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Abstract: This article is a direct continuation of the tech report Observ-
able Operator Models and Conditioned Continuation Representations, Ar-

beitspapiere der GMD 1043, 1997. While the former paper described the
mathematical theory of OOMs, the present article presents techniques for
practical applications. A standardized graphical representation of OOM-
generated processes is developed, which helps a lot to gain an intuitive grasp
on relevant phenomena. The main contribution is an e�cient constructive
algorithm for the induction of OOMs from data.

Zusammenfassung: Dieser Artikel ist eine direkte Fortsetzung des Re-
ports Observable Operator Models and Conditioned Continuation Represen-

tations, Arbeitspapiere der GMD 1043, 1997. W�ahrend jener Aufsatz die
Grundz�uge der formalen Theorie von OOMs entwarf, beschreibt die vor-
liegende Arbeit Techniken f�ur praktische Anwendungen. Eine standardisierte
graphische Darstellung f�ur OOM-generierte Prozesse f�ordert einen intuitiven
Zugang zu relevanten Ph�anomenen. Der Hauptbeitrag besteht in einem ef-
�zienten konstruktiven Algorithmus f�ur die Induktion von OOMs aus Daten.
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1 Introduction

This paper is a direct continuation of [1], which is a prerequisite for the
present one. References to that prior paper are made by \(I)"; e.g. \prop. 3
(I)" refers to proposition 3 in the �rst paper.

In section 2 of the present article, I describe a \standardized" subclass
of OOMs, in which the axes of the state space can be interpreted in terms
of certain probabilities of future events. These interpretable OOMs support
a standardized graphical representation of state sequences. The (typically
fractal) geometries of such sequences can be investigated, and di�erent OOMs
can be compared in terms of their geometrical properties (section 3). In
section 4, I present a constructive procedure for the induction of OOMs from
empirical time series. Section 5 concludes with a brief discussion.

2 Interpretable OOMs

Let A = (Rm ; (�a)a2�; w0) be a minimal-dimension OOM. According to prop.
16 (I), we obtain the family of all equivalent minimal-dimension OOMs es-
sentially by applying any internal-sum preserving vector space isomorphism
on A. There is a canonical 1-1 correspondence between such isomorphisms
and the regular m �m matrices with column sumns equal to 1. Thus, one
could map the family of equivalent minimal-dimensional OOMs on the space
of such matrices. This space has dimension m(m � 1). In other words,
uncountably many equivalent minimal-dimension OOMs co-exist.

In this section, it is shown how from that unwieldy family of equiva-
lent minimal-dimension OOMs one can single out a few (countably many)
\standardized" OOMs. As we shall see, these particular OOMs yield an
easy-to-use basis for practical applications of various sorts.

The crucial requirement for \standardized" OOMs is that they are in-

terpretable: the unit vectors of their state spaces represent probabilities of
certain future events (\characteristic events"). This idea is worked out in
this section.

LetA = (Rm ; (�a)a2�; w0) be a minimal-dimensionOOM, which generates
a process (Xt). Let �k � �� be the set of all words of length k. We start
our way into interpretable OOMs by de�ning characteristic events:

De�nition 1 1. Any subset B � �k is called a k-event.

2. Let �a 2 ��. The conditioned probability of a k-event B given �a is

de�ned by
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P [B j �a] =
X
�b2B

P [�b j �a] (1)

(Recall that P [�b j �a] is the probability that �b is observed directly after �a,
cf. def. 9 (I)).

3. Let �k = A1 _[ : : : _[Am be a disjoint partitioning of �k into m non-

empty k-events. A1; : : : ; Am are called characteristic events of (Xt) if

some �a1; : : : ; �am 2 �� exist such that the m�m matrix

(P [Aj j �ai])i;j

is regular.

For the remainder of this section, let A1; : : : ; Am denote characteristic
events of a process (Xt) generated by an OOM A. Disjoint unions of sets
will be denoted by _[.

Characteristic events do exist:

Proposition 1 Let A = (Rm ; (�a)a2�; w0) be a minimal-dimension OOM,

which generates a process (Xt). Then there exists some k � 1, and a parti-

tioning �k = A1 _[ : : : _[Am of �k into characteristic events.

Proof. First we observe (cf. prop. 8 (I)) that there existm words �a1; : : : ; �am 2
�� such that g�a1 ; : : : ; g�am : �� ! [0; 1] are m linearly independent functions.

Therefore, m words �c1; : : : ; �cm exist such that the m�m matrix (g�ai�cj)i;j
is regular.

Therefore (cf. def. 9 (I)), the matrix (P [�cj j �ai])i;j is regular.
Let k := maxfj �c1 j; : : : ; j �cm jg be the maximal word length among the

�cj. We de�ne the k-event Bj to consist of all words of length k beginning
with �cj:

Bj := f�cj�a j �a 2 �k�j�cjjg:

It holds that P [Bj j �ai] = P [�cj j �ai], which implies:

The matrix (P [Bj j �ai])i;j is regular: (2)

Now we transform the events Bj in two steps in order to arrive at char-
acteristic events. In the �rst step, we make them disjoint.
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We say that a word �a properly starts a word �c if there exists a non-empty
word �b such that �c = �a�b. We write �a < �c if �a properly starts �c. Note that <
is a partial ordering on ��.

First we observe that for Br \Bs 6= ; (where r 6= s), it holds that either
�cr < �cs or �cs < �cr. The �rst case implies Br � Bs, the second case implies
Bs � Br (note that r 6= s implies Br 6= Bs because of (2)). If we de�ne

Br < Bs :i� �cr < �cs;

the partial ordering on words carries over to a partial ordering on the
Bj's. It holds that

Br < Bs i� Br � Bs: (3)

Furthermore, for r 6= s it holds that

Br \Bs 6= ; ) Br > Bs _ Bs > Br: (4)

We now show that Bj is not exhausted by the Bs contained in it, e.g.

8j = 1; : : : ; m : Bj 6=
[

Bs>Bj

Bs (5)

Assume that (5) is wrong, i.e. that for some j0, Bj0 =
S

Bs>Bj0
Bs:

De�ne

S := fs 2 N j Bs > Bj0 ^ :9Br Bs > Br > Bj0g:

Then it holds (observe (3)) that Bj0 =
S

s2S Bs. This union is even

disjoint, i.e. Bj0 =
_S
s2SBs, because of (4).

Therefore, it holds that P [Bj0 j �ai] =
P

s2S P [Bs j �ai]. This implies
that the matrix (P [Bj j �ai])i;j is not regular, which is a contradiction to (2).
Therefore the assumption was wrong, i.e. (5) is true.

Now we de�ne new B0
j, by taking away from Bj the Bs contained in them:

B0
j := Bj n

[
Bs>Bj

Bs:

Because of (5), it holds that B0
j 6= ;.

De�ne Sj := fs j Bs > Bj ^ :9Br : Bs > Br > Bjg. Then it holds that

B0
j = Bj n

_[
s2Sj

Bs;
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i.e. we get B0
j from Bj by taking away some disjoint Bs contained in it.

As a consequence, for i; j = 1; : : : ; m it holds that

P [B0
j j �ai] = P [Bj j �ai]�

X
s2Sj

P [Bs j �ai];

which in turn implies that the matrix (P [B0
j j �ai])i;j is regular. In this

matrix, the k-events B0
j are disjoint.

In the second step, we blow up the B0
j to make events Aj which exhaust

�k, i.e. we arrive at a situation where A1 _[ : : : _[Am = �k.
Put B0

0 := �k n (B0
1 [ : : : [ B0

m). If B0
0 = ;, we are done, since then we

can put Aj := B0
j. In the case B0

0 6= ;, consider the (m+ 1)�m matrix

M =

0
@

P [B0
0 j �a1] P [B0

1 j �a1] � � � P [B0
m j �a1]

� � � � � � � � �
P [B0

0 j �am] P [B0
1 j �am] � � � P [B0

m j �am]

1
A

Call the column vectors of M v0; v1; : : : ; vm. M has rank m, since the
matrix (v1; : : : ; vm) has rank m. Therefore, v0 is a linear combination of
v1; : : : ; vm. We distinguish two cases.

Case 1: v0 is the null vector. We put A1 := B0
1 [ B0

0, and Aj := B0
j for

j > 1. Then (P [Aj j �ai])i;j = (P [B0
j j �ai])i;j, which we know to be regular,

i.e. the Aj's are characteristic events.
Case 2: v0 6= 0. Let v0 =

P
s=1;:::;m �svs. Since all vs are non-null vectors

with non-negative components only, some �j0 must be properly greater than
0. This implies that the matrix M 0 := (v1; : : : ; vj0 + v0; : : : ; vm) still has rank
m, i.e. is regular. We put Aj0 := B0

j0
[ B0

0, and Aj := B0
j for j 6= j0. Then

(P [Aj j �ai])i;j = M 0, which is regular, i.e. the Aj's are characteristic events.
2

This somewhat painstaking proof should not leave the reader with the
impression that characteristic events are a rare commodity. Quite to the
contrary, any random partition of �k into m events of non-zero probability is
exceedingly likely to produce characteristic events (since, roughly speaking, it
is almost certain that an essentially random matrix (P [Aj j �ai])i;j is regular).

For the remainder of this section, let (Xt) be the process generated by
A = (Rm ; (�a)a2�; w0), where m is the dimension of the process, and let �ai 2
��; Aj � �k be words and characteristic events such that M = (P [Aj j �ai])i;j
is regular.

We will now show how A can be transformed into an equivalent, minimal-
dimension OOM ~A, which is interpretable in the sense that the m coordinate
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axes of ~A's state space directly represent the probabilities that the charac-
teristic events A1; : : : ; Am will be observed next.

First, we generalize observable operators to cover the observation of k-
events:

De�nition 2 Let B 2 �k be a k-event. Then

�B :=
X
�b2B

��b

is the operator corresponding to the observation of B.

The next de�nition introduces a convenient notational abbreviation, which
we will use in the next proposition to come:

De�nition 3 Let �ai be one of the m words occuring in M . Then

xi :=
��aiw0

���aiw0

denotes the state vector obtained after an application of ��ai on w0, renormal-

ized to internal sum 1 (for the intuitive meaning of this renormalization, cf.

the introduction section in (I)).

Note that the well-de�nedness of M implies that ���aiw0 6= 0, i.e. xi is
well-de�ned.

We collect some properties of �Aj
and xi:

Proposition 2 1. P [Aj j �ai] = ��Aj
xi.

2. 8y 2 H :
P

j=1;:::;m ��Aj
y = 1.

3. 8i = 1; : : : ; m : xi 2 H.

4. x1; : : : ; xm are linearly independent.

5. De�ne a mapping % : Rm ! R
m by putting

%(x) := (��A1
x; : : : ; ��Am

x):

% is a bijective, linear, internal-sum preserving mapping.
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Proof. (1)

P [Aj j �ai] =

=
X
�b2Aj

P [�b j �ai] =
X
�b2Aj

P [�ai�b]

P [�ai]

=
X
�b2Aj

���ai�bw0

���aiw0

=
X
�b2Aj

���b
� �aiw0

�� �aiw0

=
X
�b2Aj

���bxi = ��Aj
xi:

(2)
P

j=1;:::;m ��Aj
y =
P

�b2�k ���by = 1.
(3) Obvious.
(4) Assume that x1; : : : ; xm are linearly dependent. Use (1) and linearity

of � and �Aj
to conclude that M is not regular, a contradiction.

(5) Linearity of % is a consequence of the linearity of � and �Aj
. In order

to show bijectivity and preservation of internal sums, consider x1; : : : ; xm.
Because of (3) and (4), they are in H and they are linearly independent.
Because of (2), they are mapped by % into H. Because of (1) and regularity
of M , the %-images of x1; : : : ; xm are linearly independent. Therefore, %
bijectively maps H onto itself, which implies that % is bijective and preserves
internal sums. 2

According to the last statement of this proposition, % has all the prop-
erties required in prop. 16 (I), which states that we obtain an OMM ~A =
(Rk ; (~�a)a2�; ~w0) equivalent to A by putting

~A = (Rk ; (%�a%
�1)a2�; %w0):

The m � m matrix corresponding to % can easily be obtained from the
original OOM A:

Proposition 3

% = (��Ai
ej)ij;

where ej is the j-th unit vector.

Proof. Follows directly from
0
@

%1j
� � �
%mj

1
A = %ej =

0
@

��A1
ej

� � �
��Am

ej

1
A : 2
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~A has a remarkable property, which provides the key for all further results
reported in this paper:

Proposition 4 Let v 2 H; v = (v1; : : : ; vm). Then it holds that the m com-

ponents of v represent the probabilities that the corresponding characteristic

events will be observed when the system is in state v:

8j = 1; : : : ; m : vj = �~�Aj
v (6)

A notational variant of (6) is

(v1; : : : ; vm) = (P [A1 j v]; : : : ; P [Am j v]);

which displays the core idea of (6) more clearly.

Proof. Select x 2 H such that v = %x, i.e.

v = (��A1
x; : : : ; ��Am

x):

Since �~�Aj
v = ��Aj

x, this directly implies (6). 2

Within the family of OOM's generating (Xt), there exists at most one
OOMwhich has the property (6) (exercise). I.e., characteristic events uniquely
determine a special OOM, which does not depend on the OOM A and the
words �ai which we used here for a constructive proof of existence. This
justi�es the following de�nition:

De�nition 4 Let A1; : : : ; Am be a set of characteristic events of (Xt). Then
A(A1; : : : ; Am) denotes the OOM which has property (6). It is called the

OOM interpretable by A1; : : : ; Am.

A neat, albeit somewhat informal way of characterizing the \knack" of
interpretable OOMs is to say that the states of A(A1; : : : ; Am) have the form
(P [A1 j �]; : : : ; P [Am j �]). In informal discussions I will sometimes use this
notation.

An interpretable OOM has the following properties, which highlight the
intimate connection between states and operators on the one hand, and prob-
abilities of characteristic events on the other:

Proposition 5 In an interpretable OOM A(A1; : : : ; Am) = (Rm ; (�a)a2�; w0),
the following statements hold:

1. w0 = (P [A1]; : : : ; P [Am]),
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2. If P [�b] 6= 0, then ��bw0 = (P [�bA1]; : : : ; P [�bAm]).

Proof. (1) Follows directly from ��Ai
w0 = P [Ai] and (6).

(2) According to (6), it holds that

��bw0

�(��bw0)
= (P [A1 j

��bw0

�(��bw0)
]; : : : ; P [Am j

��bw0

�(��bw0)
]):

Observing that ��bw0

�(��bw0)
is the renormalized state vector obtained after an

application of ��b, i.e. after an observation of �b, this is equivalent to stating

��bw0

�(��bw0)
= (P [A1 j �b]; : : : ; P [Am j �b]):

Using �(��bw0) = P [�b] and P [Ai j �b]P [�b] = P [�bAi], the statement is ob-
tained immediately. 2

Since a process (Xt) has many di�erent sets of characteristic events, there
are many di�erent, equivalent, interpretable OOMs. Thus, this is not a
\normal form" representation in the usual sense of the word. However, after
the selection of a particular set of characteristic events, we have gained, for
all practical purposes, the main bene�ts usually a�orded by normal form
generators. In particular, we can compare non-equivalent OOMs, and we can
construct an OOM from time series data. These two applications are the
themes of the next two sections.

3 A standardized visualization of OOM-gener-

ated processes

In this section, instead of furthering mathematical theory, I will \play" a bit
with interpretable OOMs, highlighting the almost palpable access to OOM-
generated processes they a�ord. We will visualize state sequences of paths of
(Xt). Such states are vectors v 2 H. Since we can best represent graphically
hyperplanes H when they are 2-dimensional, we will stick to that case. This
implies that we will be dealing essentially with 3-dimensional processes (Xt)
in this section (recall that H is an (m � 1)-dimensional hyperplane in the
m-dimensional state space of an OOM).

Thus, for the remainder of this section, we consider an interpretable,
3-dimensional OOM A = A(A1; A2; A3) = (R3 ; (�a)a2�; w0).

An elementary property of A is that state vectors always lie in the com-
pletely non-negative part of H. More precisely, de�ne H�0 := f(v1; v2; v3) 2
H j vi � 0 (i = 1; 2; 3)g. Then the following proposition is a direct implica-
tion of de�nition 3 (I), property 3, and of proposition 6:
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Proposition 6 1.

w0 2 H�0

2.

8�a 2 �� : ���aw0 = 0 _ ��aw0

���aw0

2 H�0
2

Intuitively, this means that if we consider some path a0a1a2 : : : of (Xt), the
corresponding sequence of hidden states is con�ned toH�0, i.e. the \triangle"
area depicted in �gure 1a. This has the useful practical consequence that we
can graphically represent state sequences of interpretable (3-dimensional)
OOMs in a standardized fashion. We use H as the drawing plane, in which
we place, for our orientation, the contours of H�0. This is an equilateral
triangle whose edges have length

p
2. If v = (v1; v2; v3) 2 H�0 is a state

vector, an elementary geometrical argument tells us that its components can
be recovered from its position within this triangle, by exploiting vi =

p
2=3di,

where di (i = 1; 2; 3) are the distances to the edges of the triangle (compare
�g.1b).

H≤1

v

1

1
1

x = P[A |v]11

x = P[A |v]22

x = P[A |v]33

22

2

2d

2x

3d

3x

1d

1x

(a) (b)

Figure 1: (a) The positioning of H�0 within state space. (b) The setup of
standardized plots, and how the components v1; v2; v3 of a state vector v can
be recovered from the graphical representation, exploiting vi =

p
2=3di.

Quite frequently one will encounter OOMs where the dimension m coin-
cides with the number of observable operators, i.e. where � = fa1; : : : ; amg,
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and where the operators are linearly independent. In that case, the operators
themselves can be interpreted as characteristic events. Said more precisely,
the singleton sets (Aj)j=1;:::;m = (fajg)j=1;:::;m are characteristic events.

We will graphically investigate an OOM of this kind in the remainder of
this section. The purpose is to illustrate the usefulness of the standardized
representation.

Consider the following HMM (where � = fa; b; cg), which is speci�ed by

M =

0
@

:1 :1 :8
0 :8 :2
:8 0 :2

1
A (7)

Oa =

0
@

0 0 0
0 :3 0
0 0 :5

1
A Ob =

0
@

:7 0 0
0 0 0
0 0 :3

1
A Oc =

0
@

:3 0 0
0 :7 0
0 0 :2

1
A (8)

This HMM can be interpreted as a 3-dimensional OOM (cf. (I), section
2), which we shall call B. We wish to graphically render state sequences of
the corresponding interpretable OOM B(fag; fbg; fcg).

Since we wish to plot interpretable states, one might think that it is neces-
sary to �rst transform B into B(fag; fbg; fcg). Actually, this is not necessary.
We can employ the original (non-interpretable) OOM B, using the generator
procedure described in (I), section 2. Recall that in this procedure, at each
time step t, where the generator B is in (hidden) state s, the probabilities
P [a j s]; P [b j s]; P [c j s] are computed, which specify the chances that a; b;
or c is selected. Now, the triple (P [a j s]; P [b j s]; P [c j s]) is exactly the
(interpretable) state (v1; v2; v3) of the interpretable OOM B(fag; fbg; fcg).
Thus, here we get the interpretable state sequence for free even when we use
a non-interpretable OOM as a generator.

Note that this is possible because we are dealing with characteristic events
that coincide with the observable operators. In the general case, when we
wish to plot interpretable state sequences derived from other characteristic
events, we would have to construct the corresponding interpretable OOM.

According to the scheme just outlined, B was run (using Mathematica
on a MacIntosh) as a generator for 230 time steps. The initial 30 steps were
discarded, and the 200 remaining interpretable states were plotted in the
reference triangle described in �g. 1. Figure 2 shows the resulting plot (left)
and an enlarged portion (right).

Allow me to make a few informal remarks on what we see in these plots.
The operators �a and �b have (regarded as matrices) rank 2. Accordingly,
states produced by an application of either of these operators lie on a single
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Figure 2: Left: A 200 step sequence of states of B(fag; fbg; fcg), an inter-
pretable OOM equivalent to the one speci�ed in (7), (8). The operators from
whose application states originate are indicated by bars which are parallel to
the corresponding axes: = signi�es that the state is the result of an applica-
tion of �a, n indicates �b, and j means �c. Right: Enlarged section from the
left diagram. The process has been run 5000 steps to produce this �gure.

straight line in H. By contrast, �c is regular. Thus, states produced by this
operator are not con�ned to a single line. In this example, one �nds several
line segments on which �c-produced states fall. These lines are the (iterated)
�c-images of the single lines produced by �a and �b.

Let us now modify the example a bit and see what happens. We leave the
Markov transition matrix (7) unchanged. Likewise, �c is not touched (i.e.,
Oc is not modie�ed). We make �b regular by replacing the 0 on the diagonal
of Ob by 0.2. This modi�cation is compensated by changing the entry .3 in
Oa to .1 (recall from (I) that Oa +Ob +Oc must be the identity matrix):

Oa =

0
@

0 0 0
0 :1 0
0 0 :5

1
A Ob =

0
@

:7 0 0
0 :2 0
0 0 :3

1
A Oc =

0
@

:3 0 0
0 :7 0
0 0 :2

1
A (9)

Figure 3 shows state sequences of (the interpretable version of) this mod-
i�ed OOM. They are computed in the same way as in �g. 2.

Comparing �g. 2 with �g. 3, one �nds (among other things) that the
states generally have shifted a bit to the right. This means that the overall
selection probability of �a has decreased and that of �b has increased. This
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Figure 3: The analogue of �g. 2 for the modi�ed OOM (9).

is easily (if super�cially) explained: the sum of elements of the matrix �b has
increased, while that of �a has decreased.

Another conspicuous visual di�erence between the two examples is that
�g. 3 looks more \fractal" than �g. 2. The fractal appearance becomes still
stronger after the following modi�cation of the Oi, which results in three
regular observable operators:

Oa =

0
@

:2 0 0
0 :1 0
0 0 :6

1
A Ob =

0
@

:5 0 0
0 :2 0
0 0 :3

1
A Oc =

0
@

:3 0 0
0 :7 0
0 0 :1

1
A (10)

The process determined by (10) is visualized in �g. 4.
The fractal structure of state sequences as revealed in these graphics

comes not as a surprise { fractal attractors of this kind arise naturally from
mixed iterations of several linear mappings. However, I will not enter into this
line of investigation here. All I wanted to show is that a handy visualization
method is a powerful help. Although it does not in itself yield explanations,
it does direct our attention to interesting phenomena, and allows to \play"
with them.

The visualization techniques described in this section can be applied to
processes of dimension greater than 3. In such cases, the n-dimensional state
space must be projected on a 3-dimensional one, in a way which preserves
internal sums. A particularly transparent projection of this kind can be
obtained by merging characteristic events. If A1; : : : ; An are characteristic
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Figure 4: The analogue of �g. 2 for the modi�ed OOM (9). 30000 time steps
were executed to obtain the right �gure.

events of a high-dimensional process (i.e. where n > 3), de�ne 3 \semi-
characteristic" events B1; B2; B3 by merging the Ai into three sets, e.g. B1 =
A1 [ : : :[Ar1 ; B2 = Ar1+1 [ : : :[Ar2 ; B3 = Ar2+1 [ : : :[An. Then instead of
plotting the n-dimensional states (P [A1 j �]; : : : ; P [An j �]) of A(A1; : : : ; An),
plot the 3-dimensional \semi-states" (P [B1 j �]; P [B1 j �]; P [B3 j �]).

4 Reconstructing OOMs from data

Assume that a sequence of observations S = a0; a1; : : : ; aN is given which has
been generated by an unknown OOM U . In this section we will learn how to
reconstruct from S an OOM A which is equivalent to U . More precisely, we
will learn how to compute A from a �nite number of conditioned continuation
probabilities P [�a j �b].

Such conditioned continuation probabilities can be easily estimated from
S by a simple counting of occurences of substrings in S, exploiting that

P [�a j �b] � NS(
�b�a)

NS(�b)
, where NS�c is the number of occurcences of a subsequence

�c in S.
One caveat I must mention at the outset. The reconstruction of an OOM

equivalent to U cannot be perfect, since the �nite sequence S contains only
a �nite amount of information, whereas U contains an in�nite amount of
information (being speci�ed in terms of real numbers). Therefore, the re-
construction procedure will come up with only an estimate ~A of an OOM A
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equivalent to U . More precisely, from S we can only derive estimated con-
ditioned probabilities ~P [�a j �b], which we have to use in the reconstruction
procedure instead of the correct ones. A proper treatment of this situation
would require a statistical theory of distributions of estimated ~P [�a j �b], which
would allow us to calculated how strongly ~A is expected to deviate from A,
given a length N of observation. Such a statistical theory I cannot o�er here.

The best I can o�er for the time being is a reconstruction procedure which
perfectly reconstructs U in the limit of N !1.

The reconstruction proceeds in two steps. First, the dimension m of the
process (Xt) (of which S is a �nite path) is calculated, along with char-
acteristic events A1; : : : ; Am. In the second step, an interpretable OOM
A(A1; : : : ; Am) is constructed. A subsection is devoted to each of the steps.

4.1 Calculation of process dimension

The calculation of the process dimension m relies on two technical proposi-
tions (props. 7 and 8). Since these propositions are most conveniently proven
using conditioned continuation representations (CCRs), we shall adopt that
framework here (recall from (I), section 3, that g�b�a = P [�a j �b]).

Proposition 7 Let n 2 N, and g�b1 ; : : : ; g�bn 2 G. Let ��r = f�c 2 �� j j �c j�
rg denote the words of lenght at most r. Let �a1; : : : ; �akr be the alphabetical

enumeration of ��r. Let Mr be the n� kr matrix

Mr =

0
B@

g�b1�a1 � � � g�b1�akr
...

...

g�bn�a1 � � � g�bn�akr

1
CA

The following statements hold for Mr:

1. rkMr = rkMr+1 ) rkMr+1 = rkMr+2,

2. rkMr = rkMr+1 ) r = dim[g�b1 ; : : : ; g�bn ];

where rk denotes the rank of a matrix, and [g�b1 ; : : : ; g�bn ] is the linear

subspace of G spanned by g�b1 ; : : : ; g�bn.

Proof. (1). For �d 2 ��, let x �d denote the column vector

x �d :=

0
B@

g�b1
�d

...
g�bn

�d

1
CA :
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Using that Mr actually consists of some initial column vectors of Mr+1,
and that rkMr = rkMr+1, we can conclude that for �c 2 �r+1, x�c can be
written as a linear combination from column vectors x�ai , where the �ai are
the words from ��r:

x�c =
X

i=1;:::;kr

��c
ix�ai :

This means that for j = 1; : : : ; n, and c1 : : : cr+1 2 �r+1 it holds that

g�bjc1 : : : cr+1 =
X

i=1;:::;kr

�
c1:::cr+1
i g�bj�ai: (11)

Now we consider some c1 : : : cr+1cr+2 2 �r+2. Using the equation ta(g�c) =
P [a j �c]g�ca (cf. eqn. (12)(I)), elementary transformations reveal that

g�bjc1 : : : cr+1cr+2 = tc1g�bjc2 : : : cr+2:

.
Utilizing this fact and (11), we can rewrite g�bjc1 : : : cr+1cr+2 as follows:

g�bjc1 : : : cr+1cr+2 =

= tc1g�bjc2 : : : cr+2 = tc1

X
i=1;:::;kr

�
c2:::cr+2
i g�bj�ai

=
X

i=1;:::;kr

�
c2:::cr+2
i tc1g�bj�ai =

X
i=1;:::;kr

�
c2:::cr+2
i g�bjc1�ai:

For column vectors, this implies

0
B@

g�b1c1 : : : cr+2
...

g�bnc1 : : : cr+2

1
CA =

0
B@

P
i=1;:::;kr

�
c2:::cr+2
i g�b1c1�ai
...P

i=1;:::;kr
�
c2:::cr+2
i g�bnc1�ai

1
CA

=
X

i=1;:::;kr

�
c2:::cr+2
i

0
B@

g�b1c1�ai
...

g�bnc1�ai

1
CA ;

i.e., column vectors x�c, where �c 2 �r+2, can be linearly combined from
column vectors from Mr+1. This implies (1).

(2): First observe that (1) directly implies rkMr = rkMr+1 ) rkMr+1 =
rkMr+s for all s 2 N . This in turn implies (2), if one exploits that
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dim[g�b1 ; : : : ; g�bn ] = dim[f(g�b1�a; : : : ; g�bn�a) 2 R
n j �a 2 ��g];

where the rhs. denotes the dimension of the linear subspace of Rn which
is spanned by the vectors of the kind (g�b1�a; : : : ; g�bn�a). 2

Proposition 8 Let dp = dim[fg�b j �b 2 ��pg] denote the dimension of the

subspace of G spanned by the g�b, where the length of �b is at most p. Then it

holds that

1. dp = dp+1 ) dp = dp+s for all s 2 N,

2. dp = dp+1 ) dp = dim(Xt).

Proof. (1). Let Gp = [fg�b j �b 2 ��pg] be the linear subspace of G spanned
by the g�b, where the length of �b is at most p. Then obviously

Gp � Gp+1: (12)

Furthermore, if � = fa1; : : : ; akg, for any q 2 N it holds that

Gq+1 = [
[
fta1Gq; : : : ; takGqg [ fmathfrakg"g]; (13)

where the rhs. denotes the linear subspace of G spanned by the union of
the tai -images of Gq.

(13) can be derived as follows:

Gq+1 = [fg�ab j �a 2 ��q; b 2 �g [ fmathfrakg"g]
= [fg�ab j �a 2 ��q; b 2 �; g�ab 6= 0g [ fmathfrakg"g]
= [fg�ab j �a 2 ��q; b 2 �; P [b j �a] 6= 0g [ fmathfrakg"g]

= [f tbg�a

P [b j �a] j �a 2 ��q; b 2 �; P [b j �a] 6= 0g [ fmathfrakg"g] (cf. (12)(I))

= [
[
fta1Gq; : : : ; takGqg [ fmathfrakg"g]

Using dp = dp+1, from (12) it follows that Gp = Gp+1. Using (13), this
implies Gp = Gp+s for all s 2 N , i.e. (1).

(2). Follows from (1) and dim(Xt) = dimG (cf. de�nition 14 (I)). 2.

Propositions 7 and 8 yield the following algorithm for calculating m =
dim(Xt) from conditioned continuation probabilities P [�a j �b]:
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1. For p = 1; 2; : : :, compute dp as follows:

(a) Let �b1; : : : ;�bn be an enumeration of ��p. Use g�b1 ; : : : ; g�bn to com-
pute Mr as de�ned in proposition 7, for r = 1; 2; : : : (note that
g�b�a = P [�a j �b]). For each r, determine the rank rk of Mr.

(b) If rkMr = rkMr+1, return dp = rkMr (justi�ed by prop. 7).

2. If dp = dp+1, return m = dp (justi�ed by prop. 8).

This algorithm requires matrices of the kindM = (g�bi�aj)ij = (P [�aj j �bi])ij
to be computed repeatedly. Since it is solely the rank of these matrices which
is of interest, they can be replaced by the matrices M 0 = (P [�bi�aj])ij, which
are easier to handle in practice. Observing that P [�bi�aj] = P [�aj j �bi]P [�bi], it
is easy to see that rkM = rkM 0. Matrices of the form M 0 can be estimated
from S simply by counting occurences of subsequences �bi�aj.

Once the process dimension m is established, it is easy to obtain a set
of characteristic events A1; : : : ; Am. A safe, if rather complicated, method
would be to replay the (constructive) proof of proposition 1. However, for
practical purposes it is much more appropriate to simply randomly select
some partition �k = A1 _[ : : : _[Am of events Ai which occur in S with nonzero
probability. The word length k may be chosen minimal under the constraint
that j �k j � m. It is exceedingly likely that the events thus obtained are
characteristic ones. A simple test for characteristicity is to compute some
matrix fo the form

Mtest =

0
B@

P [A1 j w1] � � � P [A1 j wm]
...

...
P [Am j w1] � � � P [Am j wm]

1
CA

where the wi are arbitrary di�erent words from ��. If Mtest is regular,
A1; : : : ; Am are characteristic events. The case may occur that Mtest is not
regular although A1; : : : ; Am are indeed characteristic events. Again, this
is exceedingly unlikely to happen. If however one �nds that Mtest is not
regular, one can select some new partition of �k and some new test words wi

and test again. This can be iterated. Since it is certain that characteristic
events do exist, this iterated random search is certain to spot characteristic
events eventually. Furthermore, since characterisic events abound, and since
most test word selections will yield regular test matrices for characteristic
events, this iterated random search will come up with an immediate hit
almost always.
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4.2 Reconstruction of observable operators

Once the process dimension m is established, and once characteristic events
A1; : : : ; Am are available, it is easy to reconstruct the observable operators
�a of the interpretable OOM A(A1; : : : ; Am) = (Rm ; (�a)a2�; w0).

Recall that ��bw0 = (P [�bA1]; : : : ; P [�bAm]) (prop. 5(2)). This means that
we can estimate from S the vectors ��bw0, which result from an application
of ��b on w0 by putting ~��bw0 = ( ~P�bA1]; : : : ; ~P [�bAm]), where ~P [�bAm]) denotes
probability estimates gained from counting occurences of �bAm in S.

Using this fact, each �a can be reconstructed as follows. First selectm dif-
ferent words �b1; : : : ;�bm 2 ��. Then estimate the m vectors ��b1w0; : : : ; ��bmw0

by putting ~��bjw0 = ( ~P�bjA1]; : : : ; ~P [�bjAm]). Collect these vectors as columns

in a matrix ~V :

~V =

0
B@

~P [�b1A1] � � � ~P [�bmA1]
...

...
~P [�b1Am] � � � ~P [�bmAm]

1
CA (14)

Test whether ~V is regular (i.e. whether its determinant is nonzero). If it is
not, repeat this construction with di�erent words �b1; : : : ;�bm. Since the Ai are
characteristic events, a selection of words exists such that the resulting matrix
~V is regular; therefore, a systematic search through possible selections of
words is guaranteed to eventually yield a regular ~V . In fact, it is exceedingly
probable for a random selection of such words that ~V is regular; therefore,
in practice the �rst attempt will almost always be successful.

Next, construct the matrix ~Wa:

~Wa =

0
B@

~P [�b1aA1] � � � ~P [�bmaA1]
...

...
~P [�b1aAm] � � � ~P [�bmaAm]

1
CA (15)

Now observe that ~V is an estimate for

V =

0
B@

P [�b1A1] � � � P [�bmA1]
...

...
P [�b1Am] � � � P [�bmAm]

1
CA = ((��b1w0)

T ; : : : ; (��bmw0)
T );

i.e. of a matrix whose colums are the vectors ��bjw0 (�T denotes transposes).

Analogically, ~Wa is an estimate for a matrix Wa whose columns are the
vectors ��bjaw0 = �a � ��biw0. I.e., the j-th column of Wa is the result of an
application of �a on the j-th column of V . This implies that �aV = Wa.
Since V was selected to be regular, this implies �a = WaV

�1.
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Returning to estimates, this means that we obtain an estimate of �a by
putting

~�a = ~Wa
~V �1 (16)

This is the core result of this paper.

4.3 An example

In this subsection, I demonstrate the model induction techniques described
above by going through an example.

Consider the HMM H, where � = fa; bg, which is speci�ed by the fol-
lowing Markov matrix M and the diagonal matrices Oa; Ob (cf. section 2 in
(I) for terminology):

M =

0
BB@

0 1 0 0
0 0 1 0
0 0 :5 :5
1 0 0 0

1
CCA Oa =

0
BB@

1 0
1

:5
0 :2

1
CCA Ob =

0
BB@

0 0
0

:5
0 :8

1
CCA

Figure 5 gives a graphical representation of this HMM.
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Figure 5: The example HMM. Circles correspond to hidden states, numbers
at arrows indicate state transition probabilities. Emission probabilities of
events a and b are noted besides states.

This HMM was used to generate a sample sequence S of length 5000.
In the remainder of this subsection, I describe how an estimate ~A =

(Rm ; (~�a; ~�b); ~w0) of an interpretable OOM A = (Rm ; (�a; �b); w0) equivalent
to H is reconstructed from S.
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The software package Mathematica was used for implementing the algo-
rithms1.

The �rst step is to estimate the dimension m of the process of which S is
a sample path. To this end, the algorithm described at the end of subsection
4.1 was used. Recall that this algorithm requires the rank of certain k � l

matrices Mr to be calculated. A problem arises from the fact that only
estimates ~Mr of these matrices are available. Such empirical estimates are
\noisy" and are exceedingly likely to have maximal rank (i.e., their rank
will be minfk; lg). Therefore, even if the \correct" matrix Mr has a non-
maximal rank, a straightforward, precise computation of the rank of ~Mr will
most likely return a maximal rank.

This di�culty was circumvented in the following way. If the correct ma-
trix Mr has rank d, then there exist d � d submatrices whose determinant
is nonzero, while all d0 � d0 submatrices, where d0 > d, have zero determi-
nant. Assuming that ~Mr is actually Mr plus some noise, we would expect all
d0� d0 submatrices of ~Mr to have nearly zero determinants, while some d� d

submatrices exist whose determinant is markedly di�erent from zero.
This phenomenon was exploited to determine the \actual" rank of the

estimated matrices ~Mr. There are many ways how this basic idea can be put
to practice. I implemented a somewhat \quick and dirty" rank estimation
algorithm, which was largely dictated by the non-availability of advanced
statistical linear algebra procedures in my copy of Mathematica. Given a
k � l-matrix, where (say) k � l, this algorithm �rst randomly selected 300
submatrices of size l� l, and calculated their determinant. If some determi-
nant was found which di�ered from zero by more than .005, this was taken to
be an instance of a \truly" non-zero determinant, and l was returned as an
estimate of the rank ofMr. If no such determinant was found, 300 submatri-
ces of size l� 1� l� 1 were investigated, etc., until at some size l�x� l�x,
a submatrix was encountered that met the .005 criterion.

Using this subprocedure for estimating ranks of noisy matrices, the algo-
rithm from subsection 4.1 returned m = 4, which is the correct value.

The next step was to select four characteristic events. I arbitrarily opted
for the simplest possible choice, wich isA1; A2; A3; A4 = faag; fabg; fbag; fbbg,
blindly relying on the almost certain chance that these events indeed would
be characteristic (it later turned out that they were).

According to proposition 5(1), the invariant vector w0 can be estimated
from S by putting ~w0 = ( ~P [aa]; ~P [ab]; ~P [ba]; ~P [bb]). This yields

1The algorithms and the Mathematica \notebooks" containing the computations can be

fetched from my webpages at http://www.gmd.de/People/Herbert.Jaeger/Resources.html
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~w = (:409; :231; :231; :129) (17)

For estimating the observable operators, I calculated matrices ~V ; ~Wa; ~Wb

according to (14) and (15). For the words �b1; : : : ;�b4 required according to
that procedure, I arbitrarily chose aa; ab; ba; bb. I.e., I calculated the matrices

~V =

0
BB@

~P [aaaa] ~P [abaa] ~P [baaa] ~P [bbaa]
~P [aaab] ~P [abab] ~P [baab] ~P [bbab]
~P [aaba] ~P [abba] ~P [baba] ~P [bbba]
~P [aabb] ~P [abbb] ~P [babb] ~P [bbbb]

1
CCA

and

~Wa =

0
BB@

~P [aaaaa] ~P [abaaa] ~P [baaaa] ~P [bbaaa]
~P [aaaab] ~P [abaab] ~P [baaab] ~P [bbaab]
~P [aaaba] ~P [ababa] ~P [baaba] ~P [bbaba]
~P [aaabb] ~P [ababb] ~P [baabb] ~P [bbabb]

1
CCA

~Wb =

0
BB@

~P [aabaa] ~P [abbaa] ~P [babaa] ~P [bbbaa]
~P [aabab] ~P [abbab] ~P [babab] ~P [bbbab]
~P [aabba] ~P [abbba] ~P [babba] ~P [bbbba]
~P [aabbb] ~P [abbbb] ~P [babbb] ~P [bbbbb]

1
CCA :

Note that ~V is regular, which in retrospect justi�es the arbitrary selection
of events faag; fabg; fbag; fbbg (which now turn out to be, indeed, charac-
teristic events) and \test words" aa; ab; ba; bb.

~V and ~Wa; ~Wb yield the following estimates ~�a = ~Wa
~V �1; ~�b = ~Wb

~V �1:

~�a =

0
BB@

:535 �:137 :030 :141
:465 :137 �:029 �:145

�:027 :391 :112 :237
:027 :608 �:112 �:237

1
CCA (18)

~�b =

0
BB@

:006 �:018 1:018 �:283
�:006 :018 �:018 :283
�:032 :017 :070 :680
:032 �:017 �:070 :320

1
CCA

This �nishes the reconstruction. We have obtained
~A(faag; fabg; fbag; fbbg) = (R4 ; (~�a; ~�b); ~w0), where the observable operators
and the invariant vector take the values given in (17) and (18).
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How \good" is this estimate? For a �rst impression, we compare
~A(faag; fabg; fbag; fbbg) with the original interpretable OOM
A(faag; fabg; fbag; fbbg) = (R4 ; (�a; �b); w0), which can be directly obtained
from H using proposition 3:

w0 = (:410; :230; :230; :130) (19)

�a =

0
BB@

:500 �:150 :125 :101
:500 :150 �:125 �:101
:000 :350 :000 :400
:000 :650 :000 �:400

1
CCA (20)

�b =

0
BB@

:000 :000 1:000 �:250
:000 :000 :000 :250
:000 :000 :000 :750
:000 :000 :000 :250

1
CCA

The average absolute di�erence between entries in ~w0 vs. w0 is .001, and
the average absolute di�erence between matrix entries in ~�a; ~�b vs. �a; �b is
.049.

However, it is not easy to interpret these di�erences { are they \good"
or \not so good"? In order to gain better insight into the quality of the
estimates, we can compare the distributions of words in the processes gen-
erated by ~A vs. A. Let P ~A[

�b], PA[�b] denote the probability of observing the
word �b (relative to observing any other word of equal length) in the processes
generated by ~A and A, respectively. Let Dn(A; ~A) denote the absolute dif-
ference of these probabilities, averaged over all words of length n, i.e. put
Dn(A; ~A) = j �n j�1

P
�b2�n abs(P ~A[

�b] � PA[�b]). For n = 5 and n = 10

we obtain D5(A; ~A) = :0012 and D10(A; ~A) = :00021. Putting these val-
ues in relation with the average probabilities of words of length 5 and 10,
which (in a two-letter alphabet) are 1/16 and 1/1024, we get relative aver-
age deviations of word probabilities in the orignal vs. the estimated OOM of
16D5(A; ~A) = :020 and 1024D10(A; ~A) = :22, i.e. we �nd average deviations
of 2 % and 22 %, respectively, for word lenghts 5 and 10.

These �gures have to be judged on the background of the \imprecision"
of S. To what degree is the deviation between A and ~A due to shortcomings
of our reconstruction procedure, and to what degree is it caused by the
inevitable imprecision of S, whose �nite length allows but imprecise estimates
of word probabilities?

This is not a very precisely stated question. However, a kind of answer can
be given if we look at how much the empirical frequences of words in S deviate
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from the correct probabilities according to A. I.e., de�ne Dn(S;A) = j�n j�1P
�b2�n abs( ~P [�b] � PA[�b]). We obtain D5(S;A) = :0040 and D10(S;A) =

:00047, which means deviations of 6 % and 49 %, computed like above.
Thus, we �nd that the statistics of the sample sequence S deviate con-

siderably more from the \correct" statistics than the statistics of the recon-
structed OOM! In other words, the reconstruction procedure has cleaned
away from S some noise. The reason for this to be possible is, of course, that
the reconstruction procedure \knows" that the source of S is a 4-dimensional
OOM, and thus �lters out all noise components which are not compatible
with this premise.

All in all, this appears to be a completely satisfying account of the quality
of ~A. It seems possible that the reconstruction procedure can be still im-
proved by exploiting further examples of applications of observable operators
to interpretable states. In our procedure, we used only the minimal required
number of such examples, namely, m examples per operator. One way to in-
clude further examples would be to use several sets of \test words", compute
several estimates of observable operators, and then average between them. It
is however not self-evident how, exactly, this averaging should best be done.
I feel that this kind of improvement will not lead very far: the quality of
estimates derived from long test words is likely to be quite poor, since the
average frequencies of test words drop exponentially with their length. I will
not further pursue questions of this kind here.

A somewhat riddling fact is that matrix entries in the estimated vs. orig-
inal observable operators (18), (20) on the average di�er quite considerably
from each other. As noted above, this average di�erence is about .049. Con-
sidering that the average value of matrix entries is 1/8, this implies a relative
average deviation of 8 � :049 = :39, or 39 %. If we compare this with the
deviations of estimated vs. original statistics from above, which were 2 %
and 22 %, somehow this looks as if the matrices are more di�erent from each
other than the processes they generate.

This riddle can be resolved by a closer inspection of ~V . The determi-
nant of this matrix is det ~V = :000016, which is a very small number even
considering that the entries in ~V average only about .0625. Intuitively, ~V is
\almost" degenerate, in the sense that it describes a mapping which projects
R
4 on a very at, \almost" 3-D subspace. This implies that small changes in
~V will lead to large changes in ~V �1, and therefore, in ~Wa and ~Wb. Conversely,
this means that certain relatively large changes in the latter will have only
small e�ect on the resulting process statistics. This explains the small riddle.

The fact that ~V is almost degenerate is not, in this example, due to an
unlucky choice of characteristic events and/or test words. Quite to the con-
trary, if one tries out some alternative choices, one will observe that typically
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the determinants of the resulting ~V 0 are even much smaller than the value
obtained here.

This makes one supect that the process generated by A \almost" has
dimension 3. Therefore, it should be possible to obtain a good 3-dimensional
approximation to A. This is what we shall try next.

The way to get a 3-D OOM which models \most" of S is simply to
go through the above procedures once again, but assuming that m = 3.
Selecting as characteristic events (A1; A2; A3) = (faag; fabg; fba; bbg), and as
test words aa; ab; ba, we obtain an estimate ~A0(A1; A2; A3) = (R3 ; (~� 0a; ~�

0
b); w

0
0),

where

~w0
0 = (:409; :230; :360))

and

~� 0a =

0
@

:509 �:116 :082
:491 :115 �:083
:000 1:000 :000

1
A ~� 0b =

0
@

:305 �:259 :411
�:075 :074 :122
�:229 :184 :466

1
A :

The quality of ~A0 as an estimate of A can be checked like above. We �nd
that the probabilities of words of length 5, computed with ~A0, deviate about
9 % from the correct probabilities. For words of length 10, the deviation
rises to 53 %. Considering the deviations of word frequencies in S from the
correct ones (6 % and 49 % for the two word lengthes), ~A0 appears to be a
reasonably good approximation to A.

Figure 6 displays the processes generated byA, ~A, and ~A0 in the standard-
ized fashion described in the previous section. The events whose posterior
probabilities de�ne the axes are faag; fabg; fba; bbg. Note that some points
in the diagram belonging to ~A0 fall outside the triangle, i.e. represent state
vectors which cannot be interpreted in terms of probabilities. This implies
that ~A0 actually is not a valid OOM (condition 3 of de�nition 3 (I) is not
satis�ed). Destroying the property of being OOM is a possible (although not
a necessary) consequence of reconstructing a process in too few dimensions.

4.4 Modeling non-OOM sources with OOMs

In the previous subsections, we demonstrated how (in the limit of in�nite-
length sample sequences) an OOM can be correctly reconstructed from data
produced by itself. However, empirical time series, as encountered e.g. in
speech signals or in neural event dynamics, are very unlikely to be produced
by an underlying OOM. Therefore, in most practical applications it does not
make sense to try �nding the \correct" dimension of the process in the �rst
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Figure 6: Graphical representations of the processes generated by the original
OOM A (left), its reconstruction ~A (right), and the 3-D approximation ~A0

(bottom).

place. Instead, what one will �nd is that reconstructing the empirical process
with OOMs of increasing dimension will yield increasingly good (but never
perfect) approximations.

Given any stationary symbolic process with �nite alphabet size, there
exist HMMs which perfectly model all cylinder distributions up to any �xed
maximal length. In this sense, HMMs can be regarded as universal approx-
imators for symbolic processes. However, in practice \good" HMM approx-
imations to empirical processes can result in large numbers of hidden states
(i.e., dimensions). The same holds for OOMs, although due to their greater
generality an equal quality of approximation is likely to be obtainable with
models of lesser dimension. The current theory of OOMs is, however, not
su�ciently developed to allow more speci�c statements about this important
issue.

The reconstruction of an approximate OOM from a sequence is computa-
tionally extraordinarily cheap, once one has settled for an OOM dimension.
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Reading in a symbol sequence of, say, the length of Proust's A la recherche

du temps perdu, with a local reading window of, say, length 10, and collect-
ing the statistics of say, 150 characteristic events into 26 + 1 matrices of size
150� 150 (corresponding to the 26 matrices ( ~Wa)a2�, where � is our Roman
alphabet, plus the matrix ~V ), might take no longer than some 30 seconds on
a modern workstation. Inverting ~V would take another 20 seconds, and the
rest (the multiplications ~Wa

~V ) is done in a ash. I.e., we obtain a model
containing 26 � 150 � 150 � :5 Mio. parameters from a sample sequence of
length pages � lines per page � letters per line � 4100� 35� 60 � 8:6 Mio.
in less than a minute.

Given this basic computational e�ciency, the following strategy for ob-
taining a useful model of an empirical process seems promising:

1. Select a small OOM dimension m to start with. A reasonable value is
m = j� j.

2. Reconstruct an OOM Am of dimension m.

3. Test the quality of Am, e.g. by comparing word frequencies in S with
word probabilities obtained from Am.

(a) If the quality is su�cient, stop and return Am.

(b) Else

i. if m is so large that further increasing it would become too
costly, stop and return \Process cannot be satisfyingly ap-
proximated by OOM given available resources",

ii. else put m = m + increment and return to 2.

The e�ciency of OOM estimations also allows an incremental model up-
date. This is useful e.g. in speech understanding systems for keeping track
with a shifting source (caused be changing speakers or changing listening
conditions), or in robot navigation where probabilistic internal world models
of the robot's environment have to be adapted to changes in the environ-
ment. A simple way to obtain OOM models that adaptively follow shifting
sources is to continuously update ~V and the ~Wa's (e.g. by leaky integration
of event frequencies derived from incoming data), and recompute the model
OOM when the current model starts to show de�ciencies.

5 Discussion

In this article I have furthered the mathematical theory of OOMs by intro-
ducing interpretable OOMs, and I have shown how the latter are useful in
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practice. In particular, an e�cient constructive algorithm for reconstructing
OOMs from data has been presented.

The algorithms currently used for estimating HMMs [2] [4] [3] essentially
are hill-climbing procedures. They can get trapped in local optima. Be-
ing in itself computationally expensive, hill-climbing procedures have to be
augmented by costly meta-routines (e.g. simulated annealing or random re-
tries) to cope with local optima. Since hill-climbing is feasible only when the
number of parameters to be estimated is not too great, in a typical HMM
estimation procedure the actual parameter estimation is preceded by an esti-
mation of model \structure". This amounts to �nding out how many hidden
states are appropriate, and which of them should be linked by transitions
(from the viewpoint of computational resources, this amounts to �xing the
greatest possible number of parameters at zero). While there are standard
hill-climbing procedures available for the parameter estimation part, �nding
of an appropriate model structure requires some subtelty. Several techniques
have been proposed, and the art of picking the right one and employing it
properly requires considerable training.

By contrast, the model induction procedure presented in this article is
constructive, and thus avoids the pitfalls of local optima. It is computation-
ally extremely cheap. This allows the reconstruction of models with huge
numbers of parameters and renders superuous a stage of model structure
estimation, i.e. a preparatory stage where it is decided which parameters can
be harmlessly put to zero. Last but not least, there is a clear and quite
elementary mathematical model underlying the algorithm, which makes it
simple to understand and allows a routine application.

However, this is only a start. HMM practitioners have developed many
extensions of the basic HMM model, e.g. higher-order HMMs or compound
HMMs which consist of several specialized HMMs. These augmentations are
motivated by the fact that single basic HMMs are often too weak to account
for relevant stochastic regularities. It remains to be seen in which cases the
greater expressiveness of OOMs renders them applicable where until now
augmented versions of HMMs were required. It is likely that OOMs need to
be augmented, too, in many cases.

I shall close with propositions for further OOM-related research:

1. Find interesting non-HMM classes of OOMs. Until now, the only mod-
els which are provably OOMs are HMMs and the single non-HMM ex-
ample described in section 5 (I). (For instance, I suspect that whenever
an observable operator contains a non-rational rotational component,
the OOM is non-HMM.)

2. Generalize OOMs to continuous values and, if possible, continuous
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time. (Idea for the latter: for observable operators, take linear dif-
ferential operators instead of linear operators.)

3. Develop a statistical theory of word frequencies in OOM-generated pro-
cesses which allows one to judge the goodness of models beyond the ad
hoc comparison of word probabilities used in this article.

4. Investigate substructures and projections of OOMs.

I am devoting my present investigations mainly to the fourth topic. The
other three �elds of work are as yet completely unploughed.
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