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Abstract

This thesis introducedynamic symbol systen(®SS). The approachombines asymbolic
format of information with a self-organizing dynamics. ppnsnarily intended for thenodeling
of intelligent, situated agents.

The basic information processing module isedf-organizing streamn computational terms,
this is an anytime-algorithrfor the processing ahformationthat comes in a quite general
stream format. In terms of thermodynamic systems, it isp@m, dissipative, rapidly self-
organizing system. In terms of cognitive science, a self-organizing stream is a thatlgkn
appear aany place fronthe peripheric sensomotoric interface to the central concégpiehl
performing tasks of pattern completion, noise filtering, and gestalt formation.

Different self-organizing streams can be coupjeslding complex, self-organizing information
processing systems. Thesgsocietiesan span the entire periphery-cerdxes of anagent.
Top-down and bottom-umfluences mutuallysupport each othewith none of thenmhaving
causal or temporal precedence over the other.

At the most central, conceptuldvel, the DSS representation format ismany aspects
comparable to classical semantietworks. The approach proposes answerssdweeral
controversial issues concernitige nature of concepts, e.g., contsamsitivity, hnonmonotonic
inheritance, the nature of concepts vs. attributes, and conceptual cycles.

DSS is a concretéormal instantiation of a general, structuralistic epistemofogysituated
information processingnamely, dynamic symbol structuresthe key assumption dahis
perspective is to considsymbols as empirical, physicabservables, which can beliably
detected in amformation processing system. This epistemological fraelds a unified view
on two paradigmsthat are often consideradcompatible, i.e.the physical symbol systems
paradigm and situated action.

Thedynamics islescribed in algorithmic terms. It shouldrbtatively straightforward tanake
the formalism run on a computer. As yet, however, the approach is not implemented.

The thesis first establishes and expldies epistemological frame. It then develops, in a
rigorous fashion, the concrete D&®Bmalism. An application iproposed, where DS&:rves
as an auxiliary mechanisfor memory access in aotherwiseclassical systemlhe DSS
representation format faymbolicknowledge is compared witllassicalmethods for concept
representation. General insights concertimegrombination of a self-organizing dynamics with
symbolicrepresentation formats are derived from a comparis@S&with related connec-
tionist models.



Note added for the ftp-able version: latest news on DSS

The thesis concludes with lookiogit tosome open questioffs. 151f).Two months after the
thesis has beetast into itsfinal form, | canreportconsiderablgrogress concerninggvo of
those open issues.

First, a learning technique for the induction of phase generators from observed associations has
been developed. Furthermore, the phase generators thus constructed are augmented by proba-
bilities for their transitions. These probabilities leaduyin, to arefinement othe definition of
information (p. 61).

Second, thesimulationtheorem (p. 64has been generalized to cotteg case of anified

symmetrfication/abstraction operationThis should pavethe way for a construction of
dynamic symbol spaces consisting purely of phase generators.

(august '94)
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1 Introduction

This thesis introducedynamic symbol systerfi8SS). DSS is armcipled formalapproach to
symbolic informationprocessing. It mediates betweelassical symbolic Aland emergent
computation techniques in Al, the most prominentvbich are neurahetwork andclassifier
systems. On the one hand, Hasic informational units IDSS aresymbols, as in classical Al.
On the othethand, thedynamics inDCS builds on self-organization, as @mergent compu-
tation (fig. 1.1).

. emergent compu-
classical Al D55 tation, complex
systems
basic fine-grained,
informational symbols "subsymbolic”
units units
dynamics logic-oriented self-organization
inferences
I

Fig. 1.1 The basic methodological coordinates of DSS.

In order for asymbolicapproach to support self-organizing dynamics, symbols have to be
conceived in a somewhat different fashion tharclassicalAl. In particular, thaneaning
(reference) obymbols isreconstructed as ampirical observable ithe DSS approacihis
contrasts with the classical view on symbulsere reference is a "platonically” pre-established
relation. Inorder tomake this difference (anothers)explicit, symbolsare called dynamic
symbolsn DSS.

New formalismsshouldnot beinvented without necessity. | b®te, however, thatombining
symbolic representation with a self-organizimlynamics is necessafpr themodeling of
agents that are botimtelligent andsituated, i.e., agentahich have intellectiveskills like
abstract reasong and verbal communication, and whate physicallyembodied in aynamic
environmentMore specifically, largue that thenformation processing inside such an agent
must combine two aspects:

« Informational entitiege.g., perceptual featurebasic actuatorcommands, reflexes, or
higher cognitive categories) must be couptagether in compositeand decoupled again,
in a fast ancdcausally effective way. This iseeded to enable a fasttup ofbehaviors in
unpredictable environmental circumstances.

« This fast composition of informational entities mumit depend onexplicit control
structures. Rather, it muatise in a self-organizing fashion, in whialhthe agent'gro-
cessing levelsteractsimultaneoushbottom-up andop-down.This is necessarfor the
agent to become coupled into its environment inessentiallycontinuous agent/en-
vironment feedback loop.



The single most important contribution of DSS consists in a principled integratimeseftwo
aspects. Fast araffective compositionality reflecthe formalism's classical symbolieritage;

a self-organizing dynamics IlinkBSS to emergent computation and the situated action
paradigm.

The dynamics of DSS is specified in algorithmic terms. However, DSS is not yet implemented.

Overview

DSSaims at reconciling symbolic Alith the situated action paradigm. Sectiodeals with
some methodological facets of this endeavor.

In 2.1, | sketch how both traditions approach the task of adg=magn, highlighting why an
integration is difficult. Inorder toestablish an epistemological framewdok such an integra-
tion, | introduce an abstract structuralistiew onagentspamely, linterpret them adynamic
symbol structures

This perspective is outlined in 2.2. It is worked out in more detail in the following subsections.

2.3 is devoted to thproblem of an agent's "vertical axislhich ranges from a sensomotoric
periphery to an intellective centre. It can be investigated in morphological and functional terms.
At least in biological agents, the periphery-centre axis is structured in a compldéavpo-

logical and functional aspects are intertwined in an opaieoh. largue thasuch complexi-

ty and opacity contribute to an agent's autonomy and adaptivéfess.complextypes of
periphery-centre "morphologies” can be interpreted in terms of dynamic symbol structures.

In section 2.4, explainhow dynamic symbostructures can be interpretedpdsysical symbol
systems in the sense of classical Al. The main difficulyasclassical symbolareintrinsically
referential, whereas for dynamic symbols, reference is a secondary phenomenon, which must be
reconstructed empirically.

Section 2.5 treats thelationship betweedynamic symbostructures and the situated action
paradigm. Again, a central question concdnesnature ofymbolicunits. The situated action
critique againssymbols has an anti-referentsald an anti-discrete aspect. The for#ticism is
answered for by thempirical,contingent nature of reference afnamic symbols. As to the
anti-discreteness argumedgnamic symbolsre not disrete in the sense of "yes-or-no enti-
ties". Their discreteness resides in the weaker notiadeotifiability through anempirical
observation procedure. A standard typedghamic symbolsare attractor states thedn be
observed in neural assemblies.

Section 2.6 furtheexplores the nature alynamic symbols as physiaatbservables. They are
characterized in terms of tlheformation gainedhrough their observation. The lasforma-
tion gained, the morabstractthe dynamic symbol.

Section 2.7considers the topic of emergence and grounding. In a restricted sense, these
notions are interpreted aynamic symbostructures by theelationships between fine-grained
symbolic composites and coarse-grained dynamic symbols.



Section 2.&oncludes the elaboration @fnamic symbostructures by interpreting them as an
instance ofstructuresin the specific sense advanced Byaget. Such structures are charac-
terized by what Piaget calls totality, transformations, and self-regulation.

Section 2.9 addressesfumdamental problem adigent designnamely,the reconciliation of
"free" compositionality with a self-organizing dynamics. | artha bothprinciplesare needed
for intelligent situated agents. An agent must d&lge to establish complex behaviors and
perceptual schemata frosmrmplerconstituents in aessentially arbitrary fashion. This kind of
ad-hoccompositionality is a hallmark of symbold, but it is hard tocachieve withpresent
emergent computation techniques. Ondtieerhand, an agent must bi@ectly coupled into
its environment bssentiallycontinuous perception-action feedback loops. Snebhanisms
are abasic ingredient of behavior-orientedbots, butthey areimpossible to realize with
standard logic-oriented techniques. In light of dynamic symbostructures, a picture of an
agent emerges, where compositionality and self-organizatioecaro onall levelsfrom the
sensomotoric periphery to the intellective centre.

Finally, in2.10 | try to resolve the apparent contradiction betveegticit design orthe one
hand, and an agent's autonomy on then Thechallenge i©pen designi.e., equipping the
agent with aninitial outfit of explicitly designed faculties, sudfat it can autonomously
develop further, unpremeditated faculties duringffégme. | argue thamimicking biological
"modify-and-test" evolutionary mechanismd4a® slow a strategyowardthis end. Ipropose
to use a "discover-and-modify" technique instestich exploitsthe inherenambiguities of
existing functionalities, pluthe compositionality mechanisms of dynamic symbwlctures.
Given ambiguity, new functionalities can d#scovered withouhaving to modify amgent's
structure first; given compositionality, a functionality that turns out a success can ligedme
as a new unit.

Dynamic symboktructuresprovide a epistemological framework feewing agents Dynamic
symbolsystemg¢DSS) are a concrete mathematical algdrithmic instantiation of this general
framework. The DSS model is developed in four stages in sectidmcd, constitutes the core
of this thesis. Figure 1.2 shows the essential constructs of each stage.

The elementary underpinnings DSS are treated in section 3.1. Whedyaamic symbol
system is monitorelbcally during some interval of time,fanite sequence aflynamic symbols

is observed. Such sequences are calisdciationsThe set of associations that can potentially
be observed at a given locus inagent forms &rmal languag@ver an alphabet afynamic
symbols. A particular subclass mdgular languages;oherent languageds determined by
some plausible assumptions concerniofpservations ofdynamic systems. The theory of
coherent languages is the mathematical backbondD®®%. Theselanguages can be
conveniently described using finiteyclic generators i.e., edge-labeled transition graghg.
1.2a). Generators can be interpreted as stochastic oscillatugs. & association is observed,
someinformation concerning thanternal state ofsuch an oscillator is gainetaximally
informative associationsorrespond tghasesof the device. Normal form generators can be
constructed from phases. The main results of 3.1 conceriplsasé generators

Classical Al systems havekaowledge base, neural netwosdterelong-term information in
link weights. In DSS, the "long termemory" is proviled by adynamic symbol spadeection
3.2). Technically, this is @et of generatorsyhich, by way of arabstractionand asymmetry
breaking operation, can be arranged in a two-dimensional array 1fRh). Seen from a
classical angle, dynamic symbospace is comparable with a semantic inheritaieteork. In
the perspective gshysical dynamisystems, it playghe role of ahermodynamic globadtate
space. Therefore, the generators contained in a dynamic symbol space agtotaledates
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Fig. 1.2: The four stages of DSS. a) a generator, lgymamic symbolspace, c) aself-
organizing stream, d) an associety.

The DSSmodel of a single processing moduleheg self-organizing streanfsection 3.3). |
first treat processing modules without input aodtput Eelf-organizing scengswhich are
then equipped with/O mechanisms to arrive at self-organizisigeams.Technically, self-
organizing scenes and streaare described as a temporal succession of genejetes!
configuration3. The succession is induced by an operatadled microchanggbig arrows in
fig. 1.2c). Microchangelcally alter the graph structure obnfigurations andymbolic labels.
Like in physical systemswhere thedynamics atthe microlevel is affected by global
thermodynamic parameters, microchanges depend in their effette grior selection of a
particular globalstatefrom an underlyingdynamic symbolspace. Since configurations are
generators, each of theyrelds a formalanguage. Technicallyhe self-organizingaspect of
microchange dynamia®sides in the fadhat "disorderedfragments of these languages are
attracted by'orderly” fragments of the language described by the selgtibdl state.Such



"orderly" fragmentsare characterized Ilgternal feedbackoops. They are calledresonances
Resonances can be interpreted as a gestalt phenomenon.

Self-organizing streams can be coupled to form complex architechsss;ieties(section
3.4). There argwo coupling mechanismgirst, different streams can communicaig the
outputand inputhatthey generate and accept (U-shaped bafid.id.2d). Second, higher-
level, coarse-grained stream cgrnound in a lower-level, fine-grained streamechnically,
lower-level resonance@otted circles in fig. 1.2d) are interpreted by singlagher-level
symbols(straightlines in fig. 1.2d). Forinstance, a conceptual-level stream can ground in a
stream that processes visual features. In that casdinémegrained resonances mafiem
visual features yield analogical representations for the concept-level symbols. Between adjacent
higher and lowelevel streams, simultaneotisp-downand bottom-up interactions existich

that self-organization in each of the streams fosters self-organization athetre Associeties

are the DSS account of complex agent architectures.

An application ofDSS is outlined in section 4. D$&hniques can serve aaxiliary function

for accessing an otherwise classic knowledge bdseh isused for a textinderstanding task.

The basic idea is to initiate the text interpretation by feeding keywords from the text into a self-
organizing stream. Resonandesming in the stream indicat@hich partitions of the the
knowledge base should be accessedrder to loadrelevant knowledge for completing the
interpretation task. A central featuretbis keyword-oriented technique for knowledge access

is that information contained in the temporal order of keywords is exploited.

In section 5,dynamic symbolspaces are explored as a representation for associationistic,
conceptual-level knowledge. Several hard problent®otept representation appear in a new
light. They includethe nature of concepts vs. attributiesminological cycles, nonmonotonic
inheritance, and varying arity of relations.

Section 6examinestwo related approaches in some detadmely, Sejnowsky's "harmony
theory" and Hofstadter anditchell's "Copycat". DSS sharesrmimber of characteristics with
these (and related) techniques. Thaglude local interactions of informational entities;
formation of "coherent” composites; coincidencearicepts, attributes, and relations; context
sensitivity of informational entities; feedback amydlicity; and thermodynamistates aglobal
control parameters. The contribution of DSShig family of computational approachéss in

its combination of stream processing with a multi-granular architecture.

Section 7 concludes the thesis by looking back, looking ahead, and looking around.

A synopsis of DSS notions

DSS combines ideas fronsymbolic Al with ideas from self-organizing systems. As a
consequence, the notiodsfined inDSS will be to some extennfamiliar to readerswith

either a classical Al or aamergent computation background. Tah[& provides @ynopsis of
important DSS notionsndicatinghow theyroughly relate to concepts froatassical symbol
processing and emergent computation/complex systems. | hope that this table helps to "situate"
my approach in both other fields.



classical Al DSS emergent computation,
complex systems
symbol dynamic symbol Aocal observable

assertion, formula association

symbolic reference grounding of dynamic
symbol in dynamic

composite

context of an
association

textual context

terminologic knowledge base, dynamic symbol space
semantic network

mode of reasoning, e.g. global state
excited vs. calm
symbol structure with resonance

gestalt quality

anytime algorithm for
filtering and completing
infinite symbol sequence

self-organizing stream

multi-level symbolic
information processing
system

associety

B. local attractor in a parallel
dynamic system

local short-time observation
in a parallel dynamic system

explanation of observable
in terms of finer granularity

local spatiotemporal
neighborhood of a local
observable in a parallel system

global (thermodynamic) state

space

global (thermodynamic) state

feedback cycle, attractor

open (sub-)system

complex system described on
several levels of granularity

Table 1.3 A synopsis ofDSS constructs, deey approximately relate teymbolic Al and

emergent computation/complex systems.



2 Dynamic symbol structures: an integrative perspective
on classical Al and situated action

The task of understanding addsigning intelligentphysically situated agents is a prominent
goal in current Al research. It motivates the DSS approHais. sectionexaminesthe area
more closely, in order to establish a firm epistemological frame for DSS.

The section is organized as follows. First, a controversy betelassical Al andsituated
action approaches isighlighted (2.1). A structuralistic account of antelligent, situated
agent, as dynamic symbol structurés then sketched (2.2). dims at anntegrated perspec-
tive on bothclassical andsituated-action-oriented agent models. THeS formalism is a
particular formal instantiation of this abstractcount. In the main body of the secti@3 -
2.10), | usadynamic symbostructures for a close&xamination othe classical Alvs. situated
action controversy, focussing on the task of designing artificial agents.

2.1 A controversy concerning the modeling of agents

In current Al,two complementary approaches to model agents capable of perfaonmpiex
tasks in a physical environment can be discerned.

The first approachyrowsout of classical symbolic Aand robotics. Anobilerobot platform is
equipped with a knowledge-based control systehich includes classical Alomponentdike

a symbolicknowledge base, planning moduleand symbolic communication facilities. An
example ighe robotFlakey(Congdon et al. 1994Flakeycan, for instance, navigate through
the corridors of the SRI institute, executing tasks digkvering anobject to a person whose
location must be asked from other persons.

The second approach hasrib®ts incybernetics, artificialife research, and in the epistemo-
logical perspectiveow calledsituated action The agent's performance is achieved through a
multitude of relatively simpléehaviors Each of them continuously receives sensor input and
generates action responses; it astsentially like a reflex. No explidithowledge representa-
tion andinferencing existsMore complex behaviors emerge in a self-organizing fashion from
the interaction between tlasic built-in behaviors, and frotine interaction of theobot with

its environment. Paradigmatic exampdes the robotbuilt by Brooks (1989). Thesénsect-

like" automata move in an unknowechanging, obstacle-cluttered environment, arkuibit
behaviors like obstacle avoidance, wall following, or keeping distance from each other.

Thetwo approaches corresponddiferent perspectives on intelligendée firstemphasizes
symbolicreasoning, expliciknowledge, and verbal communication. Ithe traditionaliop-
down perspective adymbolicAl. A brief account ofthis perspective is provided by Wachs-
muth (1994). The secondiew setsout toreconstructintelligence in abottom-upfashion,
stressing aspects of real-time adaptive behaviodynamic physical environmeriBehavior

is intelligent if it maximises preservation of the system in its environr(fet@®ls 1994). A
brief introduction is given by Brooks (1991).



Considering this complementarity, it seems naturaldrk towards arntegration. To be sure,
state-of-the-artmobile robotsusuallyfeature bothreflex-like low-level mechanisms, ahigh-
level symbolicreasoning capabilitieszour out ofthe five winners ofthe 1993AAAIl robot
competition are othis "hybrid" kind (Nourbakhsh et al. 1993Rut, these architectures can
hardly be considered taue integration of thawo perspectives, since thégll short of fully
realizing the potentials either of classical Al or of behavior-based approaches.

First, mobile robots do not, as yetealize the possibilities ofcurrent knowledge-based Al
techniques in a satisfactory way. Real-time constraeterelylimit reasoning capabilities.
Contest-winningmobile robots doonly minimal high-levelreasoning, using amall, task-
tailored knowledge base. Fmstance, Flakey'knowledge in the 1992AAl robot contest

was centered around thréénds of objects (standardized boxes, standardized poles, and
walls), and around a singlask and the subtasks conneateth it (hamely,finding poles in a
wall-bounded arena) (Congdon et al. 1994).

Second, current contest-winningpbile robots do notealizethe potentials of behavior-orien-
tedtechniques either. A central issue in behavior-oriented Al is to make agéotamously
adaptive by letting them evolve new behaviors, whighnotpremeditated by the designer (cf.
2.10). Such mechanisms are not incorporated in the mobile robots in question here.

No theoretical framework svailablefor thedesign of agentthattruly integrates thelassical
with the behavior-oriented perspective. Research ifigkdegproceeds byote experimentation
(Hanks, Pollack & Cohen 1993). Nourbakhsh et al. (19931) sum upthe lessons learnt
from the 1993AAAI robot contest bytating that'one conspicuously missing aspect of the
current work in robotics is a strong tie between theory and practice."

There are at leadivo serious obstacles opposing attempts towardkearetically well-
founded, integrative research strategy.

For one, thewo approaches rest atifferent formal foundationsClassical Al mostly uses
discrete mathematical tools frdogics. A wide range of well-understoéarmal techniques is
available. Incontrast, there are yet normparable formastandards for behavior-oriented Al.
Appropriateformal theories can be expected toibBuenced by cyberneticgpntrol theory,
and formaltheories of compleyhysical systemgSteels 1993a). A first sketch of such a
formalization is given bysteels (1993b). He outlinesmaodel in terms of complegystems
theory, where the temporal development of agentsphyaical environment idescribed by
differential equations.

These differences in formbhckground, concerning both mathematical nature and degree of
elaboration, make an integration ofassicaltop-down and behavior-oriented bottom-up
approaches technically difficult.

In addition, there is a "cultural" gap betweentthie views. Behavior-based approaclaes an
important instance of an epistemological perspecthessituated actionparadigm, which is
understood by some of its proponents expressly as a challenge of classical Al. In a special issue
of the CognitiveScience magazine, opinions clash uncompromisinghg proponents of
classical Al(Vera & Simon1993a,b,c) deny that situated action isoaginal paradigm aall.

They claim that theclassical physical symbol system hypothesis (Ne¥@80a) is asufficient
methodological background farodelingsituated agents, anbat situated action subsumed

by classical Al. Defenders of situated action argue that an agent and its environment have to be
understood as a singliynamic unitywhere processes inside the agent cannthdw@etically
separated fromthe agent's continuous interaction with the environment.rddte of



intelligence, in this viewlie in non-symboli@gent/environment feedback cycles. Hasic

research methodology has to be adapted frmurophysiology andhe system sciences
(Clancey 1993). Internakymbolic representations are treated as second-qudenomena
(Greeno & Moore 1993)This reverseshe classicalapproach, whergymbolicrepresentation
comes first.

The questions thasurface in this debate have a direct impactti@ methods used for
modeling situated agents. shall analyzethem in theremainder of this section, thereby
developingthe epistemological framework afynamic symbol structures; whichthe DSS
formalism isgrounded.This framework is intended asstep towards #heoretically founded
integration of classical Al with situated action.

For the sake obrevity, | shalluse the term "agent" instead"oitelligent situated agent"
throughout.

Summary of section 2.1

« The classicalapproach to agent design t@p-down orientedfocusses on intellective,
knowledge-dependent faculties, and relies on explicit, symbolic, logic-oriented technjques.

« Behavior-oriented approachstart in a bottom-ugashion from reflex-like behaviors, by
which the agent islirectly coupled intdhe environmenforming anintegrated agent/en
vironment system. Techniques are often non-symbolic.

« An integration of both approaches appedifScult since the formal backgrounddiffer
and, even more importantly, there are two quite different notions of intelligence involved.

« The work presented in this thesis claims to contribute to an integration.

2.2 Dynamic symbol structures

This subsection outlines a structuralistic model of an agent's architecture. An agent is abstractly
described as dynamic symbol structureThe proposahims at a unifyingperspective for
classical Al andsituated action approaches. The outlyneen in this subsection will bidled

out in detail in subsequent subsections.

The viewpoint of dynamic symbol structures rests on three main points:

« An agent's information processing system is globally organizednoitidlevel periphery-
centre axis

« Within each level, information processing is achieved by interactiodgnaimic symbols
Dynamic symbolsre inmanyrespectsimilar to classical symbols. A fundamental differ-
ence isthat dynamic symbolsare rigorously construed physical observablesnot as
"platonic” entities.

« Dynamic symbols in a givgorocessindevel formdynamic composite®ynamic symbols
in the nexthigher levelemergefrom these composites. These emergence relations are
constitutive for the periphery-centre level topology.



In theremainder othe subsection, | elaboratéid onthe second and the third point, first
being a standard assumption in virtually all agent models (cf. 2.3).

Dynamic symbolsare defined as entities whigblay a dynamiaole in an agent'siformation
processing, andrhich can beempirically observedvhen they ocer. They resemble classical
symbols in being reliably identifiablentities. Unlikethe formerdynamic symbolsare not
interpreted abeing referential in themature.Being physical observables irdgnamic system,
they exhibit variousdlynamic phenomenaFor instance, theyccur intermittently, they may
vary on some intensity scale, or they may become superimposed on each other.

The notion ofdynamic symbols is positiveiytended to include, in biologicalgents:neural

spike discharges, spike trains, activation patterns in neural asseEB(Bsotentials; in artifi-

cial agents: sensor read-values, features extracted from s&gsafs, the electronical
embodiments of symbols @ropositions manipulated incassical inference engine; lnoth
biological and artificial agents: reflex-like behaviors, utterances, gestures, and social interaction
patterns. The observer whdentifies thesedynamic symbolsan be external iall of these

cases. Sometimes, the observer can also be thei@g#ne.g.,when neural activatiopat-

terns correspond tidlentifiable experieres, or when an agent observeus behavior. The

notion of dynamic symbols will be successively refined throughout the remainder of section 2.

To be sure, the notion alynamic symbols isiot aswell-defined asone might wish. The
notions of"empirically observable",'"dynamicrole” and "an agent's information processing",
which occur in the tentative definition of the term, are ill-speciBed, neither is the notion of
classical symbols well-defined (criticism on this behalf in Clancey 1998).fundamental
notions of an epistemological perspective cannofideel by definitions inthe strict sense,
exactly because thegre fundamental. Their interpretation beconfeed as their usage
stabilizes inthe community of theirusers (extensive treatment of this and related methodo-

logical topics in Kamlah & Lorenzen 1972).

Within each leveldynamic symbolgan formempirically observablelynamic composite§he
compositionmechanismcan be (spatiallydtructural (as irclassical symbolicomposition),
temporal (as in the composition of single spikes in a spike train), or spatiotemporal (as in the
composition of spike trains in attractor states).

From adynamiccomposite in aiven level, a dynamic symbol the nexthigher level can
emerge Conversely, dynamic symbols in a given les&h groundin dynamiccomposites in

the next lowelevel. For instance, from aynamiccomposite of local activitpatterns in the
primary visualcortex, a particulaactivity pattern in the secondary visual corteay emerge

(which subsequentiynaylead to areport of arecognized "table", owhich can be observed by

a neuroscientist directly). Anothexample:the activation of a "table" node insamantic
network with a spreading activatiodynamicsgrounds in the activation of eollective of
feature nodes. The emergence/grounding relation betwegnaaic symbobnd adynamic
composite is not merely in the eyes of the beholder. It must be empirically justified, either by an
observable, significant correlation, or (preferably) by tracing down a causal connection.

The emergence/grounding relation betwemamic composites andlynamic symbols is
considered th@rimary phenomenorthe level structuring as a derived one. ddean linear
ordering oflevels onthe periphery-centraxis can be&onsidered ardeal case. Morantricate

global topologies of thdevel structure are expected sufficiently complexagents. Fig. 2.1
sketches some examples.
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c) d)

Fig. 2.1 An ideal linealordering oflevels inthe periphery-centraxis(a), and some variations

(b, ¢, d).Dynamic symbolare rendered ass, dynamiccomposites asyclic arrowsenclosing

the symbols participating in the composite, emergence/grounding relations as straight lines, and
levels as shaded bands. In b), a level is cut short, in c) a level "spirals back" over itself, in d) the
level structure breaks down due to emergence relations being recursive.

When higher levels successivgyound in"finer" ones, the question of how tlseiccessive
refinement ends ariseBhere are threprincipal alternatives: firsthere can be an (arbitrary)
"atomic" level; second, therenay be an infinite regss; third, therenay be cyclicallyecursive
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references between levels. This problem has been tadetMinchhausen trilemma" in the
epistemology of science. Notkat therearises a mirrored version of tlsame trilemma by
going upwards in thaierarchy. Thealynamic symbostructure proposal foriewing agents is

not committed to one of the trilemma’s alternatives.

A dynamic symbokan come in different degreesdifferentiation For instance, a chaotic
attractor state in diological or artificial neurahetwork may occur invarying degrees of
noisiness(or "computational temperature”), where a high-noisegarly random occurence
yields ade-differentiated version, and a low-noisearly limit-cycle occurrenceyields a
differentiated version (fig2.2). Anotherexample is ambject scheme that is introducedo
working memory(e.g., a KL-ONE ABox) to account for axternal objecthat is about to be
classified. Atthe time of generation, this schemetypically poor in information. During the
recognition process, it snriched with detail, anuhitial inconsistenciesrefiltered out. This
amounts to a differentiation.

Fig. 2.2 A de-differentiated(a) and two alternative differentiated versions (b, c) of an
attractor state (approximately redrawn from Yao & Freeman 1990).

The aptness alynamic symbols t@ccur invarying degrees of differentiation is an obvious
difference to classical symbols. It arises naturally fleenperspective otlynamic symbols as
physical observables. By contrast, classical syndyelsSplatonic” entities (cR.5), forwhich a
notion of empirical differentiation makes no sense.

The identification of adynamic symbol is sensitive tthe precision of the observation
procedureThis leads tdigh-resolutionvs. low-resolutionversions of alynamic symbol. For
instance, the extracranial recording of electric potenfialds alow-resolution version of a
cortical activation pattern, radioactive marker methods yeald mediumresolution, and
electrsensitive dyes monitored #te operbrain achieve a highesolution. In a computer,
monitoring the workload percentage of a processor provigesydow-resolution observation
of its working state, whereas a coredump gives a high-resolution account.
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The information available about a dynamic symbol occurence resultthie@ombined effects
of differentiation and resolution, i.e., from "what is there" and from "$twavply it is seen”. A
high-resolution observation techniqyelds little informationwhen the dynamic symbol is
poorly differentiated, and @oisy observation procedutells little evenabouthighly differen-

tiateddynamic symbolsThe netinformation afforded by an observation varies on a gbale
is called, inthe dynamic symbostructure framework, thabstractionscale(the inverse being
specializatiof. Specialization increases with differentiation and/or resolution.

A dynamic symbol is defined as antity (playing adynamicrole in an agent'shformation
processing)s it is observedl.e., it isdefined interms of information obtainedhat is, in
terms of abstraction. Different abstractioplies different dynamic symbols$:or instance, an
intracellular recording of neural activity is a delicate affair, andatte difficult to filter any
pattern fom the noise aall. The noise in the theaw datacan havewo sources: the pattern
itself can be weakly express@abor differentiation), or the recordingrocedure can bgubject
to disturbanceqpoor resolution), orany combination dboth. Thesetwo sources of
uncertainty are not distinguished in the definition of dynamic symbols.

Thus, adynamic symbol isot considered an entity "objectivelyette" in the agent. But, one is
very muchaccustomed to talkingboutobservables in this way. In fact, odees nothave to
give up this way of talking entirely. It is justified whéme resolution is "better" than the
differentiation. Whether this is the case can be decided by incréasingsolution. Whesuch

an increaseloes notyield anincrease in information (i.e., rgpecialization is obtained), then
one can ascribthe information obtainedully to the observed entity. lother words, irsuch
cases one does, in fact, havieaadle orthe entity as it iSout there". Folinstance, when the
noise in an intracellular recordingannot be reduced by the use of more sophisticated
electrodes and signal detecting machinery, one is justified in talkog "the"activity pattern
(which, in this example, is inherently noisy).

A dynamic symboblppears in a researcher's theory tmraal symbagl which can banything
from a mathematical symbol (wh#re theory idighly formalized) to a telling name (when the
theory is in a pre-formal stage).

This endsthe first outline of thessentials of dynamic symbstructures. Thdormalism of
dynamic symbol systenfBSS), to be presented in section 3, is a partiomathematical
instantiation of this framework.

Summary of section 2.2

« Dynamic symboilstructures provide an abstract, structuralistic framewairkjng at an
integrative view on classical and situated action approaches to agent modeling.

« An agent is viewed as being organized on a periphery-centre axis.

« Eachlevel in this axis iminderstood in terms alynamic symbolanddynamiccomposites
They are conceived as physical observables, not as platonic entities.

+ As a consequence of beimhysical observablesdynamic symbolsoccur in different
degrees of abstraction, with abstract@vingthe two components of objectivdifferen-
tiation and of observation-dependent resolution.

« The way of talkingaboutdynamic symbols as they were "objectively there" jsistified
when resolution can be made finer than differentiation.
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« Fromdynamiccomposites in onkevel, dynamic symbols ithe nexthigher level emmge.
This emergence relation induces the level topology.
« There are many other possible level topologies besides a simple linear ordering.

2.3 The periphery-centre axis

The idea of an agent's information procesbi@igg organized on a periphery-cerdrgs does
not seem in principle problematic. It is certaintcapted in classic#l. In behavior-oriented
research, it is de-emphasized in favor of behaviwhsch atthe present state of the art
typically belong toperipheric levelsThe existence of more centlabels isacknowledged, as
witnessed by theobots designed by Steels arBrooks. However, theperiphery-centre
dimension appears in these two approaches in two quite different fashions.

In Steels' architecture, there exist mp ofthe reflective behavior levetwo levels of a
different nature, namely, a(subcognitive) process layeaand a(cognitive) symbolic layer
(Steels 1993a). The procdager concerns a variety of global parametins integrative and
representational aspectslofv-level sensor and actiosiata. Thesymbolic level is aule-based
symbolicreasoning system. Thus, the periphery-cestie in Steel'sobot is rathesimilar to

classical Al architectures.

a) b)

o WHHTM

SENnsors actuators sensors/actuators

Fig. 2.3 The subsumption architecture and the periphery-centrension. Increase in cen-
trality is indicated by darker shading.
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In the subsumption architecture proposedBbyoks (1989) higher behaviorare put on top

of morebasicones, after the lattdrave been made to function satisfyingly. Higher behaviors
are intended to account ftaculties of a moréntellective character, like objedtlentification

or reasoningabout objecbehavior. Since a behavior, by definition, lii®ct access to the
sensomotoric interfadevel, higher behaviors in a subsumptachitecture daot communi-
cate with the sensor and actudewel through lower behavior&ut, abehavior as complex as
object recognition musibviously proceed inseveral stages fromaw sensor data to ifimal
response. Brooks attests that to a certain extemeeds to decompose a single layer in the
traditional mannet (p. 435). The picture thagmerges ighat low-level behaviorslike
biological reflexes, have a rather direct connection to sensoecaradors, wheredsgh-level
behaviors presumably consisiternally of severaprocesses ofncreasing distance to the
sensomotoric interfaces. Fig. 2.3a sketches Brooks' variant of the periphery-centre organi-
zation, and fig. 2.3b indicates how it can be recast as a dynamic symbol structure.

Contrasting Steels' and Brooks' architectures, foms that although theperiphery-centre
dimension seems to be plausiblg@neral, more than oweay of tellingthe story exists. How
one sees natural agents, and how aesgns artificiahgents, depends on some mordess
explicit background theoryAs an additionasource of variance, these theories cgoically
each be practised in several "flavosghich | shall callorientations For the present purpose,
the most important ones are tmrphologicaland thefunctional orientation. Theyurn up
almost universally in disciplines concerned with agent modeling.

Before | take a closer look atorphological and functional aspectstbé periphery-centre
axis, | dismissanother viewpointhat might be mistakenlyconnected with this axis. It is
exemplified in a classicgbaper of Newell (1980b). Newell describes artificial intelligence
architectures in terms dévels that range from th&nowledge leveht the top,via some
intermediate levels like arogram levelnd acircuit level down to adevice levell would like
to call this a hierarchy of "disciplinary” levels, since each level is expressbidered by
Newell in terms of a particular engineering (sub)discipline.

This hierarchy is basicallglifferent from a periphery-cent@count because an entire agent
can, in principle, be described any ofthe disciplinary levels. This is mad#ear by Newell:
"Within each level, systems hierarchies are possible, as in the subroutine hierarchy of the
programming level. Normally, theses do not add anything special in terms of the computer
system hierarchy itselfp. 95). The only exception to this rule is, | understérelknowledge

level. It appears that peripheric sensomotoric processes cannot be described on this level.

Having cleared thipoint, | startwith a brief discussion of problems faced wiugre tries to
account account for the periphery-centre axis in morphological terms.

The place of a processing module on #&xis is defined morphologically by idhysicalaccess
route to sensomotoric information. Peripheric modules have a direct adoasmds the
centre,information from/tothe exterior igelayedthrough anincreasing number of interme-
diate moduleskor instance, theision system irvertebrates can hideally described in terms
of information coming fronthe retinapassinghrough anumber of nuclei, anfinally arriving

in certain regions of the neocortex.

This ideal of a linear periphery-cenwedering is blurred by thebiquity of feedback cycles.
Brain nucleiand cortical regions adenselycross-connected (methodological consequences
discussed in Arbib 1987)Even approximately, a lineardering of modules in terms of
distance from the sensomotoric interface level is lost.
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Another problem ighat morphology is quite often "fuzzy". Brain modules rarabg clearly

delimited from eachother morphologically. In von Neumanoomputers,all information

processing happens in tsameprocessor, and the modiverse subprograms aneixed up

with eachother on thesame physical memorglevices. Thus, thédea of a well-defined
morphological separation of modules is a very coarse approximation at best.

In sum, the periphery-centre axis is mirrored in an agent's morplariyglo a limiteddegree.
However, morphology shoujarobablynot bedismissedltogether. At least for understanding
biologicalagents, and in connectionist approadies strive to exploit biological models for
artificial architectures (e.g., Yao Breemaril990, Carpenter & Grossberg 1998prphology
considerations are indispensable for structuring an agent.

The functional orientation describes information processing in terms of goals and the
mechanismgalgorithms) to satisfy them. Functional descriptiares often organized in a task
hierarchy along a periphery-centre axis.

A prominent example iMarr's theory ofvision (comprehensive discussionBuirge 1987).
Marr describes in a rigorouashionhow objects are recognized. He proposeeres of
representational formats and algorithmkjch account for a one-directiongiformation flow
from the sensor-nedevel of extracted features to the centiealel of object recognition. The
representational units occurring in this theory can be interpretecuaserparts of geometric
and optical properties of thghysicalobjects fromwhich the sensorynformation originates.
Marr's theoryexplainshow fragmentednulti-channel information becomes stepwise integra-
ted, such that external objects sgeonstructedrom the information transmitted by the signal.

Another example of a functionahccount organized along a periphery-ceraxes is the
classical linguistic hierarchy. It describes speech understanditgynis of an ascending
process that runs throughvariety of morphologic, syntactic, arfthally, semanticstages.
Again, the process is reconstructive. It is assuthatl the sender puts a particutmmantic
content into an utterance, which is reconstructed by the recipient.

These examplesuggest that auhctional orientation concerning signal processing pathways
(and analogically,actuator control) is a straightforwaadfair. On closer inspection, this im-
pression blurs, at least in the case of biological agents.

With respect tovision, Arbib (1987) argues (dhat an appropriatenodular decomposition of
function has to be quite fine-graindd) that thereexists a large amount garallelism and
interconnectivity between functional modul@s), that functonal architecturediffer consider-
ably across speciesyhich mirrorsthe fact thatthere is no unique algorithm for solving a
given problem'{(p. 344). Thesituation is further complicated by the fétatfunctions do not
mapone-to-one tghysicalmodules. Thenapping is many-to-many in biological systems. The
general impression conveyed by such closer inspectitihratissignalprocessing irbiological
systems is realized by a fine-grained, partially pardlighly redundant network aihodules,
whose function is not easy to determine and may even be intrinsically ambiguous.

The problems connected with functional descriptionsbiotogical systems can hardly be
overestimated. Eveparadigmatically simple instances of biological information processing
reveal themselves as intricate superpositionsmethanismsvhose knowncomplexity keeps
growing as observation techniques bheing refined. A striking example tse monosynaptic
reflex thatleads to aetractorymuscle activatiormfter mechanic stimuli. lappears, today, as
an intricate network of regulatory pathways whose interactionflardadionality is far from
being completelyunderstood. Onlyecently, for instance, and quite unexpectedly, rifiex
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has been demonstrated to be modulatedtrically by nearby fibres in a complex fashion (el
Manira et al. 1993).

It can be arguethat the @inctional opacity of morphological modules is advantageous for an
agent's adaptiveness. ThpRysics of a biologicahgent, in this perspective, is a reservoir of
potential functionalities. When environmental pressures derfyangperfectly available func-
tions can become dedicatedly expresseghygical modifications whicbhan be effected by a
slight genetic change.

Artificial agents are, as yet, insufficientrimany aspectslhey brealdown whenenvironmental
disturbances exceed a narrowargin ofstandardization, and their scope of "understanding” is
limited. It might be arguethat thesensufficienciesare in part caused by tlekean functional
decomposition that underlies their design. The more precisely the functions of subprocesses are
specified,the closer theignal's characteristics must agree with these specifications. The
reconstructive natureyhich seems to be inherent in functional specificatioeguires the
signal'scharacteristics to conform with the abstnacidel of realitythat serves as a basis for

the functional specification dfe signal processing apparatiiBis conformity assumptiowill

often fail, since reality is always phenomenologically richer than models thereof.

The comparison of adaptive, bunctionally opaguebiological agents with brittle, but func-
tionally clear-cutartificial agents suggests that themaght be atradeoff between clear
functional decomposition artte flexibility necessary for adaptive behavidhis impression is
substantiated by considerations that originate in the situated action paradigm.

A functionalaccount of a process is goal-oriented: functionsrantitly serve somspecified
goal. Typically, such goals are steps in a reconstruction pro€essnstance, in Marr's theory
there is a functional moduléhat serves to compute generalizeginders fromthe 2%-D-
sketch (which ione of the intermediate representational formatkisntheory). Consequen-
tially, a functional specification of asmgent requires that laerarchy(or someotherkind of
network) of goals has to be explicitly provided by the designer.

This does notconform with theautonomy principle which is emphasized e situated
action paradigm. In an extreme philosophical versibe,principle states that thenternal
functioning of an agent is not reconstructivalatRather, theonly discerniblegoal thatcan be
ascribed to a living system from the outside is to maintain itseliyn@micenvironmentThis

is achieved by adaptiverocesseswhich are claimed to be principally individual:Which
neural activities are triggered bwhich perturbations is determined exclusively by the
individual structure of each person, not by the properties of the perturbing afMagirana

& Varela 1984, chapter 1, my translation from the German edition419%fe system
incessantlyconstructsitself anew. This is spelledut inthe notion ofautopoiesisin the
epistemological theory afdical constructivism(Maturana 1978). Maturana and Varela are
regularlyquoted by situated action proponemiscribinggoals to internal processes from the
outside is, in their view, incompatible with a system's autonomy.

In a more practicalein, the autonomy requiremelaiads to unsupervisedadtocatalyti¢
(Steels 1994)earning schemefor behavior-baserbbots. Learning can be augmented by
evolutive mechanism®fobots thatearn and evolve cannot Ifenctionally designed before-
hand in an exhaustive fashion. Steels (1994) discusses the issue in some detail.

Taken together, thesmnsiderations recommend to use functional descriptionscasieh For

biological agents, neither cleamor completdunctional accountsre likely to be obtainable.
When theyare used aBlueprints forartificial agent design, they are prone to interferin
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autonomy. Howeveifunctional descriptionare a natural and commuamy of viewingagents.
They contribute to discovéor construct) geriphery-centre topologyat makes sense. The
issue will be reconsidered in subsection 2.10.

In dynamic symbaostructures, there is mgystematic place for functionalities. Functioexgbli-
cations of dynamic symbolsand of composite-formingnechanismscan be introduced
whenever they seeappropriate, buthey remain outside the structuralistic accqonmaper.
The only "task" that becomes visible for the structuralistic perspective proper is thatdne
"tries” to maintain itself dynamically (cf. 2.8).

Summary of section 2.3

« Two important orientations in theories concerning agent architectures are the marpholo-
gical and the functional.

« Both contribute partially to a periphery-centre structuring.

« The periphery-centre topology is, at leasbimlogicalagents, moreomplex than dinear
ordering oflevels. Biologicalagents are structured inheghly complex, ifnot opaque,
fashion with respect to a combined morphological-functional architecture.

« Thisappears to be connected with their autonomy and adaptiveriesis,suggests tha
artificial agent design has to be cautious about clear-cut functional blueprints.

—

2.4 Dynamic symbol structures and classical Al

The background philosophy cfassical Al is codified ithe physical symbol systentsypo-

thesis (Newell1980a). This hypothesisstates thakevery intelligent information processing
system can benderstood amanipulating physicallyealized symbols. Symbadsnd composite
symbolic structures are defined by two aspects: being physical patterns, and being referential.

First, classical symbolarephysicalpatterns of some (indeeahy)sort:"... in any eventtheir
physical nature is irrelevant to their role in behavigera & Simon1993a, p.9)Expressly,
neural activation patterns are casesyhbolstructures:" The patterns of neural structures
and processeare the ...symbols, just as the patterns of holes in anlBIM card are the
symbols that contain the card's informatiaiVera & Simon1993c, p.121)Being patterns,
symbolsare subject tadentification and comparisamechanisms of a discrete yesfi@rac-
ter:

"When we say that symbols are patterns, we mean that pairs of them can be compared (by one
of the system's processes) and pronounced alike or different, and that the system can behave
differently, depending on this same/different decisifveta & Simon 1993a, p.9)

So far, the physical symbol systems hypothesis is not differentliassumptiongnderlying
dynamic symboktructures. Both perspectives s®anbols as physicantities with awell-
defined identityThere are, howevedifferences irthe conception of how thdentification of
a symbol is actuallyachieved. In the case aynamic symbolssome observer with a
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background theory is required, whesely the theoryenablesthe observer testablish an
operational observation procedure. In the casdastical symbols, identifiability isplicitly
taken as grantedlassical symbolsre assumed to exisdependently of an identification
procedureThis makeghe observation aflassical symbols an unproblematic bdait, upon
which the system itself(as in the quotation above) or external observers can défend:
varying degreegsymbols]can be observed, handled, even dissectgdfa & Simon1993c,
p.121).

The second characteristic ofassical symbols itheir referential naturé'wWe call patterns
symbols when they can designate or den@teta & Simon 1993a, p.9). Potential referents of

a symbol orcompositesymbolstructure aremanifold. They includether symbol structures,
patterns of sensatimuli, ormotor actionsThese are cases ioternal reference, in thahey
occurwithin anagent (apossible exception beingther symbol structureswhich canoccur
external to the agent, as in verbal communication). The prototypical refarentsowever,
externalobjects or situations. The symbol-referent link is implicitly treated as a pre-established,
platonicallytrue fact.This isnot contradicted, but supported dgnceding imperfectionsOf
course, the internal representation of a real scene will be highly incomplete and may be
inaccurate" (Vera & Simon 1993a, p. 10). Irthis quotation, andeal of completeness and
accuracy is tacitly assumed, which camve as a measure for deviations. In a nutshell, then,
object recognition is the reconstruction of a pre-establisded| symbol-referent link, by
possibly imperfect means. This reflects an ancient philosophical view, whigha$sed to
classical Al via positivistic mathematical logexsd classical linguistictor Frege andRussell,
thesymbol "Venus" hathe meaning of the star that appears in the morning and in the evening.

This understanding afymbolicreference follows a straightute to alogic-oriented, model-
theoretic methodology. In particular, tmeaning(i.e., reference) of compositgymbolic
structures is derived from thmeaning ofits constituent¢Fodor & Pylyshyn 1988). This
allows to formalizenotions of "correct" interpretations aymbol structures,which in turn
allows a mathematicallyigorous development of theories symbolic representation and
inferencing. Thisourse is taken inlassical "disembodied" Al applications liggpertsystems
or machine language translation systems.

Due to theconvincing scientificprogress ehieved in such classical applications, a logic-
oriented methodology is also considered appropriate for mgdejents. Several strategies

are presently pursued in this very active area of research, e.g. situation semantics (Devlin 1991)
or modal logic approachds.g., Cohen & evesque 1990). However, it ot clear whether

they can ultimately lead tsuccess. As yet, there exist camprehensive logical formalisms

that accountsimultaneouslyfor complex internastates of an agent,changing environment,

and adynamic coupling othe two via sensoric and motoric events. Present research proceeds
largely on atheoreticallevel. Very likely, computational complexity wilturn out a seous
obstacle when it comes to put complex future logics to work (more about this in 2.9).

But, thephysical symbol systems hypothesisdd intrinsically committed to be workedut in

terms of model-theoretic logics, and no mention thereof is made in its most recent
reformulation (Vera &imon1993a, b, c). | would even furthéris point,claiming that the
substance of theghysical symbol systems hypothesis isilgfict whensymbolreference is not
considered as a platonideal but asreasonably reliable, empiricallypservable mechanism.
Such a shift in background philosophy would still be compatiblethatiiea of reasoning as a
computational manipulation a@fiscrete,physical symbols. To mynderstanding, the latter is

the core of theclassical paradigmyhereas the platonic accent is iamplicit remain of an
ancient epistemological tradition, inherittbdough (and enhancday) mathematical logic and
classical linguistics.
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Interpreted in this fashion, the physical symbol systems paradigm does not a priori conflict with
dynamic symbostructures. In order tarrive at arue match between thisvo perspectives, it
remains to be examinend how symbol reference can be accounted for in the latter.

The dynamic symboperspective is open to a treatment of external reference faolltheing
fashion. A linkbetween, foexample, a cortical activatigrattern and &at "outthere" can be
constructed byproviding theory-guided observation procedurestifier cat, for the optical
transmission of information fromhe cat to the retina, for tlemergence of activation patterns
on several relagtations from the retina to the cort@hks theory-guided explanations for the
machinerythatleads tothe various emergence steps. The recognitioncat dy arartificial
agent would have to Explained in aimilarly complex fashion. The result of such a (tremen-
dously complex) effort would be an empirically verifiable cat-to-pattern link.

From the point ofiew of dynamic symbddtructures, object recognition iamplexphysical
processwhich is inseparablgoupled to the particulgshysical processing apparatus of the
agent, andvhich requires a large amount of background theory orsittee ofthe observer to
become detectable all. In thisrespect, thelynamic symboktructureworldview is thesame
as in radical constructivism. This is concisely expressellldiyrana and Varela (1984, my
translation from the German edition 199@. 31):

"In this sense we will always find that one cannot understand the phenomenon of cognition as
if there were «facts» and objects «out there», which one only would hieteit@nd put into

the head]...] The experience of every thing «out there» becomes configured by the human
structure in a specific way..."

Unlike its platoniccounterpart, thealynamic symboteferencdink is susceptible tghysical
disturbances odll kinds due to itsempiricalnature.False positves dialse negativeare ex-
plained in an epistemologicalitraightforward fashion. Bgontrast, theplatonic perspective
requires involved arguments toeat such failures. Thalifficulties become manifest in the
intricacies of nonmonotonic reasonimg)ich can be seg@among other aspects) as thgical
account of recapturing from false assumptions, and restoring truth.

Insidethe agent, thempiricalreconstruction of external, object-to-concept referdecg., a
cat-to-patternlink) traverses the entire periphery-cerdmmension.Each transition between
levels on this axis has to laecounted forndividually. In a dynamic symbditructure, these
steps are described as the emergencdypnémic symbols orsome level from dynamic
composites at the next lowtavel. These emergence/grounding linkgen, can be seen as
internal reference links, anithe dynamic composite as the referent of the corresponding
dynamic symbolAlthough thephysical symbol systems hypothesisn@ usually stated in
terms of a periphery-centre axtee emergence/grounding interpretation captures at least a
considerable portion of that what Vera &ichon have in minavhen they talkaboutinstances

of internal reference (which they amly in passing). Explicitly,'Symbols may designate ...
patterns of sensory stimuli, and they may designate motor actjglesa & Simon 1993a,
p.9). This statement could be rephrasedturally inthe dynamic symbolframework by
substituting "emerge from" for "designate”.

To sum upsymbolreference can be reconstructed indigeamic symboframework. External
reference, withwhich the classicalperspective igypically concerned, spans a wigenpirical
distance between the referent object and the (conceptualdigwalinic symbolThe agent-
internalstages in this wide-distance reconstructiom emergence/grounding transitionkich
can be regarded as internal references.
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Van Gelder andPort (1993) propose aystematic description ohanykinds of informational
entities, which they callymboloids They present enulti-dimensionakpace of characteristics
of such entities. Besides classical symbols, gpace contains, e.qieuralfiring patterns or
attractors ircomplex dynamisystems. From thiwork, it becomes obvious that classical and
dynamic symbolgan be regarded &so extremes on a continuum of possibilities to describe
"symboloid" informational entites.

A classical knowledge-basedjent (such aBlakey) can bénterpreted as dynamic symbol
structure. Anexamplewill clarify how this has to belone.Assumethat theinference machine
on board such an agent generatesntlaéor commandset_speed +100 . This ishow a
classical Alresearcher would state whatgsing on. He orshe would furthesay that a
composite consisting dhe (classical) symbolsset speed and 00 is generated. From
the perspective oflynamic symbols, thingkok different. Set_speed and 00 are no
observables. Observablage the robot's movement, as it is affectedhisycommand, or an
on-off-pattern at thdevel of switchinggates(given suitable monitoring equipment). Such
observations can readily be interpreted in ternsebfspeed and 400 only if the observer
knows how thanference machine isrogrammed, throughll levels from machineode via
(say) Lisp tothe high-level motor contrddnguage implemented aop of itall. An observer
without such knowledge is in situati@milar to aneurosurgeon observingyert behavior
while monitoring neural activity. S/he wiihd it extremelyhard to carveut from therote O-
1-switching activity any "meaningfupatterns aall. Now, as aule, the researcheiloesknow
how theinference engine is programmed. This knowledge enabierher toidentify just
those patterns of O-1l-activitthat correspond to the knowprogramming constructike
set_speed and #00. In other wordsthis knowledgelaysthe role of a theorywhich tells
what entities there are to be looked for.this casethe observation procedure consists in
reading alphanumeric strings fronc@mputer screen. Thaassical symbok.g.set_speed
belongs tahe researcher's background theory, andjuisified by a reliablebservation of a
dynamic symbol, namely, a particulaf gpattern.

All in all, the classical worldview, as it Bxpressed in thphysical symbol systems hypothesis,
appears to be compatible with the dynamic symbol structure framework, when

« the customary platonic interpretation of symbols is traded for an empirical view, and
« the notion of symbol reference is suitably reconstructed in dynamic symbol structures.

When these measures are takeélynamic symbolstructures can serve as a framework to
discussing agents programmed in a classical Al fashion.

In the remainder ofthe subsection, briefly examinethe "uppermostlevel of processing,
which for obvious reasonsshall callthe conceptual levelAt this place, | makenly some
preliminary considerations. The matter of conceptual-level information processing will be re-
considered at greater depth in section 5.

The issue of concepts is loaded with unresoptatbsophical questions concerning introspec-
tion, qualia, consciousness, social conventionsttandike (extensiveiscussion in Chalmers
1993, Maturana & Varela 1984, chapté&r40). | do notventure to face¢he chalenge of such
issues. | merely hint at few distinctive properties of the concdptah| which can bstated in
the structuralistic framework of dynamic symbol structures:

+ Level-internal emergencelynamic symbols, which emgee fromdynamiccomposites on
the conceptual level, belong to that same conceptual level.
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« Comprehensive compositioior any two conceptual-levetlynamic symbolshere exists a
dynamic composite, in which the two co-occur.

« Emergent cyclicity for any two conceptual-leveblynamic symbolss, s', there exists a
sequences =s;, S, ..., S, = S, suchthat s emerges from aynamic composite that
containss, ;.

| assumehat in humans, dynamicomposites made from conceptual-lesighamic symbols
are characterized, in introspection, by some experience of gestalt. The term "gsgédl"
refers to "good'tombinations of sensoric (particular, visualfeaturesThis is,however, not
what | meanhere. In the present context, by "gestalt" | want to refer to "cohecentbi-
nations of conceptual-levelynamic symbolsWhat "coherent” means, must be left to the
reader's intuition fothe time being;the DSSormalism will provide a formakccount of the
term. Forinstance, a composite made frahe dynamic symbol€Eve serpent apple
Adam is coherentEve apple price is incoherent. Then, the three above properties are
motivated by the following observations concerning everyday human concept use.

First, the level-internal emergenceroperty accounts for the observation that coherent
conceptual-level composites can be "unitiz@tde term is taken from Lightfoot &hiffrin
1992), giving rise to amew conceptror instance, the coherent composiade fromEve
serpent apple Adamcan give rise tall-of-Man

Second, theomprehensive compositigumoperty is intended to captutieat virtually any two
concepts can bnked together in a coherent network of associations. For a demonstration, |
taketwo concepts that are as distant from each otheaasbe namely,the first and théast

noun entry inCollins Concise English Dictionaryaardvark" (an ant-eatinghammalwith a

long snout) andzymurgy" (the branch othemistry dealing with fermentation, as in brewing).
Figure2.4 shows how theseeminglydisparate concepts can be, in fact, associatedeath
other in a composite of convincing gestalt quality:

zymurgy lab

Fig. 2.4 The aardvark has become a plague in zymurgy labs.
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Third, the emergentyclicity property aims atthe cyclic closedness of conceptual systems,
which is revealed, e.g., in the ultimate self-referential nature of an encyclopaedia.

Taken together, these properties distinguish the concégialrom others by a stronfiavor
of internal cyclicity, connectivity, and closure. Fig. 2.5 attempts to capture this graphically.

Fig. 2.5 An impression of the conceptual level (darker shading).

The emphasis on cyclicity, connectivitgnd closure is a natural consequenceiefing an
agent as @omplex dynamicsystem. This distinguishaly/namic symboktructures from the
perspective otlassicalAl, where the focus is less @iobal systenproperties and more on
local (inference) mechanisntdowever, the distinction isnly a matter otlegree andaste. It
does notinvalidate dynamic symbdtructures as a perspective dassicallyprogrammed
agents. Section 5 provides a more thorogighussion othe conceptudevel interms of both
dynamic symbol structures and classical Al.

Summary of section 2.4

+ Theclassical Alperspective, as codified the physical symbol systentg/pothesisdefines
symbols as physical patterns that denote.

« The first part of this definition (physical patterns) is shared with dynamic symbols.

« External referencée.g., from a corticahctivation pattern to aat "out there") is recon-
structed in thedynamic symboframework as a complex multi-stageocess. The agen
internalsteps in thigprocess, i.edynamic symbols emerging from dynara@mposites, ar
interpreted as instances of internal reference.

—
]

D
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« Such an empirical notion of symbol reference is unusual for classical Al, where traditionally
a platonic notion igmplied. Arguably however, thisdealisticconception can be traded for
an empirical one without harming the core of the physical symbol systems hypothesis.

« The uppermost, conceptual procesdewgl istentatively characterized by three propertie
that emphasize cyclicity, connectivity, and closure of conceptual systems.

2.5 Dynamic symbol structures and situated action

Proponents of situated actialim that intelligenceests on @undament of non-symbolic
agent-environment interaction. There @@ principal objections against symboEhe first
criticism concerns theepresentationalmplications of classical symbolsie second holdbat
not everywhere in an agent aliscreteentities at work.

| turn to the anti-representational critique first. | have argued in the preceding sulibattion
symbol reference can bempirically reconstructed irdynamic symbolstructures, andhis
reconstruction is necessary fodymamic symbobriented discussion afassically builiagents.
Whenthe dynamic symbol frameork is to beuseful as an integrative view d@oth dassical

and situated action oriented agents, émgiricalreconstruction osymbolreference must be
compatible with situated action.ekaminethree versions of the anti-representational critique
separately, and explain in each case why the dynamic symbol perspective is compatible with the
respective author's view.

Greeno andvoore (1993) understargymbols agepresentational units on a high, conceptual
level. They do not deny that symbols of this kamd important in cognitive processkstthey
claim that cognition cannot be understood irtap-down fahion, starting from theidea of
symbolic representations. Rather, cognition arises, in the first place, ifnomediate, non-
symbolicagent-environment interactions. The autlamtspt the theoretic approach ®@ibson
who argues thatsome kind of information"is not perceived by creating cognitive
representations.. but by amore direct process. called direct perceptioh (p. 52). Direct
perception refers to an agent's direct reactions to the "affordancédismianterm) of a
physical situationwithout recurring tosymbolicrepresentations thatediate between percep-
tion and respons&leaning comesrior to symbols, and isonstituted by these agent-environ-
ment interactions:We treat semantic interpretation as something that pedglgp. 50, my
emphasis).

Symbols in the high-level sense adopted by Green®ande correspond tdynamic symbols

on the conceptual level. Then, their view on cognition is in agreement widkirthmic symbol
structure framework. In both cases, high-level representatentdles areincluded in the

picture. The representational faculties of theses entities are explained, in both cases, in terms of
physical, empiricallyobservable agent-environment interactidsth accounts share the non-
platonic, non-aprioristic view osymbolreference. A difference remainsthmat the notion of
symbols isrestricted to high-level entities for Greeno daidore, whereasdynamic symbols

refer to the entire periphery-centigis. Greeno anoore do notinclude such an axis into

their account.
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Clancey (1993) distinguishes between a "first person” and a "third person"sysebofs. The
former refers to an agent's conscious accessyiabolic representationswhich becomes
causally effectivege.g. inplanning. The latter refers to an external observer's view of the
information processing in aagent. Clanceyargues that these aspects are confounded in
classicalAl, anddeniesthat "first person"symboluse can be modeled as a computation-like
manipulation of pre-established symbdiather, "first person" representations are created
during activity andcannot be separated from ongoing processeBow you categorize the
world, arisestogetherwith processes that are coordinating physical activity. To be perceiving
theworld is to be acting in it -.. - dialectically, so that what | am perceiviagd how | am
moving co-determine each othgy. 95).Clancey outlines a neurophysigically motivated
account ofintelligent information processing, usingany notions from currentsystem
sciences.

The system-oriented viewyhich takesneurophysiology as a guideline, is in a gengad
agreement with thelynamic symbolperspective. Theéwo perspectives also agree in the
empiricalnature of representationSlancey'sposition is, howeverstronger than thdynamic
symbol view. His emphasis otme dynamic, ever-in-the-changentinuity of information
processing, leaves no place for the emergence of disci@teational entities, which can be
reliably and repeatedly identified. This anti-discra$pect ofClancey's critique will beefuted
further below.

As a last example, Maturana and Vargl@84) discuss a special case ©fmbols, namely,
natural languageords. They locatethe "semanticcontent” of wordsheither withinthe agent
using themnor inexternal objects or facts. Rather, words appearunifeed dynamic system
which comprisesvords, agents, another objects. Theemanticcontent of words isscribed

to them by external observers of thgstem"as if that which determines the course of
interactionwerethe meaning, and not the dynamics of a structural coupling of the interacting
organisms'(p. 223, translated from the German edition #9688 emphasis).

Although Maturana and Varela's writing is oftetiremelyabstract, iseems cleathat intheir
view words shouldhot beinterpreted as representing objects or actions for their users. Rather,
word meaning is an (unavoidable) artefact on the side of an external obBeis/es, infact, a
philosophically abstract version tife empirical, theory-dependent reconstruction syfmbol
reference in thdynamic symboframework. In both casesymbol(or word)meaning isnot a
platonically givenfact, but a contingentixation which depends on how one looks at it.
Maturana and Varelatsew is more specificthan thedynamic symboperspective in that the
authorsimply a functicmal orientation orthe side ofthe observer, and that they ascribe
meaning only to high-level, conceptuallyterpretable symbols. Bgontrast, thedynamic
symbol approach allows to describesamantic interpretatio(i.e., a reference) tdynamic
symbols on all levels, and the theoretic orientation need not be functional.

Summing upthe anti-representational critique of thegemplarycases, it appears that it is
mainly directed against the platonic notionsyimbol meaningand against theleathat such
symbol meaning is causally effective in intelligent informatmocessing. A contingent,
theory-dependenempirical reconstruction of externalistic referencenist affected by this
critique, since idoes notascribe causal effects symbolreference, and thuseats it not as
somethingthat explains something elsdut assomethingthat must (and canitself be
explained.

The secondkind of situated action critique asymbolic Al denieghat discrete identifiable

entities areeffective in aragent,especiallytowards theperiphery. This rejection comes in two
forms, which | treat separately.
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First, it is emphasizethat an agent is coupled init3s environment bgontinuousfeedback
loops of interactionThis suggests to usdifferential equations, instead of discresgmbol-
manipulating technique$pr aformal account of an agentfanctioning. Such techniques are
advanced by Steels (1993a, 1993b).

| believe that the discrete vs. continuoissue can be resolved lmyeanly distinguishing
between two kinds of discretenestich onemight call1-0-discretenesandidentifiability. A
system of differentiabquations describes the temporal developmegiveh parameters. The
parameters change continuoushys, they ar@ot discete in the particular senselsding on-
or-off, i.e., 1-O-discrete, entitieBut, the parameters that occur irsgstem of differential
equations describe fanite set ofdistinct entities. These entities are separatigtifiable by
specific observation procedures. Thughen discreteness is explainedtenms ofindividual
identifiability rather than in terms of a 1-0-characteristics, then the notieyndfols remains
compatible with a continuous account of perception and action. The discrete najumba$é
is understood in this fashion in dynamic symbol structures.

The secondkind of rejection of discretelentifiable entities derives frothe argument that an
agent's basic interactions with its environment form a congyleamicsystem, whereirtually
everything modifies everything else, sublat nothing remains stable and no entities can be
isolated This view is expressed I§§lancey(1993) as follows!'... the neuralstructures and
processes that coordinate perception and action are created during activipy..94),"In
contrast with the classical, symbolic architecture, the processors coconfigure each(pther"
94). The continuousgver-changing nature of situatedormation processing is emphasized,
which leads tdhe opinionthat concepts havo inherent formal structure; cannot be inven-
toried" (p.111). Thecomplex systems argument is related to Maturana and Varela's notion of
autopoiesis, and to the functional opacity of biological agents (cf. 2.3).

But, acloser look attomplex systems revealsat they are more orderly thadlancey's de-
scription suggest. Researchpimysicsand mathematics the last decades hiesl to a deeper
understanding of various phenomena of self-organization in complex nonlinear systems. The
behavior of such systemstigically organized byattractor stateg,e., patterns tavhich the
system'drajectory in itsstate space converges in tiesence of perturbations. Thenay be
infinitely many ofsuchattractor stateshey may besuperimposed on eacither onvarying
time scales, and theyay be highlysensitive to changes in exterriabntrol” parameters.
Learning or evolution can lead to a long-term changlearset okuch observables. Thiseat
complexity may havemotivated Clancey's judgement. It is nonetheless unjustif@dce
attractor statesan be formally identifiedand hence, "inventoried". In evolving systems, the
inventory may besubject to change in the long run, libis does notimpair repeatable
identification of each attractor for a certain time period.

An example of such a formanalysis of a complex system Yao and Freeman{d.990)
reconstruction of the olfactotyulb. Theauthors demonstrate how exterstinuli give rise to
(chaotic) attractor states in aeural network described by differentiatquations, and how
sequences dftimuli lead tosequences of such states {if. 2.2). Steels (1993b) suggests a
similar analysis for agent-environment systems.

Another important aspect of self-organizatiowamplex systems is their spatial organization.
A classical example isthe emergence of convectioells in fluids (Haken 1983). The
importance of compartimentation by membranes in biological cellstrendexistence of
specialized modules likde nucleus or mitochondria, is obvious (and emphasized by Maturana
and Varela). On a larger scale, thehavior of agents can be interpreted in termtymé€al
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situationswhich are characterized in terms of pladeshavior patterns, and participants.
Although such situations rarely appeareality in a "clean" fashion, they can in practice be
identified by anobserver.This possibility has enabldtde use of various script and situation
scheme representations alassicalAl. Suchschemes can be maflexible and open-ended
without sacrificing identifiability (Schank 1982). Thalentifiability of dynamicsitatuations is
also the fundament for the very notion of behaviors in behavior-oriented Al.

In sum, complex systems can be described in terms of individually identifiable temporal, spatial,
or spatiotemporal phenomena. Such descriptoag be difficult toachieve, ambiguous,
incomplete, and theynay besubject to a long-term drift, bthis does noinvalidatethe effort

in principle. The anti-discrete argument on the groundscoiglex systems argument can, |
believe, be rejected.

The anti-discreteness critique can also be refuted from aforatamental perspective. Every
empirical scientifictheory, and everyengineering discipline, fundamentally builds on a
particular set obbservables. Progress in researctypgcally coupled to the introduction of
new observables, with new detection or construction proceduresmpinical or engineering
approach without observablesingonceivable. Thewppear in the corresponding theories as
technical terms or as mathematisgbols. Seen from this glohatrspective, the existence of
identifiable entities is a necessity for any description of reality.

Summary of section 2.5

« The situated action critique agairssimbols has aanti-representational and an anti-dis-
crete aspect. Thérst kind of critiquedoes notaffect theempirical reconstruction of
symbol reference in dynamic symbol structures.

« The anti-discrete critique can be reconciled wdyimamic symbols by distinguishing be-
tween 1-0-discreteness and discreteness in the sense of repeatable identifiability.

« Complex systems almosniversally exhibitattractor statesThey are a standard type (of
dynamic symbol observables.

2.6 Differentiation, resolution, and specialization

To recapitulate things said 2, dynamic symbolsire defined interms ofspecializéion/ab-
straction, i.e., thenformation afforded by an observation. This information thxas compo-
nents, one oWhich isdue to the entity observed (differentiation/de-differentiation), and the
other to the observation procedyregh/low resolution). The relative contributions of these
two components areot discriminated inthe determination of dynamic symbolHowever,
when an increase in resolutidoes notyield anincrease in information (i.e., an increase in
specialization), then one jsstified to assuméhat the obtainedhformation reflects nothing

but the entity's differentiation, i.e., the information about the entity "as it is objectively there".

A dynamic symboblppears in a researcher's theory tmraal symbagl which can banything
from a mathematical symbol (wh#re theory idighly formalized) to a telling name (when the
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theory is in a pre-formattage).Different dynamic symbolsre handled by different formal
symbols, i.e., the abstraction dimension is mirrored in a variety of formal symbols.

A closer look at arexamplewill be instructive. Theexample consists in observations of a
system capable alassifyingodors. Icompare diological with an artificial systenthe olfac-
tory bulb (as in Yao &Freeman 1990), and a (fictivepparatus whose chemosensadings
are interpreted by aymbolic, knowledge-based algorithm.tleat theolfactory bulb first. |
assumethat the researcher observescillatory patterns,which correlate with the (known)
gualities of the stimulus. Three observation procedures are used.

A low-resolution procedure providésformation amounting to nothing more thdeaciding
whetherany oscillatorypattern is or is not preser8ince this is found to correlate with the
presence or absence of an olfactory stimulus of arbitrary qubktyattern (as observeath
the low-resolution procedure) is given the formal syrobor in the researcher's theory.

A medium-resolution procedure reveals thkieels of patterns: the first is highly de-differen-
tiated onewhich is observable whehe olfactorybulb is in a responsivieut very noisystate.

It is again callesbdor , since it provideshe same information athe low-resolution observa-
tion. This pattern is foundvhenthe stimulus is ambiguous, whenthe bulb is in ahighly
excited, "computationallyiot” state. When thbulb is in a"cooler" state, there appear three
patterns. First, the de-differentiatedor pattern is repeataghenthe stimulus immbiguous.
Second and thirdwo more differentiategatterns,which are given the telling namesun-
pleasant andpleasant , can be observed. Theprrelate with the (knowngualities of
stimuli.

a)
odor
low resolution
odor
odor
medium resolution
unpleasant odor pleasant
odor . )
high resolution
unpleasant odor sweet aromatic
b)
odor
srplessant ecen plessant high (maximal) resolution

unpleasant odor sweet pleasant aromatic
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Fig. 2.6 Dynamic symbols observethder various conditions. Darkenadingcorresponds to
system state that allows higher differentiation.

Finally, ahigh-resolution proceduraggain yieldghe highly de-differentiatecbdor pattern for
excited states axmbiguous stimuli. In &ooler” state, thenpleasant pattern is repeated,
whereas theleasant pattern is further resolved intsveet andaromatic patterns. The
pleasant pattern is no longeobservable: it turngut that everwhenthe stimulus is a
mixture ofsweet and aromatic, thoellb responds by settling either into thweet or into the
aromatic pattern (and pa#ly fluctuates between thevo). Fig. 2.6aillustrates the situ-
ation.

The situation is different ithe case of the assumadificial system.The observation of
"response patterns” hasvalys maximalresolution: system responstates are readff the
computer's screen, where they appheectly as alphanumeric stringslor , unpleasant
pleasant , sweet , andaromatic . It is important to note that thes#&ings belong to the
observation procedure; they dot coincide withthe correspondingynamic symbolshat are
causally effective irthe device. Theynamic symbolsre physicalbit-patterns in the CPU.
Thatthey are observable withaximalresolution is due to thgystem's artificiahature, where
a 100% precise theory available, whickensures thabnly certain (five)dynamic symbols can
actuallyoccur,andthatthey can beeliably observedhrough the screeautput. The system
can (in this fictive example) st todifferent levels ofecognition precision (motivated,g.,
by a tradeoff between response time and precision). In the lowest precisioroniypdbsence
or presence of a stimulusdstected by theystem, i.e., andor response will or wilhot be
observable. In amedium mode, odor , unpleasant , and pleasant are possible
observations (depending ambiguity and character of stimulus). In the highasicision
mode,all fiveresponses angossible:odor for completely ambiguous stimulinpleasant

for unpleasantstimuli, pleasant for ambiguously agreeable stimuli, assveet and
aromatic for sweet and aromatic stimuli, respectively (fig. 2.6b).

odor

I

unpleasant odor pleasant

/N

unpleasant odor sweet aromatic

b)
odor
unpleasant odor pleasant

PN

unpleasant odor sweet pleasant aromatic

Fig. 2.7. Abstraction trees derived from the diagrams in fig. 2.6.
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In Fig. 2.6, the observations are structured inagy that accounts for botdifferentiation and
resolution. Both sources afformationareinseparably superimposedtime scale of abstrac-
tion. This leads tdhe notion of arabstraction tregwhich is derived from diagrams likeg.
2.6 bycollectingall different "observation bands" (shaded rectangles ir2f&).and ordering
them in a suitable fashion (fig.7). Theresultingtree accounts for thpurely abstractional
aspects of possible observations. Informagibaut therelative contributions aiifferertiation
and resolution is lost. As a consequence strae abstraction hierarchy cantbe result of
different "complete" diagrams ahe kind of fig. 2.6. Note that thesame dynamisymbol
(more preciselythe formal symbolused for it on the theoretician's side) cacur atseveral
levels in an abstraction tree.

The observation of aelatively abstract dynamic symboln be due to eelatively low
resolution and/or aelatively low differentiation. When it isnly due to low resolution, an
increase in resolution will makihe abstractlynamic symbol vanish frorthe sceneThis
happens witlpleasant in the case of the olfactobulb case, buhot in theartificial system.

In the first case, thpleasant pattern is arexample of aisjunctivedynamic symbol. It is
observed becausebjectively” the pattern corresponding to a swa@hulusor the pattern
corresponding to an aromatic stimulus is present. Whersjanctive dynamic symbol is
specialized in an abstractitree (e.g.pleasant to aromatic andsweet ), it does not
reappear at the mospecialized level ithe hierarchy. Thedynamic symboperspective thus
provides both an empirical explanation and a formal characterization of disjunctive categories.

The picture is still too simple in an important aspBoth differentiation and resolutiomhich

| have treated a%objective" scales so far, depend on a background thbatytells the
researcher what to look for, and how to increase resolutionofjbetivity test sketched in
subsectior.2 (i.e.when an increase in resolutidones notyield more information, then what
is observed is "objectivelthere") is not, in fact, truly objective fawo reasons. First, the
statement that an increase in resolution does not provide more information depends on how the
data are interpreted. "Not mowmgormation” should be betteead as "not moraformation
with respect to the theoretic perspective taken". Whewoisy spike train is founéqually
noisy after arefinement othe observation procedure, omasimplicitly used some particular
operationalization of the notion of noisemay bethe case, e.g., that thefined procedure
actually reaveals some new kind of long-term spieelation,only it escapes the theoretic
filter used at the moment. Second, Weey method bywhich one increases resolutionaiso
theory-dependent. Fanstance, onenight narrow somenumeric interval of confidence by
allowing a longeobservation time, or omaight makethe procedure morgensitive to weak
signals. Which wayne chooses fancreasing resolution again depends ahewretic back-
ground that tells which way is appropriate.

Thus, one should alys beaware of the fact thatlking about observations asdicating
"objective entities" remains metaphor.This way of talking and thinking idjowever, so
deeply engrainedhat a more correct treatment afservables ikely to appear forced and
unnecessarily "epistemology-loadenherefore, lusually thinkand talkmyselfaboutdynamic
symbols in doose way, as if they wembjectively tlere, and be contended with tfegative
justification afforded byhe above-mentionembjectivity test. It works asong as a particular
background theory igractically sufficientfor the purposes at hand. The prize tfos
convenience ighat one runs the danger adirning blind for interesting alternatives in
explanation or design.
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Dynamic symbolsnteract in an agent in various wayr instance, alynamic symbol can
influencethe dynamiccomposite inwhich it grounds in a top-dowifashion; it can itself be
influenced by the composite in a bottom-up fashion; and the dynamic symbols vayinianaic
composite can interact with eaather"laterally”. In order for onedynamic symbol, sag, to
be influenced byanother,say s', there must be somieformation passed froms' to s. In
dynamic symbostructuresthis information isunderstoodexactly aghe information obtained
by a dynamic symbol by aexternal observer, i.es, "observes's. The notions oflifferen-
tiation, resolution, and abstraction carry over to siistem-internal kind of "observation".
Differentiation concerns the observed dynamic symbol "as it is", resolution concegnalitye
of the observation, and abstraction concerns thenfatnation gain. System-interna¢so-
lution can be poor e.g. due noisy neural projective pathways in biological systemsduerto
low-bandwidth signal channels or symbolic simplificagwacedures imrtificial systems. What
s "knows" abouts' is reflected by the position & in an abstraction tre€lhis view on
information processing agrees witie original intentions of informatiotheory, where the
quality of channels (here: resolution) is a central concern.

Thus, the introduction of abstraction treesn®@ merely of epistemologicalelevance, as
describingwhat an external observer knoaisout asystem. Abstraction is also crucial for the
internal dynamics of dynamic symbsifucturesActually, two such hierarchieare necessary
for a full account of an agent (mopecisely, ofone of itslevels inthe periphery-centre
hierarchy). The first concerns tbgnamic symbols athey are observed by the researcher, the
second, as they "observe" eaxther. But,sincetheway dynamic symbolsbserve eachther
mustitself be observable e researcher (otherwise it would escageientific treatment),
the researcher's abstractinee shouldideally cover thesystem-internabne. For the sake of
simplicity, | assume that both coincide, and speak of "the" abstraction tree.

For theremainder of this subsectionptopose avay of looking abottom-up vs. top-down
processing.

Fig. 2.8 Interaction partners of a dynamic sym&ol
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The differentiation of alynamic symbotan be assumed to be affected by the abstraction of all
otherdynamic symbolsvith which it interacts. There are thrgeincipal kinds of interaction
partners of a dynamic symimlfirst, members' of the dynamic composite in whistgrounds;
second, partnes' of sin dynamic composites; third, dynamic symtils which emerge from
composites in which participates (fig. 2.8).

A general tendency can be expectethanycasesnamely, thathe abstractions of interacting
dynamic symbolgorrelate with eacbther, i.e., aspecialization o induces (as a tendency) a
specialization o$', s", s", and vice versa.

For anexample, consider aartificial speech understanding system, wisstablehypotheses
s", s are combined to yield avord hypothesiss™, and where theyllable hypotheses are
derived from compositions dfttill more basicfeature hypotheses. A syllable (or word, or
feature) hypothesis isset ofpossible readings. Themallerthe set, the morgpecialized the
correspondinglynamic symbol. Specialization nsaximalwhen there i®nly one readindetft,
which isthe ultimate goal of processing. In this examptgximal specialization othe word
hypothesiss™ will induce a likewisemaximal specialization othe syllable hypotheses", s,
since aword determines itsyllables. Viceversa, anaximalspecialization othe syllablehypo-
theseswill lead to amaximalspecialization othe wordhypothesis, sincesyllablesdetermine
"their" word. Analogically, the specialization of feature hypotheses correlatelsoth ways
with the specialization ofthe syllable hypotheses, although the correspondemight be
weaker heresince a syllablean possibly bpronounced in different wayshich meanghat
feature readings neewbt beuniquely determined by syllablereading. Thirdly, an increase in
specialization of some e syllablehypotheses" mayinduce a specialization ¢ie syllable
hypothesis, since readings of syllables that co-occur in a word constrain each other.

This suggests thedea of anabstraction gradient When dynamic symbolare relatively
specialized compared to their higher, lower, or lateral neighties]atter are induced to
follow in their specializationBottom-up processes are, tims view, induced by a relatively
higher specialization ahe lowerlevel; top-down processes aneduced in thdnverse case.
Both directions havequal rights irdynamic symbaosétructures, and a thirthteral direction of
influence isadded to the pictureThis view emphasizethe systemnature of multi-level
information processing, wheadl informational entities influence eaolher. In section 3.3, a
mechanisnfor a "lateral" abstraction gradiemiechanism iprovided, and in 3, | sketch a
realization of a level-crossing abstraction gradient mechanism.

The ideathat thedirection of processing is determined by an abstraction gradient has not, of
course, the status of a law. It capturéeralency of effects of processing mechanisms, as they
are due to be found in many cases.

Summary of section 2.6

« Dynamic symbols appear in the researcher's theory as formal symbols.
« Formal symbols reflect the information gained by an observation, regardless of whether it is
due to the observable "as it existgectively" (differentiation), or tdhe precision of the
observation procedure (resolution).
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« This net informatioryieldsthe dynamic symbol's level @bstractionwhich makesbstrac-
tion trees a fundamental notion in the approach.

- Differentiation and resolution are theory-dependent notions and must be used with care.

« The account of external observatidimsterms of differentiation, resolution, and abstrac-
tion) carries over to a notion efstem-internal observation. This pattes ground for an
information theory oriented understanding of the interaction of dynamic symbols.

« An abstraction gradient helps to understdhd direction ofnformation processing
(bottom-up, top-down, or lateral).

2.7 Emergence and grounding

Emergence and grounding astablished notions the methodology of Al and computation
theory. In this subsection,juistify the adaptation of these terms for the relation between a
dynamic symbol and a lower-level dynamic composite.

The term "emergence" characterizes a particudiook on computatiompamely,emergent
computation which is bynow anestablished paradigm (Forrest 1989). Dhsic idea ighat
useful computations can be performedriaking a collective of informational entitiegeract

in a fashionthat is notpremeditated or controlled in detallypically, the entities and the
interactions areomparatively simple, aritie latter arelefined in a local and parallel fashion.
The collective is expected to self-organize in savag orother. Thedesired result of the
computation is read offjot at thdevel of the basic interacting entitiefut at the coarse-
grainedlevel of patterns thatemerge" from thecollective. Prominent examples of emergent
computation are connectionist networgkssifier systemsnd cellulaautomata. Theollec-
tive behavior of (simple) computational "agents" is sometimes also includied paradigm
(Shoham 1993).

In a slightly different veinthe term "emergent" is used in the behavior-oriented robotics
community to denote the fact that an undesigned behavior results from the interactions of other
behaviors (whiclare explicitly designed or can be emergent themselves). An examphdlis
following behavior, which emerges from a move-forward and an avoid-obstacle behavior under
suitable conditions.

This usage of "emergencdiffers fromthe computation theoretic usage in thatrtbmber of
interacting entities is comparatively small (in emergent computation, it is typically large), and in
that the emergerdntity belongs tdhe same level oflescription as the entities fromwhich it
emerges (in emergeacbmputation, there is a transition betwésrels of granularity implied).

Both usages of the term asamilar in hat the emergemhenomenon is unpredictable, dyna-
mic, to somedegree robust against perturbations, and requires the introduction of a new
descriptive category on the observer's side. The latter pgattisularly importantFor the
behavior-oriented version of "emergence"”, Steels (19%), makes itpart of theterm's
definition:

"A behavior is emergent if it can only be defined using descriptive categdrels are not
necessary to describe the behavior of the constituent components.”
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In dynamic symbastructures, the term is used imvay that iscompatible with its usage both

in emergent computation and behavior-oriented robotics. As in both of these, the notion
characterizes the occurence of a detectable, organized patterndymanaccomposite) that
arises from collective interaction of entities (isynamic symbols withione level). Unpre-
dictability, dynamicnature, andelative robustness of suglatterns ardikewise emphasized.

The origin of new descriptive categories is also a cemby@t. It will be discussed in
subsection 2.10.

Where emergent computation and behavior-oriented rolbtfes in the usage of the term,

the dynamic symboperspective takes an intermediateuospecifiedstance.This concerns,

first, the number of dynamic symbols that make a dynamic composite. It can be relatively small.
For instance, onenight expect the (ominous)umber 7+2for conceptual-levadynamic sym-

bols interacting inshort time memory. Bycontrast, thenumber of retinalreceptor cell
responses that interact tmake a dynamicomposite correspondirig, say, ared blob, can be

very large Second, alynamic symbotan belong to a highévelthan thedynamiccomposite

from which it emerges. This corresponds to the emergent computation perspective, and it is the
case when an emergence event corresponds to a transition bktveteofthe periphery-

centre dimension (as infig. 2.1a). A dynamic symbotan also emerge frodynamic
compositesall withinone level, as in behavior-orientadbotics. This isthe case, e.g., for
conceptual-levetiynamic symbolgas in the upper portion &fj. 2.5). Intermediate cases are

also possible, where emergence gives rise to what might be called a graglsdcentas in

fig. 2.1c).

Now I turn to grounding. The notion occurs in a debate at the philosophical borders of Al. The
"symbolgrounding problem" (Harnad 199@jtually an entire problefamily, starts from the
guestion whether computers demonstrate to possasedavhen they solve problems in a
fashionthat lookshuman-like fromthe outside (e.ggnswering questions in Chinese, as in the
famous Chinese room argument). This can be restated in the question whether cognition can be
reduced to gurely syntactic manipulation of symbols, whether symbols must have an
intrinsic, system-internal meaninthe latterbeing that in which symbolsare thersaid to
ground. As aside branch, this leads into a discussionhef role of consciousness and the
experience of qualities (Chalmers 1993). A more maatésinpt to settle thissue is to claim

that symbols in truly cognitiveagents derive theintrinsic meaning from beingrounded in a
"subsymbolic" shstrate. Harnad propos#éisonic representations” and "categorical represen-
tations" for the lowest, subsymbolic level of cognition. The former directly derive from sensory
projections (e.g.retinal images)the latter from automated processes that comsuett
projections mandatorily into basabject and event categories ("categorical perception”, cf.
Harnad 1987). Both Harnad a@halmers(1990) suggest to use connectionist networks for
dealing with the technical side of this endeavor.

The arguments of Harnad a&halmers boildown to theidea that symbolscan have an
intrinsic meaning, when thegre not treated agomic units but astructured patterns. The
information contained in the pattern constitutes that mattehnich symbolgground. Seethis
way, grounding is exactly the inverse of emergence, whiclbtsgated the usage of the term
in dynamic symbol structures.

One should be aware, howewtrat theproblem of symbogrounding hasther aspectsnany

of which are of a mor@hilosophicalnature. Someamificationsare discussed Bhalmers
(1990).
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Summary of section 2.7

« In the emergent computation paradigm, "emergent" denotes the formation of patterns in a
collective of many, simple, interacting computational units.

« In behavior-oriented robotics, the term characterizes belaviorsthat resultfrom
interactions between a few given ones.

« In one of its interpretations, the term "grounding" refersytmbols as being internally
structured entities.

« The usage of emergence/grounding indjpeamic symboframeworkessentially conform
with these three usages, addihg aspect of an iteratétkrarchy of formallysimilar
descriptive levels.

2

2.8 The structuralistic nature of dynamic symbol structures

In the preceding subsections, | have repeatedly mentitraedlynamic symbolstructures
provide astructuralisticview on agents. Now | explain what this means.

"Structuralistic" isnot awell-definedterm. It characterizes a larfgmily of approaches to the
epistemology of science in general, orsoientific disciplines irparticular, notably idinguis-
tics, ethnology, psychology, and sociology. Roughly, the structuralistyc of doing (or
explaining) science isharacterized by highly abstract, oftermathematically formabutlook
on thediscipline'ssubject matterwhich enablegshe researcher to detdahdamental inter-
instance similaritiebetween various realizations of the subject mé#tey., betweemangua-
ges, social systems, mathematical theories). The abstract descrgatiledstructures should
be self-supporting and closed in the sahaé thedescribed systenae revealed as integrated
wholes on purely formajrounds, i.e. without recurring to the particullaings and mecha-
nisms that are observableimlividual applications othe scientific discipline. This isxpressed
by Piaget (1968, p. 6, my translation) as follows:

"... one finds at leadivo aspectshat are common to all structuralistic approaches: on the
one hand, an ideal or a hope of an intrinsic intelligibilityhich isfounded in the postulate
that a structure is self-sufficient and does not require for its understanding a resorm&
elements that are alien to its nature; on the other hand, realizafiofjs[where the
interpretation in terms of structuresgveals characteristics that are general and apparently
necessary, in spite of their variggcross different realization$]

For dynamic symboktructures, | adopt the notion sfructuralismthat Piagetevelops as a
specialization of this general account. A structure, then, is characterized as follows (p. 6f):

"In a first approximation, a structure is a system of transformations, being lawful as a system
(in contrast to the properties of its elements) and conserving or enriching itself by these very
transformations, without the latter leading out of the sydtein In a nutshell, a structure is
characterized by its totality, its transformations, and its self-regulatior. In a second
approximation]...] a structure must lend itself to a formalization."
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After this preliminarysketch, Piage¢xplainsthe notions of totality, transformations, asedf-
regulation in some detail. | give a brief summary:

« The aspect ofotality meanghat a structurdas to beainderstood as systematic whole,
not as acollection of components. Piaget makes it a pointttiestructure's totality is not
an irreducible, "gestalt"-likproperty. Ithas to be explained by tracitige relations and
dynamic laws that bind the components together.

« The notion oftransformationsemphasizeshe dynamiccharacter of the regularitigbat
define astructure. Piaget opposes attemptsiédine structures by virtue of some static
form, or by timeless laws. Hadopts a "constructivist” view (the term is used by Piaget
himself), where a structurarises from temporal operations of some kind. The nature of
these transformations st further specified; Piaget'standardexample isthe operation
that gives rise to mathematical group structures.

« Finally, the aspect ddelf-regulationconcerns thécybernetic" character dhe transfor-
mation, whichwarrants that the structure persiststime without dissolving. Again, no
specific definition othe term iggiven. Piaget refers texamples like feedbaakechanisms
in cybernetics, physiological homeostasis, and biorhythmic patterns.

All in all, this picture of a structure corresponidsgely to whatone would nowadays call a
(closed) self-organizingynamicsystem. The differencmainly lies informal generality. The
formal nature of structures isirtually unrestricted, whereas the notion s¥lf-organizing
dynamic systems typicallgonnotes ghysical view,mplying the use otlifferential equations
and methods from thermodynamics.

Dynamic symboktructures aréiagetianstructures in the sense bis "first approximation”.
They provide an abstraatcount of alass of systems, satisfyitige requirements of totality,
transformations, and self-regulation.

The totality of dynamic symbostructures can be seen framo angles, whiclare alternately
adopted by Piaget. Firstvhen one assumes an atomic lowesel, and acyclically closed
highest, conceptudgvel, the resultingdynamic symboktructurehas a lower and an upper
boundary. Thus, it is a "totality" by virtue beingbounded. Second, even whemlyaamic
symbolstructure is constructed asierarchythat is open-ended on bogides, it carstill be
described within a closed theoretic framework (Piggetsthe arithmetisystem othewhole
numbers as an examgler a theoretically closed, yet open-endéedicture). Seen frorthis
angle,dynamic symboktructures are totalities by virtue béing describedniformly across
levels.

The aspects of transformations and of self-regulation are reflectthamic symboktruc-
tures in theassumed interactions betwedynamic symbolsThere aretwo kinds of inter-
actions. Firstwithin one level, they give rise talynamic composites in a self-organizing
fashion.Second, there are top-dowand bottom-up interactions betwdewels, whichare due

to the emergence/grounding relations between dynamic symbols and dynamic composites.

Self-regulation can be interpreted as slgetem's top-level "task” tmaintain itself(compare
the comment at the end &f3). It is theonly task with which astructuralistic account is
concerned. Tasks (goals, functionalitiasd not part of a structure in teucturalistic sense.
They onlyappear in the more concrete considerations of wlgates structurecan be used
for, or how it adapts to its environment. Consideratiorthisfkindare, howeverglaimed by
Piaget anecessargupplement to a structuralistic account of a system.
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Transformations and self-regulatangchanismare notfurther specified inthe "first approxi-
mation" dynamic symbolktructures framework, as it is usedtims section. These notions
becoméefully specified inthe DSSormalism, whichtherefore, is what Piagetlls a"second
approximation” structuralistic theory.

Structuralistic approaches have traditionally been motivated intinm linguistics, cognitive
psychology,group psychology, and sociology. Thi®nnects them directly witthe issue of
agentmodeling. In particular, Piaget has developesdepistemological ideas orbackground
of research in cognitive development. Although haofurther pursue thisoute inthis thesis,
it can be hopethat Al can make a connection to this tradition. A lastep inthis direction
has already been taken by Drescher (1991).

Summary of section 2.8

« | adopt the notion of a structure as idefined byPiaget by the three characteristicg of
totality, transformations, and self-regulation.

« Dynamic symbolstructures are abstratfirst approximation”structures, and the DSS
formalism leads to specific "second approximation" structures.

« The notion of a structure islosely related to the modern notion of sglf-organizing
dynamic system.

2.9 Self-organization and compositionality

In this subsection, | arguthat both compositionality and self-organizatiare necessary
aspects of information processing alh levels ofthe periphery-centraxis. | explainhow |
understand these notions, and relate them to particular shortcomingsclastheal and the
behavior-oriented approach to agent modeling.

| shall first take a closer look atelf-organization. The term has no standard interpretation
(historical overview and outline of present usage in Krohn, Kiippers & Paslack T9gical
notions connected with self-organization are feedbddsipation of energy, timarrow,
attractor statecollective behavior, andthers.Formal disciplineconcerned are e.g. thermo-
dynamics, statistical thermodynamid¢beories of automata anfbrmal languages, fractal
geometry, populatiodynamics, ananore dedicatedly, chaos theory and synergetics (a collec-
tion of papers that highlights this interdisciplinarity is provided by Dress et al. 1986).

In the context of Al, some particular connections between the perspectiViecofjaeization

in complex systems and intelligent information processirgy worthmentioning. Gestalt
psychology can be considered as a manifestation of self-organizing prind@esng
reasoning as a dynamic, self-organizimgcess can be traced back at least to Bartlett (1932),
who described hownemory elementaggregate in avay that would becalled self-organizing
today. Piaget's theory of the emergence of object conceptfams viathe "primary and
secondary circular reaction" is a clear case of an agent/environment feedbagdeneogl]y,
Piaget's way of thinking is system-orienteds{@ndard introduction to Piaget's many-faceted
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psychological research Bavell 1%68). Consequenthhis work is taken up by situatesttion
oriented Al; Dresche(1991) integrates it withdeas from radical constructivisrhashley
(1951) examinedthe problem ofhow spatially distributed representations cgive rise to
temporal phenomena. Long before the rise of connectionisapsionedthe brain as a
complex system made frommany interacting, "recurrent” (his term!incessantly active,
oscillation generating subsystems.

Under theimpression oimore recent developments in #estem sciences, interestcomplex
systems is rekindled in cognitive science and linguiggag., Krause 198%ort 1990, van
Leeuvenl990, Strohner &Rickheit1991,van Gelder &ort 1993).This is also witnessed by
an exploratory "Conference ddynamic Representations in Cognition" at thmiversity of
Indiana in 1991(no proceedings). In connectionist researchy@mahethods from various
dynamic systemapproaches amoutinely usedClassifier systemare originally motivated by
considerations concerned wilgnamicadaptation (Holland 1975). They can be considered a
formal account of self-organization in its own right, dbey also lend themselves to an
analysis in terms of other dynamic systems models (e.g., Forrest & Miller 1990).

In the face of this diversityfixing a particular notion of self-organization would be arbitrary
and overly restrictivelnstead, | will use the term in a broad manner dny information
processing mechanism that shows most or all of the following characteristicyiliyation
towards an attractor state in tabsence of perturbations, (libjernal feedback cycleglc)
acceptance of a (quasi-)continuous stream of input, (1d) integratiomlpichannel input,
(1e) high degree oparallelism,(1f) local interactions of a collective of informational entities,
and (1g) robustnessyainst incomplete and noisyput. Currently, suclmechanismsre used
preferably athe periphery of agents; thegre oftercloselycoupled to the agent-environment
interactions; they argypically realized byconnectionist networkslassifier systems, analog
circuits, or populations osimple C-procedures; and they are characteristicbétravior-
oriented approaches.

The otherrelevant notion, compositionality, ikewise ill-specified. In a classical Aletting it
usuallydenotes théuilding of complex symbddtructures fronsimplerones, bymechanisms
like symbolconcatenationlogical junction of formulaegconstruction of graph-like represen-
tations (e.g., Sowa 1992), ooupling of dedicated processing modules., Minsky 1985).
The connectionist community, after having been challengédtyrandPylyshyn(1988), has
come up with several compositiomakchanismse.g., byvariable linkweights or temporal
correlation of spike trainge.g., Shastri & Ajjanagadde 1992).déscussion of connectionist
compositionality is given by Chalme($992), and asystematic catalogue of compositional
mechanisms in general is poged byvan Gelder an®ort (1993). Compositionality can be
achievedboth in a static, "spatiostructural” way, and in a dynamic, temporal fashion. These
two aspects areaometimes alternative aspectstioé same thinge.g., a sentence iemporal
when utteredand spatial when written), asdmetimes there inherently coupled (e.g.,
cortical activation patterns).

| understand an information processmgchanism asompositional when it exhibitl of the
following traits: (2a)ability to rapidly buildand to decompose informatistructureswith
arbitrarily many components and/or arbitrarily compositiodaipth, (2b) causaklevance of
composition-forming phenomena fibve functioning ofthe mechanism, (2c) tle@mposing of
components is a physical effect, and (2d) constituents can to some exditraely selected
to make ad-hoc composites.

The qualification "rapidly” ir{2a) iscrucial. It rulesout anevolutionary, asymptotic buildup of
compositionabtructures, likespatially compositionatortical feature maps (Obermayer, Ritter
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& Schulten 1990), or clusters olassifiers linkedogether in deedback loop of the bucket-
brigade algorithm (see below). (2b) aft) aremeant to exclude purely epiphenomenal
compositionality. This willlater turnout asimportant for understanding composition of
behaviors. Compositional mectisms inthe sense dRa) - (2d) aremostly implemented
towards the centraide ofthe periphery-centraxis; theyare often to some degree detached
from the agent-environment interactions; they wmcally realized by classicadymbolic
techniques; and they are characteristic for classical approaches to agent modeling.

To be sureself-organizing and compositional aspeuts integrated to some extenekisting
approaches. However, the integrationstsl superficial. 1 shall examinsome important
examples, explaining in each case in what sense it falls short of the goal.

An integrative aspect is obvious localist networks, where nodes adirectly labeled by
symbols. Thismethod is often found in neuraktwork applications in cognitive science,
linguistics, and athe borders ofymbolicAl. A much-citedclassic isthe proposal ofaltz

and Pollack(1985). They implement positivand negative contextual correlations between
words as weightedinks between labeled nodes, achieving that the correctreading of
semantically ambiguousords in the presence of contextahles is found/ia equilibration of
activation in the network. Shastri and Ajjanagadde (1992) preshighly refined localist
architecturewhich realizesobust, rapicsemantic-network-like classification and scales up to
larger terminologies in sublinear time. They exploit, anathgreffects, temporal correlations

of spike trains. - The dynamics of these localist networks is clearly self-organizing in the sense
indicated above. They are also composition#hat discretenformational entitiegi.e., labeled

nodes) become linked to each other: by link activation in Waltz and Pollark'sor byspike
correlation in Shastri and Ajjanagadde's. However, in these examples, like in other localist
network approaches, the composite structures are simple and predetermined, which disagrees
with (2d). Composition cannot be iterated to yield second-order composites, which conflicts
with (2a). Also, the dynamics in these examples drives the system through an equilibrative
one-way trajectory, which is not in accordance with the reversibility required in (2a).

Another connectionist approach to compositionalitgrnsolensky'{1986) "harmony theory".

It will be reviewed in detail in section 6. Smolenslkgfshitecture accounts for compositional
structures of unrestricted compositional depth and of arbittianbers of components. It falls
short, however, ofeversibility due to its one-wagquilibrative dynamics. Also, possible
compositionallinks between components afiéed beforehand byand-coding or learning,
which disagrees with the ad-hoc spirit of (2d).

Classifier systems (Hollart®75, 1986) offer a quitdifferentroute towards amtegration of
self-organization with compositionality. A classifier idiscrete, rule-like piece of information.
By virtue of the "bucket-brigade" algoritheghains of classifierhat contribute to giventask
are reinforcedParallel tothe bucket-brigade algorithm, the poolawhilable classifiers is
incrementally modified by deleting unsuccessful classit® mutating/copying successful
ones. The bucket-brigade and the geragorithmtogetherdead tothe formation ofelatively
stable, successful chains of classifiers, whicliumm can further bestabilized by forming
feedback loops. The latter can be consideregklavely well-definedcomposite structures.
Patel and Schnefl991)view them as complezoncepts. Thelynamics of classifier systems
is clearly self-organizingand the feedback loop composites capriinciple contain arbitrarily
many components, and can themselves iteratively be coupled into highetigrgercycle”
structures. But, thénking mechanisnthrough the bucket-brigade and geneatigorithm is
slow (even awkwardlyso, asmphasized byForrest & Miller 1990). This slowness is
connected to thelassifier systenbbackground philosophy of genetic adaptation and optimi-
zation. Thelinking mechanism ioupled to the success oferall system behavior. By
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contrast, thentuition behindcompgitionality, as | want tdix the term, is that components
can be put together and taken apart in a free, "playful”, tentative, or explorative way.

Examplesfor an integration of self-organization with compositionaity harder to detect in
classical Al. Classical Alhas, of course, ndlifficulties with compositionality.But self-
organization isalien to inferentialogics. Most classicadymbolicreasoning systenmare built
on thefundament of some high-level deductive calculus, where sequences of infésboaes
the routes of aexplicitly formulated control strategy. lwrder toenableselforganization, by
contrast, thenferencingwould have to be left tdself in some way oother. Thus, thenly
examples of self-organization in classisatupsseem tooccur in cases where lagh-level
logical calculus isiotinvolved, as in spreading activati(gg.,Mehl 1992) or marker-passing
(e.g., Charniak 1983)echniques. Such approaches gyacally applied to problems/here
"soft", evidential constraints must be satisfied, as in word sense disambiguation. The systems of
Mehl and Charniak, andthers of thesame basicategory, are irprinciple similar to the
localist network of Waltz and Pollack, which | have discussed above.

| believe that self-organization mustiltimately be missed bjogic-oriented methods. The
reason is, in a nutshethat anecessary precondition for self-organization islinear feed-

back, andhat nonlinear feedback translates to deduction systems as nhonmonotonic feedback,
which is impossible. | explain this in more detail.

Nonlinear feedback is a precondition for self-organizatisystems described by differential
equations. "Nonlinear" ishere clearly defined.However, for the present purpose a more
general notion of "nonlinear" is requiresiiceagents areisuallynot described by differential
equations (exception: Steels 1993b). Therefore, | under&tantinear” inthe more abstract
sensethat the trajectory of aynamic systentannot beexplained as a superposition of
trajectories of somsimpler partial systemsvhere a "partial system" can leeg., a subset of
variables, a spatially defined subsystem, or ather partial contribution to the complete
system descripn). Rather, aevery moment irthe system's historythe updating results of
one partiakystem irreducably affetihe premisedor determiningthe behavior ofother partial
systems irthe nextime increment. Stilmoredramatically, it makes no senseujpdate even a
partial aspect of a partial/stemwithout taking into account the most recent update of other
partial systems.

This abstract version of nonlinear feedback translates to logical deductive systems as follows.
A deductive system is, ithe simplestcase, a set oformulas, with partial systemseing
subsets thereot his system isipdated by thepplication of inference rules to some formulas,
which yieldsnew formulas (formulas might also #eletedwhich is irrelevantor the present
concern). Nowwhen a particular subset of formulas is considered, this partial syatebe
updated withoutonsideringhe outcomes of updates of otlpartial systems. It makes sense

to apply inference rules within arbitrary partial systdras, it makes sense tgpdate gartial

aspect of a partiaystemwithout taking into account the most recent updatetbér partial
systems. Note that this holds even for nonmonotonic logics. In default logics (Reiter 1980), for
instance any monotonic inference rule can be appliecaty partial system aany time. Thus,
partial systemsare notinherentlycoupled to each other @l their aspects, as required by
nonlinear feedback.

The analogue of nonlinearity and irreducible coupling of partial systems would be a "nonmono-
tonic feedback". This wouldccurwhenthe outcomes of updating some parsigdtem would
potentially afflict every inference iother partial systems. As a spec@dse, the update of a
partial system wouldhfluencefurther updates of theame partial system in a nonmonotonic
fashion. This is inconceivable, sincevibuld essentially meathat theoremslerived from a set
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of axioms might invalidate some thfe axioms. This is @ather abstract argumentshall now
examine it from some more concrete angles.

Nonmonotonic feedback obviousbccurs inhuman reasoning. Humans cstart easoning
about some task qaroblem and be lead to a detection of inconsistencies in their premises on
the way, without import of new informatighy contrast, in nonmonotonreasoning antruth
maintenance systems, inconsistencies ansdromwithin a closed reasonirgocess but are

due to additional information). Thesgconsistenciesare then remedied,g., by dropping
assumptions or by encapsulating them as exceptionstiNatiramatic inconsistencieshich
require immediate remedy, are rare. Mestatedypically contain rather inconspicuouson-
sistencies. Carrying along inconsistent notionkasnless as long as mutually inconsistent
pieces of information do not effectively clash in inferences.

Admitting a certain amount of inconsistency in an agent's metatal is an advantage rather
than a drawback. Fanstance, a reservoir of notiotisat aremoderately inconsistent with
eachothercan béelpful for swift adaptation to changegry much like genetic variance in a
population is (on a largéime scale). When some external circumstdhaédeviates from the
dominant foreground ofurrent assumptions beconmsgldenly relevanthere might already
exist some piece of information the background of thmental state thatcan serve as a
starting point tchandlethe new circumstance. Tpeorly dominantportion of assumptions
shrinks intothe background, and a new foregroumdge "grows organically”, so to speak,
out of the suddenly relevant germs. Irclassical reasoning systemhere the reservoir of
current assumptions has torpaintained in atate oflogical consistency, externaltyiggered
deviations from thistate require aaxpensivaeset of somé&ind (e.g.,computing a nevgtate
of belief in a justification-based truth maintenance system; cf. Doyle 1979).

One can sketch tHellowing plausible, overall image of mental dynamikort-termmemory
can be assumed to be graded along anthaisranges from #&ighly active, conspicuous
foreground to an inconspicuous, less active background (discussompivical findings and
their theoretical interpretation Bhiffrin 1992).Inconsistencies caoccur primarily between
fore- and background, but ratheot within the foreground, where they woutdluce active
coping. Parts of the background @aow into the foregroundnd viceversa. Such "zooming"
can be induced by theternal dynamicslone, or by input of new informatiowhich leads to
an increase in relevance of some piece of background informdtsi.is anaspect of
nonlinearity insofar ashe (logically nonmonotonic)dynamicinterdependency ddll parts of
short-timememory is emphasized. Besides beattyantageous for adaptation ¢banging
circumstances, this conception of short-timemory also has benefiter memory search.
Since inconsistencieare admitted, theverall content of short-termmemory cancover
mutually exclusivanterpretations of the current external situatahich might each become
relevant as timgrogressesWhenthe temporal development ioternal reasoningnd/or
external circumstances homes in on one of the alternatives, the activatretevaint
knowledge from long-term memory is facilitated, sinceappropriate clue fothe access is
already present in short-term memory.

Self-organization is intimatelgonnected with situatedness. The situated action paradigm
emphasizeshat an agent'svery information processing (sub-)mechanisnmtrinsically tied

up with the agent/environment interactions.miakes no sense trying to explain agent
without taking into accoungveryaspect of this feedbad&op. This is a version ofhe case
made for nonlinear feedback above.

By contrast, logic-oriented approaches to agent modediggon some kind of sense-reason-
act cycle, where during the "reason” portion of the cycle the agent (or the part of the agent that
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does the reasoning) essentiallydisconnectedrom the environmenfThis is a fundamental
implication of a logicabpproach to reasoning. lagical inference algorithm, monotonic or
nonmonotonic, starts in eadahferencingepisode from a giveset ofpremises, executes a
number of inferenceteps, and comes up with some resudtl ifjoeswell. It is not possible to
change th@remiseswhile the inferencing isunder way. Annference algorithm, so tspeak,
retractsform the rest of the world for thme it is occupied with a givetask. Alogic-
oriented approach to agentodeling thus finds itself in an intrinsic conflictwith self-
organization.

The logic-induced detachment from tevironment becomes particularly apparent when the
reasoning task isomplex and requires a considerable amount of computation time, as in
planning tasks. This explains, partially, whyhe situated action critique often focusses on
planning (as in the classic, Suchman 1987).

A direct consequence of logic-oriented reasoriyegng decoupled from the environment
concerns real-time demands.drder toenablethe agent to respond emvironmental change
sufficiently fast, a typical compromise in logic-oriented design is to sacrifice logical expressive-
ness andmplementbut asmall fragnent of some logics. The reason-part in the sense-reason-
actcycle canthen be confineavithin anarrowtime slice, andhe entirecycle beiterated at a

high frequency.The net effect is that thwverall performance is quasi-continuodsis
approactseems to characterigee current state of the art (e.§hohaml993,Nilsson1994).

An interesting variant is realized in the robot Flakey (Congdon et al. 1994, p. 11):

"Flakey's software system is designed so that all processes operate in paitallal basic
cycle time of 100 millisecondk..] Even though some processes, such as map registration,
could take many seconds tocomplete, all processegere written so thathey save partial
results and complete within the cycle time."

Although it is not explained in detail in the article, it app#aasFlakey's time-consuming map
registration (i.e., thduildup of a "mental image" of its environment) is an example of a
relatively long-term detachment of part of the robot'anformation processing from the
environment. This cawork satisfyingly onlywhen thereare no changes in the environment
that are faster than tmeap registratioprocedure. In the case Bfakey, onlythe outemwvalls

of the AAAI competition arena are reflected in the map. They do not change at all.

In "theoretical" classi@l, highly expressive formalismare developed that arelevant for
situated agenimmodeling (e.g. rich spatial representatioformalisms, situation semantics,
situation calculus, modal logics for intentions and desires or temporal reasoning). In "practical”
classical Al approaches to mobile robot design, only fractions of such formalisms are exploited.
This mayturn out to bemore thammerely a reflection of imperfections the current state of

the art. It is awell-known factthat logical expressiveness has to be plid with large
allowances for computation timehich become intractable very easilfhus, a higher degree

of expressiveness necessarily leads to lopgeinds of an agentlseing detached from the
environment, with themminent danger ofvirtually infinite detachment period<Combining
expressiveness with situativity might tine end berincipally infeasible orthe grounds of
logic-oriented approaches.

The issue is connected withe frame problem (McCarthy & Hayes 196 In itsoriginal
version, this problem concertBe update of facts thabld in a temporal succession of
situations, where both the situations and the transitions between them are desdoitped! by
formulae. The frame problem can &tated in morgeneral formsFodor (1987)claims it to
arise whenever rational inferenaascur. Theproblem is virulent exactly because reasoning is
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modeled as a procesgbat is decoupled from thenvironment. It vanishes when salf-
organizing agent/environment interactloop is taken to beffective, whichdoes notely on
off-line manipulations of internalepresentations:...this architecture[i.e., self-organizing
biological brains]coordinates perception and action without intermediate decoding and
encoding into descriptions of theorld ..., thus avoiding combinatoric search and the
frame axiom problem ..(Clancey1993, p.94). Whemternal representatiorase continually
coupled to sensor inpunaximisingconsistency as a relative tendency insteachahtaining
absolute consistency of situation representatitiies, question of whether some assumption
holds in the (changinggnvironment becomes a matter of provisonality @egree. Thus, the
frame problem cannot even be properly stated.

A self-organizing kind of information processinguadamentally iraccordance with real-time
demands, sincthere is no sense-reason-act workiygle and, therefore, nmtrinsic need to
detach the system from the environment for performing reasoning.

Now | turn to thassue of compositionality in behavior-oriented agent design, choosing Steels'
(1993a, 1994) robots as a basis for discussion.

Thebasic buildingolocks in Steel's architecture are simple C procediifeszare executed in
(simulated) parallel in dprocess network”. \th a few exceptionghere are noexplicit
influencesbetween them. They realize low-leypebcesses, e.g.,sow tendency tonaintain a
standard forward speed, or a fast retracvement triggered by bumper sensors. Only in some
cases, behaviomare realized by a single such procdssg., the retracteflex). Typically, a
behavior "emerges" frorme parallel execution of severptocesses in the agent-environment
interaction loopThis situation can beestated in terms afompositionality, orather, in terms

of the absence of it. Save foifew exceptionsthere are nanechanisms t@ouple processes
with each other by dedicated mechanisms. The coupling is caused by contingent agent/environ-
ment interactions; it is an epiphenomenioat is not initself causally relevarfor the agent's
performance. Thus, considerititge conditions (2b) and (2c) from above, ¢éneergence of
behaviors from processes does not qualify as a composition of processes.

How, then, would a trueomposition of processes lobke? There would have to exist some
mechanisnfor linking together more or lesgbitrary selections of process&sis mechanism
must be of ghysical, causally effectiveature. Forinstance, therenight be a Cprocedure
compose that takesarbitrary processes as arguments exylicitly labelsthem as an "active
selection”. The intended interpretation of active selections igeto them as behavior®nly
processes that occur in aative selection are executed. Whempose is slightly modified
to accept as arguments active selectibesides individualprocesses, the composition
operation can be iterated to an arbitrary compositional détbetherwith an inverse
proceduredecompose (with obvious semantics), conditig@a) issatisfied. Thebuilding of
composites is alscausally relevanfior the agent'sunctioning, i.e., (2b) is satisfietabeling
and execution arphysical effectsthus condition (2c) isatisfied.Finally, (2d) is satisfied,
sincecompose accepts every combinatorially possible selection of arguments.

This (or asimilar) modification ofSteel's process netwoykelds a clearl}compositional type
of information processing. The question arises whethemntbdsfied architecture istill self-

organizing. The answer depends on howcthrapose procedure gets triggeredhenthere
is some central control for thigrocedure, then onbas essentially arrived at lassical
architecture, and self-organizatiorikgly to belost. Self-organization ienly possible when
there is anrreducible feedback between partial systems. ifidies that differentcompose

(and decompose ) events mustinfluence eaclother. By onecompose triggering, some
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othercurrently active selection might be induced to becdemmposed, composed further to
a higher compositionaepth, enlarged by the aggregation of further processes, or be reduced
in size; or other rote executionsampose might be triggered.

Actively selectingsome processesihile turning others off, is a precondition for a particular,
rapid kind ofadaptationwhich onemight call "rapid behaviosetup”. Thekey observation is
that in agiven situation an intelligerdgenttypically usesonly a fraction of thelow-level
processes that amgotentially at its command, arttat theselection of relevant processes
varies considerablgcross situations. Wherpbur coffee, processes like compensating for the
can's weight, balancing, astereovision control of hand position are active héh inthe next
moment | walk tothe cupboard to fetch the sugar pot, most of thesghanisms become
irrelevant, and a quite different selection is active.

The "pure" situated action paradiggiplains such sequences of behaviorsenms of the
agent/environment interaction loopewing behaviors as exclusivegmergent phenomena.
This sufficesfor a reflex-driven, "insect-like" mode operation, as is witnessed by current
realizations of behavior-baseabots. Iclaim thatwhen higher forms of intelligen@me into
the play, an additional mechanisfor an activejnternally co-determinedgcausally effective
setup ofbehaviors is needed. Antelligentagent pursues goaf{g/hich can be as simple as
pouring coffee), and these goals arise at leasially withinthe agent in a top-dowfashion.
They cannot beexplained completelypottom-up by the agent/environment interaction loop.
For thetime a goal igursued, a particular pattern of processes must to some extent be kept
physically stable against perturbatiotisat incessantly arise ithe agent/environment inter-
action loop.This does noimply that therelevant pattern of processedully determined in a
solely top-down, arbitrary fashion. Thebasic agent/environment interactidmop is not
replaced, but superimposed byaaiditional selection mechanism, ahd "affordances" of the
situation still co-determine the agent's behavior.

So far, | have argued from tls&gde ofmotor actions. Asimilar case for acausally relevant
composition mechanism can be made for perception. Again, as long as an "insect-like" mode of
operation is concerned, perceptive processaght be fully explained interms of the
agent/environment interaction loofhis does notsuffice whenthe level of intelligence rises.

At some level, intelligencemplies that an agentan perceive objects hitherto unknown, or
perceive known objects in new circumstances whereftbetive sensor signal deviatéom

earlier occurances. Suchfaculty requiresthat perceptive featuresan to some extent be
groupedarbitrarily, andthe established selection be stabilizeat thetime the object is
monitored. Folinstance, a porcelaine fish with wintjgat one sees in fancy shop becomes
established in perception almost instantaneously as an object. At such an instance, features are
composed that onbas never composed befoféis composition of features gartially
accounted for by thetimulus in abottom-up way; at theame time, it is also influenceéolp-

down, e.g. byanimal schemes. It is certainhard toexplain how exactly one manages to
perceive afish with wings. It seems clear, howevehat arelatively stablecomposite of
features is set up ad hoehich helps tokeep hold of thehing in the face ofall kinds of
perturbations.

The coffee-pouring and theinged fish monitoring examples have much in commotbobh
cases, active selections are generated onspia¢, which cannot beexplained solely as
emerging fromthe agent/environment interaction lodpis is a consequence ofraatively
high intelligence levethatbrings internatop-downinfluencesinto play. Atthe same time, the
lessonstaught by situated actiomply that oneshould not try to explain &her example
withouttaking self-organization in the agent/environment interaction loop into account.
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| come to a conclusion for this subsection. The discussion has shatumtelligent, situated
information processing must be explained as a combination of self-organization with composi-
tionality, both on centralintellective and on peripherisensomotoridevels. Self-organization
and compositionalityare here understood as fasfjat instantaneousnechanismglong-term
adaptation andearningwould have to be includeohto a more comprehensiveccount).
Classical Al isconcernednainly with central levels, where it focusses on compositionality but
has fundamental difficulties with self-organizatidne to its orientation towardsgics.
Behavior-oriented approaches favor periphkels, where they handle self-organization but
omit compositionality. Compositionality on lower levels is connectedtaitbfdowninfluences

of an intelligenicharacter, self-organization aigher levels i€onnected to the agent/environ-
ment interaction loop. Integrating self-organization aachpositionalityacrossall levels is
thus an important research task. It amounts to integlasical Al withsituated action, and
bottom-upwith top-downinfluences, in a principled way. the next subsection, | witlutline
how the dynamic symbol perspective and the DSS formalism can contribute to this task.

Summary of section 2.9

« The notions of self-organization and compositionaity specified in abroad (notquite
standard) sense, each by a collection of characteristics of information prooessivay
nisms.

« No true integration of both aspects is currently available.

« Self-organizationimplies that partial systemdnfluence eachother in all their aspects
(nonlinear feedback). This translates to logical deductive systems as "nonmonotonic
feedback”, which isot feasible inlogic-oriented approachesince itwould essentially,
meanthat theoremslerived from axioms can invalidatiee axioms. Logic-oriented Al i
thus in principle unable to account for self-organization.

« Nonmonotonic feedbadtoes, however, occur luman reasoning. It lseneficialfor fast
adaptation to a changing environment, memory access, real-time demands, and it makes the
frame problem obsolete.

« Compositionality is relevant on periphetaVvels for the ad hoc setup tehaviors and
perceptive schemes. Thdoes notinvalidate the self-organizational aspects of the
agent/environment interactidoop, but it requires the addition of causally effective
mechanismfor the fast anessentially arbitrary coupling of simpleotor processes or
perceptual features.

« An overall picture of intelligent, situated information processing emerges, \sbkbre
organization and compositionalitp-occur onall levels orthe periphery-centraxis. This
makes an integration of both aspects a centrally important issue for further research.

\"ZJ

D

2.10 Design vs. autonomy and development

Agent design seems to follow a straightforward and natural pattern. The designenindsain
particular performance profile tiie future agenfThis profile can bestated in terms dfigh-
level capabilities, as is typictdr classical Al; it can alsoonsist in thespecification of low-
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level functionalities that are apt to guarantee the agent's basic "survival", as in typical behavior-
oriented projects. Starting from these premises, the desigogks out asystem of
mechanismshat can be expected toeld the desired performance. The perspedsivabove

all, an explicitly functionalbne. Ishall callthis the "principle of explicit design™Artificial

agents are designed in terms of functions, and mechanisms that serve them, both of which are
explicitly stated by the designer.

The principle of explicit functional design obvioushgrees with practice iclassical Al
approaches tmobilerobotdesign. At a first glance, behavior-oriented desigmidifferent.
Behavior-basedobots are equippewith behaviors whose function is prescribed by the
designerFor instance, Steels (1993a) describesitmglementation of dretractreflex" that
serves a goal of coping with collisions. Tik@meretract reflex even occurs in the
program code.

But, this design strategy is atldswith the autonomy requirementhich | have already de-
scribed in the discussion of functional aspects of the periphery-centre axis (cf. 2.3). In the theo-
retical framework of situated action, agentsdatned to beautonomous and subject to their

own properlaws. This conflicts with a design segy that starts frompredetermined tasks.

The inconsistency becomes apparent in the following quotation (Steels 1993a, section 5):

"The first step in the design of the agent is usually a decomposition into the major tasks and
subtasks. This decomposition is not the basis of the design of the internals of the..Agent
but a design-oriented decompositihich helps tadentify the behavior systems that need to

be present.”

This statement isi10t quite consistensincethe decompositiors in practice thebasis of the
design ofthe agent's internalslechanismdor behaviors that servbe identified tasks are
effectively and explicitly implemented (cf. thetract_reflex example).

The inconsistencyoots in afundamental incompatibilitbetweenautonomy and design
Autonomy meanghat an agenhas developed, functions at the present, and will further
develop in the futureall according to its own rulesyhich themselveare subject ta@ontinual
development and cannot lidly fixed by anobserver. By contrasgjesignimplies that an
agent's functioning is externally prescribed, trat the agent does ndévelop but comes to
the world as dixed, ready-to-work deviceBiological agents can be autonomaudy because
never in their phylogenesis and ontogenesis they have been subjectexplian design
procedureThey have, in a waysonstructedhemselves, and radical constructivism teaches
that they continue toconstructthemselves even as aduddividuals. Artificial agents are
created from nothing. In order to guarangegvival from their existence's beginning, their
immediate needs have to bederstood by their creators, atitky are provided with an
explicit outfit of mechanisms to satisfy these needs.

A way out ofthe theoreticatlilemma is torequire that thelesign beopen Artificial agents
have to be designed in a way which allows them to developothaiproper responses to the
environment during theindividual "life". A functionaldesign, in this view, providdsut some
starting parameters for an unpredictable, designer-independent further devel&ppiei.
design can be considered an unavoidaeldatzfor the evolutionary and ontogenetic outfit of
which biologicalagents afford. Autonomy, then, grows from wHesign has left opefor the
agent to develop on its ownshall callthis the "principle of open design'Artificial agents
must be capable to modify their desi@his is a necessary complementhe explicit design
principle. Unfortunately, it is quite difficult to realize open design in practice.
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The only computational methods presently knotiat can in principle lead tautonomous
development are modeled on natural evolution. Theretvawemain schools of research,
genetic algorithms (cf. Goldberg 1989), and evolutionary strategies (cf. Schwefel 1977), of
which onlythe former is currently relevant for Al, in particular through its stancarbina-

tion with classifier systems, whichre symbolic intheir nature. By contrasgvolutionary
strategies arapplied to numerical optimizatio®oth approachesely on the selection of
stochastic variants according to sofiteess function. Thestochastic element renders the
designopen at leaghsofar aghe system's development becomes unpredictable. Unpredictabi-
lity is, howevernot sufficientfor openness in the sense of autonomy. Autonomy regbaes
thefitness function itselmust be open, i.e., it musbt bespecified by desigrin the context

of emergent functionality, we expect that the fithess function should be subject to evolution
and should be local to the organism that evol(&eels 1994, section 5.1).

The autonomy requirement, thueads directly tothe task ofroviding the agent with a
faculty of estimatingthe success of its (stochastically varied) actibhs is a crucial
difference to natural evolution, where successoisevaluated for amndividual's individual
actions, but on the populatidevel in terms of long-term survival. This globamplicit
"mechanism", which essentiallgquates non-success with agesliimination, cannot be
transferred to amdividual agent's development, sinttee agent has teurvive its adaptation
(discussion in Steels 1994). Thus, witthie agent there must existrechanisnior estimating
the quality of actions in aexplicit (or atleast,causally effective) fashion, localfgr individual
actions.

In the simplestcase, such an evaluation amounts to the computationsiigke "success"
variable. It has beengued thatiological agents afford of such aniversal variablenamely,
pleasure/displeasure (Cabanac 1992). Although | temsdliscribe to this viewthe question
remains ofhow pleasuréor amoretechnicallytermed correlate) can laffectively computed
without getting trappe@gain inthe pitfalls of externalpredetermination of the agent by the
designer.

The discussion so fanay havded totheimpressiorthat operdesign is very hard to come by,
if it is possible at all.However, a reconsideration of some ideas developedaiter
subsections suggests a novel strategy to open desigappearpromising. Thebasic idea is
to exploit functional ambiguity for autonomous adaptation. | describe this in some detail.

When an agent is observed and explaittezidescriptive categoriéizat are usedoot insome
implicit or explicittheory on theside ofthe observer. Thdesign itself is guided by some such
theory (or theories) which warrants thathis theory isobviously suited to observe explain
the agent. Buthis originaltheory isnot theonly one inwhichthe agent can be framed. There
IS no uniquely proper way a given agent should be perceived.

As a special case of this phenomenon, the functions which a substructure in the agent can serve
cannot be determined a priori in a comprehensive way. In subs2@iohhave emphasized

the adaptive potential dhis intrinsic functional ambiguity. | believkat herdies anopportu-

nity for an interesting variant of the currently exploited evolutiomaeghanismgor agent
development.

Evolution needs some source of variance. In geladdmrithms and evolutionary strategies,
variance is introduced by randamodifications whichare then "tested" for thewalue (e.g.,
for their potential to afford pleasurd)ecomingfirmly established when thegre good or
weeded out when they are not. | shall call thisnibdify-and-tesstrategy for evolution.

a7



The variant | have imind does notrely on modifications as source of variance. Rather, |
interpret functional ambiguity as a variaricat is already therenew functions only have to be
discoveredwhen they happen to reveal their value, and after their discovery they must be
effectively established, inrder to rendethem repeatable. ghall callthis a discover-and-
modifystrategy for evolution.

To understand this strategyote that an agentfanctionalities reveal their existence through
their beingtriggered by suitable external circumstances. Functambiguity impliesthat the
agentmay always (in aew situationfind thatavailable mechanismsteract in an unforeseen
way in a functional, "valuable" fashion. Earlier in teection, | have introducefdinctional
ambiguity as somethinthat results from the theory-dependence of the observations of an
external observer. Now, to make this idea effective for the @gelfitthe latter musact as its
own observer. It must beapable to self-monitor and to "discover” functions as they reveal
themselves in suitable circumstances. This mesdimply consciousness; "discovery" here
meanghat aphysicaltrace can béeft in the agentvhen a function reveals its existence by its
circumstance-triggered execution. Thubysical trace can thercausally effectthe agent's
subsequent behavior.

For anexample, consider an architecture ltke one proposed by Steels (1994), where a
comparatively large number of processes is cagigdinparallel (compare 2.9)Functions
(called "functionalities" by Steelgyephysicallyrealized bythe combined execution of subsets
of these processes (such subsetsalted "behavior systems" I8teels). The set dtinctions
that areimplicitly "already there" ipractically as god agnfinite; everysubset of the set of
processes potentially realizes a functiow, circumstancesnay occur where a subset of the
currently active processexchieves some success witspect to the agent's measure of
success (e.g., pleasurdssumethat the agentan cope with the credassignment problem,
i.e. it detectswhich of the currently active processes contribute to the success. thisen,
subset of processes can be recor@ing a physicarace,which can subsequently bsed

to re-activate this subset of processes in a "deliberate” fashion. The efeentig thistrace

is what Imean by "discovery". Technicallihe trace could, e.g., consist in an augntemtaof
thecompose procedure (cf. 2.9).

Some points from thisxample should bpointed out. First, this adaptatiamechanisndoes
not rely on modifications as a source of variance. A modify-and-test strategyfinsilddtab-
lish a(random) newnechanisn{e.g., byaugmentingcompose ), and then tryut the success
of the new architecture. In the above mechanism, by contrast, a particular, unpremeditated
success of the old architecture is first discovered tlaenithe mechanism is established in a
subsequently causally effective fashiSeconddiscovery-and-modify iskely to be cheaper
and faster than modify-and-tesince no dysfunctional changas firstphysically established
only to beweededout again. Third, thenechanism isnore plausiblethan modify-and-test. It
does noimport into anindividual a streéegy thatoriginates in populatiodynamics, which is a
guestionable transfer. Also, one ocaasily find example$or biological agents adapting by
discovery and subsequent fixation of functional behaviorsfatt classical behaviorism
describes discovery-and-testechanisms. Conversely, it lerd tofind exampleswhere a
random behavior is first fixed in an individual and then either kept or weeded out again.

Discovery, as it is here conceivedjnsmatelyrelated to compositionality (c2.9). Anevent

of discovery can be interpreted @ causally effective memorizing of a causally effective
composite. In thexample of Steel'architecture, this is a composite of procesbes, any
other composite of informational entities in an agent potentially supports a function.
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Summary of section 2.10

« Artificial agents must, to some extent, be designed in ternegplitit functions.They
substiute the functional outfit endowed tdiological agents byphylogenesis andnto-
genesis, mechanisms that are practically infeasible to repeat in artificial agents.

« Autonomy requireghat an agent'slesign beopen, i.e., the agent must beabled tq
further develop its own design.

+ Known mechanismfor autonomous development are derived fromnbeel of natura
evolution. Theoriginal fitness function, whickworks on thdevel of populations, must be
individualizedand internalized. This leads to considerincpasally effective pleasure/dis-
pleasure variable in agents.

« A variant of the standard modify-and-test evolutionary strategy for autonomous develop-
ment is provided by discovery-and-modmgechanisms. They expldite fact that an agent
implicitly possesses a large variety of functiomfich can bediscovered in suitable
circumstances, and recorded in a subsequently effective fashion.

Conclusion

The dynamic symbosktructure framework presentedtins section offers an integrativeew

on classical andituated action approaches to agmaideling. This is achieved essentially by
taking an empiricist stewe andlefining symbols asbservables. The resulting perspective is
compatible with the classical physical symbols systems hypothesis and with situated action. The
integrative potential of the approachemphasized byhat it allows to identify acentral
classicalnotion, namely, (internal) reference, with a notidhat is central in thdéehavior-
oriented paradigm, namely, emergence.

Modeling agents in terms of observational categoat®er than in terms of assumed "objec-
tive" entities has notable consequences:

« Dynamic symbolome with an abstractiotimension, which has asbservation-depen-
dent resolution component, and an observed-object-depatitfergntiation component.
This leads to an explanation of abstraction hierardhigsis different fromthe tassical
one,which builds onthe inclusion of extensionddowever, thetwo types of abstraction
hierarchiesare formally quite similar, and disjunctiveconcepts can bexplained even
without resorting to extensions.

« The notion of functionaambiguity, which is @onsequence of the theory-dependent nature
of observational categories, leads toplausible variant of evolutionary mechanisms,
namely, discover-and-modify strategies. This is a contribution to the task of open design.

Thedynamic symboframework bringgogether aypical classical and a typicsituated action
aspect of information processing, namely, compositionality and self-organization. It emphasizes
that both aspects must b#imately linked on all levels iorder toenable aragent to react

swiftly and effectively to changingsircumstances. Classicall, where it is logic-oriented,
cannot support self-organization, since the latter implies a direct nonmonotonic feedback of the
effect of an inference step to its premises. Behavior-oriented approaches shundtisttared
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compositionality, since it has an expli@p-down controfflavor, and sincehese approaches
account for composition (of behaviors) either in a fastemiyphenomenal, or in a causally
effedive but long-term adaptive faisn. In the dynamic symboberspective, by contrast, it
becomes apparent that

» self-organization is necessary even on central levelsydar to avoid the pitfalls of
decoupling the agent from its environment temporarily, and the frame problem, and that
« a fast andcausally effective kind of compositionality is necessary even on perijdezis
to enable a fast setup of behaviors and perceptual schemes.

| feel that the integration ofelf-organization with fast compositionality, which is concretely

realized inthe DSSormalism, isthe gigle most important contribution of this thesis to
research on agent design.
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3 Dynamic symbol systems

This sectiompresents the DSfearmalism in formakigor. There are four subsections. In 3.1, a
subclass othe regular languagestieated,coherentlanguages. Thegre motivated basic
assumptions concerning the naturdochl observations adynamicsystems. Ir8.2, the DSS
analogue of long-term memorglynamic symbol spaces introduced. Adynamic symbol
space is iimanyaspectsimilar to a classiterminological knowledge base; seen froutifeer-
ent angle, iresembles a thermodynanstate space. In 3.3glf-organizing sceneand self-
organizing streamsare presentedThey are closed (scenes) or open (streatgsamic
systems, which develop in time by virtue of local operatimngpochangesthat can bepplied
randomly and in parallelThe resulting globadynamics exhibitsapid equilibration andelf-
organization effectswhich are "measured" with respect to @merlying dynamicsymbol
spaceFinally, in 3.4, | show howseveral self-organizing streams can be cougdgdther in
order to achieve complex, multi-level information processing architectures,asstatdeties

3.1 Coherent languages and coherencies

Coherent languages aresabclass of regular languages. Tlag characterized by closure
under subwords and a certasgiclicity condition. Thebasic motivation to consider such
languagedies in the idea of an observation of dynamicsystem. When a parallelynamic
system, in whichdynamic symbolsnteract, is observetlocally" (i.e., only a single dynamic
symbol is observed at @me), what one willfind are temporal, spatial, or spatiotemporal
sequences afynamic symbolsSegences are temporghenthe locus of observation fixed

and one records iime;e.g.,when a singl®utputchannel of a system monitored. They are
spatial wherthe focus of observation cuts a trace line througtsyeeem at infinite velocity;
e.g.when a brain region is scanned thatasipled to visual inputia atopographicmapping
from the retina. Spatiotemporal sequences are obtained by an observatiohdbmm/es
with finite velocity. Jaeger (1992gives some temporal examples of such observations,
concerning sequences wbrds uttered by agubject. When an observation is considered as
amounting to a sequencedynamic symbols, it isatural to require thaubsequences should
also qualify as observations. This, then, leads to languages that are closed under subwords. The
cyclicity condition will be motivated further below.

| assumethat the reader isoughly acquainted with regular languages (standard reference:
Hopcroft & Ullman 1979) However, no results from the theory of regular languages are used
in the sequelsincethe little theorythat | develop comes with its own techniquesich are
tailored to the particular character of coherent languages. Whie, anacquaintance with
regular languagewill be helpfulfor a background, it isot stri¢ly required for an understan-
ding of the following material (withthe exception of the proof of propositionvéhich is,
however, not crucial for the whole).

The material presented in this subsection provides mathematical prereqouisi&S rather

thanbeing apart of DSS proper. Therefore, | postpone the usad@S&-typical terms until
subsectior8.2. In particular, kay "symbolsand "words" (rather thatdynamic symbols" and
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"associations"), since the present subsection obviously belotigs &aoea oformal languages,
where another terminology than the customary one would be confusing.

Definition 1 recalls the basic notions of formal language theory.

Definition 1:

(i) An alphabets a finite se& = {a, ...,a,} of symbols

(i) 2*:={s;..s|k=0,sO0Zfori=1, ..., k}is the set ofvords overz.

(i) If s=s;...5,t=1;..1 are words oveE, thenst :=s,...5t;..1 is theconcatenationof s
andt.

(iv) If s=s...5 0Z%* then § =k is thdength of s.

(v) If|g =0, thersis theempty word. It is denoted by.

(vi) A subseL [J %*is alanguageover Z.

By conventiony, s, t arevariablesfor symbols,a, b, ¢ are constants, and bold printicates
words. Words of length 1 are identified with symbols.

| approach coherent languages froslightly more general angle than frahe perspective of
regular languages, considering at the outset all languages that are closed under subwords:

Definition 2: A languagd. overZ is segmentableiff L is closed under subwords, i.e., if the
following two conditions hold:

() Orrp.r,0LOl<isjsnirrq.r 0L
(i) e0L.

Condition (ii) is an arbitrary auxiliary condition; one might just as vegjuires [J L. Making a
commitment, one way or the other, is an act of formal hygienics.

Next comes some nomenclature that will be frequently used in the sequel:

Definition 3: LetL be segmentable.

() ForrsOL, sis acontinuation of r inL, andr is acontext for sin L. Forr [J L, the set
continug(r) := {s O L | rs O L} is the set ofall continuations ofr in L. When the
reference td. is clear, the subscriptcan be dropped.

(i) rqrora... is aninfinite continuation of r in L :iff rr4...r, O L for every k= 0. The set of all
infinite continuations of in L is denoted bgontinug®(r). In the same vein,

L« := Ucontinug *(r)
rL

denotes the set of all infinite continuation&.in
The following proposition is a direct consequence of definitions 2 and 3:
Proposition 4 LetL be segmentable. Then the following statements hold:

(i) L =continude), L* = continue’(g).
(i) Forrq..r OL, it holds thatontinu€r,) O continudr,_4r,) O ... O continu€r,...ry). L]
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The moral of(ii) is that contexts act d$ilters" with respect to concatenation of words. The
further a context igengthened to the left, the more &et of itspossible continuations to the

right is restricted. When words are interpreted as temporal or spatiotemporal observations,
then the intended interpretation of contexts is to consider themfoamationthat isalready
recorded, and continuations as potential future observations. Théfifeheg" property can

be restated by saying that the more one knows about the past, the more precisely the future can
be predicted. Contextual filtering is a recurrent theme in DSS.

Next | introduce a convenient description fegmentable languages.gi&neratorof such a
language is a directed graph, where the ef@@dedtransitiony arelabeled by symbols from
>. Words can be readut ofthis graph byfollowing a finite path through the graph and
collecting symbols on the way.

Definition 5: LetL 00 2*. Let G = (S, trang), whereS is a set anttans[] SxZxS. Then G is
agenerator of L :iff

rOL iff  r=ryrpanddXg, X, ..., % 0SS Oi=1, ..., n: (X, 1, %) Otrans
or
r=Ee.

The elements db arecalledthelocal statesof G. Variabledor local states are x, y, z (not in
italics). Specific locastates ar@isuallyrepresented by natural numbers. The elementaad
arecalledtransitions. It is convenient to write simplyrx' instead of (xr, x') O trans When
fori=1, ..., n, it holdghat (X1, r;, %) O trans then xrix;roX, ... ryX, is aderivation of
r;..r,in G. The language generated by G is denoted loy.

Example 6 Fig. 3.1 shows two generators of a languagehere

> ={ab,c},
L={ry.r,02|n=1r#r;,,fori=1,..,n-1}0 {€}.

1 1
G ® G, ®
b
30 S — o) 30 ha——1}
b C
Fig. 3.1 Two non-isomorphic generatorslofrom example 6.

Proposition 7:
() If there exists a generator fbr thenL is segmentable.
(i) If Lis segmentable, then there exist infinitely many non-isomorphic generators for
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Sketch of proof: (i) is a direct consequence of the tfaat subpaths of paths in a graph are
paths, i.e., subderivations of derivations are derivations, i.e. subwaddswablewords are
derivablewords. For(ii), a trivial generator for agiven segmentablie can be constructed by
assigning to every wond=r,...r, of L an own linear-graph-like generator

Gr= (X" oo Xy {X T T2, X1, ooy Kty Mo X1,

whose unique derivation ohaximallength derives. The disjoint union of thesgenerators
yields agenerator folL.. Non-isomorphic variants of thgenerator can be obtained &yding
disjoint copies. Example 6 showlsat this is not theonly way to arrive at non-isomorphic
generators for a segmentable language.

The moral of proposition 7 thatbeing segmentable and possessimgerator is theame
thing for a languageThis can be specifieturther: for a languagdjeing segmentable and
regular is the same as having a finite generator.

Proposition 8 LetL be segmentable. Théns regular iff there exists a finite generatot of

Sketch of proof:

"U" Let A = (S, trans Xsian Saccepl P€ @ deterministic finite automaton acceptingvhereS
is the set of statesrans [ SxZxS is the set of transition rulesg ([ S is theinitial state,
and S,ecept U S is the set of accepting statédemove fromS all states fromwhich no
acceptingstatecan be reached, ahich cannot be reached fromx, and remove frortrans
all transitions whichare thereby affectetlet the result b&' andtrans. Define agenerator
G = (', trans). Now if xjr{X; ... rpX,, is a derivation in&', trans), then there exists &ord
S1...Sf1--Moty-- 1t In L which is acepted by A on a patihich contains g 1x; ... rx,. SinceL
is segmentable, it holdeatr,...r, O L. Thereforeall derivations in §', trans) yield elements
of L. Conversely, eaclord ofL can be derived i, trans), sincethere exists for thisiord
a derivation in A leading fromgy, into Syccepe @and this path is conserved i&'(trans).
Therefore, §', trans) is a finite generator af.

"O" Let G = @, trang be a finitegenerator ofE. Introduce a newocal state g, and

connect it to every locadtate of G by arransition labeled bg. Declare every xJ S an
acceptingstate.Then interpret the result of theseodifications as a non-determinisfinite
automaton. It accepts the languagevhich is, therefore, regular!

Regular segmentable languages could be fudgkamined inthe spirit of regulalanguage
theory. Forinstance, it is easy tshow that ifL andL' are regular and segmentable, then their
union and intersectioare regular and segmentalil&ewise, it isnot particularly difficult to
formulate what iscalled an "algebraic characterizatioiot regular segmentable languages.
Normal form theorems fdinite automata can be exploited define normal formgor finite
generators. The latter, however, doed lead far. Finiteautomata normaiorms have to be
awkwardly transformed to makgneratorssince in generators evesyatebasically isboth an
initial stateand an acceptingtate,which renders them quite different frofmite automata. |
will develop a more suitable normal form &yrclic generators further below, using methods
which do not originate in the theory of finite automata.

Regular segmentable languages can also be characterized by grdbymadsling suitable
conditions to the righfor left) linear grammardor regular languages). Although itvery

common to describe formal languages by grammars, huailldo soThe reasons for prefer-
ring generatorsare, first, that the cyclicity condition that specifies coherent segmentable
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languages (see below) is directly reflectedha graph-theoreticalclicity of generators,
whereas an analog condition for grammars would dss transparent; second, that the
fundamental operation siymmetry breakingsee below) couldot beeasily definedor gram-
mars; third that thedynamicsof self-organizing scenes and streams 8s8g3.4) isexpressed

in terms of local operations ayenerators; fourth, that generatoessén a normal formphase
generators see below), whose locsilates afford of amsightful interpretation in terms of the
informationthat is provided about a sequence-generayngmic system bghe "observation”

of a generated sequence. In sum, gener@torzarticular, phase generators) are transparent
models of sequence-generatitignamicsystems, whereas grammaire structural descrip-
tions of languages. In this thesis, the emphasis is on dynamics and systems.

The next definition introducdsomomorphismbetween generators.

Definition 9: For G = §, trang), G' = &, trans), n: S - S'is ahomomorphism from G to
G':iff x4rx, O transimpliesn(x4)rn(x,) O trans. This is written ag: G - G'.

Proposition 10

(i) Ifn:G- G, thenLgULg.

(i) If L, L' are segmentablé, O L', L' = Lg, then there exists generator G ot and a
homomorphismm: G - G'.WhenL, L' areadditionally egular, and G' ifinite, then a
finite such G exists.

Sketch of proof: (i) is straightforward. For theneral case in (ii), titevial generator ot (as
sketched in the proof af(ii)) can be taken for GzorL, L' beingregular and G' =, trans)
finite, andL being a languagever Z, take somarbitraryfinite generator @ = (Sy, trang,) of
L and define G as the product of &d G"

G = SpxS', {(x, y), r, (X, ¥y) | (x,r, x") O trangy and (yr, y') O trans}).

The desired homomorphismtige projection othis product generator oits second compo-
nent, i.e. on Gl

10(ii) signals some imperfectiowhat one would like to have, rather, ifuli converse of (i).
This will be obtained later with anoth&mnd of morphism (simulations), and a normal form of
generators (phase generators).

After thesebasic and general definitionsnow turn to aspecial kind of regular segmentable
languages and their generataramely, tocoherentlanguages andoherenciesTheyare the
languages and generators on wWHXBS restsTheir characteristic property eyclicity. The
motivation to consider such languages is again a lmsigerty of local observations of
dynamic systems. When such a systelmes notqualitatively evolve(through learning or
structure-changing adaptation), a long-term observation shahilit repetitions of patterns.
In the limit, every short-term observation should be repeatdiditely often in aninfinitely
long observation of a "random walk" of the system.

Definition 11: A languagé. is coherent:iff it is regular and segmentable, anddtr, s L
there existd [J L suchthatrts (I L. Coherent languages are denoted bystmebolC (instead
of L for languages in genera{}® corresponds ta> (cf. def. 3(ii)), i.e., it is the set affinite
continuations irC.
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Theuniversal continuationsitroduced in the nexdefinition will turn out to behelpful in the
further examination ofoherent languages. The background interpretation is to cotiseder

as observations oifinite duration, of asystemthat is notclamped in some specisiate by
external control conditions but rather performs a random walk through its entire state space.

Definition 12: An infinite continuationu [0 C* is auniversal continuation inC :iff every
s C appears as a subsequence ioffinitely often.

Proposition 13 For allr [J C, continue®(r) contains a universal continuation.

Sketch of proof:SinceC has a finitegenerator, it isesnumerableLet C = {ry, ry, r3, ...}.
Choose an enumeratisyp S,, S;, ... of C (with repetitions) invhich everyr; occursinfinitely
often, and where, =r. Fromdefinition 11 it followsthat thereexistt,, t,, t5, ... C suchthat
Sit1SHtoSats... O continue(r). This is a universal continuation.

Definition 14:

(i) A generator iscyclic :iff for all local states x, X' therexists a derivation g;X;...r,X,
where x =y and X' = .

(i) A generator is aoherency:iff it is cyclic and finite.

Proposition 15 A languageC is coherent IffC is generated by a coherency.

Sketch of proof: 1 ": Let u be a universal expansion@ and let G be &nite generator ofC.
Apply Koenig's lemma to conclude that there exists an (infinite) derivatiomdE. Sinceu is
infinite, some local states are visited infinitely often in this derivationrdchect of G on these
local states is a coherency that genei@tes

"0": Obvious/|

| will now cast a closer look apimorphismsn: G; - G,. When a coherency /Gs an
epimorphic image of a coherency, &; is called ssymmetry breakingf G,. Before | go into
explanations of why this is interesting, | supply the definition:

Definition 16:

() Letn: G - G, where G = (S, trang) and G = (S,, trans)). Thenn is is an
epimorphism :iff it is surjective, and for everyy [ trans, there existsome xx' [ trans;
such thafj(x) =y andn(x’) =y'.

(i)  When for two coherencies G G, there exists aepimorphismn: G; - G,, G, is a
symmetry breaking of G..

Whenn is interpreted "backwards", as an operation yfeltls G from G,, then,intuitively, a

symmetry breaking i®btained by "breaking" thical states of G and re-distributing the
original transitions to and from an original lostdte oveits breakingoroducts, taarrive at a
generator G Figure 3.2 shows a simple example.
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Fig. 3.2 A symmetry breaking.

The term"symmetry breaking" idborrowed from physics. It is usapknerallyfor processes

where some single phenomenon "breaks" didtinguishable phenomeias in the derivation

of the electromagnetic, the strong and the weak interaction forces frassamedinified

force), or for processes where a system looses some degrees of freedom (as in cooling water to
ice). Typically, symmetry breakingare induced by a decrease in temperatlteof this

transfers tsymmetry breakings as thayedefinedhere.Single localstates break inteeveral

distinct oneswords thatcan be derived starting from tbaginal local statecan become
underivableafter thesymmetry breakinde.g.,ac is lost in thesymmetry breaking fronfig.

3.2), and last but not least, symmetry breakings can be interpreted in terms of a "computational
temperature"” (cf. subsection 3.2).

Next | introduce anormal form for coherenciephase generatorsTheir localstates are
phasesIntuitively, a phase e information carried by amaximally informative" cantext. A
context ismaximally informative, in a sense, whenfilgering effectscannot be augmented by
lengtheningthe context to the left. In the interpretationnairds as observationt)is means
that an observation imaximally informative when no additional knowledgéout the future
development of the observation cangagned by considering deeper extensions of it into the
past. Such observations proviehaximalpossible knowledgabout the state of the observed
system. In this sense, such observations can be identifiedheitbtates of thgystem. It is
customary to call the states of asncillation generating system "phases”. Uding term
"phase" for thdocal states of generators of coheréarnguages is motivated lmyewing (as a
background interpretation) such generators as oscillation generating systentiesclllae
tions", in this view, are the (infinite) continuations of a coherent language.

Definition 17: Let C be a coherent language.

() Letp O C. Thenp is phase-fixing:iff continuép) = continudrp) for allrp O C.

(i) Let ~, be theequivalence relation omp{l} C | p is phase-fixing} defined bp ~, q :iff
continugp) = continuéq). The equivalence classa calledthe phasesof C. Phases are
denoted by theymbol¢. The set ofill phases o€ is denoted bypP(C). Theequivalence
class ofp is denoted by,

The next proposition collects some properties of phases.
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Proposition 18 Let C be a coherent language.

(i) Foreveryr U C, there exists songg...s,r 1 C (n= 0), such thas,;...sr is phase-fixing.
(i) P(C)is finite.

(i) If pO Cis phase-fixing, antp U C, thenrp is phase-fixing, andi, = ¢,

(iv) If p O Cis phase-fixing, angdr [J C, thenpr is phase-fixing.

Sketch of proof:

(i) Show firstthat the setgontinudt) |t [0 C} is finite, as follows.Let G = G, trans) be a

finite cyclic generator ofC. Let S; = {xY;, ..., »} O S be the set of thosecal states
which areterminal points in derivations of Let )éj+ be the set oéll words thatcan be
derived in G, where the derivation is started frgmbhencontinudt) = x,* O ... O X%,
i.e. continudt) is uniquely determined by a finigibset ofS. SinceS is finite, there can
be only finitely many such subsets, and hemoafinudt) |t [ C} is finite.
Proposition 4(ii)implies that for every sequence, rqr, rorqr, ... in C it holds that
continugr) [ continudr4r) O continudro,rqr) O ... . Since {continu€t) |t O C} is finite,
this implies that there exists somes,..s;r O C such that continugs,...s;r) =
continugss,,...s;r) for all ss,...s;r O C. L.e.,s,...s;r is phase-fixing.

(i) Follows from the finiteness otfntinudt) |t O C}.

(i) Trivial.

(iv) Assume that pr is not phase-fixing. Thenthere exists somepr [ C such that
continuépr) O continuéspr). It follows that continu€p) [0 continugsp), which contra-
dicts thatp is phase-fixing. |

Thefollowing overallpicture ofuniversal continuations can b&tracted from proposition 18.
Letu =rqror,... O C* be universallLet u; :=r4...r;. From(iii) and (iv) it followsthatu "phase-
locks™ at some point, i.e., there exists sogneuch thaty; is phase-fixing for all % iy, andy; is
not phase-fixing for £ iy. Furthermore, every phageappears infinitely often in, i.e.,¢ = ¢,
for infinitely many indices .

Phases can be used as local states for a gener@towbich is thereby uniquely determined:

Definition 19: Let C be a coherent language. Theg & (®(C), trang) is the phase
generator of C, wheretrans, := {(¢, , ¢,,) | p is phase-fixing irC, pr [J C}.

Usingthe facts collected in proposition 18, itstsaightforwardly confirmethat G, is well-
defined and in fact a finite, cyclic generato€CofG, has the following properties:

Proposition 2Q

(i) For ¢ U &(C), let¢* U C denote the set adll wordswhich can be derived in Gby
starting fromp. Then,¢,* = continugp).

(i) oz iff oz ™.

(i) Gy is "deterministic™: iipsp,, dsp, are transitions in £5 thend, = §,.

(iv) r O Cis phase-fixingff all derivations of in G, terminate in a unique phase. This phase
IS ¢,.

(V) 1fn:Gy - Gy, thenn =id.

(vi) Thefollowing is a useful characterization of phasmnerators. Let G =§( trans) be a

cyclic generator ofC. Then, G = @ (up to somorphismjff the following conditions
hold:
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(a) G is"deterministic”, i.e., if 8y, xsz are transitions in G, theny = z.
(b) A local state XJ S exists, which is fixed in G by a suitalslel C, i.e.,
Ox O S, s C:if scan be derived in G on a path terminating in y, theny = x.
(©) Let, for zO S, z* 0 C denote the set of all words which can be derived in G by
starting from z. Theri,] x, yO S: x = y iff xt = y*.

Sketch of proof:

(i) is straightforward.

(i) is a corollary to (i).

(i) Follows from 18(iv) and the constructiontrdns,.

(iv) "O" Letr O C be phase-fixingChoose¢ suchthatr can be derived on a path D
terminating in¢. Let s [0 C be also phase-fixing. It follows froe construction of
trans, thats can be derived on a path f2rminating ins. From thecyclicity of G, it
follows that thereexists aword t [ C suchthat str can be derived on a path/mD,,
which is aconcatenation of three paths, the firstadiich is I, and the last ofvhich is
D,. (i) saysthatcontinugs) = ¢.*. Use this andiii) to concluded thatontinugstr) = ¢*.
Sincer is phase-fixing, it holdshat continudr) = continudstr). Apply (i) and (ii) to
conclude thab = ¢,.

"0O0": Letr be notphase-fixing. Thetthere existwo different phaseg, and¢,,. From
"0 " it follows thatsr can be derived on a paginding ingg,, andtr on a patrending in
¢,. Thereforer can be derived on paths terminating in different local states.

(v) Let¢ = ¢, be a phase such thfit is maximal,i.e., there exists notherphase’ such
that ¢* U ¢™. Letn(¢p) = ¢4 From thedefinition of homomorphisms it followthat
continugp) [ continudqg). Since ¢* is maximal, this meansthat continudp) =
continudq), i.e.,n(¢) = ¢. Apply (iii) to conclude thafy = id.

(vi) "O": Assume G = G. (a)follows from (iii). For (b), select for x aarbitrary phase,
and fors, some word that fixeg. (c) is clear.

"O": First, we show
Q) OyOSO¢ OPC): yr =06+

Let x S be fixed bys [0 C according to (b). Select some&lyS. Since G is cyclic, some

t O C exists suchthat st can be derived on a path terminating in y. Because G is
deterministic, it followghat y isfixed by st in the sense of (b). From proposition 18(i) it
follows thatsomer [0 C exists, suchhatrst is phase-fixingor some phas¢ [ ®(C).
Obviously, y is fixed byst. Therefore, y = continudrst) = ¢*.

ForyU S, let¢, denote the phase that corresponds to y according to (1). We now show
(2) D¢ 0 FlyDs: ¢ =9,

Select some [ ®(C). Letd be fixed byp U C, i.e.,¢ = ¢, Select some derivation pf
in G, whichstarts insome x[J S and terminates in somely S. Analogously to the
procedure in the proof of (1), select som@ C thatfixes x in G.Then,rp fixes y. It

follows that y* = continugrp) = continugp) = ¢*, i.e., ¢ = ¢,. The uniqueness of y
follows from (c).
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(1) and (2) togetheryield anobvious one-to-one correspondence betw&end ®(C),
which directly leads to an isomorphism between G gnd(G

Note thatphases dmot correspond tainimal sets ofpossible continuations. The case can
occur thatp* I ¢'*. A related fact is that thehase generator & neednot have ¢her the
minimal possible number of locakates or theninimal number of transitions. As axample
consider the coherent language

C={r..r,0{abc*|n=21r,=r,0r=a} O{e}

l.e., C contains the words overl{b, ¢} where only a may bedirectly repeated. There are
three phaseg,, ¢y, ¢ It holdsthat¢,*, ¢.* U ¢,*. Figure3.3 depicts ¢ and a generator G
of C with two local states. Theninimal number ofstates and transitions is obtaineat in the
phase generator but in G.

o ¢ o Q

a

Fig. 3.3 Two generators of a coherent language.

Considering, once again, the background interpretatiomoofls aslocal observations of a
dynamicsystem, | ask now what is tirdormationgained by such an observation. The term is
generallyused intwo fashions. First, it can refer the "semantic contents” of some obser-
vation (where, again, "observation" can be usethamy fashions).For instance, when |
"observe" that someorsays, "thecat is on the mat", then tlheformation conveyed by this
statementmight bethat the catis, indeed, othe mat. Second, the term can refer to a
numerical value ofhe informativeness of an observatiavhich is usually given itits. | will
adopt the ternrmeaningfor the first usage, and the temfiormationfor the second.

There are several reasonable waylsaf onemight specifythe meaning of avord fromsome
coherent languag€. | commit myself to aspecificationthat, again, sees avord as an
observation of alynamicsystem. | definghe meaning of avord (say,s) as what is known
about theinternal state of thesystem, giverthe word as aobservation that reachdé®m
somewhere in the past up to the preskat.themeaning ofs the set ofphases which are
reachable by derivations sfin Gy,. The information, then, of is maximal,when this set
containsonly one phase, i.e., whens phase-fixing; it is 0 whestells us nothing, i.ewhen
the setcoincides withd(C). The value i€omputed, in the customary manner, asnigative
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logarithm ofthe ratio ofconfirmed case®ver possible casesAll in all, one obtains the
following definition:

Definition 21: Let C be a coherent language, a&id C.
() Themeaningof swith respect t«C is the set
®(s) = {¢ U P(C) | ¢ =, for some phase-fixing [ C}.
(i) Theinformation of swith respect t& is the real number
H(s) = -log, |®(s)|/[®(C)|.

The information H willplay animportant role in accounting for self-organizationseif-
organizing scenes and streams.

Now | return to moregoractical matters. A coherent language will ofterspecified by some
ad-hoc generator.describe now an algorithrahich computes the phase generator from an
arbitrary finite cyclic generator. Readers whofarsiliar with finite automata willfind that the
algorithm resembles somwhatttee customary power set construction aegerministidinite
automaton from a non-deterministic one.

Algorithm 22: Let G = §, trans) be a finite cycliggenerator ofC. Then, the phase generator
(®(C), trang,) can be computed in four steps. FigGrd illustrates the procedure with an
exemplary run.

Step 1 Construct from G a generator G'$,(trans) of C, which is deterministic ithe sense
of proposition 20(vi/a), as follows. The locthtes of G' are certaglements othe power set
of S. ConstructS' andtrans incrementally by computing

S'y:={S}, transy := 1,
Sh+1:=S,O{TOS|OROS,sUZ: T={y OS|OxUOR: xsy Otrang},
trans,,, :=trans, O {RsT |ROS',, TOS',;1, andOx OR, y O T: xsy [ trang.

SinceS', andtrans,, are monotonouslincreasing, and sindte power set 0% is finite, the
sequence ), trans,) eventually becomestationary, i.e., somminimal k exists suclthat
(S, trans,) = (S, transy ) forall 12 0. Put G' =§', trans) := (S, trans,). It is easy to
confirm that G' is a deterministic generatoCof

Step 2 Construct from G' ayclic, deterministigeneratoiG" = §", trans’) of C, as follows.
Select som@ [J S' which is minimalj.e., which isnot a propesubset of sometherT~ [ S'.
ComputeS" incrementally by putting

S ={T}

S"+1:=S",O{ROS"|OUDOS", s UsR Utrans}.
Again, this sequence becomes statiorfarysomeminimal m.Put S" := S",, andtrans' :=
trans [ S",,. This finishes the computation of step 2.

It remains to be showthat step 2 is correctSince G" is asubstructure of G', it is
deterministic. Inorder to show thaG" is, indeed, ayclic generator ofC, we select some

p O C, suchthatp can be derived in G' on a path starting in S and terminatifiigWe show
that

(1) pfixesT in G' (in the sense of proposition 20(vi/b)).
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Assumethat p can be derived on a path starting in sdRqel] S' and terminating in some
R, 0S". We have to show th&, = T. The following general monotonicity law igasily
confirmed: ifU;sU, andU,'sU," are transitions in G', arld; O U,', thenU, O U,". Clearly,
R, O S. Apply the monotonicityaw repeatedlyor all transitions in both derivations pfin
order toconcluded thaR, [J T. SinceT is minimal,this meanshatR, = T. In analogy to the
argument used in the proof of proposition 20(vi), conclude from (1):

(2) A phasep exists such that* = ¢+.

Since lg- = {s| sis a subword of sonmtel] T*} and C = {s| sis a subword of somel] ¢}, it
follows thatG" generate€. In order to show thas" is cyclic, select sonfe [J S". It suffices
to show thasome path irG" leads fronR back toT. Somes exists which can be derived in
G" on apath starting ifT and terminating ifikR. ¢* contains some&vord of the formsrp. Use
(1) to conclude that a derivation ipf leads fronR back toT, as desired.

1€ >

original s
generator G f R\
2 ¢ »3

{1234}
{3
i G f\\ / o)
2y );31
{1
It of
e VN
) 5 >3
result of = (L2 B = 5= =
step 3 .
result of G - G{{]}’Q}}( s ){{3}}
step 4 r

Fig. 3.4 An examplary application of algorithm 22.
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Step 3 Compute theequivalence relatiog on S", defined byT = U iff T* = U*, as follows.
Define=,; such that

T= U iff OsO2:sOT* » sOU™
Fori=2, 3, ..., defing; inductively such that
T=,,U iff TE,U,and 0 TsT', UsU' O trans": T' =, U

Effective procedures for computing, and=,,,; are obvious. Each, ., is a refinement of,,.
Since eack; can contain at mos$| equivalence classébe sequences);-; , must become
stationary after somg £ [S"|. Put=:==; .

For the correctness of step 3, we must showalfdr, U O S", thatT = U iff T* = U*. Define
T :={sOT*| H <n}. Itis easily confirmed that*" = U*"iff T =, U. Use this to conclude

T=U iff T U
iff On:T=,U
iff On: TN =U+*n
iff T+=U*.

Step 4 Construct G = (®(C), trang,) by "=factorizing” G".More precisely,construct a
generator G™ =§", trans") by putting

S":={T=|T OS", T=is the equivalence classT,
T=sU= O trans" :iff JU'0S™ U'=U andTsU O trans'.
Applying proposition 20(vi), it is easily confirmed that G™ is isomorphicyto G

The naturamorphismfor coherencies isot thehomomorphism definedbove, but anapping
which allows to"spool" one generator into another. The negfinition specifies such
mappings, calledimulations The term is borrowed and adapted from the theory of non-
wellfounded sets (cf. Aczel 1988), whetaisimulations” are mappings between directed
graphs, with very much the same intentions as here.

Definition 23: Let G, = (S;, trans)), G, = (S,, trans,) be coherencies generati@g andC,.
A mappingo from S to the power se®(S,) is asimulation of G; in G, :iff

(i) o(x) is nonempty for all XJ] Sy,
(i) for all x4rx;' O trans;, for all O o(x4) there exists X[ o(x,') such that xx,' [ trans,.

This is written ag: G; - G..

The next proposition lists two direct consequences of this definition:

Proposition 24

() Simulations are transitive.

(i) Wheno: G; - Gyis a simulation of Gin G,, thenCg U Cg,. [

Two cyclic generators of aoherent language needt simulate eaclother. In theexample

shown in fig. 3.1, the generatof Gannot be simulated in,GHowever every cyclicgenerator
of a coherent language can be simulated in the corresponding phase generator:
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Proposition 25 If G = (S, trang) is a coherency generatij and G is the phase generator
of C, then there exists a unique simulatorG - G;,.

Sketch of proofDefineo by ¢ [l o(x) :iff there exists phase-fixingp LI C suchthat$ = ¢,
and p can be derived in G on a path terminating in x. It is straightforward to #raiw
0: G - Gy. To show that is unique, consider an arbitrary simulat@nG - G, and some

x O S. Letp be phase-fixing sudat in G thereexists a derivation g terminating in x. Use
23(ii) and 20(iv) to showthat ¢, U o'(x), which meansthat ¢'(x) U o(x). Now take an
arbitrary¢ [0 o'(x) and a phase-fixing for which there exists a derivation in G starting and
ending in x. Use again 23(ii) and 20(iv) sbow thatd = ¢, which meanshat o'(x) U o(x).
Thus, one hag'(x) = a(x). Since x was selected arbitrarily, this imptes o. [

The next theorem is the key for any deeper analysis of coherencies and their interrelationships.

Simulation theorem 26 Let C;, C, be coherent languageset Gy = (S, trans) and
Gyp = (Sy, transy) be their phase generators. Thep U C, iff there exists asimulation
O G1¢ — G2¢

Sketch of proof:

"0 " follows from 24(ii).

"00": This requires some work. Lat=u,u,... be a universal continuation@. FromC; IO C,

it follows thatu 0 C,>. u can therefore be derived on ifinite path in G,. Fix some such
derivation Q52¢(u) = XgUpXqUpXo... . Since G is finite, there exists somg suchthat for all

i1y, X appeargnfinitely often in Q32¢(u). Sinceu is a universal continuation i@;, there
exists somegjsuchthat forall i = jy, uy...4; is phase-fixing irC;. Let m :=max {i,, jo}. Let

Del¢(U) = YoUY1Upy,... be aderivation ofu in Gyy. Then y is uniquely determinetbr i= m

since mz j,. Let G’ = §', trans) be the substructure of,gswhich consists ofhe local states
Xmr Xm+1 Xmaor --- and the transitions X+ 1 Xm+1 Xm+1Um+Xmso --- - Definea: S; - P(S)

by x O a'(y) :iff there exists 2 m suchthat x = x and y = y. Observehat o' is well-defined
since every Y1 S; appears (evemfinitely often) in ¥, Um+1Ym+1Um+Ym+2--- due to thechoice
of jo. In order to prove " it obviously suffices to show

(1) o' simulates @, in G".
Define another generator G" $"(trans') by

S":={xy [ xOa(y)},
(xy, 1, Xy) O trans' :iff (y, r, y’) U trans; and (x,r, X') U trans.

G" has the following properties:

(2) G"is acyclic generator @f.
(3) G"is deterministic in the sense of 20(iii), i.eid, X X"y, U trans’, then x; = x'y».

(2) follows fromthat on the onéand,u can be derived in G" in a fashion which "uses" every
transitioninfinitely often due to the choice of miy (which impliesthatG" is cyclicandthat in
G" there can be derived at least therds fromC,), andthat on the othehand,$(x,) := y
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defines a homomorphism from G" tg4which implies that in G" there can be derived at
most the words fronCy). (3) is inherited from &,.

Definec™: S; - P(S") by X, [ 0"(2) :iff z = y. In order to show (1) ibbviously suffices to
show thato™: G,y — G" is a simulation. It is easily confirméuhato” is well-defined andhat
23(i) holds. Thus 23(ii) remains to be shown, i.e.

(4) forall z2z'0 transy, for all x, 11 0"(z), there exists xU 0"(z) such thatxx', U trans”.
Due to the definition of G" this is equivalent to

(4) for all yry' O trans,, for all X, [ 6"(y), there exists x'TJ 6"(y") such that yrx, U trans’.
Now comes the crucial argument. Define

k:=min {n 0 |N| there existp U C; which is phase-fixing i€; and whose possible
derivations in G" terminate in n differepDS"}

Let yry' U trans; and x U1 0”(y). It has to be showthat thereexists x; [J 6"(y") suchthat
x,rXy U trans'. Letq = qy...q; U C; be phase-fixing i€, suchthat thepossible derivations of
g in G" terminate in k different locatates fromS". Since G" is cyclicthere exists dinite
continuationgt = g...gitj41.. t, of g, one of whose derivations in G" terminates;in x

The following holds:
(5) The possible derivations gfin G" terminate at exactly k different local states f&8'm

In order to show (5)assumehat there were k k localstates fron5" whicharetermination
points of derivations aft. Use (3) to conclude that there must exist at ledstid statesrom
S', which are possible termination poinfer derivations ofy;...q ;.. 1,.1. Iteratethis argu-
ment to show that there exist at least k' local states®btiat argpossible termination points
for derivations ofy;...q;. This is a contradiction.

Sinceqt can be derived in G" terminating i ¥ can be derived in {g terminating in y (this
follows from a simple argumembvolving ¢). Since yy' U trans;, it holdsthat qtr O C,.
Assumethat thereexists no ) [1 0"(y’) suchthat xrx'y U trans’. Then no derivation aft in

G", which terminates in xcan be continuated byUse (3) and (5) to conclude that there exist
at most k-1llocal states inS" that arepossible termination pointer derivations ofjtr in G".
This contradicts thedefinition of k. Therefore, there exists x'l1 ¢"(y’) such that
XXy O trans'. [

The simulationtheorem is a remarkable resulC,"0] C," is a bruteextensional statement,
which at a first glancdoes not appear to hechnically well manageable. This impression is
nourished, for instance, by'density theoremthat | mentionwithout proof: ifC; O C,, then
there exist "interpolatingC,; O C O C, with arbitrarily large phasgenerators. l.eghains of
the typeC, 00 Co U C3 ... arearbitrarily "erratic" withrespect to theize ofthe corresponding
phase generators. Yet, such chains correspond to chains of simulations.
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The following is an ad hoc demonstration of the theorem's handiness:

Proposition 27 For twocoherent languagés;, C, with given generators GG,, it is decid-
able whetheC, O C,.

Sketch of decision procedure: Construct the phase genergfor&fs, andtestwhether there
exists an involutiow: G4, — Gyy. This test can be carried out, e.g., by trying out all mappings
from ®(C,) to P(®(C,)). (Of coursesince coherent languages are regular, one cailsdd
make use of decision procedures for inclusion of regular languages.)

Summary of 3.1

. Interpreting words oformal languages as local observationglyriamic systemmoti-
vates consideration of segmentable languages, i.e., langhatjese closed undeub-
words.

. In segmentable languages, words act as filtering contexts for their potential continyations.

«  Segmentable languagese conveniently described bgenerators, i.e.edge-labeled
directed graphs, where paths yield derivations of words.

. Regular segmentable languages are characterized by having finite generators.

. Coherent languages are regudagmentable languagesat havecyclic finite generators,
which are called coherencies.

. For coherentanguages, there exighiversal continuations.e., infinite words that con;
tain all words of the laguageinfinitely often. They can be interpreted as observations of
a dynamic system that performs a random walk.

«  When a coherency is an epimorphic imageanbther coherency, the latter can|be
interpreted as a symmetry breaking of the former.

. Phases are sets of worttst can be interpreted as teemanticcontents ofmaximally
informative observations of an oscillation generating system. idleithe local states of
a normal form of generators, i.e., phase generators.

. Phases are used s$pecifythe notions ofneaningand information ofvords, where th¢
former concerns the contents of the knowledge provided by a word (interjigeed,as
an observation) about an observed system, and the latter a numerical value.

. Phase generators can be effectively constructed from arbitrary finite cyclic generatprs.

. The "natural"morphismsfor coherencies a@mulations. Thesimulationtheorem states
that a coherent langge is a sublanguage of another coherent langifiadbere exists &
simulation between their phase generators.

A4

=

3.2 Dynamic symbol spaces

Dynamic symbokpaces are the DSfodel of "long-term memory". The latter ternsightly
misleading, sincéong-term memory i€ommonlyassociated with the conceptlabel of an
intelligent agent, whereas DS&ssigns to every level ctme periphery-centraxis its own
"long-term memory". Unfortunatelyhereseems to be no tier termavailable todenote the
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fact that insomelevel or module,dynamic symbolsre processed according to some long-
term, stable "law".

Throughoutthis andthe subsequent subsectionsly onthe conceptudevel as asource of
examples, becaussoncepts are the moslirectly accessible type afynamic symbols for
human readers. Thus, the dynamic symbols to be used in exantigigscally be rendered by
formal symbols (i.e., symbols frothe observer's theory) likgple , paradise , orbuy. In
making use of such examples, | tacitly assume that there eredittobleobservation procedure
for the correspondinghysical dynamic symbols in agent, andhat theexternal reference
mechanism ofthesedynamic symbols is empirically explained (skctions 2.4, 2.5). For
instance, thelynamic symbols imuestionmight be neocortical activatigpatterns; however,
empirical neuroscience is not yet istate to recorguch patternsn-line with highresolution.
A variety of conceptual-levelynamic symbols, which igasier todetect, are uttered words.
This is,however, problematic for another reasmords that are uttere@flectonly a fraction
of what happensvithin the agent on a conceptualel, and they W do so in asequential
form. A third variety of conceptual-level dynamic symbols is electronic activation patterns in an
artificial agent that is programmesiymbolically onits conceptudkevel (in particular, a
programming technique based B8Smight beused). These patterns canrbkably detected
by their traces on a computer screen. Thekiast of dynamic symbolthat | want tomention
here are the conceptswobrk in the researchdnm- or herselfThe observation procedure is
introspection, a method whose value | hesitate to judge. Be thimag,the importanthing

to note is that ampple symbolappearing in an example m®t considered as alassical,
"platonic” category name, but as the formal rendering of an observable informational entity that
plays a dynamic role in an agent's information processing.

Eve

paradise @ @.
tempting K///////ﬁl x 2

® apple =
/awﬂé e
®
®
ple
W.
L
, cz& > buy
Lempting
buy Py

Fig. 3.5 A coherency as it might appear in a dynamic symbol space.

Dynamic symbolsappear in adynamic symbokpacewithin coherencies. In subsecti@nl,
coherencies have be@meated in amabstractly formal way. To afforthe reader with &ess
formal intuition, fig.3.5 gives an example dfow one of the coherencies ilynamic symbol
space (on the conceptual level) could look like.



The intuitionbehind this example is tgee it as a generating device @rds, i.e.,sequences
of dynamic symbols likapple cost buy or tempting apple Eve. In practice, such
sequences might be observed, e.g., in free association tasks.

Observe, in particular, thsltering effects of contexts. Forinstance, the sequencésy
apple andapple Eve are eaclderivable, whereathe concatenatiobuy apple Eve is
not: thecontinuationEve of apple is filteredout whenapple lies inthe context obuy.
This simple mechanisiior contextuainfluences on "associations" dfnamic symbols is one
of the central features of DSS. It grodisectly out ofthe notion ofsegmentable languages
(cf. proposition 4)which inturn is derived directly fromthe background interpretation of
words as local observations.

Furthermore, observe thahy two dynamicconcepts can bmterlinked by a suitable inter-
mediate sequencé&or instance,buy apple tempting apple Eve is derivable. The
context buy, which formerly ruledout apple Eve, is, onemight say, "shadowed" by
tempting , which serves as a "semantic bridge" between a supermarket and a garden-of-Eden
setting.Using cyclicgenerators, i.e., coherencies, aslihsiccomponent oflynamic symbol

spaces igenerallymotivated by the considerationsade inthe preceding subsection before
definition 11. Whenthe conceptudével isconcerned in particular, an additional motivation
comes from the cyclic closedness that is characteristic for conceptual systems (cf. section 2.4).

Dynamic symbol spaces are, however, more complex than a single coherency. They consist in a
two-dimensional array of coherencies. Eachhefdimensionscontributes a particular aspect
to what is classically called "abstraction".

One way of approachindynamic symbokpaces is to consider them as roeghivalents of
classical semantisetworks forterminological knowledges.g., KL-ONE T-boxes. There are
two basic differences.

The first concerns th&ructureof dynamic symbapaces vs. semantnetworks. In the latter,
there exists a single abstractdimension.The former, by contrast, at&o-dimensionalBoth
dimensionsare related talassicalabstraction, buthey distinguisitwo factors of it. Thefirst
dimension arises frortine abstraction alynamic symbols asbservables, as discussedif.

The secondlimensionaccounts for the fact that given dynamic symbatan interactvith
others invaryingdegrees of precisiomhis dimension is technically effected bgeguence of
symmetry breakings. It can b#erpreted in terms of a computational temperature: when it is
"hot", the interactions are close to randamhen it is "cool", theyare specific andcontext-
sensitive.

The seconddifference betweertlassical semantimetworks anddynamic symbolspaces
concerns theiuse A classical semantigetwork is accessddcally viathe concepts contained
in it, with information pertaining tthe accessed concdingread at. It can in principle be
accessed at sevetalels ofabstraction simultaneously. dynamic symbospace, by contrast,
can rather be compared to tlgobal state space of #hermodynamic systenits two
dimensions providglobal statesvhich are interpreted as global processing modes fdawble
or module whose "long-terrmemory" it is. A helpfulmetaphor is to view the module as a
chemicalreactor,and theglobalstate as the temperatuand pressure settinigat controls the
processes in the reactor.dnamic symbobpace, thus, is "accesseit atarbitrary points,
but, for somdapse of time, in a single point of its two-dimensional spabesh characterizes
such a processing mode.
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So muchfor a firstintuitive impression othe whole. Turning to thechnicalities, | first
specify anabstraction relation fodynamic symbols irterms of anabstraction tree The
definition is a formateconstruction of abstractidnerarchies othe kind discussed 2.6 (cf.

fig. 2.7). Note that the term "dynamic symbol" appears in the definition, instead of "symbol”, as
in the preceding, formal-language-oriented subsection. Fig. 3.6 provides an example.

Lop 20

wal

thing top human

N T

apple paradise top human Eve Adam

Fig. 3.6 An abstraction tree.

Definition 28: Let> =%, 0 Zn 10 ... 0 X, be a set oflynamic symbolsand leto;: 2; - %4
be a mapping. Thenig()J n 1) Is anabstraction tree:iff

() eacha;is surjective,
(i) if r0% nZy, thenr 0% n 2y n...nZjandoy(r) =rforl=j,j-1, ..., j-k+1,
(i) no q; is the identity mapping.

The mappinga arecalledabstraction mappings Whenr =s, or for some j, k it holdghat
ro;, sz, ands 0j.p+10--.00; (r) thens subsumes. This is written as>r.

Condition (i)impliesthat inintermediateX; there cannot occutynamic symbolshat have no
subsumees ithe morespecialized;, .. This reflectsthat anincrease in resolution afifferen-
tiation cannot lead tthe disappearance of an observaBlanversely,all dynamic symbols
contained ir; have subsumers in the more absteggt sincethe abstractiomappings are
totally defined. This reflectthe assumptiothat poorerdifferentiation or resolution cannot
make an observable disappearwatrst, still "something" isobserved.This "something" is
rendered in fig. 3.6 biop .

Condition (ii) ensureshat adynamic symbolcannot occur at distarivels of abstraction
without occuring in all the intermediate levels, and that the abstracippingsare theidenti-
ty for dynamic symbol®ccuring in several dhe 2;. This reflects an obvious "monotonicity”
of observations ofempirical entities: by sharpeningsolution and/or differentiation, the
informationabout arentity canonly remainconstant or increase. Nateat theZ; neednot be
disjoint; this reflectdhat neither an increase in resolutiorgr indifferentiation, neccessarily
yields a more informative observation of a particular dynamic symbol.
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Furthermore, note that ithis definition no mention is made tife particular resolution and
differertiation contributions to abstraction. Tfemalismreflects onlythe net result of these
factors. The notions of resolution adifferentiation belong tdhe background interpretation
of DSS.

The nexttwo definitions prepare thespecification of dynamic symbgpaceswhich will be
given in definition 32. Definition 29 describes hogemerator that uselynamic symbols from
2, can be stepwise abstracted via an abstraction tree.

Definition 29: Let (&)=n,...0 (@j)j=n,..,) be an abstraction treepd G = (S, trans,) a
generator, wher&rans, [ SxxxS. For j = n-1, n-2,.., 0,let ; := ;100(,,0 ... °at,. For
j=n-1,n-2, ..., 0, define;G (S, trang) by

trang := {xB;(r)y | xry U trans,}.

This is more briefly written as G=[3;(G,) or, equivalently, as G= aj,1(Gj;1). Then,
(Gj)j=n,....ols anabstraction sequence o6, with respect to(()j=n,...0 (@j)j=n,... -

Abstraction sequences of generators are reflected in the generated languages in an obvious
fashion:

The "space" spanned by a@ymmetrification sequence and abstraction sequence is a
dynamic symbol space

Definition 32: Let G, be a finite cycligenerator, @;);-,
and (Gy)izm ..o @ symmetrification sequence of,G Definefor each i = m, m-1, ..., 0 an
abstraction sequence (fa, o of G, with respect to &)i-n, .o (@j)=n, .2 Then
(Gj)i=0,....m j=0.... IS adynamic symbol spaceThe generators Garecalledthe global states
of the dynamic symbol space.

,,,,, o (0))j=n,....1) an abstraction tree,

A dynamic symbobpace isthus, amatrix (G;) of generators. lalefinition 32, this matrix is
constructedrom the rightmost lowestlement G, by first establishinghe rightmostolumn
as an symmetrificatiosequence, and then bgecifyingthe rowsfrom their rightmoselement
via anabstraction sequence. FR)7 provides aexample. Derivation paths in igobal states
should be interpreted as temporal associatiomlymmdmic symbols, whichould be observed,
e.g., on instructing a subject to utter words that come into his enihdrwhile thinking about
human emotions.
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Fig. 3.7 A dynamic symbol space. The horizontal dimension is induced by abstraatiymaef
mic symbols (from right to left), the vertical dimension to symmetry breakings (downward).

In definition 32, only the rightmost column of;{}Gs required to be a symmetrification sequen-
ce. However, it is straightforwardigonfirmed that all other columnsare symmetrification
segencestoo. Thus, going down in (§ means symmetry breaking, goimght means
dynamic symbol specialization:

Proposition 33 Let (G;) be a dynamic symbalpace. Then = a;,1(Gj41), and G is a
symmetry breaking of G;.[]

Both the abstraction andymmetrification sequencdimension carryaspects of what is
understood outside DSS as "abstractidiiils should be cledor the abstractiodimension of
dynamic symbospaces. As theymmetrification dimension oncernedshifting down on the
symmetry breaking axis means that although the same dynamic symbols are used, they are so in
a more context-sensitive mannEar instance, in G, (fig. 3.7) the sequenc@oman rage

can be derived, whereas in,{&he dynamic symbolrage is filtered out bythe context
woman In other words, theise of rage is more general in  than in G,. In classical
semantimetworks, ageneralization of usability isonnected witltlassicalabstraction. For in-
stance, in applicationthat rely on aKL-ONE terminologic knowledge base, it @ways
permissible tosubstitute a concept bgny ofits superconcepts, bobt vice versa;i.e.,
superconcepts are mogenerally usabléhan subconcepts. krlassical systems, this generali-
zation of use islwayscoupled to a generalization of thery concepts concerned, whereas in
DSS these aspects are treated separately in the two dimensions of dynamic symbol spaces.
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Working with dynamic symbokpaces needs some habituation, when one is usdasscal
semanticnetworks. In theeemainder of this subsection, | comment on several pwinitsh
help to get a firmer grasp on these spaces.

Global states as "processing modes"

In the perspective of DS$pformation processing is a collectiygocess, inwhich many
dynamic symbol#teract. The site where such interactionsur areself-organizing scenes or
streams (introduced in subsequent subsections).areeyne DS$nodel of a conceptual-level
"working memory", oranotherinformation processing module elsewheretbe periphery-
centre axis. Each such module comes with its own dynamic symbol space.

A self-organizing stream is, ithe DSSview, more like a chemicaleactor than like an
algorithm or a calculation machine. Staying in the metaphor, information processing is assumed
to be influenced by globglarameters, just like a cheral reaction isinfluenced bypressure

and temperature. Sucplobal parameters coulbe, for instance, tiredness, pentmce
pressure, or somatic arousal.

DSS offers several parameters which can be set to control the global processing conditions of a
self-organizing streanTwo ofthese parameters are timensions of (¢). A self-organizing

stream is modeled as a collectipeocess forwhich a globalstate G acts as aglobal
"processing mode"While processing is goingn, theglobal statecan be shifted, thereby
driving the collective process in its entirety along a trajectory in the corresporaiingmic

symbol space.

A very brief note on learning

A dynamic symbospace can alays be expanded by adding new columns at its right side, and
(when G, is not a singleycle graph) newows can be added at ti®ttom. This meandhat

a dynamic symbdpace can be further elaborated. Sindgreamic symbospace is analogous

to long-term memory, an elaboration of it is a kind of learrttayvever,learning mechanisms

are notincluded inthe present state of the D&Bmalism, which focusses aoshort-term
dynamics.

Balance of the two dimensions

It seems plausible to assuittat inmany natural orartificial systemsthe two dimensions of
(G;j) are notentirelydecoupled. Specializetynamic symbols will, as &ndency, be used in a
specific manner. In classical semamnietworks,this coupling isstrict. In dynamic symbol
spacesglobalstates thalie near thediagonal in (G) areparticularly "balanced" in this sense.
The diagonal can be seen as the region jji {{@&t mostlosely resembles classiadistraction
hierarchies. When the coherencies from the diagoealkolated from theest,and written one
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below the other, what one gets is guitailar to a classical semantietwork. Notehowever,
that (G;) need not be quadratic. Thus, "diagonal” is an approximate notion.

The strongespossible interdependencecurswhen the abstraction sequence corresponds
exactly tothe symmetrificationsequence. This happens whae contextualiltering effects,
which are governed by th®/mmetrification dimensiongorrespondexactly to abstraction.
Such special dynamic symbol spaces are chidémhced

For anillustration, assumé&hatapple occurs in the contexgsaradise andbuy in some
global state thaties left fromthe diagonal (say, in &), i.e., the wordgparadise apple
andbuy apple arederivable in G;. This "contextual promiscuity” odipple in an off-
diagonal globaktate would, in a balancetynamic symbolkpace, disappear in,& There
would be two different specializations ofapple , say, apple of Eden and
apple_as_merchandise , corresponding to théwo contexts. Generally, a balanced
dynamic symbokpace is quadratic, and in a coherency on the diagonal, theomasta-one

correspondence between dynamic symbols and local states. Transitions leading into a particular

local state arall labeled bythe same dynamic symband everydynamic symbobccurs as a
label oftransitionsthatlead into a unique locatate. The "braking" of localstates in ging
down thesymmetry breaking dimensiotorrespondsexactly to specializations afynamic

symbols. Figure 3.8 sketches the example.
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Fig. 3.8 A portion of a balnced dynamic symbspace. Parts of g G, G,;, and G, are
shown. In the transition from,Gto G,,, thelocal state characterized by tapple transition
thatleads into it becomes broken intwo local states. Thusapple becomes specialized into

two versions,namely,apple_of Eden

andapple_as_merchandise

. The otherocal

states andlynamic symbolsare notsubject to symmetry breaking or specialization in this

example.
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The definition of a balanced dynamic symbol space is now obvious:

Definition 34:
() A generator G =%, trang) is state-transition-balanced:iff
Uxsx,yry' trans s=r1 o X' =Y.
(i) A dynamic symbolspace () is balanced:iff it is quadratic, and the generators on the
diagonal are state-transition-balanced.

The following proposition is easily verified:
Proposition 35 A balanced dynamic symbol space has the following properties:

(i) It is already determined by either,Gand the abstraction sequence, or Ry &d the
symmetrification sequence alone. It is thus essentially one-dimensional.

(i) Forj=i, G; features no contextual fittering, i.eantinugs) = continugrs) for allrs [J CG“_.

(i) Forjzi, in G; = (5, trang;) it holdsthat forall xsx', yry' U trans;, if s=r, then X' = y".
A local state z is thugniquely determined bgny ofthe dynamic symbols that occur as
labels of transitions leading into the local state. This can be written as z = z

(iv) Forizj, in G; = (§;, trans;) it holdsthat forall xsx', yry' U trans;, if X' = y', thens=r.
A dynamic symbosk is thusuniquely determined bgny ofthelocal states z intavhich it
can lead in a transition. This can be writtes as,.

(v) For every dynamic symbol specializationtime left triangular submatrix of (& there
exists a corresponding "contesgiecialization” irthe right triangulasubmatrix andrice
versa. l.e., if alynamic symbof from G; becomes specialized tg, ..., r, in Gj, (both
G;; and G, in the left triangular submatrix), then the local state %5; becomes broken
into X , ..., %,_in Gyy;, and vice versa. |

It is debatable to what extent natudginamic symbokpaces (on the conceptuaVel) are
balanced. The phenomenon seems common enough: a subdgpicafly corresponds to a
contextual differentiation of usage of its superconcept.

Cognitive interpretation of the two dimensions

In which situations will an intelligent agent be in processing modes represegleddigtates
from different areas of (3, and what will induce a shift dhese modes? Some relevant
observations can be gleaned from everyday experience.

. A factor thatinfluencesthe position on the horizontal (i.e., abstractiaxiy isthe agent's
familiarity with the situation at hand. When a situatiomelatively incomprehensible,
specialized dynamiconcepts from the agenssock will beinapplicable.The processing
modewill thus be pushed towards thedt in (G;), wheredynamicconcepts are more
general.

«  Another factor concerninthis dimension springs from communicative demakldsen
the agentommunicates with a relative novice, it is forceddour to general categories
shared by both parties. Foistance, a scientisixplaining his oher approach to a grant-
deciding government executive walke care to use simple concepts. Note that esitbn
abstract dynamiconcepts, it igossible to articulatepecific information, byvorking in
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globalstatesfrom the lower region of ({3, where the use afynamicconcepts isighly
context-sensitive. One can express subtle things in simple terms.

. On the lowetevels of signaprocessing, the horizontakis reflectdhe quality of signals.
When signalsare noisy, it is difficult toextracthighly specificfeatures. A modul¢hat
processes these features will be shifted towards the less specialized left region;pf its (G

«  On a conceptudével, the vertical axis reflects effects of mental acuity. When a human is
in a smalltalk situation, or simplyred, s/he W tend to use concepts in andifferen-
tiated manner, i.e. s/lveill be driventowards the upper regions ini{)GA similar effect
can be expected from time pressure or other stress factors.

. In dreaming, concepts are often used fashion whereontexts "cross overThis again
is an instance of modes from the upper regions gf. (Che famous nonsenssample
found inmany linguistictextbooks, "colorless greadeas sleeping furiously”, is of this
dream kind; it obviously has been invented in a processing mode far yp).in (G

. Low-level modules processing signal features will be shifted upwards in theirwhede
the features are, for themselves, precise, but mutually contradictory, such that they cannot
be interpreted in a conclusive manner.

"Thermodynamic” interpretation of the two dimensions

DSS, being a well-defined model of a particular brand of congyleamicsystems, should be
equipped with a principlethterpretation in terms of statisticalechanics and information
theory. Only then will effects of self-organization be properly understood (cf. section 6).

Two preliminary observations on this behalf are suggestive. First, it seems that both dimensions
of a dynamic symbospace contribute to the entropy sdlf-organizing streams. This is, of
course, not @recise statemergince arentropyremains to be defined. It ispwever, reason-
able toexpect that an entropyeasure will reflect the averagdgormation ofwords occuring
in streams. In the average, ti/dormation of aword growswhenthe global state isshifted
towards the bottom(symmetry breaking).Similarly, when it is shifted tothe right
(specialization of dynamic symbol#)e specialized version of word will be, in the average,
more informative. At its presestate, thformalism isnot mature enough to prove whether
(or when) the increase @ford information is strictly monotonous with globsthteshift. The
reason for thisinsatisfyingsituation is that thénformation of aword is defined interms of
phase generators, whereas a dynamic symbol space is made from arbitrary generators.

Second, the verticalimension(i.e., thesymmetry breaking dimension) seemsadorelatewith

temperatureAgain, this remains a metaphoricdhtement as long as there iswll-defined
temperature measure. A closer looktlas dimension reveal$iowever, thathis choice of
metaphor seems the right one.

Consider two global states;@nd G,,;. A wordr derivable in G is a concatenation=r...r,

of shorter words, ..., r, from Gy;. Seen the otheway roundr...r, can be regarded as
beingthe result of an "extraordinary” derivation procedure ;i;.Gn such extraordinary
derivations, it is allowed to "jump" from certain locsthtes to certain other ones. It is
suggestive to ascribe thismping tosome "local excitatory energgVailable tothe derivation
procedure (againenergy" remains to be defined). In statistical thermodynantecgerature

is interpreted by the average energy of micro-entities. By analbigywould support an
interpretation of Gz;; as being "hotter” than;GThis also conforms with the common usage in
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emergent computation approachescalling the superposition of noise on computations a
"computational temperature”.

With due reserve, such observations indicateuse that guture analysis ofDSS in terms of
statistical thermodynamics migtatke. In section 6, a related appro&molensky's "harmony
theory") isexamined, where such amalysis is fullycarried out. Harmony theory is, dhis
behalf, a model for DSS.

Monotonic concept specialization

Monotonic concepspecialization isnainly ahieved bytwo mechanisms in classical semantic
networks. Firstjinformation can beaddedto a concept in order tepecify asubconcept.
Secondjnformation can b@assedlownfrom concepts to subconcepb&coming specialized
on the wayExamplesare role restrictions and radigferentiations in KL-ONE (Brachman &
Schmolze 1985). All these mechanisms have counterparts in dynamic symbol spaces.

The inheritance of informationyhich becomes specialized itself, igliaect consequence of
abstraction andsymmetrification. For instance, theword (i.e., thesequence ofdynamic
symbols) apple pick might be abstracted tdfruit harvest by going left on the
abstractiordimension.The subsumespple of fruit  inheritsthe continuatiomarvest |,
which becomes specializedpak in the processlhis correspondslirectly to KL-ONE role
differentiation.For ananlogue of role value restriction, compémgt  harvest plant
andapple harvest apple-tree . The former woradtanoccur in adynamic symbospace
by virtue of an abstraction of the latter (i.e., going left), or by virtuecoh@ined abstraction
and symmetrificatior(i.e., goingleft andup). Interpretingharvest as a role thatelates
fruit  toplant , itis restricted in its second argument frolant to apple-tree

The other mechanism of specialization, i.e. the introduction of new informatnar,Sseasily
accomplished.Suppose, forexample,that fruit (in some G) becomes specialized to
apple (in Gj;,), andapple is to be equipped with the continuatiafi-of-Man . There
seems to be nbkely subsumer ofall-of-Man which could serve as a continuation of
fruit  in G;, sofall-of-Man has to be newly attached to tgple context in G, ;.

A technique for doing so is to exploit tteg concept as a source ffal-of-Man . One
would require that there exist a dynamic symbpl, which subsumesll others. Furthermore,
one would demanthat thereexist an expansiofiuit ~ top in G;. The desired continuation
apple fall-of-Man in Gj,; is then achieved byhe canonical abstractiomapping
i (apple ) =fruit  anda;,4(fall-of-Man ) =top . l.e., the"addition" of new informa-
tion is not really anadditionout ofthe blue; technically, it is a specialization thie already
available, completely unspecifimp . To make this mechanism generallyplicable, one has
to require that foevery dynamic symbalin every globaktate therexists the continuation
top . A further natural generalization leads to the notiacookervativeabstractions:
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Definition 36:

() An abstraction tree k)=, (@j)j=n,....) isconservative:iff X, [ Z; for j = 1, and
2o ={top }.
(i) (Gj)j=n,....0 Is aconservative abstraction sequence of, @vith respect to &),
(%))j=n,...,) iff
(1) ()=n....0 ©)j=n...) is conservative,

(2 ifrq.r, 0 CGJ_, ri'zr;, thenry..ri'..r, O CG,—-

(i) A dynamic symbolspace isconservative :iff it is constructed from a conservative
abstraction sequence of,G

In a conservativelynamic symbokpace, "spontaneous” new continuations can be introduced
in Gij+1 through aspecialization otop In G, or of other"generic"dynamic symbols in P
(like thing orevent ).

Conservativedynamic symbokpaces can be written dovatonomically,without explicitly
carrying all the abstractlynamic symbolsthrough the entire abstractiasimension. For
instance, when the dynamic symbol space fiign8.7 were taken as a shorthand notation of a
conservativelynamic symbospace, then, e.g.,,Gwould tacitly be assumed to be, in fact, of
the form depicted in fig. 3.9:

. tlme,
love, woman,  yage, man,
top human, top human,
top top
o >0 o >0
whisper, top scream, top
G22

Fig. 3.9 G,, from fig. 3.7, as it would béacitly interpreted ithe dynamic symbospace were
conservative.

From the perspective of the background interpretatiodynémic symbols asbservables,
conservative abstraction mirrors a situation where, regardless of the resolutive powers of the
observation procedure, arbitrarily abstract findindisaecur. This impliesthat in the observed
system arbitrarily de-differentiated entiti® present. Falynamic symbokpaces amodels

of "long-term memory" this means that even wkten processing module is in a processing
mode from the bottom right area ofij()Garbitrarin abstract dynamic symbalanoccur. In a
cognitivistic interpretation of these dimensions, this corresporitie tassumptiothateven in

a state ofmental acuity,one uses, amongst maieecializedconcepts, their abstract
superconcepts agell, which is plausible. Conservatidgnamic symbospaces appear natural
at a conceptualevel of informationprocessing; in this sensthe monotoniénheritance
mechanism that exploits conservativism is natural, too.
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Nonmonotonic effects, and again the role of the diagonal

Birds fly, Tweety is a bird, Tweety flies, penguins déyntTweety is a penguin!, Tweefglds
its wings and swims. Figure 3.10 shows how this can be modeled in a dynamic symbol space.

Swin - ®
° sWim 5@ Tweety,
%zyp?7 penguin,////?V Opus, ////}1
bird 1 robin 1 robin l%e
o > -Yye o >0 —He o >0

\ \ \gg\

®
€gg egqg \\\\X
Gss i Gy, * Gy, AT

- swin y®
iﬁi@z7. penguin jifgg7. Tweety,////}y
bird Opus
04»\ .4).\ 0" 59~ “9Se
€g9 *@

egg *@ AT
®
swim 5@ - SWim 5@
penguin
PsEES /////7 04————>./////7 Opus iﬁi9/7.
EEES*O 255\*0 ¢ \\\\A
. fl%r‘ . fly »® T e
° bird \ .robln /37/7 cobin fl/yy.
cgg e Q)O ° "\
egg *@
G, G G,

Fig. 3.1Q Flightlesswaterfowl in adynamic symbospace.Smallportions of some of the ;G
are showntop transitions are assumed to accompany other transitions; they are not shown.



Several points concerning this example might need some explanation:

+ Tweety andOpus aredynamic symbolgust aswell asbird . DSShas no extensional
semanticsthus, there are niadividuals or instances the classical sensgnore abouthis
in the next subsection).

« TheAl concept appearing in column 7 has been monotonically added by a specialization of
suitable top -transitions in column 6. Theynamic symbolspace is assumed to be
conservative; the economic presentation mentioned abademedwhich hidesabstract
dynamic symbols in specialized global states.

« Nonmonotonicity is a combined effect of symmetrification abdtraction. Penguins are
construed aglightless derivates of birds by first breakirthe bird transition into two
variants, one ofvhich swimsand one ofvhich flies, inthe shift from G5 to Gz, These
variants are then allocated ddferent dynamic symbolse., topenguin androbin , in
the step from @; to Ggg.

Summary of section 3.2

. Dynamic symbol spaces are the DSS model of "long-term memory".
. Every processing module devel in a multi-module or multi-levearchitecture ig
equipped with its own dynamic symbol space.

+ A dynamic symbokpace's basicomponents are coherencig@sey yield a fundamental
mechanism for context-sensitivity, which is one of the central aspects of DSS.

. Roughly, adynamic symbo$pace resemblesctassical semanticetwork. But, thesingle
classicalbstractiordimensiongetssplit into two. Formally, a dynamic symbgbace is a
two-dimensional array of coherencies. One dimensicluesto abstractions dfynamic
symbols, the other to symmetry breakings of coherencies.

. DSS focusses on fast self-organization phenomena. In its psesenttomits long-term
learning.

. The coherencies in dynamic symbolspaceyield global processing modes faelf-
organizing streams.

. In a cognitivistic interpretation, such modes should be interpretetental stateslike
acuity or tiredness.

. In a thermodynamics-oriented interpretation, they correspomgbbal thermodynamic
states. Symmetry breakings can be interpreted in terms of computational temperature.

. In the special case of balanceginamic symbokpaces, botldimensions essentiallyol-
lapse intoone.Dynamic symbolsire, thengssentiallycharacterized by their mutual rela-
tionships.

. Monotonic and nonmonotonic inheritance can rbeonstructed indynamic symbo
spaces.
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3.3 Self-organizing scenes and streams

In this subsection, first ample kind of a parallel dynamic systemdesscribednamely,self-
organizing sceneg hey are closed systems without output or input. Obviously, closed systems
are notsuited as a model of an agent's subsystems. | introducenthey for expository
reasons, in order tix the basic dynamics mechanisifitst, withouthaving to bother from the
outset about theomplications afforded by input andtput. Ageneralization to open systems
(self-organizingstream$ is derived afterwards, byay ofconstructing a (noguite trivial)
input/output mechanism.

A self-organizing scene is always equipped withyaamic symbospacewhich serves as its
"long-term memory". Thislynamic symbospace describes how certain "orderly" sequences of
dynamic symbotan be derived. However, such derivations of orderly sequencest déne
dynamics in self-organizingcenes. In self-organizing sceng® information is represented
(just like indynamic symbaospace) by directed graphs with edtpled by dynamic symbols.
Again, just like inthe dynamic symbospace, sequencesdaynamic symbolgan be derived in
these graphs. But, thesequences argypically "disordered". Theyare concatenations of
mixed sequence fragments from thederlying dynamic symba@pace. Thedynamics of a
scene shuffles, duplicatedeletes, completes, abstracts specializesthese fragments in a
fashionwhose net effect ithat the "order" in thelerivable sequences increades., increa-
singly long and interconnected sequences fommich "correctly” correspond to sequences
derivable inthe underlying dynamic symbalpace This islikely to be arather fast effect, and
the scene iskely to equilibrate swiftly to a stadiurwhere itlocally resembles a coherency
from its dynamic symbobkpace. In a nutshell, self-organization consisthélocal conver-
gence of a disordered graph towards the order prescribed by long-term memory.

So muchfor a first intuition.More specifically, self-organizingcenesest on thefollowing
ideas:

+ A self-organizing scene is a directed graph whose emlgdabeled by dynamic symbols
from a dynamic symbol space;{G

« A self-organizing scene develops in tirtteough self-organizing, collective processes,
which are incessantly active.

« The informational entitieghat interact in arself-organizing scen@are wordswhich
essentiallycome from a particular globatate in (G). Theyare calledassociations The
interaction of associations is stochastic and asynchronous. It is effected by kirsihgfe
local operationgicrochanges

+ Global "working parameters" of a self-organizing scae set bygelecting a globadtate
from the correspondinglynamic symbolspace. The selectaglobal state rules certain
details of microchanges. It can be "shifted" ir))(Gvhich yieldsmacrodynamicsMacro-
dynamicchange is externally imposed on an self-organizing scenetypigslly slow in
comparison with microdynamichange. A suitable analogy fropiysical systems is the
temperature and pressure control of a chemical reactor.

This frame isnow workedout indetail. | begin with somereparatorydefinitions centered
around the notion of associations.

For theremainder of subsectioRs3 and3.4, let (G)=o
with an underlyingbstraction tree ¥X);-, o (0j)j=n
let G; = (S;, trans;).

,,,,, m j=0,...n0€ @ dynamic symbspace
), Wherez =3,02%,0..0Z, and
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Definition 37:
(i) Letry..ry S..5 02K Thens,...s subsumes..r :iff g =r; fori=1, ..., k.

(i) LetrOZ%Z,,,s0Z%,s=a,40...00;,(r). Thensis theX .-abstraction of r.
jtk i -1 jtk i

(i) Letr 0%, 0<j<n. Thenr() denotes th&-abstraction of, in case that O Z; for some
i >j. In other cases, puf) :=r.

Commentlt is easily confirmedhatthis definition ofr() is independent from the choice of a
particular i . Intuitively, the ()-operation'lifts" dynamic symbols belonging tsome abstrac-
tion level that is morespecific than level j, to the level j. For technical conveniance, the
()-operation is alsadlefined whermr cannot be subsumed bpys O 2;. Dynamic symbols can
only becomeabstracted by th&-operation, nospecialized. Usmghe abstraction trefeom
figure 3.6, examples atking (2) =thing , or Eve() = human.

(iv) s;..5 0 ZKis a G-association:iff k > 1, ands()...50) subsumes somg...r, O Co;-
ry..ry is called a G-interpretation of s;...s,.

Commentlintuitively, s;...s is a G-association if it can be madevard from Cg, by abstrac-
ting thes; whicharetoo speciaffor Z;, and byspecializingthe s whicharetoo abstractor ;.
Note that the empty word does not count as an association.

(v) Lets,..5 be a G-association. Then the;@neaningof s,...5 is the set
D;i(sp-5) = {0 |9 is aphase |f.i:G andg¢ is a terminal point in some
derivation of some interpretatiorr,...r, of s;...5.in the
phase generator ij}
(Vi) Lets;...5 be a G-association. Then the;@nformation of s;...s, is
Hij (S-S0 = -l0g, [®;(s;.. S)I1/M,
where M is the total number of phaseé:gi].
Comment(v) and (vi)essentially recall definitio@1, with technical modifications taccount

for the fact that a >association can corresponddeveralwords fromCG l.e., that it can
have several Ginterpretations.

(vii) Lets)..sd s;..5t be G-associations, whetex t'. Thent' is a G-specializationof t in
the contexts,...s, iff

t'=t, or
t>t, and for alt” [l Z, wheret" # t', t 2 t", ands;.. 5t" is a G-association, it holds
that">t'ort' > t".

t' is amaximal Gj-specializationof t in the contexts,... :iff there does not exist some
t" <t'which is a G-specialization of in the contexs;.. s.

Comment It can be straightforwardly showthat amaximal G-specialization oft in the
contexts;...5 exists and isiniquelydetermined. It is simply calletie G;-specialization of in
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the contexts;...s.. In less technicalerms, the ¢-specializatiort’ of t in the contexs,...s, is

the mostspecific subsumee ofwhichpreserves,.. st' as a g-association, andhich is still
uniquely determined. In connection with a microchange, thesgcialization oft in the
contexts;...s, will be used to modethe phenomenothat if some abstradt comes into the
scope of a contexs;...s,, the context camduce a specialization d@f For instance, when

fruit  comes into the context plaradise Eve, it should automatically be specialized to
apple . Anotherexample igprovided when G, from fig. 3.7 is used. There, e.¢puman is

the G ,-specialzation oftop in the contextime love top . Note thathuman could be
further specifiedtime love top man andtime love top womanare also G,-asso-
ciations. But this further specialization destroys uniqueness and is, therefore, excluded in (vii).

Associationoccurabundantly irthe sequel. The next proposition collects sorséyegerified
properties:

Proposition 38

() If s..8 O3k subsumes,...r,, andry..ry is a G-association, thes,.. 5 is a G-associa-
tion. l.e., abstraction preserveg-@ssociations.

(i) For all indices ij, itholdsthat everyword of length 1 fromZ*, i.e., everys[J Z, is a
G;j-association.

(!ii) If ry..re is a q-assoc!at@on, and<i, ' <j, thenry...r is a ij-assomat_lon.

(iv) If ry..ris a G-association, then every subword pf.ry is a G-association.

(v) If Gj containsonly top -transitions (as in the leftmosblumn in fig.3.7), or if it is a
single-node, single-loop graph (as in the uppermmst infig. 3.7), thenevery word
from Z* is a Gj-association[ ]

A self-organizing scene develops in time. This is technically managed by conceiving a scene as
a sequence ofclosed configurations A closed configuration is a phase coherency whose
transitions are labeled by dynamic symbols feom

Definition 39: Let Z be a set oflynamic symbolsLet G be ararbitrary coherency whose

transitions ardabeled by dynamic symbols frol. Let C be the phase generator of the
language generated by G. Then C dasedZ-configuration. When no misunderstandings

are expected, C will be simply called@nfiguration.

Note that C is required to bephasegenerator. The reasons tbis will be discussed later in
this subsection.

The term "configuration" isdopted from the theory afellular automata(Wolfram 1986),
which has, to some extertp-influencedhe DSSormalism.Both in cellularautomata and in
self-organizing scenes, a configuration &raictured pattern of discretgormational entities,
which develops in time byirtue of local interactions. A crucial differencetigat in self-
organizing sceneshe very topology of the pattern @rbitrarily inhomogenous and changes in
time (aswill shortly become clear), whereascellular automata, the pattern isteamporally
stable, homogenous grid.

In a configuration C, words frork* can be derivedhat need haveothing to do with the
Ianguage@G“_ that are generated by theherencies in thenderlying dynamic symbapace.
However, for each U (G;), the wordsderivable in C can benterpreted piecewise as
Gy-associations:
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Proposition 4Q Let (G;) be a dynamic symbalpace with arunderlyingset ofdynamic
symbolsz, and let G U (G;). Let C be ax-configuration. Then, evenyord derivable in C
can be segmented into subwords that gyea&sociations.

This is clear, sincthe "trivial" segmentation intsubwords of length $ields G,-associations
(cf. 38(ii)).[ ]

A configuration C can thus be perceived, for evgiyLtqG;;), as a network of interconnected,
and possibly overlapping, zassociations. Atvorst, these (z-associationsll havelength 1.
When G is shifted upwards or tthe left in (G;) to become g, then 38(iii)implies that
words from C,which have been found to be,@ssociations, will be re-established as
G-associations. When a derivation path jp @hich yields a (z-associatiom, is of maximal
length (i.e., it is not a proper subpath of anotteivation of a (g-association), and whenG
is shifted upwards or ttheleft in (G;) to become (g, then it is possibléhat thederivation
can be properly extended astill yields a G,-association. In the extrem&hen G is of the
"degenerate’kind mentioned in38(v), every path in Cyields a G-association. In sum,
shifting G, upwards or to th&eft only increasethe length of associatiotisatcan be found in
C.

An illustrative way to see configurations is to consider them as snapshots of a wuekiog
ry. A workingmemory is typicalljoaded withonly a smallubset of the concepasailable in
long term memoryAnalogically, the set oflynamic symbolsappearing in a configuration
should be a small subsetXf

| want to emphasize again, in order to preclude a suggestive misunderstanding, that the genera-
tion of words, either in C or in somg; ds not what makeshe dynamics of a self-organizing

scene. Thalynamicsstems from an altogether differekind of operation, microchanges

which locally modify C, giving rise to istory Cy, C;, C,, ... .Each of these configurations is
formally agenerator of a language, again, their "generatingower" is not to be taken as a
dynamic process but rather as amplicit description of a language. The right way to see

Cy Ci, G, ... Is not to lookfor the generation of words, but to watch the evolution of a
language. The self-organization aspect of the histatyaisthelanguage<Cc, Cc, Cc,, ..
converge towards sublanguage dtG“_, where G is the coherency from thenderlying fq),

which serves as the global processing mode for the history.

Microchanges are therucial element ithe wholeaffair. Before describing an algorithm for
their computation, | sketch an intuitive picture of how a microchange works.

Assume that @s a configuration in a history, which is currently under the "control"gbdlaal
state G U (G;). A microchange essentialonsists in "moving” a fpassociation along a
transition that branches from the association. Fig. 3.11 sketches such a move, wiichngrans
C; into G,,. The associatiothatmoves is marked by boltrows, the transition selected as a
"railway" for the move is shaded:
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Fig. 3.12 A microchange. Only a portion of configurations is shown, with edge labels omitted.

The general intuitiorbehind microchanges that when many ofthem are executedhey
thoroughly"mix" the configuration. Associations "migratesing eactother as"railways".
Mere shuffling, however, would be of littleise. Important side-effects are connecigith
microchanges. When a moving association hits a tranfitadican serve as a continuation of
the association, the association grows in length. Associations, so to speak, "hunt" through the
configuration (more correctly, through a sequence of configurationsgyearch" of suitable
continuations. They can also compete with eatitter, "catching” pieces from eaatther.
Furthermore,labels oftransitions can become specialized afastracted tdit bdter with
passing association8ll these effects are accounted for in tefinition of a microchange,
which, therefore, is not aimple one. Thdollowing definition givesthe basic version of the
microchange algorithm.

Algorithm 41: Let C = @, trang be a closed-configuration. Let @ [ (G;). Then a
Gy-microchangeof C is computed as follows (compdig 3.12, where G is G,, from fig.
3.7):

Step 1 Select a derivatioassoc= Xy 1X1...X,.1'Xn iN C which yields a (z-associatiom...r,..

In fig. 3.12a, Bage 5top 1 is selected. This is ayésassociation sinceage top subsumes
the Cg -word rage scream . The transitions concerned are marked by lbotdws infig.
3.12a.

Commentassoccan be selected at random. The selected associatiomaieédvemaximal
length. However, in the comments below | arthet self-organiziation is fostered by prefer-
ring "informative" associations for selection.

Step 2 Compute the direct continuationsasisodn C, i.e., compute the sebntof transitions
that continuat@ssoc

cont= {xrx' [J trans| x = x,}
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In fig. 3.12acont= {1time 2, llove 3, Thuman3, Imamd} (dotted and broken arrows).

Step 3 Split cont into cont; and cont, wherecont; contains those transitionghich make
Gy-compatible continuations afssog (i.e.,assoccontinuated by these transitioyislds again

a Gg-association), and wheo®nt, contains the (g-incompatible continuations. Wheont, is

empty, then stop. The microchange, in this case, is an "empty change", which changes nothing.

In fig. 3.12a,cont = {Lhuman3, Imam} (broken arrows) andont, = {1time 2, llove 3}
(dotted arrows). l.e.,r&ge 5top lhuman3 and Bage 5top 1maré yield G,,-associations
rage top human and rage top man whereas #£ge 5Stop 1ltime 2 and
5rage 5top llove 3 vyield rage top time and rage top love , which are no
G,,-associations.

Comment In subsequent steps of the algorithm, the transitions containszhtinwill be
"moved" alongtogetherwith assog as indicated in fig3.11. The transitions frormont, yield
the "railways" for the move. The association cannot move along a trangifwnvoulditself
be suitable as a continuationtbe association. Once an association "locks" to continuations,
they cannot becut off by movingthe association. However, they cancheé off by other
associations that pass by in another microchange, and edmgeteor these continuations.

Step 4 Put

S, :={x O S| there exists somgrx in cont;}, and
S, :={y O S| there exists someny in cont}.

Modify transto maketrans:

trans :=trans - {X,_1X.}
- cong
O {X n-1'nY I yD SZ}
O{yrx |y Sy, x,rx O cont}

In theexample of fig3.12,S; = {3, 4} andS, = {2, 3}. Theeffects of computingrans are
shown in fig. 3.12b.

CommentIn intuitive terms,trans is computed fromrans by "moving" the terminal end of
assocalong cont, (assoc"disperses” during the mowehen cont, contains more than one
element, since thethe former single transition, x.x, is replaced by several, xy). The
Gy-compatible continuations @fssocare carried along with thterminal end ofassoc(thus,
they also may disperse).

Step 5 Selectall transitions which directlycontinuate the movedssocand whichyield
Gy-associations witlassoc Compute for thelynamic symbols occuring in these transitions

the G -specializations in the contextmf..r,,, or theirz-abstractions.

More precisely, considethe setont" := {yrz O trans | yO S,, rq...rr is a G-association}.
All of these transitions are one-step continuatiorassbc(after the move of thiatter). For
each of the ocurring in transitions froraont", compute as follows:

If r >sfor somes %, computer as the (g-specialization of in the context;..r,. In other
cases, put' :=r(),
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Now compute
trans' :=trans - cont" [ {yr'z | yz O cont'}

and change the configuration accordindhtuitively, step 5 adapts the abstractiewvel of
concepts which come into the contextual scope of the moved association.

Commentln thisstep,assocexerts soménfluence onthe local environment where its "head"
has arrived after the move. This influence afflictdeliel ofabstraction oflynamic symbols in
its vicinity. Theyarespecialized insofar as a specialization is uniquely determinadsog(in
terms ofyielding continuations ofassog; they are abstracteathen their originallevel of
abstraction is more special than the one of the underlying global gtate G

Step 6 If in trans' there are no transitiorsft that lead into X, then delete xand the
transitions that lead away from it. The result will be a cyclic generator.

Fig.3.12c depicts the result of steps 5 and 6. The continuddpnandhuman have become
specialized tonan at several places. No abstraction of dynamic symbols occurs in the example.
The local state 1 is deleted together with its attached transitions.

CommentThe move ofissocmay destroy the cyclicity of C. The losdate ¥, when it has no
transitions leading to dfter the move, has becortieaccessible": ndurther move of another
association in another microchange can arrive,.abtep 6 restoresyclicity. As a side effect,
this prevents C from breaking apart into disjoint substructures.

Step 7"Renormalize" the generator, as constructed so far, to a phase generator C' (when there
is no "dispersion”, a recomputation wikually beunnecessaryMore precisely, if C is the
generator constructed in steps 1-6, then compute the phase geneGatorGifis the result of

the microchange.

A recomputation is necessary in the example. The result is shown in fig. 3.12d.

Comment The reason foinsisting onphase generators will be discussed in detail further
below.
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Fig. 3.12 The execution of a microchange according to algorithm 41.

Definition 42:

() A self-organizing scengmore specifically, a self-organizing {scene) is dinite or
infinite, alternating sequence,CG,;,, G, G, G, ... of Z-configurations andjlobal
states from (), which startswith aZ-configuration and (irthe finite case) ends with a
2-configuration, and where,(, is derived from by a G -microchange.

(i) 1fCo G, Ci Gy G - Is aself-organizing scene, théme sequence (., ,  isits
history. A subsequence of a history, in whittte global state is constarg G, is a
Gy -passage

The intentiondbehindthe DSS approach suggest that glabal stateremain fixedfor com-
pardively long intervals, i.e.that ahistory consists of relatively long,@assages, anthat
changes in globatates are "smooth", i.e., thahen a globatateshift occurs at some point
in the history, then it is a minimal alteration frorg @ G, or G,.1. In other words, macro-
dynamicsshould be slow in comparison with microdynamics. In cognitivistims, aglobal
mental state, like the degree of tiredne$ms a slowedynamicsthan thedynamics of
reasoning itself; in thermodynanterms, theglobal thermodynamistate of asystem changes
slowly, compared to local interaction timing on the microlevel.
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The remainder of this subsection is devoted to a discussion of several points of inteegst con
ning microchangeand self-organizing scenes. References to "stapahthe steps in algo-
rithm 41.

A closer look at microchanges

Thebasic idea of microdynamics is to enable associatiomsabaler about in aelf-organizing
scene, and, by meeting with suitable interagbiariners, connecting into longer associations,
or competing for sub-associations. Microchanges lead to such a beBatiathespecific
details of algorithmare by naneanscogent. There ammany "knobs tdurn" in thealgorithm.
Some variations will have considerable impact on ergodic phenomesifaarganizingscenes.

| hint at four variations of microchangesghich are of particular interest. Létem becalled
type 1 - 4 microchanges, with the original algorithm yielding type-0-microchanges.

Type 1 In step 1, do not seleassociations at random but prafédormative associations, i.e.,
associations with a high Hvalue according to definition 37(vi).

"Preferring” moranformative associationrdoes noimply that onehas to compute Jffor all
associations in a configuration ander to select the mostformativeone. One of thenany
alternatives to this catch-all approach is to voluntesgnalrandom collection of associations
for the computation of fj, and then select the most informative of these candidates.

Preferring informative associations increates averagéformativeness of associations in
long-term runs of self-organizing scenes. In cognitive terms, méyemative associations
should be intgareted aeingmore salient. Preferring themeansthat salientparts in aself-
organizing scene are microdynamically more active than parts that are poor in information.

Type 2 Type-0-microchanges have an undesirable effect. Associ#tiativelongtogether”,
in that they lead into a common losghteand have there a common continuation, lwegome
separated. Fig. 3.13a,b sholmw the (length 1) associatiddam becomes separatdim
Eve due to a type-0-microchange.

cost cost cost
buy buy buy
) ot h oL Ve AN PS
para- Adam bve
dise bara
- para-
® dise ® Adam dise Adam
a) b) C)

Fig. 3.13 An undesired side effect of g @nicrochange (from a to b) and its remedy (from a
to c). The coherency from fig. 3.5 is taken fg[ G this example.
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Figure3.13 alsandicateshow this counterintuitive side effect can be mended by a variation of
step 4. The basic task is to define which otrersitions y'x,, leading nto %, besides x4rX,,

have a "relatetheaning” toassoc= Xy 1X1...X,.1' X Suchthatthey should movéogethemwith
Xn-1'%n- A natural approach is to use thg-@eaning 0F;...s, as defined in 37(v). More speci-
fically, define r' to have arelated meaning to rq...r, :iff ®(r) O ®y(rq..r,) or

Dy (r') O dyy(rq..ry). Note that it wouldnot suffice torequire thatr' andr,...r,, possess a
common continuation, as witnessed by the counterexafpfmradise ,rq..r,=r;=buy.

They share the continuatiapple but should not be considered as having a related meaning.

With a notion of relatedneaning available, it is easy adjust thedefinition of a microchange,
as indicated in fig. 3.13c.

Type 3 In step 4 (i.e., the "move" step), do not delete frivans all the transitions
{Xn-1rXsp O cony that are deleted in theriginal version of thisstep. l.e., select aubset
trans® O {X .1 X,} O cont and define

trans :=trans - trans*

0 {X n-1nY I yD SZ}
O{yrs|yOS,, x,rx O cont}

The net effect ofhis variant is less competition between associations, since a "massagy
ciation can nowcopy parts of otheassociations instead ofitting them off. Thisfosters the
parallel development of associations that share subsequehagsmight be helpful when an
exploratory type of processing is desir€do little cutting, howeverwill be harmful. In the
extreme, when there is no cuttingadlt a G,-passage ikely to degenerate to a stationary,
trivial single-phase configuration whidboks like G, in fig. 3.7. This happens because the
passage converges to the language)f, wherez. is the set oflynamic symbolshat are
present in G. The phase generator of this language is the trivial single-phase generator.

Type 4 Use only a subset ofS, in step 4.This reduces the degree of "spreading" of
associations. In the extreme, usdy oneelement ofS, for step 4, thusuppressing spreading
altogether. Anntuitive metaphor for this alternative is to thinksiép 4 as "wavspreading"
(in type-0-microchanges) vs. "particle movement" (in the extreme case of type 4).

These variations (and othdisat iemain to be invented) can dgnamicallytuned during a
history: the first, bychangingthe stringency of preferencghe second, by restraining or
relaxingthe notion ofsemantic relatednedke third, by adapting the percentage of transitions
that become deleted, the fourth, by adapting the percentad®, afsed formoving an
association. Such tuning offersgeeat amount oflexibility in the control ofself-organizing
scenes - and makes their management a subtle affair. This slebddme as a surprise.
Complex, collective processese intrinsically difficult to guide (compare Forrest &liller
1990 for analog remarks concerning classifier systems).
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Resonances

It may happenthat in the course of a{spassage, an association meets wahlf andfinds

itself a continuation of itself. A cyclic association forms. More generally, cyclic substructures in
a configuration, whiclare generators of a sublanguag€gf, may ocar. Such substructures

are a conspicuous and important phenomenon. Definition 43 specifiagsoigcnces

Definition 43: A cyclic substructure R of a configuration is g-@&sonance:iff Cy contains
only G-associations.

| have chosen the term "resonance" for its obvious associationgphyisical phenomena.
Carpenter and Grossberg (1990) useddmme term in a related sense. Their "adapége-

nance theory" (ART) describes recurrent, distributed neural network architectussd-fone

pattern recognition. The input can consist in single patterns, or sequences thereof. When a
pattern is found tanatch with astored goal pattern, theystemturns into a "resonant” state,
where activation can persist even after the pattern is removed from the input field. Thus, input-
free intervals can be bridged, ah@ interpretation cduccessive input is influenced. DES,
resonanceskewise allow a self-organizingtream to decouple its activity from ingirhing

(cf. 3.4).

An obvious precondition for resonances to be formed in a histéimatislynamic symbols in

Cy, Which can becomiaterconnected ifcyclic" associations, exist. That taken as granted, the
likeliness of G-resonance generation in g;Passage and their stability, further depend on
many factors. It is promoted, for instance, by the following tendencies:

« There is a low degree of competition between associati@mswhen a subset of all
available dynamic symbolsan form several associations, then these associations are
prone to interconnect instead of competing destructively. Asxamplefor "co-oper-
ative" dynamic symbolstake {apple , paradise , Adam Eve}; as an example for
destructive competition, takeapple , Eve, paradise , buy, cost } (assuming the
example from fig3.5 for G,). In the latter settve andparadise compete wittbuy
andcost for apple .

«  The configurations concerned amall. The chance of an association's closing back in
itself is then increased for purely combinatorial reasons.

. Informative associations are preferred foicrochanges (i.e., type 1 microchanges).
Informativeness correlates, to a cerd@gree, with association length. Long associations
have better chances of crossing themselves than short ones have.

«  Associations with related meaning are coupled in a move (i.e., type 2 microch@higes).
fosters association growth byeducing competition and thus, again, increases the
combinatorial chances of associations to loop into themselves.

«  There ismuch copying and littleutting (i.e., type 3 microchange$his againpromotes
association growth.

A resonance formation event typically induces a sudden increase in the informationvalue H
the associationthat are contained in the resonancéheW an associatian...r, loops back
into itself, the initial sub-associatiom; will abruptly become equipped with @yclically
infinite) context ..r, 4r,. Otherelements of,...r, will likewise gain such amfinite context
where they hadnly a finite one before. These additional contegié&dd an increase in
information. This increase renders resonances particularly interesting tivbien is a
preference forinformative associationfype 1 microchanges). Then, resonant associations
(i.e., associations occurring in a resonandk )o@ preferred over non-resonant associations in
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the selection for microchangeSince an association selected for a microchange cannot
deteriorate in thenicrochange (it caonly grow), aresonance iV be markedlymore stable
than the associations partaking in it had been before the resonance faronechangesvill

favor the resonance's accreting further continuations oveéngloshem to competing
associations. In complex systems terminology, a resorsmseas an attractor. bognitive
terms, it is the DSS model of gestalt formation.

It may occur as aspecial casehat at a point in thdistory, the entire configuration is a
resonance. Then, nothing more will happen, since within such a total resonancgji{stept
3) is always emptyi.e., microchanges dnot effect anyfurther change, i.e., the history is
stationary. Toput this the othemway round, effective change caocuronly as long as the
language generated by a configurationds a proper sublanguge of ttgoal languageCg, .
The temporal development is, in this sense, conflict-driven.

Self-organization I fast equilibration

The cumulative effect of microchanges is hard to predhalytically. Thissituation is charac-
teristic for collective computation. Computsimuldions areindispensablefor a deeper
understanding of self-organizing scenes. Utidesimplifying assumptiorthat theglobal state

G, remainsconstant throughout the history, some theoretical prognoses are, however, on the
safe side:

- The abstraction level of dynamic symbolgkisly to converge towardg,, when there are
enough concepts apt to form associations. This is mostly due to step Biortehange
algorithm, which driveghe abstractiotevel of association continuation®ward .
Another effect to the same end is that "singular" dynamic symbols, whiadt dssociate

with others (and are therefore not susceptible to step 5), are prone to be deleted in step 6.

- Whenthere exists @etZ s of dynamic symbols in & from which it is combinatorially
possible to form a gresonance R, and whose elememts notcompeted for by other
dynamic symbols in & then a resonance made froine dynamic symbols fronX, . is
likely to form. Its formation would be almost certain, were it not for the poteietietion
of local states in step 6. The outcome of the race between deletispraading/copying
is impredictable. It can, however, l&luenced by tuning microchanges as outlined
above. Once a resonance is established, without theang competing associations
outside it, it is immune to the deletion of local states in step 6.

- A pathological case: Wherny€ontainsonly disparate dynamic symbols, which cannot form
G-associations of length greater than 1, the history is likely to degenerate into a stationary,
trivial single-phase configuration,G G,.q = G ... = (X}, {Xrix, ..., xX}), where
{rq, ...,1y} is a subset of thelynamic symbolccuring in @. The reason is that the
languages generated by the configurations in the history will converge tosgme)t.
whereZ iveiS @ subset of the dynamic symbols originally preseng.in C

«  When G containsmainly top -transitions, then eitheryds already a resonance in its
entirety, or it will verylikely soonbecomeso. As aconsequence, the histobgcomes
stationary.
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. More generally, a possible staldetcome of a (z-passage is the generationseiveral
mutually non-competitiveesonances (assuming type4 microchanges). These resonan-
ces move alongor rather, "through") each other withoatfecting eaclother. Further-
more, each of these resonancdiédy to acquire anaximaldegree ointernal connecti-

vity.

The effects mentioned in tHist arefast To understand what this means, one haxamine
the notion of time in self-organizing scenes more closely.

Microchanges can, to some extent, be computepaiallel at different places in aelf-
organizing scene. At least this holds when teytruly local, i.e whenthe renormalization in
step 7induces only a local changethre vicinity of the moved associatiowhich will often be
the case. Therefore, wheg,©,, ..., G, is a G -passage, there atgpically manyother routes
Co G, G, ..., G.1) G, which also lead from £to G,, and whichare, thereforegssentially
equivalent tothe first development. Theoral isthat a sequence abnfigurations ionly a
technical contrivance to manage temporal development. It shotldemisunderstood as
reflecting timeproper. As dirst approximation, onenight define a subsequence of arbitrarily
permutable microchanges as a global system diey@ Theassue of time will be discussed at
greaterdetail below. At this point, isuffices toobserve that a naturaheasure of "system
time" should be considerably coarser than "configuration sequence time".

For their full expression, the self-organization effects mentioned above apparentkysiesal
time steps in the order ohagnitude of theumber of locabtates in &elf-organizing scene. In
more suggestive terms, g {passage equilibrates manyrespects during thiaterval of time
it takes for local effects to spread once over the width of configurations.

Such equilibration effects can be compared in their rapidity, with the development of
structure in self-organizing cellular autom@téolfram 1984), with equilibration imany kinds
of neural networks in a singfattern recognition episodejth the equilibration of pressure
gradients in aeactorcontaining a gas, or witthe interpretation of eonflict-free sentence in
humans. These fast processes have tocdi@rasted with long-term structure-forming
processes as, e.ggenetic adaptation otlassifier systems, learning in neuradtworks,
biochemicaladaptation of a cell to thehemistry of its environment, or long-termemory
learning in humans.

Unfortunately, the above considerations essentially only plausibilitxonsiderationsThis
situation canonly be mended by extensiv@mputer simulations, whichyield statistical
support, or by a far-reaching mathematical analysis with methods from protiabtity. Both
approaches are beyond what | can offer in this thesis.

Self-organization Il effects on a medium time scale

Equilibration leads to a rapid stabilizationaoily some characteristics of g,&assage. Other
parameters settle tstability only in extendeghassages, amight even continue to fluctuate
indefinitely. Again it is difficult to predict what will happen without the experience of
simulations, but the following points are safe:
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- The set ofdynamic symbolghat appears in a Gpassage after amitial equilibration
towardsZ, can only gesmaller in an extended,@assageThis is obvious, since istep 6
dynamic symbolscan vanish fromthe scene, but there is no inpugéchanismfor the
introduction of new dynamic symbols.

« Interesting medium-term activity can be expected when several, competing resonances
form. Then, there exists no cleamner attractor state for theelf-organizing scene. The
resonances can persist potentially forimahefinite time,growing andshrinking due to
cutting portionsout of echother. In thdong run, however, almosertainly a population
of non-competing resonances "survives".

Cognitive candidates for such medium-range phenoraenaconflict-loaden processesy.,
the interpretation of garden path sentences, or ambiguous pattern recognition tasks.

A crucial parameter ithe very size of configurations. Uncertainties arise ftbmrenormali-
zation to phase generators in step 7. The reasons for ati#p& discussed below. A micro-
change can leddboth to an increase and taiminuation inthe size ofthe phase generator. In
case there is a persistent net growth of configurations, the growth velomiticisl for the
likeliness of resonance formation. If it ikigh compared with themigration velocity of
associations, the latter will persistently be "stretched" and thereby hampered in lmgkng
into themselves.

Size development is affected &l of the variations ofmicrochanges mentioned above, and by
the choice of @. The latter is particularly effectivéor shrinking configurations: in the
extreme shifting | to 0,i.e., abstractinglynamic symbols téop , rapidly yields trivial single-
phase configurations.

In manycases, a self-organizing scene will resaivteal competition conflicts by deletion and
resonance formation and becoessentially uninteresting, ot entirely stationary.Global
stateshifts may then become relevant as a metmsreviving activity. However, in order to

arrive at interesting long-term developments, it seems more natural to allow external input (cf.
3.4).

Why phase generators?

There areseveral reasons fdine renormalizatiostep 7. One ithat therenormalization is apt
to simplify the generator constructed in steps 1-6, axdmsedthe case in thexample of fig.
3.12.

More subtle, andnuchmore important, reasons concern the question of what exactly, in fact,
is modeled in a self-organizing scene. It would be suggestive to interpefftaaganizing
sceng(or stream) as a model ttie physical realization of an informatigmocessing module.
The self-organizing scenestructure would, then, mirrophysical structure. E.g.dynamic
symbolsthat occur adifferent transitions could be interpreteddarrespond tdocal neural
activation patterns, and the topological structure cbfiguration could be interpreted to
reflect the geometrical distribution of these patterns on a cortical surface.
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However, this interpretation isot intended. There are betterodels of physical information
processing structures than configurations - to wit, connectionist models.

A self-organizing scenés intended, muchmore abstractly, to modehe state of aelf-

organizing information processing module in purely informatis@ahs. A self-organizing
scene's onlyproperty of interest are the words and associataerssable init, i.e., the
languages generated by its configurations. Thesds are th@nly observablethatlie in the
focus of the DSS approach, andwdfich a formakccount is attempted. this senseall other

generators thatield the same language as some givemnG history are equivalersince they
state the same about the observables.

But, different generators can lead to incommensurable developments of a self-organizing
scene. When Cand G are two equivalent configurations (i.eCc = Cg), and some
microchange leads from; @ G, 4, it can happethat there is nanicrochange which can lead

from G' to a generator equivalent tq,C Structuraldifferences between equivalent G' can

thus act ashidden variables". The reastor using phasgenerators, then, is to resort to the
"purest" representation formpossiblefor thetechnical handling afhe informationalcontent

of a self-organizing scene. Phase generators represent, wetlyaitructure nothing but what

is essential fothe interaction of associatiom@amely, contextualinfluences.There is no
contingent additional structural information in a phgseerator thatight induce artifacts to

bear on the development of languages in a history.

Another, equally fundamentaleason for phase generatorsthat they provide aprincipled
answer to the question of what constitutes an "instance" offamnational entity. On the
conceptualevel, for instance, the question arises of howntadel one'sbility to think of two
distinct apples simultaneously. In classgahbolicrepresentatioformalisms, thigresents no
difficulties: simply introduce two instance variablesapple_ 1 and apple 2 , assert
apple_1 # apple_2 , and let model theortake care ofnakingsure that there are, in fact,
two apples. InDSS, there is ndalifference betweerndividuals and classes. Indedtijs
distinctiondoes noimake anysense here; there are neithrglividualsnor classes. The theory
is all about observables; bdilve andapple areobservablespamely,activation patterns in a
brain (for instance); and there is nothing more tosha&l about it. Then, howan an agent
think of two distinct apples?

The answer is thawo gplesoccur in one'smind if and only if the two are distinguished
informationally. INDSS termstwo apples arendeedtwo apple s whenthe latter occur in
separable contexts and give rise to separable continuations. This can be conveniently expressed
using phases:

Definition 44: An occurenceof a dynamic symbalin a coherency & a phas& of Cs such
that there exists some transitignd in Gy.

Thus, there are awmanydistinct apples in a configuration as there are phabesh can be
reached by aapple -transition. This is the other reason for phase generators.

An intriguing side effect athe renormalization to phase generatorgaép 7 is thasometimes
a large and complex self-organizing configuration can "collapse"” miach simpleone.This
phenomenon is accompanied by a mergalyfamic symboloccurences. Intuitivelythis
models an "Aha!" effect, where disparate notions suddenly unify.
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For thesame fundamentakasons as the ones just mentioned, one should reqatre¢he
generators (3used in adynamic symbobpace be phase generators. dhly reason for not
doing so is themperfect presengtate of theformalism. Inorder to usghase generators in
(Gjj), the abstraction andymmetrification operations have to be tuned to tbpecial
restrictions of phase generatorsavéstarted to work ithis directionput it appears thahis
requires a considerabtieeper understanding of coherent languagesmamghisms between
generators, than is presently within my reach.

Time and structure

| have already mentionetthat the succession of configurations in a history is a technical
contrivance rather than a naturabdel of time. Arriving at a satisfyingccount oftime is
difficult. Severaldisparate observations and requirements must be reconciled, among them the
following:

« It is desirable to interpréiime not as arextraneous parametevhich orders andneasures
change, but as chandself. Such agualitative non-parametric account tine is readily
provided by discrete dynamic systems like cellular automata or finite automata &eid by
organizing scenestoo, but not asonvincingly). Here, time steps areidentical to
gualitative changes.

« Itis, however, also desirable to havguantitivemeasure for time. One would like to be
able tostate thasome process is slower than another. The common methodki this
possible is to use a paramettime as a universal reference. An alternative isldfine
systems of interacting subsystems, each of which comes withviits qualitativeime.
These subsystems could then provide relative time medsuregchother. Howthis idea
becomes effective for DSS will be indicated in 3.4.

« In many physicasystems, as well as in self-organizsggnces, change is causeddnal
mechanisms. It is unnatural to assume a gloloak for the coordination gbarallel local
changes. Technically, this leads to soméhefwell-known difficulties inthe coordination
of parallel processes. On a theoretical level, this leagdativistic notions of time.

« Onewill oftenfind aduality between time andtructure. When a particular association is
traced through a history, it can be observed how it grows at its "headisantyes from
"behind". An associatiorthus, can be considered a transient trace of an ongoing process.
In this perspective, a configuration is a blurry image of an ongoing development rather than
a sharp standstill picture. The directedness of a transition can be interpreted temporally and
structurally. It is temporal insofar as it reflette direction of growth andissolution of
associations (incidentally, Sandew@993) arrives at atrikingly similarpicture of head-
growing/tail-dissolving memory elements in a logic-oriented descripticitiaited reaso-
ning). A transition igassivelystructural in that iyields (oriented)"railways" for moves of
other associations (cf. the dotted arrows in fig. 3.12). But tugain, thesérailways" also
have a temporal aspect: when an association moves along iheéhassociation isarlier
at the beginning of the transition than at its end.

« A moreglobal dualisticaspect of associationstisatthey areinterlinked with eaclother,
thereby forming agrid, which serves as a frame of refererioe the coordination of
interaction between associations. The cognitive phenomenon thus capttiratl o§ a
relatively stable mental imagEor instance, when one reasaisout a taskvith a given
goal, the goal is presentinind as a relativelpersistent imageyhile considerations about
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how toachievethe goal form an ongoing procebkote, thestability of such images is not
absolute. Theyare made fromthe same mental stuff athe ongoing considerations
themselves. The roles efructure vs. process are pronebcome exchanged; mental
imagesare "frozen processewhich can unfreezgthe term is borrowedrdm Ipke
Wachsmuth). This becomes particuladpparent ininformational structures that are
intrinsically temporal, asnelodies or rhythms. Lashl€}951) lists many other examples
from all levels ofthe periphery-centriaierarchy. He claimghat the question of how
"spatial" representationgre transformed into "serial® ones (anck versa)lies at the
bottom ofunderstanding thierain. The procedural vs. declarative knowledge debate in Al,
which hasexhaustedtself rather thanhaving resolvedhe question, is a more recent
witness of theproblem's impact. Whemassively parallgbrocessing ofymbolic informa-
tion gains in influence, the question will predictably resurface.

The basic idea of a dynamitkatlocally changes the topology of a graplpatially inspired
by Zuse's (1975) proposal tavestigate "net automatalet automata are generalization of
cellular automata, where the topology of the cell gridaslified by localules. Zuse views net
automata as a contribution to theoretical physirsing at"computational” models of space-
time at a verysmallscale. He examines fromarious angletiow such a conception of space-
time might correlate withinsights from relativitytheory and quantunmechanics. Though
Zuse's aims can hardly be compared with the intentions underlying DSS, it is interesbiteg to
that in that casepo, atopology-changinglynamics directly leadsito fundamental questions
concerning time and structure.

This isall moreenigmatic tharone wouldike. An integration othese issues would begeeat
achievement. It is nosurprisingthat | did not yet find a way to accompliskhis task. No
presently availabl¢heory of complex systems physical, abstract mathematicabmputa-
tional, or psychological - offers a comprehensigeount ofocal interactions vs. global time,
gualitdive vs. parametric time, different time scales, or timestracture. Beforehis is done,
our understanding of complex processes in general, and of self-orgamtongation
processing in particularemains incompleteDSS might be an interestingtarting point for
further investigations in thigrea,sinceone of itsbasicconstructs namely,associations, has
dual temporal/structural characteristics.

Self-organizing streams

| shallnow describe howelf-organizing scenes can be generalizedctount for input and
output, arriving aself-organizing streams.

Equipping self-organizing scenes with 1/0O-facilities could be dorfeoadbydefining anopen

configuration which has transitions leadimyit ofit, and into it (fig.3.14a). Input would be
effected by appending new transitions to the outgoing transittrtput by deleting or

copying ingoing transitions (fig. 3.14b).

Note thatinput worksvia outgoing transitions since this tise continuation direction, i.e., the
direction in whichwords are derivedlhis needs some habituation, sioce is accustomed to
represent input into aystem graphically bwarrows directed into aystem, rather than by
arrows pointing outward. However, theinusual direction is quiteorrect. The directed
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transitions in DSS generators can be interprégedoorally (cf.3.3). Traversing a path of
transitions can be considered as going with time. In this \heng'-transition in fig. 3.14b
comedater than thec-transition. This correctly reflects the fact tha inputted later thaa

The problem withthe snple picture offig. 3.14b is thatconfigurations should be phase
generators. But, phase generator cannot be "opesirice it is by definition a cyclistructure.
This difficulty can be overcome by introducing a spedijaiamic symbokx (from exernal,
exerior), which does notbelong tothe underlying dynamic symbdpace, andully cross-
connecting the terminal local states of the open configuration with the initial local states by
transitions (fig.3.14c). Theresultinggenerator iyclic and can be transformed to a phase
generator. Irthis phas@enerator, ainiqueex -transition appears (fig.14d),which serves as
the generator's I/O-port. The step fréng. 3.14d to 3.14eeplaysthe 1/0O-events fronfig.
3.14b in the phase generator.

output input
Cc
o >o event event

F R

d) e)

Fig. 3.14 How to construct an open configuration while leaving it formally closed.
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| call ex a "dynamic symbolfor the sake oferminological simplicityalthough it seems ques-
tionablewhether one should consider the "exterior" ofrdormation processing module as an
observable.

For theremainder of this subsection, let;}{;,
mic symbol space withZ-abstraction tree ¥);-,

mj=1,.n Where G = (S;, trans;), be a dyna-

..... 0 (aj)j:n,...,il)'

The formal definition of an open configuration should now cause no difficulties:

Definition 45: Let C = §, trang) be a phase generator witinamic symbolérom = [J {ex},
whereex [0 Z. Then C is amopen Z-configuration :iff (i) there exist&xactlyone transition
(x, ex, X') O transthat islabeled byex, and (ii) this isthe only transition between x and x',
and (iii) x# x'. More precisely: C is an op&nrconfiguration:iff (i) O (x, ex, x'), (y, ex, y) U
trans x =yand x' =y, (i (x,r, X), (x,s, x)Otrans r =ex - s=ex, (ii) O (x, ex, X))

U trans X # X'.

The definition of a microchange must lséghtly adjusted in order to preventoveswhich
transgress the "exterior" representeachy

Algorithm 46: A Gy-microchange for an open configurationdifined as in algorithm 41,
with the following modification of step 2:

Step 2' Compute the direct noex continuations ofassocin C, i.e. compute the set
cont= {xrx [ trans| x = x,, r # ex} of transitionsthat continuatessocandthat are not the
ex -transition.

For open configurations, microdynamics is augmented by local input and output operations:

Algorithm 47: Let C = §, trans) be an open configuration, andxx' the ex -transition. Let
input = {rq, ...,ry} O Z. Select some set {y;X, ..., ¥y} U trans Introduce a newviocal
state y'. Puintrans:= {y'r;x | r; O input}. Put

trans := (trans- {y 11X, ..., Yn'mX}) O {y1ry', - ¥yt O intrans
Compute the phase generatorti@it corresponds to the generatsr({ {y'}, trans). The
entire operation leading from C to C' im&ro-input. The setnputis theinput of themicro-
input.
Output events are a variety of microchanges. Adapt algorithm 41 as follows:

Algorithm 48:

Step 1 Instead ofasso¢ use the transitionexx' in the remainder otthe algorithmStep 2
remains unchangedtep 3 Instead of splittingcont into cont = cony U cont, split it

arbitrarily intotwo nonempty subsetsont = conteagoytl] CONYeep USECONteaqoyiinstead of
cont, and conee, instead ofcont, in the rest of thealgorithm. Theother stepsremain
unchanged with the exception of step 5, which is ignored.
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The entire operatioteading from C to C' in this variant of algorithm 41 ism&ro-output.
The set

output:={r 0 = | xry O conteaqout
is theoutput of the micro-output.

It is straightforward to show that all microdynamic operations leave the unique existence of the
ex-transition intact:

Proposition 49 Microchanges, micro-inputs and micro-outputs transform open configurations
into open configurations.!

A self-organizing stream is defined in perfect analogy to self-organizing scenes:

Definition 50:

() A self-organizing stream(morespecifically, a self-organizing {(-stream) is a dinite
or infinite, alternating sequence, GG, Ci, G, G ... of penZ-configurations and
globalstatesfrom (G;), which sartswith an operk-configuration and (irthe finite case)
ends with an opeR-configuration, and where,(, is derived from G by a G; -micro-
change, a micro-input, or a micro-output.

(i) 1fCqo G, G Gy, & . Is aself-organizing stream, thehe sequence (K21 5, .___is
its history. A subsequence of a history, in whitte global state is constar# G, is a
Gy -passage

The remainder of this subsection is devoted to a discussion of several topics of interest.

A closer look at input and output

Input can come from sources differentnature. The selectiostep should be adapted to the
particulars of the situation. | treat two different cases without going much into detail.

First, input can come in singular evettsit of theblue”; different micro-inputslon't have
much to do with eachbther atfirst sight. This is characteristie,g., forearly stages oflifficult
diagnosis tasks, where input consists of symptoms which are seemingly disparate.

The selection of thelyx in algorithm 47 should, in these casasximizeinformation gain in
the sense adefinition 37(vi). In addition, one should augment the input procedure by adapting
the abstraction level of theput elements analogous to step 5 in algorithm 41.

Second, in contrast tooming in disparatéout of the blue"-events, input can be already
organized. This is charactstic, e.g., for signal processing. Input shouldsuch cases, be
considered as coming in lzand where a bandtself is a non-cyclicgenerator. . 3.15
sketches an example:
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Fig. 3.15 An input band, and how it is coupled to the input port of an open configuration.

In a micro-inputthat reads from amput band, the direct successors dbeal state of the
input bandarefed intothe open configuratioyjelding bytheir labelsthe input set required in
algorithm 47.

In direct analogy to input bandsme cardefine output bads. The band conception of 1/O-
organization is particularlgelpful when several self-organizing;(-streams are to be coupled
together (see further below). They can be linked by bands of finite length.

| have calledhe ex-transition a'port". Elaborating on this computer terminology a bit, the
transitions leading to and from this transition in an open configuratiold becalled input
and output "channels”. An open configuration thus accepts input, and generdfas, on
several channels in parallel. Their number can change in time.

However, the channel metaphor is not quite satisfying, since all input "channels" have access to
the same input information. This is a resultieé input bad's beind'slimlined” in order for it

to pass through thneedle's eye" athe unique locaktate x. Thesame proviso hold®r the
outputside. As a consequence of th@nd's"slimlining”, self-organizingstreams of the type
described above cannot properly deal with tpdyallelinput, which would be required, e.g.,

for a retina-like module. One can, however, elaboratbahkie form of self-organizing streams

in order toarrive at a processing of truly parallel input andputbands. | hint atwo possi-

bili ties:

« The input band'sriginal topology can be reconstitutedthin the self-organizing stream,
after it has passed through theeedle's eye" x. The reconstitution can be achieved by a
suitable selection dhe set {yrx, ..., y,'X} in algorithm47. This leaveghe definitions
from above as thegre, but requires an extra, somewhat unnatanesghory mechanism in
order to reconstruct the band topology after its passage through x.

« Thedefinition of a self-organizingtream can be generalized by droppimg requirement
that there ionly one ex -transition.Essentially this means that in fig§.14b theterminal
states are ndully cross-connected kg -transitions with thenitial states. Theesulting

set of local states {kl S | there exists a&x -transition xex x' [1 trans} acts, then, as kind
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of "input retina" of the self-organizing stream. Analogically;@rtputsurface" exists. The
details of this approach have to dpelledout with some caresince it must bguaranteed
that the open configuration does not fall apart into disjoint structures.

Self-organization llI: "dissipative" self-organizing streams

An interesting perspective on input is to consideroit as a source dmeaningful" material,
but as a source of "energy" that helps to maintain the self-organizing stream irifardtata
equilibrium”. Analogically,outputcan be usedot only for readingout "results”, but also as a
sink for "used-up"informational entities. In thermodynamierms, this corresponds to a
dissipativeprocessExampledor dissipativeprocesses is thieinctioning of acar engine or a
biological cell. Energy-rich substances (gasolineasbohydrates, fats, and proteins) enter the
device;heat and low-energy compounds leave. Suftbvaof energy, which icoupled to a
"degradation” of the energy form, is thermodynamic preconditioior interesting (in
particular, adaptive) forms of self-organization (cf. Prigogine & Stengers 1980).

In the case o$elf-organizing streamshe "energy-rich" substance consistsap -transitions

(or moregenerally, in transitions of relatively abstrdghamic symbols)What happens/hen
micro-inputs grant a continuaupply of "fresh'top -transitions, and when there is ather

kind of input?For adiscussion, assumbdt theglobalstate G, is comparatively specific, i.e.,
that it comes from the lower right region of (i Then, the most notable effect tofp -
transitions isthat they arelikely to become specialized &®on asthey arehit by moving
associations (istep 5 of thenicrochange algorithm), thereby adding new continuations to the
association. Fomstance, taking the coherency frdig. 3.5 for G, when an association
apple cost hitstop , thetop -transition vll become specialized tolay -transition, and

the associatioapple cost buy will form.

The "low-energy substancesthich leavethe system, arany transitionsthat happen to be
destructively readut inmicro-outputs in a random fashion. Thenay betop -transitions
among them, but on the average, the abstratgiga of outputtedtransitions will be lower
than the maximally abstract lexig| of top .

The net effect of such"dissipative modefor aself-organizing stream that theassociations
contained in it carwanderthrough theunderlying G,. Since newdynamic symbolsan be
made fromtop raw material, the languages generated by open configuarations can
successively encompasgmbolic materiathat is notinitially present in g On a conceptual
level, such a history resembles dream-like, "free" association8. Hgcaptures thessentials

of such a dissipative "dream machine".
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Fig. 3.168 A dissipative dream engine.

Supplying freshtop -transitions can (even should) be used as an additmeethanism in
combination withanother,"meaningfulinput band. The self-organizing stream will then be
able to exploit &onstantsupply oftop -transitions tdill gaps in thelynamic symbol material
provided by the input band, therebcreasing itspowers toderive long associations and
resonances.

Self-organization 1V: equilibration and resonance formation in an open system

The remarks made 8.3 concerning equilibration and self-organization largely cawgr to
self-organizing streams. The general picture, then, of a self-organizing stream is one of an open
system with some fast self-organization effects, whiih however,not reach a long-term
equilibrium due to incessant input andtput. Since micro-inputs and micro-outputs are
essentially independent from michanges, a self-organizing stream isaagtime-algorithm

which (self-)organizes itsiput. When thefrequency of microchanges is higlompared to
micro-inputs and micro-outputs, the degree of organizatbieed is high. When it small,

the stream essentially degenerates to a mere transntisgjomhichdoes nothange thenput

band much before it is again outputted.

This generabpicture is, however, aimplification. Due to theex-transgression prohibition,
some notable special effects ariBer adiscussion of these effecthie notion of an open
configuration'sbody is helpful. The body is simply the open configuration with é&xe
transition removed:
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Definition 51: Thebody of an open configuration C $( trang) is the generatoiS| trans),
wheretrans =trans- {xexx'}.

A first observation ighat while an @en generator is lgefinition cyclic, its bodycan, in the
extreme, be entirely cycle-free, or even consistepfarate linear pathsghich start in x' and
terminate in x (fig.3.17a). Whenall ofthese derivation pathgield G,-associations,
microchanges will be ahe empty type, i.e., they doot effectively changéhe operconfigu-

ration. When such impasses occur, further interesting microchange actiotyycaocur after
input has introduced again some "fresh disorder” (fig. 3.17b).

However, thefresh disordemight soon be absorbed bygicrochanges, and the stream might
againturn stationary(fig. 3.17c). Theway out ofsuch a situation cannot soldig in more
input. The self-organizing stream is, in such casesyeally self-organizing; abest, each
inputted transition runs throughfew equilibrative microchanges, before it is either deleted or
linked into a stationary association.

More interesting and comprehensive self-organization phenomenantararise when the
body contains one or seveggklic substructuresvhich interconnect itSlaminae” (fig. 3.7d).
Such substructures are a precondition irse#f-organizing streanfor associationffom
differentparts of thebody to meet and interact. Of course, such substructureberaselves
be modified by microchanges.
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Fig. 3.17 Thingsthatcan happen to bodies. a) - d) are snapshots from an extended passage.

For graphical claritythe passage contains no micro-outputs. Micro-outputs would "eat up"
bodies from left to right.
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Since cyclicsubstructures are important to overcomgasses in cycle-free bodies, it is
important thathey can form spontaneously in a cycle-free body. Fortunately, microchanges
can generatecycles in a cycle-frebody. Themechanism is geometrically similar iee shear-
induced formation of vortices in a fluid. Figure 3.18 shows a simple example:

o o
O—)‘;)O — o >0 >0
P e .@.

Fig. 3.18 The formation of a cycle as a by-product of a microchange. Only a portion of a body
is shown.

Cyclic substructures in the body can or cannot be resonances. WHheeqtiency of micro-
changes is high compared to the frequency of micro-inputs, the considerations made in the case
of self-organizing scenes caroyver to streamsThis meansthat cyclic, but non-resonant
substructures arkkely to produce resonances, provided tbaitable dynamic symbols are
present. When no potentiallyresonance-supportinglynamic symbolsare present, the
considerations from self-organizing sceseggest that theyclic substructure decays to a

trivial single-statesubgenerator. Then again, the body becomes stationary with respect to
microchanges. In sum, only wheasonances form in the body, can it becamlatively
autonomous in the sense that interesting activity can persist independently from micro-inputs.

These observations lead to a refined gena@calire of a self-organizing streamVhenthere
are nocycles inthe body of an open configuration, there is bstigerficial equilibration-type
of self-organization, which is essentiattpupled to input time. Only when feedback loops
giving rise toresonances appearnthin the body, can thmternal microdynamics become
temporally decoupled from input.

This corresponds to hasic introspective experiename can detach onetsental processing
from input flux only when relatively stable mental image® formed. Whethis isnot the
case, as in a roller coaster situation owigwing agressively\short cutvideo clips, one is
"breathlessly" couplediio the stream of experience provided by sensory input, witthaozht

chance of cognitive detachment.

When aresonance exists in the body, it can be @atdepeatedly. This is manifed,g., in
that onecan talkaboutmental imageswvithout erasing them, or perform repetitimevements.
However, intalking about amental image, it is alsoethought”.This isaccounted for by the
active microchange nature of micro-outpwthich can induce modifications dghe material
that remains in the body.
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Summary of section 3.3

« A self-organizing scene the basic version ofhe DSSmodel of an information processing
module. It is a closed dynamic system with no input or output.

« Each self-organizing scene is equipped witdyaamic symbolspace,which yields its
"long-term memory".

+ A self-organizing scene essentially iseguence of configurations (a history). A configura-
tion is acyclic directed graph whose edges #beled by dynamic symbolsom the
underlying dynamic concept space. It is itself a generator of a language.

« Self-organization manifests itself in a history that the languages generated by the
configurations converge to a sublanguage of a gletaéfrom the underlying dynamig
symbol space.

« The dynamics of ahistory is effected by local operations (called microchanges) in
configurations. Microchangesperate on associations, i.e., on woksivable in 3
configuration that essentially belong to the language of the global state.

« Microchanges essentiallgt associations migrate along eather. Anassociationthat
moves cargrow atits front end, and inducsecialization and abstraction effects in| its
vicinity. Such side-effects are the basis for the desired self-organiziation.

« A conspicuous phenomenon is the formation of resonances during a history. A resopance is
a cyclic substructure of a configuratiomhich generates a sublanguage of the current
global state.They are relatively stable, and thegre the DSS analogue of gestalt pheno-
mena.

« When a histongtartsfrom a disorderedtate, it willrapidly equilibrate ianycases such
that there areonly few (or one) non-competing resonances left, the hisemgentially,
becoming stationary. Wén the initial material contained in a self-organizing sceneg is
ambiguous or conflicting, i.e., whéimere is a considerable degree of competition betyween
associations, an equilibrationlilely to bereachecdonly after a longer interval. Generally,
however, the ergodioehavior of self-organizing scenes is hard to preghatytically, and
there existother potential long-term outcomes ofhatory besides an equilibration to
resonances.

« For two fundamentalkreasons, configurations are required to be phase generators, First,
phase generators avoid "hidden variabl8gtond, phasegeld anatural account of what
is modeled by instances in logic-oriented Al.

« Associations have a dual process/structure character. D8&might be a suitable frame
to investigate fundamental questions of self-organizing information procedswgver,
DSS cannot as yet providesatisfying, comprehensiaccount oftime andstructure. But
then, such an account does not currently exist anywhere else.

« Self-organizing streamare a generalization e€lf-organizing scenewshich allows input
and output. Like the latter, they are described in terms of a sequence of configurations.

« Forfundamentateasons, configurations are required to be phase generators, i.e., they are
cyclically closed. In order to "operthem forl/O, aformal trick is used. Aspecialex -
transition is introduced, which representsekerior within the configuration.

« Micro-inputs and micro-outputs are added rmicrochanges irthe account ofmicro-
dynamics.

« The input andutputformat can be specified by bands. A bandsslf a (typicallynon-
cyclic) generator. In the simplest case, a band is a sequence of dynamic symbols.

« When input isprovided thatconsists otop -transitions, a self-organizing stredmhaves
like a dissipative system, usirtgese transitions as a "fuelyhich augments itself-
organization capabilities.

105



+ Being anopen system, self-organizing streanypically does noteach a stablstate in its
history. However, resonances can form irwihich are likely to persist for someime.
Mental images andther gestalphenomenare the intended cognitive correlateseso-
nances.

3.4 Associeties

In section 2, | have outlined a general view on agent architectures in terms of prdeesksing
that are ordered ongeriphery-centre axis. This general outline is concretely realiZe8

In theremainder of this section, | descritveo methods bywhich self-organizingtreams can
be coupled, thugiving rise to complex multi-streararchitecturesassocieties The first
method consists imakingthe output bandenerated by onself-organizing strearthe input
band of anothefThis technique seems to be suited coupling modulethat are'lateral” to
eachother in theperiphery-centre dimensionThe other methodonsists in re-interpreting a
lower-level self-organizing stream directly, in terms dfigher-level self-organizingtream.
This corresponds to grounding/emergence relations between adjacelst (cf. 2.2, 2.7).
Fig. 3.19 sketches an architectumade frommanyself-organizing streams by means of these
two techniques.

stream 5

X
stream 4 X stream 3
. eX
5 X x0Ty stream 2
%
o “He

stream 1
band 2 —> 1
stream 0
system input system output

Fig. 3.19 An associety. Coarse-grainglgnamic symbolsare rendered by larges, fine-
grained by smakt's.
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The following comments will help to clarify the architecture sketched in the figure.

« Streams are coupled ltwo mechanismsl/O bands (banana-shaped segments), and by
grounding/emergence relationghich couplehigher-level dynamic symbols to lower-level
composites (streams0 1 - 4 ~» 5and 2- 3). The lattemechanism will be explained
later in the subsection.

« Higher-level streamare assumed to be coarser grained, i.e., they contaidylessic
symbolsand develop sloweThis is indicated irthe schematic figure byhe size of the
local state dots that appear in the streams.

« All streams are assumed to be of dissipative kindsketched further above. Thuesen
when thereare no I/Obands leadingo/from a stream (streams 3 aby they aremade
from open configurations, which haveet-transition.

« Streams 1 and 2 exchange informatmdirectionally, whereathe communication from
stream 4 to stream 2 is one-wayly (noteagainthat thedirection of arrowseflects time,
not communication direction!).

« The level topology isdefined by emergence/grounding relatiombe example has no
simple linear levelopology. There arewvo leveled "columns”, whichre interconnected by
"lateral" bands. A band connection betwé&en streams doesot imply thatthey are on
the"same" level. Bands catonnect streams of different "granularities"the extreme, a
band could connedwo streams that aralso connected by emergence/groundirigs is,
however, rather not intended from the view of dynawiobolstructures. Bands should be
used to connect modulélsat don't stand in &ransitive) emergence/grounding relation
with each other. In modeling biological brains, bands might be an appropriate model for the
coupling of differently specializedortical regions(e.g., auditoryand visual), which is
biologically achieved by transversal fibres.

« In the example,outputand input from/to thenvironment is conveyetthrough a single,
lowest-level stream (stread). This is an extremely simpkerchitecture. In concret@ppli-
cations, itwill rather occur thaexternaloutput ismanaged by a different module than
external input, and thempay beseveral externdlO channels leadingo/from different
streams.

The term "associety" is a free invention. It is intendecnghasizehe dominant role of
associations in DS®wlti-stream architectures, andemindsone ofMinsky's (1985)"society

of mind". Minsky'ssociety of mind metaphor characterizes a perspective on agent archi-
tectures, wherenany symbolicinformation processing devices ("agents”) interactmamy
hierarchic levels. This generally resembles the perspective of dynamic symbol structures.

| shall only provide local specifications thie two coupling mechanismsapt aglobal definition
of entire associeties. The reasonrifraining from fixingthe termprecisely is that | wish to
keep the term open in itheaning, suchhat it can covelany agent architecture madem
self-organizing streams. Architectures ltke one fronfig. 3.19 are what | &ve in mymind
presently. Othersnight be inventedfor instanceexploiting the "topological” variantsdi-
cated in fig. 2.1.

The term"dynamic symbokystem”, which gives name tbe thesis, is intended to been
more general and open. It is meant to refeamny informatiorprocessing system with a
microchange dynamicsontroled bydynamic symbolspaces. Self-organizing scenss)f-
organizing streams, and associeties the presentigvailable instances afynamic symbol
systems.

So muchfor a general impression.shall treat now thetwo coupling mechanisms imore
detail.

107



Coupling streams by bands

Different self-organizing streanasetypically equippedvith differentdynamic symbokpaces.
Interstreamcommuncation thus requires thatformation from somealynamic symbokpace
(Gj)i=0,...m j=0,..,n IS translated into information pertaining toanother concept space

There aremanyreasonable ways specifying aranslation between {and (G;). | will opt
for a fairly general version, which treats translations as a relation between associations.

Definition 52: Let (Gj)i=o,..m j=0....n+ (Gjji=0,...m' j=0,...,nP€ dynamic symbaspaces with
undetying sets of dynamic symbals X' Let A((G;;)) denote the set dll associationsvhich
can be sampled accross;jd.e.

A((Gy)) ={ry..r, 02" [ n21,ry..1, is @ G-association for some, &1 (G)}.

Lett O A((Gy)) x A((Gj))). Write, as a shorthand,...ry o ¢ I'y..r'y for (ry..rp, r'y..r'y) O T
Thent is atranslation between (¢) and (G) :iff

() T is total, i.e., the range of in its first [second] component &((G;)) [A(Gj)),
respectively].

(i) T respects abstraction in the first component, i.e;,.ff, - I'i..r'y, ands;..s, O A((Gy)),
Sp.-§ 2 1.1y, then there exists;..sp, U A((Gj)), Si..Syn = I'p..l'y, suchthat
S1--Sy <1 S1--Spy-

(i) T respects abstraction in the second component (analogous).

(i) T respects specialization in both components (analogous).

(iv) Tis respects concatenations, i.€y.Mfr, o ¢ I'..liy, S8 © ¢ S1.-Sg 18-S U A(Gy)),
andr'y..r'ySy..5q D A((GY)), thenry..rys;..§ o« ¢ I'y..lS1..54,

(v) Trespects subsequences in the first component, rg.rffe  r'y..ry, ands;..s, (p= 1) is
a subsequence of..ry,, then there exists a subsequesiges, (q = 1) of r'y..r',, such
thats;...s; - S1..8q-

(V) T respects subsequences in the second component (analogous).

Note that (iv) comes not in the following, stronger formy.ifr, « ¢ r'y..r'y, 11188, O A(G)),
then there exists,...sq U A((Gj))), S1---S <1 S1--Sg SUCh thaty..rS;..8; o« ¢ I'1..F'S1..8
(plus an analogical requirement the other direction).e., it is notguaranteed thavhen a
translation ofr;...rps;...s, into A((Gj)) hasgot sofar as to translatg...r, by r'y...r'y, the
translation can bdinished to cover all ofr;..r.s,...5,. This is a kind of "garden path”
phenomenon, which reflectisat translations can be ambiguous widspect to contexts. The
“first attempt” to translate;..r, by r';..r'y, pinsdown a context in (¢) which cannot be
further continuated bginytranslation ofs,...s,. If one wouldnot admit this kind of continua-
tion conflict, one woulekssentiallyrequire that the topological structures of gese genera-
tors of the G are identical to those of the;G'

Two trivial cases of translations are the following:
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Proposition 53

() Forany (@) and (G)), T ={(ry..rp, r'y...rp) [ N2 1,10, DA(G)), 'y D A((GH))} is a
translation.

(i) The identity oA((G;)) is a translation betwed{(G;;)) andA((G;)).

When a band couplew/o streams S and S with different underlyl@G;;)) andA((G)), it
must be translated after it leaves S and before it entéFhiStranslatiorusuallycannot be a
simple symbol-to-symbol rewriting, since associatithreg are translated teachother need
not have thesame length, and since continuation conflicts can aris&e aramany practical
solutions for the rewriting task. One of them is sketched in the following algorithm.

Algorithm 54 (sketch): Let B =%, trans) be a generator (intention: B is a battBt uses
dynamic symbols from (£, and lett be a translation between;{Gand (G;). Then rewrite B
to arrive at a generator B', which uses dynamic symbols erJm &'follows:

Step 1ldentify in B derivations of associations fra%((G;)), suchthatall transitions in B are
covered by these associations. C&VERDbe the set of these derivations.

Step 2 For every derivation On COVER applyt to the associatioa derived by D, to get
some association,...r', 1 A((Gjj)). Construct for',...r'y a linear generator

G'p= ({xPg, ..., ¥} X Por'1xPa}, ...y {XPrar P 1)
The set of all the simple generators such construc@OVER!

Step 3 Interconnect the generators fr&@®VER'as follows.For all D, D,, for which it holds
that theinitial local state of [} is a localstate thatlso occurs in R merge G, with Gp, by
identifying the lastocal state ®1, of G, with theinitial local state ¥z, of GD The net
result of all these merges is the desired B'.

This algorithm is "quick and dirty'Many topological details othe original B will get lost.
However, when onevorks with self-organizing, collective processesie can be germs
with respect to detail. Straightforwamtbdifications otthe algorithm allowthe rewriting to be
executed in armncremental fashion, sudhat a band Bcan be continuallyewritten in the
measure as it is produced by micro-outputs.

Communication via bands issemple method. Irmany cases, this method will alseork to

couple a self-organizing stream into an agent architecture, where different naodrdesized

by different technigue.g.,connectionist and classicahes. There arawvo directions to be
consideredoutput of anon-DSS module serves as input faedf-organizing stream, amite
versa.lmplementingthe first direction idikely to be easy, sinceany serial symbolioutput
essentially is already a (linear) band, and since self-organizing streams impose no preconditions
on the"syntax" ofthe input band. Thetherdirection is lesdikely to beeasy. A moduléhat

inputs a band generated by a self-organizing stream must be suited to use this input format,
which has noother syntax besides being a labelgidected graph, or morgimply, being a
sequence of symbols. In many cases, such a type of input will baatsgsl theonly source of

input, but rather as additional clue for "softtasks.Generally, information provided [self-
organizing streams will be useftibr taskswhich have some oall ofthe following
characteristics:
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« The task can be interpreted in terms of gestalt formation.

« Some portions of thmformation processed the task can be interpreted as a context for
other portions.

« The task does not consist of clearly defined subtasks with a precisely timed control.

« There is no hard success criterium; suboptimal results are acceptable when they come fast.

« The task is of a stream processing nature.

« Thequality of solutions can be judgedterms of a degree of specialization, or precision,
of the output.

This list characterizemany ofthe patterrclassification and generatidasks that occur in
situated agents. Therefore, integratgedf-organizing streams into such architectsesms
generally well-motivated.

Coupling streams by emergence/grounding

In the dynamic symbolstructure framework (cf. sectioR), dynamic symbolsground in
dynamiccomposites from the next lowkvel. The latter's concrete naturele$t open in the
abstract framework. In the DS8rmalism, the basic idea is tdake resonancegor dynamic
composites. Intuitively, thimmeansthat a "gestaltmade from fine-grained dynamsymbols
can be perceived from a higHevel as aunit, and be referenced by a sindigmamic symbol
there. Adesirable side-effect that higher-level dynamicare thusnade typicallyslower than
lower-level dynamics, since resonances are relatively persistent phenonema.

Technically, | define grounding as a relatim@tweerdynamic symbospaces, i.e., between the
"long-term memories" of level-adjacent streams. Therefore, | cornswedynamic symbol
spaces (¢ and (g), where the second is made from “"coarse" dynaymolsthat ground in
resonances found in the first (GGrounding level, E ~Emergent level). Sincthe concrete
form of globalstates @ U (G;) and Ky U (E;) is essentiallyarbitrary, agenerally satisfying
account of emergence/grounding shauddidepend on the concretg,Gg,, but rather on the
generated languag€; andCg . For theremainder othe section, | therefore take tagay
(G = (CG"_) of languages of alynamic symbokpace as a starting point, instead of the
dynamic symbol space proper.

| start byconsidering a single coherent langud&gend explain what it meanfor another
coherent languageé to emerge from itThis requires someork. Thefirst thing to do is to
defineresonances in terms of languageé® G,-resonancelefinition in subsectiol.3 relies
on generators).

Definition 55: A coherent sublanguagel] G of a coherent languaggis aresonancen G.

WhenR is a resonance i®, and aninfinite continuations = s;s,... b G® is observed, a
guestion of interest is to detect pointssiwhere this continuation "passes through'This
leads tothe notion ofcharactersof R. A character oR is a wordr from R, which indicates
that, wherever is observed as a subsequencs ithe latters, atthatplace, "actually iIrR".
l.e., from that place onwardcould be able to continue indefinitelyRn
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Definition 56:

(i) ForROG, r R, continug(r) :={tOR|rt OR}.

(i) A wordr O R of a resonanc® in G is acharacter of R in G :iff for all sr O G,
continugy(r) [ continugy(sr).

Proposition 57 Every resonance [ G has characters.

Sketch of proof: Let Ul R be phase-fixing iR, ¢, the phase of in R Let R, G, be the
phase generators & andG. Considerall simulationso: Ry - G, (the simulation theorem
warrants thatsuch simulations existl.et ®, denote the set oéll phases inG that are
¢,-images withrespect to one of the thesenulations, i.e®, = {¢ 00 ®(G) | ¢ U o(¢,) for

someo: Ry — Gy}. Define for¢ [ &(G)

continu%¢(¢) :={sU G |scan be derived in {on a path starting if}.

It holdsthatcontinugy(r) U continu%¢(¢) forall ¢ O ®,. Let ®*, denote the set @l phases
in G such that can be derived in §0n a path terminating in one of these phases. It tiodds
®, O o*. If ®, = ®*, r is a character oR in G, and nothing remains to shown. If
®, O ®*,, then there exists some; [ R, suchthatr, O continu%¢(¢) for somed O @*,.
Define®,, and®* analogous teb, and®*,. It holdsthat b | = b, |, [@* | > [®*, |, and
U &*, . lterateuntil for some re 1 it holdsthat ®,, = ®*, . Thenrmr.r,is a
character oRin G.[!

Proposition 58 If r, rorry O R, andr is a character dR in G, thenrgrr, is a character dR in
G. l.e., words irR, which contain a character as a subword, are themselves characters.

Sketch of proof: Thatyr is a character dR in G, follows fromcontinugy(ror) [ continuey(r)
O continugy(srgr). Thus, itremains to be showhat ifr, rr; 0 R, andr is a character oR in
G, thenrrq is a character dR in G. Assumethatthis isnot true,i.e., there exists [ G, such
that there exists 1, 0 R, wheresrryr, O G. This is a contradiction tobeing a character &
inG.[]

When lower-level resonancaee interpretedia grounding/emergence by higher-ledghamic
symbols, itwould benice if one could "recognize" tHewer-level resonances by their charac-
ters. l.e.,each of the resonances tlgae rise to higher-level dynamic symbalsould be
discernible fromthe others by at least one of its characfBnss motivatesthe following
definition:

Definition 59: Let Res= {Ry, ..., R} be a set of resonances® ThenResis separable by
characters :iff for all R, there exists a character Rf which isnot a character afny of the
otherR,.

The following proposition gives a sufficient condition for separability by characters:

Proposition 60 Res= {Ry, ...,R} is separable by characters if none of Res a sublanguage
of anotherR;.

Sketch of proof: In order to construct, e.g., a charact&; ofvhich isnot a character of any
of the otherR,, ..., R, take a character of R, select words,, ...,r, O R; which are not
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contained irR,, ..., R,, and construct word fromR; which containg andall r; as subwords.
Then apply proposition 58

Now thescene is prepared tiefineE as aremergentanguage oveg, or, equivalently,G as
a language in whick grounds(the lettersE, G are motivated bgmergentandgrounding.
The alphabet dE corresponds to a sBesof resonances @.

Definition 61: Let G be a coherent language, @Reés= {R;, ..., R} be a set of resonances in
G. Let3res= {&y, ..., @} be a set of dynamic symbols. Define #mergence mapping: Res - >z
by ¢(R) := &, and thegrounding mappingy := €'1. Then,E emerges oveiG (moreprecisely,

it emerges oves by ¢), if the following condition holds:

S;...8, U E iff there exists a word,...r, O G, such that; is a character of(s).
WhenE emerges oves, then, the other way rounl,grounds in G (byy).

Extending the scope of the term "grounding”, sagthata, grounds inR;, whenE emerges
overG by g, ande(R)) := g. Furthermore, when is a character d® in G, we also sayhata,
grounds irr;.

Proposition 62 Let G be a coherent language.Hfemerges ove6, thenE is segmentable
and regular.

Sketch of proof: It is cleathat E is segmentable. By proposition 8, regularity is now
equivalent tothe existence of fnite generator forlE. Let G = G, trans be a coherency
generatings. Define a finitegenerator E foE by E = G, trans), wheretrans'J Sx>3.&S is
given by »y [ trans':iff there exists a characteof y(s), which can be derived in G orpath
starting in x and ending inly/

| have not required in the preceding definitions Ehbé coherent. However, as a candidate for
a globalstatelanguage in a "coarselynamic symbospace E should be coherent. Thiello-
wing definition and proposition gives a sufficient conditionEdreing coherent.

Definition 63: Let G be a coherent language, dReés= {R;, ..., R} be a set of resonances in
G. RescoversG :iff there exists &ordr;..r,, 0 G, wherer; is a character of some resonance

from Res suchthatr;...r,, can be derived in some generatoGobn a path thatisits every
transition of the generator.

Proposition 64 If RescoversG, thenE is a coherent language.
The proof is straightforward.

The first part of the task thereby completed: it is now clear how a coherencygosarise to
a coarser-grainedhigher-level coherencyNow assumethat a dynamic symbolspace
(Gj)i=o.....m j=0,..nWith the corresponding array of languag&j)(is given, andthat E,,
emerges oveG,,, whereE,,, is a coherent language. What one would like sngbanarray
(Ejj)i=o,...m j=0,..nOf coarse-grained, coherent languages, sahE;; emerges oveg;, and
that thek;; are generated by some coherencigsuiich give rise to a dynamic symisgace
(Ej). | cannot offer such a construction as yet. Ipassible (albeitedious) to construct

languageds;;, which emergever thegiven G;;, and whichsatisfyinglymirror the abstraction
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and symmetrification serighat characterize theriginal (G;). However, the good nevesds
at that. | cannoyet showthat, orformulate conditions when,dynamic symbokpace for the
array ;) actually exists.

This present shortcoming of the theanainly lies inthe fact thatlynamic symbobkpaces are
defined viageneratorsand the emergence relation is formulateddioguagesit is easy to go
from an array of generators (J5to an array of language&;() and onwards to emergent
languagesk;), but the last step back to an array of generatggsigtbarred, since the original
conditions concerning abstraction aynmetrification sequencese lost on the way, due to
their beinggenerator-dependentldavetheissue atest for thetime being, since | believe it is

a more productive strategy to search for a generator-indepeatediaitton of dynamicsymbol
spaces, instead of patching theonveniences afforded by the present, imperfect, generator-
dependent definition.

Taking what | have positively got,shallnow assume fothe remainder othe section éine-

grained dynamic symbol space;{Z j=o, Which consists of a single glosabte G, =: G. l.e.,
(Gjj)i=0 j=0 = (G). G generates the cohertartguages; E emerges oveB viae: Res— Zgeq

whereRes= {R;, ..., R} and Zg.s= {ay, ..., &}. Furthermore, | assuminat E is coherent,
andthat Resis separable by charactet®t E be someoherency generating, and(E) the
corresponding single-global-state dynamic symbol state.

In order to facilitate the matter furthershalltreat theemergence/grounding coupliogly for
closed systems, i.e., self-organiziagenes Let C5 be a closed configuration made with
dynamic symbols fronG, and & a configuration made wittlynamic symbolsrébm E. How
doese lead to a coupling betweelf@nd &?

CE

Fig. 3.20 A higher-level configuration & coupled to a lower-level configuratior® @y
grounding/emergence. Shaded areasSima@ characters of resonances, brdkes denotey-
links between lower-levetlynamic composites (i.e., characters) and hleiglevel dynamic
symbols. For instance, the derivation pathaf@, in CC is x-linked to thea-transition in &.
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There are many ways to specify such a coupling. | will examine a version which buidslon
requirements. The idea is to use characters of resonantke dgnamiccomposites in € in
which dynamic symbolérom CE ground. Figure3.20 shows amxample and definition 65
provides the particulars.

Definition 65: Let C& = (SC, trans®), CE = (SE, trans) be configurations withunderlying
dynamic symbotpaces (Gand(E), where the languageé generated by E emerges over the
languages generated by G viel Res— Zpqq

(i)

A derivation %S;X;...X,.15.% in CC is adynamic E-composite:iff s;...s, is a character of
some resonanc® [0 Res The set ofdynamic E-composites in € is denoted by
dyncomp(CC).

(i) A partial, injective functiony: dyncomp(C®) - trans is an emergence coupling

between € and &, if it holds that

X(S1--5y) = xx' O there exist® U Resof whichs;...s, is a character, argfR) =s.

This is quite aweak specification of an emergence coupliStrongerversions could be
derived by additional requirementsg., thatdynamicE-composites beyclic (i.e., resonant)
substructures of € or thaty is totally defined, othat the characters used pyseparate the
resonances concerned.

The emergence couplingbetween € and & alone is a static relation withontuchuse. In

order tomake it effectivdfor bottom-up andop-down interactions, it musfluence micro-

changes in € and &. | indicate a preliminary list ahethods forachieving this (referring to
the steps of algorithm 41):

Prefer, in ©, for selection irstep 1 associationshich are characters mapped Ypynto
CE. Intuitively, this meanghat lower-level associations whiclre "recognized" in the
higher levelare moresalient andnore active than unrecognized associatidimgs will
favor the former'ggrowth andstability relative tothe latter's. Often a character will be
"long enough" to loop back intibself, forming aresonance. Preferring characters for
microchanges, therefore, enhances the likeliness of resonance formation.

Prefer, in &, for selection instep 1 associations whoderivations contairk-images.
Intuitively, this favors grounded associations over such that appear "ad héc" in C
Assume that type 4 microchanges are employe&if.€, amoving associatiodoes not
spread homogenoushut can select a directiodssume furthethat in & there exists a
derivation for some associatiah, wherea, b arex-coupled to charactess b in CG, and
where in € a, b are notconnected (as ifig. 3.20). Then move, if possiblg into the
direction ofb in CC (in fig. 3.20:movea along thee;-transition). Thisstrategy drives the
topology of ¢ towards the topology of R (modolo granularity).Analogically,
microchanges in E€can be biased to approximate the topologyiCCE.

Assumethat theunderlying dynamic symbapaces for € and & have more than one
global state,featuring abstraction afynamic symbol&nd associations. Assume further
thatx is suitably generalized tmoupledynamic symbols in Ewith characters in €in a
fashionthat allows for some variance the abstraction of the coupled entiti@ssume
that a microchange in@:oncerns an associatiarthat is interpreted in €by a, wherea

is morespecial thara. Modify step 5 (the generalization/abstraction step) sahthe
specialization information surplus given &ys exploited for a strongespecialization of
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cont than would be effected layalone. This is a realization tife "abstraction gradient”
mentioned in sectio®.6. Themechanisncan be analogically exploited for bottom-up
induced specializations irffC

Such mechanisnfsster self-organization in histories &yploiting higher-level information on

the lower level and vice versa. There are bottom-up and top-down variants ofeshamism,
which have equalights. No external control strategy exists. The lower-level history and the
higher-level history eaclproceed autonomously at their own chosen "speed", accepting
information fromthe otheidevel whensuitable but notdepending on it. However, the general
intuition behind a multi-levearchitecture suggests thaticrochangesare applied to higher
levels less frequently than to lower levels.

| have tacitly ignored a technicdifficulty. The renormalization to phase generafstsp 7)
can have the effethat characters in€ or transitions in € are merged or duplicate@his
poses the question of hgyis maintainediccross the renormalizatistep.Again, "quick and
dirty" methods to deal with this complicatiane nothard to devisde.g., do notduplicate
X-links togethemwith characters). Another question concernsotiginal source of the(-links,
andmechanisms tintroduce new suchnks during a history. Asimple method would be to
startentirely without suchlinks, andtestevery association selected for a microchange for its
ability to give rise to g-link.

Figure 3.20 conveys a slightly misleading impression, insofar as there are onlisaldévay-
links init. In systems awork, it should be expectdtiat thecoupling betweelevels istighter
than fig. 3.20 suggests.

A variant of great interest is to construct amergence relationot betweentwo dynamic
symbolspaces, buwithin a singleone.This is quite natural, at least on a conceptadl. For
instance, thelynamic symboGarden_of Eden mightground in a resonance characterized
by, e.g.,Eve Adamgarden apple . Constructions of thikind are a naturahodel for the
cyclic closure solution to thBlinchhausen trilemma #te upper end of the periphery-centre
dimension. Theyapture the closedness of conceptyastemsthat isrevealed in thecyclic
closedness of an encyclopaedia (cf. sec@). | havementioned on several occasidhsit
coarser-grainedynamicsshould be "slower" than thdynamics on finer-grained leveNow,
X-links within a self-organizing stream indicéteat there are portions of the stream that are
comparatively "moralynamic”than othersCognitively, thiscorresponds to the observation
that conceptsyhich arerelatively persistent in shottime memory, organizihe processing of
clusters of moreephemericalconcepts. Forinstance, one can "thinkbout", e.g.,Gar-
den_of Eden for quite a long time, this dynamic symbol being continually present, while the
characters it grounds in areflox. E.g.,Eve Adamgarden apple maydevelop first into
apple serpent Eve, then intoEve apple temptation , etc.This associative activity
does notdisperse and eventuallyets lost, but isontinually re-focussed by the persistent
influence ofGarden_of Eden

A self-organizing stream can be coupled, by emergence/grounmtingrily to other self-
organizingstreams. In contrast to badmmunicationx-links exploitthe detailednternal
structure ofself-organizing streams. Therefoomly modules thatan be interpreted aslf-
organizing streams can, in some fashion, be coupleD38 self-organizing streams by
emergence/grounding.
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Constructing non-DSS modulésat essentially behave like a self-organizstgeam isnot a
far-fetched idea. In particularpklievethat DSS streamsan serve as a guide for constructing
quite interesting neural networks. The basic idea is,

« first, to interpretattractor states in a recurrent networkdgeamic symbols. Sinceore
than one dynamic symbol exists in a self-organizing stream, the network must be capable,

+ second, tomaintain severahttractor statesimultaneously. They can be localized in
different regions othe network, buthey might also be dially superimposed on each
other.

- Third, theattractor states Aust be able to form "associations"tbé form AS...AS,.
This boils down to a mechanism that favors the stability pgi@&n the presence of AS

« Fourth, there must be a "mow#ynamicsanalogous to microchangeghich warrants that
existing associationsre brought into mutuaontact in adynamic fashion. Such @ntac-
ting mechanisntan be ofany nature. Folinstance, it can be effected by spatial neighbor-
hood, or by correlations between broadcasted spike train patterns.

When these four points are realized, thetwork by and largeesembles a self-organizing
stream. Connectionist networks this kind are biologically plausible; infact, much that is
presently knowrabout the neocortelts into the picture. The DSS construct cdedf-organi-

zing stream, in this view, iga) an abstraghodel of the information processing in such
networks, and (bpossibly helpful in guidinghe design of artificialnetworks, byproviding

clues to the designer concerning which phenomena are to be realized, and how they interrelate.

Be this as it may, it seenpsemature to invegjreater efforts intwomplex system architec-
tures. It is more urgent, at present, éwaminethe behavior of shple DSS modules in
simulations, inorder togain experience witthe variougpphenomena of self-organization, and
their control by global states and other parameters.

Summary of section 3.4

« Several self-organizing streams can be coufdgdthervia band communicaticand by
emergence/grounding relations, forming a multi-level architecture called an associety.

- Different streams in an associety vi§lpically build on different dynamic symbepaces
Whentwo such streams are coupled by a band, the band must be translated from one
dynamic symbokpace's vocabulary the other's. Thanks to tiself-organizingnature of
the information processing involved, this can be done in "quick and dirty" fashions.

« Band communication is a simple methadhich is suited to integrateself-organizing
streams into hybrid architectures.

« By emergence/grounding, a lower-level, fine-grained stream is coupletigbea-level,
coarse-grained stream. Thasic idea is tonterpret (characteristic parts dfwer-level
resonances by higher-level dynamic symbols.

« A fully satisfying formalaccount of emergence/groundingimspaired bythe present
imperfect definition of dynamic symbspaces in terms of generators (instead of langyages
or phase generators).

« Emergence/groundiniinks between a lower-level and a highevel stream shouldnflu-
ence microchange activity both, in afashion suchthat bottom-upandtop-downeffects
have equal rights. Each side supports self-organization in the other.
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+ Emergence/grounding links within a single stream provide a solution to the Miinchhausen
trilemma at a conceptual level, formalizing an aspect of cyclic closedness of conceptual
systems.

+ Self-organizing streams might serve as a guide in the development of non-DSS modules,
in particular, connectionist networks that capture some aspects of biological information
processing in the neocortex.

4 Application proposal: memory access

In this section, I describe an example of how a self-organizing stream could be used as an
auxiliary device in an otherwise classical natural language processing system. The stream's
self-organization capabilities are exploited for focussing relevant portions of a modular
knowledge base. The basic idea is summed up in the following points:

+ A classical knowledge base is partitioned into modules in a hierarchic fashion.

» Each module is labeled by a resonance from a dynamic symbol space.

+ A sequence of dynamic symbols ("keywords") is derived from the natural language input
and fed into a self-organizing stream.

+ Characters of resonances are detected when they develop in the stream.

* Such a character is indicative for the knowledge base module which is labeled by the
corresponding resonance.

More specifically, I use Wachsmuth's (1989) model of a partitioned knowledge base as a
fundament for the following considerations. The model has grown out of empirical studies in
mathematical problem solving, where it was examined to determine which portions of specific
knowledge subjects use. I begin with a brief review of this model, knowledge packet
Structures.

A knowledge packet structure formalizes the global structuring of (parts of) long-term
memory. The total memory content comes in separate modules, called knowledge packets,
which are organized in an access hierarchy. General knowledge is contained in packets high
in the hierarchy, more specific knowledge is found in lower packets. Figure 4.1 gives an
example. The example is motivated by an assumed application of a natural language
processing system as an information system in an urban tourist office, which proposes places
where tourists can go. Packet P1 contains general knowledge about going out, P2 about
finding a place to eat, P4 about going out to dine in a restaurant, P3 about cultural activities,
P5 about the town's opera, and P6 about the town's famous textile fabrics and clothing
museum.
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P1:

Going out

P2: Eat P3: Culture

P4: P5: P6:
Restau- Opera Museum
rant

Fig. 4.1: A knowledge packet structure and the corresponding subordination tree.
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Wachsmuth providesine principleghat explainhow knowledge packet structures are to be
built and used:
Principles concerning knowledge organization:

« Principle of packing knowledge elemerdaowledge elements, which belong tspecific
knowledge domairare packed together in a knowledge padketwledge concerning an
identifiable, more specific portion die domain ispacked in a subordinate packet (e.g., P2
in P1).

« Principle of competitive knowledg&knowledge elements, whichoncern alternative
assumptions or methousthin a knowledge domaimre packed separately in "cortipg"
packets within a superordinate packet (e.g., P5 and P6 compete in P3).

« Principle of local consistencyKnowledge elements belonging tme packet must be
mutually consistent. Mutually inconsistent knowledge elements mugatieed in compe-
ting packets.

Principles concerning static access conditions:

« Principle of eligibility of knowledge element& knowledge element isligible by the
knowledge processing systefh the packet ibelongsto, or asuperordinate packet
thereof, is markedccessibleEligible knowledge elements are calgsible In fig. 4.1, P3
is marked accessible (bold outline). Knowledge elements in P3 arateP1herefore,
visible (light shading). Knowledge elements in P2, P4, P5, and P6 are not visible.

« Principle of single access to packaged knowledgea given time, onlyone packet may
be marked accessible.

« Principle of reachability of knowledg&nowledge elements belonging to (transitively)
subordinate packets of the one markedessiblerereachable(P5and P6 areeachable
in fig. 4.1).

Principles concerning dynamic access conditions:

« Principle of structure-dependent acceffsthe processing of the current taflds, the
access mark is shifted to a direct subordinateeopacket currently markedcessible. In
the example, ithe tourist's question cannot be answergdgthe knowledge contained in
P1 and P3, more specific knowledge from either P5 or P6 is made accessible.

« Principle of keyword-dependent acceAknowledge packet can be markaztessible by
means okeywords derived from the presentadk,which are associated with knowledge
elements in the packet.

« Principle of persistenceAfter a (sub)task is accomplishede access mark persists as an
initial access condition for the next (sub)task.

The knowledge packet structure approachpisnarily intended for applications where
relatively well-confined problemasre posedwhich can be accomplished with a givarbset of
knowledge elements from a stablyuctured knowledge basglassificationtasks are paradig-
matic for thiskind of task; the assumetburist informationtask is of thesamenature. By
contrast, the approach is natended for tasks where, over a prolonged period of time, the
memoryfocus islikely to shift continually, orwherememory elements should lbegrouped
dynamically (as in story understanding or in situated action).

| build my example on this basic form kriowledge packet structures. The approaa been
generalized (Wachsmuttf89) to account for overlap between packetsch gives rise to
general acyclidirected graphs as subordination graf@ihsamtrast to tree graphs in thasic
model). Theprinciple of single access @meserved. In a more recent version (Antoniou &
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Wachsmuth 1993}he subordination graph generalized to an and/or-graph. Several packets
can be marked accessible simultaneobshe. Theprinciples of competitive knowledge and
local consistencyare adapted to ensure that a sesimiultaneously eligibl&knowledge ele-
ments still is consistent.

The importance of keyword dependent access is emphasized by WacHsnygbwer is
intuitively evident. Charniak (1983) provides the example of a statement which is a syntax-
free sequence of keywords ("fire match arson hotel"), but nonetheless allows the hearer's
mind to focus sharply.

The most straightforward way to exploit keyword information for dheess of knowledge
packets would be to

+ label packets by sets of keywords,

+ generate a set of keywords from the input of the current task, and

« access the packet whose label set is closest to the generated set, in terms of some distance
measure.

This approach, however, has its limitations. Some of them can be overcome by the technique
to be described presently, which exploits the abilities of self-organizing streams to make use
of contextual information. I will justify this claim at the end of the section.

For the remainder, | assume that a tourist information system is given, with a knowledge base
as in fig. 4.1. Its knowledge packets contain knowledge in some classical symbolic format; its
particular nature is of no further importance for the example. The user poses his or her
request for counsel in spoken language. | assume that bottom-up speech processing routines
can detect within the signal (not necessarily very reliably) a number of words from a pre-
established list, without having to fist resort to top-down information. These words are
mapped to dynamic symbols and fed into a self-organizing stream, whose sole purpose is to
establish an access mddk the knowledge base. Onceaatess mark is set, the then visible
knowledge is used for the further analysis of the preprocessed signal, and for an answer
generation. When this fails, special coping strategies are invoked.

The general frame being set, | describe now the envisioned DSS mechanism in detail. The
first step is to map a dynamic symbol space on the knowledge packet structure (fig. 4.2).

RN
[N

Fig. 4.2 Mapping a dynamic symbol space on a knowledge packet structure: the basic idea.
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To this end, a generaton&of a to-be-constructed dynamic symbol spacgil . j-o,...2iS
invented, which has three major cyclic subgenerators for resonances R4, R5, R6, which in
turn will later yield the addresses for the lowest-level packets P4, P5, P6.

G,, is mapped by an abstraction mappamgand an epimorphism, on G4, suchthat the
resonances R5 and R6 become a single resonandéiB3esonance arttie a,/n,-image R2
of R4 correlate with P2 arfél3. Finally, G;; becomes the single-resonance, abstrggb®an
application ofo; andn4. Figure4.4 shows these generatorsietail, and figuret.3 provides
the underlying abstraction tree.

Before | proceed, some remarks on figs. 4.3 and 4.4 may be helpful:

« The abstraction tree is conservative (cf. section 3.2), i.e., dynamic symbols from one
abstraction level re-appear on all lower levels.

« The generigoing_out plays the role atfop .

« In classicalconcept subsumptidmerarchies, it would b@o saythe leastuncommon to
have an activiticoncept ike going_out  subsume a building anstitution conceptike
restaurant . In a similar vein, in a classicapproach, one must decide whettienk
ordress are meant as activity or physicalobject classes. This is differentDy&S,since
here subsumption r®ot interpreted by amclusion of sets of instances. One ttasliberty
to subsume a dynamic symisby a more abstractwhenever onéinds it motivated to
assumehats can replace in an "associationistic" style of reasoning. It would be apriori
permissiblege.g., tospecializedrink by any ofwine , drunken , andswallow - this
being (inthe classical view) classes @lubstances, properties, and activities. Whether
subjects can replace, specializingassociationsgrink by any ofthe other three, is an
empirical question concerning subject behavior, not a model-theoretic one.

going out going out <<i:::::: going out
shop
culture S — culture
restaurant restaurant
eat <<::::::: eat
dine
drink <<:::::::: drink
wine
attraction <<::::::i attraction
exhibition
opera — opera
museum - museum
dress <:::::::: dress

evening dress

Fig. 4.3 The abstraction tree used in the example.
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GO() .@ going out

R1
culture,
restaurant, . attraction,
ing out
G eat, C.L).Q museum,

11 drink opera,
dress,
visitor

L :3_§)’
visitor,
shop,
museum

G22 visitor,
sho
muse g museum

exhibition,
museum = dress,
. ] museum

going out . . 2
restauranty museum
dine, <::;. culture

wine opera

o .
E&% going out
® opera > o visitor,
< evening dress,
vis., ev.dr., op. opera

Fig. 4.4 The diagonal elements of (§5 Resonance subgenerators corresponding to know-
ledge packets appear in light shading.

« Dynamic symbols doot necessarilyorrespond one-to-oneith words extracted from the
external input signaExtracted words armappedio dynamic symbolgjotidentified with
them. For instance, all of the words "food", "meal”, "eat" could be mapged to

« Fig. 4.4 is drawreconomically, suppressinthe conservative duplication of abstract
dynamic symbols imorespecialized globaltates. Fomstance, evergvening_dress
transition in G, is implicitly also adress and agoing_out transition.

« The epimorphisms), andn,, which map G, to G, and G, to Gy, (which induces, in
turn, the mappings,(N.(G,,)) = G;; anda1(n1(Gy7)) = Gy, are notndicated in fig4.4.
They should be obvious. The lostihtes thabelong tothe R6-area in & are mapped on
the local state that belongs to the R3-area;ij) €c.

+ The entiredynamic symbobkpace (G) can be reconstructed from its diagonahich is
given in fig.4.4,and the abstractianee. Theres, thus, no need to present the entirg)(G
explicitly.
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+ (Gj) features both monotonic and nonmonotosgecialization effects (cf3.2). For
instance museum acquires thell-new continuatiorshop in the step from G to G,
and the continuatioeat of restaurant in G4 is specialized taline . These are
monotonic specialization phenomena. Bgntrast, the continuatioattraction of
opera in G;4 is nonmonotonically deleted in6

- The shaded "resonance areas" R1, R2 etlig.i4.4 are substructures of thg,Gvhich
generate coherent sublanguages of the lang@zges.e.,they are generators of resonan-
ces in the sense définition 55(section 3.4). These resonanbasemanycharacters. For
instance, the resonance generated by R6 has, amongst others, the clsreeteand
dress exhibition (the town'smuseum is a clothing museum!), atid resonance
generated by R5 has, among others, the chardotes visitor . In the example,
characters of length 1 abound; this is due tantgalistic simplicitywheremany dynamic
symbols occur in only one resonance.

Stepping back fronthe particulars of thexample,the following points characterize, more
generally,how adynamic symbokpace is constructed in correspondence with a knowledge
packet structure:

+ The nlevels of aknowledge packet structure correspond todlagonal elements in an
nxn dynamic symbol space.

- Each G containscyclic substructuresvhich correspond to the knowledge packetteirel
I. These substructures need not be disjoint. In&4, there is anverlap between R5 and
R6 (slightly darker shading).

« Gy is a trivial single-transitiogenerator. Thérivial resonance generated by &orres-
ponds to the topmost knowledge packet.

- When a knowledg@acket P inlevel i has direct subordinates, P.., R in the more
specialized level i+1, the cyclic substructure R pfvéhich corresponds to P,sgmmetry-
broken (and itdabels are specialized) into differentyclic substructures R ..., R in
Gisgjs1-

« A cyclic substructure Rwhich corresponds to a knowledge packet P, is a generator of
associationshat areindicativefor thedomaincovered by P. Whaindicative" means, and
how (G;) is in practice constructe@hich requires an elicitation stratefyy associative
knowledge), must be left open heRealistic (G) will certainly be much larger than the
example depicted in fig. 4.4.

« Thedynamic symbokpace can be constructed wiieatliberty. Neitherthe exact set of
dynamic symbolaised, nor itsdetailedstructure arecrucial. This liberty is typical for
computational approaches thaty on self-organization. Iltontrasts with the exactitude
demanded by logic-style knowledge representation.

Before | turn to dynamics, the definition of characters of resonances must be slightly speci-
fied:

Definition 66 (specifies definition 56): Let ({3 be a dynamic symbol spacea G -associa-
tion, andR U Cg,, a resonance i, . Then,r is a G-character of R :iff the G-interpre-
tation (cf. def. 37)" of r is a character dRin Cg, .

The reason for considering characterth&t the resonanceéey characterize iturn indicate
knowledge packets. The next definition introduces a convenient terminology:

Convention 67 Whenr is a G,-character of a resonanBe which in turn corresponds to a
knowledge packet P in the knowledge packet structusesaid tandicate P.
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Now | turn to dynamics. Assume that a sequence of dynamic symbols has been derived from
the user's input signal. This sequence is fed into a self-organizing stream. Then, the general
strategy is as follows. Throughout its history, the stream develops associations that indicate
knowledge packets. Let the stream run through a history, and determine, for each configura-
tion, the "best" knowledge packet that is indicated. Return, for each configuratiaccess

mark for this packet. During the stream's history, this mark is likely to besanoessively

more special as the stream self-organizes. In parallel to the stream's activity, the classical
calling system can start working with the preliminary access marks.

| shall now describe this procedure in some more detail.

As a pre-start preparation, the original dynamic symbol sequence is fed into atgingle
transition configuration (irthe example,top is replaced by going_out ) (fig. 4.5a). A
series of micro-inputs leads to a starting configuratigth@ consists of a single, large loop
(fig. 4.5b).

Every word derivable in £(and in every configuration to come) is gg@ssociation, and it

is also a character of the trivial resonance generated,py.&, from the outset, the topmost
knowledge packet is indicated. It may happen that more specific knowledge packets are
indicated, too. In the example, P3 is indicated by, epera , museum or culture . Also,

P5 and P6 are indicated (amongst otherspfigra and museun). Determine, among all
indicated packets, the unique packet P that satisfies

() no competing packet of P is also indicated, and
(i) P does not have a subordinate P' satisfying (i).

Call P the packet that fixed by G,. Return an access mark for P to ¢h#ing system. This is
the "best" mark that {can yield. In the example, P3 is fixed hy C

Let the stream run a history. Each time some configuration fixes a packet which is
subordinate to the one fixed before, a new, more specific access mark is returned. In the
example, the configuration shown in fig. 4.5c fixes P6, and the one of fig. 4.5d fixes P5. Both
are possible configurations in a history starting witf) @hich reflects that the initial
sequence of dynamic symbols is highly ambiguous concerning the distinction between P5 and
P6.

Stop when the calling system (which works in parallel to the stream) has successfully finished
its task, or when the history reaches a state where a continuation cannot yield a more specific
access mark. The latter can have at least three reasons:

« A packet is fixed that belongs to the most specific level in the knowledge packet
hierarchy (fig. 4.5c, d).

. The stream loses so many dynamic symbols by micro-outputs, that the residual material
cannot give rise to an improvement on the last returned access mark. In the extreme, the
stream can completely degenerate (fig. 4.5e).

. Resonances form in the stream which indicate competing packets, but which do not
mutually compete in the sense described in section 3.3. When a version of micro-
dynamics without micro-outputs is chosen, these resonances are perfectly stable. As a
consequence, none of the two competing packets can ever become fixed.
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going_ out exT
o ——H>0  —— H>0— >0 — >0 — >0

culture museum going out opera dress

a)

culture .
goling out
Lf///// - culture
® e <————
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museun museumn
ox ex
P4 ® going out
PY e
going#}>¥ //Zress g;Z;;:;;E\\TA //Zress
® e o
opera
b) c)
going out ex ®
/'. going out ei
d) PS " ye dress e) o
opera

Fig. 4.5 The self-organizing stream at work.

During the entire process, the stream is in the spatific globaktate (G, in theexample).
This setting idixed becauseany more abstract state (i.e.,géobal state not in theightmost
column ofthe dynamic symbokpace) wouldypically destroy information contained in the
input band by abstractindynamic symbolsand because mosymmetric globaktates (i.e.,
higher up in the the dynamsgmbolspace) wouldmpair microchange activity. lthe extreme,
when a globaktate from theop row of (G) would be chosen, no non-empty microchange
would be possible at all. Besides such particular reasons, taking the most specifataieliml
generally motivated by the ultimate purpose of the stream, developing packet-fixing
characters of the most specific kind possible.

Besides fixing the global state, there are many other "knobs to turn":
« thedynamicscan be made more tass "dissipative” (cf3.4) byadding furthettop -input
(here:going_out -input),

+ the tpye of microchange can be varied (cf. 3.3), and
« the microchange/micro-input/micro-output ratios can be varied.
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Although abstract considerations can help with understatickngffects of these parameters,
their influence will depend on the particulars of )G and on thekind of user inputthat
typically occurs. Optimizing them requires experimentation.

Iclaimed atthe beginningthat an access contralith a self-organizing stream is superior to
straightforwardlylabeling knowledge packets by sets of keywordkis claimcan now be
justified by the following observations:

+ Whenpackets aréabeled by simple sets &kywords, these setslmoften have nonempty
intersections. Then, whensat of keywords iderived from the user's inpwghich is a
subset of several dhe labeling sets, a set-comparison basadorithm cannot decide
between the corresponding packets. Contextifalmation can upgradée indicative
value of keywords in such casé&®r instance yisitor anddress eachoccur both in
R5 and R6. Thus, theet{visitor , dress } does nothelp to distinguish between the
two resonances (i.e., the packets P5R6H However, theequenceisitor dress is
indicative for P5 (and it will bespecialized tovisitor evening_dress in the
stream).

« The user's inputnaylead to aset ofdynamic symbols consisting bfo subsets S and S',
such that associations generated in S and S' iadkcative for two specialized, but
competing knowledge packets P and P'. Then, the accessymddd bythe stream
mechanisntanfix P,P', or a superordinate packall. outcomes ar@rincipally possible.
So far, this isnot bettethan what could be achieved with somechanisnbased on
keyword sets. Howevewhenthe words in S are more aptfym associations than the
words fom S', i.e.the closer they are related, the mideely they will out-compete the
words from S' in the stream. Thgnamic symbospace used in thexample ig00 simple
to give rise to such an effect, sincenare elaborate internatructure of the resonance
subgenerators is required for it to becamanifest.For apositive example, assuntigat a
more differentiatedlynamic symbokpace is used by the tourieformation system, and
that there is arexhibition of theatre costumes in thmuseum. Considethe sequence
attraction admission_fee  actor costume evening . The first four of these
dynamic symbols magccur in the resonance thatlicateshe museunpacket;all of them
may occur in the resonandedicativefor the opera packet. Buinly in the first case can
they give rise to a long and indicative association (which matk somethinglike
admission_fee  attraction actor dress ); in the case of the opera resonance,
the three subsetsaflmission_fee }, {actor , costume }, and {evening }, are too
far away from eacbther tomake a connection. Therefotbe first reading is due twme
out, although it is made from proper subset of the words that occur in the opera
resonance.

+ In set-based packet access, more general packetypigihlly be labeled bkeywords
which are more abstract than those tladkl more specific packets. Thenwhen aset of
abstract keywords is entered, anspecificpacket isnecessarilyaccessed. Butnutual
contextual constraints can sometimes lead to a specializatiiynarhic symbols in a self-
organizing stream. A morspecific packet can be accessed. TWisitor dress
example can bmterpreted in this sensthe abstractiress , which is indicative only for
P3,becomes specialized tvening_dress  in the context of visitor. An occurence of
evening_dress  allows to fix P5.

Another technique foexploiting keyworddor the access of knowledge packets suggesis
besides simplsetlabelingand DSS streameamely, using deed-forward neurahetwork.
Gangler et al. (1992jeport onfirst experiments carriedut with several types of such
networks. The network's input nodes correspond to keywordsytigitnodes to knowledge
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packets.Training is done in a supervisadode, utilizing a trainingset of correct keyword-
set/knowledge-packet pairings. Such an approach rimtiple superior to a statistical
evaluation of keywordets,since nonlinear interdependencies betwesywordswithin such

sets can be exploited (tpecliminary experiments b@angler et al. dmot reveal such effects

due to arelatively smalinumber of keywords and training examples). These interdependencies
are aspecial kind of contextuahfluence.However, the input to the netwostill is a set;
therefore, information contained in sequentiaer is lost. Theliscrimination principlesles-
cribed forDSS streams in thgst two ofthe above points cannot be capturedhéyral
networks of the examined types.

The stream-based technique, so far, describes thevbasall goeswell. But, what happens
whenthe systemcannot complete its task of user questmalysisand answer generation?
There are two cases.

First, it can happen that although a partial analysis of the user's request is achiewedydise
must be refined. Thisilivtypically require the access of a m@gecial knowledgeacket than
the one fixed so far. To this end, the following strategies can be invoked:

« The self-organizing strearwhich hasun dead, can be "reanimated", hoping that it can be
made toyield amorespecificaccess mark yet. Measures takawardsthis end include a
repetition of theoriginal input; "energizingthe stream byop -input; or techniques of the
simulated annealing kind, i.e., shifting the glatiateaway fromthe mosspecificstate for
some time. The lagivo techniques seem to be particularly recommendable when the
impasse is of the many-competing-resonance type.

« The system carequest a furthespecification fronthe userThis leads to additional input
into the stream, which might lead to a more specific access mark.

+ The streammechanismcan be bypassed with a fall-bastkategy, where theystem
accesses a mospecificknowledge packet either at random,using candidatethat are
already indicated byhe streamThis corresponds t&Wachsmuth's original principles of
structure-dependent access and of persistence.

The second kind of failure occurs when not even a partial success has been achievest in the
run. Then probablythe most reasonabileing to do is tostartagain fromscratch,discarding

the access markom the firstattemptcompletely. Trying to retain it (according to the
principle of persistence) might be harmful, sitice completdailure indicates that a severe
misunderstanding hasccured in thdirst run; therefore, the access manight be outrightly
wrong, not merely too unspecific.

In concluding, | pointout thatthe task sketched this sectionessentially is a single-run
classification. This kind ofask does notully exploit the powers o$elf-organizing streams,
which lie inthe continual processing of assentially infiniteinput stream. The presented
technique is not restricted to the simple case of a finite one-time input. When a non-terminating
sequence of keywords is fed irttee stream, it willield a sequence of access marks for a
dynamic memonaccess, sucthat the focusontinually shifts. Thisvould be required, e.g.,

for story understanding or extended dialogues with a Bsgreven in its basic version, the
exampledemonstrates that DS®chniques appear to be suited for tiom-trivial task of
memory access, by combining symbol processing with self-organization.
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Summary of section 4

« An application of a self-organizing stream in an otherwiassical Al information system
IS proposed.

+ The system generates proposals of places where a tourist can go in a townaRaly i
of the user's request and the subsequent answer generatiggstdm makes use of| a
classicaknowledge base. The contribution provided bys#ié-organizing stream consists
in computing a focus for accessing the knowledge base.

« More specifically,the knowledge base is assumed to be organized in a knowledge|packet
structure. This is an accdserarchy of modules, whicire tree-ordered accordingtteeir
specificity.

« A dynamic symbolspace is constructed, whosymmetry breakingand abstraction
structure mirrors the packéierarchy. Eactpacket islabeled by aresonance, sucthat
packet subordination corresponds to symmetry breaking and specialization of the a¢cording
resonances.

« A sequence of dynamic symbols is generated from the user's input. The sequence is fed into
a self-organizing stream. Certain associatibascan appear in the stream ardicative
for resonances, which in turn indicate knowledge packets.

« During the stream'’s history, a sequence of access marks for the knowledge packet|structure
is produced, oincreasing specificity, until &est" focus is settled. Ttaalling system can
work in parallel, focussing increasingly more specific knowledge.

« Since contextual and sequential interdependencies between keywords can be explpited, the
presented technique is in some aspects superior to a straightfaiedry ofknowledge
packets by sets of keywords, and to certain connectionist techniques.
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5 Representing conceptual knowledge

The DSSformalism isintended to coveall levels orthe periphery-centraxis. However, the
conceptualevel deserves a speciikatment. It is thdéevel which classical ABnd cognitive
science focus upon; it e level which is(deceptively)easily accessible timtrospection; and

it is of singular importance for most Al applications. In spite of the central importance of
conceptual knowledge, sonfmsic issues concernirigpe nature and the representation of
concepts are natettled (surveys: oflassical aspects, in Smith & Medl®81; of current
symbolic representation techniques, iekhmann1992; of psychological anghysiological
findings, in Treismari986; of concepts ilinguistics, in Lakoff1987,Mehl 1992; general, in
Wrobel 1991). In this section, | consider somettté relevant questions, comparing the
answers provided by classical Al with those proposed by DSS.

More specifically, 1 want toexpand on thassues of concepts vsymbols;concepts vs.
attributes;variability and contextuahfluences;and conceptual cycles. Sowier issues,
which | havetreatedpreviously in some detail, withot bereconsidered. This concerns the
nature of abstraction (cf. 2.6, 3.2); nonmonotaniceritance (cf.3.2), and the nature of
"Instances" of a concept (cf. 3.3).

Concepts vs. symbols

It is not asettled question how concepts asyinbolsrelate to each other. The standard
answer given by logic-oriented Al is ttefine aconcept by its extension, i.e., aglass of
individuals, and to vieveymbols as conventionahd essentially arbitrarngignifiers in some
language in which apart ofreality can be describe@oncepts andymbolsare, thusentities

of a fundamentally differemature.This perspective iaot unchallenged. At leastvo objec-
tions are raised from within Al:

+ Humans can reasabout words (i.e.symbols) inthe same way asbout other objects.
l.e., thereseem to existvord conceptsConsequentially, Langacke'$987) "cognitive
grammar" treats wordasnd object concepts as theme kind of mental entitjormalizing
them in a unified fashion.

« Thesymbolgrounding critique (Harnad 199Chalmersl990)claimsthat symbolsare not
mere conventionatokens. Ratherwhen a humanuses asymbol, it is intrinstally
"meaningful” in an internalistic, experiential sense of "meanikgt. instance, when a
human thinks "red", there must be an experience of redness involved.

| would like to hint at yet another, quitendamental objection. Ithe standard proof of the
completeness of first-order logic (compare EbbinghBlsn & Thomas 1978), anodel is
constructed for agiven formula(the Henkin model), which isessentiallycomposed of
fragments of thdormula itself. Thus, d&anguage and theobjectsaboutwhich the language
tells, areeffectively identified Now, the greatmportance of the completeness theofies in

the fact that it closely links syntactics (i.e., symbols) with semantics (i.e., models). Itistems
this cannot be donether than byidentifying the two sides. Toput this in intuitive terms,
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symbolsand concepts must Ieeated as theame thing, irorder toarrive at an interesting
account of what can be expressed by symbols.

In the perspective alynamic symboktructuresneither aresymbolsarbitrary signifiers, nor
do they, in factsignify externally at all inthe first placeThey are observablethat play a
dynamic role in an agent's information processing; and that is all that constitutes them.

First, they are natrbitrary, since in a complex dynamic system, an observable entity cannot be
replaced by another one withoerucially changinghe system's behavioFor instance, in a
recurrent neurahetwork that responds tstimuli by attractorformation (as inYao & Free-
man's model of the olfactory bulb, cf. sectB), one of the attractors cannot"b&changed"”

for a new onesince eactattractor'sdynamics isinterwoven with thedynamics of allother

such attractors.

Of course, in dormal account of adynamic symboktructure (e.g., in a DSS associety), the
formal symbolthat stands for dynamic symbol isrbitrary and can be changéabr instance,
apple could be exchanged fetppa . But, this does notconcern thalynamic symbols, as
they exist, and can be observed, in an agentyerely concerns thdormal symbolsthat
represent thelynamic symbol irthe theoryThis contrasts with thg@hysical symbol systems
paradigm, where it is assumed that symbols are principally arbitrary even within the agent.

Secondgdynamic symbols daot intrinsically signify at all. Two correlates osignification are
reconstructed imlynamic symbostructuresnamely,external and internal referendgoth are
considered as empirical phenomena. Detecting the firstdmvila toverifying a reliable causal
connection between the presence of an external object and the occuretyeaotfia symbol,
which is a majoundertaking. Internadignification is explained iterms of emergence/groun-
ding linksbetween adjacent processing levels. Importantly, neither case is a prerémusite
dynamic symbol taccur and to &ve causal influences withine system: in an associety, a
dynamic symbotan appear oany levelwithout grounding in the next lower one, and without
beingconnected t@ny external circumstance. Thus, ttlassicalinterpretation okymbols as
referential entities plays no substantial role in dynamic symbol structures.

So muchfor a recapitulation of thdifferences betweeclassical andlynamic symbols. turn
now to the question of hoaonceptsshould be reconstructedDSS. | propose tdefine as a
dynamic concepta dynamic symbol orthe conceptudével, plus what it grounds in,
transitively through the lowetevels, plus what it can associate withithin the conceptual
level. More specifically:

Definition 68 (informal): Let anemergence/grounding column be given in an associety, as in
fig. 3.19,which spanghe entire periphery-centexis formthe sensomotoric interfatevel to

a topmost, conceptuldvel.Let C,, C,, ...,C, be the sequence of the corresponding coherent
languages, wher€; belongs tahe peripheritevel andC,, to the conceptudével. Let upper
indices of dynamic symbobnd associations indicate tlegel from whichthe symbolcomes,
e.g.,c3 belongs taCs.

() A dynamic conceptc* is

« adynamic symbat" from the dynamic symbalpaceunderlyingthe conceptual-level
stream,

«  plusthe set of characterg®l;...c"1 | k= 1, c" grounds inc™1,...c*1} it grounds
in, plusthe set of sequences of charactgr...c"-3 over which these characters
c"-1,..c™1 emerge (cf. definition 61), etc., down through all levels,

. plus the set of all conceptual-level associations in whadcurs.
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(i) The dynamic symbaiX is thedynamic concept symbobf the dynamic concept.

(i) An occurenceof a dynamiconceptc* in a history of the associety is an occurenceof
in a configuration of the conceptual-level stream (cf. definition 44), plus the derivations of
charactersc™1;...c™1L to which c" is actually x-linked (cf. definition 65), plus the
derivations of the charactet®? to whichthe ¢} a areactuallyx-linked, etc.,plus the
set ofderivations of associations withihe conceptual-level configurationwhich the
occurence ot is a part.

Theimplications of this definition W become clear in the sequelhen several of its aspects
are examined in more detail. It accountstfi@symbolgrounding critique, since an irrexble
aspect of lower-level "experience" is ascertained by tracidgnamic concept from the
conceptual level transitively through all grounding levels.

In sum, bothsymbolsand concepts are considered in diggamic symboperspective asery
muchthe same kind of entity. The differencetlsat adynamic symbol is observed within a
single level, whereasdynamicconcept is a richpulti-level phenomenon, which includes not
only a conceptual-levelynamic symbolbut also thenformationthat is connected teuch a
dynamic symbol viassociations and grounding. The aforementioned objections raised against
the classical symbol-concept distinction do not affect this conception of symbols and concepts.

Concepts vs. attributes

Concepts are almostvadys defined interms of "attributes”. However, thempirical and
logical status of attributes is problematighich is reflected irthe existence ahany other,

closelyrelated notions ("features", "relations”, "properties”, "slots") and a wealth of concept
representation formalisms. | shall examine two problematic aspects.

The grow-and-shrink problemA question that is siple to stateand hard to answer: Are
attributes concepts? More often than not, attributes are treasednathing morébasic” than
concepts. The paradigmatic case is percefdiiveparticular visualjeatures. Folinstance,
"roundness” can be a feature of a ball concept, or "red" a feature of Blo®donceptiorits
well with alevel architecture for patterclassification devices, whefeatures are processed at
more peripheritevelsthan concepts. However, tigsue isnot soclear as it seems: isn't "red"
also a concept®mith and Medin(1981) acknowledgehis problem. Their example is the
concept of the letter "E". Themall vertical bar in this letter is, othe one hand, gpical
perceptual feature - but then, on the ottend, one cadeliberately focus oit, reason about
it, etc., just as if it were a concept. Featuregmem to be able ttgrow" into concepts.
Conversely, | wouldike toargue that conceptan shrink tdeatures. Foinstance, th&tatue
of Liberty comes close to being a perceptual feature of my concept of New York.

The class-relation problemin manylogic-oriented semantinetwork formalisms(KL-ONE-
like languages in particular), attributes dreated asbeing of the same logical type as
concepts. Both are first-order predicates. ©hly difference lies irtheir arity: concepts are
unary predicategor "classes"), attributes n-agypically, binary) relationsNow, although
concepts and attributes here domtologically" of the same basidype, thestringency of
logical syntax and inferena@echanismgequires thatlasses and relations lokeanly kept
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apart. OncéMother is introduced as binaryrelation in a KL-ONE network, it can ronger
serve as a clas®de.This compelghe networldesigner to settle for one of the alternatives.
Kobsa (1991)describes howthis cause a handicap for constructinguitively appealing
sematic networks. A relategroblemlies inthetechnical difficulties tovork with relations of
higher arity thartwo (Brachman et al. 1991). One would like to have such arities ifirshe
place, a commodityot provided for in customary KL-ONE-likéormalisms.Second, one
might also desire relations with an unspecified afdy,instance, irorder toformalize case
frames with optiongparameters. An elegamiay out ofall these problems would be to use a
logic featuringwhat Scott(1978)calls "multi-relations"j.e., relationghat accepany number
of arguments. Somethirlige this isnot donehowever. The reason is, onm&y suppose, that
such addedexibility would intolerably increaséhe computationatomplexity of classification
algorithms, or even render them inapplicable.

To summarize, in treatingoncepts as something different fraattributes, one faces the
problemthat there are smoothansitions between thevo; and in treating them a&ssentially
being ofthe same typepne runs into trouble as these entiemetimes appear inumnary
fashion (behaving more like concepts), sometimes in multi-ary fashion (behavirgddilans),
which raises technical difficulties.

Before | canexaminethese issues fromdynamic symboperspective, | must supply a notion
of attributes in DSS. | find it intuitive to consider the following phenomena as attributes:

« Whenc* is a dynamicconcept, anad is an association, then tdgnamicconceptd is an
associative attribute of c*. This corresponds roughly to binary relations iassical
representation formalisms like KL-ONE. oth cases, the attribute relate® conceptual
entities. For instance, theclassical relationstatementMother (human_2, woman_3)
would reappear in a DSS configuration as the occurance of an assobiatiam
mother woman wheremother is an associative attribute btiman* (rememberthat
the DSS counterpart of instances are occurences, cf. section 3.3).

- Whenc* is a dynamicconcept, and it grounds in a charadgr.g, then each of the is a
grounding attribute of c*. Grounding attributes come two subspecies, according to
whetherc;...g. comes from theame(i.e., conceptuallevel asc, or from a properly lower
level. Whenc;,...gc comes from a sub-conceptulavel, then a grounding attribute
corresponds to what issually called a perceptugature (although one shouldt forget
similar lower-level features connected witiotor action). Ishall callthese attributesxpe-
riential attributes, since theyare connected with the situated experience afnamic
concept.When c;...g. comes from thesame(i.e., conceptual)evel asc, a grounding
attributec; plays essentially a similaole as a words that occurs in teeplanation of an
encyclopaedia entry. | shall call them, thereferplanatory attributes.

Explanatory attributes and associative attributes of a cowcamtide to somextent. For
instance, the concefll-of-Man * might ground,within the conceptudevel, in charac-
ters like Eve apple or evil serpent . The dynamic symbolsthat appear in these
characters are alsassociatively accessible frofall-of-Man . fall-of-Man Eve or
fall-of-Man serpent  are plausible associations. However, sonather explanatory
attributes would beinlikely associative attributes, amite versa. Forinstance,Eve hand
apple might be acharacter irwhich fall-of-Man groundsmakinghand an explanatory
attribute (albeit onethat needs a more comprehensive sequemcind it to become
characteristic); bull-of-Man hand is hardly a sensible association. Convergeynt
fall-of-Man Botticelli IS a goodassociation, buBotticelli shouldnot occur in
an "explanation" offall-of-Man . The intuitive difference between explanatory and

132



associative attributes ibat theformer concern a concept's "substance", whereas the latter are
connected with the dynamic "behavior" of a concept in contexts.

Grounding attributes provide a satisfying answer to the grow-and-shrink prelllemalevel
topology like the one in fig. 2.1c is assumed, i.e., when the concipeiaknot disjoint from

the level of perceptual (or motor action) features, but blends into it (Fig. 3.19 would have to be
redrawn, by replacing streams 4 and Svhich correspond to the perceptual featleeel and

the conceptudkvel - by a singl@ew one, of th&ind shown in fig2.1c). Then, grounding
attribute is apt tgplay both the role of an explanatory and experientialattribute. Since
explanatory attributepartially correspond to associative attributes, the latter also aquire a
certain degree of level-indefiniteness in such topologies.

Grounding attributes also shéght on the issue of image-like, analogical vs. language-like,
propositional representations (cf. Sloman 1975). Experiatti@utes(or lower-level charac-

ters of adynamicconceptsymbol ingeneral) can be considered as analogical components of a
concept, due to their nearness to perception and adssociative and explanatory attributes
(or associations and conceptual-level characters in generapnbwast, are of theame non-
analogical quality as in amyther logic-oriented representation format that captures a "langu-
age ofmind". The possibility of blendingone type of attributes smoothly irttte otherridges

the gap betweemnalogical and language-likepresentationswhich now appear as two
extremes on a continuum.

Every conceptual-levetlynamic symbolc plays a dualrole as a concept* and as an
associative attribute (of all b* for which bc is an association). Therefore, ttlass-relation
problem does not occur in DSS. Ifact, one of myprimary motives, which guided the
development of DSS, was tind a formalaccount ofinformational entities with a dual
concept-relation nature (Jaeger 1991, 1992). The underlying intuition usithgidh concept in
reasoning can always lmgterpreted in terms of a meaningful connectihich the concept
establishes betweenther concepts. A concept simply cannot be used iatiso. This is
reflected in the connectivity structure cbherencies iynamic symbokpaces, and in the
dominant role of associations in microdynamics.

A reasonable notion of "arity” for associative attributes can be introduced in many hayes. |
compared these attributeshmaryrelations above, likening an associatat to a relational
statemenB(a, c). Other conceptions aexjually well justifiede.g.,ab as a unary predication
B(a), or abcd as a multi-relationastatementwhich comprise®(a), B(a, ¢), B(a, c, d), etc.
Generally, | would prefer not to interpret DSS constructs in terms of arity at all.

As a side remark, | mentiothat sequential associations, as usedhia thesis, can be
generalized to tree-like associations. Instead of associatbmuef one would have nested
terms likea(b, c, d(e, f)). Associations of this kinglield anotion of aritythatcomes close to
theclassicalone: ina(b, c, d(e, f)), a occurs in a ternaryg in a 0-aryd in a binary fashion. A
DSSversionthat usedree-like associations behawessentially likethe simpler versiorused
here. This is not surprising, considering that (a) coherent languages are regularrgglidrat
languages can be straightforwardly generalized to regaltanguagesand(c) thatregular
tree languages exhibit virtuallgll the nice properties of linear regular languages (standard
reference: Gécsec & Steinby 1984). Earlier versionD®% were formulated ihis more
general fashion. | have abandoned it sinta&inly because of the notational inconveniences of
tree languages.
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In sum, the grow-and-shrindroblemdoes notarise iInDSS due to the topologicktberties
afforded by associetievel structures, and thelass-relation problem vanishes simaly@amic
symbols are basically dualistic entities.

Vagueness, variability, and context sensitivity

Concepts used bgumans vary in several dimensions, on several time scale$pramény
reasons. | can only pick out a few examples of relevant research:

« Bartlett's (1932¥amous monograph on remembering describes, amithreg things, how
therecall of astory changes on a long-tetime scale (days to years). Theginal story
has many "exotic" aspects, which do not bleasilywith the subject's cultural background
and world knowledge. Aasic finding isthat thesubject's conviction of what the story
actually tells shiftdowards"making more sense" over tim&his indicates thahuman
concepts are not separately acquired, stored, and recalled, but that they inteeacbnp,
maximisingmental coherency. Theoncepts of d&aumanare part of avolving system;
they change together with the system.

« Barsalou (1987) reporempirical findings concernintipe "graded" structure of concepts.
In contrast to what is required by thkssical philosophical and logical understanding of
concepts, theyurn out not to havehe nature of a clear-cut setin$tances in humans.
Subjects declareg.g., that arobin is a more'typical” bird than anostrich. Typicality
ratings varyaccross subjects, with the context of concept presentation, and &Tm®ss
within a subject. In #heoretical reconstruction of these phenomena, Barsalou (1989) as-
sumeghat a concept is constituted by thdiferent kinds of features: stable, mandatory,
context-insensitive one#jose dependent on the current context; and others dependent on
the subject's prior reasoning history (time scale: one to several days).

« Seidenberg et al. (1982) camwut subtle experiments iarder torevealthe dynamics of
concept activation inumans on a verghorttime scalgtenths of secondsThey findthat
a concept is ndloaded" as a unit, but ratheapidly "assembled" from different informa-
tional entities, and by different mechanisms, in a complex process. Similar to Balsslou,
distinguish context-sensitive and mandatory, context-insensitive subprocesses.

The general picture that emerges from such observations is that empirical concepts

« arevaguerather than well-defined,
« that they arevariablein time rather than stable, and
+ that they intrinsically interact with theontextrather than being stand-alone units.

Obviously,these points are interrelated. Taken togettiry amount to a hard problem for
any formal Alreconstruction of concepts: how can a concepfiXxesl at all, when it is a so
dynamic, flexible, and elusive kind of entity?

In symbolicAl, concepts ar@sually defined viattributes. The probletres inthe question of

how a concept can l@eterminedoy attributes when attributese apt tovary with circum-
stances. Many answers have been proposed. | mention a few, without going into detail:
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« An "ideal" account of concepts @ven, where attributes provide necessary suificient
conditions for concept definitionghis is, e.g., the strategy oKL-ONE-like concept
representation schemes. Such scheanedully appropriate formany technical applica-
tions, but they fall short of the empirically observed flexibility of concepts in humans.

« Two types of attributes are assumadmely, definitoryand contingent ones. The first are
connected to a concept in a mandatiashion, and thewre sufficientfor a characteri-
zation. Contingent attributes appear and disappear according to circumstémgds.
apparently aetter approximation to natural concepts thanidleal accountmentioned
before. However, foevery naturatoncept one cafind cases wherany particular of its
attributes is disabled. The assumption of trdéfinitory "core" attributes is empirically
false. This is known as the "empty intersection” problem.

« A concept isdefined as a probability distributicover attributes (e.g.Smith & Medin
1981). "Core" attributes gethagh, "marginal“attributes a lowprobability value. Then, for
a given set of attributes ligelinesscan be computed ofhich concept isactually "meant”.
This approach resolves tlwenflict between vagueness agefinition byattributes, and the
empty intersection problenHowever, itfalls short of contextsensitivity. In a given
context, a relatively unlikely combination of attributes can, in fact, be highly inditatise
concepta, although it is morendicative for someother conceptb, when context
information isnot taken into account. &assification mechanisioased on a probability
distribution isapt tomisclassifyconcepts inuntypical contexts, because th@obability
distribution integrates ovetl occurences of a concept, i.e., over all contexts.

« Finally, I mention connectionist representations of concepts in locsistorks (e.g.,
Waltz & Pollack 1985, Smolensky1986, Bookman 1988). Ithis often-used type of
recurrent networks, concepts and attributes are represent&bdigd nodes.When a
collection of attribute and concept nodes is activated dlamped fashionthe network
returns activation values for nodes of goal concepts after a phase of equilibration. This type
of approach accounts for the vagueness of concepts. Furthermore, comiéotonation
(represented by thanitially activated concept nodes) is algdly effective. Theonly
apparent shortcominiges inthe sigle-run type ofdynamics. A classification is a "single-
shot" event,leading from aninitial activation to a result. A continuous conceptual
reasoning dynamicsyhere a concept runs througlveralstates over a period time, is
not captured. However, ghould be possible to overcome this restriction by elaborations
of the basic technique.

Dynamicconcepts are vagueariable, andcontextsensitive, justifyinghe DSS approach in
light of these generally hard-to-match constraints for concept representation:

« Vaguenessresults from both associative and grounding attribudgsse in different
occurences of aynamic concept, different such attributesre typically present. No
attributes must occur bgecessity;therefore, theempty intersection problerdoes not
arise. Furthermore, no aprigmobability constraints are imposed on attribute occurences;
therefore, contextuahfluence isnot disabled. In spite of thigreatliberty, concepts are
well-defined. Thaeason this is possibissentiallyrests in the fact that concepts are not
defined locally in aone-by-one fashiomut within acomplete, complex system: grounding
attributesrely oncharacterswhich characterize resonances on the background of an entire
dynamic symbolspace. Only associative attributase, to a certain degreélocal”
attributes.

« Variability also concerns bottinds ofattributes. In a history, both types of attributes are
apt to appearstay for awhile, and disappear again. To kiyowledge, aimilar dynamics
hasnot yet been realized by neuratworks that process conceptual knowledge, but |
believe that it is in principle possible (cf. the remarks at the end of section 3.4).
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« Context sensitivitys one of the modiasicfeatures of DS$formation processingVithin
the conceptudkvel, an associativattributed of a concept* can be filteredout whenc
arrives in a contexp,...b: b;...p,cd may benot anassociation, although...b.c andcd
are.Microdynamic interaction betwedgvelscouples contextual effects in olewel to the
processing in other levels.

DSS does notffer an account of long-termariability of the kind observed byBartlett,
because learning is not yet integrated into the approach.

Conceptual cycles

As a last point, | briefly consider the issue of circularity. Cyclic interrelationships between
concepts abound in human reasoning. However, on a basis of classical first-order logics, it is
hard to come to terms with this phenomenon.

Nebel (1990, 1991) discusses different types of circularity. He argues that knowledge repre-
sentation systems should tolerate a certain kind of circularity, which he calls "terminological
cycles". Terminological cycles are essentially the same phenomenon as cyclic cross-
references in an encyclopaedia. For instanceara concept isnaturally explained with the

help of anengine concept, and vice versa. Terminologic cycles could be formally dealt with
by using non-well-founded set theory (standard reference: Aczel 1988, introduction: Barwise
& Moss 1991)for a model-theoretic semantics. However, unfounded semantics are still
unusual in symbolic Al. Nebel (1991) explicitly backs off from unfounded semantics. He
proposes several ways of arriving at founded models for terminological cycles on a back-
ground of KL-ONE-like representation languages, acknowledging that each has its draw-
backs. In (Nebel 1990), a KL-ONE-like formalism is augmented to support a kind of termino-
logical cycles that is restricted, among others, by the requirement that such cycles must not
lead (transitively) from a concept to a subconcept.

Cyclicity is a basiphenomenon in DSS. From an abstract point of view, this is a consequence
of theemphasis on self-organization, whichngmately connected with feedback and hence,
with a kind of cyclicity. Whenheissue is examineohoreclosely,onefinds two distinct types

of cyclicity in DSS.

First, theglobalstates of alynamic symbospace are coherenciegjich arecyclic. This leads

to the phenomenon of associations looping backti@mselves, i.e., to resonances. The for-
ming of associations and resonances in a self-organizing streayniaraictype ofcyclicity; |
shall call itassociativecyclicity.

Second, the grounding relation agike rise to cycles withithe conceptudevel. Thiscorre-
sponds to terminologic cycles of the encyclopaedia typeh can beonsidered astructural
Let it be called, for obvious reasoegplanatory cyclicity.

In section 2.4, | have given an abstract characterization of the conceptual level in terms of, as it

now turns out, thestvo kinds of cyclicity. | haveequired there that eadtind of cyclicity
leads to a globalyclic interconnectedness of the concepteradl. This requirement is satisfied
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for associativecyclicity, by virtue of the construction adynamic symbobkpaces in terms of
coherencies. Chains of grounding relations, omtherhand, havaot asyet been required to

be globally cyclic. It isnotivated, then, to add this as an additional condition for associeties, in
order tomakethe conceptual-levéencyclopaedia” cyclic. Thidoes nolead to any technical
difficulties.

Associative and explanatocyclicity are related with eaatther to the extent thassociative
attributes coincide with explanatory ones (see above). This coupling seems to add an important
aspect to the structure/procge®blem (cf.3.3), and should have an impact on self-organi-
ziation. However, the issue remains to be worked out.

In sum, cyclicity is a built-in feature of DSthus, it does not pose thechnical problems as in
logic-oriented knowledge representation. Furthermore, DSS providasal frame to distin-
guish different kinds of cyclicity, and to investigate their interaction.

Summary of section 5

« A dynamic concepts is a dynamic symbol from the uppermost "conceptual” level in an asso-
ciety, togetherwith what it grounds in in loweevels, and with Wwat it associatesithin
the conceptual level.

« Thisaccount of a concept sheds a right on several fundamental questions concerping
the representation of concepts. In some cases, it offers an integrative perspegtive on
seemingly disparate alternatives.

« Two basic kinds of attributes exist for dynamic concepts. Associative attributes congern the
information that is dynamically accessible from @&onceptwithin the conceptudével;
grourding attributes concern thaformationthat is coupled to dynamicconceptsymbol
by the grounding relation.

« Grounding attributes can "grow" from a perceptual featurefuitlyaconceptual stat& his
variability of statusallows the issue of analogical vs. language-like repnéstons to be
interpreted as a matter of degree.

« Associative attributes have a dual concept-relatare. Technical problems concerning
the arity of relations, as thegre known frontlassicalrepresentation formats, do not
occur.

« Dynamic concepts are vague in that many different subsets of their attributes can be present
in different occurences of the concept. The empty intersection problem does not arise.

« With respect to their attributedynamicconceptsvary dynamically in ahistory. Among
other factors, this variation is influenced by context.

« "Structural” terminologicycles anddynamic” feedback cyclemretwo forms of cyclicity,
which can be observed, and conveniantly examined, in associeties.
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6 Related work

The work presented ihis thesis draws fromnanysources, and tries to integratsightsthat
have been achieved at disparate places. The most important of these soyioeal@rabe-
tical order):

(i) complex systems theories,

(i) concept representation research in Al and cognitive science,
(iii) finite automata and regular languages, and

(iv) situated action and behavior-oriented agent design.

Its proximity to manydifferent areas of research connda&S with rathermanythreads of

other work. But, theelationship betweeDSS and another approachyipically confined to

some selected aspecEor instance, DSS ipatrtially related toclassical semantinetworks
through some aspects @ynamic symbospaces; or to Carpenter and Grossberg's ART (1990)
through the processing of sequential input, self-organization, and resonance formation; or to
behavior-oriented agent desitimough theepistemologicabutlook on theagent/environment
feedbackloop. Such correspondences have been explored at vatames in the preceding
sections, and | do not reconsider them here.

Whenthe DSS is characterizeat interms ofdisciplinesconcerned, but in terms gf/stem
properties, the following characteristics stand out:

() afast self-organizing dynamics,

(i) a symbolic format of information,

(iii) stream processing, and

(iv) support of hierarchic, multi-granularity architectures.

No other approackeaturing this combination of properties appears to edistvever, there

exists a class of neuraktwork techniques whichypically realize(i), (ii), and (iv): locdist
recurrent networks, where nodes are labeleslylnhbols. Beindocalist, these networks do not
belong to the "mainstream” of connectionism, which more inclined towards parallel
distributedinformation processing. Localisetworks ardrequently used in cognitivecience

and linguistics, where their capabilities to handle contextual influences are exploited for various
tasks (e.g., Waltz & Pollack 1985, Bookman 1988, Mangold-Allwinn 1991). These approaches
are related taclassical spreading activation techniques in semawtiworks (e.g.Quillian
1968,Wilks 1975),and sometimelsoth traditions are integrated in a singjstem(e.g.,Mehl

1992). | shalihot review the entiréamily of approaches. Instead, | selésb ofits members

for a closer inspectiomamely, Smolensky's "harmottyeory”, and the "Copycat" architecture

of Hofstadter andWitchell. There arégwo reasons fopicking out thesetwo: first, theyare, in

some aspects, modosely related to DSS than others; secotitky are motivated by an
exploration of fundamental computatiomaéchanisms (likédSS), rather thateing "mere"

tools for a specific application (like the majority of approaches in the field).
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Harmony theory

From a bird's eye view, Smolensk{@986)harmonytheory is a localist neuraletworkmodel

for pattern recognitionwhich spanghe entire periphery-centeis. Its particular appeal is
formal simplicityand generality. This allows Smolensky to develop a principled mathematical
theory,which describeshe context-sensitivassembly oschemasn terms ofminimizing an
energy measure. In my presentation, | focushennetwork architecture and thasic ideas,
omitting mathematical detail. Smolensky usedoar-letter-word recognition task as an
introductory example, which | shall use as well.

A harmonium as Smolensky calls hegchitecture, is a two-layer network. The bottagyer is
made fromrepresentational feature nodeshese nodes indicate by their activation whether
some feature is present aot. No directconnections between them exist. Tiop layer
consists ofknowledge atormodes Each knowledge atom node corresponds to an on-off
pattern of feature nodeghis pattern isdetermined by excitatorft) and inhibitory(-) links to
some of the feature nodéor instance, a knowledge atom node for the detection of the letter
"A" might have (+)-links tathree feature nodes representing a horizontal bar 'dlagonal

bar "\", and a diagonal bar "/, and it would have (-)-links to feature nbdesepresent, e.g.,
curved line segments (fig. 6.1). Obviously, therensaayways todetect affA" undervarying
circumstances, and from different featurekis is accounted for by the existence rohny
knowledge atom nodes, each of which corresponds to one possible way of detecting an "A".

Features, as understood $ynolensky,are not restricted ttow perceptualevels. Besides
features like bars and curve segments, there could be "features" corresponding to complete
letters, complete words, @ny other entity that onewishes to treatall in one harmonium.

Every knowledge atom responsible for detecting an "A" is (+)-connectdee té\" feature

node, besides its connections to line segment nodes.

knowledge atoms knowledge atoms
relating line segments relating letters
to letters to words

LINIK

D= - -@ - ~W-M -~ GBLD ~CAMD -

N — . — N T

line segment feature nodes letter nodes word nodes

Fig. 6.1 A portion of aharmonium(adapted, andlightly simplified, from Smolensk$986).
Only (+)-links are shown.
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The introduction of feature nodes tlsplan severdévels ofintegration allowne to "fold" a
multi-level architecture into a two-layer netwoik/henthe harmonium from fig6.1 would be
rearrangedrertically, it becomes cledghat aharmonium can spathe entire periphery-centre
axis (fig. 6.2).

word nodes

N

O~
“

letter/word
atoms

letter nodes

(M
segment/letter Q
atoms

line segment nodes @ @ @ @ @

Fig. 6.2 The harmonium rearranged (adapted from Smolensky 1986).

A harmoniumworks in apattern completion tasks follows. Initially, some of the feature
nodes areexternally activated, and the activation is clamped. Then, a stochastic activation
propagation an@quilibrationprocess is runThis process is of theimulated annealing kind,
involving the successive lowering of @mputational temperaturét temperature zero, the
system settleslown in aglobal state thatmaximizes a numerical value calléérmony
Intuitively, the harmony value of an activation distribution measuhescoherencyof the
network state. The&oherency increases, roughly, when (+)-linked ndteg¢h feature and
knowledge atom nodes) asemultaneously activated; dtecreases when (-)-linked nodes are
simultaneoushactivated (théharmony value also depends thie computational temperature,

an aspect thatgkip here). Irthe process, feature nodes that havebeeninitially activated

may becomeso, which is the patterrcompletion aspect of thé@armonium's dynamics.
Furthermore, knowledge atom nodes can become activated, which is the "interpretative" aspect
of the dynamics.The collective of activated knowledge atoms fothesschemathat is
recognized.

The major part of Smolensky's paper consists in a rigorous treatment of the quatteletion

process in terms of statisticghlermodynamics. This also explawky the authoinsists on a
two-level architecture: the tools of statistitaérmodynamicsre tailored taleal with one
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microleveland one macrolevel, which correspond to the feature and the knowleddeatiom
| can only highlight the central aspects of Smolensky's formal treatment:

+ The harmony function anthe computational temperature corresptorthally to the
notions of energyor Hamiltonian function) antemperature, as they are used in thermo-
dynamics. They allow explainintpe harmonium interms ofentropy which inturn is
formally equivalent tanformation Thus, theformal treatment isdually an information
theoretic one, and one in terms of statistim&chanics, with probabilittheory as the
shared mathematicddasis (thisdualism is inherent irthe two disciplines; it isnot a
particular property oEmolensky'sapproach). ltallows investigation of self-organization
phenomena, as described in thermodynamics, in an information processing system.

« During the cooling procesphase transitionsor symmetry breakingsccur.Intuitively,
they correspond to points in the proced®enthe system arrives at an alternative of how
currently stabilized, smaller collectives of mutually supportive nodes can be further coupled
into larger such collectiveszormally, they reveal themselves in discontinuities of the
harmony function. Smolenskseports simulation runs where this phenomenon can be
clearly observed.

« The final activation values of knowledge atom nodes can be interpretéikebsood
estimatedor the presence of the corresponding feature patteharonium performs by
definition optimally, wherthese estimategield exactly the probability ofthe completed
pattern,giventhe incomplete information ohitially activated featuresSmolenskyproves
that theharmonium can behave optimally, and providdsaaning strategy to arrive at
such a behavior.

There are several clear similarities between a harmonium and an associety:

« A periphery-centre hierarchy is described in termsswyrhbolic units of increasing
compositional integration (knowledge atoms made from fegtateerns vs.dynamic
symbols grounding in dynamic composites).

+ A self-organizing dynamics leads tize formation of coheremissemblies of informational
entities (schemas vs. resonances and characters).

« Contextualinfluencesare crucial forthe interaction oinformational entitieg(+) and (-)
links vs. filtering of continuations).

« Many circumstance-dependent "versions" of "one" informational eatéyossible(e.g.,
many "A" knowledge atoms vsnany occurences of thapple dynamic symbol in a
global state like the one from fig. 3.5).

« Computational temperature amsymmetry breakingare basic phenomena irboth
approaches.

Another similarity is not soeasily detected, though its, | believe, fundamentdboth in
harmonytheory andDSS, conceptand attributegssentially coincideNow, in order tomake

this point, | must first determinghich objects shouldount as "concepts” inarmonytheory,
sincethe notion isot used by Smolensky. The most natural candidate gy, an "A"
conceptis, as | see ithe set of'A"-recognizing knowledge atom nodes, plie feature
nodes they are (+)-linked to. At first sight, this defines a concept in terms of a collection of sets
of features, each afhich is sufficient to establisthe presence of the concept. Features (i.e.,
attributes) and concepts would blkearly distinct kinds oentities, thenBut, among these
features, there existsvary speciabne,which leads to a revision of this first impression: the
"A" featurenode.This "feature" imot a visuafeature or a partial aspect of th&' concept.

In a way, it can be regarded as the essence of the cosiceptjn thismode,all the different
circumstantial versions dlie"A" concept are tied togetheZonsideringhe role ofthis node

as a linkfor coupling adjacerevels of granularity (cf. fig6.2), aclosesimilarity is revealed
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with a dynamic symbol emerging from a lower-level dynaroimposite. A technicalifference

lies inthe fact that théA" feature node "grounds" in lower-level compostte®ugh the
relays of knowledge atomodes, whereas in DSS the grounding is unmediated. A feature
node, thus, can be sedually asthe "representative” of a concept, and as a feature of other
concepts. In sungymbols,concepts, and attributes awet clearly separated from eaddther

in (my interpretation of) harmony theory.

On the othehand, there arenany differences between harmottyeory andDSS. llist the
MOost conspicuous ones:

« Associeties are intended for continual stream processing, wheraas@ium performs a
single run on a single input.

« The information processed in an associety comesalatvely expressiveormat (directed
edge-labeled graphs, with an abstracti@fined for labels, and withthe possibility to
define analogues of "instances", i.e., occurences of a concept). By coriteastpaium is
put to work on a simple set of features, and returns a set of knowledge atoms.

« DSSdistinguishes between "long-term memof(giynamic symbokpaces) and "working
memory" (streams and associeties), whereas in a harmonium both sites coincide.

« Microdynamicsworks bymodifying the very connectivitystructures betweeinformational
entities, whereas a harmoniwnorks by spreading activation througlib@ed connectivity
network.

Thetwo approaches stem from differdmsic motivesDSS isintended to help ithe mode-
ling of situated agentsThis leads to stream processing, rich formats - and soriogtunate
blanks inthe formal analysis ofssocieties. Harmony theoayms at arigorousformal treat-
ment of onealbeit fundamental, information processtagk, i.e., pattern completioithis
leads to a simple basarchitecture and workingycle - and asatisfyingly conplete formal
penetration.

Interpreting DSS in terms of statistithermodynamicgor information theory) willcertainly

be muchmoredifficult than in harmonyheory. One of thenajor obstacles ithe multi-level
structure of an associetyhich would require a thermodynanmti@atment of moréevels than

one micro- and one macrolevelhis is uncommonbut notimpossible for statistical
thermodynamicsVon Weizsacker (1985, p. 180ff) carrst such ananalysisfor asimple
three-level system. On tlegherhand, some starting points fortteermodynamic/information
theoretic interpretation of DSS can ldéready made out, namelyhe interpretation of
abstraction in terms of resolution and differentiation (which shousdr@mable to information
theory), and thelefinition of the information contained in an association. Furthermore, there
already exists a well-establishstrand of research concerned with the statistical thermo-
dynamics ofsequence generating systems, in particiiléte automata (e.g.Crutchfield &
Young 1990). This work is directly relevant for the analysis of coherencies.
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Copycat

The Copycat project (Hofstadter & Mitchell 1992) constitutes a major endeavor to make an Al
program behave creatively inrentrivial sense othe word.Copycat's task is tcomplete

letter sequences, lway of exploiting analogy. A typicgjuestion posed to thgystem might

run like this:

Suppose the letter-strirajpc werechanged tabd; how wouldijk have to be changed "in the
same way"?

A plausibleanswer would bgl, and indeed Copycat wilery often come up with it (and
sometimes withothers).Finding thisanswerboils down todiscoveringa rule hatyields abd
from abc, and thertransferringthis rule by analogy tgk . This examplenay not seem very
demandingput Copycat canope with muchmore subtle tasks$:or instance, when (again)
abc changes t@abd, to what changesarrjjj ? Of course, there ameveral answers. The one
most frequenthgiven by humans imrrkkk (rule: replace last letter by its alphabetic succes-
sor),and this is alsthe solution mostrequently found by Copycatlowever, this response is
not entirely satisfying, sincabc displays alphabeticalrder,whereasmrrjjj does not. There
exists a different, surprisingly elegaaiution,which is less frequently found by humans, and
which is alsararer among Copycat's answers - $amnetimes, indeed, the requirstiroke of
genius" effectively happens the machine(solution at the end of the Copycat review). The
authors argue that thé&microdomain” of letter sequence completions contains arbitrarily
demanding tasks; therefore, it is, in a sense, a universal testbed for creative computation.

Copycat's architecture has two principal modules.Slipmetmore orless functions as a long-
term memory, anthe Workspaces a workingnemory or blackboard. Additionallthere is a
Coderack which is roughlyanalogous to an agenda of pendiagks. Before | describe these
modules, | emphasizéhat Copycat is dighly intricate affair, withdozens ofmechanisms
interacting in a finely tuned fashion. | can outline here but some major principles.

The Slipnet is a network of labeled nodekich are connected Hinks of variabldength The
nodelabelsconcernall sorts of concepts that avsefulfor the description of letter sequences.

For instance, there are nodes for each letter of the alphabet, nodes for relations between letters
(e.g.,"alphabetic successor"), and nodesdeeperconcepts like'symmetry" or"opposite".

They arenotordered in an abstraction hierarchy as one is used to from semantic networks. The
length of dink betweertwo nodes corresponds to theemantic distance" betweéme nodes.

For instance, a node for the lettewill typically have a shorter link to theenode than it has to

ther node. Thesemantic distance is important, amarbgereffects, for'mental slips" (hence,
Slipnet): when a node is read irttee "workingmemory", it can happethat asemantically

close one is also read.

The nodes in theslipnet are dynamically activated during Copycat's run, with activation
reflectingthe importance dhis node forthe interpretation of the currently considered letter
sequence. This activigpreads over thilnks to neighboring nies; the spreadingte accross

a link is inverselyrelated to thdink's length. So far, this iall rather conventionaBut now
comes Slipnet's special contributiontte art oflong-term knowledge representatiorhe
links are labeled by nodeBor eacHink, there exists some node in tBpnet hatserves as a
labelfor thelink. For instance, dink between a "left" and a "right" noaeight be labeled by
the "opposite" node. Furthermore,liak's length is inverselyelated to the corresponding
node's activation valuée., whenthe "opposite" node isighly activated, thdink between the
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"left" and the "right" node becomeshort, favoring the spreading of activation between the
two, and favoring mental slippage.

A conceptis a node in the Slipneplus the nodeswhich are linked to it by short links.
Hofstadter andMitchell applythe metaphor of grobabilistic cloudaround a node" t¢his
conception of concepts. Theariability of link length, which is induced biabeling node
activation, lets these "semantic clouds" fluctuate in a context-sensitive fdstionstance,
whenthe "opposite" context isighly active, then "left" belongslosely tothe concept cen-
tered around "right".

The Workspace is a complex machinery, which | can sketch only superficially.b&ginaing
of a Copycat run, the workape contains the bare tagdscription, e.g.dbc - abd; ijk - ?".
Successively, relations betweabc andabd, and betweenjk andabc are discovered, and
relations between these relations, dtcis interpretative information iadded to the work-
space in several formats. During a run, a currezgtgblished interpretation (callei@wpoinj
can be superseded by marensistentones. The consistency parameter dependshamy
influences, amongthers, on the interconnectedness ofuieg/point and its hierarchic depth
(in terms of relations between relations). Thishiswever,not yet afully accurate picture;
consistency needot increase monotonically, sindbere arewaysfor less consistentiew-
points to push their way stochastically into the Workspace.

The actual computation is done tglling codelets A codelet is amall piece of executable
code. There are various types of codelets, stmaecan only detectand memorize some
regularity (calledscout$, and othershatcan actuallyalter the state of the Workspaaed the
Slipnet. New codelets can be generated by sewseahanisms. At a given time, (k&rge)
number of codelets waits the Coderack to bealled in astochastic fashion. Each of them is
marked with a priority value, which governs its chances to be called.

Althoughonly a single viewpoint isxplicitly present in the Workspace, competungwpoints
can bemplicit in codelets thalie "dormant” in the CoderackVhen they happen to be called,
it may occur that aelatively coherent viewpoint is exchanged foreadcoherent oneThis is
an importantmechanism toavoid getting stuck inmpasses, and folinding "surprising"
solutions.

The coherency of given viewpointregulates a&computational temperaturelhe greater the
coherency, the lower the temperature. High temperature has thetledtecbdelet execution,
roughly, is "more random". At theeginning, coherency minimal, temperaturenaximal, and

the overall behavior is nearlkandom. At the end, the opposite is true. Thusaray large, the
dynamics behaves like in simulated annealing. However, in simulated antiealiagperature

is an externally suppliedontrol parameter, whereas here it reflects the current degree of
coherency; also, in Copycat the temperaturapis to fluctuatewich it usuallydoes not in
simulated annealing regimes.

The authors provide a metaphor for basic principles o€opycat that is quitbelpful to get

an intuitivegrasp of the mattehey comparehe Workspace with kiological cell, where
complex biochemicahggregates arbuilt through theactivity of enzymes, which iturn are
producedfrom DNA strands, withmany inhibitory and positive feedback cyclbsing
involved, and withmechanisms teuppress or express particular portions of the DNA. The
enzymescorrespond to the codelets, the DNA to ®ignet (with suppression/expression
representing the activatiatynamics), andhe biochemicalaggregates to the viewpoint in the
Workspace. One of therucial things to be gathered from this metaphadhésstochastic and
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fine-grained collectivaature of the ongoing processing, where a single codelet execution has
only minimal effects.

There areseveral similaritiebetween Copycat addSS. Some ofhem are of a more general
nature:

« Both systems combine a self-organizing dynamiath symbolic knowledge processing
(my interpretation; the authors locate Copycat somewhere betwesgntibelicand the
subsymbolic paradigm).

« There is a long-terrmemory and avorking memory (Slipnet an@lVorkspace vsdynamic
symbol space and self-organizing stream).

« In working memory, coheremissemblies of informational entitiase formed (viewpoints
VS. resonances).

However, suclsimilaritiescould be found to relate DS&th manyothersystems irthe field
besidesCopycat. The central aspect lideness, whichmotivated my reviewing o€opycat,
lies in the Slipnet's principle of labeling links hyodes. By virtue of this elegant technique,
relations areeffectively identified withconcepts.This exactly matchethe interpretion of the
conceptualevel inDSS associeties (cf. sectibp Thetechnicalapparatus of DSS is neéry
similar tothe onerealized inthe Slipnet, but thbasic idea, anthe implicationsfor context
sensitivity ofattributeaccessibilitywhere the attributes of @lipnetconcept node are taken to
be its proximal nodes), are very much alike.

It is, onthe othethand,not difficult to spotmanydifferences betwee@Gopycat andSS. llist
the most important ones:

« In contrast tomulti-level associetes, Copycat workealy onone,namely,the conceptual
level in the periphery-centre hierarchy.

« Copycat is a single-task single-run device, whereas associeties are for stream processing.

« Copycat'sdynamics is,one might say, "more collective", difiner grained”,than DSS
microdynamics. In its "evolutionargharacter, it can be compar@dich Hofstadter and
Mitchell do) to thedynamics of classifier systems. Bgntrast, theequilibration of a self-
organizing scene can be expected to be a rapid phenomenon.

One of thethingsthat DSSmight learn fromCopycat concerns the control gibbal working
parameters. A self-organizing stream history unfolds uth@ésgiven of a globaktate. lhave

not addressed in this thedise question of general strategies of hosustable" globalstate

can be determined (the application described in sectionthe task is simple enough fig a
particular globaktate beforehand). In Copycat, the computational temperature depends direct-
ly on the currently achied degree of coherence. &yalogy toCopycat, itmight be moti-

vated to explore whether tlggobal statemight beset dynamically inagreement with some
measure of coherence of configurations.

(P.S.: Wherabc changes tabd, thenmrrjjj changes, quite elegantly, tarrjjjj . That's how:

a is the 1stp the 2nd,c the 3rd letter of thalphabetm appears 1 time, 2 times, and 3
times. The transition "3, 4" governs, then, both the original and the solution.)
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Discussion

Harmony theory, Copycat, afalSS are three approachesrgalizing a kind of information
processingthat is bothsymbolic and self-organizing. To lsire, Smolenskywould not
considerhis work "symbolic", and neithewould Hofstadter and/litchell be happy with this
characteriziation. However, the rejection of the term by these researchers stems from their
opposition to a logic-oriented, inferentthinamicsand the underlying model-theoreteman-

tics, but | use the term heraerely torefer to therepresentatiorof information in terms of
symbolic labels.

The three approachesm atquite differenttasks: pattern completion, creatiamalogy-
making, and stream processiiog agents. A mutual comparison cannot, therefest, on the
tasks Rather, it should focus on tineechanismshat are exploitedand theunderlyingprin-
ciplesthat are assumed to govern information processing.

| find several basiaspects that are shared by the three architectuhgsh) mightturn out to
be universal foany approach that combines a self-organidggamicswith a symbolicformat
of information:

« Local interaction in a collective of informational entitiekhis certainly characterizes the
three approaches in question hafhy might it be universalFirst, asymbolic format
impliesthat there are discre@mtities. Sinceéhereobviously must benore than onentity
present foranything interesting to happeone has &ollective of informational entities
with which to start. Second, it iard to conceive how a glaly controlled dynamics
might give rise to self-organizatioBontrol andseltorganization isll but a contradiction
in terms. Discarding global control, one is left with local interaction.

« Formation of "coherent" compositds a harmonium run, a complex schema is successive-
ly assembled from mutually (+)-linkedusters and meta-clusters of nodes. In Copycat's
Workspace, interpretations of letter sequences, and their mutual analogescassively
built by intermeshindetters and letter-groups with relations, relations between relations,
etc. Resonances develop in a self-organizing streaall timese cases, the authaysply
the term "coherent" to the respective phenomenon. Furthermore, thensumedcal
measure for coherency in each cagach is directlyrelated to theelative stability of the
composite: thdarmony function in harmony theotyte coherencealue of a viewpoint in
Copycat; and thenformation of associations iDSS. This cannot be a coincidence.
Harmony theory provides the relevansight: the harmony function can be rigorously
interpreted as a measure of enefyncipally, from a thermodynampoint of view,self-
organization is explained irerms ofminimizing an energyneasure. For DSS&uch an
interpretation is a goal for further formal research.

« Coincidence of concepts, attributes, relations; and context sensitivity of these unified
entities This is an ill-specified claim, sin¢ke terms "concept", "attribute”, and "relation”
are notused either bysmolensky or by me, ithe first place. However, imarmony theory
andDSS, these notionsan beplausiblyreconstructed. Then, thenderlying similaritythat
concepts relate between concepts is revealed. In harmony theorymaisfest inthe fact
that a node is eelay station for activation; ilbSS, adynamicconcept is characterized by
when and with whiclothers it can associate; in Copycat's Slipnet, a concept is outrightly
equivalent to a modulatory relation between other concepts. Again, this appears to be more
than a coincidence. In a dynamic, self-organizing system, an informationatantityt be
understood inisolation from other such entities, and their mutual interactions. An
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informational entity, in such a system,intrinsically a dynamimbject, and itslynamics
intrinsically relates the object to others. An object, imashell,is its own behavior
towardsneighboring objects; itannot be abstractemivay fromthat. Contextsensitivity

can be considered a necessary consequence of this situation. \ddrerejat is alynamic
relation, then its relating tather conceptorms acontext for the lattersince this relating
activity is in some way or other causally influential for the other concepts, they are context-
sensitive. Seen this waggntextsensitivity is a mere epiphenomenon, #mefte is nothing

in it that is remarkable in any way.

+ Feedback and cyclicity need noexpand on this issue, since it is obvituash in its role
for the three approaches in question here, and iruntgersal relevancdor self-
organization.

« Thermodynamic states as global control paramefé® harmoniumCopycat, andelf-
organizing streams are uniformly ruled in their microbehavior by global states that allow for
a thermodynamic interpretatiothough only in harmonytheory this interpretation is
rigorously carried out. The question is, agamw universal is this? It might seetimat it is
not, considering cellulaautomata and neural networksat work withoutreference to
global states. Howevetthis may bedue to the fact thauch a globastate is simply not
varied there, although fixed one could belefined. In collective computation techniques,
it should always be possible imtroduce and toary randomness, thereby equipping the
system with some kind of computationemperature. Non-random computationsthis
view, are simply computations at zero temperature (note"lleating” is generally not
possiblefor classical symboli@lgorithms, whichwould typically break downcompletely
when randomness was allowed). Therefore, Italle it as granted thabllective compu-
tation isgenerally subject to globatates that beasut amore or less rigorous thermo-
dynamic interpretation. A question of general relevance contterme®ntrol of suclglobal
parameters. In thBarmonium, a one-way cooling strategyemployed; inCopycat, the
computational temperature self-adjusting tahe currently achieved coherencyDS8S,
the problem is leftopen. Itseems to mehat decisive insights intdhe nature othis
guestion arestill missing, inparticular when a continuous processing of a stream of infor-
mation is at stake.

A general observation can be made concertliedormal reconstruction osystems like the
harmonium orDSS streams, in terms of set-theoretic mathematical structures. A standard
formalization seems inadequate or even impossible. This fo{wBom thecoincidence of
concepts with relationsyhich disagrees witthe modeling of standafcked-arity relations by

sets of tuples (cfScott 1978or "multi-relations™), (b) from feedbacighich would require, at

least, an unfounded version of model thegdoy unfounded set theory in accounts of stream
processing cf. Barwise & Moss 1991), a@) from contexsensitivity of concepts,which

would require "sets with context-sensitive extension". Although set-theoretic strusttives
such properties would be somewhat non-standdeljdve that exploring them is fruitftdr a
deeper understanding of self-organiziation, and | have started to work in this direction.

Harmony theory, DSS, and Copydiiffer widely in their complexity, with harmony theory
being the simplest andCopycat the most intricat&his is mirrored inthe degree dformal
analysisthat has been achieved in each cadach varies fromthe almost complete and
rigorous treatment ilmarmonytheory, via the formal language underpinnings BSS and its
prospects for a further exploration in terms of statistieimodynamics, tthe non-existence
(impossibility?) of a formal modébr Copycat.This raiseghe important question whether a
"truly” intelligent (whichwould include creativity, as performed byo@y/cat) system can be
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formally penetrable at all, or whether this might in the end turn out a contradiction in terms. Be
this as it may, DSS bears a formal analysis.

The harmoniumCopycat, andelf-organizing streandiffer greatly withrespect to the actual
computationatynamics. Spreadingctivation, codelet execution, and microcharayes quite
dissimilar "micro-mechanisms'fFurthermore, other approaches in theld of collective
symbolic computation, such as classifier systems and cellular automata, ettheg@inciples

of micro-mechanisms. This variance is repeated at the macrolevel. Slow "evolutionary" systems
(Copycat, classifier systemsgontrast with fast "equilibrativebnes (harmonium and most
neuralnetworks,cellularautomata, DSS). Anified theoretical perspective ot insight; in

the long run, statisticahermodynamics and information theanyght yield anappropriate
general frame of reference.

| have selected harmonlyeory and Copycat for reviemot only because they are as close to

DSS as can be found, but also becabsg highlightthe similarities as well ashe dissimi-

larities of approaches to self-organizingymbolic informationprocessing. Thelissimilarities

lie in the concrete computational techniques, in the nature of tasks, and, importantly, in the
suitedness for #ormal analysisthe similarities lie inthe generic properties of collective, yet
symbolic, informatiorprocessingwhich | have listecdbove. DSS is a new méer in afamily

of approaches, which are hardly yet systematically interrelated beyond those generic properties.
Thefield is in astadium ofinitial growth, which ischaracterized by the co-existencenwny
paradigms and techniques. Given this situmtihe entry of DSS into tlgame is justified by

two points:

« Amongthe systemghat performself-organization ofymbolic infornation, DSS isunique
in its combination of stream processing with a coveragleedtill periphery-centre hierar-
chy. This reflectgshe central purpose of myork, i.e., to contribute to the mekhg of
intelligent, situated agents.

« DSSunfolds stringently from a simple formal basis, namebherent languagewhich are
a subclass of regular languages. It can reasonably be expettadthorouglanalysis of
DSS in terms of statisticdhermodynamics is possible. Infiald that isfar frombeing
understood systematically, formal stringency is particularly desirable.

Summary of section 6

« There aremany approaches thatombine a self-organizing dynamiesgth a basically
symbolicmode of information processingowever, they are quite diverseexamine two
of them more closely, namely, Smolensky's "harmony theory" and Hofstadtditeimell's
"Copycat". Although thesawo are selected fanaximal proximity to DSS, it turns out
that there are still considerable dissimilarities.

« Harmony theory is a localist connectionist technique piaitern completion tasks. An
outstanding feature is a rigorof@mal analysis irterms of statistical thermodynamigs,
which is made possible by the architecture's basic simplicity.

« Copycat performs on letter sequence completion taghkish require a creative explol
tation of analogy.

« Several general, shared traits are abstracted liemmonytheory, Copycat, an®SS. |
argue that thesamilar characteristics are, in faétindamentafor any approach thatom-
bines self-organization with symbolicformat of information. In particular, tHellowing
points are identified:
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The unique contribution @SS tothis family of computational approachéss inits com-
bination of stream processing withmaulti-level architecture. A second importgostifica-
tion is its accessibility for a formal treatment.

local interaction in a collective of informational entities,
formation of "coherent” composites,

coincidence of concepts, attributes, relations; and context sensitivity of these unified
entities,

feedback and cyclicity, and

thermodynamic states as global control parameters.

149



7 Conclusion

Looking back on the preceding sections, tbkowing points appear as théundamental
characteristics of my work:

. DSS unfolds, in aformally rigorous way, from the theory of coherent languages.
Coherent languages aresabclass of regular languages. Tlaeg motivated bjunda-
mentalaspects of local observations dyinamicsystems, which iturn directly imply a
notion of context sensitivity.

. The basic informational entities iIBSS aredynamic symbols. Thegre interpreted as
empirical observables. This leads directly to aostraction relation betweatynamic
symbols, which is formallyalmost, butnot quite, similar to the classicalabstraction
defined in terms of inclusion of extensions.

. The DSSmodel of long-term memorglynamic symbospaces, is imanyaspects related
to classical semantinetworks. However, the proper perspective dymamic symbol
spaces is to view them as thermodynamic global state spaces.

. The DSSmodel of a processing moduline self-organizing stream, is apen, dissi-
pative,rapidly self-organizing system. btomputational terms, it is aanytime-algorithm
for stream processing.

. Coherent spatiotemporal subsystems, resonances, can develop in a self-organizing stream.
They can be interpreted as a phenomenon of gestalt formation.

. Complex multi-levelrchitectures can be constructedcbypling several self-organizing
streams. There atevo coupling mechanisms. Coupling by bandsuged for connecting
streams "laterally" by distinct communication pathways. Coupling by emergence/groun-
ding relationsyields multi-granular, "vertical" columns of processing levels, whepe
down and bottom-up influences have equal rights.

Contributions

The work reported in this thesis contributes to Al in general through the following points:

« The structuralistic epistemological frameworldghamic symbaostructures, owhich DSS
iS a concrete instance, providesrdfied theoretical perspective dwo paradigmdhat are
often considered to bautually incompatible, namelthe paradigms of situated action and
physical symbol systems.

+ On the conceptudevel, DSS proposes solutions for sopreblemsthat are hard for
traditional, logic-oriented concept representations formalisms:

« nonmonotonic inheritance,

» the nature of symbols vs. concepts,

« the nature of concepts vs. attributes,

« analogical vs. language-like representations,
« vagueness, variability, and context sensitivity,
« conceptual cycles.
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« DSS isunique in its combination dhe following featureswhich are of particular interest

for modeling agents:

« a self-organizing dynamics,

« asymbolic format of information,

« Stream processing, and

« support of hierarchic, multi-granularity architectures.

« DSS isunique within Al inthat it exploits topology-changing graphodificationsfor the
micromechanism of collectiveomputation. Since these graphs (configurati@ms) of a
dual temporal/structural nature, DSS is a suitable formal ffanfarther explorations into
fundamental questions concerning time vs. structure.

The central applicatioaimed at bythe approaches in agent design. Associeties provide a
programming scheme fdhe entire periphery-centexis of asituated agent. Thillowing
points justify DSS in this perspective:

« Due to thesymbolic nature of DSS, thelesign can be explicit (cthe "explicit design
principle" in2.10). Togethewith the unified format forall levels ofthe periphery-centre
dimension, this fosters transparency and intelligibility, which indtebeneficialfor modi-
fication and systematic experimentation.

« Due to compositionality, an ad-hoc setup of behaviors is in principle possible, wiiah in
is a precondition for discover-and-modify developmstctiemes (cfthe "operndesign
principle" in 2.10). However, beforéhis can be realized, learning mustibeorporated
into the approach.

« Fast self-organization, thanytime character ofself-organizing streams, arttle tight
interaction of bottom-up with top-down processing warrant the agent to be coupled into its
environment by a tight agent/environment feedback loop, as emphasized by situated action.

« Conversely,the relative detachment and autonomy of higher procedswels and the
representational capabilities comparablelassical semaniteetworks, provide a precon-
dition for the "intellective" type of intelligence that is emphasized in classical Al.

However, this is speculation, sinD&S isunimplemented aget. It remains to be seen tehat
extent these points can be realized.

Outlook

The work presented itis thesis providesnly the formal groundwork for DSS. Before DSS
can be utilized in practical applications, furtheark must be carriedut. | list some obvious
tasks, in the order of their urgency, which | am going to tackle with the least possible delay:

« Simulations of self-organizing scenes and streams mughbé order tagain experience
with the diversgphenomena of self-organization. Such compsiteulationsare indispen-
sable, since a theoretical prediction of ergodic properties of the self-organization phenome-
na concerned is inherently difficult.

« Control regimes for the dynamic selection of gladtates for passages ohiatory must be
developed in the course of these simulation experiments.

« Acquisition techniquefor the construction aflynamic symbokpaces must be developed.
In the long run, it would beery desirableg.g., toacquire conceptual-levelynamic
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symbol spaces automatically frotexts, by a direct transformation of observed keyword
sequences into a growimlynamic symbospace. The problem &#arning in the sense of
augmenting a given such space incrementally, is directly related.

« Dynamic symbolkpaces are, as yetefined interms of more otess arbitrarily selected
generators. It is desirable to find a representation format that is independent from particular
generators.This requires a further mathematical elaborationthaf interdependencies
between, on the one hand, abstraction symdmetry breakingand on thether, phase
generators and simulation mappings.

« Atask that is intriguing, butot quite so urgentijes in atheoreticalanalysis of self-organi-
zing streams in terms of statistical thermodynamics and information theory. This constitutes
an ultimate goal for the approach.

A final remark

Self-organization, at least as it isimperfectly - understood today, is possibigcessary, but
certainlynot sufficient to explain intelligent behavior. particular, a purely DSS-baseabot
could not properly react to instructionthat require anontrivial syntax analysis. Charniak
(1983) argues thdanguage understanding builds two kinds of mechanismsnebeing self-
organizing(though that term isot used by Charniakimself),the otherexploiting functional
relations between concepts that are expressedrely syntactical meansfihd hisarguments
convincing.

Furthermore, self-organizationnet atall wanted for Al applications wherefall control is

required. Self-organizationtrinsically impliesunpredictability. An Al systenfior thesurveil-

lance of a chemical plant, tre support ohir traffic control, or almosany otherconceivable
application in management and industry muost behave unprediably. Such systems
constitute the vashajority of economically relevant Al applicatiofi$ie symbols manipulated

there have a clear (oftexternally extensional) meanifgr the userof such a system, just as

the speedometer readings and the steering wheel have a clear meaning for the driver of a car. A
trained logician, Ibelievethat aclassical extensional logic the appropriatenathematical
background. This insight notwithstanding, self-organizing mechanisnsecgauxiliary tasks

in such systems, for instance in facilitating memory access.

Thus, in sum, self-organization is far frdmeing a panacetor Al. It may be a valuable
auxiliary mechanism in classiagbplications. In the particular Albdiscipline ofigent design,
however, Ibelieve it tobe, thoughmot sufficient, essential. These closisigtementput my
work in the frame where it belongs.
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