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Abstract

Dynamic symbol system@DSS) are aclass of dynamic systems especialigveloped for
modeling situated agentsThey combine a symbolitormat of representation with self-
organizing dynamicsThe theory can be used for theoretical purposes, as a discrete,
approximative reconstruction of continuodgnamic systems. It can also be used for the
practical design of multi-granular information processing systems, since it is formulated in
algorithmic terms. Furthermore, as processing on a concéptabisconcerned, thdynamic
system perspective suggests answers to some questionaré¢hatard for logic-oriented
approachesAll in all, DSS contributes tbridging the gap betweedynamics-oriented,
bottom-up techniques, and representation-orientggddown perspectives in Al. The paper
gives an informalntroduction to the part of DSS theory concerméth local phenomena,
while the global part of the theory is very briefly sketched.
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1 Introduction

Dynamic system techniques are traditionally used in connectionism (e.g., Smolensky 1986, Yao
& Freeman 1990More recently, they havstarted to prosper ipsychology (Smith & Thelen

1993), cognitive science (Clanc&993,van Gelder & ort 199), behavior-oriented robotics
(Smithers 1992, Steels 1993), and in agent-oriented Al (Kiss 1993).

Dynamic system model®ffer universal mechanismfr explaining several classes of
phenomena: continuowift vs. sudden qualitative reorganisation of systems, reduction of
degrees of freedom in control problems, quasi-periodic activity, emergemacod-level
patterns on a continuous or fine-grained, dynamic microlevel, and others.

However, currently used, calculus-basishamic systemechniques have some drawbacks.
Empirical state spacanalysisrequires a large amount bfgh-quality numericatlata (e.g.,
Robertson et al. 1993). The mathematical distinction between "slow" control parameters and
"fast" statevariables barshe way to a comprehensiaecount ofdynamicallychanging time
scales, which is a crucial and common phenomenagents ofsufficient complexity(Jaeger
1994Db). Standardynamic system models awt directly yield executable computer programs

(a step in this direction is the PDL computer language, cf. Steels 1994).

Thesedifficulties root in the particular mathematical nature of tymamic system models
currently in use, i.e., continuosystems whichare ultimately specified by differentisdqua-
tions. In order tocircumvent them, | suggest to consider denpapproximativedynamic
system models as a supplement to the standard techniques.

| have defined and investigategnamic symbol systeni$aeger 1994a), elass of discrete
dynamic systemtilored to themodelling of multi-granulaagent architecture®ynamic sym-

bol systems (DSS) retain the explanatory mechanisms listed above while shunning the problems
of high-precision, continuous models. The price to be paid is the loss of numerical accuracy.

DSS theory is a mathematidarmalism. It can be employed in several wdsisst, it can be
used as an approximative, qualitative, transparent modeheofnformation processing
achieved in continuous systems lika, instance, neuraletworks. Secondgincethe theory is
formulated in algorithmic term$)SS can be used tesign information processing systems
that aredirectly runnable. ThirdDSS can bseen as &rmalismfor the representation and
processing of conceptual knowledge. In fact, DSS thieasyevolved from attempts noodel
conceptual reasoning as a self-organizing process (Jaeger 1991, 1992).

This paper provides dargely informalintroduction to thebasictheory of DSS,which is
concerned with local phenomenarigorous presentation of the entire approach can be found
in Jaeger (1994a). Section 2 is an epistemological prelnie) explaindow the notions of a
symboland itsmeaningare meant ibSS. In the main section 3, thecal theory ofDSS is
sketched. Section 4 providedaef glance athe globaltheory. Section Briefly points out
related work. Finally, section 6 justifies the entry of DSS into the game of Al.

2 Epistemological prelude: the nature of dynamic symbols

Dynamic symbol systenae discretsystems made fromynamic symboldDynamic symbols
sharemany properties withclassical symbols ithe sense of thghysical symbol system



hypothesis(Vera & Simon 1993).However, theirsemantics is quite different from the
standard, logic-oriented view. In this section, | describe dyr@mic symbolsare and what
theymean

Dynamic symbolsare physicallyobservable, repeatedly identifiabtynamicregularities in a
physical informatiorprocessing system. Theye physicalevents of some durationké any
other events researched in the natacancese.g., thecollision oftwo elementary particles.
A dynamic symboderives its identity from somempiricalobservation procedure thiagiably
indicates the presence of the regularity. A dynamic symibolt& "platonic” entity ofany sort.
Typical examplesire attractor states meuralnetworks, but transient regularitiegher than
classical attractors make perfect dynamic symbols, too (Jaeger 1994b).

In order tothink or talkaboutdynamic symbols, or inrder to represerdynamic symbols in
formalisms such as DSS theory, researcherbous@l symbolsThey denote dynamic symbols
in the same way likefor instance, théormal symbol "m" denotes the earth in farmula
describing the solar system.

The meaningof a dynamic symbol is defined terms of theinternal dynamics of the
information processing system in whitte dynamic symbobccurs.Roughly, themeaning of a
dynamic symbaos consists in a "halo" aftherdynamic symbols whichre"accessible" frons.
A precise definition will be given ithe next subsection. The import#mng to note here is
that the DSS account gymbol meaning isot externally referentiabut system-internal and
"associative".

An example will help to clarify these issues. Consider a robot capable of graspingBaptes.
built with connectionist techniques, and having a long learning hist@yobot'snformation
processing is opaque fatst sight. The experimenter wantsdonstruct a transparenglltale
DSSmodel of what is going on ithe robot. He monitors the computatioaefivity at some
place in thé'brain”. He finds, amongthers, a particulaactivity pattern whose appearance is
highly correlated with the robot'successfully grasping ampple. This activitypattern is a
dynamic symbol. lrorder to introduce it intbis DSSmodel, the experimenter writes down in
his (mental or physical) notebook a formal symbapple . Fig. 1 depicts this scene.

formal symbol -

dynamic
symbol

Fig. 1: The occurence of a dynamic symbol, and of a formal symbol denoting it.



In this scenethe researcher uses tloemal symbolapple to denote amctivity pattern.This

is nothing but a mnemotechnic aighich helpsone toremind that this particular activity
pattern isempirically correlated with the robot's grasping an apple. It is dangerous, however,
to use sucltelling namesThe dynamic symbotlenoted by théormal symbolapple doesnot

have a particular physical apple, or the class of all physical apples, for its external reference. To
reiterate, an external meaning is not defined for a dynamic symbol at all.

Upon closer inspection orfends thatthe empirical correlation between the neurattivity
pattern andyrasping events doest justify ascribing tothe former an extension physical
apples. First, thempirical correlation isunlikely to beperfect. This destroysany "platonic"
certainties. Secondayhy should the extension be "apples" at all? Other extensions would be
equally good candidates, for instance, "grasp-thing-making-experimenter-smile”. In fact, one
must not assume that the robot possesses object concepts at all.

Thus, DSS takes thepistemological stance of radical constructivism (Maturana & Varela
1984). However, the relation betweedysmamic symboand the correspondirigrmal symbol

is a classical denotation. But, this relationas part of DSSheory proper; it would be part of

a meta-theory inwhich somelogic-oriented philosopher mightish to describe whabSS-
oriented researchers do.

3 Local dynamics: coherent languages and generators

DSSdescribes information processing system$ath alocal and a global level. This section
sketches local DSS theory. Unless noted otherwise, precise definitions and proofs can be found
in Jaeger (1994a).

DSS theoryassumeghat dynamic symbolsan be observed "locally" within agent. l.e.,
when the agent'snternal processinglynamics ismonitored at some particular "locus”, a
particular collection oflynamic symbolan be observed. At another locus, posster
dynamic symbolccur. DSS does ndpecify the size orthe physicalnature of loci. In a
neural architecture, for instance, a single unit, or someassémbly, or evethe entire
network are potential loci for observations of dynamic symbols.

When an agent's internal processitygamics ianonitoredlocally for some timeDSS theory
assumeghat onecan observe tempors¢équence®f dynamic symbols. Suckequences are
calledassociationsMathematicallythe set of associations then potentially be observed at
a given locus is a formal languag@iven someplausible assumptiongecurrence finite
number of distinguishable dynamic symbols, finitemory), the type of such languages can be
specified. One arrives at the notiorcoherenianguages.

(A last aside. An association is a physical sequengkysicalunits,namely, dynamic symbols.
A formal language, on the other hand, is a set of formal words, i.e. a set of sequiamoes of
symbols. Thus, one shouldctually distinguish betweephysical associations andormal
associations. However, | will abys talkaboutdynamicrather tharformal symbols. In doing
so, | act like the physicist who reads the formal representation "EB'-amtenergy equals ... "
rather than as something like "the formal symbol for energy ...")

Coherent languages are a subclass of the regular languages. A convenient tool to describe them
are generators Fig. 2 presents an example.g&nerator is dinite, cyclic, directed graph,



whose edges arlabelled by dynamic symbol€ach finite path in a generatoyields an
association of the corresponding coherent language, in an obvious fashion.

More formally, let = be a finite alphabefof dynamic symbols). Ageneratoris a pair

G = (S, trang), whereS is the set of nodggalledlocal state}, andtrans [ Sx2xS is the set
of labelled edges (calldtansitiong. G is required to be finite and cyclic. Then,

C={s;..5,0 2" n= 0, there exists a sequencg, &, X;), (X1, S X2), ++s %1-1: S %)
of transitions itrans

is the language generated by G.
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Fig. 2: A generator.

Among many others, the associatiorsgg contact grasp-smoothly and apple
contact grasp-firmly belong tothe coherent languagpecified bythe generatoirom
fig. 2. InDSSterminology,contact appears in theontextegg in the first association, and
in the contexipple in the second. In the context@dg, contact can becontinuatedby

grasp-smoothly but not bygrasp-tightly . The contexegg filters out the continua-
tion grasp-tightly . Context-induced filtering is a basic phenomenon ihoided theory of
DSS.

Contexts can be extended to the left. For instance, the cegigxtan be extended grasp
ungrasp egg. Interpreting associations temporally, tmeans taking int@account a larger
portion of the pastGenerally, such extensions enharnbe filtering effects of contexts:
knowing moreabout the pasyields more informationabout the future. Foinstance, after
observingcontact , oneonly knows that thepossible continuations begin witrasp-
tightly or grasp-smoothly or correct_position , but afterobserving the more
extended contexdgg contact , one can exclude the continuatgmasp-tightly

However, certain contexts are "saturated" in that no fugkiension to théft can properly
enhance their filtering effects. Sucbntexts arealledphase-fixing In fact, everycontext can
be extended to the left to becoptease-fixingFor instance, in fig. 2the contextontact is
not phase-fixing,but its extensioegg contact is. Two phase-fixingcontextsp, q are
equivalentwhen they possesthe same continuations. In fig. Zhe contextgrasp-
tightly andgrasp-smoothly arephase-fixing and equivalerithe equivalencelasses



of phase-fixingcontexts arealledthe phasesf a coherent language The term is motivated
by viewing agenerator as a stochastic oscillator. Phases, then, correspondxitaally
informative (i.e., predictive) internal states of this oscillator.

Phases are a central notiorD8S. Thephases of a coherent langu&gean be interpreted as
the nodes of a particular gentenafor C, its uniquephase generato64(C). Gy(C) can be
effectively computed fromany other generator G of. The generator shown ifig. 2 is
actually such a phase generator. Phase generators have quite pleasant formal properties.

Given a collection of associations belonging tcoberent language, the correspondghgse
generator can bapproximativelyreconstructed with amductive learningporocedure (unpub-
lished result). The procedure uses a "horizon" control pararheterhich specifies the
maximallength of associationthat arepreciselyreconstructed from the teachisgt. If one
selectsh = max {n | ¢ is a phase,gn= min {m | m =length), p U ¢}}, and if theteaching
material containsall the language's associations of length, the original phaseyenerator is
perfectly reconstructed.

As an additional benefit, thigrocedureyields transition probabilitieor thelabellededges in
the reconstructed phase generator. A generator equipped with tramsdizabilities can
canonically beegarded as a description of a sequence-generating stochastic prodesss. At
sight, it resembles Blarkov chain.However, althouglevery (ergodic) Markoehain can be
captured by a probabilistic phase generator, the converse does not hold. In addairkahe
outcome of d@ime step isinfluenced by a universallpounded number of precedisteps. By
contrast, in cohereménguages, transitions steps can be propeillyenced byevents that lie
arbitrarily far in the past.

For anexample, assumihat thephase generator ifig. 2 were augmented bgrobabilities.
Then, aftenissuing a periodic subsequencer{tact correct_position )" of arbitrary
length 2n, theprobabilities of whethethe nextdynamic symbol isgrasp-firmly or
grasp-softly depend on whether this subsequence was preceded, 2n steps back in the

past, byegg or byapple .

The canonical morphisms between generatorsiamalations Intuitively, when agenerator G
is simulated in somether generator & the graph structure of,Gs "spooled” into the graph
structure of G, preserving edgédabels. Formally, a simulation of G= (S;, trans) in
G, = (S,, trans,) is a mapping: S; - P(S,) from S, to the power set &,, which satisfies

(i) o(x) is nonempty for all XJ S,
(i) forall (xq, r, x;') O trans,, for all %, [ o(x,) there exists X[ o(x,") such that
(X9, 1, %) O trans,.

This iswritten 0: G; —» G,. A fundamentakimulation theorenstates thaC, is a coherent

sublanguage of a coherent langu&yeiff there exists aimulationo: Gy(Cy) -~ Gy(Cy)
between the corresponding phase generators.

The notion of phases is crucial for an information-theoretic interpretation of associations. The

information H(s), which is gained byhe observation of an associat®ns specified as the
knowledge provided byabout the phase of the stochastic oscillafiCB

H(s) = -log [®(s)] / P(C)I,



where®(C) is the set ofall phases ofC, and®d(s) is the set ophases compatible with the
observation o (i.e., ®(s) contains those phaseich can beeached, in the phase generator
G¢(C), on a derivation path f@). In globalDSS theory, H) is important for the account of
self-organization in self-organizing streams.

®(s) is calledthe meaningof s. In theexample from fig. 2the set ofocal states {4, 6} is the
meaning of the associationntact . This definition of an associatiomgeaningamounts to a
specification of its possible future continuations; i.e., it is a dynamic, system-internal account of
meaning. Ifs = s,...s,, then®(s) can also be interpreted as theaning otthe singledynamic
symbol g in the contexs;.. s, ;.

An important phenomenon in continuodgnamic systems ibifurcations. In a particular
variety (pitchfork bifurcations), aattractorsplits intotwo sibling attractors, due to shift in
some control parameter(s). In situated agents, this pesaible mechanisnfor adaptive
differentiationof behaviors or concepts.

DSS istoo coarse an approximation of continuaysmamic system®r capturingbifurcations

in detail. Still, something can b@mk in order to gdtold of this important mechanism. DSS
theory assumethatamong thedynamic symboleccuring at some locus, some hikeircation
siblings ofothers.Formally, this"sibling relation” is cast into differentiationordering < on

the dynamic symbols of aoherent language. Fig. 3 shows a differentiation ordering for the
symbols appearing in fig. 2.

top grasp grasp-
z softly
grasp-
firmly
ungrasp
centact

correct position
egg
apple

Fig. 3: A differentiation ordering for the symbols appearing in fig. 2.

A differentiation ordering mudatisfy certairconstraints. Théasic idea ighat associations
made from more differentiatedynamic symbolsmust be "subsumed”, within eoherent
language, by less differentiated associations. An assocgtiep is said to besubsumedy

t..t, if =25 (=1, .., n). Fornstance, referring to figs. 2 and ®p top subsumes
grasp ungrasp , which further subsumegasp-firmly ungrasp .

Technically, this subsumptiotonstraint is expresseda ageneralized simulatiow.. The
definition of generalized simulatioms. is derived from thelefinition of ordinary simulations
by replacing condition (ii) with

(i) for all (x4, rq, ;') O trans,, for all %, 0 o(x,) there exists xJ a(X4), r, = r4, such that
(X9, 'y, Xo) U trans,.



The simulation theorem carries over to generalized simulations (unpublished @gsult); iff

there exists a generalizetulationo.: Gy(Cy) - Gy(Cy). C; < C, meanghatevery associa-
tion in C; is subsumed by some associatio@4n

| return to theissue of constraining differentiation orderings. Such an ordering is required to
satisfythat thereexist a generalized autosimulatiop G,(C) — G4(C) of the phase genera-
tor, such that every transition;(X,, X;) U trans wherer, has a subsumej = r4, is mapped on
some (%, I, X)) U trans In therunning example, such a generalized simulation is provided by
0(1) = {1}, 04(2) = {1, 2}, 0(3) = {1, 3}, 0(4) = {1, 4}, 0(5) = {1, 5}, 0(6) = {1, 6}.

Generalized autosimulations thfe kind justused reveal a differentiatidmerarchy ofcyclic
substructures in phase generattmtuitively, more differentiatedubstructures "unfoldffom

less differentiated ones by tlwembined effects oflynamic symbol differentiatiomnd an
elaboration of the graph substructure. In ¢éixample the least differentiated substructure is
the singletop loop on the carrier {1}which differentiates tdhe substructure on the carrier
{1, 2}, which in turn differentiates tahe substructures on {1, 2, 3, dhd{1, 2, 5, 6}. In
terms of continuous attractor states of a neassémblythetop loop might beinterpreted as

a highly chaotic "ground state", whereas the maliferentiated subgenerators would
correspond to less chaotic stateaturing several lower-dimensional, or even near-limit-cycle,
substates (beautiful examples in Yao & Freeman 1990, caveats discussed in Jaeger 1994b).

A hierarchically differentiatedenerator somewhaesembles an inheritancetwork of the
kind used insymbolic Al for the representation of conceptual knowledge. |ldtieal
ramifications of this view on generatoase examined inJaeger (1992, 1994a), where the
reader can also find a discussiorhofv adynamic systerperspective might shed new light on
old questions, e.g., the@roblem of conceptual cyclegontext sensitivity of concept
interpretation, and others.

antarctic, fly,
Bielefeld bird
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Fig. 4: To fly and fly not.

At the present occasion, | restrmayself to aphenomenon in generators whimbrresponds to
nonmonotonic inheritance. Fig. 4 shows three portions fromrerrchically differentiated
generatorwhich is presumablyeconstructed from an ornithologiskst temporal lobe. The
two lower portions belong teelatively differentiategdubstructures of the presumed generator;



the upper portiofoelongs to a less differentiated substructure. The foam@eemapped on the
latter via a generalizedutosimulation. The "unfolding” dhe upper structure to the lower
ones has several effetiie context8ielefeld andantarctic are separated fromach
other;bird s becomerow s in Bielefeld andpenguin s in theantarctic ; and last
but not leastcrow ssoar andpenguin s stay grounded.

Thebasic modepresented in this section can be augmenteddar to capturélifferent noise
levels, and different levels observational precision. This is achieved by using as a local phase
space modehot a single generator, butheo-dimensional array ofeneratorswhich are
derived from eacbthervia simulations. A detailedccount(which in some aspects, however,
reflects an earlier state of the theory) can be found in Jaeger (1994b).

In sum, generators with internal differentiation relatiare thebasicDSS"local phase space”

model. On one hand, they can be considered as an approximative description of temporal and
bifurcation relations of local regularities in continualypamicsystems. On thether hand,

they can be regarded as a peculiar versionharitancenetworks for the representation of
conceptual knowledge.

4 A glance at global DSS theory: self-organizing streams and associeties

Realistic information processing systems, in particular neetatorks, arespatiallyextended
and functionallystructured. DSS offers, first, model of spatially extended subsystems with
locally homogeneoudynamics:self-organizing streamsSecond, DS$lescribes hovseveral
such subsystems can be coupiegether,achieving complex, functionallgtructured multi-
granular information processing systerassocieties This subsectiormriefly points out the
basic characteristics of self-organizing streams and associeties.

Self-organizing streams are, in some aspects, reminiscent of calitdarata. At @iven point

in time, a self-organizing stream appears as a spati@rn ofdynamic symbols, aonfigura-

tion. Like configurations in cellulaautomata, DSS configuratiombange in timedue to an
operationwhich locally changes thepattern. These operations acalled microchanges
Microchanges reflect the local dynamics which is described by a coherent language, as outlined
in the previous section. gelf-organizing streanthus, alvays comes with eoherent language

C which determineghe local dynamics in éhomogeneoudashion; this language is the
analogue of the lookup table for tlhacal transition rule in cellulaautomata.C can be
considered as the self-organizing stream's long-term memory.

More precisely, a configuration is a finitéirected graph whose edges kaeeled by dynamic
symbols fromthe underlying dynamic symbapace. A microchangecally alters the edge
labelsand thevery graph structurgwhich puts an end to thanalogies betweenellular
automata andelf-organizing streamsjnce inthe former, the topological structuemains
unchanged). Microchanges aapplied asynchronously and in parallel at different loci in
configurations. Input andutput is achieved bgeleting and addintpbellededges thatead
to/from the configuration. These I/O operatiobsing themselves variants of microchanges,
can be executethdependently froniproper" microchanges at any timiput arrives in the
form of an arbitrary, directed, cycle-free, edge-labled grapith is successively fed into the
self-organizing strean®utput is generated in amverse fashion. Ithe simplestcase, this 1/0
formatboils down to a sequence dynamic symbols (exampliEnguage processing). trther
cases, the format can be a broad "band" wheey interconnectedlynamic symbolgass



through the strearsimultaneously{as in visual information processing). Talkdinogether, a
self-organizing stream is aanytime algorithmfor processingymbolic streams of a quite
general format.

A configuration is essentiallff.e., ignoringl/O transitions) a generator. Thusca@nfiguration
yields acoherent languag&his language models a "mensshte” (of a homogeneous proces-
sing subsystem) iterms of a set oassociationshat arepresently "active". The history of a
self-organizing stream can, therefore, be described as a temporal devedp@ent;, ... of
languages. The self-organizipgoperties of a stream concern this language development.
Rememberthat a self-organizing stream is governed in its local behavior lgermerator
describing a particular langua@e The microchangeechanism is devised in a wsiychthat
"disordered" fragments of the configuration langudgesreattractedby sublanguages of the
"ruling” languageC. This is achieved by variousspects of microchangeshich include
concatenation of associations, differentiatilygamic symbols to makéem fit ketterwith C
(thesetwo effects amount tpattern completion), angdeletion of unfitting edges (aspect of
noise filtering). The net effect is that in the absence of input, the configuration lanGuages
likely to converge to a sublanguagediWhen the process is perturbed by inpudtilit can be
understood as continually "trying" to redch

A crucial phenomenon in a self-organizing streatheésformation otyclic substructures that
yield asublanguage of. Such structures aalledresonancesOnce formed, a resonance is
likely to persist for some timayhich amounts to a short-tinraemory effectFurthermore, a
resonance idikely to attract, modify and incorporateymbolic material fromits vicinity.
Resonances are the D8fdel of gestalt formation. Theye attractors in thglobal, parallel
dynamic system presented by a self-organizing stream.

Self-organizing streams can be coupledether inassocieties Two coupling mechanisms
exist. First, different streams can communicagetheir outputand input. Second, lagher-
level, coarse-grained stream canound in a lower-level, fine-grained strearimtuitively,
resonances in the lower-level stream are replayed by dgymgenic symbols ithe higher-level
stream, suclthat the connectivity topology betweéner-grained resonances is mirrored in
coarser-grained associations. Hwtance, a conceptual-level stream can ground in a stream
processing visual features.thmt case, théner-grained resonances made from visual features
yield analogical representations for the concept-level symbols.

Between ahigher-level and a lower-levedtream, simultaneoup-down and bottom-up
interactions are mediated by grounding relations, shahself-organization in each stream
fosters self-organization in the other.

Fig. 5 gives an impression of an associearge ovals correspond &elf-organizing streams,
x's of various size tdynamic symbols ofarious granularity. Interstream bacmmmunication
and communication withhe sensomotoric interface are rendered by bold shemtets.
Resonances are indicateddyglic dotted arrows. Ayroundinglink is shown enlargedyhich
couples a fine-grained resonance from a visual feature processing stream dyuitimec
symbol from conceptual-level stream.
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Fig. 5: An associety.

5 Related work

Combining a symboliformat of representation with a self-organizaygpamics is1ot aunique
feature of DSSClassifier systems, localist neuratworks, and some singular approaches
feature this combination, too.

Classifier systems (Hollant®75) have beeapplied in a few cases to modeling reasoning in
agents (e.g., Patel &chnepf 1991). Classifiers roughdpgmpare to associations, aogtlic
chains of them to resonances. However, classifier systems are typically usedelorgnmalg-
term adaptation processes with genetic algoritih&S, by contrasfocusses on short-term,
situated activity. Thus, classifier systems and DSS have complementary recommendations.

Localist neural networks are characterized by their newamging symbolic labelSCompo-

site symbolicstructuresarise from simultaneous unit activatiofesg., Waltz & Pollack 1985,
Smolenskyl986) or from spike train correlatig¢a.g., Mani & Shastri 1993). Recurrent local-

ist networks could in principle realize stream processing in comprehensive multi-granular,
multi-module architectures, although presently no such approach features that combination.
Thus, this class of connectionist techniques is in principle comparable to DSS. When one
takes a closer look at these techniques and DSS, one finds a number of shared properties:

+ local interactions in a collective of informational units,

« formation of "coherent” composites,

« in logical terms, a type-free nature of informational units, i.e., a coincidence of what
classical Al would call individuals, classes, and relations,

- feedback and cyclicity, and

« thermodynamic control parameters, in particular, computational temperature.
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In (Jaeger 1994), | argue that thetaracteristics are due to turn wpiversally inarchitec-
tures thatcombine a self-organizing dynamiegth symbolic representation. The Copycat
architecture (Hofstadter &litchell 1992) is another instandieat | wouldinclude in this class.
It achieves an analogy-based discovery of nometepts, featuring an intricatembnation of
custom-built techniques that cannot be readily classified in traditional terms.

6 Conclusion

Dynamic symbol systems combine a symbfdienat of "representation” (without an exten-
sional semantics being intended) with a self-organizing dynahtiestheory isnathematically
rigorous, essentially simpleand rests in aorked-outepistemological frame. Thus, DSS
contributes tdoridgingthe gap between dynamics-orientedttom-up techniques, and repre-
sentation-oriented, top-down perspectives in All this can be said of some related
approaches asell. The entry oDSS into thegame can nonetheless be justified, | believe, by
the following points:

+ DSS can serve as an approximative description of continuous dynamic systems.

« DSS isunique in its combination of stream processing with a coveragee ohulti-
granular periphery-centre axis of an agent.

« DSS suggests answers to some hard problems of logic-oriented Al, for instance concer-
ning terminological cycles, analogical representations, and nonmonotonic inheritance.

Of course, DS®as itslimits. It is a verycrude, non-quantitative approximation to continuous
dynamicsystemslts use formodeling conceptual-level reasoningastricted by the fact that
DSS-style information processing canmatpture numerical, logical, or otherwise "exact"
modes of reasoning. Self-organization, at least asmperfectly - understood today, is
possibly necessary, but certainly not sufficient to explain intelligent thinking and acting.
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