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Abstract: This paper describes a method for analyzing the behavior

of an autonomous robot. The robot is viewed as a continuous, stochastic

dynamical system. The analysis starts from an empirical phase portrait.

In a �rst stage, elementary regularities are detected. These regularities,

called transient attractors, combine properties of attractors with properties of

partition cells of phase space. As the system trajectory passes through these

regularities repeatedly, a sequence of identi�able events is produced, which

can be interpreted as a symbol sequence. This sequence is further analyzed in

the second stage, where a �nite description of temporal regularities within it

is constructed. This description comes in the format of a variety of �nite-state

automata. In a third stage, higher-order regularities in this �nite-state-like

description are identi�ed. This yields a hierarchic behavior model. At all

stages, regularities are de�ned using criteria of maximal local predictability.

Thus, the entire method can be seen as an information theoretic approach to
bridging the gap between the non-symbolic, quantitative level of robots and
higher-level symbolic models.

Zusammenfassung: Es wird eine Methode zur Analyse des Verhaltens
von autonomen Robotern vorgestellt. Letztere werden als kontinuierliche,
stochastische, dynamische Systeme aufgefa�t. Die Analyse geht von einem
empirisch bestimmten Phasenportrait aus. In einer ersten Stufe werden
darin elementare Regularit�aten identi�ziert, die ich transiente Attraktoren

nenne. Sie kombinieren Eigenschaften von Attraktoren mit Eigenschaften
von Partitionszellen in Phasenr�aumen. Indem die Systemtrajektorie wieder-
holt durch diese Regularit�aten hindurchgeht, wird eine Ereigniskette bes-

timmt, die formal als Symbolsequenz aufgefa�t werden kann. In einer zweiten
Analysestufe wird eine endliche Beschreibung von temporalen Regularit�aten

in dieser Sequenz vorgenommen. Diese Beschreibung ist formal verwandt mit
endlichen Automaten. In einer dritten Analysestufe werden in dieser auto-

maten�ahnlichen Beschreibung Regularit�aten h�oherer Ordnung identi�ziert.

Es ergibt sich schlie�lich insgesamt ein hierarchisches Verhaltensmodell. In
allen Analysestufen werden die jeweiligen Regularit�aten durch lokale Opti-
malit�atskriterien der Proze�vorhersagbarkeit bestimmt. Der gesamte Analy-

seproze� erbringt so eine informationstheoretisch orientierte Verbindung der

quantitativen Beschreibungsebene mit h�oheren symbolischen Modellen.



1 Introduction

Recently, continuous dynamical systems theory has been proposed as a me-

thodological framework for behavior-oriented robotics [24] [5]. An agent is

viewed as a dynamical system, which consists of a phase space spanned by

numerical variables that can be used to describe the agent's states, and a

dynamics which yields trajectories in the phase space. The question imme-

diately arises how the basic notion of behavior-oriented robotics, namely,

behaviors, can be captured within this framework.

Formal models of behaviors are needed for designing and analysing robots.

Both tasks are crucial for progress. They are interdependent, since the devel-

opment of robots proceeds in a design-analyse-redesign cycle. Formal models

of behaviors are likely to di�er to some extent, however, for design vs. analy-

sis. The reason is that in design, one usually starts from a known set of system
parameters and builds the system out of them, whereas in analysis, one typi-
cally has no prior knowledge of the \right" dimensions for understanding the

system. Therefore, behavior models for design can be formulated in terms of
given system variables, whereas behavior models for analysis should be more
or less independent from the selection of particular observables.

Dynamical systems oriented behavior models for design have been pro-
posed by Sch�oner et al. [21] and myself [17]. In both cases, behaviors are for-

mally treated as subsystems in a comprehensive agent supersystem. Sch�oner
et al. make the additional committment that there exist an attractor in the
subsystem. He identi�es the behavior with this attractor in particular rather
than with the subsystem in general. The techniques presented in these pa-
pers rely on the availability of formal descriptions of such subsystems, which

renders these techniques applicable to design tasks only.
By contrast, the present article deals with the question of how behav-

iors can be identi�ed in a phase portrait rendered by the observation of a

robot's actions. I.e., it is concerned with the question of behavior models
for analysis tasks. Some hints of how this task could be adressed can be
gleaned from the literature. Luc Steels [27] presents a case study of an au-

tonomous vehicle where some basic behaviors such as \move forward" appear

as point attractors. Randy Beer [5] analyzes walking pattern generators in
simulated insects and �nds instances where their dynamics can be under-

stood as a transient that alternatingly comes under the inuence of either
of two attractors. Tim Smithers [23] contributes a more general observation,

in that he emphasizes that behaviors must be sought for in the dynamics

of variables that belong to the dynamical systems of both the agent and its
environment, i.e., that belong to the \interaction space". One should also

mention research in psychophysics where observed motor behavior patterns
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are formally reconstructed as attractors (e.g. [22], [20]).

With the exception of [23], where the perspective is still too abstract

for yielding concrete criteria for identifying behaviors, these contributions

concern the description of single behaviors. An essential tacit assumption is

that an isolated behavior can be exhibited and observed for a long enough

time such that its characteristics proper can surface over transient e�ects.

Essentially it is required that single behaviors occur as stationary, isolated

phenomena. The de�nition of behaviors in terms of attractors in particular

seems to be tied to this assumption of stationarity. This is at odds with

one of the basic tenets of behavior-oriented robotics, namely, that most of

the time many behaviors are active simultaneously and in tight interaction

[26]. When one concentrates on identifying behaviors in isolation, the central

question of understanding multi-behavior systems is shunned.

In the present article I address the task of reconstructing formal models
of behavior systems that include many di�erent, interacting behaviors. I
propose an answer to a central question that I have raised earlier [15], namely,
how can behaviors be described mathematically when most of the time they

are exhibited only transiently.
The behavior model that I develop here is rather di�erent from the simpler

behavior model for design that I use in [17]. I am currently working out a
more elaborated behavior model for design purposes, which is more similar
to the analysis model described in this article. I hope but cannot promise

that the two types of model will be uni�ed eventually. The �eld is very much
in its infancy, which justi�es working from di�erent ends.

The article is organized as follows. Section 2 gives a brief overview on
existing approaches to detecting identi�able regularities in continuous sys-
tems. Two main routes are being pursued, which rely on attractors and

partitioning cells, respectively. They have complementary merits. In section

3, I develop the notion of transient attractors, which combines aspects of
these two standard approaches. Transient attractors are de�ned in terms
of locally optimizing the prediction of a stochastic process. An algorithm

for detecting transient attractors in empirical (typically quite messy) phase

portraits is sketched. The techniques described in this section yield a symbol
sequence from a continuous phase portrait. Section 4 deals with the descrip-

tion of higher-level regularities in such symbol sequences. In the literature,
�nite automata models are often used to this end. In particular, minimal au-

tomata are used to measure the complexity of such sequences. This standard
approach is, however, not quite satisfactory since �nite automata intrinsically

contain descriptions of initial transients, whereas one would prefer a model
of stationary symbolic processes. As a way out of this situation, I propose

an alternative �nite-automaton-like model, with an according normal form
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representation, called phase generators. The states of phase generators are

constructed, again, from a principle of maximizing local predictiveness. An

algorithm for deriving a phase generator description from an empirical (i.e.,

noisy) symbol sequence is sketched. Finally, the entropy of processes gener-

ated by a probabilistic version of phase generators is computed. In section 5

I show how higher-order regularities can be de�ned within phase generators.

The phase generator together with these higher-order regularities yields the

desired behavior model. Section 6 provides a conclusion.

2 Sequences of discrete observational units in

continuous dynamical systems

There are two main routes to describing sequences of discrete observational
units in continuous dynamical systems. On the one hand, many investi-
gations concern sequences of attractor states which a system runs through

under suitable conditions. This perspective characterizes much of the rele-
vant work carried out in neural network research. On the other hand, one
can simply partition phase spaces, treat the partition cells as observational
units, and trace trajectories through the sequence of cells they visit. In this
section, I review some examples of these two approaches and point out their

complementary merits and shortcomings.
Attractors are natural candidates for discrete, identi�able, representa-

tional entities in connectionist systems used for intelligent information pro-
cessing tasks. In particular, point attractors are often considered to represent
concepts, preceptual categories, and sometimes, behaviors. The tradition of

such approaches can be traced back to the spreading-activation semantic net-

works of the pre-connectionist era (e.g., [33]). Waltz and Pollack [31] describe
a localist network for sentence comprehension tasks. Equilibrium states (an-

other way of speaking for point attractors) of this network represent coherent

\mental states" which lead to the disambiguation of input words. Their work
has induced several similar approaches. Smolensky's \harmony theory" [25]

also treats linguistic information processing through equilibration processes
in neural networks. He develops a rigorous mathematical analysis of these

processes in terms of statistical mechanics. Balkenius and G�ardenfors [3] use
equilibration processes in neural networks for modeling nonmonotonic infer-

ences yielding concepts as their result. He shows how several formal, logical

requirements for such inferences are satis�ed by neural network mechanisms.

Last but not least, there are several strands of work in psychophysics and

behavior-oriented robotics where motor behaviors are modeled by attractors.
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I have already mentioned these [22][20][27][21][5] in the introduction.

Limit cycles and chaotic attractors, too, have been identi�ed with con-

cepts, perceptual categories, and representations of motor programs. This

view is common in recent work on biologically inspired, arti�cial neural net-

works (e.g. [7]) and on neural network models of biological brain systems

(e.g. [34], [2]).

Attractors are attractive models for concepts, perceptual categories, mo-

tor behaviors, and other descriptive units used by scientists when they de-

scribe information processing in animals or robots. The main reason for this

attractiveness is that attractors are discrete and stable, which makes them

identi�able and detectable. Thus, they are natural system-theoretic models

for symbols [13] [8] [30] in the sense of the physical symbol systems hypothe-

sis [1]. Among other properties, this basic paradigm of symbolic AI requires

symbols to be identi�able and temporally persistent.
Attractors have a drawback, however. Strictly speaking, a dynamical

system cannot leave an attractor state by the very de�nition of the latter.
But, obviously, concepts, perceptual categories etc. occur in activation/de-

activation cycles. Therefore, if one uses attractors as models for symbolic
processing units, one has to introduce additional mechanisms to explain how
the system trajectory can enter attractor states and leave them again. Several
such mechanisms have been proposed. In the context of storing temporal
sequences in neural networks, mechanisms based on noise, the semistability

of near-limit-subcycles in chaotic attractors, or the decay characteristics of
synapses have been investigated (brief overview in [16], section 4.2.1). In
non-stationary systems, external input can drive a system through di�erent
attractor states (e.g. [34]). This is, of course, a typical situation in animals
or robots.

The other main route to deriving symbol sequences from a continuous

dynamical system rests on partitioning its phase space. The partition cells are
taken as symbolic units. The system trajectory then yields symbol sequences
simply by passing through sequences of such cells. This view dominates the

information-theoretic analysis of dynamical systems. The de�nition of a

continuous system's (metric and topological) entropy rests on a construction
of this kind [19]. In their search for a mathematical theory of complexity,

theoretical physicists have derived discrete automata models from continuous
systems in a similar fashion [11] [10]. I will return to this strand of work in

section 4. Recently, there seems to be some interest in neural networks that
simulate �nite-state automata [28] [29]. Here, a neural network's phase space

is partitioned through a learning process, which can lead to cell boundaries
with complex shapes. One should also mention that in qualitative reasoning

research in AI, partitioning phase spaces is the standard procedure for getting
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discrete event sequences (e.g. [18]).

Partitionings of phase spaces yield a direct explanation for temporal se-

quencing of symbolic units. Furthermore, it is a very simple method, and it

makes directly applicable many techniques from ergodic theory. The draw-

back of partitionings is that they provide no explanation for the apparent

stability and identity of symbolic units. A concept or a motor behavior

pattern seems to be inherently more than just any odd volume in phase

space. There seem to be mechanisms of self-stabilization connected with

them, which warrant, for instance, that one can \hold" a concept in one's

mind for some time, or that one can correct a temporally extended motor

action in the face of perturbations. Self-stabilization gets out of sight when

one relies on simple partitioning techniques.

Thus, in sum, attractor and partitioning approaches have complementary

merits. The technique for phase space analysis that I will develop in the next
section combines aspects of both attractors and partitionings in a way which
preserves, hopefully, the advantages of each.

3 Deriving a symbol sequence from a phase

portrait

In this section, I outline an approach to extracting a symbol sequence from

an empirical phase portrait as yielded by an extended run of a robot. The
technique combines ideas from the attractor and partitioning approaches re-
ported in the previous section. I shall �rst explain the basic idea of combin-
ing attractors and partitioning cells in a single kind of mathematical object,
namely, in transient attractors. This part of the section expands on pre-

liminary ideas sketched in [15] [14]. Secondly, I shall consider the task of
e�ectively detecting transient attractors in empirical phase portraits. The

basic idea for an algorithm is presented.

3.1 Transient attractors: theoretical considerations

Transient attractors concern the following phenomenon. Assume that one

has a continuous dynamical system, in which one monitors the dynamics of
some subsystem. This subsystem is a non-stationary system driven by the
dynamics of the variables that couple it into the supersystem. Assume that at

a given time, the coupling variables have values that warrant the existance of

some attractor in the subsystem. Due to its structural stability, this attractor
will persist for some time interval while the coupling variables do not leave a

certain range. However, the coupling variables might eventually wander out
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of this range, and the attractor in the subsystem will break down. This is

the core idea of a \transient attractor".

Before entering into a discussion of certain complications, I give a formal

example that illustrates the basic idea. Consider the system speci�ed in polar

coordinates by

_' = 1

_r = (r � r2) sin'
(1)

Its trajectories are given by ' = t, r = (1�Cecos t)�1. For�1 < C < 1=e,

trajectories are closed loops. Among these, C = 0 yields the unit circle (�g.

1).

r

ϕ

1

C = 0

C = 1/e

Figure 1: A transient attractor.

When one follows any two trajectories (except the �xed point trajectory

r = 0) in this system through increasing values of ', one �nds that they
come closer to each other in the upper half of the plane (i.e., 0 < ' < �),

whereas they recede from each other in the lower half.
It is this convergence of trajectories in the upper half that I wish to

capture in the notion of a transient attractor. The question is to �nd a
precise de�nition.

One might attempt a rigorous account of the phenomenon in �g. 1 as
follows. Re-interpret _r = (r � r2) sin' as a one-dimensional system with

a system variable r and a control parameter '. If ' is �xed at a value
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between 0 < ' < �, this system exhibits a point attractor in r = 1, which

attracts all other trajectories (except again the �xed point in the origin). For

� < ' < 2�, the point attractor in r = 1 becomes a repellor.

One might thus say that the unit circle acts like an attractor in the

upper half of the diagram, and as a repellor in the lower half. One might be

tempted, as a consequence, to call the unit circle's upper half a \transient

attractor".

More abstractly, this attempt to de�ne a transient attractor in a 2-

dimensional system

_x1 = f1(x1; x2)

_x2 = f2(x1; x2)
(2)

proceeds through the following steps:

� Re-interpret one of the two system equations as a speci�cation of a one-

dimensional system with a control parameter. For instance, consider

_x1 = f1(x1; x2) (3)

as an autonomous system with a system variable x1 and a control pa-
rameter x2.

� Find some interval a < x2 < b of the control parameter where the

system _x1 = f1(x1; x2) exhibits an attractor.

� Observe that while x2 passes through this interval in the coupled system

(2), trajectories \converge" in x1-direction towards the value of this
attractor. Call this a \transient attractor". { It is clear how this
procedure generalizes to higher dimensions.

Unfortunately, this seemingly straightforward strategy fails in the general

case. The reason is that attractors in systems with control parameters are
de�ned for �xed values of the latter, whereas in the coupled system (2) the
\control parameter" x2 changes dynamically. If this dynamic change happens

on a time scale that is not much slower than that of the autonomous system

(3), it can alter the qualitative properties of the latter. In particular, the
attractor can disappear. One cannot treat x2 as a classical control parameter

in cases when it exhibits a fast dynamics. I will call x2 a coupling variable

instead, in order to emphasize its fast dynamics and its role in coupling

the subsystem 3 into the supersystem 2. In [17], I discuss this issue in
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some detail, and I describe a \compensation" technique that allows to couple

subsystems dynamically without altering their qualitative properties. This

technique is mainly useful for designing systems. It can be argued, however,

that biological behavior systems are often \compensated" to some extent.

Inasmuch as they are, it is possible to identify transient attractors in such

systems in terms of classical attractors, as suggested in �g. 1.

In sum, the attempt to de�ne transient attractors in terms of classical

attractors in certain subsystems works only if the coupling dynamics is slow

compared to the autonomous dynamics of the subsystems, or if the subsys-

tems are suitably \compensated".

The example (1) is only intended to make the phenomenon of \converging

trajectories" a plausible candidate for transient attractors. In the remainder

of this subsection, I will adhere to this basic intuition (�g. 2 a), but I will

discuss several rami�cations in order to arrive at a more general and realistic
de�nition of transient attractors.

The system (1) is an unrealistically well-behaved, mathematical textbook
example. Let us step back a bit and consider the kind of dynamical systems

that we are likely to meet with in practice. Empirical phase portraits derived
from robot observations di�er from textbook systems in several respects:

� Empirical trajectories typically carry high-frequency noise (�g. 2b). In
subsequent diagrams, I will draw low-pass �ltered trajectories for the
sake of clarity, but one must not forget that empirical phase portraits

are not rarely smooth.

� Empirical recordings monitor only a few variables of an unknowable
multitude of parameters that are causally responsible for the robot's

behavior. In other words, one can see only the projection of a high-
dimensional dynamical system on a small subspace. I shall call the

high-dimensional, unfathomable system the real system, the observed

low-dimensional subspace the observation space, and the dynamical
systems observed in this subspace, observed systems.

Several important, mutually related properties of observed systems

must be taken into account. First, such systems essentially are stochas-
tic processes. Note that this stochasticity cannot be �ltered out like

noise, because it is likely to occur at all frequencies. Second, such sys-
tems feature crossing trajectories. With respect to our quest for con-

verging trajectories, these two e�ects imply that we have to deal with

\converging webs of trajectories" like in �g. 2c. Trajectories typically
arrive at \convergence zones" from di�erent directions, perform some
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A

(a)

(e)

(b)

(f)

(c)

(g)

(d)

(h)

Figure 2: More about the phenomenology of transient attractors. (a) The
basic intuition. (b) Noise. (c) Crossing trajectories and arrivals and depar-

tures of trajectories from/to impredictable directions. (d) Superposition of

transient attractors. (e) Distinguishing two transient attractors by curvature.
(f) Shear. (g) Probability e�ects. (h) Information gain.
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crisscrossing, and diverge impredictably to di�erent directions after the

event.

� Another consequence of the projection on a subspace is that di�erent

transient attractors may occupy the same region in phase space (�g.

2d). In order to separate them from each other, one has to somehow

include their direction into the de�nition.

� Sometimes direction might not su�ce, and di�erent transient attractors

sharing a single region in phase space may have to be distinguished by

their curvature (�g. 2e) or even higher derivatives.

� Yet another consequence of the projection situation is that a zone of

convergent trajectories can be sheared in arbitrarily contorted ways

(�g. 2f gives a simple example). Such e�ects can be understood as
the result of non-optimal choice of observation dimensions. For each
single convergence event, shear could be counteracted by a suitable

(often nonlinear) transformation of coordinates. However, in practice
one can only try out a restricted number of coordinate choices and
transformations, which means that one cannot hope to see all transient
attractors in a shear-free version. One has to accept shear and �nd
ways to detect transient, sheared attractors.

� Empirical phase portraits are not �lled by trajectories in a homoge-
nous fashion. Rather, certain regions will be visited signi�cantly more
often than others. This reects a probability distribution on the real

system, which is projected on the observed system. Probabilities a�ect

our intuitions about transient attractors. Consider the case of a geo-
metrically \clean" transient attractor like in �g. 2a, which features two
distinct bands where trajectories pass through much more often than

elsewhere (�g. 2g). Should we consider this as a single, or two separate

transient attractors? Our intuition (at least mine) doesn't give a clear

answer. It would be nice to have a de�nition of transient attractors
that can be used in both ways.

In the remainder of the subsection, I suggest an approach to transient

attractors which accounts for the points above. Observed systems will be

understood as stochastic processes, where the phenomenon of \converging

trajectories" is re-interpreted in terms of temporal predictability.

Remember that our original motivation is to detect behaviors in phase
space. On a purely intuitive level, behaviors are dynamic regularities in
phase space. The approach I am going to formalize presently is simply an
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information-theoretic, formal recasting of the \equation": behavior = dy-

namic regularity in phase space = good predictability.

The underlying intuition is illustrated in �g. 2h. When an observation

yields the result \the system is in the region A at time 0", and A is in a

region of converging trajectories, then one can predict \the system is in the

interval B at time t", where the volume of B is less than the volume of A.

This reduction in volume in time means that the process a�ords of a good

predictability in A within a time t.

In what follows, I assume that the reader is familiar with the basic theory

of stochastic processes. I adhere to the notation from a standard textbook [4].

Readers unfamiliar with the matter can skip the rest of the subsection. The

algorithm for detecting transient attractors presented in the next subsection

can be understood without the formal stochastic process model.

I consider an observed system as a continuous, stationary stochastic pro-
cess (
;A; P; (Xt)t2R) with a measure space (E;B). The measure space is
the observation space. E will typically be a compact subset of Rn, and B
the Borel �-algebra on it, with Lebesgue measure �. Trajectories are paths

(Xt(!))t2R, where ! 2 
.
We wish to make the notion of \good predictability" precise, in order to

�nd a stochastic version of \converging trajectories". We embark on this
business by considering �rst a simplicistic, preliminary version of \good pre-
dictability", which is yielded by the distribution of the process, as follows.

Let � be the distribution of the process (Xt)t2R on E. We may assume
that � has a density function f : E ! R (this assumption is justi�ed, by the
theorem of Radon-Nikodym, if every A 2 A of �-measure 0 has �-measure
0, which in turn is granted, e.g., if the process is noisy). f a�ords us with
\good" predictions of (Xt)t2R in the following sense. If we were to guess

blindly where the process is at an arbitrary time, without knowledge about

its past history, then we should point at regions where f takes high values.
In a purely statistical sense of absolute, apriori expectancies, the process is
\attracted" towards regions where f has high values.

One might wish to correlate, then, transient attractors with regions in

phase space where f has high values. This idea could be made fully precise
in various ways. For instance, one could de�ne transient attractors in terms

of cuto� values for f : a region A is a transient attractor of strength C i�
it is connected and maximal such that f > C in A. Other de�nitions would

be likewise plausible. The important thing about this is not the particular
way how we single out certain regions where f has high values. Rather, it is

important that we have a scalar �eld f which we can exploit for our purposes.
Using f as a measure for \transient attractiveness" is moderately plau-

sible since f increases when trajectories converge, possibly in a disorderly
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fashion, as in the diagrams �g. 2a,b,c,f. Furthermore, f reects densities

of trajectories as in �g. 2g. But f has a serious shortcoming. It cannot

disentangle superimposed transient attractors like in �g. 2d,e. Even worse,

when we are confronted with several diverging strands of trajectories that

happen to cross each other at some region, then f would assume high values

in this area, without any convergence of trajectories being present. Revert

the direction of trajectories in �g. 2d to see an example.

This situation calls for including the direction of trajectories into our

account. In terms of predicting (Xt)t2R, this means that we ask the question:

given that at some point in time the process is in a state x, in which direction

can we make good predictions for its further development?

This question can be stated in a precise way with Markov kernels. Let

PT be the Markov kernel on (E;B) which describes how the system develops

during a time interval of length T under the condition that its state at the
beginning of the development is known:

PT : E �B! R;

such that

PT (x;A) = P [XT 2 AjX0 = x] (4)

For �xed x and T ,

�A PT (x;A) :B! [0; 1]

is a probability measure on (E;B) (I adopt the lambda notation from
logics although it is not commonly used in probability theory, because of the

transparency it provides for denoting functions). Like before, we may safely

assume that it a�ords of a density function �y fx;T (y) : E ! R
+, where

R
+ denotes the nonnegative reals. In analogy to the absolute density f , this

x-conditioned density tells us in which region in E we should predict the

process to be in after a time lapse T , under the condition that at time zero

it is in state x.

In order to arrive at a measure for directed predictability which is not

con�ned to a particular starting point x, we let x vary. I.e., we consider the
function

�x�y fx;T (y) : E � E ! R
+

This function tells us directions of good predictability at temporal dis-

tance T . fx;T (y) being high means that the process is likely to proceed from
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x to y in time T . Again, high values of this function indicate a convergence of

trajectories, but this time, we can additionally distinguish between strands

of convergent trajectories that cross each other in di�erent directions (cf. �g.

2d), and we are not fooled any more by regions where divergent strands cross.

The selection of T determines the temporal resolution of regularities in

phase space that we can detect. In order to detect high-frequency regu-

larities, T must be selected small. Examining the system with increasing

T , one can detect phenomena of longer-reaching conditioned predictability,

i.e., larger- scale regularities in phase space. Considering fx;T (y) implies a

low-pass �ltering of the process at a frequency of T�1.

If we observe long-lived robots that repeatedly perform similiar tasks in

similar environments, we can assume the observed system to be ergodic.

In that case, with increasing T the function �x�y fx;T (y) will eventually

become independent from x and converge to the apriori density f in its
second argument y. f can thus be considered an asymptotic case of fx;T (y).

Transient attractors can be derived from fx;T (y) in analogous fashions as
from f , for example, in terms of regions in E�E where fx;T (y) exceeds some

threshold C. Again, the important construct is the scalar �eld fx;T (y) on
E � E.

The fact that we have now a scalar �eld on E � E (and not simply on
E) may seem bewildering at �rst sight. But even though one might certainly
�nd other plausible formalizations of directed predictability than the one

presented here, one can never make do with a simple scalar �eld on E. The
reason is, obviously, that we wish to distinguish di�erent directions that may
occur in a single point in E.

We can get a graphically nice-looking variant of fx;T (y) on E � E by
collecting, for each function �y fx;T (y), the values y1; : : : ; yn where the func-

tion �y fx;T (y) assumes a local maximum (if any). For each x, this yields a

collection of vectors y1�x; : : : ; yn�x (where n depends on x). Rescale these
vectors in length to the corresponding local maxima values of �y fx;T (yi),
and draw them in a diagram from x. A kind of \multi-vector �eld" appears

that clearly shows the direction and the goodness of prediction. Fig. 3 gives

an impression.
The task remains to deal with the case depicted in �g. 2e, namely, to

distinguish between superimposed, convergent strands of trajectories on the
grounds of their curvature. Even more generally, it would be nice to have

something like a \Taylor series" of measures for predictability: absolute, di-
rected, curvature-sensitive, etc. I will not further that line of reasoning here.

Concerning the practical analysis of robots, the distinction of convergent
strands of trajectories on the grounds of their direction should su�ce.

Remember that a basic motivation for transient attractors was to re-
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(a) (b)

Figure 3: A system (a) and a \multi-vector �eld" (b) representation of the

directed predictability in it.

concile two complementary approaches to �xing discrete observational units

in continuous systems, namely, attractors and partitioning cells. This is
achieved in transient attractors in that, �rst, they are regions in phase space
where trajectories pass through (like partitioning cells), and in that, second,
they exhibit converging trajectories (which makes them resemble attractors).
Note that classical attractors can be considered asymptotic cases of regions

in phase space of measure 0 where f becomes in�nitely high.
This �nishes the theoretical considerations about transient attractors. I

have outlined a mathematical apparatus for de�ning transient attractors,
which captures much of the complexity and untidiness found in empirical
phase portraits. This is only a preliminary sketch, of course. Before one

invests much more e�ort in working it out, one should �rst see whether the
enterprise makes practical sense. To that end, I proceed now to an algorithm

designed for practically detecting the areas of good predictability that I have

described theoretically so far.

3.2 Sketch of an algorithm for �nding transient attrac-

tors

In this subsection, I explain the basic idea for an algorithm that detects
transient attractors in an empirical phase portrait yielded by the observation
of a single long run of a robot, or of several shorter ones.

The algorithm detects regions in phase space that more or less corre-

spond to transient attractors detected by the directed predictability measure

fx;T (y) introduced in the preceding section. Presently, I can claim this cor-
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respondence only on intuitive grounds. The algorithm's basic mechanism is

clearly related to fx;T (y), but the details of the correspondence remain to be

worked out. Therefore, I will ignore the issue of relating the algorithm to the

preceding theoretical model, and simply present a self-contained explanation.

The algorithm proceeds in 5 steps. The crucial one (step 3) consists in

operations on trajectories. The details of how these operations are executed

depend on how trajectories are technically represented. I will not treat these

issues. Instead, I will only explain the operations' essential e�ects.

Step 1 Select a time interval T . Just like in the preceding subsection, T de-

termines the temporal resolution of the detection procedure. T should

be as small as possible in order to give a good resolution, but great

enough to warrant that T�1 is a lower frequency than the frequency of

uctuations that one wishes to treat as noise.

Step 2 Low-pass �lter the original data for frequencies lower than T�1. The
result is a phase portrait whose trajectories are smooth below T�1 (for
a nice example of how drastically this operation transforms a phase
portrait of an infant's motor behavior, see [20]).

Step 3 This is the crucial step. It consists of some substeps and is iterated
until convergence is achieved.

Substep 3.1 Select at random a point x on a trajectory in the phase por-
trait, and determine the point y passed by the trajectory after a lapse

of time T after it has passed x.

(a) (b)

yx

x1

x2

x3
x4

y1

y2

y3

y4
N

Figure 4: A local modi�cation of the phase portrait. (a) Selection of trajec-

tory segments as candidates for modi�cation. (b) The phase portrait after

the modi�cation.
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Substep 3.2 Determine the points x1; : : : ; xn, which lie closest to x on those

n trajectories that pass through some neighborhood N of x. Determine

the points y1; : : : ; yn where those trajectories pass through after time

T (�g. 4a).

Substep 3.3 For each 1 � i � n, compute a real number predi which

measures how well the directed line segment through xi; yi is predicted

from the line segment through x and y. The formula used for computing

predi is the core of the entire algorithm. Finding a good formula will

certainly require some experimentation, or a theoretical clari�cation

of the connections with the theoretical model. It seems reasonable to

make the following requirements:

� The sign of predi should be the same as the sign of the scalar
product (y � x)(yi � xi).

� The absolute value of predi should inversely correlate with the
distance between the two line segments.

� The absolute value of predi should positively correlate with the

agreement in length of both line segments.

Substep 3.4 Recompute trajectories for which predi is positive such that
in the vicinity of x they come closer to the reference trajectory through
x and y, which remains unchanged. The result will be a locally mod-
i�ed phase portrait that should look somehow like �g. 4b. Again, the
modi�cation formula will need some experimentation. It should meet
the following requirements:

� The trajectory through xi; yi should be modi�ed only if predi > 0.

� The modi�cation should be the stronger the greater predi.

� The modi�cation should concern both the absolute distance of the

line segment through xi; yi from the reference trajectory, and the

di�erence in directions, both of which should be made smaller.

� The modi�cation should not lead to high-frequency bends in the

modi�ed trajectories, i.e. it should be \smoothed out" a bit be-
yond the region locally concerned.

Iterate these substeps until the modi�cations induced by them fall un-

der some threshold.

Hopefully, the iteration procedure should have compressed into narrow
bands such segments of trajectories as have a good mutual, temporally

directed predictiveness, as indicated in �g. 5.
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(a) (b)

Figure 5: The original phase portrait (a) and the e�ects of many iterations

of the local modi�cation step (b).

Step 4 Identify in the modi�ed phase portrait the compressed strands of
trajectories. They represent transient attractors.

Step 5 Name theses transient attractors by symbols and compute the sym-
bol sequence corresponding to the passage of the system trajectory

through the transient attractors.

This is, of course, only a preliminary sketch. However, the endeavor
seems to make sense since the basic idea is simple and transparent. It could
be stated in a nutshell as follows: where trajectories show an inclination to
attract each other, let them do it until they meet, and identify the meeting

places with transient attractors.

4 Reconstructing a �nite state generator for

a symbol sequence

In the preceding section I dealt with the question of deriving a symbol se-
quence from an observed continuous process, in a fashion that takes serious
the role of symbols as denoting dynamic \regularities". The natural next step

in the analysis is to �nd higher-level regularities in the symbol sequence. This

is usually done by �nding a �nite description of a generating law, in terms
of a grammar or an automaton of some kind.

Grammars and automata belong to the theory of formal languages, i.e.
the theory of sets of �nite symbol sequences (words). Our working material

is not a set of �nite words. Rather, it is one potentially in�nite symbol
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sequence. In order to make the connection to formal languages, one can

derive a language from such a single sequence in a straightforward manner:

put the set of all �nite subsequences to be the set of words of the language.

This is the standard way of applying the tools of formal language theory to

symbolic processes.

The most regular and simple kind of symbol sequences can be described

by regular languages. I will describe symbol sequences generated by robots in

terms of regular languages. The basic fact about such sequences or languages

is that they are produced by mechanisms with a �nite memory. The standard

formal model of such mechanisms is �nite automata. For almost all physical

and biological symbolic processes it is natural to assume that the underlying

mechanisms has a �nite memory, which can be, however, very large. The

same holds for processes generated by robots, which have bounded resources,

in bounded environments. It is \ontologically" justi�ed to model them using
regular languages.

Regular languages have been extensively investigated within the theory
of formal languages and automata theory [12]. Within the ergodic theory of

symbolic dynamical systems, the corresponding processes have been termed
so�c systems [32]. A somewhat more general class of processes, coded sys-
tems, has also been investigated. An introduction can be found in [6],
where the connections to the theory of formal languages are discussed, too.
Regular languages have found fresh applications in the investigation of self-

organization in theoretical physics, where they are used to yield complexity
measures for processes undergoing bifurcations [11] [10]. The work carried
out in this area is particularly interesting for our purposes, since it explicitly
addresses the question of �nding simple, standardized, �nite descriptions of
empirical, symbolic processes.

This section has two subsections. In the �rst subsection, I describe a

certain di�culty that arises when standard normal forms of �nite automata
are used to describe stationary processes. I show how this di�culty can be
resolved by considering a subclass of regular languages that corresponds to

stationary processes, and which a�ords of a canonical automata model includ-

ing a normal form theorem. In the second subsection, I describe an e�ective
procedure for constructing this normal form automaton from empirical data.

4.1 Phase generators

I assume that the reader is familiar with �nite automata and the normal
form theorem, which states how a given non-deterministic or deterministic

�nite automaton can be transformed into an equivalent, deterministic, min-

imal automaton, which is a uniquely determined normal form for all �nite
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automata generating a given regular language (e.g., [12]).

Grassberger [11] mentions in passing a little problem that occurs when

symbolic dynamical systems are modeled by �nite automata. I reformulate

and accentuate this problem in the following little dilemma:

� On the one hand, when one describes symbolic processes that yield

potentially in�nite sequences, one is typically not interested in transient

behavior that occurs only at the onset of such sequences. Quite to

the contrary, one wishes to understand the regularities that rule the

system after initial special e�ects have died out and the process has

become stationary. Initial transients are uninteresting since they tell

us more about the essentially arbitrary starting conditions than about

the dynamic mechanism itself.

� On the other hand, �nite automata explicitly model initial transients.
They feature a special initial state, from which transient passages may

lead in an irreversible way into a true substructure of the automaton
which models the long-term behavior. Unfortunately, this can occur
in the minimal automaton even when the language concerned actually
does not contain any special initial transients. This situation is illus-
trated in �g. 6a. In other words, due to the formal requirement of

a special initial state, �nite automata may contain an annoying arte-
fact that blurs the transparency of this kind of representation. This
becomes particularly cumbersome if the number of states of minimal
automata is used for measuring the inherent complexity of the symbolic
process { which is done all the same (e.g., in [10]), due to the lack of a
better alternative.

For the purpose of describing stationary symbolic processes, an automa-

ton representation without a special initial state would be desirable. For
instance, the process (or the corresponding language, equivalently) described
by the �nite automaton in �g. 6a should be represented by a transition graph

like in 6b. If only one had a normal form theorem for such transition graphs,

the dilemma mentioned above could be resolved.
I have worked out this approach in some detail in [13], where I also

developed a normal form for transition graphs like the one in �g. 6b. I called
such graphs generators then, a usage that I will adhere to now. I shall briey

review the work here (a more elaborated introduction can be found in [14]).

In addition, I formulate and prove a new proposition that gives a handy
characterization of normal form representations.
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Figure 6: Two representations for the regular language consisting of words
that feature 1's and 11's interspaced by arbitray numbers of 0's, such that
the number of 1's between two occurences of 11's is even. (a) Minimal de-
terministic �nite automaton. (b) Transition graph without a speci�ed initial
state. (Taken from [11])

Let � be a �nite alphabet. A generator is a �nite, cyclic, directed graph,
whose edges are labeled by symbols from �. Fig. 6b gives an example of a
generator, where � = f0; 1g. More formally, we de�ne:

De�nition 4.1 A generator (more precisely, a �-generator) is a pair
G = (S; trans), where S is the set of states, and trans � S � � � S is the

set of transitions. We use the shorthand siasj for (si; a; sj) 2 trans. The
language generated by G is the set

L(G) = fa1 : : : anjn � 0;9s0; : : : ; sn 2 S : s0a1s1 ^ : : : ^ sn�1ansng

The sequence of transitions s0a1s1; : : : ; sn�1ansn is called a derivation of
a1 : : : an in G. G can be interpreted as a directed, edge-labelled graph in an

obvious way. If this graph is �nite, connected, and cyclic, then L(G) is called

a coherent language. We use the letter C (instead of L) to denote coherent
languages.

Remark For reasons that do not concern us here, I have termed the

states of a generator local states in [13] and elsewhere.
NotationWe use boldface letters a to denote words of a formal language,

and write ab for the concatenation of a and b. We write as if a derivation
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of a exists that ends in state s; sa if a derivation of a exists that begins in

state s; and tas if a derivation of a exists that begins in state t and ends in

state s.

Coherent languages are a proper subclass of the regular languages. From

the remarks above it should be clear how they correspond to stationary

processes.

A �nite subsequence a1 : : : an of a symbolic process contains some informa-

tion about how the process might continue. If such sequences are prolonged

to the left (i.e., we learn more about the past), our knowledge about possible

continuations into the future can only grow. However, due to their �nite

memory, in coherent languages the information about the future can always

be maximized through knowledge about a �nite portion of the past. This

notion of maximally predictive, �nite sequences is formalized in the notion

of phases:

De�nition 4.2 Let C be a coherent language, a 2 C. The set

continue(a) := fb 2 Cjab 2 Cg

is the set of continuations of a in C. p 2 C is phase-�xing (i.e., maximally
predictive in the sense mentioned above) i� continue(rp) = continue(p) for
all rp 2 C. p;q 2 C are phase-equivalent i� they are phase-�xing and

continue(p) = continue(q). The equivalence classes are called phases. The
phase represented by p is denoted by 'p. The set of all phases of C is denoted
by �(C).

Some basic properties of phases are collected in the following

Proposition 4.3

1. 8a 2 C9b 2 C : ba is phase-�xing.

2. �(C) is �nite.

3. If p is phase-�xing, and rp 2 C, then rp is phase-�xing, and 'p = 'rp.

4. If p is phase-�xing, and pr 2 C, then pr is phase-�xing.

The simple proof can be found in [13]. Phases can be interpreted as the

states of a particular generator:

De�nition 4.4 For a coherent language C, G'(C) = (�(C); trans') is

the phase generator of C, where
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trans' := f('p; a; 'pa)jp is phase-�xing;pa 2 Cg:

The phase generator is the desired normal form for generators of a co-

herent language. An algorithm for constructing the phase generator from an

arbitrary generator of C is described in [13]. Phase generators are a funda-

mental tool in the study of coherent languages. In particular, C1 � C2 i�

G'(C1) can be mapped to G'(C2) in a certain manner [13].

Let me note in passing that the underlying idea of phase generators,

namely, maximizing predicitiveness, nicely agrees with our approach to de�n-

ing regularities in continuous systems in the preceding section. We have been

led there by the very same motive, albeit in a quite di�erent mathematical
frame.

I conclude this subsection with a helpful characterization of phase gener-

ators:

Proposition 4.5 A generator G = (S; trans) of a coherent language C
is the phase generator i� it has the following properties:

1. trans is deterministic in the following sense:

8a 2 � 8s1; s2; s3 2 S : s1as2 ^ s1as3 ) s2 = s3

2. Every state s 2 S is �xed by some a 2 C in the following sense:

8s 2 S 9a 2 C 8t 2 S : as ^ at) s = t

3. States can be distinguished by their futures:

8s; t 2 S : s = t$ s+ = t+

Here, s+ denotes the set fa 2 Cjsag.

Proof \)" is an easy exercise. I treat only the hard direction \(". For
a phase ' let '+ := fa 2 Cj'a is a derivation in G'g. We show �rst that
the following statement holds:

8s 2 S 9' 2 � : s+ = '+ (5)

22



Let a �x s in G. By proposition 4.3(1), some b 2 C and some ' 2 � exist

such that ba �xes '. ba still �xes s in G. Since G and G' both generate C,

we can conclude s+ = '+ = fc 2 Cjbac 2 Cg, i.e., (5).

Let 's denote the phase corresponding to s according to (5). We show

what amounts to the converse of (5):

8' 2 � 9s 2 S : ' = 's (6)

Let a 2 C be a representative of ', i.e. ' = 'a. Select s; t 2 S such

that tas in G. Let t be �xed in G by b. From the determinism property

(premise 1) it follows that s is �xed by ba in G. Since a is phase-�xing,

continue(a) = continue(ba) holds, from which '+ = s+ follows, with (6) as

an immediate consequence.

From property (3) it follows that (5) and (6) yield a bijection between
S and �. It is easy to con�rm that this bijection is in fact an isomorphism

between G and G'. 2

Using this proposition, one can easily verify that the transition graph in
�g. 6b actually is a phase generator.

4.2 Reconstructing the phase generator from an em-

pirical process

Assume that an empirical observation of a stationary, stochastic process has
yielded a long symbol sequence T = c1 : : : cN . This trajectory has been
generated by an unknown mechanismwhich we assume to have �nite memory.
Therefore, T can be modeled approximately (i.e., up to what one considers

noise) by a coherent language. In this subsection, I describe a procedure for

reconstructing the corresponding phase generator from T.
Before we begin, we should be aware of two principal limitations:

� Any e�ective reconstruction algorithm can only capture regularities

that reveal themselves within a bounded temporal range. No algo-

rithm can guarantee anything more than that the reconstructed phase
generator accounts for all subsequences of T up to some length l.

� Empirical trajectories are noisy. Since we can work with only a �nite

trajectory T , we are principally unable to distinguish \true noise" from
\rare regularities". I.e., we have to decide for a basically arbitrary cut

between which (rare) subsequences we wish to be explained by the
generator model, and which others (even more rare) we wish to discard

as noise.
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Taken together, these two limitations mean that the best we can hope for

is reconstructing a phase generator that accounts for a good deal of the regu-

larities in T , but leaves an unexplained rest of nonconforming subsequences.

This rest has a \true noise" component and an \overlooked regularity" com-

ponent, the ratio of which we cannot estimate without further assumptions

about statistical properties of the mechanism generating T .

The procedure for reconstructing a phase generator has two stages. In the

�rst stage, information about to predicting bounded futures from bounded

pasts is extracted from T , and the data is purged from noise and/or the

e�ects of rare regularities. In the second stage, the phase generator is actually

constructed from this preprocessed material.

Stage 1 First we introduce a notational convention: write a < b to

denote the fact that a is a subword of b.

Remember that the rationale behind phases and phase generators is the
prediction of future developments from a given past sequence. A �nite algo-
rithm can consider only �nite pasts and futures. Therefore, the �rst thing to
do is to �x two nonzero natural numbers, p and f , which determine the depth

of past and future time spans to be taken into account. These parameters
should be choosen rather small at the �rst attempt (say, p = f = 2), since
this means that a relatively simple phase generator will be constructed. At
a later point in stage 1, this choice is tested whether it leads to ignoring im-
portant longer-term regularities; if it does, stage 1 loops back to the present

point and greater values for p and/or f are choosen.
Let Pred := fa < c1 : : : cN�f jjaj = pg be the set of all subsequences of

length p in T that can be used for predicting f further time steps in T . For
a 2 Pred, let Fa := fb 2 �f jab < Tg be the set of continuations of length
f of a which can be observed in T , i.e. the \future of depth f" of a in T .

At this point, one might �nd it advisable to purge the data from what one

considers noise. A quick and dirty method is to discard from Pred sequences
a that occur below some threshold average frequency, and consequently to
discard from each Fa such b as contain already discarded a as a subsequence

(assuming that p � f ; in case that f < p, reverse the order of discarding

accordingly).
Now consider the futures of the subsequences a after they have been

continuated by one symbol. More precisely, for every a 2 Pred, and aa < T ,
consider Faa := fb 2 �f jaab < Tg. (Discard, if necessary, such aa as contain

subsequences that have already been discarded earlier.)

Check whether the following holds:

8Faa 9Fa0 : Faa = Fa0 ^ 8Fa 9Fa0a : Fa = Fa0a (7)
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A signi�cant violation of (7) means that the future (of f steps) can be

predicted signi�cantly better from a past of depth p + 1 than from a past

of depth p. If this situation occurs, increment p by 1, and repeat the entire

procedure described so far. Iterate this until (7) approximately holds.

Validity of (7) can have two reasons. First, it may indicate that we

have choosen a su�cient depth p of premises a for prediction. Second, it

may also indicate that we have chosen an insu�cient depth f to distinguish

between di�erent kinds of future developments. In order to exclude this

possibility, we increment f by 1 and rerun everything. We repeat the inner

loop of incrementing p and the outer loop of incrementing f until (7) stays

approximately valid under both kinds of increments.

If this has been achieved, we have a good chance (albeit no certainty)

that premises of length p enable good predictions, and that �nite futures of

depth f are good indicators for \complete", unbounded futures.
Next we de�ne, via some suitable criterion for approximate identity of

sets, an equivalence relation� on the set fFaja 2 Predg[fFaaja 2 Pred;aa <
Tg which satis�es Fx � Fy i� Fx is approximately equal to Fy (x;y 2

Pred[faaja 2 Pred;aa < Tg). This yields equivalence classes F . We write
Fx to indicate that Fx 2 F . The classes F represent the \pure" types of
future developments that we assume to exist after the e�ects of noise have
been cleared away. We call Fut := fFaja 2 Predg the set of future types in
T . As a consequence of (7), every F should contain representatives both of

the kind Fa and Faa.
This ends stage 1. The result can be summed up as follows. A future

development out of the class F is predicted by an observation of x i� Fx 2 F .
The e�ects of noise have been removed, and a fairly justi�ed decision on the
proper depths p and f of �nite approximations to pasts and futures has been

made.

Stage 2 A phase generator G' = (�; trans') which approximately re-
generates T can easily be constructed as follows, using the results from stage
1:

Procedure 4.6

Step 1 De�ne a relation trans0 � Fut�� � Fut by

(F ; a;F 0) 2 trans0 i� 9Fa 2 F : Faa 2 F
0:

In other words, trans0 de�nes a �-transition graph on the set of nodes
Fut.
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Step 2 Select a node Fa such that Fa is minimal as a set, i.e. such that

Fb � Fa ) Fb = Fa:

Collect all nodes Fut� � Fut that are transitively reachable from Fa

via transitions taken from trans0. Put trans� := trans0 \ Fut
� �

� � Fut�. This should yield a cyclic transition graph. Finally, put

G' = (�; trans') := (Fut�; trans�).

If step 2 does not yield a cyclic transition graph, then either the empirical

process is not stationary or is not generated by a mechanism with �nite

memory, or something has gone awry in stage 2. The latter can have several

reasons. For instance, a transition that is necessary for making the transition
graph cyclic might have been discarded due to its rare occurence. It may also
be the case that selecting p or f too small excludes crucial long-range e�ects.

Corresponding strategies for recovery would be to repeat the procedure with
a longer T , or to further increment p and f .

The procedure is correct in the following sense:

Proposition 4.7 If the following conditions hold:

1. T is a word from a coherent language C,

2. for all phases ' of C a phase-�xing a exists such that jaj � p,

3. for all x;y 2 C; jxj � p; jyj � p it holds that continue(x) = continue(y)
i� x and y agree in their possible continuations up to a depth f ,

4. in stage 1, nothing is discarded, i.e. it is assumed that there is no noise
in T , and

5. all words of C of length p + f occur as subwords in T ,

then the procedure described above yields the phase generator of C.

Sketch of proof The premises (4) and (5) ensure that what can be learnt

about C from considering words of length p+ f is faultlessly and completely
gleaned from T in stage 1. On this background the proposition can be proved
rather easily.

Step 1: Show that G' is a substructure of the graph (Fut; trans0).

To this end, we �rst observe that a phase ' �xed by p 2 C, where jpj � p,
corresponds uniquely to a future Fp. In this sense, we can write F' to denote
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the future of '. Let ('; a;  ) 2 trans'. Use the premises (2) and (3) and

proposition 4.3(4) to conclude that (F'; a;F ) 2 trans0.

Step 2: Show that (F'; a;F ) 2 trans0 implies ('; a;  ) 2 trans'.

(F'; a;F ) 2 trans0 implies that some p 2 C exists which �xes ', such

that F' = Fp and F = Fpa. Use property (1) from proposition 4.5 to

conclude ('; a;  ) 2 trans'.

The statements of steps 1 and 2 imply that the reduct of (Fut; trans0) on

the nodes F' corresponding to phases is isomorphic to the phase generator.

Step 3: Show that in (Fut; trans0) no transition leads away from the

phase generator substructure, i.e., (F'; a;F) 2 trans0 implies F = F for

some phase  .

This is essentially a consequence of proposition 4.3(4).

The node Fa, selected in step 2 of procedure 4.6 such that Fa is minimal

as a set, corresponds to a phase, i.e., Fa = F' for some phase '. This is
implied by a basic fact about coherent languages, namely, that if continue(a)
is minimal among all such continuation sets in C, then a is phase-�xing.
Therefore, the selection in step 2 of procedure 4.6 hits a node that belongs to

the phase generator substructure of (Fut; trans0). The statements of steps
1 { 3 above ensure that the transitive collection of nodes and transitions in
step 2 of procedure 4.6 yields the phase generator, and nothing more. 2

4.3 The entropy of processes corresponding to coher-

ent languages

A fundamental characteristic of a process is its entropy, which provides a
measure for its predictability, or rather, its unpredictability. In this section
I show how phase generators can be used for a simple computation of the

(metric) entropy of symbolic processes corresponding to coherent languages.
The metric entropy measures predictability in a way that accounts for the

e�ects of transition probabilities between successively produced symbols (in
contrast to the simpler topological entropy, which shuns probabilistic infor-

mation). Therefore, before we can start our computation of metric entropies,

we must generalize our notion of generators to make them probabilistic:

De�nition 4.8 A probabilistic generator is a pair G = (S; trans; Ptrans),

where S and trans are de�ned as in de�nition 4.1, and Ptrans : trans! [0; 1]

provides each transition siasjwith a transition probability Ptrans(siasj) such
that for all states si it holds that

P
siasj

Ptrans(siasj) = 1.

The procedure for constructing phase generators from an empirical tra-
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jectory, as described in the previous subsection, can easily be accomodated

to yield probabilistic phase generators.

Without going into details here (complete treatment in [19], pp. 51�),

let me note that cyclic generators (i.e., generators of coherent languages)

describe ergodic processes, from which in turn it can be concluded that a

uniquely determined probability exists which measures with which relative

frequency the states of a probabilistic generator are visited on long derivation

paths. Formally, this probability is a function Pstate : S ! (0; 1] which

satis�es
P

si2S
= 1. Pstate can be e�ectively computed from Ptrans by a

straightforward iteration procedure.

The metric entropyH of a symbolic process T generated by a probabilistic

phase generator G' = (�; trans'; Ptrans') can be computed as follows:

Proposition 4.9

H(T ) = �
X

'2�

(Pstate(')
X

'a 2trans'

Ptrans'('a ) log2 Ptrans'('a ))

Proof The proof is an exercise in rearranging (and LATEXing) sums.
We start with the well-known fact (cf. [9]) that H(T ) can be computed from
the block entropies Hn of sequences of length n (logarithms are to base 2
throughout):

H(T ) = lim
n!1

(Hn(T )�Hn�1(T ))

= lim
n!1

�
X

a2Cn

P (a) log P (a) +
X

b2Cn�1

P (b) log P (b); (8)

where Cn denotes the set of all sequences a of length n that can occur in

the process, and P (a) denotes the relative frequency of a among all sequences
with the same length as a.

Observing that for n!1 almost all sequences a 2 Cn are phase-�xing,
i.e., that limn!1

P
a2Cn;a is phase-�xingP (a) = 1, for large n the following

rewriting of the �rst sum in (8) is admissible:

X

a2Cn

P (a) log P (a) =

=
X

b2Cn�1

X

a2�

P (b)Ptrans'('ba ) logP (b)Ptrans'('ba ) (9)
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We can now proceed from (9) with some simpler transformations

=
X

'2�

X

a2�

X

b2Cn�1;b �xes '

P (b)Ptrans'('a ) logP (b)Ptrans' ('a )

=
X

'

X

a

X

b

P (b)Ptrans'('a ) logP (b)

+
X

'

X

a

X

b

P (b)Ptrans' ('a ) logPtrans'('a )

=
X

'

X

a

Ptrans'('a )
X

b

P (b) log P (b)

+
X

'

X

a

X

b

P (b)Ptrans' ('a ) logPtrans'('a )

=
X

b2Cn�1

P (b) log P (b) (10)

+
X

'

X

a

X

b

P (b)Ptrans' ('a ) logPtrans'('a )

Inserting (10) into (8) yields

H(T ) = lim
n!1

�
X

'2�

X

a2�

X

b2Cn�1;b �xes '

P (b)Ptrans' ('a ) logPtrans'('a )

= lim
n!1

�
X

'2�

X

b2Cn�1;b �xes '

P (b)
X

a2�

Ptrans'('a ) logPtrans'('a )

= �
X

'2�

Pstate(')
X

'a 2trans'

Ptrans'('a ) logPtrans'('a ) 2

5 Higher-order regularities and the behavior

model

The phase generator yields a transparent model of temporal chaining of \el-
ementary" behaviors corresponding to elementary regularities in the phase
portrait. Animal behavior is, however, organized hierachically, including be-

haviors that are complex compounds of elementary ones. For instance, in

many social species a behavior element \eye contact" exists, which can oc-

cur as part of a more complex \threat" behavior, which in turn can appear

within ritual rank order �ghts. It would be desirable to describe behaviors
on several levels in robots, too.
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This has been recognized as a central issue in behavior-oriented robotics

[26]. The key word is \emergent behavior". As yet, however, no formal

criterium exists for what it means for a behavior to emerge from others.

In the third stage of analysis, the phase generator describing elementary

behaviors is successively \coarsened" to yield higher-level, complex behav-

iors. Relatively well predictable patterns of activity, in which several ele-

mentary behaviors participate, yield new behavior units on a higher level of

description.

The mathematics for the third stage is not yet worked out as well as for

the �rst two stages. Therefore, I shall merely illustrate the main ideas with

an example.

Fig. 7a) shows a �ctitious phase generator that might have come out

of the second stage of analysis. The ciphers at the transitions indicate the

empirical transition probabilities.
The edge labels in �g. 7 are \telling names". I have used them in order to

make the diagram more readable. Of course, a formal analysis of time series
data cannot come up with telling names. They can be substituted for formal

labels only after a re-inspection and interpretation of the robot's performance
by a human observer. Although it is important from a methodological angle,
in this article I will not enter a discussion of questions concerning the intuitive
interpretation and subsequent naming of formally detected behaviors.

The behavior model from �g. 7 represents (simpli�ed and adapted) a

robot that has actually been built, and �nely demonstrated at the KI '95,
by students at the University of Bielefeld. A human observer would describe
the robot's behavior more or less as follows:

� Most of the time, the robot drives around in the arena \searchingly".
It copes with obstacles by bumping into them, retracting, and moving

forward again in a di�erent direction.

� Upon contact with a \treadmill", which is recognized through a par-
ticular touch sensor, the robot begins to \work" by pushing around

in a circle the radial pushbar of the treadmill device. Deviations from

optimal pushing position are detected by light sensors, and become cor-
rected. If contact with the mill is lost, the searching behavior is taken

up again.

� After a prolonged period of activity, the robot makes its way back to the

charging station and recharges. Then in starts anew with its searching
behavior.

This kind of intuitive behavior description belongs to a higher, coarser
grained level than the �ne-grained model yielded by the phase generator from
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Figure 7: An emergence hierarchy of behaviors. The elementary level (a) is
described by a phase generator, as derived in the second stage of analysis.

On higher levels (b) and (c), emergent behaviors of increasing complexity are
described by other phase generators. See text for explanations.
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the second stage of analysis (�g. 7a). Within that �ne-grained model, one

can identify higher-level regularities by exploiting the transition probabilities.

Again, we use a criterium of good predictability to characterize them. The

basic idea is to single out sets of nodes in the phase generator, and regard

them as higher-level units of behavior, according to the following strategy

(cf. �g. 8a):

If it is known that the process is in a certain set A of states [A = f1; 2g

in �g. 8a], then require that

� it can be predicted with high probability that it will transit into a set

B of successor states of A [B = f3; 4; 5g in �g. 8a], and

� it can be predicted with high probability that it will not transit into

the set C [here: C = f6; 7; 8g] of those successor states of A that are
not contained in B, and

� the pairwise transition probabilities from A into B all lie in the same
order of magnitude.

This criterion intuitively �xes transitions between sets of states, which
(the transitions) are well separated from the neighborhood of other possible

transitions (points 1 and 2). We require also that the transition between sets
is \mixing" from A to B (point 3), i.e., prediction from a single state in A
to a single state in B is poor (except if B contains only one state, of course).

Emergent regularities, then, are de�ned through the transitive iteration
of such \group transitions". Each maximally possible sequence of iterations

of such group transitions (�g. 8b) yields an emergent regularity in the phase
generator, which in turn represents an emergent, higher-level behavior.

Some noteworthy special cases exist: internally tightly linked groupings

of states (�g. 8c), \channelled" transients (�g. 8d), the analogue of cyclic
attractors (�g. 8e), or the analogue of point attractors (�g. 8f). Very

satisfyingly, this leads us back to the basic idea of the �rst stage of analysis,
where we likewise combined transients with attractors in order to arrive at a

generalized notion of dynamic regularities.

This criterion of course still has to be worked out in formal detail. How-
ever, one can already apply it informally to the phase generator from �g.
7a. The emergent behaviors that can be thus �xed are encircled in �g. 7a by

dotted lines. Intuitively, they correspond to the emergent behaviors \search-

ing", \working", and \recharging". Searching and working behaviors are of
the kind depicted in �g. 8c, whereas recharging is of the transient type �g.

8d.
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Figure 8: Criterion for detecting higher order regularities. Stylized portions
of phase generators are shown: the basic scheme (a), and variations (b {
f). The magnitude of transition probabilities is indicated by the arrows'

boldness. For further explanations compare text.

Given these emergent behaviors, a higher-level phase generator (�g. 7b)
can be constructed straightforwardly, which represents transitions between

the emergent behaviors.
The entire procedure can be iterated. On the next (and ultimate, in this

example) level we �nd the phase generator from �g. 7c.

Taken together, the three phase generators from �g. 7 represent the be-

havior model, which is the �nal result of the three-stage analysis procedure.

6 Conclusion

I have outlined a principled, three-stage approach to detecting regularities

in empirical phase portraits of robots. In the �rst stage, elementary regular-

ities are identi�ed, which can be named and thus yield a symbol sequence.

Temporal regularities in this sequence are then detected in the second stage,

which yields a normal form automaton model of the robot's behavior se-
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quence. In the third stage, higher-order regularities are determined, result-

ing in a �nal, hierarchic behavior model. In each of the three stages, I have

been led by the idea that \regularity" means \something good for predicting

what will happen next". Thus, the entire approach can be considered an

information-theoretic attempt to bridging the gap between the quantiative

and the symbolic level of describing physical agents.

Behavior-oriented robotics still lacks a principled, mathematical method-

ology. This article is a contribution to putting the �eld on a �rmer mathe-

matical ground. I believe, furthermore, that the techniques presented in this

article are of interest for other sub�elds of AI where symbol grounding in

some sense or the other is at stake.

The algorithms presented here are sketches only. Taking them to practice

will undoubtedly require experimentation. Together with Thomas Christaller,

I have submitted for funding a research project where these algorithms are
to be integrated in an automated analysis tool for the evaluation of behavior-
based robots.
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