
Dynamic Symbol Systems:
An Introduction to the Local Model

Herbert Jaeger
Faculty of Technology, University of Bielefeld

POB 100131, D-33501 Bielefeld, Germany
email: herbert@techfak.uni-bielefeld.de

Abstract

Dynamic symbol systems (DSS) are a class of dynamic systems especially developed for
modeling situated agents. They combine a symbolic format of representation with a self-
organizing dynamics. The theory can be used for theoretical purposes, as a discrete,
approximative reconstruction of continuous dynamic systems. It can also be used for the
practical design of multi-granular information processing systems, since it is formulated in
algorithmic terms. Furthermore, as processing on a conceptual level is concerned, the dynamic
system perspective suggests answers to some questions that are hard for logic-oriented
approaches. All in all, DSS contributes to bridging the gap between dynamics-oriented,
bottom-up techniques, and representation-oriented, top-down perspectives in AI. The paper
gives an informal introduction to the part of DSS theory concerned with local phenomena,
while the global part of the theory is very briefly sketched.

October 1994 draft version submitted to AISB-95

1 Introduction

Dynamic system techniques are traditionally used in connectionism (e.g., Smolensky 1986, Yao
& Freeman 1990). More recently, they have started to prosper in psychology (Smith & Thelen
1993), cognitive science (Clancey 1993, van Gelder & Port 1994), behavior-oriented robotics
(Smithers 1992, Steels 1993), and in agent-oriented AI (Kiss 1993).

Dynamic system models offer universal mechanisms for explaining several classes of
phenomena: continuous shift vs. sudden qualitative reorganisation of systems, reduction of
degrees of freedom in control problems, quasi-periodic activity, emergence of macro-level
patterns on a continuous or fine-grained, dynamic microlevel, and others.

However, currently used, calculus-based dynamic system techniques have some drawbacks.
Empirical state space analysis requires a large amount of high-quality numerical data (e.g.,
Robertson et al. 1993). The mathematical distinction between "slow" control parameters and
"fast" state variables bars the way to a comprehensive account of dynamically changing time
scales, which is a crucial and common phenomenon in agents of sufficient complexity (Jaeger
1994b). Standard dynamic system models do not directly yield executable computer programs
(a step in this direction is the PDL computer language, cf. Steels 1994).

These difficulties root in the particular mathematical nature of the dynamic system models
currently in use, i.e., continuous systems which are ultimately specified by differential equa-
tions. In order to circumvent them, I suggest to consider simpler, approximative dynamic
system models as a supplement to the standard techniques.

I have defined and investigated dynamic symbol systems (Jaeger 1994a), a class of discrete
dynamic systems tailored to the modelling of multi-granular agent architectures. Dynamic sym-
bol systems (DSS) retain the explanatory mechanisms listed above while shunning the problems
of high-precision, continuous models. The price to be paid is the loss of numerical accuracy.

DSS theory is a mathematical formalism. It can be employed in several ways. First, it can be
used as an approximative, qualitative, transparent model of the information processing
achieved in continuous systems like, for instance, neural networks. Second, since the theory is
formulated in algorithmic terms, DSS can be used to design information processing systems
that are directly runnable. Third, DSS can be seen as a formalism for the representation and
processing of conceptual knowledge. In fact, DSS theory has evolved from attempts to model
conceptual reasoning as a self-organizing process (Jaeger 1991, 1992).

This paper provides a largely informal introduction to the basic theory of DSS, which is
concerned with local phenomena. A rigorous presentation of the entire approach can be found
in Jaeger (1994a). Section 2 is an epistemological prelude, which explains how the notions of a
symbol and its meaning are meant in DSS. In the main section 3, the local theory of DSS is
sketched. Section 4 provides a brief glance at the global theory. Section 5 briefly points out
related work. Finally, section 6 justifies the entry of DSS into the game of AI.

2 Epistemological prelude: the nature of dynamic symbols

Dynamic symbol systems are discrete systems made from dynamic symbols. Dynamic symbols
share many properties with classical symbols in the sense of the physical symbol system

1

hypothesis (Vera & Simon 1993). However, their semantics is quite different from the
standard, logic-oriented view. In this section, I describe what dynamic symbols are and what
they mean.

Dynamic symbols are physically observable, repeatedly identifiable, dynamic regularities in a
physical information processing system. They are physical events of some duration, like any
other events researched in the natural sciences, e.g., the collision of two elementary particles.
A dynamic symbol derives its identity from some empirical observation procedure that reliably
indicates the presence of the regularity. A dynamic symbol is not a "platonic" entity of any sort.
Typical examples are attractor states in neural networks, but transient regularities other than
classical attractors make perfect dynamic symbols, too (Jaeger 1994b).

In order to think or talk about dynamic symbols, or in order to represent dynamic symbols in
formalisms such as DSS theory, researchers use formal symbols. They denote dynamic symbols
in the same way like, for instance, the formal symbol "m7" denotes the earth in a formula
describing the solar system.

The meaning of a dynamic symbol is defined in terms of the internal dynamics of the
information processing system in which the dynamic symbol occurs. Roughly, the meaning of a
dynamic symbol s consists in a "halo" of other dynamic symbols which are "accessible" from s.
A precise definition will be given in the next subsection. The important thing to note here is
that the DSS account of symbol meaning is not externally referential, but system-internal and
"associative".

An example will help to clarify these issues. Consider a robot capable of grasping apples. Being
built with connectionist techniques, and having a long learning history, the robot's information
processing is opaque at first sight. The experimenter wants to construct a transparent, telltale
DSS model of what is going on in the robot. He monitors the computational activity at some
place in the "brain". He finds, among others, a particular activity pattern whose appearance is
highly correlated with the robot's successfully grasping an apple. This activity pattern is a
dynamic symbol. In order to introduce it into his DSS model, the experimenter writes down in
his (mental or physical) notebook a formal symbol: apple . Fig. 1 depicts this scene.

Fig. 1: The occurence of a dynamic symbol, and of a formal symbol denoting it.

2

In this scene, the researcher uses the formal symbol apple to denote an activity pattern. This
is nothing but a mnemotechnic aid, which helps one to remind that this particular activity
pattern is empirically correlated with the robot's grasping an apple. It is dangerous, however,
to use such telling names. The dynamic symbol denoted by the formal symbol apple does not
have a particular physical apple, or the class of all physical apples, for its external reference. To
reiterate, an external meaning is not defined for a dynamic symbol at all.

Upon closer inspection one finds that the empirical correlation between the neural activity
pattern and grasping events does not justify ascribing to the former an extension of physical
apples. First, the empirical correlation is unlikely to be perfect. This destroys any "platonic"
certainties. Second, why should the extension be "apples" at all? Other extensions would be
equally good candidates, for instance, "grasp-thing-making-experimenter-smile". In fact, one
must not assume that the robot possesses object concepts at all.

Thus, DSS takes the epistemological stance of radical constructivism (Maturana & Varela
1984). However, the relation between a dynamic symbol and the corresponding formal symbol
is a classical denotation. But, this relation is not part of DSS theory proper; it would be part of
a meta-theory in which some logic-oriented philosopher might wish to describe what DSS-
oriented researchers do.

3 Local dynamics: coherent languages and generators

DSS describes information processing systems on both a local and a global level. This section
sketches local DSS theory. Unless noted otherwise, precise definitions and proofs can be found
in Jaeger (1994a).

DSS theory assumes that dynamic symbols can be observed "locally" within an agent. I.e.,
when the agent's internal processing dynamics is monitored at some particular "locus", a
particular collection of dynamic symbols can be observed. At another locus, possibly other
dynamic symbols occur. DSS does not specify the size or the physical nature of loci. In a
neural architecture, for instance, a single unit, or some cell assembly, or even the entire
network are potential loci for observations of dynamic symbols.

When an agent's internal processing dynamics is monitored locally for some time, DSS theory
assumes that one can observe temporal sequences of dynamic symbols. Such sequences are
called associations. Mathematically, the set of associations that can potentially be observed at
a given locus is a formal language. Given some plausible assumptions (recurrence, finite
number of distinguishable dynamic symbols, finite memory), the type of such languages can be
specified. One arrives at the notion of coherent languages.

(A last aside. An association is a physical sequence of physical units, namely, dynamic symbols.
A formal language, on the other hand, is a set of formal words, i.e. a set of sequences of formal
symbols. Thus, one should actually distinguish between physical associations and formal
associations. However, I will always talk about dynamic rather than formal symbols. In doing
so, I act like the physicist who reads the formal representation "E = mc2" as "energy equals ... "
rather than as something like "the formal symbol for energy ...")

Coherent languages are a subclass of the regular languages. A convenient tool to describe them
are generators. Fig. 2 presents an example. A generator is a finite, cyclic, directed graph,

3

whose edges are labelled by dynamic symbols. Each finite path in a generator yields an
association of the corresponding coherent language, in an obvious fashion.

More formally, let Σ be a finite alphabet (of dynamic symbols). A generator is a pair
G = (S, trans), where S is the set of nodes (called local states), and trans ⊆ S×Σ×S is the set
of labelled edges (called transitions). G is required to be finite and cyclic. Then,

C = {s1...sn ∈ Σn | n ≥ 0, there exists a sequence (x0, s1, x1), (x1, s2, x2), ..., (xn-1, sn, xn)
 of transitions in trans}

is the language generated by G.

Fig. 2: A generator.

Among many others, the associations egg contact grasp-smoothly and apple
contact grasp-firmly belong to the coherent language specified by the generator from
fig. 2. In DSS terminology, contact appears in the context egg in the first association, and
in the context apple in the second. In the context of egg , contact can be continuated by
grasp-smoothly but not by grasp-tightly . The context egg filters out the continua-
tion grasp-tightly . Context-induced filtering is a basic phenomenon in the local theory of
DSS.

Contexts can be extended to the left. For instance, the context egg can be extended to grasp
ungrasp egg . Interpreting associations temporally, this means taking into account a larger
portion of the past. Generally, such extensions enhance the filtering effects of contexts:
knowing more about the past yields more information about the future. For instance, after
observing contact , one only knows that the possible continuations begin with grasp-
tightly or grasp-smoothly or correct_position , but after observing the more
extended context egg contact , one can exclude the continuation grasp-tightly .

However, certain contexts are "saturated" in that no further extension to the left can properly
enhance their filtering effects. Such contexts are called phase-fixing. In fact, every context can
be extended to the left to become phase-fixing. For instance, in fig. 2, the context contact is
not phase-fixing, but its extension egg contact is. Two phase-fixing contexts p, q are
equivalent when they possess the same continuations. In fig. 2, the contexts grasp-
tightly and grasp-smoothly are phase-fixing and equivalent. The equivalence classes

4

of phase-fixing contexts are called the phases of a coherent language C. The term is motivated
by viewing a generator as a stochastic oscillator. Phases, then, correspond to maximally
informative (i.e., predictive) internal states of this oscillator.

Phases are a central notion in DSS. The phases of a coherent language C can be interpreted as
the nodes of a particular generator for C, its unique phase generator Gϕ(C). Gϕ(C) can be
effectively computed from any other generator G of C. The generator shown in fig. 2 is
actually such a phase generator. Phase generators have quite pleasant formal properties.

Given a collection of associations belonging to a coherent language, the corresponding phase
generator can be approximatively reconstructed with an inductive learning procedure (unpub-
lished result). The procedure uses a "horizon" control parameter h, which specifies the
maximal length of associations that are precisely reconstructed from the teaching set. If one
selects h = max {nϕ | ϕ is a phase, nϕ = min {m | m = length(p), p ∈ ϕ}}, and if the teaching
material contains all the language's associations of length ≤ 2h, the original phase generator is
perfectly reconstructed.

As an additional benefit, this procedure yields transition probabilities for the labelled edges in
the reconstructed phase generator. A generator equipped with transition probabilities can
canonically be regarded as a description of a sequence-generating stochastic process. At first
sight, it resembles a Markov chain. However, although every (ergodic) Markov chain can be
captured by a probabilistic phase generator, the converse does not hold. In a Markov chain, the
outcome of a time step is influenced by a universally bounded number of preceding steps. By
contrast, in coherent languages, transitions steps can be properly influenced by events that lie
arbitrarily far in the past.

For an example, assume that the phase generator in fig. 2 were augmented by probabilities.
Then, after issuing a periodic subsequence (contact correct_position)n of arbitrary
length 2n, the probabilities of whether the next dynamic symbol is grasp-firmly or
grasp-softly depend on whether this subsequence was preceded, 2n steps back in the
past, by egg or by apple .

The canonical morphisms between generators are simulations. Intuitively, when a generator G1
is simulated in some other generator G2, the graph structure of G1 is "spooled" into the graph
structure of G2, preserving edge labels. Formally, a simulation of G1 = (S1, trans1) in
G2 = (S2, trans2) is a mapping σ: S1 → P(S2) from S1 to the power set of S2, which satisfies

(i) σ(x) is nonempty for all x ∈ S1,
(ii) for all (x1, r, x1') ∈ trans1, for all x2 ∈ σ(x1) there exists x2' ∈ σ(x1') such that

(x2, r, x2') ∈ trans2.

This is written σ: G1 → G2. A fundamental simulation theorem states that C1 is a coherent
sublanguage of a coherent language C2 iff there exists a simulation σ: Gϕ(C1) → Gϕ(C2)
between the corresponding phase generators.

The notion of phases is crucial for an information-theoretic interpretation of associations. The
information H(s), which is gained by the observation of an association s, is specified as the
knowledge provided by s about the phase of the stochastic oscillator Gϕ(C):

H(s) = - log2 |Φ(s)| / |Φ(C)|,

5

where Φ(C) is the set of all phases of C, and Φ(s) is the set of phases compatible with the
observation of s (i.e., Φ(s) contains those phases which can be reached, in the phase generator
Gϕ(C), on a derivation path for s). In global DSS theory, H(s) is important for the account of
self-organization in self-organizing streams.

Φ(s) is called the meaning of s. In the example from fig. 2, the set of local states {4, 6} is the
meaning of the association contact . This definition of an association's meaning amounts to a
specification of its possible future continuations; i.e., it is a dynamic, system-internal account of
meaning. If s = s1...sn, then Φ(s) can also be interpreted as the meaning of the single dynamic
symbol sn in the context s1...sn-1.

An important phenomenon in continuous dynamic systems is bifurcations. In a particular
variety (pitchfork bifurcations), an attractor splits into two sibling attractors, due to a shift in
some control parameter(s). In situated agents, this is a possible mechanism for adaptive
differentiation of behaviors or concepts.

DSS is too coarse an approximation of continuous dynamic systems for capturing bifurcations
in detail. Still, something can be done in order to get hold of this important mechanism. DSS
theory assumes that among the dynamic symbols occuring at some locus, some are bifurcation
siblings of others. Formally, this "sibling relation" is cast into a differentiation ordering ≤ on
the dynamic symbols of a coherent language. Fig. 3 shows a differentiation ordering for the
symbols appearing in fig. 2.

Fig. 3: A differentiation ordering for the symbols appearing in fig. 2.

A differentiation ordering must satisfy certain constraints. The basic idea is that associations
made from more differentiated dynamic symbols must be "subsumed", within a coherent
language, by less differentiated associations. An association s1...sn is said to be subsumed by
t1...tn, if ti ≥ si (i = 1, ..., n). For instance, referring to figs. 2 and 3, top top subsumes
grasp ungrasp , which further subsumes grasp-firmly ungrasp .

Technically, this subsumption constraint is expressed via a generalized simulation σ≤. The
definition of generalized simulations σ≤ is derived from the definition of ordinary simulations
by replacing condition (ii) with

(ii') for all (x1, r1, x1') ∈ trans1, for all x2 ∈ σ(x1) there exists x2' ∈ σ(x1'), r2 ≥ r1, such that
(x2, r2, x2') ∈ trans2.

6

The simulation theorem carries over to generalized simulations (unpublished result): C1 ≤ C2 iff
there exists a generalized simulation σ≤: Gϕ(C1) → Gϕ(C2). C1 ≤ C2 means that every associa-
tion in C1 is subsumed by some association in C2.

I return to the issue of constraining differentiation orderings. Such an ordering is required to
satisfy that there exist a generalized autosimulation σ≤: Gϕ(C) → Gϕ(C) of the phase genera-
tor, such that every transition (x1, r1, x1') ∈ trans, where r1 has a subsumer r2 ≥ r1, is mapped on
some (x2, r2, x2') ∈ trans. In the running example, such a generalized simulation is provided by
σ≤(1) = {1}, σ≤(2) = {1, 2}, σ≤(3) = {1, 3}, σ≤(4) = {1, 4}, σ≤(5) = {1, 5}, σ≤(6) = {1, 6}.

Generalized autosimulations of the kind just used reveal a differentiation hierarchy of cyclic
substructures in phase generators. Intuitively, more differentiated substructures "unfold" from
less differentiated ones by the combined effects of dynamic symbol differentiation and an
elaboration of the graph substructure. In the example, the least differentiated substructure is
the single top loop on the carrier {1}, which differentiates to the substructure on the carrier
{1, 2}, which in turn differentiates to the substructures on {1, 2, 3, 4} and {1, 2, 5, 6}. In
terms of continuous attractor states of a neural assembly, the top loop might be interpreted as
a highly chaotic "ground state", whereas the more differentiated subgenerators would
correspond to less chaotic states featuring several lower-dimensional, or even near-limit-cycle,
substates (beautiful examples in Yao & Freeman 1990, caveats discussed in Jaeger 1994b).

A hierarchically differentiated generator somewhat resembles an inheritance network of the
kind used in symbolic AI for the representation of conceptual knowledge. The logical
ramifications of this view on generators are examined in Jaeger (1992, 1994a), where the
reader can also find a discussion of how a dynamic system perspective might shed new light on
old questions, e.g., the problem of conceptual cycles, context sensitivity of concept
interpretation, and others.

Fig. 4: To fly and fly not.

At the present occasion, I restrict myself to a phenomenon in generators which corresponds to
nonmonotonic inheritance. Fig. 4 shows three portions from a hierarchically differentiated
generator, which is presumably reconstructed from an ornithologist's left temporal lobe. The
two lower portions belong to relatively differentiated substructures of the presumed generator;

7

the upper portion belongs to a less differentiated substructure. The former are mapped on the
latter via a generalized autosimulation. The "unfolding" of the upper structure to the lower
ones has several effect: the contexts Bielefeld and antarctic are separated from each
other; bird s become crow s in Bielefeld and penguin s in the antarctic ; and last
but not least, crow s soar and penguin s stay grounded.

The basic model presented in this section can be augmented in order to capture different noise
levels, and different levels of observational precision. This is achieved by using as a local phase
space model not a single generator, but a two-dimensional array of generators, which are
derived from each other via simulations. A detailed account (which in some aspects, however,
reflects an earlier state of the theory) can be found in Jaeger (1994b).

In sum, generators with internal differentiation relations are the basic DSS "local phase space"
model. On one hand, they can be considered as an approximative description of temporal and
bifurcation relations of local regularities in continuous dynamic systems. On the other hand,
they can be regarded as a peculiar version of inheritance networks for the representation of
conceptual knowledge.

4 A glance at global DSS theory: self-organizing streams and associeties

Realistic information processing systems, in particular neural networks, are spatially extended
and functionally structured. DSS offers, first, a model of spatially extended subsystems with
locally homogeneous dynamics: self-organizing streams. Second, DSS describes how several
such subsystems can be coupled together, achieving complex, functionally structured, multi-
granular information processing systems: associeties. This subsection briefly points out the
basic characteristics of self-organizing streams and associeties.

Self-organizing streams are, in some aspects, reminiscent of cellular automata. At a given point
in time, a self-organizing stream appears as a spatial pattern of dynamic symbols, a configura-
tion. Like configurations in cellular automata, DSS configurations change in time due to an
operation which locally changes the pattern. These operations are called microchanges.
Microchanges reflect the local dynamics which is described by a coherent language, as outlined
in the previous section. A self-organizing stream, thus, always comes with a coherent language
C which determines the local dynamics in a homogeneous fashion; this language is the
analogue of the lookup table for the local transition rule in cellular automata. C can be
considered as the self-organizing stream's long-term memory.

More precisely, a configuration is a finite, directed graph whose edges are labeled by dynamic
symbols from the underlying dynamic symbol space. A microchange locally alters the edge
labels and the very graph structure (which puts an end to the analogies between cellular
automata and self-organizing streams, since in the former, the topological structure remains
unchanged). Microchanges are applied asynchronously and in parallel at different loci in
configurations. Input and output is achieved by deleting and adding labelled edges that lead
to/from the configuration. These I/O operations, being themselves variants of microchanges,
can be executed independently from "proper" microchanges at any time. Input arrives in the
form of an arbitrary, directed, cycle-free, edge-labled graph, which is successively fed into the
self-organizing stream. Output is generated in an inverse fashion. In the simplest case, this I/O
format boils down to a sequence of dynamic symbols (example: language processing). In other
cases, the format can be a broad "band" where many interconnected dynamic symbols pass

8

through the stream simultaneously (as in visual information processing). Taken all together, a
self-organizing stream is an anytime algorithm for processing symbolic streams of a quite
general format.

A configuration is essentially (i.e., ignoring I/O transitions) a generator. Thus, a configuration
yields a coherent language. This language models a "mental state" (of a homogeneous proces-
sing subsystem) in terms of a set of associations that are presently "active". The history of a
self-organizing stream can, therefore, be described as a temporal development C1, C2, C3, ... of
languages. The self-organizing properties of a stream concern this language development.
Remember that a self-organizing stream is governed in its local behavior by a generator
describing a particular language C. The microchange mechanism is devised in a way such that
"disordered" fragments of the configuration languages Ci are attracted by sublanguages of the
"ruling" language C. This is achieved by various aspects of microchanges, which include
concatenation of associations, differentiating dynamic symbols to make them fit better with C
(these two effects amount to pattern completion), and deletion of unfitting edges (an aspect of
noise filtering). The net effect is that in the absence of input, the configuration languages Ci are
likely to converge to a sublanguage of C. When the process is perturbed by input, it still can be
understood as continually "trying" to reach C.

A crucial phenomenon in a self-organizing stream is the formation of cyclic substructures that
yield a sublanguage of C. Such structures are called resonances. Once formed, a resonance is
likely to persist for some time, which amounts to a short-time memory effect. Furthermore, a
resonance is likely to attract, modify and incorporate symbolic material from its vicinity.
Resonances are the DSS model of gestalt formation. They are attractors in the global, parallel
dynamic system presented by a self-organizing stream.

Self-organizing streams can be coupled together in associeties. Two coupling mechanisms
exist. First, different streams can communicate via their output and input. Second, a higher-
level, coarse-grained stream can ground in a lower-level, fine-grained stream. Intuitively,
resonances in the lower-level stream are replayed by single dynamic symbols in the higher-level
stream, such that the connectivity topology between finer-grained resonances is mirrored in
coarser-grained associations. For instance, a conceptual-level stream can ground in a stream
processing visual features. In that case, the finer-grained resonances made from visual features
yield analogical representations for the concept-level symbols.

Between a higher-level and a lower-level stream, simultaneous top-down and bottom-up
interactions are mediated by grounding relations, such that self-organization in each stream
fosters self-organization in the other.

Fig. 5 gives an impression of an associety. Large ovals correspond to self-organizing streams,
x 's of various size to dynamic symbols of various granularity. Interstream band communication
and communication with the sensomotoric interface are rendered by bold shaded bands.
Resonances are indicated by cyclic dotted arrows. A grounding link is shown enlarged, which
couples a fine-grained resonance from a visual feature processing stream with a dynamic
symbol from conceptual-level stream.

9

Fig. 5: An associety.

5 Related work

Combining a symbolic format of representation with a self-organizing dynamics is not a unique
feature of DSS. Classifier systems, localist neural networks, and some singular approaches
feature this combination, too.

Classifier systems (Holland 1975) have been applied in a few cases to modeling reasoning in
agents (e.g., Patel & Schnepf 1991). Classifiers roughly compare to associations, and cyclic
chains of them to resonances. However, classifier systems are typically used for modeling long-
term adaptation processes with genetic algorithms. DSS, by contrast, focusses on short-term,
situated activity. Thus, classifier systems and DSS have complementary recommendations.

Localist neural networks are characterized by their neurons carrying symbolic labels. Compo-
site symbolic structures arise from simultaneous unit activations (e.g., Waltz & Pollack 1985,
Smolensky 1986) or from spike train correlation (e.g., Mani & Shastri 1993). Recurrent local-
ist networks could in principle realize stream processing in comprehensive multi-granular,
multi-module architectures, although presently no such approach features that combination.
Thus, this class of connectionist techniques is in principle comparable to DSS. When one
takes a closer look at these techniques and DSS, one finds a number of shared properties:

• local interactions in a collective of informational units,
• formation of "coherent" composites,
• in logical terms, a type-free nature of informational units, i.e., a coincidence of what

classical AI would call individuals, classes, and relations,
• feedback and cyclicity, and
• thermodynamic control parameters, in particular, computational temperature.

10

In (Jaeger 1994), I argue that these characteristics are due to turn up universally in architec-
tures that combine a self-organizing dynamics with symbolic representation. The Copycat
architecture (Hofstadter & Mitchell 1992) is another instance that I would include in this class.
It achieves an analogy-based discovery of novel concepts, featuring an intricate combination of
custom-built techniques that cannot be readily classified in traditional terms.

6 Conclusion

Dynamic symbol systems combine a symbolic format of "representation" (without an exten-
sional semantics being intended) with a self-organizing dynamics. The theory is mathematically
rigorous, essentially simple, and rests in a worked-out epistemological frame. Thus, DSS
contributes to bridging the gap between dynamics-oriented, bottom-up techniques, and repre-
sentation-oriented, top-down perspectives in AI. All this can be said of some related
approaches as well. The entry of DSS into the game can nonetheless be justified, I believe, by
the following points:

• DSS can serve as an approximative description of continuous dynamic systems.
• DSS is unique in its combination of stream processing with a coverage of the multi-

granular periphery-centre axis of an agent.
• DSS suggests answers to some hard problems of logic-oriented AI, for instance concer-

ning terminological cycles, analogical representations, and nonmonotonic inheritance.

Of course, DSS has its limits. It is a very crude, non-quantitative approximation to continuous
dynamic systems. Its use for modeling conceptual-level reasoning is restricted by the fact that
DSS-style information processing cannot capture numerical, logical, or otherwise "exact"
modes of reasoning. Self-organization, at least as - imperfectly - understood today, is
possibly necessary, but certainly not sufficient to explain intelligent thinking and acting.

References

Clancey, W.J. (1993): Situated Action: A Neuropsychological Interpretation. Cognitive
Science 17, No 1, 1993, 87-116

Hofstadter, D.R., Mitchell, M. (1992): The Copycat Project: A Model of Mental Fluidity and
Analogy-Making. To appear in: Holyoak, K., Barnden, J. (eds.): Advances in Connection-
ist and Neural Computation Theory, Vol. II: Analogical Connections. Ablex, Norwood,
N.J.

Holland, J.H. (1975): Adaptation in Natural and Artificial Systems. The University of Michi-
gan Press, Ann Arbor, 1975

Jaeger, H. (1991): An Introduction to Dynamic Concept Systems. In: Boley, H., Richter,
M.M. (eds.), Processing Declarative Knowledge. Proceedings of the PDK-91 at Kaisers-
lautern, Springer Verlag, Berlin (Lecture Notes in Artificial Intelligence 567), 87-106

Jaeger, H. (1992): A Type-free Semantics for Concepts in Contexts. In: Brézillon, P. (ed.):
Proceedings of the IJCAI-93 Workshop on Using Knowledge in its Context. Technical
Report LAFORIA 93/13, Institut Blaise Pascal, Université Paris VI et VII, 1993, 51-61

Jaeger, H. (1994a): Dynamic Symbol Systems. Ph.D. thesis, Faculty of Technology, University
of Bielefeld 1994

11

Jaeger, H. (1994b): On Modelling Behaviors and Concepts as Attractors. Submitted to the
DRABC-94 at San Sebastian, December 1994

Kiss, G. (1993): Autonomous Agents, AI and Chaos Theory. In: Meyer, J.A., Roitblatt, H.L.,
Wilson, S.W. (eds.): From Animals to Animats 2. Proceedings of the Second Int. Conf. on
Simulation of Adaptive Behavior, 518-524

Mani, D.R., Shastri, L. (1993): Reflexive Reasoning with Multiple Instantiation in a
Connectionist Reasoning System with a Type Hierarchy. Connection Science 5, No 3/4
(1993), 205-242

Maturana, H.R., Varela, F.J. (1984): El árbol del concocimiento. English: The Tree of
Knowledge: the Biological Roots of Human Understanding. Shamhala Press, Boston 1987

Patel, M.J., und Schnepf, U. (1991): Concept Formation as Emergent Phenomena. Arbeits-
papiere der GMD 602, GMD, St. Augustin 1991

Robertson, S.S., Cohen, A.H., Mayer-Kress, G. (1993): Behavioral Chaos: Beyond the
Metaphor. In: Smith, L.B., Thelen, E. (eds.) (1993): A Dynamic Systems Approach to
Development: Applications. Bradford/MIT Press, Cambridge, Mass., 119-150

Smith, L.B., Thelen, E. (eds.) (1993): A Dynamic Systems Approach to Development:
Applications. Bradford/MIT Press, Cambridge, Mass.

Smithers, T. (1992): Taking Eliminative Materialism Seriously: A Methodology for
Autonomous Systems Research. In: Varela, F.J., Bourgine, P. (eds.) (1992): Toward a
Practice of Autonomous Systems. Proceedings of the 1st European Conf. on Artificial Life.
MIT press/Bradford Books, Cambridge, MA., 31-40

Smolensky, P.(1986): Information Processing in Dynamical Systems: Foundations of Harmony
Theory. In: Rumelhart, D.E., McClelland, J.L. (eds.): Parallel Distributed Processing:
Explorations in the Microstructure of Cognition, Vol. 1, MIT Press, Cambridge, Mass.
1986, 194-281

Steels, L. (1993): A Mathematical Framework for Autonomous Robots. Proceedings of the
EWAIC '93, Moscow 1993, 333-334

Steels, L. (1994): Mathematical Analysis of Behavior Systems. In: Gaussier, P., Nicoud, J.-D.
(eds.): Proceedings of the "From Perception to Action Conference", Lausanne, Sept. 1994,
IEEE Computer Society Press, Los Alamitos, CA, 88-95

Van Gelder, T., Port, R. (1994): It's About Time: An Overview of the Dynamical Approach to
Cognition. Research Report 116, Cognitive Science Programme, Indiana University,
Bloomington, Indiana

Vera A.H., Simon, H.A. (1993): Situated Action: A Symbolic Interpretation. Cognitive
Science 17 No. 1, 1993, 7-48

Waltz, D. L., Pollack, J.B. (1985): Massively Parallel Parsing: A Strongly Interactive Model
of Natural Language Interpretation. Cognitive Sience 9, 51-74.

Yao, Y., Freeman, W.J. (1990): A Model of Biological Pattern Recognition with Spatially
Chaotic Dynamics. Neural Networks 3, No. 2, 153-170

12

