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Abstract

This article deals with mathematical models of discrete, identifiable, “symbolic”
events in neural and cognitive dynamics. These dynamical symbols are the sup-
posed correlates of identifiable motor action patterns, from phoneme utterances
to restaurant visits. In the first main part of the article, models of dynamical
symbols offered by dynamical systems theory are reviewed: attractors, bifurca-
tions, spatial segregation and boundary formation, and several others. In the
second main part, transient attractors (TA’s) are offered as yet another mathe-
matical model of dynamical symbols. TAs share with ordinary attractors a basic
property, namely, local phase space contraction. However, a TA can disappear
almost as soon as it is created, which could (not very rigorously) be interpreted
as a bifurcation induced by quickly changing control parameters. Such “fast
bifurcation sequences” standardly occur in neural and cognitive dynamics.



1 Introduction

This paper is about symbols, viewed as identifiable events in neural dynamical
systems.

The paper is not about symbols in general. That would be impossible. The
empirical phenomenology of symbols is too rich, and the term “symbol” is used
with too many intentions, to allow a comprehensive treatment. Compare, e.g.,
the multiple roles of symbols (i) as mathematical objects, amenable to a set-
theoretic reconstruction; (ii) as signs or signals, which induce physical or mental
reactions in humans (in semiotics and certain schools in linguistic semantics [17]
[40]); (iii) as aesthetical objects in graphical arts; (iv) as physical, identifiable
states in computer circuitry, which can be manipulated algorithmically.

The latter view on symbols has had a constitutive influence on artificial
intelligence and cognitive science. In one of its strong versions, it has become
known as the “physical symbol systems hypothesis” [44]. This hypothesis has
been fervently criticised by some philosophers and psychologists, who found that
experiential aspects of a symbol’s “meaning” had been lost. The ensuing debate
of the “symbol grounding” [27] problem has grown into an entangled mesh of
claims and counterarguments [50] [2] [13] [6].

As a side line, there flamed a debate on whether connectionist models can
sustain symbolic reasoning [21] [53] [12]. The attacks of “classical” symbolicists
tickled connectionists so sorely that within a short period they came up with
dozens of connectionist models for variable binding, the buildup of representa-
tional hierarchies, and other “symbolic” mechanisms which had been claimed
inaccessible to connectionist modeling.

Many of these connectionist architectures relied on dynamical phenomena in
recurrent networks [19] [41]. These developments helped an increasing number
of researchers in artificial intelligence and cognitive science to open up for ideas
from biocybernetics, neuroscience, and artificial neural network research. It now
becomes apparent that neural dynamics can be quite directly related to high-
level properties of cognitive processes. A much-cited example for the insights
afforded by a neural dynamics for cognitive-level processes are chaotic neural
attractors in classification of sensoric stimuli and concept representation [60]
[5]. A wealth of other neurodynamical phenomena relevant for cognition is doc-
umented, e.g., in the handbooks edited by Gazzaniga [23] and Arbib [3], in the
annual Computation and Neural Systems proceedings [8], or in the Behavioral
and Brain Sciences journal.

A related, recent trend in cognitive science and psychology is to view cog-
nitive systems as dynamical systems, without necessarily dealing with the un-
derlying brain processes [51] [57] [35] [56] [34]. I need not say more about this
to the participants of the Gstaad workshop. In this article, I will frequently
use the term “neural/cognitive dynamics” when referring to matters relevant
on both levels of description.

All of these debates and strands of research form the background for the
present article. I will investigate the topic of symbols as discrete, identifiable
phenomena in neural/cognitive dynamics. I will pursue this investigation from
a purely dynamical systems point of view, ignoring most of the deeper episte-
mological questions. In particular, I will not touch the question of a symbol’s
meaning.

The article has to main sections. In section 2, I motivate why it is natural



to assume that in neural/cognitive processes there emerge discrete, identifiable
phenomena, which I will call “dynamical symbols”. T will then review several
candidate mechanisms offered by dynamical systems theory which mathemati-
cally describe the nature and the emergence of dynamical symbols: attractors,
bifurcations, spatial segregation and boundary formation, and others.

In the second section, I describe a kind of discrete, identifiable phenomenon
in non-autonomous dynamical systems which can amply be termed “transient
attractors” (TA). TAs share one crucial property with ordinary attractors,
namely, local phase space contraction. However, a TA can disappear almost
as soon as it is entered, which could (not very rigorously) be interpreted as a
bifurcation induced by quickly changing control parameters. Such “fast bifur-
cation sequences” occur standardly in neural and cognitive dynamics.

2 Dynamical symbols

In this section, I shall first clarify the notion of “dynamical symbols”. Then I
shall review some of the mechanisms offered (or not yet offered) by dynamical
systems theory for modeling dynamical symbols.

Humans behave, and their behavior can be observed by other humans. Very
generally speaking, the behavior exhibited by a human is a continuous process
in many variables. Sometimes in this “stream of behavior” there appear phe-
nomena which (i) can be singled out by observers, and (ii) which can be more
or less reliably classified as an instance of a particular kind of event. Examples
of such discrete, identifiable events are

1. Having a meal in a restaurant.
2. Blinking one’s eyes.

3. Saying “sun”.

4. Producing the sound [s].

These events differ from each other in many ways. They have different
temporal extensions. Some of them are sub-events of others. Some are more
variable than others (there are many different ways of how the restaurant visit
“script” [49] can unfold, while an eye blinking is stereotyped). Some proceed
in silence, others are accompanied by oral utterances, and still others are oral
utterances. And so on.

Despite this diversity, all of these events can be isolated and classified by
human observers. Isolatability and classifiability is certainly a matter of degree
— a drunken person’s utterances can be slurred to the point of becoming unin-
telligible. For the present purposes, however, the fringe fuzzyness of behavioral
event categorization is irrelevant. All we shall make use of is the fact that a
human observer often can isolate and classify (and therefore, name) a behavioral
event without much doubt.

A crucial observation is that the isolatability and classifiability of those
events is to some degree non-arbitrary. In the complex processes of blinking
or vocalizing [s], there is something intrinsic which leads observers to isolate
just these events, and which leads different observers to the same kind of iso-
lation and classification judgements. It would be, in some way, “unnatural” to



isolate from the observed facial dynamics of another person an “event” which
starts when an eye-blink is 70 per cent finished, and extends 50 ms after the
eyeblink.

Thus, there must be something in the high-dimensional trajectory of a hu-
man’s stream of behavior which enables observers to isolate, and classify, par-
ticular periods (and particular subsets of behavioral variables), due to intrinsic
features of the process which are expressed in those periods. Loosely speaking,
we must expect some kind of “flavored lumps” to exist in the process: lumps
there must be, since there are some entities which can be isolated, and flavoured
these lumps must be, since they can be classified.

Since much in this article hinges on the notions of intrinsic isolatability and
intrinsic classifiability, I will try to explain these notions a bit more. An event
in some complex, ongoing process is intrinsically isolatable if the event itself
yields information about when it occurs — about its onset and about its end.
This information must be not (at least not completely) relative to arbitrary
conventions made by the observer. Different observers, who do not know of
each other, must find it likewise natural to isolate roughly the same event from
the “process background”. An example for intrinsic isolatability would be a
steep rising flank in some variable which indicates the onset of “something”. A
non-example would be the mere crossing of a threshold value of some variable,
since this way of indicating an onset would depend on the entirely conventional
fixing of a numerical value.

In a first approximation, intrinsic classifiability means that each event carries
with itself enough qualitative information to enable the observer to classify
it within a (typically huge) classificatory system. Somehow, each event must
display enough “features” to allow its classification. Again, these “features”
must not be merely conventional. A non-example for intrinsic classifiability
would be to use the first five binary digits of a numerical measurement as five
features — this being an arbitrary way of classification. A positive example would
be to use geometrical features from the shape of a chaotic attractor — they are,
in some sense, “proper properties” of the attractor event.

After this attempt at getting two intrinsically vague concepts clearer, let us
return to the main line of argument.

We know that the high-dimensional overt behavior of a human is accompa-
nied by neural/cognitive processes in that human’s brain/mind. The internal
process must be, in some sense, at least as “rich” as the externally visible
motor behavior, since the motor behavior is in some sense controlled by neu-
ral/cognitive processes. However, from a dynamical systems perspective, the
internal dynamics differ tremendously from the external behavior, and a direct
identification or even comparison of internal with external dynamics seems out
of the question. However, it seems reasonable to expect that for every (or most)
of the intrinsically identifiable and classifiable events in the externally observ-
able motor behavior, there exists an accompanying event in the neural dynamics
which is also intrinsically identifiable and classifiable (given suitable observation
techniques for neural/cognitive dynamics). In other words, we expect flavored
lumps in the neural/cognitive dynamics, too.

These latter flavored lumps I shall call dynamical symbols. In a nutshell, thus,
dynamical symbols are any kind of intrinscally isolatable, intrinscally classifiable
events in neural /cognitive dynamics which correlate with likewise isolatable and
classifiable events in overt motor behavior.



This is, of course, a very narrow framing of a symbol concept. Still, narrow
as it is, this specific outlook on symbols leads to interesting questions concerning
the mathematical modeling of neural/cognitive information processing.

I will now review briefly some of the known mathematical candidates for
dynamical symbols, comment on their shortcomings, and on the way, clarify
further what I mean by isolatability and classifiability (or, “lumpiness and fla-
vor”).

One of the most widely used ways to extract discrete events from continuous
dynamics is via partition cells. The basic recipe is to define some volume cells
(ci)ier in phase space, label them with symbols (F;);cr, and when the system
trajectory passes through cell ¢;, say that the event F; has occured.

This way of transforming a continuous trajectory into a symbol sequence
is constitutive for ergodic theory [46] and (chaotic) symbol dynamics (e.g. [16]
[15]). It also is a common strategy in the interpretation of recurrent neural
networks (e.g. [24]) or the theory of qualitative resoning in classical Al (e.g.
[39])-

However, defining discrete events via the trajectory’s passing through a par-
tition cell yields no model for dynamical symbols, since these events are neither
intrinsically isolatable nor intrinsically classifiable.

The delimiting coordinates of a particular volume cell stem from arbitrary
converntions. They are extrinsic to the process.

Likewise, volume cells per se are not “flavored”. If we only know that the
trajectory passes through c¢13 now and through ¢, next then we have no infor-
mation whatsover to tell us what kind of event we have been witnessing. Mere
hitting-a-volume-cell events are not intrinsically classifiable.

Often, of course, the observer will have some extra clues telling him to delimit
volume cells in a particular way, and these clues may come from particular
dynamical phenomena that are exhibited when the trajectory passes through
these cells. Then, the events might be intrinsically isolatable and classifiable,
albeit only due to the involvment of some extra, clue-giving phenomena.

Another quite common approach to picking discrete events from continuous
dynamics is to use point attractors. The general scheme is to report an event
whenever the system has relaxed into a stable equilibrium [29].

This approach is popular with artificial recurrent neural networks used for
classification (e.g. [52]) or constraint satisfaction problems (e.g. [1]). Recently,
even logical inferences have been rigorously re-interpreted as fixed-point relax-
ation of neural networks [22]. Altogether, it seems quite natural to equate
discrete cognitive units (symbols, concepts) with point attractors, and related
cognitive processes (constraint satisfaction, classification, inferences) with re-
laxation dynamics.

Point attractors are intrinsically isolatable: stable equilibria are system prop-
erties, not observational conventions.

One obvious shortcoming of point attractor models is that a true point at-
tractor (like any attractor) terminally captures the system trajectory. If one
wants to describe neural dynamics which exhibit a sequence of point attractor
events, one has to introduce extra mechanisms to kick the trajectory out of
attractors. Such extra mechanisms are, e.g. noise (popular in Hopfield net-
works), or input-induced bifurcations. I shall treat the issue of bifurcations and
attractors extensively below.



A less obvious deficiency of point attractor models is that point attractors
per se are hardly intrinsically classifiable. Like partition cells, they have al-
most no “flavor”. By this I mean that there are no obvious, non-conventional
features by which point attractors might gain individuality. Theoretically, one
might characterize different point attractors by the magnitude of their Lyapunov
exponents, by the size of their basin of attraction, and other such measures. But
this repertoire of distinguishing features seems to be quite small, too small in
any case to account for the enormous variability of dynamical symbols.

Currently the most prominent candidate for dynamical symbols is attractors
with complex periodic or semi-periodic orbits, and chaotic attractors. Such com-
plex attractors have been detected and induced both in artificial and biological
neural systems [60] [5] [28].

Complex attractors are intrinsically isolatable, like any kind of attractor.
Their great charm lies in the fact that they are also intrinsically classifiable. Two
chaotic attractors typically “look” quite different, even to different observers
who do not know of each other. Freeman’s et al. graphical representations of
chaotic attractor states in the olfactory bulb, and the way they geometrically
change due to sensory input, are deeply inspiring.

Thus, are complex (in particular, chaotic) attractors good candidates for
dynamical symbols?

I am sceptical about the ultimate value of chaos for the practical modeling of
neural/cognitive phenomena, basically because identifying a high-dimensional
chaotic attractor in an empirical time series typically requires more data than
can be gathered while the attractor is extant (for more detailed criticism, cf.
[47] [43], for an enlightening case study cf. [48]). T am afraid that in live brains
under real-life conditions, chaotic attractors cannot be monitored long and/or
precisely enough to certify their existence.

I would stick out my neck even further and question that chaotic attractors
are the right mathematical metaphor at all for what we would like to observe.
What I find dubious is the idea of a high-dimensional, complex attractor in the
first place. The work of Freeman, Babloyantz and others has opened our eyes
for the extreme richness, subtlety, and flexibility of (assumedly chaotic) activity
in recurrent neural systems. Babloyantz and her colleagues in particular have
put emphasis on the hypothesis that it is the fine-grained dynamical variants
of chaotic attractors which hold promise as models for conceptual memory (i.e.,
as models for certain dynamical symbols). Now, having fine-grained, subtle,
high-dimensional chaotic attractors also means only marginal stability (which
has benefits for swift and flexible reactions, as has been pointed out by the cited
researchers). Marginal stability means for an attractor that it is easily disrupted
by noise, and that it takes long for the trajectory to settle even in the absence of
noise. Biological brain subsystems are noisy; they are driven with strong signals
from sensors and other subsystems; and they are highly adaptive and learning,
i.e. a brain subsystem does not stay “itself” very long. All of these conditions
render a brain subsystem a hostile environment for marginally stable, subtly
complex attractors. I doubt that in a live brain and under real-life working
conditions a chaotic attractor ever really has a chance to stabilize.

Thus, I fear that chaotic attractors are more a myth than a reality in live,
situated brains. However, it seems undisputable that the investigations of Free-
man, Babloyantz and others have touched on something fundamental, and that
this fundamental thing is somehow connected with chaos. From this perspec-



tive, a promising route would be to investigate neural activity under the auspices
of chaos, but without relying on attractors. This implies that chaos has to be
defined in a novel way, which works for randomly driven dynamics. Such a
definition is in fact available [11].

Partition cells and attractors are probably the most common, but by no
means the only candidates for dynamical symbols that dynamical system theory
can offer. The candidate that I am going to describe next will turn out to
be inherently classifiable, but not inherently isolatable. This combination of
properties is remarkable, since attractor models of dynamical symbols may easily
make one believe that isolability can be considered an implicit consequence of
classifiability. Since this topic touches basic aspects of the dynamical systems
outlook on neural/cognitive systems, I will explain this point in some more
detail.

One basic mechanism for explaining how a system trajectory can get caught
in a sequence of different attractors, is bifurcations. The trajectory is released
by one attractor due to the fact that the attractor itself vanishes, and is caught
by the next because that attractor newly comes into existence. Two complex
attractors, which are separated in time from each other by bifurcations of the
entire system, will typically have different topological features. This implies that
they cannot be smoothly “morphed” into each other. The bifurcation that oc-
curs between them marks a singularity in the “reshaping” of the system’s phase
portrait. Thus, in this case, inherent classifiability (granted by the attractor’s
topolgical features) implies inherent isolatability (since topologcial features can
appear only in “catastrophes”, which are markers for isolation of the newly
appearing attractor).

For a long time, I believed that these observations reflected a deeper, general
law: namely, that a qualitative change of a system’s dynamics cannot occur
“smoothly”, or expressed more casually, that different complex processes cannot
be morphed! into each other. (Mis-)guided by the fundamental phenomenon of
bifurcations, I believed that a dynamical system’s qualitative type of dynamics
can change into another qualitative type (another phase portrait) only through
some kind of “catastrophic” transition. To me this seemed an extremely valuable
insight, because it seemed to point to a fundamental necessity in continuous
nature to produce discontinuities. From here, the road seemed paved toward
understanding how dynamical symbols arise in neural/cognitive dynamics. The
hope was, that a sufficiently rich dynamics would by necessity show some sort
of discrete “klicking and ratcheting”.

The candidate for dynamical symbols which I am going to describe now
demonstrates that this “insight” was false. Qualitatively different stochastic
processes can be smoothly morphed into each other. This means that we have
inherent classifiability without inherent isolatability.

Discrete-time, discrete-value stochastic systems are convenient mathemati-
cal tools for modeling the dynamics of cognitive and neural processes. There
are many variants of such systems: Markov models, hidden Markov models,
stochastic automata of various kinds, stochastic cellular automata, to name but
a few. I have added to this multitude myself by introducing dynamical symbol
systems [31] and observable operator models [37] (a generalization of hidden

In computer graphics, the smooth transformation of a picture into another is sometimes
called “morphing”



Markov models with nicer mathematical properties). Systems of this kind make
for coarse-grained, transparent, and often computationally efficient models of
continuous systems [26] [15], among them recurrent neural networks [55]. In
the programming of mobile robots, they are widely used as learnable memory
modules for representing temporal experiences, in particular in navigation [4]
[38].

A simple example of such a system is given in fig. 1. The figure shows a
two-state stochastic transition graph, which generates stochastic sequences of
a’s and b’s, as follows. At any time ¢, where t = 0,1,2,.. ., the system is either
in state a or in state b. If it is in state a, then it jumps to state b at time ¢ + 1
with probability 1 — p. If it is in state b, it jumps to state a with probability 1.
A sequence of states produced that way is a system trajectory.
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Figure 1: A simple stochastic transition graph.

Now interpret p as a control parameter. If we set p = 1, we observe a
sequence aaaad - . . which consists entirely of a’s, with a possible leading b as an
inital transient. The other extreme would be to set p = 0, which would result
in an alternating sequence abababa .... Intermediate settings of the control
parameter would yield all sorts of miztures.

If a dynamical systems theorist would be offered for analysis just the two time
series aaa ... and ababa . . ., he would probably suspect to have been presented
with a coarse version (derived by partitioning a phase space into two cells a
and b) of a dynamical system that has undergone a period doubling bifurcation
between the two observed time series!

This presumable spontaneous reaction of a system theorist demonstrates
that in some intuitive sense, the sequences aaa ... and ababa ... are “quali-
tatively” different. This view is, however, very much nourished by the inter-
pretation that a familiar period doubling bifurcation has given rise to the two
sequences; in this view, intermediate mixtures between the two sequences would
not be possible.

If, by contrast, the stochastic transition graph is known to be the generating
system, the judgment that aaa . .. and ababa . . . are “qualitatively” different gets
shaky. After all, the two sequences are just the two extremes on a continuum
of processes with intermediate phenomenologies.

A similar morphing can occur in continuous-time, continuous-valued pro-
cesses. For instance, consider a dynamical system governed by a control pa-
rameter 7y, where there is a bifurcation between v = 0 and v = 1. Let the
system run, and while running, stochastically switch ~ between 0 and 1 with
varying average frequency and with varying average relative duration of 0 vs.
1. In the two extreme cases (y = 0 and v = 1, i.e. zero switching frequency) we
will observe the two “clean” bifurcative variants of the system. Depending on
the settings of average switching frequency and of relative duration, however,



all kinds of intermediate dynamics will be observable, too.

In order to preclude a possible misunderstanding, let me emphasize that
in the transition graph example it is not the state symbols ¢ and b which are
the candidates for dynamical symbols. Rather, the candidate for a dynamical
symbol would be the qualitative sequence pattern altogether. This is completely
analogous to the complex attractors discussed previously, where the dynamical
symbol is the overall pattern of the trajectory.

I believe that the existence of intrinsically classifiable but not isolatable
dynamical entities is not just an academic mathematical peculiarity. The oc-
curence of such “entities” (but are they entities, if they are not isolatable?)
has to be expected whenever a dynamical system is driven by stochastic input,
which appears to be the standard case for neural and cognitive (sub-)systems.

This situation calls for the development of new mathematical concepts.
What seems needed here is a “dynamical mixing theory” which can give us
a clearer picture of what it means for temporal patterns to mix. Is it possible,
in a stochastic process, to somehow factor out “pure” dynamical subprocesses,
of which the observed process is a mixture? I am working toward such a theory,
but it is too early to report results.

Besides the relatively prominent candidates pointed out so far, there is an
unfathomable wealth of others, lesser known ones, only few of which have yet
been explored as models for dynamical symbols. I shall proceed in a more
summary fashion.

A basic property of biological neural structures is their spatial organization.
Somatotopic or topographic maps abound, and primary visual cortices appear to
exhibit, beneath the overall topographic representation, a fine-grained columnar
pattern where the activation of columns represents specific features in the visual
stimulus [45]. One striking feature of the cerebellum is the organization of its
surface into “beams” which have been interpreted (among other options) as
adaptive detectors of motor control signal sequences [9].

Findings of this kind suggest localist, or more generally spatial models of
dynamical symbols. A dynamical symbol would correspond to the activation of
some spatially defined collection of neurons. It would be intrinsically isolatable
if the activated neural collective would exhibit a non-arbitrary “boundary” of
some kind. This boundary could be anatomically defined through discontinu-
ities in neural connectivity (as in columns or beams). Boundaries of some sort
can also arise in homogeneous neural substrates by nonlinear, competitive spa-
tiotemporal “neural field” dynamics [20]. Reaction-diffusion type of dynamics
would be another possibility.

A batch of active neural tissue can be intrinsically classifiable for many rea-
sons: e.g., by its anatomical structures, or by its being localized in a particular
part of the brain. Furthermore, its activation dynamics may be complex enough
to distinguish it from other batches.

Another exciting challenge for modeling dynamical symbols is spatiotemporal
dynamics. Unfortunately, a satisfactory qualitative mathematical theory of such
dynamics is presently beyond our reach. Only a few phenomena we have yet
learnt to discern, e.g., solitons, or spiral patterns in reaction-diffusion dynamics.

A glimpse into the future can be cast through Bingham’s article on the
perception of spatiotemporal patterns by humans [7]. The experimental scheme
described by Bingham is to present subjects with dynamical patterns of (a
few) white dots on a black background. The patterns are derived from filmed



sequences of natural dynamical scenes, e.g. a field of high grass swaying in the
wind, or honey oozing out of a jug. The white dots which are shown mark
selected tips of grass or particles floating with the honey, etc. Subjects can
correctly recognize these empoverished stimuli. Their performance can only be
explained when one assumes that humans have rich models of spatiotemporal
patterns. This contrasts starkly with what mathematicians can yet reconstruct.

The observations reported by Bingham do not directly pertain to dynami-
cal symbols. I have mentioned them here because his article indicates research
directions for dynamical systems theory, which are equally relevant for the qual-
itative phenomenology of spatiotemporal neural dynamics.

The last, and possibly most elusive, candidate for dynamical symbols is
species. Species are intrinsically isolatable and classifiable entites which arise in
evolutionary processes.

Cognitive processes have been described in some detail building on the idea
of “concepts = species” [10]. However, in that work only the short-term (in
evolutionary perspective) population dynamics [59] is used to model cognitive
phenomena, treating species as givens. I should also point out the inspiring
young research strand of evolutionary linguistics, where the very emergence of
language is modeled with concepts from evolution theory [54]. This approach
sheds a bright light on the genesis of phonemes, words, and grammar and should
not be missed by anyone interested in the nature of symbols. Finally, the best
known attempt to tame evolutionary dynamics for modeling cognitive dynamical
systems, and the evolution thereof, is classifier systems and genetic algorithms
[30] [25].

Sadly, the mathematical theory of evolutionary dynamics is still in its in-
fancy, Eigen’s and Schuster’s hypercycle model [18] notwithstanding. This
renown mathematical achievement “only” captures speciation in certain chemi-
cal reaction systems. Spatial segregation or the emergence of ever more complex
inheritance mechanisms are not addressed. The hypercycle describes one mecha-
nism, but biological evolution is very much a story of the open-ended generation
of a plurality of mechanisms [42]. Although the theory and practice of classifier
systems and genetic algorithms has been developed further and broader than
that of other evolutionary models, they do not offer even a convincing model
of species ([25] p. 186). This corresponds with the situation in the biological
theory of evolution, where it is not at all clear on which units selection actually
works — genes, or species, or symbiotic multi-species systems? [14]

I feel that our lack of understanding of evolutionary processes cannot be
fundamentally remedied, since evolution is qualitatively productive — ever new
mechanisms emerge, and even mechanisms of evolution of mechanisms evolve
[58]. There is no “master mechanism”, the knowledge of which would give us
the multitude as a corollary.

Brains are the product of evolution, and possibly the development of cog-
nitive systems in ontogenesis also bears some marks of evolution’s qualitative
productivity. Inasmuch as dynamical symbols can be interpreted as “species”
(or genes, or populations, or any other kind of lumps inhabiting brains/cognitive
systems), it seems fundamentally impossible that we can achieve a unified math-
ematical model of them.

This was a sweeping pass over some mathematical models for “flavored



lumps”. It has led us from simple partition cells to the most elusive products of
evolutionary dynamics. The general message I wanted to convey is summarized
in the following points:

e There are many ways how “symbolic” units can arise in neural/cognitive
dynamics.

e We should not look for the correct mathematical model. Nature loves to
play, not to fill out forms.

e The mathematical modeling, and our intuitive understanding, of “sym-
bols” has barely started. Dynamical systems theory still has to integrate
stochastic, spatial, and evolutionary aspects. Exciting discoveries are wait-
ing for mathematicians and brain/cognition researchers.

3 Transient attractors

In this section, I shall motivate and explain transient attractors (TA’s). This
mathematical object generalizes the notion of attractors. Unlike classical at-
tractors, TA’s can exist in systems driven by stochastic input, and in systems
whose variables dynamically change their relative time scales. Thus, TA’s can
serve as models for dynamical symbols in some cases where classical attractors
are not defined.

I have mentioned in section 2 an intrinsic difficulty with attractor models
for dynamical symbols. Namely, an attractor by definition terminally captures
the system trajectory. By contrast, dynamical symbols sequentially arise and
vanish in neural/cognitive dynamics. As I have noted in the previous section, an
apparent way out of this dilemma is by bifurcations which generate and destroy
attractors. The control parameters which induce the bifurcations presumably
are input quantities from sensors or other neural/cognitive subsystems.

A problem with bifurcations is that they are well-defined only when the
dynamics of the control parameters is at least an order of magnitude slower
than the time scale of the controlled system. But this is not typically the case
with neural/cognitive systems! Quite to the contrary, the dynamics of input
variables which “control” a subsystem is typically just as fast as the dynamics
of the subsystem. With the exception of some slow somatosensory modalities
(temperature, hunger, certain kinds of pain, etc.), the brain is under constant
fire of fast sensory input (visual, auditory, kinaesthetic). Furthermore, different
brain subsystems will often tightly interact with each other, each one giving a
portion of it’s own dynamics as input to the other.

From a mathematical perspective, we have to admit that the notion of bi-
furcation (and hence, of attractors) is no longer well-defined in such situations.

The following formal example of a transient attractor shows what it means
for a “control parameter” to have a dynamics which is as fast as the “controlled”
system.

Consider the system specified in polar coordinates by ¢ = 1,7 = r(1 —
r)sin . Its phase portrait is characterized in the vicinity of the origin by anti-
clockwise, closed loops, among them a loop on the unit circle (fig. 2a).

When one follows any two trajectories (the fixed point trajectory at the
origin excepted) through increasing values of ¢, one finds that they come closer
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Figure 2: (a) The system ¢ = 1,77 = r(1—7r) sin . (b) To be noise and not to be
noise — which is which in an empirical phase portrait? (c) Crossing trajectories.
(d) Phase space contraction.

to each other in the upper half of the plane (i.e., 0 < ¢ < 7), whereas they
recede from each other in the lower half. This can be interpreted as the effect of
a “fast bifurcation” induced by a fast control parameter, as follows. Re-interpret
7 =r(1 —r)sin ¢ as a one-dimensional system with a control parameter . If ¢
is fixed at a value between 0 < ¢ < 7, this system exhibits a point attractor at
r = 1. For m < ¢ < 27, the point attractor in » = 1 turns into a repellor. The
values ¢ = 7 and ¢ = 27 mark bifurcations.

Thus, one might interpret the system shown in fig. 2a as consisting of two
coupled one-dimensional subsystems (in ¢ and r), where one of the subsystems
yields a “fast control parameter” ¢ for the other. Variations of this control
parameter induce a “fast” creation-and-destruction cycle of an attractor — a
transient attractor.

Examples like this have been my original motivation for the introduction
and naming of transient attractors. The idea of fast bifurcations does however
not lead very far in practical applications, because control parameters and the
dynamics thereof are mostly unknown. The “fast control parameters” will quite
often come from external input into the system, and have essentially stochastic
dynamics. Even worse, typically one will not even be able to identify the relevant
input parameters. But without an idea what the control parameters are, an
analysis of bifurcation sequences becomes all but impossible.

Empirical phase portraits derived from neural/cognitive systems have still
other properties which render the classical notions of control parameters and

11



bifurcations almost useless. I mention only two of these unpleasant properties.
First, empirical phase portraits are noisy. But it is by and large impossible to
separate noise from the “actual” system dynamics, because whatever amplitudes
at whatever frequency we observe, it might be an “actual” sense-making system
answer to some input, which must not be discarded as noise (fig. 2b). The
second unpleasant property of empirical phase portraits is that they feature
crossing trajectories (fig. 2). There are many reasons for trajectories to cross,
e.g. noise; or projections of a system, which is defined on an n-dimensional
manifold, on a n-dimensional subspace of the embedding space; or observation
of a high-dimensional system in only a few of its variables.

Properties of these kinds force one to abandon autonomous systems ruled
by differential equations, as model systems for neural/cognitive processes in
which there are dynamical symbols to be found. A more general framework
of stochastic processes seems adequate. Therefore, the question is: what is
the intuitive “core” of TA’s, when we have to abandon the descriptive tools of
control parameters and bifurcations?

I suggest to use as the defining property of a TA that it lead to a contraction
of phase space volume. This effect is illustrated in fig. 2d. A TA reveals its
existence by trajectories which “approach each other” in time. Another way to
state the same fact is to say that a TA affords us with good local predictability of
the process. Referring to fig. 2d, if at time ¢, we know (by some measurement)
that the system state is in A, then if there is a transient attractor we can predict
that the system will be in B at time ?,41, where the volume B is smaller than
A. This contraction of phase space volume corresponds to an information gain
over time, and this gain is indicative for the presence of a TA.

There are many ways how this basic idea of phase space contraction can be
made precise in stochastic processes. In [33] I gave a definition which T find
too narrow and too complicated today. I will present a more general and more
transparent definition presently. The practical use of such definitions is limited
because of their high level of mathematical abstraction. Therefore, I will not put
much emphasis on the formal definition, and present it with little explanation
for readers who are familiar with the terminology of stochastic processes. For
most readers it will be more relevant to know that a simple and transparent
algorithm for detecting TA’s in empirical multivariate time series is sketched in
[36]2.

Now, one possible definition of TA’s. Let (Q, %, P, (X};):cr) be a stationary
stochastic process with values in the observation space (R™,98"), where B" is
the Borel g-algebra on R™. Let 2y be the sub-o-algebra of 2 which is generated
by (X¢)i<o, i.e. g is the o-algebra of the processes’ past up to ¢ = 0.

Let us return for a moment to the situation of a classical ODE system’s phase
portrait. If we would want to define a mutual approaching of two trajectories
T,T', we would look at the points z and z' through which they pass at time
t = 0, and then consider their future development after they have passed there.

Very general stochastic analogues of the points x and z’, and of the past
of T, T' before those trajectories passed through = and ', are sets A, A’ from
Ao. Intuitively, A and A’ are informations that can be gained about the system
state by some observations that were made in the past up to ¢t = 0.

2ftp’able from http://www.gmd.de/People/Herbert.Jaeger/Publications/ . The algorithm
is currently being implemented for a diploma thesis.
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A likewise general stochastic analog of the future of T, T" after ¢t = 0 can be
specified through the conditioned probability measures P2 and PtAI, which are
defined by P/(B) = P[X, € B | A] and P/" = P[X, € B | A'], where t > 0
and B € B". The families (P2);s0 and (P2 );>0 could amply be called “fuzzy
trajectories through fuzzy points A and A'”.

Now, what does it mean for two such “fuzzy trajectories” to approach each
other? One would like to define some kind of “distance” between the conditioned
probabilities P4 and PtAI, and then to note when this distance shrinks in time.

Consider the “distance” measure § for two probability measures P, P’ on
(R™,B") defined by 6(P, P') := [ [ ||z — y||P(dz)P’'(dy). This is actually not a
distance measure in the mathematical sense, because §(P, P) is not zero for most
probability measures P (it is zero only if P is a point measure). However, for our
purposes it is the right measure. In the special case of classical trajectories (i.e.
where P and P/"" are point measures), ¢ yields the ordinary metric distance.
In the case of “fuzzy trajectories” (P and P/’ not being point measures), d can
intuitively be interpreted as a kind of mutual information one “fuzzy trajectory”
affords about the other at time t.

Now, in order to define whether the future developments of A and A’ “ap-
proach” each other, we can consider the derivative of §( P/, PtA’) int =0, ie.,
d&(PA, PA"Y/dt (0). If this number is negative, we have found an “approaching
of future developments”.

Having these tools ready, transient attractors can be defined as follows.

First, define a handy class of admissible observations of the past, i.e. a
manageable subset € C %y. Probably the simplest choice would be to use
¢, ={Xo =z | x € R"}, i.e. the point observations of the process in t = 0. A
trickier but still simple variant would be € = {Xo =2, X_1 =y | z,y € R"},
i.e. the informations about the system attainable from a point observations at
the present plus a point observation one time step in the past.

Next, consider the function ta : € x ¢ — R, (4, A") — dd(PA, PA)/dt (0).
Then, define as a transient attractor every maximal connected region in € x €
in which ta < 0.

Of course, this definition presupposes that € has been selected in a way
which allows to define a topology on € x €, in order to make the notion of
connectedness come to bear.

The variants €¢; and €, are roughly analog to describing a physical system
only through its positions vs. through positions plus velocities. Another anlogue
would be to describe a system by a first-order vs. a second-order Markov process.
The second variant allows to disentangle transient attractors that cross each
other in phase space (as in fig. 2c).

This definition is admittedly complex, not worked out in detail, and to some
degree arbitrary. However, something or other in this fashion has to be fixed if
we wish to rigorously work out the intuitive idea of fast generation/destruction of
attractors in stochastic dynamics. I feel a bit embarassed about the current state
of affair, but I cannot offer anything better (however, the practical algorithm
mentioned above is much easier to understand than this abstract definition!).
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4 Discussion

This article pursued two goals. First, I wished to illustrate and emphasize the
phenomenological diversity of dynamical symbols. Complex attractors are an
inspiring and important class of models, but a host of other yet unimaginable
dynamical phenomena awaits us. Second, I took a tentative little step in that
unchartered terrain, by offering the concept of transient attractors.

In former work, I have assumed dynamical symbols as givens, and developed
a mathematical theory which describes how dynamical symbols can interact,
build up complex “resonances”, and develop into hierarchies in a self-organizing
fashion. This mathematical approach, dynamical symbol systems [31] [32], ba-
sically describes the temporal evolution of directed graphs, where the edges
are identified with dynamical symbols, and where self-organization into “res-
onances” comes about as self-reinforcing of cyclic subgraphs. In that work,
however, I assumed only some abstract properties of dynamical symbols, and I
was vague about the concrete mathematical nature of dynamical symbols them-
selves (all T did in this direction was to allude to chaotic attractor states). In
the present article, conversely, I focussed on the mathematical nature of single
dynamical symbols.

I required dynamical symbols to possess intrinsic isolatability and classifi-
ability. It seems unlikely that a precise definition of intrinsic isolatability and
classifiability can be given. I rather believe that neural dynamics, propped by
billions of years of freewheeling evolution, intrinsically defies clean definitions
— mathematical rigour hardly being a fitness criterion in natural selection. As
a consequence, I do not think that the notion of dynamical symbols can be
mathematically defined. It is more a horizon line for open-ended quest than
an axiom from which to start. Whatever dynamical phenomena we will learn
to see on that way, they will enrich our understanding of how walking, reason-
ing, speaking, reminding unfold, the dynamical everyday stuff which propels us
through our lives.
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