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Abstract

The article describes a new formal ap-
proach to model discrete stochastic pro-
cesses, called observable operator models
(OOMs). It is shown how hidden Markov
models (HMMs) can be properly generalized
to OOMs. These OOMs afford both mathe-
matical simplicity and algorithmic efficiency,
where HMMs exhibit neither. The observ-
able operator idea also leads to an abstract,
information-theoretic representation of sta-
tionary stochastic processes. It is shown how
any such process can be uniquely character-
ized by linear, observable operators, yielding
an abstract OOM of the process. All in all,
observable operators open a lucid, general,
and computationally extremely powerful av-
enue to stochastic processes.

1 Introduction

In the theory of systems and control, trajectories of
discrete-time dynamical systems are usually seen as a
sequence of states [Zadeh, 1969] [Stengel, 1986]. They
are generated by the repeated application of a single
(possibly stochastic) operator T (fig. 1a). Metaphor-
ically speaking, a trajectory is seen as a sequence of
locations (in state space), which is visited by the sys-
tem due to the effects of a time step operator.

In this article, trajectories are perceived in a com-
plementary fashion. From a set of operators (say,
{A,B}), one operator is stochastically selected for
application at every time step. The system trajec-
tory is then identified with the sequence of operators.
Thus, an observed piece of trajectory . . . ABAA . . .
would correspond to a concatenation of operators
. . . A(A(B(A . . .))) . . . (fig. 1b). Since in this per-
spective, the observables are the operators themselves,
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I have named this kind of stochastic models, “ob-
servable operator models” (OOMs). An appropriate
metaphor would be to view trajectories as sequences
of actions.
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Figure 1: (a) The standard view of trajectories. A
time step operator T yields a sequence ABAA of
states. (b) The OOM view. Operators A,B are con-
catenated to yield a sequence ABAA of observables.

Stochastic sequences of operators are a well-known
object of mathematical investigation [Iosifescu and
Theodorescu, 1969]. The results reported in the
present article arise from a crucial new insight: the
probability of selecting an observable operator at a
given time can be computed using the operator itself.

This twist in perspective has enormous practi-
cal and theoretical impact. On the more practical
side (section 2), I show how hidden Markov models
(HMMs) can be recast, and generalized, to become
OOMs. These OOMs are mathematically very trans-
parent, and have exciting algorithmic properties. On
the theoretical side (section 3), I develop an abstract,
information-theoretic version of OOMs. It turns out
that the “concrete” OOMs obtained in section 2 as a
generalization of HMMs coincide (up to isomorphism)
with the finite-dimensional abstract OOMs.



The article gives an informal overview of results
which are documented in mathematical rigour in
[Jaeger, 1997a] [Jaeger, 1997b].

2 OOMs as a generalization of HMMs

Today, hidden Markov models (HMMs) [Rabiner,
1990] [Elliott et al., 1995] [Bengio, 1996] provide
the state-of-the-art techniques for analyzing discrete
stochastic sequences of observations. They are stan-
dardly put to tasks as diverse as protein classifica-
tion, ion channel activity measurements, speech recog-
nition, or the detection of gestures in computer vision.
In spite of their wide use, HMMs possess neither an
elegant mathematical theory nor pleasant algorithmic
properties. In this section I show how HMMs can be
generalized to arrive at OOMs, and compare the prop-
erties of HMMs vs. OOMs.

2.1 From HMMs to OOMs
I will indicate how OOMs can be generalized from
HMMs by re-writing a simple HMM as an OOM. I
assume that the reader is familiar with HMMs. Con-
sider the HMM depicted in fig. 2. It has two hidden
states {s1, s2} and two observable events Σ = {a, b}.
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Figure 2: An exemplary HMM. Thin arrows indicate
state transitions, with annotated probabilities. Bold
grey arrows denote probabilistic emission of observ-
able events.

Formally, the state transition probabilities can be
collected in a stochastic matrix M which at place (i, j)
contains the transition probability from state si to sj .
The emission probabilities P [ai |sj ] can be sorted into
diagonal observation matrices Oa, Ob. For instance,
Oa contains, in its diagonal, the probabilities P [a |s1]
and P [a |s2]:

M =
(

0.0 1.0
.5 .5

)

Oa =
(
.5

1.0

)
Ob =

(
.5

0.0

)
In order to fully characterize this HMM, one

also must supply an initial distribution w0 =
(P [s1], P [s2]), where P [si] is the probability that the

system starts in state si. If one investigates stationary
processes, w0 is taken to be a stationary distribution
which is uniquely determined in most cases of interest
by the condition

M ′w0 = w0, (1)

where M ′ denotes the transform of M . This paper
only deals with stationary processes, and w0 always
denotes the stationary distribution. In our example,
w0 = (1/3, 2/3).

The first step toward an OOM is to multiply M ′

with the matrices Oa, Ob to obtain Ta = M ′Oa, Tb =
M ′Ob. Note that no information is lost by this merg-
ing. M ′, Oa, Ob can be recovered from Ta, Tb by ob-
serving that

M ′ = M ′ · 1 = M ′(Oa +Ob) = Ta + Tb. (2)

The operators Ta, Tb can be used to compute the
probability P [c1 . . . ck] by which the finite event se-
quence c1 . . . ck (where ci ∈ {a, b}) occurs among all
other sequences of equal length in the process de-
scribed by the HMM. It can be shown that

P [c1 . . . ck] = σ(Tck ◦ Tck−1 ◦ · · · ◦ Tc1w0) (3)

In this equation, σ(x1, . . . , xn) := x1 + . . .+ xn de-
notes the internal sum of a vector. (3) provides a more
transparent way of computing sequence probabilities
than does the “forward-backward” algorithm, which is
traditionally used by HMM practicians for the same
purpose [Rabiner, 1990].

Now, one arrives at the definition of an OOM by
(i) relaxing the requirement that M ′ be the transpose
of a stochastic matrix, to the weaker requirement that
the columns of M ′ each sum to 1, and by (ii) requiring
from w0 merely that it has an internal sum of 1. Using
the letter τ in OOMs in places where T appears in
HMMs, and introducing µ :=

∑
c∈Σ τc in analogy to

(2), this yields:

Definition 1 A m-dimensional (stationary) OOM is
a triple A = (Rm, (τc)c∈Σ, w0), where w0 ∈ Rm and
τc : Rm 7→ R

m are linear operators, satisfying

1. σw0 = 1,

2. µ has column sums equal to 1,

3. µw0 = w0,

4. for all sequences c1 . . . ck it holds that
σ(τck · · · τc1w0) ∈ [0, 1].

Conditions 1 and 2 reflect the relaxations (i) and
(ii) mentioned previously, condition 3 corresponds to
(1), while condition 4 ensures that one obtains a valid
analogue of (3).



After carrying out the multiplications Ta =
M ′Oa, Tb = M ′Ob, our exemplary HMM is formally
written in OOM format, as follows:

A = (R2, (
(

0.0 .5
.5 .5

)
,

(
0.0 0.0
.5 0.0

)
), (1/3, 2/3)).

(4)
OOMs specify stationary stochastic processes, if one

puts

P [c1 . . . ck] = σ(τck · · · τc1w0), (5)

which corresponds to (3) and is the fundamental
equation of OOM theory.

Processes which can be described by HMMs clearly
are a subclass of those describable by OOMs. The
inclusion is proper: stochastic processes exist which
can be modeled by some OOM but not by any HMM.

2.2 OOMs as generators
OOMs can be used to algorithmically generate
stochastic sequences. The procedure is completely dif-
ferent from the way how sequences are produced with
HMMs. This shall now be demonstrated with the ex-
emplary OOM (4).

Consider the state space R2 of (4). At time t = 0,
the system is in state w0 = (1/3, 2/3) (fig. 3a). It
must now be computed by which probability the op-
erator τa (vs. τb) is to be applied on w0 in the
first time step. This is done by computing both
τaw0 and τbw0. The conditions from definition 1
imply that (σ(τaw0), σ(τbw0)) is a probability vector
(!). In our example, we find (σ(τaw0), σ(τbw0)) =
(σ((1/3, 1/2)), σ((1/6, 0))) = (5/6, 1/6). These prob-
abilities are used to make a random choice between τa
vs. τb. Let us assume the dice fall for τa. This means
that the next state, w1, is obtained by applying τa on
w0. An event c1 = a is observed at this moment.

Actually, w1 is not τaw0 but τaw0/σ(τaw0), i.e.
τaw0 is “renormalized” to an internal sum of 1 (fig.
3b). The reason is that internal sums stand for prob-
abilities; but, after the decision for τa, the probability
σ(τaw0) has turned into certainty, i.e. an internal sum
of 1.

This procedure can now be iterated, using w1 in-
stead of w0, obtaining a next observable event c2 and
state w2, etc.

Somewhat surprisingly, this generation procedure
requires only a single random decision per time step.
In a HMM, by contrast, two such decisions are neces-
sary.

2.3 Theoretical and algorithmic
properties of OOMs

In this subsection, I give a quick overview of the most
important properties of OOMs, and compare them
with the corresponding properties of HMMs.
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Figure 3: Using an OOM as a generator. Compare
text for detail.

Model equivalence
Despite repeated efforts since the late 50ies, the ques-
tion when two HMMs describe the same processe has
only recently been fully answered [Ito et al., 1992].
The proof given there is rather involved. The ques-
tion of minimal-state HHMs, which is intimately re-
lated to the issue of model equivalence, is posed but
not answered.

Model equivalence can be characterized much more
transparently for OOMs. The central theorem
states that two minimal-dimensional OOMs A =
(Rm, (τa)a∈Σ, w0), B = (Rm, (τ ′a)a∈Σ, w

′
0) are equiv-

alent if and only if there exists an regular, internal-
sum-preserving, linear mapping % : Rm → R

m which
maps w0 on w′0, and which transports each τa to τ ′a in
the sense that τ ′a = %τa%

−1. A second, largely simi-
lar theorem states how any OOM can be transformed
into a minimal-dimensional one. Taken together, both
theorems fully characterize OOM equivalence, and an-
swer the question of minimal models.

Interpretable OOMs
HMMs are appealing in that they can be interpreted in
terms of two intuitively understandable subprocesses,
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Figure 4: The positioning of H≥0 within the state
space.

namely, a (hidden) Markov chain and probabilistic
“measurement” of states.

OOMs affort an intuitive interpretation, too, albeit
of a completely different kind. For an m-dimensional
OOM and arbitrary k consider an arbitrary disjoint
partitioning Σk = A1∪̇ · · · ∪̇Am of the sequences of
length k into m events. For instance, using again our
example (4), consider the partitioning Σ2 = A1∪̇A2 :=
{aa}∪̇{ab, ba, bb} into the events “no b occurs” and “at
least one b occurs”.

Then, there exists an OOM A(A1, A2) =
(R2, (τ ′a)a∈Σ, w

′
0) which (i) is equivalent to (4), and

(ii) in which the two dimensions of the state space R2

can be interpreted in terms of the future probabilities
of events A1, A2. I.e., when the OOM A(A1, A2) is in
state v = (x1, x2) at some time t, then the probabil-
ity that during the next two time steps A1 will occur
(i.e. “no b”) is x1. Stated in formal terms, an inter-
pretable OOM A(A1, . . . , Am) is characterized by the
fact P [Ai | (x1, . . . , xm)] = xi.

If we consider a 3-dimensional, interpretable OOM
A(A1, A2, A3), all system states fall into the triangu-
lar hyperplane region H≥0 depicted in fig. 4. This
gives rise to a standardized graphical “fingerprint” of
3-dimensional OOMs, if one plots state sequences that
occur during a long run of such an OOMs. Typically,
states lie on a fractal attractor, like the one depicted in
fig. 5. OOMs of dimensions greater than 3 can be pro-
jected on three events and “fingerprinted” similarly.

Inducing models from data
The first and fundamental step in stochastic se-
quence analysis is model induction: given an empir-
ical stochastic data sequence S, find a model that
in some sense optimally accounts for it. The induc-
tion algorithms most commonly used for HMMs is
the Baum-Welch algorithm [Rabiner, 1990]. A num-
ber of variants and alternatives have been developed
[Elliott et al., 1995] [Smyth et al., 1997] [Baldi and

Figure 5: State plot of a 3-dimensional OOM. The
drawing plane is H≥0.

Chauvin, 1994]. All of these techniques are gradient-
descent algorithms, and may need simulated annealing
schemes and manual pre-estimation of model structure
for good results.

By contrast, OOMs can be induced from data
with a constructive one-step procedure. The ba-
sic idea is to exploit that in an interpretable
OOM A(A1, . . . , Am), the invariant vector w0 is
(P [A1], . . . , P [Am]). This vector can be estimated
from an empirical sequence S by counting the fre-
quencies of the events A1, . . . , Am. Similarly, it
holds that τciw0 = (P [ciA1], . . . , P [ciAm]), τcjτciw0 =
(P [cicjA1], . . . , P [cicjAm]), etc. These vectors can
likewise be estimated from data via simple frequency
counting. I.e., one can estimate both certain vectors,
and their images under the maps τci . Elementary lin-
ear algebra then provides simple means to reconstruct
the τci . This involves mainly the inversion of a matrix
of size m×m. Thus, the computational cost of induc-
ing an OOM from S essentially is the cost of a single,
fixed-window inspection of S (which is necessary to
count frequencies of certain events), plus the cost of a
matrix inversion.

This estimation procedure is optimal in the follow-
ing sense. If S (of length N) has been generated by
some OOM A, the OOM B recovered from S becomes
exactly equivalent to A in the limit of N →∞.

A variant of this this algorithm allows to follow
shifting sources. One may expect progress where
HMMs have hitherto faced limitations, e.g. adapt-
ing on-line to changing speakers in automated speech
recognition.



3 Abstract observable operator
models

The idea of observable operators is universally appli-
cable to stationary, stochastic processes, yielding a lu-
cid linear-algebra framework for the investigation of
such processes. I will first show in some detail how
an abstract OOM can be obtained for any stationary,
discrete-time, symbolic process, and then present the
most general form of an OOM.

Let (Ω,A, P, (Xt)t∈Z), or for short, (Xt) be a sta-
tionary, discrete-time stochastic process with values in
a finite set Σ (notation for stochastic processes is taken
from [Bauer, 1978]). Then, (Xt) is uniquely character-
ized by the distribution of finite subsequences, i.e. by
all probabilities of the kind P [d1 . . . dn], where n ∈ N
and d1 . . . dn ∈ Σn. I shall use the shorthand notation
d̄ to denote such sequences.

By consequence, (Xt) is uniquely characterized by
its conditioned continuations, i.e. by the conditioned
probabilities P [d̄ | c̄] = P [c̄d̄]/P [c̄], by which a se-
quence c̄ is followed by d̄. Note that the empty se-
quence c̄ = ε is included here, which means that the
unconditioned probabilities P [d̄] =P [d̄ | ε] are just a
special case of conditioned continuations.

Collect all conditioned continuations of c̄ into a nu-
merical function

gc̄ : Σ∗ → R, (6)
d̄ 7→ P [d̄ | c̄], if P [c̄] 6= 0
7→ 0, if P [c̄] = 0

The set {gc̄ | c̄ ∈ Σ∗} uniquely characterizes (Xt).
Intuitively, the functions contained in this set specify
the information obtainable from finite (possibly even
empty) pasts c̄ about finite futures d̄.

Let D denote the set of all functions from Σ∗ into
the reals, i.e. the numerical functions on words. D

can be viewed as a real vector space in a canonical
fashion. Let G = [{gc̄ | c̄ ∈ Σ}]D denote the linear
subspace spanned by the conditioned continuations in
D.

Let G0 be a basis of G. Define, for every a ∈ Σ, a
linear function ta : G → G by putting ta(gc̄) := P [a |
c̄]gc̄a for all c̄ ∈ G0. A straightforward calculation
shows that in fact this definition carries over to any
arguments for ta, i.e., it holds that

ta(gc̄) = P [a | c̄]gc̄a for all c̄ ∈ G. (7)

The vector space G takes the role of the space
of internal states Rm known from previous sections,
the family (ta)a∈Σ is the abstract analogue of observ-
able operators, and gε corresponds to w0. We say,
(G, (ta)a∈Σ, gε) is the abstract OOM of the process
(Xt).

So far, this is just a lengthy definition. The use-
fulness of this construction lies in the fact that an
analogue of (3) resp. (5) can be found. To this
end, we recur to the representation of any d ∈ G as
its unique linear combination from basis vectors, i.e.
d =

∑
gc̄∈G0

αgc̄d gc̄, where only finitely many of the
αgc̄d are nonzero. We define the internal sum of vec-
tors from G by putting

σd :=
∑
gc̄∈G0

αgc̄d (8)

It can be shown that this definition does not depend
on the choice of the basis G0. Then, it holds that

P [a1, . . . , an] = σ(tan ◦ . . . ◦ ta1gε) (9)

The class of processes which we “concretely” de-
scribed in the preceding sections, by abstracting away
from HMMs, can now alternatively be characterized
as the class of processes whose abstract OOMs are
finite-dimensional.

The construction of abstract OOMs for stationary
processes is not confined to discrete time or discrete-
valued processes. Generalizing the above construction
offers no difficulties. I conclude this section with the
most general theorem currently available (the proof is
an exercise of modest difficulty):

Proposition 1 Let (Ω,A, P, (Xt)t∈R) be a station-
ary process with values in a measure space (B,B).
Then there exists an observable operator model
(V, (τ rA)r∈R,A∈B, w0) of this process, where V is a real
vector space, τ rA are linear operators on V obeying

1. τ r⋃̇
Ai

=
∑
τ rAi

2. τ r+sA = τsA ◦ τ rB ,

and w0 ∈ V obeying τ rBw0 = w0 for all r ∈ R, such
that for all t1 < . . . < tn it holds that

P [Xt1 ∈ A1, . . . , Xtn ∈ An] =

σ(τ tn−tn−1
An

◦ . . . ◦ τ t2−t1A2
◦ τ t1A1

w0). (10)

Loosely speaking, this theorem states that station-
ary stochastic processes can be described in terms of
observable operators, where (1) disjoint unions of ob-
served events translate to sums of operators, and (2)
progression in time translates to concatenating them.
In this way, the theory of stationary processes becomes
part of linear algebra.

4 Discussion

In the introduction, I tried to give an intuitive account
of observable operators by drawing fig.1(b). In fact,
there is redundancy even in that simple sketch. The
system states, which I rendered as little dots, can be
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Figure 6: The really appropriate view on observable
operator trajectories.

taken away! The story told by abstract OOMs is that
observable operators need no “system states” other
than the trajectory’s own past. In order to see this,
note that gc1...cn , which is a system state on which the
ta operate at time n, is nothing but P [ · |c1 . . . cn], i.e.
the state is the information given by the past about
the future. Graphically, therefore, an OOM trajectory
should best be rendered without the little system state
dots, as in fig. 6a. Alternatively, the dots could be
interpreted as the system’s memory of its own past
(fig. 6b).

OOM models intimately blend linear algebra with
probability theory. Furthermore, I believe that mod-
ern dynamical systems theory can be made to bear on
OOM trajectories. The (apparently) fractal dynam-
ics of “information states”, exemplified in fig. 5, is a
fascinating object for further studies.
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