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Abstract: This article introduces observable operator models (OOM)

and conditioned continuation representations (CCR). They are tightly inter-

related models of certain stationary, �nite-valued, discrete, stochastic pro-

cesses. Both OOM's and CCR's are vector spaces equipped with a set of

linear operators, which correspond to the observables of the process. How-

ever, while the vectors of OOM's are ordinary vectors from R
k , the vectors

of a CCR are probability distributions of continuations of the process given

�nite information about its past history. The CCR of a process (Xt) is

uniquely determined, whereas there are many di�erent OOM's that generate

it. By mapping these OOM's on the CCR, a full characterization of minimal-

dimension OOM's is derived. Hidden Markov models (HMM) are a proper

subclass of OOM's. The results derived for OOM's can be adapted to yield

characterization results for minimal-state HMM's.

Zusammenfassung: Dieser Aufsatz f�uhrt observable operator models

(OOM) und conditioned continuation representations (CCR) ein. Es handelt

sich dabei um zwei eng verwandte Modelle bestimmter station�arer, endlich-

wertiger, diskreter, stochastischer Prozesse. Sowohl OOMs als auch CCRs

sind Vektorr�aume mit einer Menge linearer Operatoren, welche den beobacht-

baren Ereignissen des Prozesses entsprechen. Die Vektoren von OOMs sind

gew�ohnliche Vektoren aus Rk , wohingegen die Vektoren einer CCR jeweils

Mengen bedingter Verteilungen von Fortsetzungen des Prozesses bei gegebener

Information �uber eine endliche Vorgeschichte sind. Ist ein Prozess (Xt)

gegeben, so ist seine CCR eindeutig bestimmt, wohingegen es viele ver-

schiedene OOMs gibt, welche denselben Prozess generieren. Indem diese

OOMs auf die CCR abgebildet werden, kann eine vollst�andige Charakter-

isierung der OOMs minimaler Dimension erreicht werden. Hidden Markov

Modelle (HMM) sind eine echte Teilklasse von OOMs. Die Ergebnisse �uber

OOMs f�uhren auch zu vertieften Einsichten in HMMs, u.a. bez�uglich der

Charakterisierung �aquivalenter HMMs mit minimaler Zustandsmenge.



1 Introduction

This article introduces observable operator models (OOMs). They are mod-

els of certain stationary, �nite-valued, discrete, stochastic processes, among

them hidden Markov processes, which they properly include as a subclass.

Hidden Markov models (HMM) are widely used, and it is not neces-

sary here to emphasize their practical importance (cf. [4]). However, from

a mathematical point of view, HMMs are not particularly well-behaved ob-

jects. Almost nothing is known, for instance, about equivalence of HMMs

(in the sense of two such models generating the same observable process).

OOMs, by contrast, are mathematically quite transparent objects. An

OOM A = (Rk ; (�a)a2�; w0) consists of a (hidden) state space, which is taken

to be Rk , a family of linear operators (�a)a2�, which is indexed with the (dis-

crete) observables of the process, and a vector w0 which essentially is a sta-

tionary distribution of the process. The operators are called observable opera-

tors, since sequences of applications of these operators (i.e., �an��an�1�: : :��a0)

correspond to �nite-time observations of the process (i.e., to a0a1 : : : an).

This simple setup makes possible a transparent and e�ective characteri-

zation of equivalence in terms of certain linear mappings between the state

spaces of di�erent OOMs, which convey the observable operators of one OOM

into the observable operators of the other.

Deriving these results is the �rst main theme of this paper. The deriva-

tion relies heavily on a certain unique vector space representation of station-

ary stochastic processes, its conditioned continuation representation (CCR).

They are introduced in section 3, and they are applied to the characterization

of OOM equivalence in section 4.

The second main theme of this article is to elucidate how HMMs can be

characterized as a subclass of OOMs. Section 5 is devoted to this topic. It

turns out that HMMs are special cases of OOMs in that they must satisfy a

large number of numerical constraints on certain matrix entries. This �nding

helps to explain why a \nice" mathematical theory of HMMs does not seem

to exist.

Since in fact I have been led to OOMs through thinking about HMMs, I

will motivate and develop the de�nition of OOMs by abstracting away from

HMMs (section 2). However, before proceeding with this programme, it may

be helpful to informally describe a simple OOM.

Consider a stochastic process with values in � = fa; bg. The paths of

this process are sequences of a's and b's. We will now see how an OOM can

be used to generate such paths. Consider the OOM A = (R2 ; f�a; �bg; w0).

We skip the role of w0 in this introduction. The observable operators �a and

�b are linear operators on R
2 , i.e. they can be identi�ed with 2� 2-matrices.
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These matrices must have certain properties, which I skip here, too. The

following would be admissible observable operators:

�a =

�
1=4 1

1=4 0

�
�b =

�
1=4 0

1=4 0

�

These matrices can be used to generate stochastic sequences of a's and b's.

The general idea is to apply �a; �b in a stochastic sequence on vectors from R
2 ,

thus generating a trajectory of a (hidden) dynamical system. The sequence of

operators will then correspond directly to the sequence of observable events,

while the (hidden) system states determine the probabilities by which one of

the operators is selected at a given time step. More concretely, this works as

follows.

Let us call the sum of components of a vector its internal sum �, i.e.,

�((x; y)) = x+ y. Consider in R2 the hyperplane H = f(x; y) 2 R
2 j x+ y =

1g which consists of all vectors of internal sum 1 (cf. �g. 1). These vectors

will be the possible (hidden) states of our OOM. In OOM theory, internal

sums of vectors correspond to probabilities, thus the vectors in H can be

interpreted as \fully ascertained" system states.

Assume that at time t0, the system is in state v0 = (2=3; 1=3). Compute

the vectors �a(v0) = (1=2; 1=6); �b(v0) = (1=6; 1=6) (cf. �g.1(a)). Note that

the internal sums of these vectors are values from [0; 1] (namely, 4=6 and

2=6), and they sum to 1. Thus, the internal sums can be interpreted as

probabilities (we will learn in section 3 that this is something natural and

fundamental, not merely a technical trick). We put the probability that

the operator �a will be selected for application, equal to �(�a(v0)) = 4=6.

Similarly, we determine the probability for an application of b to be 2=6.

Now we select at random one of the operators �a; �b, according to the

probabilities just computed. In this example, the odds are for �a, so let's say

the dice decide for this operator.

This selection makes certain that the system state at time t1 will be, in

a sense, �a(v0). However, a system state which is determined with certainty

should have internal sum 1. This is why we do not take �a(v0) for the next

system state, but we rather put v1 =
�a(v0)

�(�a(v0))
. I.e., we \renormalize" to

internal sum 1 (cf. �g.1(b)). Intuitively, this renormalization corresponds to

the fact that something has changed from a probability to certainty, due to

the outcome of a random decision.

The same procedure is now repeated, with v1 taking the role of v0. We

get �a(v1) = (7=16; 3=16); �b(v1) = (3=16; 3=16). Again, we randomly select

one the operators with biases according to the internal sums of these vectors

(note again that they are from [0; 1] and sum to 1). Let's say the dice fell for

�b. This would give us v2 =
�
b
(v1)

�(�
b
(v1))

= (1=2; 1=2) at time t2 (�g.1(c)).
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Figure 1: How an OOM generates a stochastic sequence. (a) Time t0: prob-

abilities of next obeservable event are computed. (b) From time t0 to t1: one

of the events (a in this case) is chosen according to its probability, and a new

state vector v1 is produced. (c) From t1 to t2: procedure is repeated, in this

example yielding event b.

So far, we have generated the sequence ab. It is obvious how this process

could be continued inde�nitely.

Incidentally, the process described in this example can be generated by a

HMM, too.

In a nutshell, an OOM is characterized by two features:

1. The observed events a 2 � are interpreted as (linear) operators �a
which change the state v of a dynamical system.

2. The probability P [a j v] that in some state v the observation a will be

made is equal to the contraction in internal sum of v induced by an

application of �a.

With respect to the �rst point, OOM's are similar to random systems

with complete connections, as described in [3]. However, the second point is

absent from that theory. It is the dual nature of observable operators of (i)

being the process observables and (ii) coding (in the state vector contraction)

their own probability of getting selected, which makes OOM theory \crisp".

2 From HMMs to OOMs

In this section, we will motivate and develop the precise de�nition of OOMs,

by some simple abstraction steps which start from hidden Markov models
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(HMMs) and �nally lead to OOMs.

It is assumed that the reader is familiar with the basic theory of Markov

processes and linear algebra.

We start by �xing some HMM notation. There are various, more or

less equivalent ways to formally de�ne HMM's. We will stick to the kind

of presentation which is probably the most widespread. For an alternative

approach, which frames HMMs in Martingale theory, see [2].

Throughout this paper, we restrict the subject to processes with a �nite-

dimensional state space, discrete time, and a �nite set of observables (i.e.,

an alphabet of symbols � = a1; : : : ; an).

De�nition 1 A hidden Markov model is a quadruple (S;M; (Oa)a2�; P0),

where S = fs1; : : : ; skg is a set of (hidden) states, M : S � S ! [0; 1] gives

the state transition probabilities (satisfying
Pk

i=1M(s; si) = 1 for all s 2 S),

Oa : S ! [0; 1] speci�es the probability that the event a is observed when the

process is in hidden state s (satisfying
P

a2�Oa(s) = 1 for all s 2 S), and

P0 : S ! [0; 1] gives the starting distribution (satisfying
P

s2S P0(s) = 1).

It is customary to notate M as a stochastic matrix M = (mij), where

mij =M(si; sj).

S can be interpreted as the k-dimensional real vector space Rk , where

vectors (p1; : : : ; pk) from the subspace [0; 1]k are the state probability distri-

butions of the HMM.

M gives rise to a Markov process (for details, consult e.g. [1]). M has a

stationary distribution Pstat : S ! [0; 1], i.e. a distribution vector which is a

�xed point of the linear mapping given by M 0, where M 0 is the transpose of

M :

M 0Pstat = Pstat (1)

In most cases of interest, Pstat will be unique (if it isn't, then the process

essentially consists of decoupled subprocesses, which can be investigated in

isolation. For details cf. [1], Theorem 2.4).

If we take P0 to be such a (in most cases: the) stationary distribution

Pstat, then (S;M; (Oa)a2�; P0) gives rise to a stationary stochastic process

(Xt)t2Z, where the Xt are random variables with values in �. In this article,

we will deal exclusively with stationary processes, i.e., we will assume that

P0 obeys (1).

The cylinder distributions of the process generated by (S;M; (Oa)a2�; P0),

fP [Xi+1 2 A1; : : : ; Xi+n 2 An] j i; n 2 N ; A1 ; : : : ; An � �g;
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can be derived from the distributions of �nite observations sequences,

fP [Xi+1 = a1; : : : ; Xi+n = an] j i; n 2 N ; a1 ; : : : ; an 2 �g;

which in turn can be computed fromM , Oai , and P0 in the following way

(cf. [4]):

P [Xi+1 = a1; : : : ; Xi+n = an] = (2)X
s12S

P0(s1)Oa1(s1)
X
s22S

M(s1; s2)Oa2(s2) : : :
X
sn2S

M(sn�1; sn)Oan(sn):

Henceforward, we will use the simpli�ed notation P [a1 : : : an] instead of

P [Xi+1 = a1; : : : ; Xi+n = an], which is justi�ed in stationary processes. We

will also sometimes abbreviate a sequence a1; : : : ; an or a word a1 : : : an to �a.

We will now describe a more transparent way of computing P [a1 : : : an],

which will turn out to be the decisive step toward OOM's.

First, we interpret each Oa as a linear mapping Oa : R
k ! R

k of the state

vector space onto itself, which is speci�ed by the diagonal matrix

Oa =

0
B@

Oa(s1) 0
. . .

0 Oa(sk)

1
CA (3)

We will not distinguish in notation between the matrix and the linear

mapping speci�ed by it, i.e. both will be written as Oa. Intuitively, Oa

simply weighs each state with the corresponding observation probability of

a.

Now we de�ne a new linear operator Ta on R
k by the concatenation of

Oa with M 0:

Ta : Sk
! Sk

Ta(v) = M 0Oa(v); (4)

where v is a vector from R
k in column notation. The mapping Ta is

speci�ed by the matrix M 0Oa. Again, we will not distinguish in notation

between the mapping and the matrix.

De�nition 2 For a vector v = (v1; : : : ; vk) 2 R
k let

�(v) := v1 + : : :+ vk (5)

denote its internal sum.
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Using the internal sum �, we can compute P [a1 : : : an] in the following

way:

P [a1 : : : an] = �(TanTan�1 � � �Ta1P0) (6)

That (6) gives indeed the same value as (2), can be veri�ed by elementary

transformations, using that (2) is equivalent to the following expression:

P [a1 : : : an] =X
s12S

P0(s1)
�
Oa1(s1)

X
s22S

M(s1; s2)
�
Oa2(s2) : : :

: : :
X
sn2S

M(sn�1; sn)
�
Oan(sn)

X
sn+12S

M(sn; sn+1)
�
� � �

��
(7)

The matrixM 0 can be recovered from the Ta. Observing that
P

a2�Oa =

1 yields the identity matrix, we �nd:

M 0 =
X
a2�

Ta (8)

The observations made so far motivate the following de�nition, which

generalizes from HMM's by retaining only those properties of the Ta which

are necessary to guarantee that some process (Xt) can ultimately be speci�ed:

De�nition 3 An observable operator model is a tripleA = (Rk ; (�a)a2�; w0),

where Rk the OOM's state space, � is a �nite alphabet, the �a are linear map-

pings on R
k , and w0 2 R

k , such that the following conditions are satis�ed:

1. the matrix � =
P

a2� �a has column sums equal to 1, i.e.

�1j + � � �+ �kj = 1 for all columns j,

2. �(w0) = 1 and �w0 = w0,

3. for every �nite sequence a1; : : : ; an of elements of �, it holds that

�(�an � � � �a1w0) 2 [0; 1].

The mappings �a are called the observable operators of A.
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In this de�nition, the �a's are the OOM versions of the Ta, w0 corresponds

to P0, and � to M 0.

The name, observable operator model, is meant to characterize the fact

that a sequence of observed events a1; : : : ; an can be interpreted as a sequence

of linear operations. I will further comment on the intuitive interpretation

of these operators in the next section.

We do not require � to be (the transpose of) a stochastic matrix. We

don't restrict the elements of � to values in [0; 1] but allow �i;j 2 R. In fact,

this generality will turn out to be essential for the theory to be developed

in this article. In a similar vein, we do not require the vector w0 (which

corresponds to P0) to be a probability distribution. This vector is allowed to

have negative components, too.

Generally, we use capital latin letters in the "world" of HMM's, and

equivalent greek letters in the "world" of OOM's (like M vs. � etc.).

Note that the OOM counterpart of the transposed matrixM 0 is the matrix

�, which is not transposed. The reason for this slight discrepancy lies in the

tradition to notate stochastic matrices as transposes of the matrices which

actually coorrespond to the linear mapping of the state transitions. I did not

wish to perpetuate this somewhat unfortunate state of a�air into the OOM

world.

Proposition 1 An OOM (Rk ; (�a)a2�; w0) generates a stationary stochastic

process (Xt) with values in �, if we de�ne (like in (6)):

P [a1 : : : an] = �(�an�an�1 � � � �a1w0) (9)

Proof. We �rst have to show that the probabilities P [a1 : : : an] of se-

quences of a given length add up to 1, i.e. that
P

a1;:::;an2�
P [a1 : : : an] = 1.

This follows from �(w0) = 1 and the fact that columns in � sum to 1, which

implies that �(�v) = �(v) for every vector v in Rk .

Furthermore, we have to show that the probabilities of sequences of di�er-

ent length, computed according to (9), agree with each other in the following

sense:

1. For all sequences a1; : : : ; an, for all m 2 N , it holds that P [a1 : : : an] =P
b1;:::;bm2�

P [b1 : : : bma1 : : : an].

2. For all sequences b1; : : : ; bm, for all n 2 N , it holds that P [b1 : : : bm] =P
a1;:::;an2�

P [b1 : : : bma1 : : : an].
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Both claims are easily veri�ed. For the �rst, use that w0 is a �xed point

of �; for the second, again exploit that columns in � sum to 1. 2

Since in the sequel we will frequently use terms like on the rhs. in (9) or

in the rhs. of (6), we introduce the following shorthand notation:

De�nition 4 Let �a1:::an denote the concatenation of mappings �an � : : :� �a1,

and Ta1:::an the concatenation of mappings Tan � : : : � Ta1 .

Note that the ordering of ai's is reversed in the shorthand with respect

to the full concatenation notation.

An (Xt)-OOM A = (Rk ; (�a)a2�; w0) can be used to e�ectively generate

left-�nite paths c0; c1; c2; : : :, which are distributed according to (Xt), by the

following inductive procedure.

1. Initialization:

(a) For all a 2 �, compute P [a].

(b) Randomly select one a 2 �, with probability P [a]. Put c0 := a.

2. Induction step:

(a) If the �nite sequence c0; c1; : : : ; cn =: �c has already been generated,

compute, for all a 2 �, the conditioned probability that a appears

in the next step, P [a j �c].

(b) Randomly select one a 2 �, with probability P [a j �c]. Put cn+1 :=

a.

This procedure obviousy yields paths which are distributed according to

(Xt). The probabilities P [a] and P [a j �c] can be e�ectively computed from

the operators (�a)a2� if we observe (9) and the fact that

P [a j �c] =
P [�ca]

P [�c]
:

Note that the case P [�c] = 0 cannot occur in this procedure.

These conditional probabilities can be computed iteratively in a way

which requires only one matrix multiplication per time step, plus the com-

putation of j � j many scalar products, in the following way. Let �a =: (�
ij
a ).

For every a 2 �, de�ne a vector
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xa :=

0
B@
P

i=1;:::;k �
i1
a

...P
i=1;:::;k �

ik
a

1
CA

which contains the column sums of �a. Then, it is easy to see that for

every v 2 R
k , it holds that �(�a(v)) = hxa; vi. Exploiting this fact, the above

procedure can be detailed as follows:

1. Initialization:

(a) Put s0 := w0.

(b) For all a 2 �, compute P [a] = hxa; s0i.

(c) Randomly select one a 2 �, with probability P [a]. Put c0 := a.

2. Induction step:

(a) If the �nite sequence c0; c1; : : : ; cn =: �c has already been generated,

and sn has been computed, compute, for all a 2 �, the conditioned

probability that a appears in the next step, P [a j �c] = hxa; sni.

(b) Randomly select one a 2 �, with probability P [a j �c]. Put cn+1 :=

a.

(c) Put sn+1 :=
�a(sn)

�(�a(sn))
.

It is noteworthy that this procedure makes do with a single random se-

lection operation per time step, whereas in classical HMM methods two such

operations are needed (one for the the hidden state transition, another for

the determination of an observable event in the current state).

An immediate question that arises is whether di�erent OOM's exist which

generate the same process (Xt), and if so, how they can be transformed into

each other. This kind of question, although it is central for a mathematical

understanding of any kind of sequence generating algorithms, seems not to

have been investigated for HMMs. The remainder of this article is mainly

concerned with answering this question for OOMs (sections 3 and 4), and in

using the results obtained for OOMs in order to partially answer the question

for HMMs (in section 5).

First we equip ourselves with a de�nition of equivalence:

De�nition 5 Two OOM's (Rk ; (�a)a2�; w0) and (Rl ; (~�a)a2�; ~w0) are equiv-

alent if they generate the same process (Xt).
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Equivalence in the sense of this de�nition obviously is an equivalence

relation on the class of OOM's. We will sometimes refer to an OOM which

generates (Xt), as an \(Xt)-OOM".

The question, then, is to characterize the class of (Xt)-OOMs for a given

(Xt). A way to tackle this question is to �nd some \normal form" represen-

tation of OOM's, such that OOM's that generate the same (Xt) yield the

same \normal form" representation. The latter can then be used as a means

of comparison to establish the connections between equivalent OOM's.

In the next section, we will provide ourselves with such a \normal form"

representation.

3 Conditioned continuation representations of

stationary processes

In this section, we develop an essentially unique representation of a stationary

process (Xt), its conditioned continuation representation (CCR). It will be a

vector space whose vectors are constructed from conditioned probability dis-

tributions, which are derived directly from (Xt), and therefore are uniquely

determined. Since CCR's can be considered to be the most important theo-

retical contribution of this article, with potential applications beyond OOM

theory, we will de�ne them in a slightly more general way than would be

required for a treatment of OOM equivalence.

We will reserve Fraktur letters for denoting CCR-related entities.

Assume that some stationary, discrete process (Xt)t2Z with values in a

�nite alphabet � is given. Recall that �� customarily denotes the set of all

�nite words made from symbols from �, including the empty word ", and

that the length of a word w is denoted by j w j. We will now introduce, in

several steps, the vectors which we will need for building CCRs.

De�nition 6 A generalized word distribution is any mapping d : �� ! R

which satis�es

9 r 2 R 8n � 0
X

w2��;jwj=n

d(w) = r (10)

The set of all generalized word distributions is denoted by D.

The term, \generalized word distribution", is motivated by (10), since it

reminds one of probability distributions if r = 1.
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Proposition 2 D can be interpreted as a real vector space (of in�nite dimen-

sion) if we de�ne scalar multiplication by (xd)(w) := x(d(w)) and addition

by (d + d
0)(w) := d(w) + d

0(w) for every w 2 ��.

Proof. Obvious.

We will henceforth let D denote this vector space.

The following is an analogue to de�nition 2:

De�nition 7 For d 2 D, let

�(d) := r;

where r is de�ned as in de�nition 6, be the internal sum of d.

Next we introduce a metric d on D:

De�nition 8 For d1; d2 2 D, de�ne the distance d by

d(d1; d2) = sup
w2��

minf1; kd1(w)� d2(w)kg;

where k � k denotes the Euclidean norm on R.

Proposition 3 d is a metric.

Proof. It is obvious that d(d1; d2) = 0 i� d1 = d2, and it is also obvious

that d is symmetric. Thus it remains to show that the triangle inequality

holds, i.e. that d(d1; d3) � d(d1; d2) + d(d2; d3) for all d1; d2; d3 2 D:

d(d1; d3)

= sup
w2��

minf1; kd1(w)� d3(w)kg

� sup
w2��

minf1; kd1(w)� d2(w)k+ kd2(w)� d3(w)kg

� sup
w2��

minf1; kd1(w)� d2(w)kg+ sup
w2��

minf1; kd2(w)� d3(w)kg

� d(d1; d2) + d(d2; d3) 2

For later use, we note the following inequality:

Proposition 4 For all d1; : : : ; d4 2 D it holds that

d(d1 + d2; d3 + d4) � d(d1; d3) + d(d2; d4)
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Proof.

d(d1 + d2; d3 + d4) =

= sup
w2��

minf1; k(d1 + d2)(w)� (d3 + d4)(w)kg

= sup
w2��

minf1; kd1(w) + d2(w)� d3(w)� d4(w)kg

� sup
w2��

minf1; kd1(w)� d3(w)k+ kd2(w)� d4(w)kg

� d(d1; d3) + d(d2; d4) 2

We will now single out a certain linear subspace G of D as the vector

space for our desired CCR.

De�nition 9 Let (Xt)t2Z be a stationary, discrete process with values in �.

The conditioned continuation distribution of (Xt)t2Z is the mapping g : �� !

D de�ned by

(g(a1 : : : an))(b1 : : : bm) =

P [Xn+1 = b1; : : : ; Xn+m = bm j X1 = a1; : : : ; Xn = an]; (11)

where P [Xn+1 = b1; : : : ; Xn+m = bm j X1 = a1; : : : ; Xn = an] is the con-

ditioned probability that we observe the sequence b1; : : : ; bm directly after the

sequence a1; : : : ; an. We will briey write ga1:::an or even g�a for g(a1 : : : an).

In cases where P [�a] = 0 (where (11) is not well-de�ned), we put

8�b 2 �� : g�a(�b) := 0:

Note that g(")(b1 : : : bm) = P [b1; : : : ; bm], where " denotes the empty word.

The image of the conditioned continuation distribution of (Xt)t2Z spans

a linear subspace in D, which is our desired vector space G.

Note that G is completely determined by (Xt)t2Z. We are therefore enti-

tled to call G the conditioned continuation space of (Xt), and to write G(Xt)

if we want to make explicit from which stationary process G is derived.

The following proposition follows directly from the de�nitions of g�c and

�:

Proposition 5 1. 8�c 2 �� �(g�c) = 1

2. 8�c1; : : : ; �cn 2 �� 8�1; : : : ; �n 2 R �(
P

i=1;:::;n �ig�ci) =
P

i=1;:::;n �i 2

We now de�ne CCR analogues of the observable operators (�a)a2�.

13



De�nition 10 Let G be the conditioned continuation space of (Xt). For

each a 2 �, let ta : G! G be a mapping which satis�es

8�c 2 �� : ta(g�c) = P [a j �c] g�ca (12)

A pair (G; (ta)a2�) is called a conditioned continuation representation

(CCR) of (Xt). A family (ta)a2� of operators satisfying (12) is called a

family of observable operators.

A CCR of (Xt) is not uniquely determined, since (12) �xes ta only on a

subset of G. However, in many instances where CCR's would be practically

used, a canonical extension of ta on the entire space G will exist, which will

lead to a unique CCR. (In this article, we'll see that the requirement of

linearity gives us such a canonical extension).

We adapt de�nition 4 to CCR terminology:

De�nition 11 Let ta1:::an denote the concatenation of mappings tan �� � ��ta1.

We end the technical part of this section with a proposition which is not

in itself very interesting, but which we will later need.

Proposition 6 Let g�c =
P

i=1;:::;m ig�ci. Then for all a 2 � it holds that

P [a j �c]g�ca =
X

i=1;:::;m

iP [a j �ci]g�cia:

Proof. We have to show that for all �d 2 ��, it holds that

P [a j �c]g�ca( �d) =
X

i=1;:::;m

iP [a j �ci]g�cia(
�d)

This is revealed by the following transformations:

P [a j �c]g�ca( �d) =

= P [a j �c]P [ �d j �ca] = P [a �d j �c]

= g�c(a �d) =
X

i=1;:::;m

ig�ci(a
�d)

=
X

i=1;:::;m

iP [a j �ci]g�cia(
�d) 2

14



The vectors g�c, and the operators ta, can each be interpreted in two

complementary ways. I shall briey explain them, although these \meta"

considerations are not needed in the sequel.

First, gc1:::cn can be considered as the information that an observer has

about the future of the process after he has observed the �nite sequence

c1; : : : ; cn. The operators (ta)a2� should be interpreted accordingly as \infor-

mation gain operators" which specify how additional information is gained

through an observation of a after some �c.

Second, it is possible with certain processes (Xt) to interpret gc1:::cn as an

approximation of the state of a system which realizes (Xt). In order to make

this interpretation valid, sequences of the kind g"; gc0; gc�1c0 ; gc�2c�1c0; : : :

should converge to a de�nite vector g:::c�2c�1c0 almost certainly (It is a natural

guess that ergodic systems show this kind of convergence). Intuitively, then,

g:::c�2c�1c0 can be interpreted as the \true" system state at time t0, after it has

gone through the (in�nite) past history : : : ; c�2; c�1; c0. This interpretation

is in perfect agreement with a standard notion in theoretical physics of a

system state, which says that the state of a system is what \in" the system

determines its future development. Accordingly, ta could be interpreted as

a time step operator on system states. The �nite-past-history vectors gc1:::cn
can be considered as approximations to the \true" system state.

4 On the equivalence of OOM's

In this section, we will investigate the equivalence of OOM's. It turns out

that the classes of minimal-dimension, equivalent OOM's can be completely,

and very simply, characterized, and that non-minimal-dimension OOM's can

be mapped by a internal sum-preserving map on minimal-dimensional, equiv-

alent ones. These are quite strong results. Their derivation relies heavily on

mapping OOM's on CCRs and vice versa. This is why we start by investi-

gating mappings of OOM's on CCR's.

De�nition 12 Let A = (Rk ; (�a)a2�; w0) be an OOM which (according to

proposition 1) generates a process (Xt). Let (G; (ta)a2�) be a CCR of (Xt).

Let � = �(A) be the linear subspace of Rk spanned by the vectors f�a1:::anw0 j

n 2 N ; a1 : : : an 2 �ng. Let B(�) = f��b1w0; : : : ; ��b
l

w0g be a basis of �. De�ne

a linear mapping � from � to G by putting

�(��biw0) := P [�bi] g�bi i = 1; : : : ; l

This mapping is called the canonical projection of (Rk ; (�a)a2�; w0) onto

(G; (ta)a2�).

15



We will now collect some properties of this canonical projection which

show that it deserves its name.

Proposition 7 Given the terminology and assumptions of de�nition 12, the

canonical projection has the following properties:

1. 8�c 2 �� �(��cw0) = P [�c] g�c:

2. � is surjective.

3. � preserves �, i.e.

8v 2 � : �(�(v)) = �(v)

4. � is continuous with respect to the ordinary Euclidean metric in � and

the metric d (cf. de�nition 8) in G.

Proof. 1. We have to show that for all �d 2 ��, it holds that

(�(��cw0))( �d) = P [�c] g�c( �d) (13)

Let ��cw0 =
P

i=1;:::;l �i��biw0 be the linear combination of ��cw0 from basis

vectors.

Then, a sequence of elementary transformations yields the desired result:

(�(��cw0))( �d) =

=
�
�
�X

�i��biw0

��
( �d) =

X
�i P [�bi] g�bi(

�d)

=
X

�i P [�bi]P [ �d j �bi] =
X

�i P [�bi �d]

=
X

�i�(��bi �dw0) = �(� �d

�X
�i��biw0

�
)

= �(� �d(��cw0)) = P [�c �d] = P [�c]P [ �d j �c]

= P [�c] g�c( �d)

2. Is a direct consequence of 1.

3. �(�(��biw0)) = �(P [�bi] g�bi) = P [�bi] = �(��biw0):

4. We have to show that (�(vj))j2N converges in G to �(v) w.r.t. d if

(vj)j2N converges in � w.r.t. k � k.

Let vj =
P

�
j
i ��biw0; v = �i��biw0 be the linear combinations of vj; v from

basis vectors of �. Then, limj!1 vj = v is equivalent to limj!1 �
j
i = �i.

We consider for each i = 1; : : : ; l the sequence

16



(�(�j
i ��biw0))j2N = (�j

iP [
�bi]g�bi)j2N:

It is easy to see that

lim
j!1

d(�j
iP [

�bi]g�bi ; �iP [�bi]g�bi) = 0:

An obvious application of proposition 4 �nishes the proof. 2

The following proposition is an immediate consequence of proposition 7:

Proposition 8 Given the terminology and assumptions from de�nition 12,

the dimension of G is �nite, and dim(G) � k. 2

Next we see how the observable operators �a from A carry over via the

canonical projection into observable operators ta on G. We proceed in two

steps. First, we use a version of �a restricted to the kernel of � to show the

existence of linear observable operators ta on G. Then we show that these ta
can be understood as the image of �a on the full space �.

Given the terminology and assumptions from de�nition 12, let fg�c1; : : : ; g�cmg

be a basis of G. Using proposition 7(1), we see that f��c1w0; : : : ; ��cmw0g is a

basis of a linear subspace G � � which is complementary to the kernel ker �

of �. It holds that the reduct �G of � on G yields an isomorphism of vector

spaces �G : G ' G. In particular, �G is bijective. Thus, for all a 2 � we can

de�ne mappings (��)a : G! G by putting

8v 2 G : (��)a(�(v)) := �(�a(v)): (14)

Proposition 9 1. (��)a is a linear mapping.

2. ((��)a)a2� is a family of observable operators on G.

Proof. 1. Multiplication with scalars: (��)a(��(v)) = (��)a(�(�v)) =

�(�a(�v)) = ��(�a(v)) = �(��)a.

Additivity: (��)a(�(v1) + �(v2)) = (��)a(�(v1 + v2)) = �(�a(v1 + v2)) =

�(�a(v1) + �a(v2)) = �(�a(v1)) + �(�a(v2)) = (��)a(�(v1)) + (��)a(�(v2)).

2. We have to show: for all �c 2 ��, it holds that (��)ag�c = P [a j �c]g�ca.

Let fg�c1 ; : : : ; g�cmg be the same basis of G as the one used in the de�nition of

(��)a, and let g�c =
P

i=1;:::;m ig�ci.

17



(��)ag�c =

= (��)a
X

i=1;:::;m

ig�ci

=
X

i(��)ag�ci (since (��)a is linear)

=
X

i(��)a

�
�

�
1

P [�ci]
��ciw0

��
(use prop. 7(1))

=
X

i�

�
�a

�
1

P [�ci]
��ciw0

��
(de�nition of (��)a)

=
X

i
1

P [�ci]
�(�a��ciw0)

=
X

i
1

P [�ci]
P [�cia]g�cia

=
X

iP [a j �ci]g�cia

= P [a j �c]g�ca (apply prop. 6)

2

It is easy to see that there can exist at most one family of observable

operators on G which are linear. Since in this article we are exclusively

concerned with processes (Xt) generated by some OOM, we will henceforth

speak of the CCR (G; (ta)a2�) of (Xt), and take ta to be the observable

operator which is linear.

The subspace G introduced above is a somewhat arbitrary subspace of �,

since it depends on the choice of fg�c1; : : : ; g�cmg. Therefore, it would be nice

to use � instead of G in the de�nition of (��)a. The next proposition shows

that this is in fact possible.

Proposition 10 Given the terminology and assumptions from de�nition 12,

it holds that

8v1; v2 2 � : �(v1) = �(v2)! �(�a(v1)) = �(�a(v2))

Proof. Let v1 =
P

i=1;:::;l �i��biw0; v2 =
P

i=1;:::;l �i��biw0 be linear combina-

tions from basis vectors of �. Now conclude

�(v1) = �(v2)
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) �(
X

i=1;:::;l

�i��biw0) = �(
X

i=1;:::;l

�i��biw0)

)

X
�iP [�bi]g�bi =

X
�iP [�bi]g�bi

) ta

�X
�iP [�bi]g�bi

�
= ta

�X
�iP [�bi]g�bi

�

)

X
�iP [�bi]P [a j �bi]g�bia =

X
�iP [�bi]P [a j �bi]g�bia (since ta is linear)

)

X
�iP [�bia]g�bia =

X
�iP [�bia]g�bia

)

X
�i�(��biaw0) =

X
�i�(��biaw0) (prop: 7(1))

) �(
X

�i(��biaw0)) = �(
X

�i(��biaw0))

) �(�a(
X

�i��biw0)) = �(�a(
X

�i��biw0))

) �(�a(v1)) = �(�a(v2))

2

The following proposition further clari�es the nature of the canonical

mapping. In intuitive terms, it states that � maps two vectors v; v0 on the

same generalized word distribution i� both vectors, taken as starting distri-

butions, generate the same \futures".

Proposition 11 For v; v0 2 �, the two following conditions are equivalent:

1. �v = �v0

2. 8�c 2 �� : �(��c(v)) = �(��c(v
0))

Proof. 1. ) 2.: Let v =
P

i=1;:::;l �i��biw0; v
0 =
P

i=1;:::;l �i��biw0 be combi-

nations of v; v0 from basis vectors of �. Conclude

�(��c(v)) =

= �(�(��c(v))) (� preserves internal sum)

= �(�(��c � (
X

�i��biw0)))

= �(�(
X

�i��bi�cw0)) = �(
X

�i�(��bi�cw0))

= �(
X

�iP [�bi�c]g�bi�c) = �(
X

�iP [�bi�c]
t�cg�bi

P [�c j �bi]
)

= �(
X

�iP [�bi]t�cg�bi) = �(t�c(
X

�iP [�bi]g�bi))
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= �(t�c(
X

�iP [�bi]g�bi)) (since �(v) = �(v0))

= : : : (same transformations backwards)

= �(��c(v
0))

2.) 1.: First we observe (using prop. 7 and eq. (14)) that 2. is obviously

equivalent to

8�c 2 �� : �(t�c(�(v))) = �(t�c(�(v
0)))

Therefore, in order to show \2. ) 1.", it su�ces to show that for all

d; d0 2 G it holds that

8�c 2 �� : �(t�cd) = �(t�cd
0) ! d = d

0 (15)

Let g�bi ; i = 1; : : : ; m be a basis of G, and d =
P

�ig�bi ; d
0 =
P

�ig�bi . We

have to show that �i = �i for all i.

8�c 2 �� : �(t�cd) = �(t�cd
0)

) 8�c �(
X

�iP [�c j �bi]g�bi�c) = �(
X

�iP [�c j �bi]g�bi�c)

) 8�c
X

�iP [�c j �bi]�(g�bi�c) =
X

�iP [�c j �bi]�(g�bi�c)

) 8�c
X

�iP [�c j �bi] =
X

�iP [�c j �bi] (since �(g�bi�c) = 1)

) 8�c
X

�ig�bi(�c) =
X

�ig�bi(�c)

)

X
�ig�bi =

X
�ig�bi

) 8i : �i = �i

2

Next we investigate a bit the CCR equivalent of the matrix/mapping � in

OOM's (cf. de�nition 3), which can be de�ned as the sum of the observable

operators:

De�nition 13 For a CCR (G; (ta)a2�), let m :=
P

a2� ta be the transition

mapping of the CCR.

The following proposition collects propertes of m which indicate how a

CCR relates to an OOM (cf. 3.).

Proposition 12 Given the notation and assumptions from de�nition 12, the

following statements hold:
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1. 8v 2 � �(�(v)) = m(�(v))

2. 8d 2 G �(d) = �(m(d))

3. g" = �(w0)

4. g" is a �xed point of m and has internal sum 1.

Proof. 1. Follows from propositions 9(2), 10, and the de�nition of m.

2. is a consequence of (i) the fact that �(�(v)) = �(v) for all v 2 R
k , (ii)

surjectivity of �, and (iii) preservation of � by � (cf. proposition 7).

3. Is a special case of proposition 7(1).

4.

mg" =

=
X
a2�

tag" =
X
a2�

��aw0 (use (14))

= �
X
a2�

�aw0 = ��w0

= �w0 = g"

2

Since the de�nition of G depends entirely on the process (Xt) (and not

on a particular OOM of this process), we are entitled to the following

De�nition 14 For a stationary process (Xt)t2Z with CCR (G; (ta)a2�), we

call dim(Xt) := dim(G) the dimension of the process.

Since the canonical projection � of an OOM on its CCR is surjective, every

OOM (Rk ; (�a)a2�; w0) which generates (Xt) must at least have dimension

k � dim(Xt). We now turn to the question whether a minimal-dimension

OOM (Rdim(Xt ); (�a)a2�; w0) always exists. This question is answered in the

a�rmative by the following proposition:

Proposition 13 Using the assumptions and terminology of de�nition 12, let

g�b1 ; : : : ; g�bm be a basis of G. Let u1; : : : ; um be a basis of Rm , where each ui
has internal sum 1 (for instance, let ui be the i-th unit vector).

De�ne a linear mapping

~��1 : G! R
m

~��1(g�bi) = ui;
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Note that ~��1 is an isomorphism of vector spaces, which allows us to

de�ne, for every a 2 �, a linear mapping ~�a on R
m by putting

~�a = ~��1ta~�;

where ~� denotes the inverse of ~��1.

Put ~w0 := ~��1g".

Then, A = (Rm ; (~�a)a2�; ~w0) is an OOM which generates the process (Xt).

Proof. First we show that (Rm ; (~�a)a2�; ~w0) is an OOM, i.e. that it satis�es

the conditions 1. { 3. from de�nition 3.

Condition 1: We have to show that ~� :=
P

a2� ~�a has column sums 1 (as

a matrix), i.e. that it is internal sum-preserving (as a mapping on Rm).

This follows from the facts (i) that ~�(~��1(d)) = ~��1(m(d)), (ii) m pre-

serves internal sums in G, and (iii) that ~��1 preserves vector internal sums

(which holds because ~��1 maps a set of basis vectors of internal sum 1 in G

on basis vectors in Rm that are also of internal sum 1).

Condition 2: We have to show that �( ~w0) = 1 and that ~� ~w0 = ~w0. The

former follows from the obvious fact that ~��1 preserves internal sums, and

that �(g") = 1. The latter can be seen as follows:

~� ~w0 =

=
X
a2�

~�a ~w0 =
X

~��1ta~�~�
�1~��1g"

=
X

~��1tag" = ~��1
X

tag"

= ~��1g" = ~w0

Condition 3: We have to show that �(~��c ~w0) 2 [0; 1] for all �c 2 ��. This

follows from

�(~��c ~w0) = �(~��1t�cg") = �(~��1P [�c]g�c) = P [�c]

Second, we have to show that the OOM (Rm ; (~�a)a2�; ~w0) generates the

same process (Xt) as the original OOM (Rk ; (�a)a2�; w0). This follows from

the fact that � and ~��1 are internal sum preserving, and (9).

2

Note that the mapping ~� used in this proof actually is the canonical

projection of B onto the CCR.

Now we have everything in place for answering a big part of the question

asked at the end of section 2, i.e. a classi�cation of equivalent OOM's.
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Proposition 14 Let dim(Xt) = m. Let A = (Rk ; (�a)a2�; w0) and B =

(Rm ; (~�a)a2�; ~w0) be two equivalent OOM's, which generate (Xt). Then there

exists a linear, surjective, internal sum-preserving mapping % : �(A) ! R
m

such that %(w0) = ~w0, and for all a 2 � it holds that

8v 2 �(A) ~�a(%(v)) = %(�a(v)): (16)

We write % : A! B for such %.

Proof. Let � be the canonical projection of A on the CCR of (Xt), and

let ~� be the canonical projection of B on this CCR. Then, apply proposition

13 on ~��1 and conclude that % = ~��1 � � : A! B. 2

Proposition 15 Let dim(Xt) = m, and % : Rm
! R

m be a bijective, linear,

internal sum-preserving mapping. Let A = (Rm ; (�a)a2�; w0) be an OOM.

De�ne for every a 2 � a mapping ~�a : R
m ! R

m by putting

~�a(%(v)) := %(�a(v)): (17)

Then B = (Rm ; (~�a)a2�; %(w0)) is an OOM equivalent to A.

Proof. Rewrite % as % = ~��1 � �, where � is the canonical projection of

A, and ~��1 is a mapping as in proposition 13. Then apply proposition 13.

2

A combination of propositions 14 and 15 yields the following characteri-

zation of equivalence of minimal-dimension OOMs:

Proposition 16 Two minimal-dimension OOMsA = (Rm ; (�a)a2�; w0); B =

(Rm ; (~�a)a2�; ~w0) are equivalent i� there exists a internal sum-preserving iso-

morphism % : A ! B of vector spaces which maps w0 on ~w0, and which

transports (�a)a2� into (~�a)a2� in the sense of (17). 2

5 From OOMs back to HMMs (halfways)

In this section we investigate in more detail how HMM's relate to OOM's.

We start with some preparatory remarks.

HMM's can be seen as OOM's with two special properties:

1. There exist diagonal matrices oa such that �a = �oa.
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2. All entries in the matrices oa and � are probability values, i.e. are from

[0; 1].

Only the �rst condition �ts nicely with the linear algebra perspective

taken in this article. Diagonal matrices are a much-sought commodity when

one investigates linear mappings. By contrast, the second condition intro-

duces interval restrictions which are alien to methods of linear algebra.

In this section, we will learn that HMMs are truly special among OOMs

only with respect to the second condition. While for every OOM there exists

an equivalent one featuring diagonal matrices oa, there exist OOMs for which

no equivalent one exists whose matrix entries are all probabilities. An imme-

diate consequence of the second �nding is that HMMs are a proper subclass

of OOMs.

We will �rst investigate a bit the topic of OOMs which are in \diagonal

form":

De�nition 15 An OOM is called diagonal-form if there exist diagonal ma-

trices oa such that �a = �oa (where � =
P

�a, as usual). An OOM is simply

called a HMM if it also has property 2 from above.

As we have seen in the preceding section, OOM theory is particularly

convenient for minimal-dimension OOMs. In the following proposition, we

develop the picture of how equivalent, minimal-dimension, diagonal-form

OOMs are mutually related. These results may be of some interest for ap-

plications of HMMs, since often one will have minimal-dimension HMMs.

Then, this proposition a�ords some insight in the existence or non-existence

of equivalent, but di�erent, HMMs.

Proposition 17 Part 1. Let A = (Rm ; (�a)a2�; w0);B = (Rm ; (~�a)a2�; ~w0)

be two equivalent, minimal-dimension, diagonal-form OOMs with diagonal

matrices (oa)a2�; (~oa)a2�. Let the transition matrix � =
P

a2� �a be regular.

Let % : A! B be the isomorphism according to proposition 16. Then, modolo

permutations �1; �2 of coordinates in A and B (i.e. change from from % to

�2%�
�1
1 , from oa to �1oa�

�1
1 , and from ~oa to �2~oa�

�1
2 for some permutations

�1; �2 applied to the coordinates of A and B, respectively), %, (oa)a2�, and

(~oa)a2� obey the following restrictions:

1. The matrix % consists of quadratic submatrices R� aligned on the diag-

onal, where � = 1; : : : ; m0 with m0 � m:

% =

0
B@

R1 0
. . .

0 Rm0

1
CA (18)
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2. Let for any a 2 �

oa =

0
B@

a1 0
. . .

0 am

1
CA ~oa =

0
B@

~a1 0
. . .

0 ~am

1
CA

Let R� be a matrix of size n� � n�, and let i� := n1 + � � �+ n�, i.e. i�
is the coordinate index of the last column/row of R� in %. Put i0 := 0.

Then, it holds that for i��1 < i; j � i� (where � = 1; : : : ; m0)

ai = aj = ~ai = ~aj:

Said in less formal terms, the second condition states that in each matrix

oa; ~oa the elements that lie in the same region as the region covered by some

B� in %, are equal.

Part 2 (inverse of part 1). Let A be a diagonal-form, minimal-dimension

OOM, and (oa)a2� its diagonal matrices, let % : A! B, and let ~oa := %oa%
�1.

If a permutation of coordinates of A and B exists (analogous to the one

in part 1) such that

1. % is of the form (18),

2. for each a 2 �, diagonal entries in oa which lie in the region of the

same R� are equal to each other,

then, B is also diagonal-form, and it holds that ~oa = oa for all a 2 �.

Proof. Part 1. Let % : A! B be a transformation of A into B according

to proposition 14. Since % is regular, the matrix (%ij) in every row and in

every column has at least one nonzero element. Let

oa =

0
B@

a1 0
. . .

0 am

1
CA ~oa =

0
B@

~a1 0
. . .

0 ~am

1
CA

Using that ~�a = %�a%
�1, ~� = %�%�1, ~�~oa = ~�a, �oa = �a, and that � is

regular, conclude that ~oa � % = % � oa. A multiplication of matrices ~oa% = %oa
yields equations ~ai%ij = %ijaj for i; j = 1; : : : ; m. Since for every i (and for

every j, respectively) some %ij 6= 0, this implies that every ~ai is equal to at

least one aj. This in turn implies that modolo a permutation of coordinates

(as described in the proposition), it holds that oa = ~oa.
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Since an identical inference can be made for all a 2 �, this means that

(modolo the same permutations �1; �2 for all a) (oa)a2� = (~oa)a2�. We will in

the remainder of this proof assume that such a permutation has been carried

out.

Now we take one of the oa and see what we can infer from it about the

structure of %. We may assume without loss of generality (modolo a further

permutation of coordinates, applied uniformly in A and B) that if some of

the entries ai on the diagonal of oa are equal, they follow each other directly

on the diagonal.

Observing oa = ~oa and % � oa = ~oa � %, two multiplication of matrices %oa
and oa%, and a subsequent comparison of matrix entries, yields us equations

aj%ij = ai%ij for 1 � i; j � m0;

from which it follows that for ai 6= aj, it holds that %ij = 0. Since the ai
have been ordered such that equal ones succeed each other on the diagonal,

this implies that % consists of quadradic submatrices R�a on the diagonal and

is zero otherwise, where each R�a covers the part of the diagonal in which

consecutive, equal ai lie.

A similar argument can be made for the remaining oa0 . It is easy to see

how this leads to the statements made in part 1 of the proposition.

Part 2: Easy exercise. 2.

A special case of part 1 of this proposition, which will occur often in

applications, deserves to be mentioned explicitly:

Proposition 18 Given the assumptions of proposition 17, part 1, if in one

of the oa all diagonal entries ai are mutually unequal, then % is uniquely

determined. In other words, the miminal-dimension, diagonal-form OOM is

then unique (modolo permuation of coordinates). 2

We consider a little example which illustrates proposition 17.

Let � = fa; bg, and consider the 3-dimensional HMM A which is given

by

� =

0
@ 1=2 0 1

1=2 0 0

0 1 0

1
A

and

oa =

0
@ 1 0 0

0 1=2 0

0 0 1=2

1
A ob =

0
@ 0 0 0

0 1=2 0

0 0 1=2

1
A (19)
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A is minimal-dimensional (this can be seen by showing that ga; gb; gbb are

linearly independent { exercise).

Now proposition 17 tells us that modolo coordinate permutations we get

all equivalent minimal-dimension, diagonal-form OOM's B by mappings % :

A ! B, where % is of the form

% =

0
@ 1 0 0

0 1� r s

0 r 1� s

1
A (20)

with r; s 2 R; 1 � r 6= s.

Which of these diagonal-form OOMs is a HMM, i.e. for which % does

the matrix %�%�1 contain only entries from [0; 1]? The answer is that this

is ony the case for % = id, which means that in this example the minimal-

dimension HMM is unique (modolo permutation of coordinates). Proving

this is straigthforward but tedious (requires the algebraic computation of

%�1, the algebraic multiplication %�%�1, and the subsequent exploitation of

the constraint that %�%�1 be a stochastic matrix). We skip this exercise here.

The intuitive reason why we get % = id in this example is that � contains

many 0's and 1's, and even slight deviations of % from the identity matrix

(i.e. even small values of r and s) either push some 0's below zero, or some

1's above unity.

The uniqueness of the minimal-dimension HMM in this example is some-

what accidental, since it results from the 0's and 1's in �. I put in these

0's and 1's to facilitate the (manual) computation of %�%�1. In empirically

derived HMMs, one will rarely �nd transition matrices with 0's and 1's. If

we adapt our example a bit and consider the matrix

�0 =

0
@ 1=2� " " 1� 2"

1=2� " " "

2" 1� 2" "

1
A (21)

instead of our original � (where " is a small positive number), and keep

oa and ob, then a continuity argument teaches us that indeed there exist

% 6= id of the form (20) such that %�%�1 is a stochastic matrix. I.e., the

minimal-dimension HMM speci�ed by (21) and (19) is not unique.

A complete characterization of all minimal-dimension HMMs equivalent

to (21) would essentially consist of m2 = 9 two-sided inequalities of the form

0 � (%�%�1)ij � 1;

where the (%�%�1)ij are the matrix entries of %�%�1. Obviously this ex-

ercise would be neither entertaining nor very enlightening.
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Now we turn to the question of whether for every OOM there exists

some (possibly higher-dimensional) equivalent, diagonal-form OOM. In more

casual terms, can every OOM be \diagonalized"?

Proposition 19 For every OOM A there exists an equivalent diagonal-form

OOM B.

The proof requires some work. Before we explain the basic idea, we give

a technical lemma which we'll need.

Proposition 20 Let z = (z1; : : : ; zm) 2 R
m such that �(z) = m. Then

there exists m vectors v1; : : : ; vm 2 R
m , where vi = (vi1; : : : ; v

i
m), such that

1. The vectors vi are linearly independent.

2. �(vi) = 1 for all vi.

3. z = v1 + � � �+ vm.

Proof of proposition 20. There are many ways to construct vectors vi

satisfying the conditions 1{3. First note that we may assumem � 2, since for

m = 1 we can simply take v1 = z. Now de�ne xi as the m-dimensional vector

which is zero everywhere, excepted at the i-th component, which is 1, and the

i+1-th (modolom) component, which is �1. Then, put vi := m�1z+xi. It is

easily veri�ed that these vi satisfy the requirements stated in the proposition.

2

Proof of proposition 19. Outline: We may assume thatA = (Rm ; (�a)a2�; w0)

is minimal-dimensional. The linear mappings from R
m to Rm can be inter-

preted as a vector space whose dimension is m2. We embed A in an m2-

dimensional OOM B = (Rm2

; (~�a)a2�; ~w0) such that, essentially, A = �(B).

We arrange things in a way such that there exist m2 linear mappings ~eij :

R
m2

! R
m2

, which (i) leave �(B) invariant, (ii) are linearly independent on

�(B), and (iii) can be written as ~eij = ~�dij, where dij is a diagonal m2 �m2

matrix. Properties (i) and (ii) ensure that these ~eij can be interpreted as a

basis of the vector space of all linear mappings from �(B) to �(B). In partic-

ular, every ~�a : �(B)! �(B) can be linearly combined from them. Property

(iii) then says that B is diagonal-form.

As a preliminary to working this sketch out in detail, we introduce a

shorthand notation for indices ranging from 1 to m2 in \blocks of length m"

by de�ning

[ij] := (i� 1)m+ j;
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where 1 � i; j � m.

Now we embed A in B. First we de�ne an m-dimensional subspace U of

R
m2

, which we will use as the image ofA in B. Let em
2

i be them2-dimensional

vector which is 1=m at dimensions [i1]; : : : ; [im], and is 0 otherwise. The

vectors (em
2

i )i=1;:::;m span an m-dimensional subspace U of Rm2

.

Now we linearly map U isomorphically on Rm by

% : U ! R
m ; em

2

i 7! emi ;

where emi is the i-th unit vector of Rm . Note that % is internal sum-

preserving, as is the inverse mapping

%�1 : Rm
! U; emi 7! em

2

i :

Next we de�ne a m2
�m2-matrix ~�, which will be the transition matrix

of B. The idea is to essentially \blow up" � by a factor of m, such that each

entry �ij of � corresponds to a m � m-submatrix of ~�. Let v[ij] denote the

[ij]-th column in ~�. Use proposition 20 to verify that column vectors v[ij]
can be constructed such that the following speci�cations are met:

1. Each v[ij] is in U .

2. Each v[ij] has internal sum 1.

3. For i = 1; : : : ; m, the vectors v[i1]; : : : ; v[im] are linearly independent.

4. For all i = 1; : : : ; m, it holds that the summed column vectors in the

i-th \block" of length m are the image of the i-th column vector vi of

�, i.e.
P

j=1;:::;m v[ij] = %�1vi.

Obviously the mapping ~� : Rm2

! R
m2

leaves U invariant, i.e. im(~�) � U .

Furthermore, ~� can be seen as a version of � in the sense that ~�%�1v = %�1�v

for all v 2 R
m . In particular, %�1w0 =: ~w0 is the (unique) �xed point of

internal sum 1 of ~�.

Let eij : Rm ! R
m be de�ned by the m � m-matrix which is zero ev-

erywhere with the exception of the entry at column i and row j, where it

is 1. I.e., eij maps the unit vector emi on the unit vector emj . The family of

mappings (eij)i;j=1;:::;m is a basis of the vector space of all linear mappings

on Rm .

We now construct a corresponding basis for linear mappings on U . Let ~eij

denote the m2�m2-matrix whose column vectors are all zero with the excep-

tion of columns in positions [i1]; : : : ; [im], where the column vectors are possi-

bly nonzero multiples of the column vectors of ~�, namely, �ij
1 v[i1]; : : : ; �

ij
mv[im].
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Recall that the vectors v[i1]; : : : ; v[im] are in U and linearly independent, i.e.

form a basis of U . Using this fact, it is easy to show that �1; : : : ; �m can be

selected in a way such that %(
P

j=1;:::;m v[ij]) = emi . I.e., ~e
ij can be considered

a \blown-up" version of eij.

Furthermore, ~eij can be written as the product ~eij = ~�dij of ~� with a

diagonal matrix dij, namely, the diagonal matrix which has 0's everywhere on

its diagonal with the exception of positions [i1]; : : : ; [im], where the diagonal

reads �ij
1 ; : : : ; �

ij
m.

Now let �a =
P

i;j=1;:::;m �ijeij be the linear combination of �a from basis

functions. De�ne ~�a :=
P

i;j=1;:::;m �ij~eij. Then, it is easy to show that for all

v 2 R
m , it holds that ~�a%

�1v = %�1�av. Furthermore, ~�a is the product of ~�

with a diagonal matrix ~oa, namely,

~�a =
X

i;j=1;:::;m

�ij~eij

=
X

�ij ~�dij

= ~�
X

�ijdij

=: ~�~oa

Therefore, B is diagonal-form. It is also equivalent to A, as the following

transformations reveal:

�(~�an � � � ~�a1 ~w0) =

= �(~�an � � � ~�a1%
�1w0) = �(~�an � � � ~�a2%

�1�a1w0)

= : : : = �(%�1�an : : : �a1w0) = �(�an : : : �a1w0)

2

Recall that HMMs are OOMs which are special in that they (i) are

diagonal- form and (ii) have entries from [0; 1] in their � and oa. The pre-

vious proposition says that property (i) cannot in fact be used to discern

HMMs from OOMs which have no equivalent HMMs. In the remainder of

this section, we will show that it is property (ii) which distinguishes HMMs

as a proper subclass of OOMs.

We proceed in two steps. First, we describe a property which is inher-

ited from any HMM two every of its equivalent, minimal-dimension OOMs.

Second, we present an example of a miminal-dimension OOM which lacks

this property. But before we deal with either point, we prove the following

auxiliary proposition from linear algebra:
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Proposition 21 Let U � R
k be a linear subspace of Rk . Let N � U be the

set of vectors in U which have only non-negative entries and are not the 0

vector. Then there exist �nitely many vectors v1; : : : ; vn 2 N such that every

u 2 N can be written as a linear combination u =
P

i=1;:::;n �iv
i, where all

�i are non-negative.

Proof. Let V := fv = (v1; : : : ; vk) 2 N j 8v0 = (v01; : : : ; v
0

k) 2 N (8i =

1; : : : ; m : vi = 0! v0i = 0)! (8i : vi 6= 0! v0i 6= 0)g be the subset of N of

vectors with 0's in maximally many places.

We call two vectors from V \related" i� they have 0's in the same places.

It holds that if v; w are related, then one is a positive multiple of the other,

i.e. 9� > 0 : v = �w. The reason is because if this would not hold, then

w and v would be linearly independent, and it is easy to see that then some

positive � would exist such that v��w would lie in N and have at least one

0 more than v, which contradicts v 2 V .

Relatedness obviously is an equivalence relation on V . We take from every

equivalence class one representative and get a collection fv1; : : : ; vng. We will

now show that this collection satis�es the requirements of the proposition.

Let u 2 N; u 6= 0. u has 0's at x places, where x � 0. We have to show

that u can be written as a non-negative linear combination from vectors from

fv1; : : : ; vng.

Case 1: u 2 V . Then u = �vi for some positive � and the representative

vi related to u, and we are done.

Case 2: u =2 V . Then, some v 2 N exists which has 0's at all places where

u has 0's, plus at least one 0 at a place where u has a positive component.

v and u are linearly independent. Therefore, some positive � exists such

that u � �v is in N and has at least one 0 more than u. We put u1 :=

u��v; u2 := �v. Then, u = u1+u2 is a decomposition of u into vectors of N

which each have properly more 0's than u. This argument can be iterated on

u1 and u2, and on the resulting decompositions, etc., until one has reached

a decomposition of u into vectors from V . Then use case 1 to conclude that

u is a positive linear combination of vectors from fv1; : : : ; vng. 2

Now we are equipped for describing a property which is inherited from a

HMM to its minimal-dimension, equivalent OOMs.

Proposition 22 Let A = (Rk ; (�a)a2�; w0) be a HMM, and let

B = (Rm ; (~�a)a2�; ~w0) be an equivalent, minimal-dimension OOM. Then there

exists a �nite set of vectors fv1; : : : ; vng � R
m of positive internal sum such

that for all �c 2 ��, for all i = 1; : : : ; n, ~��cv
i can be written as a linear

combination of the vectors fv1; : : : ; vng with non-negative coe�cients, i.e.
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9v1; : : : ; vn 8i = 1; : : : ; n : (�(vi) > 0) ^

(8�c 2 � 9�1; : : : ; �n � 0 : ~��cv
i =

X
j=1;:::;n

�jv
j) (22)

Proof. We �rst show that (22) holds for the special case where �c = a; (a 2

�).

The transition matrix � and the matrices oa of A have non- negative

entries since A is a HMM. Therefore, the matrices �a = �oa have only non-

negative entries, too. Let N � �(A) be the vectors in �(A) which have only

non-negative entries. Then, for every u 2 N; a 2 � it holds that �au 2 N ,

since �a only has non-negative entries.

According to the auxiliary proposition, a subset fw1; : : : ; wng � N of

vectors with positive internal sum exists such that every element from N can

be written as a non-negative linear combination from this subset. From this

it follows that for i = 1; : : : ; n and a 2 �, it holds that �aw
i =
P

i=1;:::;n �iw
i,

where all �i are non-negative.

Now let % : A ! B be a internal sum-preserving, linear mapping accord-

ing to proposition 14. Put vi := %(wi). Apply property (16) to conclude

(22).

Now we have to show that (22) holds for all �c 2 ��. This is an easy

exercise (induction over length of �c). 2

In order to complete our argument that (loosely speaking) HMMs are a

proper subclass of OOMs, we now present an example of a minimal-dimension

OOM A = (R3 ; f�a; �b; �cg; w0) which does not satisfy (22).

The basic idea is to use for �a a rotation mapping, which rotates R3 by

a non-rational multiple of 2�, thus ensuring that iterations of �a never run

into a period. As we will see, such a rotation mapping cannot be obtained

in a HMM. The operators �b and �c are less remarkable; their role is mainly

to ensure that the dimension of the process generated by A is indeed 3.

Before I further explain the \logics" of this example, it will be helpful

to get a clear picture of �a (cf. �g. 2). Consider a rotation % of R3 around

an axis A which is given by the vector (1=3; 1=3; 1=3). This rotation leaves

invariant the hyperplane H of vectors of internal sum 1, and within H, it

leaves invariant the circle C which is �xed by the unit vectors. Every radius

r is turned counterclockwise by the angle of rotation, '. Now, de�ne �a :=

1=2%. I.e., �a rotates R3 like %, but additionally contracts vectors in their

internal sum by 1=2. Thus, for instance, e2 is mapped on �ae2, as indicated

in �g. 2. The algebraic representation of �a is rather unhandy, therefore I
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H
x1

x2

x3

C

Aτae2

e1

e2

e3

ϕ

r

Figure 2: How �a is de�ned. For explanation see text.

give only an approximate numerical version for the case ' = :1 (measured in

rad):

�a =

0
@ :498 �:139 :141

:141 :498 �:139

�:139 :141 :498

1
A (23)

For �b and �c, we use operators which map every vector on varying frac-

tions of e2:

�b =

0
@ 0 0 0

1=8 2=8 3=8

0 0 0

1
A �c =

0
@ 0 0 0

3=8 2=8 1=8

0 0 0

1
A

For the sake of completeness, I note that this selection of observable

operators leads to w0 � (�:161; :872; :289).

The OOM de�ned in this way is indeed of minimal dimension. This

can be shown e.g. by computing the three vectors (P [ab]; P [b]; P [c]); (P [ab j

a]; P [b j a]; P [c j a]); (P [ab j aa]; P [b j aa]; P [c j aa]). One will �nd that they

are linearly independent, from which it follows that g"; ga; gaa are linearly

independent.

Now assume that some HMM B exists which is equivalent to A. Then,

proposition 22 says that a set of vectors V = fv1; : : : ; vng of positive internal
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sum exists, such that for all �d 2 fa; b; cg�, for all i = 1; : : : ; n, ~� �dv
i can be

written as a linear combination of the vectors fv1; : : : ; vng with non-negative

coe�cients.

We can assume without loss of generality that the vectors fv1; : : : ; vng

all have internal sum 1, i.e., they all lie in H. Let P be the smallest convex

subset of H which contains all vectors from V . P is a polygon. Furthermore,

P consists exactly of those vectors from H which can be linearly combined

from V with non-negative coe�cients.

We observe that V must contain at least one vector which is di�erent

from the vector through the rotation axis, i.e., V 6= f(1=3; 1=3; 1=3)g, since

�b(1=3; 1=3; 1=3) = (0; 1=4; 0), and (0; 1=4; 0) is no linear combination of vec-

tors from f(1=3; 1=3; 1=3)g.

Therefore, V must contain vectors which have a positive angle with the

axis A of rotation. Let w 2 V be a vector whose angle with A is maximal in

V . Now, consider the trajectory T = ((2�a)
iw)i2N. It lies on a circle C(w)

in H, which is concentric with C. The trajectory even lies densely on C(w),

since ' was chosen to be a non-rational multiple of 2�.

All vectors from V lie on or within C(w), since w was taken to have a

maximal angle with A. Therefore, no point of P lies outside C(w).

Now, since P is a polygon with �nitely many vertices, some (indeed al-

most all) points of T lie outside P . This implies that some j exists such that

(2�a)
jw cannot be linearly combined from V with non-negative coe�cients,

which also implies that � jaw cannot be combined from V with non-negative

coe�cients, which contradicts proposition 22. Therefore, no HMM B equiv-

alent to A exists.

It took me more time and e�ort to �nd this example of an OOM which is

not a HMM, than it took me to develop all the rest of the material contained

in this article. Still, this example is unsatisfactory since it seems to exploit a

rather particular e�ect. It would be desirable to gain more general insights

into the di�erence between OOMs and HMMs. In particular, it would be nice

if we could e�ectively tell, given a particular OOM A, whether an equivalent

HMM exists.

Let me conclude this section with the remark that from a linear algebra

perspective, HMMs are not a \natural" subclass of OOMs. The two-sided

numerical inequalities of the kind \0 � matrix entry � 1", which single out

HMMs among OOMs, do not go well with a linear algebra framework. We

had occasion to note (in example (21)) how unpleasant it is to handle such

inequalities. Maybe this helps to explain why \nice" mathematical results

about HMMs are scarce.
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6 Discussion

In this article, the foundations have been laid for describing certain discrete-

valued, discrete-time, stationary stochastic processes (among them hidden

Markov processes), in a transparent fashion which is characterized by two

points:

1. The observed events a 2 � are interpreted as linear operators �a (or ta,

resp.) which change the state v of a dynamical system.

2. The probability P [a j v] that in some state v an operator �a (or ta) is

observed is equal to the contraction in internal sum of v, i.e. P [a j v] =
�(�a(v))

�(v)
(or

�(ta(v))

�(v)
).

These two points characterize both the various OOM's and the unique

CCR of a process (Xt).

The OOM's and the CCR of a process are tightly interrelated. It appears

that the former are more suited for practical applications, given the simple

and explicit nature of their vectors, whereas the rather abstract CCR reveals

more clearly the fundamental nature of observable operators and may thus

be more helpful in theoretical investigations. In my personal opinion, the

de�nition of CCRs is the most important contribution of this article. I feel

that this concept opens interesting prospects for a deeper understanding

of stationary stochastic processes beyond the linear case. By interpreting

observables ai as operators tai, CCRs may allow to exploit techniques even

from nonlinear system theory for stochastic processes research.

From a linear algebra perspective, HMM's are a somewhat less natural

class of models of stochastic processes than OOM's are. However, it remains

to be seen e.g. whether OOM-based system identi�cation algorithms can be

found which are in any respect better than the derivates of the Baum-Welch

algorithm customarily used in the HMM �eld (cf.[4]). Furthermore, there

may exist other mathematical perspectives (besides the one of linear alge-

bra), which might make HMMs look more natural. Also, the epistemological

connotations of what a (hidden) system state is are quite di�erent between

HMMs (as they are currently used) and OOMs. The question of how to

properly handle the concept of hidden system states requires a careful con-

sideration which is beyond the scope of this article. I think that all that can

be said at the present time about OOMs vs. HMMs is that the former are

an alternative to HMMs which is worth to be further investigated.
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