 25 epochs for our gender and skin
colour models, and 10 epochs for our age model. All three
models were trained with 256 batches, each containing 32
samples from the dataset. Additionally, the first layer in each
of our models was frozen: this is because we used pre-trained

Figure 7: Standard convolutional filters (a) and the replace-
ment through depthwise (b) and pointwise (c) convolution.
Taken from Howard et al. (2017)

neural networks as the basis for our own CNNs, meaning that
our models could already recognise extremely basic shapes
and did not need to be retrained in that regard.

Gender and Skin colour classification
MobileNets Architecture MobileNets, developed by
Google Inc. (Howard et al., 2017), are a class of models that
aims to be lightweight whilst, simultaneously, not losing too
much efficiency. The architecture makes use of depthwise
convolution to build these. In a typical MobileNet model,
the total number of parameters remains fairly low with 4.2
million. Nevertheless, this network architecture is still able
to achieve some depth with 28 layers. Within a MobileNet
an initial, standard (3x3) convolution is factorised into
depthwise convolutions which are then further augmented by
1x1 pointwise convolutions (Howard et al., 2017; Simonyan
& Zisserman, 2014). In total, this results in one standard,
13 depthwise and 13 pointwise convolution layers and one
average pooling layer, making up the 28 total ones. This
separation of convolution layers allows for the splitting of
functions. Specifically, depthwise separable convolution
creates a layer for filtering and one for combining. Filtering
is done within the depthwise convolution layer, while the
pointwise convolution enables the combination. The whole
journey of splitting is undertaken to immensely reduce
computational costs and model size. Figure 7 provides a
graphical overview of this procedure. The final layer is fully
connected and feeds into a softmax layer commonly used
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for classification (see upcoming Activation function section).
Pointwise convolutions make up for the majority of the
network architecture with around 75% of the total parameters
being part of them. The network also spends most of the
computation time (95%) here.

The cost reduction happens because, rather than relying on
a product of input and output channels as well as the kernel
and feature map size, it splits these and computes a sum of
smaller products. This approach achieves eight to nine times
lower computation resources (see the original paper for more
specific measurements and calculations).

Loss functions Gender and skin colour are classification,
rather than a regression, tasks. Hence, we make use of
cross-entropy. It is a method that measures how much in-
formation (in information theory: bits) is needed for iden-
tification of a class from a set, especially when a coding
scheme has been optimised (here trained) for an estimated
distribution rather than the true distribution. In machine
learning it can be used as a loss function to measure the
dissimilarity between an estimated distribution and the true
distribution. For gender, we could use the binary cross-
entropy (BCE) loss function which is defined as follows

−∑
i

pi log(qi) =−(y log(ŷ)+(1− y) log(1− ŷ)) (1)

where p is the predicted classification, q is the true class
and the corresponding labels ŷ for estimated outcome and
y for the true label, respectively.

As we have multiple skin colours, BCE no longer suffices.
Instead, we calculate separate losses for each label per ob-
servation and sum them together resulting in the categori-
cal cross-entropy loss function

−
M

∑
c=1

yo,c log(po,c). (2)

Here, M is the number of class labels, y the binary indicator
if the class label c is correctly classified for observation o
and p the predicted probability observation o is of class c.

Activation functions For the wrapper functions, we also
made use of two different functions. Specifically, we used
the standard sigmoid f unction

sigmoid(z) = σ(z) =
1

1+ e−z (3)

for our two-class binary classification of gender. To accom-
modate the multiclass logistic regression necessary for the
skin colour classification, we used the so f tmax function

so f tmax(zi) = σ(zi) =
ezi

∑
K
j=1 ez j

f or i = 1,2, . . . ,K. (4)

Update rule Our networks update their weights with the
help of the Adam optimiser. It is an algorithm developed

Figure 8: The age distribution without outliers and trans-
formed to a linear scale instead of age groups

by Kingma and Ba (2014). The Adam optimiser is an ex-
tensive procedure that exploits the benefits of other algo-
rithms. Intuitively, it combines gradient descent with mo-
mentum to converge to the minimum faster, and root mean
square propagation (RMSProp) to adapt the learning rate
between iterations. Gradient descent with momentum is
a technique used to build up momentum that pushes the
updates into a certain direction by taking the moving aver-
age of past gradients into account. By using an exponen-
tial moving average, more weight can be given to recent
gradients. There are some differences between the Adam
optimiser and RMSProp with momentum, however: Adam
updates are directly estimated and includes bias-correction
terms. Without these corrections, the bias can lead to very
large step-sizes and eventual divergence. The pseudocode
provided in the original paper (see Figure 19 in the ap-
pendix) shows the procedure without the involvement of
the various mathematical equations (which are described
and explored in much depth in the original paper!).

Age classification

Instead of classification with limited classes, we implemented
an age classification based on linear regression so as to esti-
mate age in years rather than age groups. This changed our
distribution, as can be seen in Figure 8

ResNet Architecture We used ResNet-50 as the basis for
our age classification CNN. ResNets, or ”residual networks”,
are made up of several so-called ”residual blocks” (He et al.,
2016). Residual blocks are groups of layers, within which the
output of one layer is added to another layer deeper within
the block - crucially, however, this output skips over the lay-
ers in between the sender and the receiver. ResNets were
designed as a response to CNNs with too many layers: al-
though additional layers offered the possibility of more pow-
erful and more varied problem-solving capabilities, they also
introduced a slew of unwelcome issues. For one thing, added
layers increase the risk of the vanishing and exploding gradi-
ent problems. These, in turn, cause the network’s accuracy to
decrease. In other words, extending the depth of a neural net-
work can have a wholly adverse affect on its performance -

https://arxiv.org/pdf/1704.04861.pdf
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but the ”skip connections” utilized by ResNets allow them to
achieve a greater number of layers than their standard CNN
counterparts.

ResNet-34 was the first neural network of its kind. As
the name might imply, it was composed of 34 different lay-
ers: aside from the input and output, ResNet-34 contains 16
residual blocks made up of 2 layers (see Figure 9). ResNet-
50, by comparison, boasts 16 residual blocks of 3 layers.
These blocks are sometimes referred to as ”bottleneck resid-
ual blocks”, owing to their use of 1x1 convolutions at the
block’s beginning and end (see Figure 10). They allow
ResNet-50 to remain efficient and avoid degrading, while still
extending its depth to an impressive 50 layers.

Figure 9: Visual representation of a standard residual block

Figure 10: ”Bottleneck residual block” as seen in ResNet-50

Loss function As opposed to our gender and ethnicity classi-
fication CNNs, this network features the widely-used mean
squared error (MSE) as its loss function. As a reminder,
MSE is given by:

MSE =
1
N

N

∑
i=1

(yi − ŷi)
2 (5)

where yi is the ith observed value, ŷi is the corresponding
predicted value and N is the number of observations.

The motivation behind our decision to use MSE is rela-
tively straightforward: both of our previous two CNNs,
having received an image to classify, attempt to correctly
sort it into one of a small number of clearly distinguish-
able, pre-defined categories. Our age classification CNN,
by contrast, attempts to correctly guess the exact age of
a given palm’s ”owner” - it should be obvious, therefore,
that expecting consistent, total accuracy in this case is sim-
ply unrealistic. By using MSE, we were instead able to
measure how close our CNN’s guess was to the correct an-
swer/age, rather than simply dismiss its output as incorrect
should its guess be off by a few years.

It is worth mentioning that we also looked at the mean ab-
solute error (MAE) when evaluating this particular model.
The MAE provides us with a clear, more intuitive (or at
least more readable) representation of the network’s perfor-
mance: an MAE of 2, for instance, tells us that our CNN’s
predictions were, on average, 2 years higher or lower than
the correct age.

We will now briefly outline the hyperparameters used for
this particular CNN, some of which remain unchanged from
our gender and ethnicity classifiers:

Activation Our age classification CNN uses a straightfor-
ward linear activation function. Sometimes also referred
to as the ”identity function”, this ensures that the weighted
sum of the input is not changed in any way.

f (x) = x (6)

Optimizer This CNN uses the Adam optimizer, as was also
the case for our previous two CNNs.

Performance measures
Next, we will define the metrics we have used to evaluate the
goodness of our models.

Mean Squared Error (see Equation 5). MSE is an objective
measure that quantifies the difference between the true and
predicted value, squaring the average difference across the
dataset.

Mean Absolute Error is another objective measure, but it
can be a little more intuitive for various dependent vari-
ables. MAE represents the difference between the original
and predicted values extracted. It uses the averaged ab-
solute difference over the data set. In the case of age, it
represents how far off from the truth a model is in years.
MAE can be computed as follows:

MAE =
1
N

N

∑
i=1

|yi − ŷi| (7)

where N represents the number of observations y which
represent true values and ŷ which represent predicted val-
ues.
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R2 is the coefficient of determination. It is a very helpful
metric to measure goodness of fit of correlational regres-
sion models. R2 represents the coefficient of how well the
values fit compared to the original values; the higher the
value, the better the model. It is usually in the range of
1 (perfect fit) to 0 (a constant line fit) and the values are
interpreted as percentages. However, negative values are
also possible. They indicate a worse model than a straight
baseline (e.g., x = 1).

R2 = 1− ∑(yi − ŷ)2

∑(yi − ȳ)2 (8)

where ȳ represents the mean value of true distribution of y.
It is important to note that R2 cannot be used for nonlinear
regression models, such as logistic regression.

Precision represents the number of true positives among the
total number of ”guessed” positives. In other words, it is a
measure of how many positive guesses were correct.

Precision =
T P

T P+FP
(9)

where T P are true positives; correctly identified ”true val-
ues. FP are false positives; incorrectly identified ”true”
values.

Recall is, essentially, a measure of how many of the total
number of true positives were successfully detected - this is
because false negatives can be interpreted as true positives
that were misidentified/missed.

Recall =
T P

T P+FN
(10)

where FN are false negatives; incorrectly identified ”false”
values.

F1 scores are weighted combinations of precision and recall.
F1 scores are a useful metric to show the performance of
classification in one glance.

F1 =
2∗Precision∗Recall

Precision+Recall
=

2∗T P
2∗T P+FP+FN

(11)

Accuracy represents how many correct predictions a model
has produced across all test data.

Accuracy =
T P+T N

T P+T N +FP+FN
(12)

where T N are true negatives; correctly identified ”false”
values.

Results
This section will detail the results of our three models, in
accordance with the previously described performance mea-
sures.

Precision Recall F1-score Accuracy
Female 0.99 0.83 0.90
Male 0.76 0.98 0.86

0.88

Table 1: Gender classification model performance

Precision Recall F1-score Accuracy
Very Fair 1.00 0.87 0.93
Fair 0.97 0.95 0.96
Medium 0.97 0.99 0.98
Dark 0.86 1.00 0.92

0.97

Table 2: Skin colour classification model performance

In order to have a set of ”human results” with which to
compare our model, we conducted the following simple ex-
periment: two participants, one of whom was partly aware
of the distribution of our data, were shown 32 palmar and
dorsal images (drawn randomly from the original 11k Hands
dataset) and asked to guess the age, gender and skin colour
of the person being shown. The answers of each participant
were kept hidden so as not to influence the other. Our par-
ticipants performed with the following accuracy, on average:
with regards skin colour their accuracy was 0.5938, for gen-
der it was 0.5469. In terms of age, our participants performed
with an MAE of 9.7656. See Figures 20 and 21 in the ap-
pendix for the corresponding confusion matrices. Also con-
sult Figure 22 in the appendix for a general overview of hu-
man accuracy.

The above experiment, although extremely rudimentary,
provided us with a rough approximation of how well hu-
mans perform in these kinds of identification and classifica-
tion tasks.

Our initial intention, as outlined during the introduction,
was to implement a single, multi-output CNN. Unfortunately
we were unable to successfully implement such a model, and
were instead forced to design and train three separate, single-
output CNNs - as described in detail in the previous section.
As such, we have no results to show for our multi-output ap-
proach. Nevertheless, we lay out the results of our single-
output CNNs below.

Gender classification

The results obtained from our gender classifier can be broken
down as follows: its final precision (9) value was 0.99 for ”fe-
male palms” and 0.76 for ”male palms”. Its recall (10) values
were 0.83 and 0.98 for female and male palms, respectively.
Its female palm f1-score (11) was 0.90 and its male palm f1-
score was 0.86 - as such, the model’s total accuracy (12) was
0.88. These results can be seen more clearly in Table 1. Fig-
ure 11 shows the corresponding confusion matrix and Figure
12 plots accuracy and mean loss over epochs.
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Figure 11: Confusion matrix for our ”Gender” classification
model

Figure 12: Accuracy and mean loss of our gender classifi-
cation model, per epoch. Error bars indicate ±1SE for the
respective scales

Skin colour classification

Our skin colour classification model performed with an over-
all accuracy of 0.97. The exact details (its precision, recall,
etc.) are shown in Table 2. Again, the confusion matrix of
interest can be seen in Figure 13 whereas Figure 14 shows
accuracy and mean loss over epochs.

Age classification

Our age classification model produced an R2 of −0.2169. It
also achieved an MAE of 1.2031, as shown in Figure 15.

Discussion

Here, we are going to reflect on what we have learned,
explore reasons as to why some ideas have not worked out
and unfold what future steps could be taken to improve our
current work.

Figure 13: Confusion matrix for ”Skin colour” classification
our model

Figure 14: Accuracy and mean loss of our skin colour classi-
fication model, per epoch. Error bars indicate ±1SE for the
respective scales

Figure 15: MAE and mean loss of our age classification
model, per epoch. Error bars indicate ±1SE for the respec-
tive scales
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Figure 16: Saliency map showing a clear bias towards the
”Female” label when a ring is worn

Outcomes
Our ”human results”, although certainly not representative of
the broader population, provide us with a basic grasp of how
well our models perform in comparison to the average per-
son: in all three areas (gender, skin colour and age) our mod-
els vastly outperformed our human participants. With regards
to gender classification, for instance, our model’s judgements
are clearly more accurate (and therefore reasoned, as indi-
cated by Figure 16) than the near-random judgements being
made by our participants.

Saliency maps are able to give some insight into the
decision-making process of the various networks by visual-
ising what the algorithm pays most attention to. The saliency
maps for age, gender, and skin color were obtained by back-
propagating the gradient through the CNN to obtain the out-
put derivative and plotting the max values of each output
pixel. In Figure 16 we can see that the defining feature for
the taken decision (”Female” class) is a ring. This could be
connected to the fact that accessory wearing is much more
prominent amongst women within the data set. The same
phenomenon can be seen in Figure 17; painted nails are a
basis of bias toward the ”Female” class for the model. The
saliency map for age classification (which is very similar to
Figure 16) also seems to pay close attention to any ring pres-
ence, and usually is inclined to classify persons as older when
a ring is present. Human interpretation behind that inclination
would be the notion that marital status is usually attained later
in life, and the model learns that implicitly.

However, salience maps do not tell the whole story. Com-
paring Figure 16 with one from the skin colour predictor (e.g.,
Figure 18), we remain uncertain of what is really going on in
the black box of neural networks. The focal points here are
much less intuitive than the highlighted ring for gender clas-
sification.

General Discussion
Irrespective of how they compare to humans, the perfor-
mance of all three of our models is very encouraging. There
are, however, a handful of flaws and potential problems that
should be highlighted, particularly with regards to our age
classification model. Firstly, it proved to be extremely slow

Figure 17: Saliency map showing a clear bias towards the
”Female” label when nails are painted

Figure 18: Saliency map for skin colour prediction that gives
little insight into the black box of neural networks

to train: its 10 epoch training cycle took upwards of 6 hours
to complete. In comparison, our other two models both com-
pleted their 25 epoch training cycles in roughly the same time.
We are confident that the age classification model’s archi-
tecture (ResNet) is the cause of this particular issue: Mo-
bileNets, as mentioned previously, are exceptionally good at
reducing computational cost. Their design significantly re-
duces the number of involved parameters, thereby allowing
MobileNet models to be trained relatively quickly on large
sets of data. The problem, therefore, is that ResNets clearly
do not allow for this same level of efficiency. Although resid-
ual networks offer many benefits, our results seem to suggest
that they are outclassed by MobileNets in terms of parameter
and computational cost reduction.

Another, separate issue with our age classification model is
that of overfitting. Although the model’s MAE is quite low,
its negative R2 value is a clear indication that it may be over-
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fitted to the unbalanced data distribution. Our skin colour
classification model, which performs with near-perfect accu-
racy, must also be considered a potential case of overfitting
for the simple reason that our dataset’s skin colour distribu-
tion is, also, significantly skewed. To be specific, 58.6% of
our palm images are of the ”Medium skin colour” variety. At
the very least, this figure tells us that we should treat the ac-
curacy of our skin colour classifier with caution. It should
be noted that our gender classification model - which also
performs with a high degree of accuracy - shows little indica-
tion of having been overfitted. Nevertheless, it is important to
keep in mind that 25 epochs may be too many and introduce
some risk of overfitting (Ying, 2019) - a point that applies to
both of our MobileNet models. There remain parameters we
can tune a little more, but there is only so much we can do. To
ensure a lower risk of overfitting across all categories a larger,
more balanced dataset is necessary.

There are, however, several positive aspects of our imple-
mentation that bear mentioning. For one thing, augmenting
within folds (and only after splitting our data) allowed us to
confidently rule out the possibility of a data leakage. Ad-
ditionally, our decision to remove outliers from the original
dataset and focus on palms representing ages between 10 and
30 led to an overall much more intuitive age classifier: orig-
inally, our age classification model sorted palms into one of
several ”age range categories”, in much the same fashion as
our other two models. This was our first attempt at tackling
the issue of outliers, as forcing our model to try and guess a
palm’s exact age, when the range of possible answers was
from 18 to 75, resulted in a largely unsatisfactory perfor-
mance. We eventually decided that the best approach was
simply to remove the outliers altogether. As a result of the
drastically reduced range of ”possible answers”, our age clas-
sification model was able to accurately guess the exact age of
a palm’s owner and avoid being tied to the same categorisa-
tion system as its fellows.

Reflection and Conclusion
Our original goal was to develop a single, multi-output CNN
capable of extracting the relevant features from a palm picture
and determining a person’s age, gender and skin colour. As
we soon discovered, however, this was a somewhat overam-
bitious goal: we were instead forced to implement multiple,
single-output CNNs, with each one being designed to exam-
ine a single feature (i.e.: age, gender or skin colour).

Although partly disappointing, this initial hurdle did open
our eyes to the various difficulties surrounding multi-output
regression tasks, as well as some areas in which our original
design could be improved. For one thing, the sheer computa-
tional power demanded by multi-output CNNs may very well
make them fundamentally unsuited to projects of our scale. It
is also possible that our original network was trained in too
few epochs, or that its depth/overall size was insufficient - but
again, these are problems that are difficult to approach given
our limited timeframe and budget.

Ultimately, despite the fact that our single multi-output

CNN never came to fruition, we are confident that our three,
single-output CNNs have fully accomplished the task we ini-
tially set ourselves: their performance would seem to indi-
cate that neural networks are indeed capable of the same kind
of classification that humans routinely exhibit, and poten-
tially to a significantly higher level of accuracy. One possi-
ble way to further improve upon the classification capabilities
of neural networks could be to treat pareidolia as a heuris-
tic that facilitates information processing of crucial informa-
tion, rather than an undesirable human flaw. We are social
animals; we thrive through cooperation, and quickly detect-
ing whether someone is hostile or friendly is of great impor-
tance, even to this day. What if we were to exploit parei-
dolia and apply it to computer vision, such that we bias our
CNNs in favour of patterns that we deem important for the
task at hand? Chalup et al. (2010) have taken some first steps
in replicating pareidolia in computer vision. They, however,
focused on aesthetics rather than utility. If we were to bias
surveillance cameras with image classifiers towards stimuli
of importance (weapons, for example) even faster processing
times do not seem out of reach. Future research is necessary
to see if pareidolia, usually seen as a human flaw, can be used
to our advantage when tailored to the task at hand.
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Appendix

Figure 19: Pseudocode of the Adam algorithm. Taken from Kingma and Ba (2014)



Figure 20: Gender confusion matrix for one of our participants who performed with an accuracy of 0.59



Figure 21: Skin Colour confusion matrix for our other participant who performed with an accuracy of 0.5



Figure 22: Age scatterplot showing the accuracy of our participants in contrast to the true values
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