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Abstract

This thesis introduces dynamic symbol systems (DSS). The approach combines a symbolic
format of information with a self-organizing dynamics. It is primarily intended for the modeling
of intelligent, situated agents.

The basic information processing module is a self-organizing stream. In computational terms,
this is an anytime-algorithm for the processing of information that comes in a quite general
stream format. In terms of thermodynamic systems, it is an open, dissipative, rapidly self-
organizing system. In terms of cognitive science, a self-organizing stream is a module that can
appear at any place from the peripheric sensomotoric interface to the central conceptual level,
performing tasks of pattern completion, noise filtering, and gestalt formation.

Different self-organizing streams can be coupled, yielding complex, self-organizing information
processing systems. These associeties can span the entire periphery-centre axis of an agent.
Top-down and bottom-up influences mutually support each other, with none of them having
causal or temporal precedence over the other.

At the most central, conceptual level, the DSS representation format is in many aspects
comparable to classical semantic networks. The approach proposes answers to several
controversial issues concerning the nature of concepts, e.g., context sensitivity, nonmonotonic
inheritance, the nature of concepts vs. attributes, and conceptual cycles.

DSS is a concrete formal instantiation of a general, structuralistic epistemology for situated
information processing, namely, dynamic symbol structures. The key assumption of this
perspective is to consider symbols as empirical, physical observables, which can be reliably
detected in an information processing system. This epistemological frame yields a unified view
on two paradigms that are often considered incompatible, i.e., the physical symbol systems
paradigm and situated action.

The dynamics is described in algorithmic terms. It should be relatively straightforward to make
the formalism run on a computer. As yet, however, the approach is not implemented.

The thesis first establishes and explores the epistemological frame. It then develops, in a
rigorous fashion, the concrete DSS formalism. An application is proposed, where DSS serves
as an auxiliary mechanism for memory access in an otherwise classical system. The DSS
representation format for symbolic knowledge is compared with classical methods for concept
representation. General insights concerning the combination of a self-organizing dynamics with
symbolic representation formats are derived from a comparison of DSS with related connec-
tionist models.
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Note added for the ftp-able version: latest news on DSS

The thesis concludes with looking out to some open questions (p. 151f). Two months after the
thesis has been cast into its final form, I can report considerable progress concerning two of
those open issues.

First, a learning technique for the induction of phase generators from observed associations has
been developed. Furthermore, the phase generators thus constructed are augmented by proba-
bili ties for their transitions. These probabilities lead, in turn, to a refinement of the definition of
information (p. 61).

Second, the simulation theorem (p. 64) has been generalized to cover the case of a unified
symmetrification/abstraction operation. This should pave the way for a construction of
dynamic symbol spaces consisting purely of phase generators.

(august '94)

ii



Table of contents

1 Introduction 1

2 Dynamic symbol structures:
an integrative perspective on classical AI and situated action 7

2.1 A controversy concerning the modeling of agents 7

2.2 Dynamic symbol structures 9

2.3 The periphery-centre axis 14

2.4 Dynamic symbol structures and classical AI 18

2.5 Dynamic symbol structures and situated action 24

2.6 Differentiation, resolution, and specialization 27

2.7 Emergence and grounding 33

2.8 The structuralistic nature of dynamic symbol structures 35

2.9 Self-organization and compositionality 37

2.10 Design vs. autonomy and development 45

Conclusion 49

3 Dynamic symbol systems 51

3.1 Coherent languages and coherencies 51

3.2 Dynamic symbol spaces 66

3.3 Self-organizing scenes and streams 80

3.4 Associeties 106

4 Application proposal: memory access 118

5 Representing conceptual knowledge 129

6 Related work 138

7 Conclusion 150

References 153

Symbol Index 160

Subject Index 161

iii



1  Introduction

This thesis introduces dynamic symbol systems (DSS). DSS is a principled formal approach to
symbolic information processing. It mediates between classical symbolic AI and emergent
computation techniques in AI, the most prominent of which are neural network and classifier
systems. On the one hand, the basic informational units in DSS are symbols, as in classical AI.
On the other hand, the dynamics in DCS builds on self-organization, as in emergent compu-
tation (fig. 1.1).

    

Fig. 1.1: The basic methodological coordinates of DSS.

In order for a symbolic approach to support a self-organizing dynamics, symbols have to be
conceived in a somewhat different fashion than in classical AI. In particular, the meaning
(reference) of symbols is reconstructed as an empirical observable in the DSS approach. This
contrasts with the classical view on symbols, where reference is a "platonically" pre-established
relation. In order to make this difference (and others) explicit, symbols are called dynamic
symbols in DSS.

New formalisms should not be invented without necessity. I believe, however, that combining
symbolic representation with a self-organizing dynamics is necessary for the modeling of
agents that are both intelligent and situated, i.e., agents which have intellective skills like
abstract reasoning and verbal communication, and which are physically embodied in a dynamic
environment. More specifically, I argue that the information processing inside such an agent
must combine two aspects:

• Informational entities (e.g., perceptual features, basic actuator commands, reflexes, or
higher cognitive categories) must be coupled together in composites, and decoupled again,
in a fast and causally effective way. This is needed to enable a fast setup of behaviors in
unpredictable environmental circumstances.

• This fast composition of informational entities must not depend on explicit control
structures. Rather, it must arise in a self-organizing fashion, in which all the agent's pro-
cessing levels interact simultaneously bottom-up and top-down. This is necessary for the
agent to become coupled into its environment in an essentially continuous agent/en-
vironment feedback loop.
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The single most important contribution of DSS consists in a principled integration of these two
aspects. Fast and effective compositionality reflects the formalism's classical symbolic heritage;
a self-organizing dynamics links DSS to emergent computation and the situated action
paradigm.

The dynamics of DSS is specified in algorithmic terms. However, DSS is not yet implemented.

Overview

DSS aims at reconciling symbolic AI with the situated action paradigm. Section 2 deals with
some methodological facets of this endeavor.

In 2.1, I sketch how both traditions approach the task of agent design, highlighting why an
integration is difficult. In order to establish an epistemological framework for such an integra-
tion, I introduce an abstract structuralistic view on agents, namely, I interpret them as dynamic
symbol structures.

This perspective is outlined in 2.2. It is worked out in more detail in the following subsections.

2.3 is devoted to the problem of an agent's "vertical axis", which ranges from a sensomotoric
periphery to an intellective centre. It can be investigated in morphological and functional terms.
At least in biological agents, the periphery-centre axis is structured in a complex way. Morpho-
logical and functional aspects are intertwined in an opaque fashion. I argue that such complexi-
ty and opacity contribute to an agent's autonomy and adaptiveness. Many complex types of
periphery-centre "morphologies" can be interpreted in terms of dynamic symbol structures.

In section 2.4, I explain how dynamic symbol structures can be interpreted as physical symbol
systems in the sense of classical AI. The main difficulty is that classical symbols are intrinsically
referential, whereas for dynamic symbols, reference is a secondary phenomenon, which must be
reconstructed empirically.

Section 2.5 treats the relationship between dynamic symbol structures and the situated action
paradigm. Again, a central question concerns the nature of symbolic units. The situated action
critique against symbols has an anti-referential and an anti-discrete aspect. The first criticism is
answered for by the empirical, contingent nature of reference of dynamic symbols. As to the
anti-discreteness argument, dynamic symbols are not discrete in the sense of "yes-or-no enti-
ties". Their discreteness resides in the weaker notion of identifiability through an empirical
observation procedure. A standard type of dynamic symbols are attractor states that can be
observed in neural assemblies.

Section 2.6 further explores the nature of dynamic symbols as physical observables. They are
characterized in terms of the information gained through their observation. The less informa-
tion gained, the more abstract the dynamic symbol.

Section 2.7 considers the topic of emergence and grounding. In a restricted sense, these
notions are interpreted in dynamic symbol structures by the relationships between fine-grained
symbolic composites and coarse-grained dynamic symbols.

2



Section 2.8 concludes the elaboration of dynamic symbol structures by interpreting them as an
instance of structures in the specific sense advanced by Piaget. Such structures are charac-
terized by what Piaget calls totality, transformations, and self-regulation.

Section 2.9 addresses a fundamental problem of agent design, namely, the reconciliation of
"free" compositionality with a self-organizing dynamics. I argue that both principles are needed
for intelligent situated agents. An agent must be able to establish complex behaviors and
perceptual schemata from simpler constituents in an essentially arbitrary fashion. This kind of
ad-hoc compositionality is a hallmark of symbolic AI, but it is hard to achieve with present
emergent computation techniques. On the other hand, an agent must be directly coupled into
its environment by essentially continuous perception-action feedback loops. Such mechanisms
are a basic ingredient of behavior-oriented robots, but they are impossible to realize with
standard logic-oriented techniques. In the light of dynamic symbol structures, a picture of an
agent emerges, where compositionality and self-organization co-occur on all levels from the
sensomotoric periphery to the intellective centre.

Finally, in 2.10 I try to resolve the apparent contradiction between explicit design on the one
hand, and an agent's autonomy on the other. The challenge is open design, i.e., equipping the
agent with an initial outfit of explicitly designed faculties, such that it can autonomously
develop further, unpremeditated faculties during its lifetime. I argue that mimicking biological
"modify-and-test" evolutionary mechanisms is too slow a strategy toward this end. I propose
to use a "discover-and-modify" technique instead, which exploits the inherent ambiguities of
existing functionalities, plus the compositionality mechanisms of dynamic symbol structures.
Given ambiguity, new functionalities can be discovered without having to modify an agent's
structure first; given compositionality, a functionality that turns out a success can become fixed
as a new unit.

Dynamic symbol structures provide a epistemological framework for viewing agents. Dynamic
symbol systems (DSS) are a concrete mathematical and algorithmic instantiation of this general
framework. The DSS model is developed in four stages in section 3, which constitutes the core
of this thesis. Figure 1.2 shows the essential constructs of each stage.

The elementary underpinnings of DSS are treated in section 3.1. When a dynamic symbol
system is monitored locally during some interval of time, a finite sequence of dynamic symbols
is observed. Such sequences are called associations. The set of associations that can potentially
be observed at a given locus in an agent forms a formal language over an alphabet of dynamic
symbols. A particular subclass of regular languages, coherent languages, is determined by
some plausible assumptions concerning observations of dynamic systems. The theory of
coherent languages is the mathematical backbone of DSS. These languages can be
conveniently described using finite, cyclic generators, i.e., edge-labeled transition graphs (fig.
1.2a). Generators can be interpreted as stochastic oscillators. When an association is observed,
some information concerning the internal state of such an oscillator is gained. Maximally
informative associations correspond to phases of the device. Normal form generators can be
constructed from phases. The main results of 3.1 concern such phase generators.

Classical AI systems have a knowledge base, neural networks store long-term information in
link weights. In DSS, the "long term memory" is provided by a dynamic symbol space (section
3.2). Technically, this is a set of generators, which, by way of an abstraction and a symmetry
breaking operation, can be arranged in a two-dimensional array (fig. 1.2b). Seen from a
classical angle, a dynamic symbol space is comparable with a semantic inheritance network. In
the perspective of physical dynamic systems, it plays the role of a thermodynamic global state
space. Therefore, the generators contained in a dynamic symbol space are called global states.
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Fig. 1.2: The four stages of DSS. a) a generator, b) a dynamic symbol space, c) a self-
organizing stream, d) an associety.

The DSS model of a single processing module is the self-organizing stream (section 3.3). I
first treat processing modules without input and output (self-organizing scenes), which are
then equipped with I/O mechanisms to arrive at self-organizing streams. Technically, self-
organizing scenes and streams are described as a temporal succession of generators (called
configurations). The succession is induced by an operation called microchange (big arrows in
fig. 1.2c). Microchanges locally alter the graph structure of configurations and symbolic labels.
Like in physical systems, where the dynamics at the microlevel is affected by global
thermodynamic parameters, microchanges depend in their effects on the prior selection of a
particular global state from an underlying dynamic symbol space. Since configurations are
generators, each of them yields a formal language. Technically, the self-organizing aspect of
microchange dynamics resides in the fact that "disordered" fragments of these languages are
attracted by "orderly" fragments of the language described by the selected global state. Such

4



"orderly" fragments are characterized by internal feedback loops. They are called resonances.
Resonances can be interpreted as a gestalt phenomenon.

Self-organizing streams can be coupled to form complex architectures, associeties (section
3.4). There are two coupling mechanisms. First, different streams can communicate via the
output and input that they generate and accept (U-shaped band in fig. 1.2d). Second, a higher-
level, coarse-grained stream can ground in a lower-level, fine-grained stream. Technically,
lower-level resonances (dotted circles in fig. 1.2d) are interpreted by single higher-level
symbols (straight lines in fig. 1.2d). For instance, a conceptual-level stream can ground in a
stream that processes visual features. In that case, the finer-grained resonances made from
visual features yield analogical representations for the concept-level symbols. Between adjacent
higher and lower level streams, simultaneous top-down and bottom-up interactions exist, such
that self-organization in each of the streams fosters self-organization in the other. Associeties
are the DSS account of complex agent architectures.

An application of DSS is outlined in section 4. DSS techniques can serve an auxiliary function
for accessing an otherwise classic knowledge base, which is used for a text understanding task.
The basic idea is to initiate the text interpretation by feeding keywords from the text into a self-
organizing stream. Resonances forming in the stream indicate which partitions of the the
knowledge base should be accessed in order to load relevant knowledge for completing the
interpretation task. A central feature of this keyword-oriented technique for knowledge access
is that information contained in the temporal order of keywords is exploited.

In section 5, dynamic symbol spaces are explored as a representation for associationistic,
conceptual-level knowledge. Several hard problems of concept representation appear in a new
light. They include the nature of concepts vs. attributes, terminological cycles, nonmonotonic
inheritance, and varying arity of relations.

Section 6 examines two related approaches in some detail, namely, Sejnowsky's "harmony
theory" and Hofstadter and Mitchell's "Copycat". DSS shares a number of characteristics with
these (and related) techniques. They include local interactions of informational entities;
formation of "coherent" composites; coincidence of concepts, attributes, and relations; context
sensitivity of informational entities; feedback and cyclicity; and thermodynamic states as global
control parameters. The contribution of DSS to this family of computational approaches lies in
its combination of stream processing with a multi-granular architecture.

Section 7 concludes the thesis by looking back, looking ahead, and looking around.

A synopsis of DSS notions

DSS combines ideas from symbolic AI with ideas from self-organizing systems. As a
consequence, the notions defined in DSS will be to some extent unfamiliar to readers with
either a classical AI or an emergent computation background. Table 1.3 provides a synopsis of
important DSS notions, indicating how they roughly relate to concepts from classical symbol
processing and emergent computation/complex systems. I hope that this table helps to "situate"
my approach in both other fields.
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classical AI DSS emergent computation,
complex systems

_________________________________________________________________________

symbol dynamic symbol A. local observable
B. local attractor in a parallel
dynamic system

assertion, formula association local short-time observation
in a parallel dynamic system

symbolic reference grounding of dynamic explanation of observable
symbol in dynamic in terms of finer granularity
composite

textual context context of an local spatiotemporal
association neighborhood of a local

observable in a parallel system

terminologic knowledge base, dynamic symbol space global (thermodynamic) state
semantic network space

mode of reasoning, e.g. global state global (thermodynamic) state
excited vs. calm

symbol structure with resonance feedback cycle, attractor
gestalt quality

anytime algorithm for self-organizing stream open (sub-)system
filtering and completing
infinite symbol sequence

multi-level symbolic associety complex system described on
information processing several levels of granularity
system

Table 1.3: A synopsis of DSS constructs, as they approximately relate to symbolic AI and
emergent computation/complex systems.
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2 Dynamic symbol structures: an integrative perspective
on classical AI and situated action

The task of understanding and designing intelligent, physically situated agents is a prominent
goal in current AI research. It motivates the DSS approach. This section examines the area
more closely, in order to establish a firm epistemological frame for DSS.

The section is organized as follows. First, a controversy between classical AI and situated
action approaches is highlighted (2.1). A structuralistic account of an intelligent, situated
agent, as a dynamic symbol structure, is then sketched (2.2). It aims at an integrated perspec-
tive on both classical and situated-action-oriented agent models. The DSS formalism is a
particular formal instantiation of this abstract account. In the main body of the section (2.3 -
2.10), I use dynamic symbol structures for a closer examination of the classical AI vs. situated
action controversy, focussing on the task of designing artificial agents.

2.1  A controversy concerning the modeling of agents

In current AI, two complementary approaches to model agents capable of performing complex
tasks in a physical environment can be discerned.

The first approach grows out of classical symbolic AI and robotics. A mobile robot platform is
equipped with a knowledge-based control system, which includes classical AI components like
a symbolic knowledge base, a planning module, and symbolic communication facilities. An
example is the robot Flakey (Congdon et al. 1994). Flakey can, for instance, navigate through
the corridors of the SRI institute, executing tasks like delivering an object to a person whose
location must be asked from other persons.

The second approach has its roots in cybernetics, artificial life research, and in the epistemo-
logical perspective now called situated action. The agent's performance is achieved through a
multitude of relatively simple behaviors. Each of them continuously receives sensor input and
generates action responses; it acts essentially like a reflex. No explicit knowledge representa-
tion and inferencing exists. More complex behaviors emerge in a self-organizing fashion from
the interaction between the basic built-in behaviors, and from the interaction of the robot with
its environment. Paradigmatic examples are the robots built by Brooks (1989). These "insect-
like" automata move in an unknown, changing, obstacle-cluttered environment, and exhibit
behaviors like obstacle avoidance, wall following, or keeping distance from each other.

The two approaches correspond to different perspectives on intelligence. The first emphasizes
symbolic reasoning, explicit knowledge, and verbal communication. It is the traditional, top-
down perspective of symbolic AI. A brief account of this perspective is provided by Wachs-
muth (1994). The second view sets out to reconstruct intelligence in a bottom-up fashion,
stressing aspects of real-time adaptive behavior in a dynamic physical environment: "Behavior
is intelligent if it maximises preservation of the system in its environment" (Steels 1994). A
brief introduction is given by Brooks (1991).
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Considering this complementarity, it seems natural to work towards an integration. To be sure,
state-of-the-art mobile robots usually feature both reflex-like low-level mechanisms, and high-
level symbolic reasoning capabilities. Four out of the five winners of the 1993 AAAI robot
competition are of this "hybrid" kind (Nourbakhsh et al. 1993). But, these architectures can
hardly be considered a true integration of the two perspectives, since they fall short of fully
realizing the potentials either of classical AI or of behavior-based approaches.

First, mobile robots do not, as yet, realize the possibilities of current knowledge-based AI
techniques in a satisfactory way. Real-time constraints severely limit reasoning capabilities.
Contest-winning mobile robots do only minimal high-level reasoning, using a small, task-
tailored knowledge base. For instance, Flakey's knowledge in the 1992 AAAI robot contest
was centered around three kinds of objects (standardized boxes, standardized poles, and
walls), and around a single task and the subtasks connected with it (namely, finding poles in a
wall-bounded arena) (Congdon et al. 1994).

Second, current contest-winning mobile robots do not realize the potentials of behavior-orien-
ted techniques either. A central issue in behavior-oriented AI is to make agents autonomously
adaptive by letting them evolve new behaviors, which are not premeditated by the designer (cf.
2.10). Such mechanisms are not incorporated in the mobile robots in question here.

No theoretical framework is available for the design of agents that truly integrates the classical
with the behavior-oriented perspective. Research in the field proceeds by rote experimentation
(Hanks, Pollack & Cohen 1993). Nourbakhsh et al. (1993, p.61) sum up the lessons learnt
from the 1993 AAAI robot contest by stating that "one conspicuously missing aspect of the
current work in robotics is a strong tie between theory and practice."

There are at least two serious obstacles opposing attempts towards a theoretically well-
founded, integrative research strategy.

For one, the two approaches rest on different formal foundations. Classical AI mostly uses
discrete mathematical tools from logics. A wide range of well-understood formal techniques is
available. In contrast, there are yet no comparable formal standards for behavior-oriented AI.
Appropriate formal theories can be expected to be influenced by cybernetics, control theory,
and formal theories of complex physical systems (Steels 1993a). A first sketch of such a
formalization is given by Steels (1993b). He outlines a model in terms of complex systems
theory, where the temporal development of agents in a physical environment is described by
differential equations.

These differences in formal background, concerning both mathematical nature and degree of
elaboration, make an integration of classical top-down and behavior-oriented bottom-up
approaches technically difficult.

In addition, there is a "cultural" gap between the two views. Behavior-based approaches are an
important instance of an epistemological perspective, the situated action paradigm, which is
understood by some of its proponents expressly as a challenge of classical AI. In a special issue
of the Cognitive Science magazine, opinions clash uncompromisingly. The proponents of
classical AI (Vera & Simon 1993a,b,c) deny that situated action is an original paradigm at all.
They claim that the classical physical symbol system hypothesis (Newell 1980a) is a sufficient
methodological background for modeling situated agents, and that situated action is subsumed
by classical AI. Defenders of situated action argue that an agent and its environment have to be
understood as a single dynamic unity, where processes inside the agent cannot be theoretically
separated from the agent's continuous interaction with the environment. The roots of
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intelligence, in this view, lie in non-symbolic agent/environment feedback cycles. The basic
research methodology has to be adapted from neurophysiology and the system sciences
(Clancey 1993). Internal, symbolic representations are treated as second-order phenomena
(Greeno & Moore 1993). This reverses the classical approach, where symbolic representation
comes first.

The questions that surface in this debate have a direct impact on the methods used for
modeling situated agents. I shall analyze them in the remainder of this section, thereby
developing the epistemological framework of dynamic symbol structures, in which the DSS
formalism is grounded. This framework is intended as a step towards a theoretically founded
integration of classical AI with situated action.

For the sake of brevity, I shall use the term "agent" instead of "intelligent situated agent"
throughout.

Summary of section 2.1

• The classical approach to agent design is top-down oriented, focusses on intellective,
knowledge-dependent faculties, and relies on explicit, symbolic, logic-oriented techniques.

• Behavior-oriented approaches start in a bottom-up fashion from reflex-like behaviors, by
which the agent is directly coupled into the environment, forming an integrated agent/en-
vironment system. Techniques are often non-symbolic.

• An integration of both approaches appears difficult since the formal backgrounds differ
and, even more importantly, there are two quite different notions of intelligence involved.

• The work presented in this thesis claims to contribute to an integration.

2.2  Dynamic symbol structures

This subsection outlines a structuralistic model of an agent's architecture. An agent is abstractly
described as a dynamic symbol structure. The proposal aims at a unifying perspective for
classical AI and situated action approaches. The outline given in this subsection will be filled
out in detail in subsequent subsections.

The viewpoint of dynamic symbol structures rests on three main points:

• An agent's information processing system is globally organized on a multi-level periphery-
centre axis.

• Within each level, information processing is achieved by interactions of dynamic symbols.
Dynamic symbols are in many respects similar to classical symbols. A fundamental differ-
ence is that dynamic symbols are rigorously construed as physical observables, not as
"platonic" entities.

• Dynamic symbols in a given processing level form dynamic composites. Dynamic symbols
in the next higher level emerge from these composites. These emergence relations are
constitutive for the periphery-centre level topology.

9



In the remainder of the subsection, I elaborate a bit on the second and the third point, the first
being a standard assumption in virtually all agent models (cf. 2.3).

Dynamic symbols are defined as entities which play a dynamic role in an agent's information
processing, and which can be empirically observed when they occur. They resemble classical
symbols in being reliably identifiable entities. Unlike the former, dynamic symbols are not
interpreted as being referential in their nature. Being physical observables in a dynamic system,
they exhibit various dynamic phenomena. For instance, they occur intermittently, they may
vary on some intensity scale, or they may become superimposed on each other.

The notion of dynamic symbols is positively intended to include, in biological agents: neural
spike discharges, spike trains, activation patterns in neural assemblies, EEG potentials; in artifi-
cial agents: sensor read-values, features extracted from sensor signals, the electronical
embodiments of symbols or propositions manipulated in a classical inference engine; in both
biological and artificial agents: reflex-like behaviors, utterances, gestures, and social interaction
patterns. The observer who identifies these dynamic symbols can be external in all of these
cases. Sometimes, the observer can also be the agent itself, e.g., when neural activation pat-
terns correspond to identifiable experiences, or when an agent observes its own behavior. The
notion of dynamic symbols will be successively refined throughout the remainder of section 2.

To be sure, the notion of dynamic symbols is not as well-defined as one might wish. The
notions of "empirically observable", "dynamic role" and "an agent's information processing",
which occur in the tentative definition of the term, are ill-specified. But, neither is the notion of
classical symbols well-defined (criticism on this behalf in Clancey 1993). The fundamental
notions of an epistemological perspective cannot be fixed by definitions in the strict sense,
exactly because they are fundamental. Their interpretation becomes fixed as their usage
stabilizes in the community of their users (extensive treatment of this and related methodo-
logical topics in Kamlah & Lorenzen 1972).

Within each level, dynamic symbols can form empirically observable dynamic composites. The
composition mechanism can be (spatially) structural (as in classical symbolic composition),
temporal (as in the composition of single spikes in a spike train), or spatiotemporal (as in the
composition of spike trains in attractor states).

From a dynamic composite in a given level, a dynamic symbol in the next higher level can
emerge. Conversely, dynamic symbols in a given level can ground in dynamic composites in
the next lower level. For instance, from a dynamic composite of local activity patterns in the
primary visual cortex, a particular activity pattern in the secondary visual cortex may emerge
(which subsequently may lead to a report of a recognized "table", or which can be observed by
a neuroscientist directly). Another example: the activation of a "table" node in a semantic
network with a spreading activation dynamics grounds in the activation of a collective of
feature nodes. The emergence/grounding relation between a dynamic symbol and a dynamic
composite is not merely in the eyes of the beholder. It must be empirically justified, either by an
observable, significant correlation, or (preferably) by tracing down a causal connection.

The emergence/grounding relation between dynamic composites and dynamic symbols is
considered the primary phenomenon, the level structuring as a derived one. A clean linear
ordering of levels on the periphery-centre axis can be considered an ideal case. More intricate
global topologies of the level structure are expected in sufficiently complex agents. Fig. 2.1
sketches some examples.
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Fig. 2.1: An ideal linear ordering of levels in the periphery-centre axis (a), and some variations
(b, c, d). Dynamic symbols are rendered as x 's, dynamic composites as cyclic arrows enclosing
the symbols participating in the composite, emergence/grounding relations as straight lines, and
levels as shaded bands. In b), a level is cut short, in c) a level "spirals back" over itself, in d) the
level structure breaks down due to emergence relations being recursive.

When higher levels successively ground in "finer" ones, the question of how the successive
refinement ends arises. There are three principal alternatives: first, there can be an (arbitrary)
"atomic" level; second, there may be an infinite regress; third, there may be cyclically recursive
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references between levels. This problem has been called the "Münchhausen trilemma" in the
epistemology of science. Note that there arises a mirrored version of the same trilemma by
going upwards in the hierarchy. The dynamic symbol structure proposal for viewing agents is
not committed to one of the trilemma's alternatives.

A dynamic symbol can come in different degrees of differentiation. For instance, a chaotic
attractor state in a biological or artificial neural network may occur in varying degrees of
noisiness (or "computational temperature"), where a high-noise, nearly random occurence
yields a de-differentiated version, and a low-noise, nearly limit-cycle occurrence yields a
differentiated version (fig. 2.2). Another example is an object scheme that is introduced into
working memory (e.g., a KL-ONE ABox) to account for an external object that is about to be
classified. At the time of generation, this scheme is typically poor in information. During the
recognition process, it is enriched with detail, and initial inconsistencies are filtered out. This
amounts to a differentiation.

     a) b)        c)

Fig. 2.2: A de-differentiated (a) and two alternative differentiated versions (b, c) of an
attractor state (approximately redrawn from Yao & Freeman 1990).

The aptness of dynamic symbols to occur in varying degrees of differentiation is an obvious
difference to classical symbols. It arises naturally from the perspective on dynamic symbols as
physical observables. By contrast, classical symbols are "platonic" entities (cf. 2.5), for which a
notion of empirical differentiation makes no sense.

The identification of a dynamic symbol is sensitive to the precision of the observation
procedure. This leads to high-resolution vs. low-resolution versions of a dynamic symbol. For
instance, the extracranial recording of electric potentials yields a low-resolution version of a
cortical activation pattern, radioactive marker methods can yield medium resolution, and
electrosensitive dyes monitored at the open brain achieve a high resolution. In a computer,
monitoring the workload percentage of a processor provides a very low-resolution observation
of its working state, whereas a coredump gives a high-resolution account.
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The information available about a dynamic symbol occurence results from the combined effects
of differentiation and resolution, i.e., from "what is there" and from "how sharply it is seen". A
high-resolution observation technique yields little information when the dynamic symbol is
poorly differentiated, and a noisy observation procedure tells little even about highly differen-
tiated dynamic symbols. The net information afforded by an observation varies on a scale that
is called, in the dynamic symbol structure framework, the abstraction scale (the inverse being
specialization). Specialization increases with differentiation and/or resolution.

A dynamic symbol is defined as an entity (playing a dynamic role in an agent's information
processing) as it is observed. I.e., it is defined in terms of information obtained, that is, in
terms of abstraction. Different abstraction implies different dynamic symbols. For instance, an
intracellular recording of neural activity is a delicate affair, and it is often difficult to filter any
pattern from the noise at all. The noise in the the raw data can have two sources: the pattern
itself can be weakly expressed (poor differentiation), or the recording procedure can be subject
to disturbances (poor resolution), or any combination of both. These two sources of
uncertainty are not distinguished in the definition of dynamic symbols.

Thus, a dynamic symbol is not considered an entity "objectively there" in the agent. But, one is
very much accustomed to talking about observables in this way. In fact, one does not have to
give up this way of talking entirely. It is justified when the resolution is "better" than the
differentiation. Whether this is the case can be decided by increasing the resolution. When such
an increase does not yield an increase in information (i.e., no specialization is obtained), then
one can ascribe the information obtained fully to the observed entity. In other words, in such
cases one does, in fact, have a handle on the entity as it is "out there". For instance, when the
noise in an intracellular recording cannot be reduced by the use of more sophisticated
electrodes and signal detecting machinery, one is justified in talking about "the" activity pattern
(which, in this example, is inherently noisy).

A dynamic symbol appears in a researcher's theory as a formal symbol, which can be anything
from a mathematical symbol (when the theory is highly formalized) to a telling name (when the
theory is in a pre-formal stage).

This ends the first outline of the essentials of dynamic symbol structures. The formalism of
dynamic symbol systems (DSS), to be presented in section 3, is a particular mathematical
instantiation of this framework.

Summary of section 2.2

• Dynamic symbol structures provide an abstract, structuralistic framework, aiming at an
integrative view on classical and situated action approaches to agent modeling.

• An agent is viewed as being organized on a periphery-centre axis.
• Each level in this axis is understood in terms of dynamic symbols and dynamic composites.

They are conceived as physical observables, not as platonic entities.
• As a consequence of being physical observables, dynamic symbols occur in different

degrees of abstraction, with abstraction having the two components of objective differen-
tiation and of observation-dependent resolution.

• The way of talking about dynamic symbols as if they were "objectively there" is justified
when resolution can be made finer than differentiation.
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• From dynamic composites in one level, dynamic symbols in the next higher level emerge.
This emergence relation induces the level topology.

• There are many other possible level topologies besides a simple linear ordering.

2.3  The periphery-centre axis

The idea of an agent's information processing being organized on a periphery-centre axis does
not seem in principle problematic. It is certainly accepted in classical AI. In behavior-oriented
research, it is de-emphasized in favor of behaviors, which at the present state of the art
typically belong to peripheric levels. The existence of more central levels is acknowledged, as
witnessed by the robots designed by Steels and Brooks. However, the periphery-centre
dimension appears in these two approaches in two quite different fashions.

In Steels' architecture, there exist on top of the reflective behavior level two levels of a
different nature, namely, a (subcognitive) process layer and a (cognitive) symbolic layer
(Steels 1993a). The process layer concerns a variety of global parameters for integrative and
representational aspects of low-level sensor and action data. The symbolic level is a rule-based
symbolic reasoning system. Thus, the periphery-centre axis in Steel's robot is rather similar to
classical AI architectures.

        

Fig. 2.3: The subsumption architecture and the periphery-centre dimension. Increase in cen-
trality is indicated by darker shading.
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In the subsumption architecture proposed by Brooks (1989), higher behaviors are put on top
of more basic ones, after the latter have been made to function satisfyingly. Higher behaviors
are intended to account for faculties of a more intellective character, like object identification
or reasoning about object behavior. Since a behavior, by definition, has direct access to the
sensomotoric interface level, higher behaviors in a subsumption architecture do not communi-
cate with the sensor and actuator level through lower behaviors. But, a behavior as complex as
object recognition must obviously proceed in several stages from raw sensor data to its final
response. Brooks attests that to a certain extent one needs "to decompose a single layer in the
traditional manner" (p. 435). The picture that emerges is that low-level behaviors, like
biological reflexes, have a rather direct connection to sensors and actuators, whereas high-level
behaviors presumably consist internally of several processes of increasing distance to the
sensomotoric interfaces. Fig. 2.3a sketches Brooks' variant of the periphery-centre organi-
zation, and fig. 2.3b indicates how it can be recast as a dynamic symbol structure.

Contrasting Steels' and Brooks' architectures, one finds that although the periphery-centre
dimension seems to be plausible in general, more than one way of telling the story exists. How
one sees natural agents, and how one designs artificial agents, depends on some more or less
explicit background theory. As an additional source of variance, these theories can typically
each be practised in several "flavors", which I shall call orientations. For the present purpose,
the most important ones are the morphological and the functional orientation. They turn up
almost universally in disciplines concerned with agent modeling.

Before I take a closer look at morphological and functional aspects of the periphery-centre
axis, I dismiss another viewpoint that might be mistakenly connected with this axis. It is
exemplified in a classical paper of Newell (1980b). Newell describes artificial intelligence
architectures in terms of levels that range from the knowledge level at the top, via some
intermediate levels like a program level and a circuit level, down to a device level. I would like
to call this a hierarchy of "disciplinary" levels, since each level is expressly considered by
Newell in terms of a particular engineering (sub)discipline.

This hierarchy is basically different from a periphery-centre account because an entire agent
can, in principle, be described on any of the disciplinary levels. This is made clear by Newell:
"Within each level, systems hierarchies are possible, as in the subroutine hierarchy of the
programming level. Normally, theses do not add anything special in terms of the computer
system hierarchy itself" (p. 95). The only exception to this rule is, I understand, the knowledge
level. It appears that peripheric sensomotoric processes cannot be described on this level.

Having cleared this point, I start with a brief discussion of problems faced when one tries to
account account for the periphery-centre axis in morphological terms.

The place of a processing module on this axis is defined morphologically by its physical access
route to sensomotoric information. Peripheric modules have a direct access; towards the
centre, information from/to the exterior is relayed through an increasing number of interme-
diate modules. For instance, the vision system in vertebrates can be ideally described in terms
of information coming from the retina, passing through a number of nuclei, and finally arriving
in certain regions of the neocortex.

This ideal of a linear periphery-centre ordering is blurred by the ubiquity of feedback cycles.
Brain nuclei and cortical regions are densely cross-connected (methodological consequences
discussed in Arbib 1987). Even approximately, a linear ordering of modules in terms of
distance from the sensomotoric interface level is lost.
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Another problem is that morphology is quite often "fuzzy". Brain modules rarely are clearly
delimited from each other morphologically. In von Neumann computers, all information
processing happens in the same processor, and the most diverse subprograms are mixed up
with each other on the same physical memory devices. Thus, the idea of a well-defined
morphological separation of modules is a very coarse approximation at best.

In sum, the periphery-centre axis is mirrored in an agent's morphology only to a limited degree.
However, morphology should probably not be dismissed altogether. At least for understanding
biological agents, and in connectionist approaches that strive to exploit biological models for
artificial architectures (e.g., Yao & Freeman 1990, Carpenter & Grossberg 1990), morphology
considerations are indispensable for structuring an agent.

The functional orientation describes information processing in terms of goals and the
mechanisms (algorithms) to satisfy them. Functional descriptions are often organized in a task
hierarchy along a periphery-centre axis.

A prominent example is Marr's theory of vision (comprehensive discussion in Burge 1987).
Marr describes in a rigorous fashion how objects are recognized. He proposes a series of
representational formats and algorithms, which account for a one-directional information flow
from the sensor-near level of extracted features to the central level of object recognition. The
representational units occurring in this theory can be interpreted as counterparts of geometric
and optical properties of the physical objects from which the sensory information originates.
Marr's theory explains how fragmented, multi-channel information becomes stepwise integra-
ted, such that external objects are reconstructed from the information transmitted by the signal.

Another example of a functional account organized along a periphery-centre axis is the
classical linguistic hierarchy. It describes speech understanding in terms of an ascending
process that runs through a variety of morphologic, syntactic, and finally, semantic stages.
Again, the process is reconstructive. It is assumed that the sender puts a particular semantic
content into an utterance, which is reconstructed by the recipient.

These examples suggest that a functional orientation concerning signal processing pathways
(and analogically, actuator control) is a straightforward affair. On closer inspection, this im-
pression blurs, at least in the case of biological agents.

With respect to vision, Arbib (1987) argues (i) that an appropriate modular decomposition of
function has to be quite fine-grained, (ii) that there exists a large amount of parallelism and
interconnectivity between functional modules, (iii) that functional architectures differ consider-
ably across species, which mirrors the fact that "there is no unique algorithm for solving a
given problem" (p. 344). The situation is further complicated by the fact that functions do not
map one-to-one to physical modules. The mapping is many-to-many in biological systems. The
general impression conveyed by such closer inspection is that signal processing in biological
systems is realized by a fine-grained, partially parallel, highly redundant network of modules,
whose function is not easy to determine and may even be intrinsically ambiguous.

The problems connected with functional descriptions for biological systems can hardly be
overestimated. Even paradigmatically simple instances of biological information processing
reveal themselves as intricate superpositions of mechanisms whose known complexity keeps
growing as observation techniques are being refined. A striking example is the monosynaptic
reflex that leads to a retractory muscle activation after mechanic stimuli. It appears, today, as
an intricate network of regulatory pathways whose interaction and functionality is far from
being completely understood. Only recently, for instance, and quite unexpectedly, this reflex
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has been demonstrated to be modulated electrically by nearby fibres in a complex fashion (el
Manira et al. 1993).

It can be argued that the functional opacity of morphological modules is advantageous for an
agent's adaptiveness. The physics of a biological agent, in this perspective, is a reservoir of
potential functionalities. When environmental pressures demand it, imperfectly available func-
tions can become dedicatedly expressed by physical modifications which can be effected by a
slight genetic change.

Artificial agents are, as yet, insufficient in many aspects. They break down when environmental
disturbances exceed a narrow margin of standardization, and their scope of "understanding" is
limited. It might be argued that these insufficiencies are in part caused by the clean functional
decomposition that underlies their design. The more precisely the functions of subprocesses are
specified, the closer the signal's characteristics must agree with these specifications. The
reconstructive nature, which seems to be inherent in functional specifications, requires the
signal's characteristics to conform with the abstract model of reality that serves as a basis for
the functional specification of the signal processing apparatus. This conformity assumption will
often fail, since reality is always phenomenologically richer than models thereof.

The comparison of adaptive, but functionally opaque biological agents with brittle, but func-
tionally clear-cut artificial agents suggests that there might be a tradeoff between clear
functional decomposition and the flexibility necessary for adaptive behavior. This impression is
substantiated by considerations that originate in the situated action paradigm.

A functional account of a process is goal-oriented: functions inherently serve some specified
goal. Typically, such goals are steps in a reconstruction process. For instance, in Marr's theory
there is a functional module that serves to compute generalized cylinders from the 2½-D-
sketch (which is one of the intermediate representational formats in this theory). Consequen-
tially, a functional specification of an agent requires that a hierarchy (or some other kind of
network) of goals has to be explicitly provided by the designer.

This does not conform with the autonomy principle, which is emphasized by the situated
action paradigm. In an extreme philosophical version, the principle states that the internal
functioning of an agent is not reconstructive at all. Rather, the only discernible goal that can be
ascribed to a living system from the outside is to maintain itself in a dynamic environment. This
is achieved by adaptive processes, which are claimed to be principally individual: "Which
neural activities are triggered by which perturbations is determined exclusively by the
individual structure of each person, not by the properties of the perturbing agens" (Maturana
& Varela 1984, chapter 1, my translation from the German edition 19924). The system
incessantly constructs itself anew. This is spelled out in the notion of autopoiesis in the
epistemological theory of radical constructivism (Maturana 1978). Maturana and Varela are
regularly quoted by situated action proponents. Ascribing goals to internal processes from the
outside is, in their view, incompatible with a system's autonomy.

In a more practical vein, the autonomy requirement leads to unsupervised, "autocatalytic"
(Steels 1994) learning schemes for behavior-based robots. Learning can be augmented by
evolutive mechanisms. Robots that learn and evolve cannot be functionally designed before-
hand in an exhaustive fashion. Steels (1994) discusses the issue in some detail.

Taken together, these considerations recommend to use functional descriptions with care. For
biological agents, neither clear nor complete functional accounts are likely to be obtainable.
When they are used as blueprints for artificial agent design, they are prone to interfere with
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autonomy. However, functional descriptions are a natural and common way of viewing agents.
They contribute to discover (or construct) a periphery-centre topology that makes sense. The
issue will be reconsidered in subsection 2.10.

In dynamic symbol structures, there is no systematic place for functionalities. Functional expli-
cations of dynamic symbols and of composite-forming mechanisms can be introduced
whenever they seem appropriate, but they remain outside the structuralistic account proper.
The only "task" that becomes visible for the structuralistic perspective proper is that the system
"tries" to maintain itself dynamically (cf. 2.8).

Summary of section 2.3

• Two important orientations in theories concerning agent architectures are the morpholo-
gical and the functional.

• Both contribute partially to a periphery-centre structuring.
• The periphery-centre topology is, at least in biological agents, more complex than a linear

ordering of levels. Biological agents are structured in a highly complex, if not opaque,
fashion with respect to a combined morphological-functional architecture.

• This appears to be connected with their autonomy and adaptiveness, which suggests that
artificial agent design has to be cautious about clear-cut functional blueprints.

2.4  Dynamic symbol structures and classical AI

The background philosophy of classical AI is codified in the physical symbol systems hypo-
thesis (Newell 1980a). This hypothesis states that every intelligent information processing
system can be understood as manipulating physically realized symbols. Symbols and composite
symbolic structures are defined by two aspects: being physical patterns, and being referential.

First, classical symbols are physical patterns of some (indeed, any) sort: "... in any event, their
physical nature is irrelevant to their role in behavior" (Vera & Simon 1993a, p.9). Expressly,
neural activation patterns are cases of symbol structures: "The patterns of neural structures
and processes are the ... symbols, just as the patterns of holes in an old IBM card are the
symbols that contain the card's information" (Vera & Simon 1993c, p.121). Being patterns,
symbols are subject to identification and comparison mechanisms of a discrete yes/no charac-
ter:

"When we say that symbols are patterns, we mean that pairs of them can be compared (by one
of the system's processes) and pronounced alike or different, and that the system can behave
differently, depending on this same/different decision." (Vera & Simon 1993a, p.9)

So far, the physical symbol systems hypothesis is not different from the assumptions underlying
dynamic symbol structures. Both perspectives see symbols as physical entities with a well-
defined identity. There are, however, differences in the conception of how the identification of
a symbol is actually achieved. In the case of dynamic symbols, some observer with a
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background theory is required, where only the theory enables the observer to establish an
operational observation procedure. In the case of classical symbols, identifiability is implicitly
taken as granted; classical symbols are assumed to exist independently of an identification
procedure. This makes the observation of classical symbols an unproblematic basic fact, upon
which the system itself (as in the quotation above) or external observers can depend: "To
varying degrees, [symbols] can be observed, handled, even dissected" (Vera & Simon 1993c,
p.121).

The second characteristic of classical symbols is their referential nature: "We call patterns
symbols when they can designate or denote" (Vera & Simon 1993a, p.9). Potential referents of
a symbol or composite symbol structure are manifold. They include other symbol structures,
patterns of sensor stimuli, or motor actions. These are cases of internal reference, in that they
occur within an agent (a possible exception being other symbol structures, which can occur
external to the agent, as in verbal communication). The prototypical referents are, however,
external objects or situations. The symbol-referent link is implicitly treated as a pre-established,
platonically true fact. This is not contradicted, but supported by conceding imperfections: "Of
course, the internal representation of a real scene will be highly incomplete and may be
inaccurate" (Vera & Simon 1993a, p. 10). In this quotation, an ideal of completeness and
accuracy is tacitly assumed, which can serve as a measure for deviations. In a nutshell, then,
object recognition is the reconstruction of a pre-established, ideal symbol-referent link, by
possibly imperfect means. This reflects an ancient philosophical view, which has passed to
classical AI via positivistic mathematical logics and classical linguistics: for Frege and Russell,
the symbol "Venus" has the meaning of the star that appears in the morning and in the evening.

This understanding of symbolic reference follows a straight route to a logic-oriented, model-
theoretic methodology. In particular, the meaning (i.e., reference) of composite symbolic
structures is derived from the meaning of its constituents (Fodor & Pylyshyn 1988). This
allows to formalize notions of "correct" interpretations of symbol structures, which in turn
allows a mathematically rigorous development of theories of symbolic representation and
inferencing. This course is taken in classical "disembodied" AI applications like expert systems
or machine language translation systems.

Due to the convincing scientific progress achieved in such classical applications, a logic-
oriented methodology is also considered appropriate for modeling agents. Several strategies
are presently pursued in this very active area of research, e.g. situation semantics (Devlin 1991)
or modal logic approaches (e.g., Cohen & Levesque 1990). However, it is not clear whether
they can ultimately lead to success. As yet, there exist no comprehensive logical formalisms
that accounts simultaneously for complex internal states of an agent, a changing environment,
and a dynamic coupling of the two via sensoric and motoric events. Present research proceeds
largely on a theoretical level. Very likely, computational complexity will turn out a serious
obstacle when it comes to put complex future logics to work (more about this in 2.9).

But, the physical symbol systems hypothesis is not intrinsically committed to be worked out in
terms of model-theoretic logics, and no mention thereof is made in its most recent
reformulation (Vera & Simon 1993a, b, c). I would even further this point, claiming that the
substance of the physical symbol systems hypothesis is left intact when symbol reference is not
considered as a platonic ideal but as reasonably reliable, empirically observable mechanism.
Such a shift in background philosophy would still be compatible with the idea of reasoning as a
computational manipulation of discrete, physical symbols. To my understanding, the latter is
the core of the classical paradigm, whereas the platonic accent is an implicit remain of an
ancient epistemological tradition, inherited through (and enhanced by) mathematical logic and
classical linguistics.
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Interpreted in this fashion, the physical symbol systems paradigm does not a priori conflict with
dynamic symbol structures. In order to arrive at a true match between the two perspectives, it
remains to be examinend how symbol reference can be accounted for in the latter.

The dynamic symbol perspective is open to a treatment of external reference in the following
fashion. A link between, for example, a cortical activation pattern and a cat "out there" can be
constructed by providing theory-guided observation procedures for the cat, for the optical
transmission of information from the cat to the retina, for the emergence of activation patterns
on several relay stations from the retina to the cortex, plus theory-guided explanations for the
machinery that leads to the various emergence steps. The recognition of a cat by an artificial
agent would have to be explained in a similarly complex fashion. The result of such a (tremen-
dously complex) effort would be an empirically verifiable cat-to-pattern link.

From the point of view of dynamic symbol structures, object recognition is a complex physical
process, which is inseparably coupled to the particular physical processing apparatus of the
agent, and which requires a large amount of background theory on the side of the observer to
become detectable at all. In this respect, the dynamic symbol structure worldview is the same
as in radical constructivism. This is concisely expressed by Maturana and Varela (1984, my
translation from the German edition 19924, p. 31):

"In this sense we will always find that one cannot understand the phenomenon of cognition as
if there were «facts» and objects «out there», which one only would have to fetch and put into
the head. [...] The experience of every thing «out there» becomes configured by the human
structure in a specific way..."

Unlike its platonic counterpart, the dynamic symbol reference link is susceptible to physical
disturbances of all kinds due to its empirical nature. False positves or false negatives are ex-
plained in an epistemologically straightforward fashion. By contrast, the platonic perspective
requires involved arguments to treat such failures. The difficulties become manifest in the
intricacies of nonmonotonic reasoning, which can be seen (among other aspects) as the logical
account of recapturing from false assumptions, and restoring truth.

Inside the agent, the empirical reconstruction of external, object-to-concept reference (e.g., a
cat-to-pattern link) traverses the entire periphery-centre dimension. Each transition between
levels on this axis has to be accounted for individually. In a dynamic symbol structure, these
steps are described as the emergence of dynamic symbols on some level from dynamic
composites at the next lower level. These emergence/grounding links, then, can be seen as
internal reference links, and the dynamic composite as the referent of the corresponding
dynamic symbol. Although the physical symbol systems hypothesis is not usually stated in
terms of a periphery-centre axis, the emergence/grounding interpretation captures at least a
considerable portion of that what Vera and Simon have in mind when they talk about instances
of internal reference (which they do only in passing). Explicitly, "Symbols may designate ...
patterns of sensory stimuli, and they may designate motor actions" (Vera & Simon 1993a,
p.9). This statement could be rephrased naturally in the dynamic symbol framework by
substituting "emerge from" for "designate".

To sum up, symbol reference can be reconstructed in the dynamic symbol framework. External
reference, with which the classical perspective is typically concerned, spans a wide empirical
distance between the referent object and the (conceptual-level) dynamic symbol. The agent-
internal stages in this wide-distance reconstruction are emergence/grounding transitions, which
can be regarded as internal references.
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Van Gelder and Port (1993) propose a systematic description of many kinds of informational
entities, which they call symboloids. They present a multi-dimensional space of characteristics
of such entities. Besides classical symbols, this space contains, e.g., neural firing patterns or
attractors in complex dynamic systems. From this work, it becomes obvious that classical and
dynamic symbols can be regarded as two extremes on a continuum of possibilities to describe
"symboloid" informational entites.

A classical knowledge-based agent (such as Flakey) can be interpreted as a dynamic symbol
structure. An example will clarify how this has to be done. Assume that the inference machine
on board such an agent generates the motor command set_speed +100 . This is how a
classical AI researcher would state what is going on. He or she would further say that a
composite consisting of the (classical) symbols  set_speed  and +100  is generated. From
the perspective of dynamic symbols, things look different. Set_speed  and +100  are no
observables. Observables are the robot's movement, as it is affected by this command, or an
on-off-pattern at the level of switching gates (given suitable monitoring equipment). Such
observations can readily be interpreted in terms of set_speed  and +100  only if the observer
knows how the inference machine is programmed, through all levels from machine code via
(say) Lisp to the high-level motor control language implemented on top of it all. An observer
without such knowledge is in situation similar to a neurosurgeon observing overt behavior
while monitoring neural activity. S/he will find it extremely hard to carve out from the rote 0-
1-switching activity any "meaningful" patterns at all. Now, as a rule, the researcher does know
how the inference engine is programmed. This knowledge enables him or her to identify just
those patterns of 0-1-activity that correspond to the known programming constructs like
set_speed  and +100 . In other words, this knowledge plays the role of a theory, which tells
what entities there are to be looked for. In this case, the observation procedure consists in
reading alphanumeric strings from a computer screen. The classical symbol, e.g. set_speed ,
belongs to the researcher's background theory, and it is justified by a reliable observation of a
dynamic symbol, namely, a particular 0-1-pattern.

All in all, the classical worldview, as it is expressed in the physical symbol systems hypothesis,
appears to be compatible with the dynamic symbol structure framework, when

• the customary platonic interpretation of symbols is traded for an empirical view, and
• the notion of symbol reference is suitably reconstructed in dynamic symbol structures.

When these measures are taken, dynamic symbol structures can serve as a framework to
discussing agents programmed in a classical AI fashion.

In the remainder of the subsection, I briefly examine the "uppermost" level of processing,
which for obvious reasons I shall call the conceptual level. At this place, I make only some
preliminary considerations. The matter of conceptual-level information processing will be re-
considered at greater depth in section 5.

The issue of concepts is loaded with unresolved philosophical questions concerning introspec-
tion, qualia, consciousness, social conventions, and the like (extensive discussion in Chalmers
1993, Maturana & Varela 1984, chapters 7-10). I do not venture to face the challenge of such
issues. I merely hint at few distinctive properties of the conceptual level, which can be stated in
the structuralistic framework of dynamic symbol structures:

• Level-internal emergence: dynamic symbols, which emerge from dynamic composites on
the conceptual level, belong to that same conceptual level.
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• Comprehensive composition: for any two conceptual-level dynamic symbols there exists a
dynamic composite, in which the two co-occur.

• Emergent cyclicity: for any two conceptual-level dynamic symbols s, s', there exists a
sequence s = s1, s2, ..., sn = s', such that si emerges from a dynamic composite that
contains si+1.

I assume that in humans, dynamic composites made from conceptual-level dynamic symbols
are characterized, in introspection, by some experience of gestalt. The term "gestalt" usually
refers to "good" combinations of sensoric (in particular, visual) features. This is, however, not
what I mean here. In the present context, by "gestalt" I want to refer to "coherent" combi-
nations of conceptual-level dynamic symbols. What "coherent" means, must be left to the
reader's intuition for the time being; the DSS formalism will provide a formal account of the
term. For instance, a composite made from the dynamic symbols Eve serpent  apple
Adam is coherent; Eve apple  price  is incoherent. Then, the three above properties are
motivated by the following observations concerning everyday human concept use.

First, the level-internal emergence property accounts for the observation that coherent
conceptual-level composites can be "unitized" (the term is taken from Lightfoot & Shiffrin
1992), giving rise to a new concept. For instance, the coherent composite made from Eve
serpent  apple  Adam can give rise to fall-of-Man .

Second, the comprehensive composition property is intended to capture that virtually any two
concepts can be linked together in a coherent network of associations. For a demonstration, I
take two concepts that are as distant from each other as can be, namely, the first and the last
noun entry in Collins Concise English Dictionary: "aardvark" (an ant-eating mammal with a
long snout) and "zymurgy" (the branch of chemistry dealing with fermentation, as in brewing).
Figure 2.4 shows how these seemingly disparate concepts can be, in fact, associated with each
other in a composite of convincing gestalt quality:

Fig. 2.4: The aardvark has become a plague in zymurgy labs.
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Third, the emergent cyclicity property aims at the cyclic closedness of conceptual systems,
which is revealed, e.g., in the ultimate self-referential nature of an encyclopædia.

Taken together, these properties distinguish the conceptual level from others by a strong flavor
of internal cyclicity, connectivity, and closure. Fig. 2.5 attempts to capture this graphically.

Fig. 2.5: An impression of the conceptual level (darker shading).

The emphasis on cyclicity, connectivity, and closure is a natural consequence of viewing an
agent as a complex dynamic system. This distinguishes dynamic symbol structures from the
perspective of classical AI, where the focus is less on global system properties and more on
local (inference) mechanisms. However, the distinction is only a matter of degree and taste. It
does not invalidate dynamic symbol structures as a perspective on classically programmed
agents. Section 5 provides a more thorough discussion of the conceptual level in terms of both
dynamic symbol structures and classical AI.

Summary of section 2.4

• The classical AI perspective, as codified in the physical symbol systems hypothesis, defines
symbols as physical patterns that denote.

• The first part of this definition (physical patterns) is shared with dynamic symbols.
• External reference (e.g., from a cortical activation pattern to a cat "out there") is recon-

structed in the dynamic symbol framework as a complex multi-stage process. The agent-
internal steps in this process, i.e. dynamic symbols emerging from dynamic composites, are
interpreted as instances of internal reference.
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• Such an empirical notion of symbol reference is unusual for classical AI, where traditionally
a platonic notion is implied. Arguably, however, this idealistic conception can be traded for
an empirical one without harming the core of the physical symbol systems hypothesis.

• The uppermost, conceptual processing level is tentatively characterized by three properties
that emphasize cyclicity, connectivity, and closure of conceptual systems.

2.5  Dynamic symbol structures and situated action

Proponents of situated action claim that intelligence rests on a fundament of non-symbolic
agent-environment interaction. There are two principal objections against symbols. The first
criticism concerns the representational implications of classical symbols, the second holds that
not everywhere in an agent are discrete entities at work.

I turn to the anti-representational critique first. I have argued in the preceding subsection that
symbol reference can be empirically reconstructed in dynamic symbol structures, and this
reconstruction is necessary for a dynamic symbol oriented discussion of classically built agents.
When the dynamic symbol framework is to be useful as an integrative view on both classical
and situated action oriented agents, this empirical reconstruction of symbol reference must be
compatible with situated action. I examine three versions of the anti-representational critique
separately, and explain in each case why the dynamic symbol perspective is compatible with the
respective author's view.

Greeno and Moore (1993) understand symbols as representational units on a high, conceptual
level. They do not deny that symbols of this kind are important in cognitive processes, but they
claim that cognition cannot be understood in a top-down fashion, starting from the idea of
symbolic representations. Rather, cognition arises, in the first place, from immediate, non-
symbolic agent-environment interactions. The authors adopt the theoretic approach of Gibson
who argues that some kind of information "is not perceived by creating cognitive
representations ... but by a more direct process ... called direct perception" (p. 52). Direct
perception refers to an agent's direct reactions to the "affordances" (a Gibsonian term) of a
physical situation, without recurring to symbolic representations that mediate between percep-
tion and response. Meaning comes prior to symbols, and is constituted by these agent-environ-
ment interactions: "We treat semantic interpretation as something that people do" (p. 50, my
emphasis).

Symbols in the high-level sense adopted by Greeno and Moore correspond to dynamic symbols
on the conceptual level. Then, their view on cognition is in agreement with the dynamic symbol
structure framework. In both cases, high-level representational entities are included in the
picture. The representational faculties of theses entities are explained, in both cases, in terms of
physical, empirically observable agent-environment interactions. Both accounts share the non-
platonic, non-aprioristic view on symbol reference. A difference remains in that the notion of
symbols is restricted to high-level entities for Greeno and Moore, whereas dynamic symbols
refer to the entire periphery-centre axis. Greeno and Moore do not include such an axis into
their account.
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Clancey (1993) distinguishes between a "first person" and a "third person" use of symbols. The
former refers to an agent's conscious access to symbolic representations, which becomes
causally effective, e.g. in planning. The latter refers to an external observer's view of the
information processing in an agent. Clancey argues that these aspects are confounded in
classical AI, and denies that "first person" symbol use can be modeled as a computation-like
manipulation of pre-established symbols. Rather, "first person" representations are created
during activity and cannot be separated from ongoing processes: "...how you categorize the
world, arises together with processes that are coordinating physical activity. To be perceiving
the world is to be acting in it - ... - dialectically, so that what I am perceiving and how I am
moving co-determine each other" (p. 95). Clancey outlines a neurophysiologically motivated
account of intelligent information processing, using many notions from current system
sciences.

The system-oriented view, which takes neurophysiology as a guideline, is in a general good
agreement with the dynamic symbol perspective. The two perspectives also agree in the
empirical nature of representations. Clancey's position is, however, stronger than the dynamic
symbol view. His emphasis on the dynamic, ever-in-the-change continuity of information
processing, leaves no place for the emergence of discrete informational entities, which can be
reliably and repeatedly identified. This anti-discrete aspect of Clancey's critique will be refuted
further below.

As a last example, Maturana and Varela (1984) discuss a special case of symbols, namely,
natural language words. They locate the "semantic content" of words neither within the agent
using them, nor in external objects or facts. Rather, words appear in a unified dynamic system
which comprises words, agents, and other objects. The semantic content of words is ascribed
to them by external observers of the system "as if that which determines the course of
interaction were the meaning, and not the dynamics of a structural coupling of the interacting
organisms" (p. 223, translated from the German edition 19924, my emphasis).

Although Maturana and Varela's writing is often extremely abstract, it seems clear that in their
view words should not be interpreted as representing objects or actions for their users. Rather,
word meaning is an (unavoidable) artefact on the side of an external observer. This is, in fact, a
philosophically abstract version of the empirical, theory-dependent reconstruction of symbol
reference in the dynamic symbol framework. In both cases, symbol (or word) meaning is not a
platonically given fact, but a contingent fixation which depends on how one looks at it.
Maturana and Varela's view is more specific than the dynamic symbol perspective in that the
authors imply a functional orientation on the side of the observer, and in that they ascribe
meaning only to high-level, conceptually interpretable symbols. By contrast, the dynamic
symbol approach allows to describe a semantic interpretation (i.e., a reference) to dynamic
symbols on all levels, and the theoretic orientation need not be functional.

Summing up the anti-representational critique of these exemplary cases, it appears that it is
mainly directed against the platonic notion of symbol meaning, and against the idea that such
symbol meaning is causally effective in intelligent information processing. A contingent,
theory-dependent empirical reconstruction of externalistic reference is not affected by this
critique, since it does not ascribe causal effects to symbol reference, and thus treats it not as
something that explains something else, but as something that must (and can) itself be
explained.

The second kind of situated action critique of symbolic AI denies that discrete identifiable
entities are effective in an agent, especially towards the periphery. This rejection comes in two
forms, which I treat separately.
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First, it is emphasized that an agent is coupled into its environment by continuous feedback
loops of interaction. This suggests to use differential equations, instead of discrete symbol-
manipulating techniques, for a formal account of an agent's functioning. Such techniques are
advanced by Steels (1993a, 1993b).

I believe that the discrete vs. continuous issue can be resolved by cleanly distinguishing
between two kinds of discreteness, which one might call 1-0-discreteness and identifiability. A
system of differential equations describes the temporal development of given parameters. The
parameters change continuously; thus, they are not discrete in the particular sense of being on-
or-off, i.e., 1-0-discrete, entities. But, the parameters that occur in a system of differential
equations describe a finite set of distinct entities. These entities are separately identifiable by
specific observation procedures. Thus, when discreteness is explained in terms of individual
identifiability rather than in terms of a 1-0-characteristics, then the notion of symbols remains
compatible with a continuous account of perception and action. The discrete nature of symbols
is understood in this fashion in dynamic symbol structures.

The second kind of rejection of discrete identifiable entities derives from the argument that an
agent's basic interactions with its environment form a complex dynamic system, where virtually
everything modifies everything else, such that nothing remains stable and no entities can be
isolated. This view is expressed by Clancey (1993) as follows: "... the neural structures and
processes that coordinate perception and action are created during activity..." (p. 94), "In
contrast with the classical, symbolic architecture, the processors coconfigure each other" (p.
94). The continuous, ever-changing nature of situated information processing is emphasized,
which leads to the opinion that concepts have "no inherent formal structure; cannot be inven-
toried" (p.111). The complex systems argument is related to Maturana and Varela's notion of
autopoiesis, and to the functional opacity of biological agents (cf. 2.3).

But, a closer look at complex systems reveals that they are more orderly than Clancey's de-
scription suggest. Research in physics and mathematics in the last decades has led to a deeper
understanding of various phenomena of self-organization in complex nonlinear systems. The
behavior of such systems is typically organized by attractor states, i.e., patterns to which the
system's trajectory in its state space converges in the absence of perturbations. There may be
infinitely many of such attractor states, they may be superimposed on each other on varying
time scales, and they may be highly sensitive to changes in external "control" parameters.
Learning or evolution can lead to a long-term change in the set of such observables. This great
complexity may have motivated Clancey's judgement. It is nonetheless unjustified, since
attractor states can be formally identified and hence, "inventoried". In evolving systems, the
inventory may be subject to change in the long run, but this does not impair repeatable
identification of each attractor for a certain time period.

An example of such a formal analysis of a complex system is Yao and Freeman's (1990)
reconstruction of the olfactory bulb. The authors demonstrate how external stimuli give rise to
(chaotic) attractor states in a neural network described by differential equations, and how
sequences of stimuli lead to sequences of such states (cf. fig. 2.2). Steels (1993b) suggests a
similar analysis for agent-environment systems.

Another important aspect of self-organization in complex systems is their spatial organization.
A classical example is the emergence of convection cells in fluids (Haken 1983). The
importance of compartimentation by membranes in biological cells, and the existence of
specialized modules like the nucleus or mitochondria, is obvious (and emphasized by Maturana
and Varela). On a larger scale, the behavior of agents can be interpreted in terms of typical
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situations which are characterized in terms of places, behavior patterns, and participants.
Although such situations rarely appear in reality in a "clean" fashion, they can in practice be
identified by an observer. This possibility has enabled the use of various script and situation
scheme representations in classical AI. Such schemes can be made flexible and open-ended
without sacrificing identifiability (Schank 1982). The identifiability of dynamic sitatuations is
also the fundament for the very notion of behaviors in behavior-oriented AI.

In sum, complex systems can be described in terms of individually identifiable temporal, spatial,
or spatiotemporal phenomena. Such descriptions may be difficult to achieve, ambiguous,
incomplete, and they may be subject to a long-term drift, but this does not invalidate the effort
in principle. The anti-discrete argument on the grounds of a complex systems argument can, I
believe, be rejected.

The anti-discreteness critique can also be refuted from a more fundamental perspective. Every
empirical scientific theory, and every engineering discipline, fundamentally builds on a
particular set of observables. Progress in research is typically coupled to the introduction of
new observables, with new detection or construction procedures. An empirical or engineering
approach without observables is inconceivable. They appear in the corresponding theories as
technical terms or as mathematical symbols. Seen from this global perspective, the existence of
identifiable entities is a necessity for any description of reality.

Summary of section 2.5

• The situated action critique against symbols has an anti-representational and an anti-dis-
crete aspect. The first kind of critique does not affect the empirical reconstruction of
symbol reference in dynamic symbol structures.

• The anti-discrete critique can be reconciled with dynamic symbols by distinguishing be-
tween 1-0-discreteness and discreteness in the sense of repeatable identifiability.

• Complex systems almost universally exhibit attractor states. They are a standard type of
dynamic symbol observables.

2.6  Differentiation, resolution, and specialization

To recapitulate things said in 2.2, dynamic symbols are defined in terms of specialization/ab-
straction, i.e., the information afforded by an observation. This information has two compo-
nents, one of which is due to the entity observed (differentiation/de-differentiation), and the
other to the observation procedure (high/low resolution). The relative contributions of these
two components are not discriminated in the determination of a dynamic symbol. However,
when an increase in resolution does not yield an increase in information (i.e., an increase in
specialization), then one is justified to assume that the obtained information reflects nothing
but the entity's differentiation, i.e., the information about the entity "as it is objectively there".

A dynamic symbol appears in a researcher's theory as a formal symbol, which can be anything
from a mathematical symbol (when the theory is highly formalized) to a telling name (when the
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theory is in a pre-formal stage). Different dynamic symbols are handled by different formal
symbols, i.e., the abstraction dimension is mirrored in a variety of formal symbols.

A closer look at an example will be instructive. The example consists in observations of a
system capable of classifying odors. I compare a biological with an artificial system: the olfac-
tory bulb (as in Yao & Freeman 1990), and a (fictive) apparatus whose chemosensor readings
are interpreted by a symbolic, knowledge-based algorithm. I treat the olfactory bulb first. I
assume that the researcher observes oscillatory patterns, which correlate with the (known)
qualities of the stimulus. Three observation procedures are used.

A low-resolution procedure provides information amounting to nothing more than deciding
whether any oscillatory pattern is or is not present. Since this is found to correlate with the
presence or absence of an olfactory stimulus of arbitrary quality, the pattern (as observed with
the low-resolution procedure) is given the formal symbol odor  in the researcher's theory.

A medium-resolution procedure reveals three kinds of patterns: the first is a highly de-differen-
tiated one, which is observable when the olfactory bulb is in a responsive but very noisy state.
It is again called odor , since it provides the same information as the low-resolution observa-
tion. This pattern is found when the stimulus is ambiguous, or when the bulb is in a highly
excited, "computationally hot" state. When the bulb is in a "cooler" state, there appear three
patterns. First, the de-differentiated odor  pattern is repeated when the stimulus is ambiguous.
Second and third, two more differentiated patterns, which are given the telling names un-
pleasant  and pleasant , can be observed. They correlate with the (known) qualities of
stimuli.
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Fig. 2.6: Dynamic symbols observed under various conditions. Darker shading corresponds to
system state that allows higher differentiation.

Finally, a high-resolution procedure again yields the highly de-differentiated odor  pattern for
excited states or ambiguous stimuli. In a "cooler" state, the unpleasant  pattern is repeated,
whereas the pleasant  pattern is further resolved into sweet  and aromatic  patterns. The
pleasant  pattern is no longer observable: it turns out that even when the stimulus is a
mixture of sweet and aromatic, the bulb responds by settling either into the sweet  or into the
aromatic  pattern (and possibly fluctuates between the two). Fig. 2.6a illustrates the situ-
ation.

The situation is different in the case of the assumed artificial system. The observation of
"response patterns" has always maximal resolution: system response states are read off the
computer's screen, where they appear directly as alphanumeric strings odor , unpleasant ,
pleasant , sweet , and aromatic . It is important to note that these strings belong to the
observation procedure; they do not coincide with the corresponding dynamic symbols that are
causally effective in the device. The dynamic symbols are physical bit-patterns in the CPU.
That they are observable with maximal resolution is due to the system's artificial nature, where
a 100% precise theory is available, which ensures that only certain (five) dynamic symbols can
actually occur, and that they can be reliably observed through the screen output. The system
can (in this fictive example) be set to different levels of recognition precision (motivated, e.g.,
by a tradeoff between response time and precision). In the lowest precision mode, only absence
or presence of a stimulus is detected by the system, i.e., an odor  response will or will not be
observable. In a medium mode, odor , unpleasant , and pleasant  are possible
observations (depending on ambiguity and character of stimulus). In the highest precision
mode, all five responses are possible: odor  for completely ambiguous stimuli, unpleasant
for unpleasant stimuli, pleasant  for ambiguously agreeable stimuli, and sweet  and
aromatic  for sweet and aromatic stimuli, respectively (fig. 2.6b).

Fig. 2.7: Abstraction trees derived from the diagrams in fig. 2.6.
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In Fig. 2.6, the observations are structured in a way that accounts for both differentiation and
resolution. Both sources of information are inseparably superimposed in the scale of abstrac-
tion. This leads to the notion of an abstraction tree, which is derived from diagrams like fig.
2.6 by collecting all different "observation bands" (shaded rectangles in fig. 2.6) and ordering
them in a suitable fashion (fig. 2.7). The resulting tree accounts for the purely abstractional
aspects of possible observations. Information about the relative contributions of differentiation
and resolution is lost. As a consequence, the same abstraction hierarchy can be the result of
different "complete" diagrams of the kind of fig. 2.6. Note that the same dynamic symbol
(more precisely, the formal symbol used for it on the theoretician's side) can occur at several
levels in an abstraction tree.

The observation of a relatively abstract dynamic symbol can be due to a relatively low
resolution and/or a relatively low differentiation. When it is only due to low resolution, an
increase in resolution will make the abstract dynamic symbol vanish from the scene. This
happens with pleasant  in the case of the olfactory bulb case, but not in the artificial system.
In the first case, the pleasant  pattern is an example of a disjunctive dynamic symbol. It is
observed because "objectively" the pattern corresponding to a sweet stimulus or the pattern
corresponding to an aromatic stimulus is present. When a disjunctive dynamic symbol is
specialized in an abstraction tree (e.g., pleasant  to aromatic  and sweet ), it does not
reappear at the more specialized level in the hierarchy. The dynamic symbol perspective thus
provides both an empirical explanation and a formal characterization of disjunctive categories.

The picture is still too simple in an important aspect. Both differentiation and resolution, which
I have treated as "objective" scales so far, depend on a background theory that tells the
researcher what to look for, and how to increase resolution. The objectivity test sketched in
subsection 2.2 (i.e., when an increase in resolution does not yield more information, then what
is observed is "objectively there") is not, in fact, truly objective for two reasons. First, the
statement that an increase in resolution does not provide more information depends on how the
data are interpreted. "Not more information" should be better read as "not more information
with respect to the theoretic perspective taken". When a noisy spike train is found equally
noisy after a refinement of the observation procedure, one has implicitly used some particular
operationalization of the notion of noise. It may be the case, e.g., that the refined procedure
actually reaveals some new kind of long-term spike correlation, only it escapes the theoretic
filter used at the moment. Second, the very method by which one increases resolution is also
theory-dependent. For instance, one might narrow some numeric interval of confidence by
allowing a longer observation time, or one might make the procedure more sensitive to weak
signals. Which way one chooses for increasing resolution again depends on a theoretic back-
ground that tells which way is appropriate.

Thus, one should always be aware of the fact that talking about observations as indicating
"objective entities" remains a metaphor. This way of talking and thinking is, however, so
deeply engrained, that a more correct treatment of observables is likely to appear forced and
unnecessarily "epistemology-loaden". Therefore, I usually think and talk myself about dynamic
symbols in a loose way, as if they were objectively there, and be contended with the relative
justification afforded by the above-mentioned objectivity test. It works as long as a particular
background theory is practically sufficient for the purposes at hand. The prize for this
convenience is that one runs the danger of turning blind for interesting alternatives in
explanation or design.
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Dynamic symbols interact in an agent in various ways. For instance, a dynamic symbol can
influence the dynamic composite in which it grounds in a top-down fashion; it can itself be
influenced by the composite in a bottom-up fashion; and the dynamic symbols within a dynamic
composite can interact with each other "laterally". In order for one dynamic symbol, say s, to
be influenced by another, say s', there must be some information passed from s' to s. In
dynamic symbol structures, this information is understood exactly as the information obtained
by a dynamic symbol by an external observer, i.e., s "observes" s'. The notions of differen-
tiation, resolution, and abstraction carry over to the system-internal kind of "observation".
Differentiation concerns the observed dynamic symbol "as it is", resolution concerns the quality
of the observation, and abstraction concerns the net information gain. System-internal reso-
lution can be poor e.g. due to noisy neural projective pathways in biological systems, or due to
low-bandwidth signal channels or symbolic simplification procedures in artificial systems. What
s "knows" about s' is reflected by the position of s' in an abstraction tree. This view on
information processing agrees with the original intentions of information theory, where the
quality of channels (here: resolution) is a central concern.

Thus, the introduction of abstraction trees is not merely of epistemological relevance, as
describing what an external observer knows about a system. Abstraction is also crucial for the
internal dynamics of dynamic symbol structures. Actually, two such hierarchies are necessary
for a full account of an agent (more precisely, of one of its levels in the periphery-centre
hierarchy). The first concerns the dynamic symbols as they are observed by the researcher, the
second, as they "observe" each other. But, since the way dynamic symbols observe each other
must itself be observable by the researcher (otherwise it would escape a scientific treatment),
the researcher's abstraction tree should ideally cover the system-internal one. For the sake of
simplicity, I assume that both coincide, and speak of "the" abstraction tree.

For the remainder of this subsection, I propose a way of looking at bottom-up vs. top-down
processing.

Fig. 2.8: Interaction partners of a dynamic symbol s.
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The differentiation of a dynamic symbol can be assumed to be affected by the abstraction of all
other dynamic symbols with which it interacts. There are three principal kinds of interaction
partners of a dynamic symbol s: first, members s' of the dynamic composite in which s grounds;
second, partners s'' of s in dynamic composites; third, dynamic symbols s''', which emerge from
composites in which s participates (fig. 2.8).

A general tendency can be expected in many cases, namely, that the abstractions of interacting
dynamic symbols correlate with each other, i.e., a specialization of s induces (as a tendency) a
specialization of s', s'', s''', and vice versa.

For an example, consider an artificial speech understanding system, where syllable hypotheses
s'', s are combined to yield a word hypothesis s''', and where the syllable hypotheses are
derived from compositions of still more basic feature hypotheses s'. A syllable (or word, or
feature) hypothesis is a set of possible readings. The smaller the set, the more specialized the
corresponding dynamic symbol. Specialization is maximal when there is only one reading left,
which is the ultimate goal of processing. In this example, maximal specialization of the word
hypothesis s''' will induce a likewise maximal specialization of the syllable hypotheses s'', s,
since a word determines its syllables. Vice versa, a maximal specialization of the syllable hypo-
theses will lead to a maximal specialization of the word hypothesis, since syllables determine
"their" word. Analogically, the specialization of feature hypotheses correlates in both ways
with the specialization of the syllable hypotheses, although the correspondence might be
weaker here, since a syllable can possibly be pronounced in different ways, which means that
feature readings need not be uniquely determined by a syllable reading. Thirdly, an increase in
specialization of some of the syllable hypotheses s'' may induce a specialization of the syllable
hypothesis s, since readings of syllables that co-occur in a word constrain each other.

This suggests the idea of an abstraction gradient. When dynamic symbols are relatively
specialized compared to their higher, lower, or lateral neighbors, the latter are induced to
follow in their specialization. Bottom-up processes are, in this view, induced by a relatively
higher specialization of the lower level; top-down processes are induced in the inverse case.
Both directions have equal rights in dynamic symbol structures, and a third, lateral direction of
influence is added to the picture. This view emphasizes the system nature of multi-level
information processing, where all informational entities influence each other. In section 3.3, a
mechanism for a "lateral" abstraction gradient mechanism is provided, and in 3.4, I sketch a
realization of a level-crossing abstraction gradient mechanism.

The idea that the direction of processing is determined by an abstraction gradient has not, of
course, the status of a law. It captures a tendency of effects of processing mechanisms, as they
are due to be found in many cases.

Summary of section 2.6

• Dynamic symbols appear in the researcher's theory as formal symbols.
• Formal symbols reflect the information gained by an observation, regardless of whether it is

due to the observable "as it exists objectively" (differentiation), or to the precision of the
observation procedure (resolution).
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• This net information yields the dynamic symbol's level of abstraction, which makes abstrac-
tion trees a fundamental notion in the approach.

• Differentiation and resolution are theory-dependent notions and must be used with care.
• The account of external observations (in terms of differentiation, resolution, and abstrac-

tion) carries over to a notion of system-internal observation. This paves the ground for an
information theory oriented understanding of the interaction of dynamic symbols.

• An abstraction gradient helps to understand the direction of information processing
(bottom-up, top-down, or lateral).

2.7  Emergence and grounding

Emergence and grounding are established notions in the methodology of AI and computation
theory. In this subsection, I justify the adaptation of these terms for the relation between a
dynamic symbol and a lower-level dynamic composite.

The term "emergence" characterizes a particular outlook on computation, namely, emergent
computation, which is by now an established paradigm (Forrest 1989). The basic idea is that
useful computations can be performed by making a collective of informational entities interact
in a fashion that is not premeditated or controlled in detail. Typically, the entities and the
interactions are comparatively simple, and the latter are defined in a local and parallel fashion.
The collective is expected to self-organize in some way or other. The desired result of the
computation is read off, not at the level of the basic interacting entities, but at the coarse-
grained level of patterns that "emerge" from the collective. Prominent examples of emergent
computation are connectionist networks, classifier systems, and cellular automata. The collec-
tive behavior of (simple) computational "agents" is sometimes also included in the paradigm
(Shoham 1993).

In a slightly different vein, the term "emergent" is used in the behavior-oriented robotics
community to denote the fact that an undesigned behavior results from the interactions of other
behaviors (which are explicitly designed or can be emergent themselves). An example is wall-
following behavior, which emerges from a move-forward and an avoid-obstacle behavior under
suitable conditions.

This usage of "emergence" differs from the computation theoretic usage in that the number of
interacting entities is comparatively small (in emergent computation, it is typically large), and in
that the emergent entity belongs to the same level of description as the entities from which it
emerges (in emergent computation, there is a transition between levels of granularity implied).
Both usages of the term are similar in that the emergent phenomenon is unpredictable, dyna-
mic, to some degree robust against perturbations, and requires the introduction of a new
descriptive category on the observer's side. The latter point is particularly important. For the
behavior-oriented version of "emergence", Steels (1994, p.5) makes it part of the term's
definition:

"A behavior is emergent if it can only be defined using descriptive categories which are not
necessary to describe the behavior of the constituent components."
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In dynamic symbol structures, the term is used in a way that is compatible with its usage both
in emergent computation and behavior-oriented robotics. As in both of these, the notion
characterizes the occurence of a detectable, organized pattern (i.e., a dynamic composite) that
arises from collective interaction of entities (i.e., dynamic symbols within one level). Unpre-
dictability, dynamic nature, and relative robustness of such patterns are likewise emphasized.
The origin of new descriptive categories is also a central topic. It will be discussed in
subsection 2.10.

Where emergent computation and behavior-oriented robotics differ in the usage of the term,
the dynamic symbol perspective takes an intermediate or unspecified stance. This concerns,
first, the number of dynamic symbols that make a dynamic composite. It can be relatively small.
For instance, one might expect the (ominous) number 7±2 for conceptual-level dynamic sym-
bols interacting in short time memory. By contrast, the number of retinal receptor cell
responses that interact to make a dynamic composite corresponding to, say, a red blob, can be
very large. Second, a dynamic symbol can belong to a higher level than the dynamic composite
from which it emerges. This corresponds to the emergent computation perspective, and it is the
case when an emergence event corresponds to a transition between levels of the periphery-
centre dimension (as in fig. 2.1a). A dynamic symbol can also emerge from dynamic
composites, all within one level, as in behavior-oriented robotics. This is the case, e.g., for
conceptual-level dynamic symbols (as in the upper portion of fig. 2.5). Intermediate cases are
also possible, where emergence gives rise to what might be called a gradual level ascent (as in
fig. 2.1c).

Now I turn to grounding. The notion occurs in a debate at the philosophical borders of AI. The
"symbol grounding problem" (Harnad 1990), actually an entire problem family, starts from the
question whether computers demonstrate to possess a mind when they solve problems in a
fashion that looks human-like from the outside (e.g., answering questions in Chinese, as in the
famous Chinese room argument). This can be restated in the question whether cognition can be
reduced to a purely syntactic manipulation of symbols, or whether symbols must have an
intrinsic, system-internal meaning, the latter being that in which symbols are then said to
ground. As a side branch, this leads into a discussion of the role of consciousness and the
experience of qualities (Chalmers 1993). A more modest attempt to settle the issue is to claim
that symbols in truly cognitive agents derive their intrinsic meaning from being grounded in a
"subsymbolic" substrate. Harnad proposes "iconic representations" and "categorical represen-
tations" for the lowest, subsymbolic level of cognition. The former directly derive from sensory
projections (e.g., retinal images), the latter from automated processes that convert such
projections mandatorily into basic object and event categories ("categorical perception", cf.
Harnad 1987). Both Harnad and Chalmers (1990) suggest to use connectionist networks for
dealing with the technical side of this endeavor.

The arguments of Harnad and Chalmers boil down to the idea that symbols can have an
intrinsic meaning, when they are not treated as atomic units but as structured patterns. The
information contained in the pattern constitutes that matter in which symbols ground. Seen this
way, grounding is exactly the inverse of emergence, which has motivated the usage of the term
in dynamic symbol structures.

One should be aware, however, that the problem of symbol grounding has other aspects, many
of which are of a more philosophical nature. Some ramifications are discussed in Chalmers
(1990).
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Summary of section 2.7

• In the emergent computation paradigm, "emergent" denotes the formation of patterns in a
collective of many, simple, interacting computational units.

• In behavior-oriented robotics, the term characterizes new behaviors that result from
interactions between a few given ones.

• In one of its interpretations, the term "grounding" refers to symbols as being internally
structured entities.

• The usage of emergence/grounding in the dynamic symbol framework essentially conforms
with these three usages, adding the aspect of an iterated hierarchy of formally similar
descriptive levels.

2.8  The structuralistic nature of dynamic symbol structures

In the preceding subsections, I have repeatedly mentioned that dynamic symbol structures
provide a structuralistic view on agents. Now I explain what this means.

"Structuralistic" is not a well-defined term. It characterizes a large family of approaches to the
epistemology of science in general, or of scientific disciplines in particular, notably in linguis-
tics, ethnology, psychology, and sociology. Roughly, the structuralistic way of doing (or
explaining) science is characterized by a highly abstract, often mathematically formal outlook
on the discipline's subject matter, which enables the researcher to detect fundamental inter-
instance similarities between various realizations of the subject matter (e.g., between langua-
ges, social systems, mathematical theories). The abstract descriptions, called structures, should
be self-supporting and closed in the sense that the described systems are revealed as integrated
wholes on purely formal grounds, i.e. without recurring to the particular things and mecha-
nisms that are observable in individual applications of the scientific discipline. This is expressed
by Piaget (1968, p. 6, my translation) as follows:

"... one finds at least two aspects that are common to all structuralistic approaches: on the
one hand, an ideal or a hope of an intrinsic intelligibility, which is founded in the postulate
that a structure is self-sufficient and does not require for its understanding a resort to some
elements that are alien to its nature; on the other hand, realizations [...] [where the
interpretation in terms of structures] reveals characteristics that are general and apparently
necessary, in spite of their variety [across different realizations]."

For dynamic symbol structures, I adopt the notion of structuralism that Piaget develops as a
specialization of this general account. A structure, then, is characterized as follows (p. 6f):

"In a first approximation, a structure is a system of transformations, being lawful as a system
(in contrast to the properties of its elements) and conserving or enriching itself by these very
transformations, without the latter leading out of the system [...]. In a nutshell, a structure is
characterized by its totality, its transformations, and its self-regulation. [...] In a second
approximation, [...] a structure must lend itself to a formalization."

35



After this preliminary sketch, Piaget explains the notions of totality, transformations, and self-
regulation in some detail. I give a brief summary:

• The aspect of totality means that a structure has to be understood as a systematic whole,
not as a collection of components. Piaget makes it a point that the structure's totality is not
an irreducible, "gestalt"-like property. It has to be explained by tracing the relations and
dynamic laws that bind the components together.

• The notion of transformations emphasizes the dynamic character of the regularities that
define a structure. Piaget opposes attempts to define structures by virtue of some static
form, or by timeless laws. He adopts a "constructivist" view (the term is used by Piaget
himself), where a structure arises from temporal operations of some kind. The nature of
these transformations is not further specified; Piaget's standard example is the operation
that gives rise to mathematical group structures.

• Finally, the aspect of self-regulation concerns the "cybernetic" character of the transfor-
mation, which warrants that the structure persists in time without dissolving. Again, no
specific definition of the term is given. Piaget refers to examples like feedback mechanisms
in cybernetics, physiological homeostasis, and biorhythmic patterns.

All in all, this picture of a structure corresponds largely to what one would nowadays call a
(closed) self-organizing dynamic system. The difference mainly lies in formal generality. The
formal nature of structures is virtually unrestricted, whereas the notion of self-organizing
dynamic systems typically connotes a physical view, implying the use of differential equations
and methods from thermodynamics.

Dynamic symbol structures are Piagetian structures in the sense of his "first approximation".
They provide an abstract account of a class of systems, satisfying the requirements of totality,
transformations, and self-regulation.

The totality of dynamic symbol structures can be seen from two angles, which are alternately
adopted by Piaget. First, when one assumes an atomic lowest level, and a cyclically closed
highest, conceptual level, the resulting dynamic symbol structure has a lower and an upper
boundary. Thus, it is a "totality" by virtue of being bounded. Second, even when a dynamic
symbol structure is constructed as a hierarchy that is open-ended on both sides, it can still be
described within a closed theoretic framework (Piaget gives the arithmetic system of the whole
numbers as an example for a theoretically closed, yet open-ended structure). Seen from this
angle, dynamic symbol structures are totalities by virtue of being described uniformly across
levels.

The aspects of transformations and of self-regulation are reflected in dynamic symbol struc-
tures in the assumed interactions between dynamic symbols. There are two kinds of inter-
actions. First, within one level, they give rise to dynamic composites in a self-organizing
fashion. Second, there are top-down and bottom-up interactions between levels, which are due
to the emergence/grounding relations between dynamic symbols and dynamic composites.

Self-regulation can be interpreted as the system's top-level "task" to maintain itself (compare
the comment at the end of 2.3). It is the only task with which a structuralistic account is
concerned. Tasks (goals, functionalities) are not part of a structure in the structuralistic sense.
They only appear in the more concrete considerations of what a given structure can be used
for, or how it adapts to its environment. Considerations of this kind are, however, claimed by
Piaget a necessary supplement to a structuralistic account of a system.
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Transformations and self-regulatory mechanisms are not further specified in the "first approxi-
mation" dynamic symbol structures framework, as it is used in this section. These notions
become fully specified in the DSS formalism, which, therefore, is what Piaget calls a "second
approximation" structuralistic theory.

Structuralistic approaches have traditionally been motivated from within linguistics, cognitive
psychology, group psychology, and sociology. This connects them directly with the issue of
agent modeling. In particular, Piaget has developed his epistemological ideas on a background
of research in cognitive development. Although I do not further pursue this route in this thesis,
it can be hoped that AI can make a connection to this tradition. A large step in this direction
has already been taken by Drescher (1991).

Summary of section 2.8

• I adopt the notion of a structure as it is defined by Piaget by the three characteristics of
totality, transformations, and self-regulation.

• Dynamic symbol structures are abstract "first approximation" structures, and the DSS
formalism leads to specific "second approximation" structures.

• The notion of a structure is closely related to the modern notion of a self-organizing
dynamic system.

2.9  Self-organization and compositionality

In this subsection, I argue that both compositionality and self-organization are necessary
aspects of information processing on all levels of the periphery-centre axis. I explain how I
understand these notions, and relate them to particular shortcomings of the classical and the
behavior-oriented approach to agent modeling.

I shall first take a closer look at self-organization. The term has no standard interpretation
(historical overview and outline of present usage in Krohn, Küppers & Paslack 1987). Typical
notions connected with self-organization are feedback, dissipation of energy, time arrow,
attractor state, collective behavior, and others. Formal disciplines concerned are e.g. thermo-
dynamics, statistical thermodynamics, theories of automata and formal languages, fractal
geometry, population dynamics, and more dedicatedly, chaos theory and synergetics (a collec-
tion of papers that highlights this interdisciplinarity is provided by Dress et al. 1986).

In the context of AI, some particular connections between the perspective of self-organization
in complex systems and intelligent information processing are worth mentioning. Gestalt
psychology can be considered as a manifestation of self-organizing principles. Viewing
reasoning as a dynamic, self-organizing process can be traced back at least to Bartlett (1932),
who described how memory elements aggregate in a way that would be called self-organizing
today. Piaget's theory of the emergence of object concepts in infants via the "primary and
secondary circular reaction" is a clear case of an agent/environment feedback loop; generally,
Piaget's way of thinking is system-oriented (a standard introduction to Piaget's many-faceted
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psychological research is Flavell 1968). Consequently, his work is taken up by situated action
oriented AI; Drescher (1991) integrates it with ideas from radical constructivism. Lashley
(1951) examined the problem of how spatially distributed representations can give rise to
temporal phenomena. Long before the rise of connectionism, he envisioned the brain as a
complex system made from many interacting, "recurrent" (his term!), incessantly active,
oscillation generating subsystems.

Under the impression of more recent developments in the system sciences, interest in complex
systems is rekindled in cognitive science and linguistics (e.g., Krause 1989, Port 1990, van
Leeuven 1990, Strohner & Rickheit 1991, van Gelder & Port 1993). This is also witnessed by
an exploratory "Conference on Dynamic Representations in Cognition" at the University of
Indiana in 1991 (no proceedings). In connectionist research, analytic methods from various
dynamic systems approaches are routinely used. Classifier systems are originally motivated by
considerations concerned with dynamic adaptation (Holland 1975). They can be considered a
formal account of self-organization in its own right, but they also lend themselves to an
analysis in terms of other dynamic systems models (e.g., Forrest & Miller 1990).

In the face of this diversity, fixing a particular notion of self-organization would be arbitrary
and overly restrictive. Instead, I will use the term in a broad manner for any information
processing mechanism that shows most or all of the following characteristics: (1a) equilibration
towards an attractor state in the absence of perturbations, (1b) internal feedback cycles, (1c)
acceptance of a (quasi-)continuous stream of input, (1d) integration of multi-channel input,
(1e) high degree of parallelism, (1f) local interactions of a collective of informational entities,
and (1g) robustness against incomplete and noisy input. Currently, such mechanisms are used
preferably at the periphery of agents; they are often closely coupled to the agent-environment
interactions; they are typically realized by connectionist networks, classifier systems, analog
circuits, or populations of simple C-procedures; and they are characteristic for behavior-
oriented approaches.

The other relevant notion, compositionality, is likewise ill-specified. In a classical AI setting it
usually denotes the building of complex symbol structures from simpler ones, by mechanisms
like symbol concatenation, logical junction of formulae, construction of graph-like represen-
tations (e.g., Sowa 1992), or coupling of dedicated processing modules (e.g., Minsky 1985).
The connectionist community, after having been challenged by Fodor and Pylyshyn (1988), has
come up with several compositional mechanisms, e.g., by variable link weights or temporal
correlation of spike trains (e.g., Shastri & Ajjanagadde 1992). A discussion of connectionist
compositionality is given by Chalmers (1992), and a systematic catalogue of compositional
mechanisms in general is proposed by van Gelder and Port (1993). Compositionality can be
achieved both in a static, "spatiostructural" way, and in a dynamic, temporal fashion. These
two aspects are sometimes alternative aspects of the same thing (e.g., a sentence is temporal
when uttered and spatial when written), and sometimes they are inherently coupled (e.g.,
cortical activation patterns).

I understand an information processing mechanism as compositional when it exhibits all of the
following traits: (2a) ability to rapidly build and to decompose information structures with
arbitrarily many components and/or arbitrarily compositional depth, (2b) causal relevance of
composition-forming phenomena for the functioning of the mechanism, (2c) the composing of
components is a physical effect, and (2d) constituents can to some extent be arbitrarily selected
to make ad-hoc composites.

The qualification "rapidly" in (2a) is crucial. It rules out an evolutionary, asymptotic buildup of
compositional structures, like spatially compositional cortical feature maps (Obermayer, Ritter
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& Schulten 1990), or clusters of classifiers linked together in a feedback loop of the bucket-
brigade algorithm (see below). (2b) and (2c) are meant to exclude purely epiphenomenal
compositionality. This will later turn out as important for understanding composition of
behaviors. Compositional mechanisms in the sense of (2a) - (2d) are mostly implemented
towards the central side of the periphery-centre axis; they are often to some degree detached
from the agent-environment interactions; they are typically realized by classical symbolic
techniques; and they are characteristic for classical approaches to agent modeling.

To be sure, self-organizing and compositional aspects are integrated to some extent in existing
approaches. However, the integration is still superficial. I shall examine some important
examples, explaining in each case in what sense it falls short of the goal.

An integrative aspect is obvious in localist networks, where nodes are directly labeled by
symbols. This method is often found in neural network applications in cognitive science,
linguistics, and at the borders of symbolic AI. A much-cited classic is the proposal of Waltz
and Pollack (1985). They implement positive and negative contextual correlations between
words as weighted links between labeled nodes, achieving that the correct reading of
semantically ambiguous words in the presence of contextual clues is found via equilibration of
activation in the network. Shastri and Ajjanagadde (1992) present a highly refined localist
architecture, which realizes robust, rapid semantic-network-like classification and scales up to
larger terminologies in sublinear time. They exploit, among other effects, temporal correlations
of spike trains.  -  The dynamics of these localist networks is clearly self-organizing in the sense
indicated above. They are also compositional in that discrete informational entities (i.e., labeled
nodes) become linked to each other: by link activation in Waltz and Pollack's work, or by spike
correlation in Shastri and Ajjanagadde's. However, in these examples, like in other localist
network approaches, the composite structures are simple and predetermined, which disagrees
with (2d). Composition cannot be iterated to yield second-order composites, which conflicts
with (2a). Also, the dynamics in these examples drives the system through an equilibrative
one-way trajectory, which is not in accordance with the reversibility required in (2a).

Another connectionist approach to compositionality is Smolensky's (1986) "harmony theory".
It will be reviewed in detail in section 6. Smolensky's architecture accounts for compositional
structures of unrestricted compositional depth and of arbitrary numbers of components. It falls
short, however, of reversibility due to its one-way equilibrative dynamics. Also, possible
compositional links between components are fixed beforehand by hand-coding or learning,
which disagrees with the ad-hoc spirit of (2d).

Classifier systems (Holland 1975, 1986) offer a quite different route towards an integration of
self-organization with compositionality. A classifier is a discrete, rule-like piece of information.
By virtue of the "bucket-brigade" algorithm, chains of classifiers that contribute to a given task
are reinforced. Parallel to the bucket-brigade algorithm, the pool of available classifiers is
incrementally modified by deleting unsuccessful classifiers and mutating/copying successful
ones. The bucket-brigade and the genetic algorithm together lead to the formation of relatively
stable, successful chains of classifiers, which in turn can further be stabilized by forming
feedback loops. The latter can be considered as relatively well-defined composite structures.
Patel and Schnepf (1991) view them as complex concepts. The dynamics of classifier systems
is clearly self-organizing, and the feedback loop composites can in principle contain arbitrarily
many components, and can themselves iteratively be coupled into higher-order "hypercycle"
structures. But, the linking mechanism through the bucket-brigade and genetic algorithm is
slow (even awkwardly so, as emphasized by Forrest & Miller 1990). This slowness is
connected to the classifier system background philosophy of genetic adaptation and optimi-
zation. The linking mechanism is coupled to the success of overall system behavior. By
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contrast, the intuition behind compositionality, as I want to fix the term, is that components
can be put together and taken apart in a free, "playful", tentative, or explorative way.

Examples for an integration of self-organization with compositionality are harder to detect in
classical AI. Classical AI has, of course, no difficulties with compositionality. But self-
organization is alien to inferential logics. Most classical symbolic reasoning systems are built
on the fundament of some high-level deductive calculus, where sequences of inferences follow
the routes of an explicitly formulated control strategy. In order to enable self-organization, by
contrast, the inferencing would have to be left to itself in some way or other. Thus, the only
examples of self-organization in classical setups seem to occur in cases where a high-level
logical calculus is not involved, as in spreading activation (e.g., Mehl 1992) or marker-passing
(e.g., Charniak 1983) techniques. Such approaches are typically applied to problems where
"soft", evidential constraints must be satisfied, as in word sense disambiguation. The systems of
Mehl and Charniak, and others of the same basic category, are in principle similar to the
localist network of Waltz and Pollack, which I have discussed above.

I believe that self-organization must ultimately be missed by logic-oriented methods. The
reason is, in a nutshell, that a necessary precondition for self-organization is nonlinear feed-
back, and that nonlinear feedback translates to deduction systems as nonmonotonic feedback,
which is impossible. I explain this in more detail.

Nonlinear feedback is a precondition for self-organization in systems described by differential
equations. "Nonlinear" is there clearly defined. However, for the present purpose a more
general notion of "nonlinear" is required, since agents are usually not described by differential
equations (exception: Steels 1993b). Therefore, I understand "nonlinear" in the more abstract
sense that the trajectory of a dynamic system cannot be explained as a superposition of
trajectories of some simpler partial systems (where a "partial system" can be, e.g., a subset of
variables, a spatially defined subsystem, or any other partial contribution to the complete
system description). Rather, at every moment in the system's history, the updating results of
one partial system irreducably affect the premises for determining the behavior of other partial
systems in the next time increment. Still more dramatically, it makes no sense to update even a
partial aspect of a partial system without taking into account the most recent update of other
partial systems.

This abstract version of nonlinear feedback translates to logical deductive systems as follows.
A deductive system is, in the simplest case, a set of formulas, with partial systems being
subsets thereof. This system is updated by the application of inference rules to some formulas,
which yields new formulas (formulas might also be deleted, which is irrelevant for the present
concern). Now, when a particular subset of formulas is considered, this partial system can be
updated without considering the outcomes of updates of other partial systems. It makes sense
to apply inference rules within arbitrary partial systems, i.e., it makes sense to update a partial
aspect of a partial system without taking into account the most recent update of other partial
systems. Note that this holds even for nonmonotonic logics. In default logics (Reiter 1980), for
instance, any monotonic inference rule can be applied to any partial system at any time. Thus,
partial systems are not inherently coupled to each other in all their aspects, as required by
nonlinear feedback.

The analogue of nonlinearity and irreducible coupling of partial systems would be a "nonmono-
tonic feedback". This would occur when the outcomes of updating some partial system would
potentially afflict every inference in other partial systems. As a special case, the update of a
partial system would influence further updates of the same partial system in a nonmonotonic
fashion. This is inconceivable, since it would essentially mean that theorems derived from a set
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of axioms might invalidate some of the axioms. This is a rather abstract argument. I shall now
examine it from some more concrete angles.

Nonmonotonic feedback obviously occurs in human reasoning. Humans can start reasoning
about some task or problem and be lead to a detection of inconsistencies in their premises on
the way, without import of new information (by contrast, in nonmonotonic reasoning and truth
maintenance systems, inconsistencies arise not from within a closed reasoning process but are
due to additional information). These inconsistencies are then remedied, e.g., by dropping
assumptions or by encapsulating them as exceptions. Note that dramatic inconsistencies, which
require immediate remedy, are rare. Mental states typically contain rather inconspicuous incon-
sistencies. Carrying along inconsistent notions is harmless as long as mutually inconsistent
pieces of information do not effectively clash in inferences.

Admitting a certain amount of inconsistency in an agent's mental state is an advantage rather
than a drawback. For instance, a reservoir of notions that are moderately inconsistent with
each other can be helpful for swift adaptation to change, very much like genetic variance in a
population is (on a larger time scale). When some external circumstance that deviates from the
dominant foreground of current assumptions becomes suddenly relevant, there might already
exist some piece of information in the background of the mental state that can serve as a
starting point to handle the new circumstance. The priorly dominant portion of assumptions
shrinks into the background, and a new foreground image "grows organically", so to speak,
out of the suddenly relevant germs. In a classical reasoning system, where the reservoir of
current assumptions has to be maintained in a state of logical consistency, externally triggered
deviations from this state require an expensive reset of some kind (e.g., computing a new state
of belief in a justification-based truth maintenance system; cf. Doyle 1979).

One can sketch the following plausible, overall image of mental dynamics. Short-term memory
can be assumed to be graded along an axis that ranges from a highly active, conspicuous
foreground to an inconspicuous, less active background (discussion of empirical findings and
their theoretical interpretation in Shiffrin 1992). Inconsistencies can occur primarily between
fore- and background, but rather not within the foreground, where they would induce active
coping. Parts of the background can grow into the foreground and vice versa. Such "zooming"
can be induced by the internal dynamics alone, or by input of new information, which leads to
an increase in relevance of some piece of background information. This is an aspect of
nonlinearity insofar as the (logically nonmonotonic) dynamic interdependency of all parts of
short-time memory is emphasized. Besides being advantageous for adaptation to changing
circumstances, this conception of short-time memory also has benefits for memory search.
Since inconsistencies are admitted, the overall content of short-term memory can cover
mutually exclusive interpretations of the current external situation, which might each become
relevant as time progresses. When the temporal development of internal reasoning and/or
external circumstances homes in on one of the alternatives, the activation of relevant
knowledge from long-term memory is facilitated, since an appropriate clue for the access is
already present in short-term memory.

Self-organization is intimately connected with situatedness. The situated action paradigm
emphasizes that an agent's every information processing (sub-)mechanism is intrinsically tied
up with the agent/environment interactions. It makes no sense trying to explain an agent
without taking into account every aspect of this feedback loop. This is a version of the case
made for nonlinear feedback above.

By contrast, logic-oriented approaches to agent modeling rely on some kind of sense-reason-
act cycle, where during the "reason" portion of the cycle the agent (or the part of the agent that
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does the reasoning) is essentially disconnected from the environment. This is a fundamental
implication of a logical approach to reasoning. A logical inference algorithm, monotonic or
nonmonotonic, starts in each inferencing episode from a given set of premises, executes a
number of inference steps, and comes up with some result if all goes well. It is not possible to
change the premises while the inferencing is under way. An inference algorithm, so to speak,
retracts form the rest of the world for the time it is occupied with a given task. A logic-
oriented approach to agent modeling thus finds itself in an intrinsic conflict with self-
organization.

The logic-induced detachment from the environment becomes particularly apparent when the
reasoning task is complex and requires a considerable amount of computation time, as in
planning tasks. This explains, partially, why the situated action critique often focusses on
planning (as in the classic, Suchman 1987).

A direct consequence of logic-oriented reasoning being decoupled from the environment
concerns real-time demands. In order to enable the agent to respond to environmental change
sufficiently fast, a typical compromise in logic-oriented design is to sacrifice logical expressive-
ness and implement but a small fragment of some logics. The reason-part in the sense-reason-
act cycle can then be confined within a narrow time slice, and the entire cycle be iterated at a
high frequency. The net effect is that the overall performance is quasi-continuous. This
approach seems to characterize the current state of the art (e.g., Shoham 1993, Nilsson 1994).
An interesting variant is realized in the robot Flakey (Congdon et al. 1994, p. 11):

"Flakey's software system is designed so that all processes operate in parallel with a basic
cycle time of 100 milliseconds. [...] Even though some processes, such as map registration,
could take many seconds ... to complete, all processes were written so that they save partial
results and complete within the cycle time."

Although it is not explained in detail in the article, it appears that Flakey's time-consuming map
registration (i.e., the buildup of a "mental image" of its environment) is an example of a
relatively long-term detachment of a part of the robot's information processing from the
environment. This can work satisfyingly only when there are no changes in the environment
that are faster than the map registration procedure. In the case of Flakey, only the outer walls
of the AAAI competition arena are reflected in the map. They do not change at all.

In "theoretical" classic AI, highly expressive formalisms are developed that are relevant for
situated agent modeling (e.g. rich spatial representation formalisms, situation semantics,
situation calculus, modal logics for intentions and desires or temporal reasoning). In "practical"
classical AI approaches to mobile robot design, only fractions of such formalisms are exploited.
This may turn out to be more than merely a reflection of imperfections in the current state of
the art. It is a well-known fact that logical expressiveness has to be paid for with large
allowances for computation time, which become intractable very easily. Thus, a higher degree
of expressiveness necessarily leads to longer periods of an agent's being detached from the
environment, with the imminent danger of virtually infinite detachment periods. Combining
expressiveness with situativity might in the end be principally infeasible on the grounds of
logic-oriented approaches.

The issue is connected with the frame problem (McCarthy & Hayes 1969). In its original
version, this problem concerns the update of facts that hold in a temporal succession of
situations, where both the situations and the transitions between them are described by logical
formulae. The frame problem can be stated in more general forms. Fodor (1987) claims it to
arise whenever rational inferences occur. The problem is virulent exactly because reasoning is
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modeled as a process that is decoupled from the environment. It vanishes when a self-
organizing agent/environment interaction loop is taken to be effective, which does not rely on
off-line manipulations of internal representations: "...this architecture [i.e., self-organizing
biological brains] coordinates perception and action without intermediate decoding and
encoding into descriptions of the world ..., thus avoiding combinatoric search ... and the
frame axiom problem ..." (Clancey 1993, p.94). When internal representations are continually
coupled to sensor input, maximising consistency as a relative tendency instead of maintaining
absolute consistency of situation representations, the question of whether some assumption
holds in the (changing) environment becomes a matter of provisonality and degree. Thus, the
frame problem cannot even be properly stated.

A self-organizing kind of information processing is fundamentally in accordance with real-time
demands, since there is no sense-reason-act working cycle and, therefore, no intrinsic need to
detach the system from the environment for performing reasoning.

Now I turn to the issue of compositionality in behavior-oriented agent design, choosing Steels'
(1993a, 1994) robots as a basis for discussion.

The basic building blocks in Steel's architecture are simple C procedures. They are executed in
(simulated) parallel in a "process network". With a few exceptions, there are no explicit
influences between them. They realize low-level processes, e.g., a slow tendency to maintain a
standard forward speed, or a fast retract movement triggered by bumper sensors. Only in some
cases, behaviors are realized by a single such process (e.g., the retract reflex). Typically, a
behavior "emerges" from the parallel execution of several processes in the agent-environment
interaction loop. This situation can be restated in terms of compositionality, or rather, in terms
of the absence of it. Save for a few exceptions, there are no mechanisms to couple processes
with each other by dedicated mechanisms. The coupling is caused by contingent agent/environ-
ment interactions; it is an epiphenomenon that is not in itself causally relevant for the agent's
performance. Thus, considering the conditions (2b) and (2c) from above, the emergence of
behaviors from processes does not qualify as a composition of processes.

How, then, would a true composition of processes look like? There would have to exist some
mechanism for linking together more or less arbitrary selections of processes. This mechanism
must be of a physical, causally effective nature. For instance, there might be a C procedure
compose  that takes arbitrary processes as arguments and explicitly labels them as an "active
selection". The intended interpretation of active selections is to view them as behaviors. Only
processes that occur in an active selection are executed. When compose  is slightly modified
to accept as arguments active selections besides individual processes, the composition
operation can be iterated to an arbitrary compositional depth. Together with an inverse
procedure decompose  (with obvious semantics), condition (2a) is satisfied. The building of
composites is also causally relevant for the agent's functioning, i.e., (2b) is satisfied. Labeling
and execution are physical effects; thus condition (2c) is satisfied. Finally, (2d) is satisfied,
since compose  accepts every combinatorially possible selection of arguments.

This (or a similar) modification of Steel's process network yields a clearly compositional type
of information processing. The question arises whether this modified architecture is still self-
organizing. The answer depends on how the compose  procedure gets triggered. When there
is some central control for this procedure, then one has essentially arrived at a classical
architecture, and self-organization is likely to be lost. Self-organization is only possible when
there is an irreducible feedback between partial systems. This implies that different compose
(and decompose ) events must influence each other. By one compose  triggering, some
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other currently active selection might be induced to become decomposed, composed further to
a higher compositional depth, enlarged by the aggregation of further processes, or be reduced
in size; or other rote executions of compose  might be triggered.

Actively selecting some processes, while turning others off, is a precondition for a particular,
rapid kind of adaptation, which one might call "rapid behavior setup". The key observation is
that in a given situation an intelligent agent typically uses only a fraction of the low-level
processes that are potentially at its command, and that the selection of relevant processes
varies considerably across situations. When I pour coffee, processes like compensating for the
can's weight, balancing, and stereo vision control of hand position are active. When in the next
moment I walk to the cupboard to fetch the sugar pot, most of these mechanisms become
irrelevant, and a quite different selection is active.

The "pure" situated action paradigm explains such sequences of behaviors in terms of the
agent/environment interaction loop, viewing behaviors as exclusively emergent phenomena.
This suffices for a reflex-driven, "insect-like" mode of operation, as is witnessed by current
realizations of behavior-based robots. I claim that when higher forms of intelligence come into
the play, an additional mechanism for an active, internally co-determined, causally effective
setup of behaviors is needed. An intelligent agent pursues goals (which can be as simple as
pouring coffee), and these goals arise at least partially within the agent in a top-down fashion.
They cannot be explained completely bottom-up by the agent/environment interaction loop.
For the time a goal is pursued, a particular pattern of processes must to some extent be kept
physically stable against perturbations that incessantly arise in the agent/environment inter-
action loop. This does not imply that the relevant pattern of processes is fully determined in a
solely top-down, arbitrary fashion. The basic agent/environment interaction loop is not
replaced, but superimposed by an additional selection mechanism, and the "affordances" of the
situation still co-determine the agent's behavior.

So far, I have argued from the side of motor actions. A similar case for a causally relevant
composition mechanism can be made for perception. Again, as long as an "insect-like" mode of
operation is concerned, perceptive processes might be fully explained in terms of the
agent/environment interaction loop. This does not suffice when the level of intelligence rises.
At some level, intelligence implies that an agent can perceive objects hitherto unknown, or
perceive known objects in new circumstances where the effective sensor signal deviates from
earlier occurances. Such a faculty requires that perceptive features can to some extent be
grouped arbitrarily, and the established selection be stabilized for the time the object is
monitored. For instance, a porcelaine fish with wings that one sees in a fancy shop becomes
established in perception almost instantaneously as an object. At such an instance, features are
composed that one has never composed before. This composition of features is partially
accounted for by the stimulus in a bottom-up way; at the same time, it is also influenced top-
down, e.g. by animal schemes. It is certainly hard to explain how exactly one manages to
perceive a fish with wings. It seems clear, however, that a relatively stable composite of
features is set up ad hoc, which helps to keep hold of the thing in the face of all kinds of
perturbations.

The coffee-pouring and the winged fish monitoring examples have much in common. In both
cases, active selections are generated on the spot, which cannot be explained solely as
emerging from the agent/environment interaction loop. This is a consequence of a relatively
high intelligence level that brings internal top-down influences into play. At the same time, the
lessons taught by situated action imply that one should not try to explain either example
without taking self-organization in the agent/environment interaction loop into account.
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I come to a conclusion for this subsection. The discussion has shown that intelligent, situated
information processing must be explained as a combination of self-organization with composi-
tionality, both on central, intellective and on peripheric, sensomotoric levels. Self-organization
and compositionality are here understood as fast, if not instantaneous, mechanisms (long-term
adaptation and learning would have to be included into a more comprehensive account).
Classical AI is concerned mainly with central levels, where it focusses on compositionality but
has fundamental difficulties with self-organization due to its orientation towards logics.
Behavior-oriented approaches favor peripheric levels, where they handle self-organization but
omit compositionality. Compositionality on lower levels is connected with top-down influences
of an intelligent character, self-organization on higher levels is connected to the agent/environ-
ment interaction loop. Integrating self-organization and compositionality across all levels is
thus an important research task. It amounts to integrate classical AI with situated action, and
bottom-up with top-down influences, in a principled way. In the next subsection, I will outline
how the dynamic symbol perspective and the DSS formalism can contribute to this task.

Summary of section 2.9

• The notions of self-organization and compositionality are specified in a broad (not quite
standard) sense, each by a collection of characteristics of information processing mecha-
nisms.

• No true integration of both aspects is currently available.
• Self-organization implies that partial systems influence each other in all their aspects

(nonlinear feedback). This translates to logical deductive systems as "nonmonotonic
feedback", which is not feasible in logic-oriented approaches, since it would essentially
mean that theorems derived from axioms can invalidate the axioms. Logic-oriented AI is
thus in principle unable to account for self-organization.

• Nonmonotonic feedback does, however, occur in human reasoning. It is beneficial for fast
adaptation to a changing environment, memory access, real-time demands, and it makes the
frame problem obsolete.

• Compositionality is relevant on peripheral levels for the ad hoc setup of behaviors and
perceptive schemes. This does not invalidate the self-organizational aspects of the
agent/environment interaction loop, but it requires the addition of a causally effective
mechanism for the fast and essentially arbitrary coupling of simple motor processes or
perceptual features.

• An overall picture of intelligent, situated information processing emerges, where self-
organization and compositionality co-occur on all levels on the periphery-centre axis. This
makes an integration of both aspects a centrally important issue for further research.

2.10  Design vs. autonomy and development

Agent design seems to follow a straightforward and natural pattern. The designer has in mind a
particular performance profile of the future agent. This profile can be stated in terms of high-
level capabilities, as is typical for classical AI; it can also consist in the specification of low-
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level functionalities that are apt to guarantee the agent's basic "survival", as in typical behavior-
oriented projects. Starting from these premises, the designer works out a system of
mechanisms that can be expected to yield the desired performance. The perspective is, above
all, an explicitly functional one. I shall call this the "principle of explicit design": Artificial
agents are designed in terms of functions, and mechanisms that serve them, both of which are
explicitly stated by the designer.

The principle of explicit functional design obviously agrees with practice in classical AI
approaches to mobile robot design. At a first glance, behavior-oriented design is not different.
Behavior-based robots are equipped with behaviors whose function is prescribed by the
designer. For instance, Steels (1993a) describes the implementation of a "retract reflex" that
serves a goal of coping with collisions. The name retract_reflex  even occurs in the
program code.

But, this design strategy is at odds with the autonomy requirement, which I have already de-
scribed in the discussion of functional aspects of the periphery-centre axis (cf. 2.3). In the theo-
retical framework of situated action, agents are defined to be autonomous and subject to their
own proper laws. This conflicts with a design strategy that starts from predetermined tasks.
The inconsistency becomes apparent in the following quotation (Steels 1993a, section 5):

"The first step in the design of the agent is usually a decomposition into the major tasks and
subtasks. This decomposition is not the basis of the design of the internals of the agent [...]
but a design-oriented decomposition which helps to identify the behavior systems that need to
be present."

This statement is not quite consistent since the decomposition is in practice the basis of the
design of the agent's internals. Mechanisms for behaviors that serve the identified tasks are
effectively and explicitly implemented (cf. the retract_reflex  example).

The inconsistency roots in a fundamental incompatibility between autonomy and design.
Autonomy means that an agent has developed, functions at the present, and will further
develop in the future, all according to its own rules, which themselves are subject to continual
development and cannot be fully fixed by an observer. By contrast, design implies that an
agent's functioning is externally prescribed, and that the agent does not develop but comes to
the world as a fixed, ready-to-work device. Biological agents can be autonomous only because
never in their phylogenesis and ontogenesis they have been subject to an explicit design
procedure. They have, in a way, constructed themselves, and radical constructivism teaches
that they continue to construct themselves even as adult individuals. Artificial agents are
created from nothing. In order to guarantee survival from their existence's beginning, their
immediate needs have to be understood by their creators, and they are provided with an
explicit outfit of mechanisms to satisfy these needs.

A way out of the theoretical dilemma is to require that the design be open. Artificial agents
have to be designed in a way which allows them to develop their own proper responses to the
environment during their individual "life". A functional design, in this view, provides but some
starting parameters for an unpredictable, designer-independent further development. Explicit
design can be considered an unavoidable ersatz for the evolutionary and ontogenetic outfit of
which biological agents afford. Autonomy, then, grows from what design has left open for the
agent to develop on its own. I shall call this the "principle of open design": Artificial agents
must be capable to modify their design. This is a necessary complement to the explicit design
principle. Unfortunately, it is quite difficult to realize open design in practice.
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The only computational methods presently known that can in principle lead to autonomous
development are modeled on natural evolution. There are two main schools of research,
genetic algorithms (cf. Goldberg 1989), and evolutionary strategies (cf. Schwefel 1977), of
which only the former is currently relevant for AI, in particular through its standard combina-
tion with classifier systems, which are symbolic in their nature. By contrast, evolutionary
strategies are applied to numerical optimization. Both approaches rely on the selection of
stochastic variants according to some fitness function. The stochastic element renders the
design open at least insofar as the system's development becomes unpredictable. Unpredictabi-
lity is, however, not sufficient for openness in the sense of autonomy. Autonomy requires that
the fitness function itself must be open, i.e., it must not be specified by design: "In the context
of emergent functionality, we expect that the fitness function should be subject to evolution
and should be local to the organism that evolves" (Steels 1994, section 5.1).

The autonomy requirement, thus, leads directly to the task of providing the agent with a
faculty of estimating the success of its (stochastically varied) actions. This is a crucial
difference to natural evolution, where success is not evaluated for an individual's individual
actions, but on the population level in terms of long-term survival. This global, implicit
"mechanism", which essentially equates non-success with agent elimination, cannot be
transferred to an individual agent's development, since the agent has to survive its adaptation
(discussion in Steels 1994). Thus, within the agent there must exist a mechanism for estimating
the quality of actions in an explicit (or at least, causally effective) fashion, locally for individual
actions.

In the simplest case, such an evaluation amounts to the computation of a single "success"
variable. It has been argued that biological agents afford of such a universal variable, namely,
pleasure/displeasure (Cabanac 1992). Although I tend to subscribe to this view, the question
remains of how pleasure (or a more technically termed correlate) can be effectively computed
without getting trapped again in the pitfalls of external predetermination of the agent by the
designer.

The discussion so far may have led to the impression that open design is very hard to come by,
if it is possible at all. However, a reconsideration of some ideas developed in earlier
subsections suggests a novel strategy to open design that appears promising. The basic idea is
to exploit functional ambiguity for autonomous adaptation. I describe this in some detail.

When an agent is observed and explained, the descriptive categories that are used root in some
implicit or explicit theory on the side of the observer. The design itself is guided by some such
theory (or theories), which warrants that this theory is obviously suited to observe or explain
the agent. But, this original theory is not the only one in which the agent can be framed. There
is no uniquely proper way a given agent should be perceived.

As a special case of this phenomenon, the functions which a substructure in the agent can serve
cannot be determined a priori in a comprehensive way. In subsection 2.9, I have emphasized
the adaptive potential of this intrinsic functional ambiguity. I believe that here lies an opportu-
nity for an interesting variant of the currently exploited evolutionary mechanisms for agent
development.

Evolution needs some source of variance. In genetic algorithms and evolutionary strategies,
variance is introduced by random modifications which are then "tested" for their value (e.g.,
for their potential to afford pleasure), becoming firmly established when they are good or
weeded out when they are not. I shall call this the modify-and-test strategy for evolution.
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The variant I have in mind does not rely on modifications as a source of variance. Rather, I
interpret functional ambiguity as a variance that is already there; new functions only have to be
discovered when they happen to reveal their value, and after their discovery they must be
effectively established, in order to render them repeatable. I shall call this a discover-and-
modify strategy for evolution.

To understand this strategy, note that an agent's functionalities reveal their existence through
their being triggered by suitable external circumstances. Functional ambiguity implies that the
agent may always (in a new situation) find that available mechanisms interact in an unforeseen
way in a functional, "valuable" fashion. Earlier in this section, I have introduced functional
ambiguity as something that results from the theory-dependence of the observations of an
external observer. Now, to make this idea effective for the agent itself, the latter must act as its
own observer. It must be capable to self-monitor and to "discover" functions as they reveal
themselves in suitable circumstances. This need not imply consciousness; "discovery" here
means that a physical trace can be left in the agent when a function reveals its existence by its
circumstance-triggered execution. This physical trace can then causally effect the agent's
subsequent behavior.

For an example, consider an architecture like the one proposed by Steels (1994), where a
comparatively large number of processes is carried out in parallel (compare 2.9). Functions
(called "functionalities" by Steels) are physically realized by the combined execution of subsets
of these processes (such subsets are called "behavior systems" by Steels). The set of functions
that are implicitly "already there" is practically as good as infinite; every subset of the set of
processes potentially realizes a function. Now, circumstances may occur where a subset of the
currently active processes achieves some success with respect to the agent's measure of
success (e.g., pleasure). Assume that the agent can cope with the credit assignment problem,
i.e. it detects which of the currently active processes contribute to the success. Then, this
subset of processes can be recorded, leaving a physical trace, which can subsequently be used
to re-activate this subset of processes in a "deliberate" fashion. The event of forming this trace
is what I mean by "discovery". Technically, the trace could, e.g., consist in an augmentation of
the compose  procedure (cf. 2.9).

Some points from this example should be pointed out. First, this adaptation mechanism does
not rely on modifications as a source of variance. A modify-and-test strategy would first estab-
lish a (random) new mechanism (e.g., by augmenting compose ), and then try out the success
of the new architecture. In the above mechanism, by contrast, a particular, unpremeditated
success of the old architecture is first discovered, and then the mechanism is established in a
subsequently causally effective fashion. Second, discovery-and-modify is likely to be cheaper
and faster than modify-and-test, since no dysfunctional changes are first physically established
only to be weeded out again. Third, the mechanism is more plausible than modify-and-test. It
does not import into an individual a strategy that originates in population dynamics, which is a
questionable transfer. Also, one can easily find examples for biological agents adapting by
discovery and subsequent fixation of functional behaviors. In fact, classical behaviorism
describes discovery-and-test mechanisms. Conversely, it is hard to find examples where a
random behavior is first fixed in an individual and then either kept or weeded out again.

Discovery, as it is here conceived, is intimately related to compositionality (cf. 2.9). An event
of discovery can be interpreted as the causally effective memorizing of a causally effective
composite. In the example of Steel's architecture, this is a composite of processes, but any
other composite of informational entities in an agent potentially supports a function.

48



Summary of section 2.10

• Artificial agents must, to some extent, be designed in terms of explicit functions. They
substitute the functional outfit endowed to biological agents by phylogenesis and onto-
genesis, mechanisms that are practically infeasible to repeat in artificial agents.

• Autonomy requires that an agent's design be open, i.e., the agent must be enabled to
further develop its own design.

• Known mechanisms for autonomous development are derived from the model of natural
evolution. The original fitness function, which works on the level of populations, must be
individualized and internalized. This leads to considering a causally effective pleasure/dis-
pleasure variable in agents.

• A variant of the standard modify-and-test evolutionary strategy for autonomous develop-
ment is provided by discovery-and-modify mechanisms. They exploit the fact that an agent
implicitly possesses a large variety of functions, which can be discovered in suitable
circumstances, and recorded in a subsequently effective fashion.

Conclusion

The dynamic symbol structure framework presented in this section offers an integrative view
on classical and situated action approaches to agent modeling. This is achieved essentially by
taking an empiricist stance and defining symbols as observables. The resulting perspective is
compatible with the classical physical symbols systems hypothesis and with situated action. The
integrative potential of the approach is emphasized by that it allows to identify a central
classical notion, namely, (internal) reference, with a notion that is central in the behavior-
oriented paradigm, namely, emergence.

Modeling agents in terms of observational categories rather than in terms of assumed "objec-
tive" entities has notable consequences:

• Dynamic symbols come with an abstraction dimension, which has an observation-depen-
dent resolution component, and an observed-object-dependent differentiation component.
This leads to an explanation of abstraction hierarchies that is different from the classical
one, which builds on the inclusion of extensions. However, the two types of abstraction
hierarchies are formally quite similar, and disjunctive concepts can be explained even
without resorting to extensions.

• The notion of functional ambiguity, which is a consequence of the theory-dependent nature
of observational categories, leads to a plausible variant of evolutionary mechanisms,
namely, discover-and-modify strategies. This is a contribution to the task of open design.

The dynamic symbol framework brings together a typical classical and a typical situated action
aspect of information processing, namely, compositionality and self-organization. It emphasizes
that both aspects must be intimately linked on all levels in order to enable an agent to react
swiftly and effectively to changing circumstances. Classical AI, where it is logic-oriented,
cannot support self-organization, since the latter implies a direct nonmonotonic feedback of the
effect of an inference step to its premises. Behavior-oriented approaches shun fast and effective
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compositionality, since it has an explicit top-down control flavor, and since these approaches
account for composition (of behaviors) either in a fast but epiphenomenal, or in a causally
effective but long-term adaptive fashion. In the dynamic symbol perspective, by contrast, it
becomes apparent that

• self-organization is necessary even on central levels, in order to avoid the pitfalls of
decoupling the agent from its environment temporarily, and the frame problem, and that

• a fast and causally effective kind of compositionality is necessary even on peripheric levels
to enable a fast setup of behaviors and perceptual schemes.

I feel that the integration of self-organization with fast compositionality, which is concretely
realized in the DSS formalism, is the single most important contribution of this thesis to
research on agent design.
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3  Dynamic symbol systems

This section presents the DSS formalism in formal rigor. There are four subsections. In 3.1, a
subclass of the regular languages is treated, coherent languages. They are motivated by basic
assumptions concerning the nature of local observations of dynamic systems. In 3.2, the DSS
analogue of long-term memory, dynamic symbol spaces, is introduced. A dynamic symbol
space is in many aspects similar to a classic terminological knowledge base; seen from a differ-
ent angle, it resembles a thermodynamic state space. In 3.3, self-organizing scenes and self-
organizing streams are presented. They are closed (scenes) or open (streams) dynamic
systems, which develop in time by virtue of local operations, microchanges, that can be applied
randomly and in parallel. The resulting global dynamics exhibits rapid equilibration and self-
organization effects, which are "measured" with respect to an underlying dynamic symbol
space. Finally, in 3.4, I show how several self-organizing streams can be coupled together in
order to achieve complex, multi-level information processing architectures, called associeties.

3.1  Coherent languages and coherencies

Coherent languages are a subclass of regular languages. They are characterized by closure
under subwords and a certain cyclicity condition. The basic motivation to consider such
languages lies in the idea of an observation of a dynamic system. When a parallel dynamic
system, in which dynamic symbols interact, is observed "locally" (i.e., only a single dynamic
symbol is observed at a time), what one will find are temporal, spatial, or spatiotemporal
sequences of dynamic symbols. Seqences are temporal when the locus of observation is fixed
and one records in time; e.g., when a single output channel of a system is monitored. They are
spatial when the focus of observation cuts a trace line through the system at infinite velocity;
e.g. when a brain region is scanned that is coupled to visual input via a topographic mapping
from the retina. Spatiotemporal sequences are obtained by an observation focus that moves
with finite velocity. Jaeger (1992) gives some temporal examples of such observations,
concerning sequences of words uttered by a subject. When an observation is considered as
amounting to a sequence of dynamic symbols, it is natural to require that subsequences should
also qualify as observations. This, then, leads to languages that are closed under subwords. The
cyclicity condition will be motivated further below.

I assume that the reader is roughly acquainted with regular languages (standard reference:
Hopcroft & Ullman 1979). However, no results from the theory of regular languages are used
in the sequel, since the little theory that I develop comes with its own techniques, which are
tailored to the particular character of coherent languages. Thus, while an acquaintance with
regular languages will be helpful for a background, it is not strictly required for an understan-
ding of the following material (with the exception of the proof of proposition 8, which is,
however, not crucial for the whole).

The material presented in this subsection provides mathematical prerequisites for DSS rather
than being a part of DSS proper. Therefore, I postpone the usage of DSS-typical terms until
subsection 3.2. In particular, I say "symbols" and "words" (rather than "dynamic symbols" and
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"associations"), since the present subsection obviously belongs to the area of formal languages,
where another terminology than the customary one would be confusing.

Definition 1 recalls the basic notions of formal language theory.

Definition 1:
(i) An alphabet is a finite set Σ = {a1, ..., an} of symbols.
(ii) Σ* := { s1...sk | k ≥ 0, si ∈ Σ for i = 1, ..., k} is the set of words over Σ.
(iii) If s = s1...sk, t = t1...tl are words over Σ, then st := s1...skt1...tl is the concatenation of s

and t.
(iv) If s = s1...sk ∈ Σ*, then |s| = k is the length of s.
(v) If |s| = 0, then s is the empty word. It is denoted by ε.
(vi) A subset L ⊆ Σ* is a language over Σ.

By convention, r, s, t are variables for symbols, a, b, c are constants, and bold print indicates
words. Words of length 1 are identified with symbols.

I approach coherent languages from a slightly more general angle than from the perspective of
regular languages, considering at the outset all languages that are closed under subwords:

Definition 2: A language L over Σ is segmentable :iff L is closed under subwords, i.e., if the
following two conditions hold:

(i) ∀r1r2...rn ∈ L ∀ 1 ≤ i ≤ j ≤ n: riri+1...rj ∈ L,
(ii) ε ∈ L.

Condition (ii) is an arbitrary auxiliary condition; one might just as well require ε ∉ L. Making a
commitment, one way or the other, is an act of formal hygienics.

Next comes some nomenclature that will be frequently used in the sequel:

Definition 3: Let L be segmentable.
(i) For rs ∈ L, s is a continuation of r in L, and r is a context for s in L. For r ∈ L, the set

continueL(r) := {s ∈ L | rs ∈ L} is the set of all continuations of r in L. When the
reference to L is clear, the subscript L can be dropped.

(ii) r1r2r3... is an infinite continuation  of r in L :iff rr1...rk ∈ L for every k ≥ 0. The set of all
infinite continuations of r in L is denoted by continueL∞(r). In the same vein,

L∞ := continueL
L

∞

∈
( )r

r
U

denotes the set of all infinite continuations in L.

The following proposition is a direct consequence of definitions 2 and 3:

Proposition 4: Let L be segmentable. Then the following statements hold:
(i) L = continue(ε), L∞ = continue∞(ε).
(ii) For r1...rk ∈ L, it holds that continue(rk) ⊇ continue(rk-1rk) ⊇ ... ⊇ continue(r1...rk). 
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The moral of (ii) is that contexts act as "filters" with respect to concatenation of words. The
further a context is lengthened to the left, the more the set of its possible continuations to the
right is restricted. When words are interpreted as temporal or spatiotemporal observations,
then the intended interpretation of contexts is to consider them as information that is already
recorded, and continuations as potential future observations. Then, the "filtering" property can
be restated by saying that the more one knows about the past, the more precisely the future can
be predicted. Contextual filtering is a recurrent theme in DSS.

Next I introduce a convenient description for segmentable languages. A generator of such a
language is a directed graph, where the edges (called transitions) are labeled by symbols from
Σ. Words can be read out of this graph by following a finite path through the graph and
collecting symbols on the way.

Definition 5: Let L ⊆ Σ*. Let G = (S, trans), where S is a set and trans ⊆ S×Σ×S. Then G is
a generator of L :iff

r ∈ L     iff  r = r1...rn and ∃ x0, x1, ..., xn ∈ S  ∀ i = 1, ..., n: (xi-1, ri, xi) ∈ trans,
or
r = ε.

The elements of S are called the local states of G. Variables for local states are x, y, z (not in
italics). Specific local states are usually represented by natural numbers. The elements of trans
are called transitions. It is convenient to write simply xrx' instead of (x, r, x') ∈ trans. When
for i = 1, ..., n, it holds that (xi-1, ri, xi) ∈ trans, then x0r1x1r2x2 ... rnxn is a derivation of
r1...rn in G. The language L generated by G is denoted by LG.

Example 6: Fig. 3.1 shows two generators of a language L, where

Σ = {a, b, c},
L = {r1...rn ∈ Σ* | n ≥ 1, ri ≠ ri+1 for i = 1,...,n-1} ∪ {ε}.

Fig. 3.1: Two non-isomorphic generators of L from example 6.

Proposition 7:
(i) If there exists a generator for L, then L is segmentable.
(ii) If L is segmentable, then there exist infinitely many non-isomorphic generators for L.
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Sketch of proof: (i) is a direct consequence of the fact that subpaths of paths in a graph are
paths, i.e., subderivations of derivations are derivations, i.e. subwords of derivable words are
derivable words. For (ii), a trivial generator  for a given segmentable L can be constructed by
assigning to every word r = r1...rk of L an own linear-graph-like generator

Gr = ({x r
0, ..., xrk}, {(x r

0, r1, xr
1), ..., (xrk-1, rk, xr

k)}),

whose unique derivation of maximal length derives r. The disjoint union of these generators
yields a generator for L. Non-isomorphic variants of this generator can be obtained by adding
disjoint copies. Example 6 shows that this is not the only way to arrive at non-isomorphic
generators for a segmentable language. 

The moral of proposition 7 is that being segmentable and possessing a generator is the same
thing for a language. This can be specified further: for a language, being segmentable and
regular is the same as having a finite generator.

Proposition 8: Let L be segmentable. Then L is regular iff there exists a finite generator of L.

Sketch of proof:
"⇒": Let A = (S, trans, xstart, Saccept) be a deterministic finite automaton accepting L, where S
is the set of states, trans ⊆ S×Σ×S is the set of transition rules, xstart ∈ S is the initial state,
and Saccept ⊆ S is the set of accepting states. Remove from S all states from which no
accepting state can be reached, or which cannot be reached from xstart, and remove from trans
all transitions which are thereby affected. Let the result be S' and trans'. Define a generator
G = (S', trans'). Now if x0r1x1 ... rnxn is a derivation in (S', trans'), then there exists a word
s1...smr1...rnt1...tk in L which is accepted by A on a path which contains x0r1x1 ... rnxn. Since L
is segmentable, it holds that r1...rn ∈ L. Therefore, all derivations in (S', trans') yield elements
of L. Conversely, each word of L can be derived in (S', trans'), since there exists for this word
a derivation in A leading from xstart into Saccept, and this path is conserved in (S', trans').
Therefore, (S', trans') is a finite generator of L.
"⇐": Let G = (S, trans) be a finite generator of E. Introduce a new local state sstart and
connect it to every local state of G by an transition labeled by ε. Declare every x ∈ S an
accepting state. Then interpret the result of these modifications as a non-deterministic finite
automaton. It accepts the language L, which is, therefore, regular. 

Regular segmentable languages could be further examined in the spirit of regular language
theory. For instance, it is easy to show that if L and L' are regular and segmentable, then their
union and intersection are regular and segmentable. Likewise, it is not particularly difficult to
formulate what is called an "algebraic characterization" for regular segmentable languages.
Normal form theorems for finite automata can be exploited to define normal forms for finite
generators. The latter, however, does not lead far. Finite automata normal forms have to be
awkwardly transformed to make generators, since in generators every state basically is both an
initial state and an accepting state, which renders them quite different from finite automata. I
will develop a more suitable normal form for cyclic generators further below, using methods
which do not originate in the theory of finite automata.

Regular segmentable languages can also be characterized by grammars (by adding suitable
conditions to the right (or left) linear grammars for regular languages). Although it is very
common to describe formal languages by grammars, I will not do so. The reasons for prefer-
ring generators are, first, that the cyclicity condition that specifies coherent segmentable
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languages (see below) is directly reflected in the graph-theoretical cyclicity of generators,
whereas an analog condition for grammars would be less transparent; second, that the
fundamental operation of symmetry breaking (see below) could not be easily defined for gram-
mars; third, that the dynamics of self-organizing scenes and streams (see 3.3, 3.4) is expressed
in terms of local operations on generators; fourth, that generators have a normal form (phase
generators, see below), whose local states afford of an insightful interpretation in terms of the
information that is provided about a sequence-generating dynamic system by the "observation"
of a generated sequence. In sum, generators (in particular, phase generators) are transparent
models of sequence-generating dynamic systems, whereas grammars are structural descrip-
tions of languages. In this thesis, the emphasis is on dynamics and systems.

The next definition introduces homomorphisms between generators.

Definition 9: For G = (S, trans), G' = (S', trans'), η: S → S' is a homomorphism from G to
G' :iff x1rx2 ∈ trans implies η(x1)rη(x2) ∈ trans'. This is written as η: G → G'.

Proposition 10:
(i) If η: G → G', then LG ⊆ LG'.
(ii) If L, L' are segmentable, L ⊆ L', L' = LG', then there exists a generator G of L and a

homomorphism η: G → G'. When L, L' are additionally regular, and G' is finite, then a
finite such G exists.

Sketch of proof: (i) is straightforward. For the general case in (ii), the trivial generator of L (as
sketched in the proof of 7(ii)) can be taken for G. For L, L' being regular and G' = (S', trans')
finite, and L being a language over Σ, take some arbitrary finite generator G0 = (S0, trans0) of
L and define G as the product of G0 and G':

G := (S0×S', {((x, y), r, (x', y')) | (x, r, x') ∈ trans0 and (y, r, y') ∈ trans'}).

The desired homomorphism is the projection of this product generator on its second compo-
nent, i.e. on G'. 

10(ii) signals some imperfection. What one would like to have, rather, is a full converse of (i).
This will be obtained later with another kind of morphism (simulations), and a normal form of
generators (phase generators).

After these basic and general definitions, I now turn to a special kind of regular segmentable
languages and their generators, namely, to coherent languages and coherencies. They are the
languages and generators on which DSS rests. Their characteristic property is cyclicity. The
motivation to consider such languages is again a basic property of local observations of
dynamic systems. When such a system does not qualitatively evolve (through learning or
structure-changing adaptation), a long-term observation should exhibit repetitions of patterns.
In the limit, every short-term observation should be repeated infinitely often in an infinitely
long observation of a "random walk" of the system.

Definition 11: A language L is coherent :iff it is regular and segmentable, and for all r, s ∈ L
there exists t ∈ L such that rts ∈ L. Coherent languages are denoted by the symbol C (instead
of L for languages in general). C∞ corresponds to L∞ (cf. def. 3(ii)), i.e., it is the set of infinite
continuations in C.
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The universal continuations introduced in the next definition will turn out to be helpful in the
further examination of coherent languages. The background interpretation is to consider them
as observations of infinite duration, of a system that is not clamped in some special state by
external control conditions but rather performs a random walk through its entire state space.

Definition 12: An infinite continuation u ∈ C∞ is a universal continuation in C :iff every
s ∈ C appears as a subsequence of u infinitely often.

Proposition 13: For all r ∈ C, continue∞(r) contains a universal continuation.

Sketch of proof: Since C has a finite generator, it is enumerable. Let C = {r1, r2, r3, ...}.
Choose an enumeration s1, s2, s3, ... of C (with repetitions) in which every ri occurs infinitely
often, and where s1 = r. From definition 11 it follows that there exist t1, t2, t3, ... ∈ C such that
s1t1s2t2s3t3... ∈ continue∞(r). This is a universal continuation. 

Definition 14:
(i) A generator is cyclic :iff for all local states x, x' there exists a derivation x0r1x1...rnxn,

where x = x0 and x' = xn.
(ii) A generator is a coherency :iff it is cyclic and finite.

Proposition 15: A language C is coherent iff C is generated by a coherency.

Sketch of proof: "⇒": Let u be a universal expansion in C, and let G be a finite generator of C.
Apply Koenig's lemma to conclude that there exists an (infinite) derivation of u in C. Since u is
infinite, some local states are visited infinitely often in this derivation. The reduct of G on these
local states is a coherency that generates C.
"⇐": Obvious. 

I will now cast a closer look at epimorphisms η: G1 → G2. When a coherency G2 is an
epimorphic image of a coherency G1, G1 is called a symmetry breaking of G2. Before I go into
explanations of why this is interesting, I supply the definition:

Definition 16:
(i) Let η: G1 → G2, where G1 = (S1, trans1) and G2 = (S2, trans2). Then η is is an

epimorphism :iff it is surjective, and for every yry' ∈ trans2 there exists some xrx' ∈ trans1
such that η(x) = y and η(x') = y'.

(ii) When for two coherencies G1, G2 there exists an epimorphism η: G1 → G2, G1 is a
symmetry breaking of G2.

When η is interpreted "backwards", as an operation that yields G1 from G2, then, intuitively, a
symmetry breaking is obtained by "breaking" the local states of G2 and re-distributing the
original transitions to and from an original local state over its breaking products, to arrive at a
generator G1. Figure 3.2 shows a simple example.
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Fig. 3.2: A symmetry breaking.

The term "symmetry breaking" is borrowed from physics. It is used generally for processes
where some single phenomenon "breaks" into distinguishable phenomena (as in the derivation
of the electromagnetic, the strong and the weak interaction forces from an assumed unified
force), or for processes where a system looses some degrees of freedom (as in cooling water to
ice). Typically, symmetry breakings are induced by a decrease in temperature. All of this
transfers to symmetry breakings as they are defined here. Single local states break into several
distinct ones; words that can be derived starting from the original local state can become
underivable after the symmetry breaking (e.g., ac is lost in the symmetry breaking from fig.
3.2), and last but not least, symmetry breakings can be interpreted in terms of a "computational
temperature" (cf. subsection 3.2).

Next I introduce a normal form for coherencies, phase generators. Their local states are
phases. Intuitively, a phase is the information carried by a "maximally informative" context. A
context is maximally informative, in a sense, when its filtering effects cannot be augmented by
lengthening the context to the left. In the interpretation of words as observations, this means
that an observation is maximally informative when no additional knowledge about the future
development of the observation can be gained by considering deeper extensions of it into the
past. Such observations provide maximal possible knowledge about the state of the observed
system. In this sense, such observations can be identified with the states of the system. It is
customary to call the states of an oscillation generating system "phases". Using the term
"phase" for the local states of generators of coherent languages is motivated by viewing (as a
background interpretation) such generators as oscillation generating systems. The "oscilla-
tions", in this view, are the (infinite) continuations of a coherent language.

Definition 17: Let C be a coherent language.
(i) Let p ∈ C. Then p is phase-fixing :iff continue(p) = continue(rp) for all rp ∈ C.
(ii) Let ~ϕ be the equivalence relation on {p ∈ C | p is phase-fixing} defined by p ~ϕ q  :iff

continue(p) = continue(q). The equivalence classes are called the phases of C. Phases are
denoted by the symbol ϕ. The set of all phases of C is denoted by Φ(C). The equivalence
class of p is denoted by ϕp.

The next proposition collects some properties of phases.
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Proposition 18: Let C be a coherent language.
(i) For every r ∈ C, there exists some s1...snr ∈ C (n ≥ 0), such that s1...snr is phase-fixing.
(ii) Φ(C) is finite.
(iii) If p ∈ C is phase-fixing, and rp ∈ C, then rp is phase-fixing, and ϕp = ϕrp.
(iv) If p ∈ C is phase-fixing, and pr ∈ C, then pr is phase-fixing.

Sketch of proof:
(i) Show first that the set {continue(t) | t ∈ C} is finite, as follows. Let G = (S, trans) be a

finite cyclic generator of C. Let St = {x t
1, ..., xtn} ⊆ S be the set of those local states

which are terminal points in derivations of t. Let xt
j
+ be the set of all words that can be

derived in G, where the derivation is started from xt
j. Then continue(t) = xt

1
+
 ∪ ... ∪ xt

n
+,

i.e. continue(t) is uniquely determined by a finite subset of S. Since S is finite, there can
be only finitely many such subsets, and hence {continue(t) | t ∈ C} is finite.
Proposition 4(ii) implies that for every sequence r, r1r, r2r1r, ...  in C it holds that
continue(r) ⊇ continue(r1r) ⊇ continue(r2r1r) ⊇ ... . Since {continue(t) | t ∈ C} is finite,
this implies that there exists some sn...s1r ∈ C such that continue(sn...s1r) =
continue(ssn...s1r) for all ssn...s1r ∈ C. I.e., sn...s1r is phase-fixing.

(ii) Follows from the finiteness of {continue(t) | t ∈ C}.
(iii) Trivial.
(iv) Assume that pr is not phase-fixing. Then there exists some spr ∈ C such that

continue(pr) ⊃ continue(spr). It follows that continue(p) ⊃ continue(sp), which contra-
dicts that p is phase-fixing. 

The following overall picture of universal continuations can be extracted from proposition 18.
Let u = r1r2r2... ∈ C∞ be universal. Let ui := r1...ri. From (iii) and (iv) it follows that u "phase-
locks" at some point, i.e., there exists some i0, such that uj is phase-fixing for all j ≥ i0, and uj is
not phase-fixing for j < i0. Furthermore, every phase ϕ appears infinitely often in u, i.e., ϕ = ϕui
for infinitely many indices i.

Phases can be used as local states for a generator of C, which is thereby uniquely determined:

Definition 19: Let C be a coherent language. Then Gϕ = (Φ(C), transϕ) is the phase
generator of C, where transϕ := {(ϕp, r, ϕpr) | p is phase-fixing in C, pr ∈ C}.

Using the facts collected in proposition 18, it is straightforwardly confirmed that Gϕ is well-
defined and in fact a finite, cyclic generator of C. Gϕ has the following properties:

Proposition 20:
(i) For ϕ ∈ Φ(C), let ϕ+ ⊆ C denote the set of all words which can be derived in Gϕ by

starting from ϕ. Then, ϕp
+ = continue(p).

(ii) ϕ ≠ ϕ' iff ϕ+ ≠ ϕ'+.
(iii) Gϕ is "deterministic": if ϕsϕ1, ϕsϕ2 are transitions in Gϕ, then ϕ1 = ϕ2.
(iv) r ∈ C is phase-fixing iff all derivations of r in Gϕ terminate in a unique phase. This phase

is ϕr.
(v) If η: Gϕ → Gϕ, then η = id.
(vi) The following is a useful characterization of phase generators. Let G = (S, trans) be a

cyclic generator of C. Then, G = Gϕ (up to isomorphism) iff the following conditions
hold:

58



(a) G is "deterministic", i.e., if xsy, xsz are transitions in G, then y = z.
(b) A local state x ∈ S exists, which is fixed in G by a suitable s ∈ C, i.e.,

∃ x ∈ S, s ∈ C: if s can be derived in G on a path terminating in y, then y = x.
(c) Let, for z ∈ S, z+ ⊆ C denote the set of all words which can be derived in G by 

starting from z. Then, ∀ x, y ∈ S: x = y iff x+ = y+.

Sketch of proof:

(i) is straightforward.

(ii) is a corollary to (i).

(iii) Follows from 18(iv) and the construction of transϕ.

(iv) "⇒": Let r ∈ C be phase-fixing. Choose ϕ such that r can be derived on a path Dr
terminating in ϕ. Let s ∈ C be also phase-fixing. It follows from the construction of
transϕ that s can be derived on a path Ds terminating in ϕs. From the cyclicity of Gϕ, it
follows that there exists a word t ∈ C such that str can be derived on a path DsDtDr,

which is a concatenation of three paths, the first of which is Ds and the last of which is
Dr. (i) says that continue(s) = ϕs

+. Use this and (iii) to concluded that continue(str) = ϕ+.
Since r is phase-fixing, it holds that continue(r) = continue(str). Apply (i) and (ii) to
conclude that ϕ = ϕr.

"⇐": Let r be not phase-fixing. Then there exist two different phases ϕsr and ϕtr. From
"⇒" it follows that sr can be derived on a path ending in ϕsr, and tr on a path ending in
ϕtr. Therefore, r can be derived on paths terminating in different local states.

(v) Let ϕ = ϕp be a phase such that ϕ+ is maximal, i.e., there exists no other phase ϕ' such
that ϕ+ ⊂ ϕ'+. Let η(ϕ) = ϕq. From the definition of homomorphisms it follows that
continue(p) ⊆ continue(q). Since ϕ+ is maximal, this means that continue(p) =
continue(q), i.e., η(ϕ) = ϕ. Apply (iii) to conclude that η = id.

(vi) "⇒": Assume G = Gϕ. (a) follows from (iii). For (b), select for x an arbitrary phase ϕ,
and for s, some word that fixes ϕ. (c) is clear.

"⇐": First, we show

(1) ∀ y ∈ S ∃ ϕ ∈ Φ(C): y+ = ϕ+.

Let x ∈ S be fixed by s ∈ C according to (b). Select some y ∈ S. Since G is cyclic, some
t ∈ C exists such that st can be derived on a path terminating in y. Because G is
deterministic, it follows that y is fixed by st in the sense of (b). From proposition 18(i) it
follows that some r ∈ C exists, such that rst is phase-fixing for some phase ϕ ∈ Φ(C).
Obviously, y is fixed by rst. Therefore, y+ = continue(rst) = ϕ+.

For y ∈ S, let ϕy denote the phase that corresponds to y according to (1). We now show

(2) ∀ ϕ ∈ Φ(C) ∃=1 y ∈ S: ϕ = ϕy.

Select some ϕ ∈ Φ(C). Let ϕ be fixed by p ∈ C, i.e., ϕ = ϕp. Select some derivation of p
in G, which starts in some x ∈ S and terminates in some y ∈ S. Analogously to the
procedure in the proof of (1), select some r ∈ C that fixes x in G. Then, rp fixes y. It
follows that y+ = continue(rp) = continue(p) = ϕ+, i.e., ϕ = ϕy. The uniqueness of y
follows from (c).
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(1) and (2) together yield an obvious one-to-one correspondence between S and Φ(C),
which directly leads to an isomorphism between G and Gϕ.   

Note that phases do not correspond to minimal sets of possible continuations. The case can
occur that ϕ+ ⊂ ϕ'+. A related fact is that the phase generator of C need not have either the
minimal possible number of local states or the minimal number of transitions. As an example
consider the coherent language

C = {r1...rn ∈ {a, b, c}* | n ≥ 1, ri = ri+1 ⇒ ri = a} ∪ {ε}.

I.e., C contains the words over {a, b, c} where only a may be directly repeated. There are
three phases ϕa, ϕb, ϕc. It holds that ϕb

+, ϕc
+
 ⊂ ϕa

+. Figure 3.3 depicts Gϕ, and a generator G
of C with two local states. The minimal number of states and transitions is obtained not in the
phase generator but in G.

Fig. 3.3: Two generators of a coherent language.

Considering, once again, the background interpretation of words as local observations of a
dynamic system, I ask now what is the information gained by such an observation. The term is
generally used in two fashions. First, it can refer to the "semantic contents" of some obser-
vation (where, again, "observation" can be used in many fashions). For instance, when I
"observe" that someone says, "the cat is on the mat", then the information conveyed by this
statement might be that the cat is, indeed, on the mat. Second, the term can refer to a
numerical value of the informativeness of an observation, which is usually given in bits. I will
adopt the term meaning for the first usage, and the term information for the second.

There are several reasonable ways of how one might specify the meaning of a word from some
coherent language C. I commit myself to a specification that, again, sees a word as an
observation of a dynamic system. I define the meaning of a word (say, s) as what is known
about the internal state of the system, given the word as an observation that reaches from
somewhere in the past up to the present. I.e, the meaning of s the set of phases which are
reachable by derivations of s in Gϕ,. The information, then, of s is maximal, when this set
contains only one phase, i.e., when s is phase-fixing; it is 0 when s tells us nothing, i.e. when
the set coincides with Φ(C). The value is computed, in the customary manner, as the negative

60



logarithm of the ratio of confirmed cases over possible cases. All in all, one obtains the
following definition:

Definition 21: Let C be a coherent language, and s ∈ C.
(i) The meaning of s with respect to C is the set

Φ(s) = {ϕ ∈ Φ(C) | ϕ = ϕrs for some phase-fixing rs ∈ C}.
(ii) The information  of s with respect to C is the real number

H(s) = -log2 |Φ(s)|/|Φ(C)|.

The information H will play an important role in accounting for self-organization in self-
organizing scenes and streams.

Now I return to more practical matters. A coherent language will often be specified by some
ad-hoc generator. I describe now an algorithm, which computes the phase generator from an
arbitrary finite cyclic generator. Readers who are familiar with finite automata will find that the
algorithm resembles somwhat to the customary power set construction of a deterministic finite
automaton from a non-deterministic one.

Algorithm 22: Let G = (S, trans) be a finite cyclic generator of C. Then, the phase generator
(Φ(C), transϕ) can be computed in four steps. Figure 3.4 illustrates the procedure with an
exemplary run.

Step 1: Construct from G a generator G' = (S', trans') of C, which is deterministic in the sense
of proposition 20(vi/a), as follows. The local states of G' are certain elements of the power set
of S. Construct S' and trans' incrementally by computing

S'0 := {S}, trans'0 := ∅,
S'n+1 := S'n ∪ {T ⊆ S | ∃ R ∈ S'n, s ∈ Σ: T = {y ∈ S | ∃ x ∈ R: xsy ∈ trans}},
trans'n+1 := trans'n ∪ {RsT | R ∈ S'n, T ∈ S'n+1, and ∃ x ∈ R, y ∈ T: xsy ∈ trans}.

Since S'n and trans'n are monotonously increasing, and since the power set of S is finite, the
sequence (S'n, trans'n) eventually becomes stationary, i.e., some minimal k exists such that
(S'k, trans'k) = (S'k+l, trans'k+l) for all l ≥ 0. Put G' = (S', trans') := (S'k, trans'k). It is easy to
confirm that G' is a deterministic generator of C.

Step 2: Construct from G' a cyclic, deterministic generator G'' = (S'', trans'') of C, as follows.
Select some T ∈ S' which is minimal, i.e., which is not a proper subset of some other T~ ∈ S'.
Compute S'' incrementally by putting

S''0 := {T},
S''n+1 := S''n ∪ {R ∈ S' | ∃ U ∈ S''n, s ∈ Σ: UsR ∈ trans'}.

Again, this sequence becomes stationary for some minimal m. Put S'' := S''m, and trans'' :=
trans' |̀ S''m. This finishes the computation of step 2.

It remains to be shown that step 2 is correct. Since G'' is a substructure of G', it is
deterministic. In order to show that G'' is, indeed, a cyclic generator of C, we select some
p ∈ C, such that p can be derived in G' on a path starting in S and terminating in T. We show
that

(1) p fixes T in G' (in the sense of proposition 20(vi/b)).
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Assume that p can be derived on a path starting in some R1 ∈ S' and terminating in some
R2 ∈ S'. We have to show that R2 = T. The following general monotonicity law is easily
confirmed: if U1sU2 and U1'sU2' are transitions in G', and U1 ⊆ U1', then U2 ⊆ U2'. Clearly,
R1 ⊆ S. Apply the monotonicity law repeatedly for all transitions in both derivations of p in
order to concluded that R2 ⊆ T. Since T is minimal, this means that R2 = T. In analogy to the
argument used in the proof of proposition 20(vi), conclude from (1):

(2) A phase ϕ exists such that T+ = ϕ+.

Since LG'' = {s | s is a subword of some t ∈ T+} and C = {s | s is a subword of some t ∈ ϕ+}, it
follows that G'' generates C. In order to show that G'' is cyclic, select some R ∈ S''. It suffices
to show that some path in G'' leads from R back to T. Some s exists which can be derived in
G'' on a path starting in T and terminating in R. ϕ+ contains some word of the form srp. Use
(1) to conclude that a derivation of rp leads from R back to T, as desired.

      

Fig. 3.4: An examplary application of algorithm 22.
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Step 3: Compute the equivalence relation ≡ on S'', defined by T ≡ U iff T+ = U+, as follows.
Define ≡1 such that

T ≡1 U  iff  ∀ s ∈ Σ: s ∈ T+ ↔ s ∈ U+.

For i = 2, 3, ..., define ≡i inductively such that

T ≡n+1 U  iff  T ≡n U, and  ∀ TsT', UsU' ∈ trans'': T' ≡n U'.

Effective procedures for computing  ≡1 and ≡n+1 are obvious. Each ≡n+1 is a refinement of ≡n.
Since each ≡i can contain at most |S''| equivalence classes, the sequence (≡i)i=1,2,.. must become
stationary after some i0 ≤ |S''|. Put ≡ := ≡i0.

For the correctness of step 3, we must show, for all T, U ∈ S'', that T ≡ U iff T+ = U+. Define
T+n := {s ∈ T+ |  |s| ≤ n}. It is easily confirmed that T+n = U+n iff T ≡n U. Use this to conclude

T ≡ U iff  T ≡i0 U
iff  ∀n: T ≡n U
iff  ∀n: T+n = U+n

iff  T+ = U+.

Step 4: Construct Gϕ = (Φ(C), transϕ) by "≡-factorizing" G''. More precisely, construct a
generator G''' = (S''', trans''') by putting

S''' := {T≡ | T ∈ S'', T≡ is the equivalence class of T},
T≡sU≡ ∈ trans'''  :iff  ∃ U' ∈ S'': U' ≡ U and TsU ∈ trans''.

Applying proposition 20(vi), it is easily confirmed that G''' is isomorphic to Gϕ. 

The natural morphism for coherencies is not the homomorphism defined above, but a mapping
which allows to "spool" one generator into another. The next definition specifies such
mappings, called simulations. The term is borrowed and adapted from the theory of non-
wellfounded sets (cf. Aczel 1988), where "bisimulations" are mappings between directed
graphs, with very much the same intentions as here.

Definition 23: Let G1 = (S1, trans1), G2 = (S2, trans2) be coherencies generating C1 and C2.
A mapping σ from S1 to the power set P(S2) is a simulation of G1 in G2 :iff

(i) σ(x) is nonempty for all x ∈ S1,
(ii) for all x1rx1' ∈ trans1, for all x2 ∈ σ(x1) there exists x2' ∈ σ(x1') such that x2rx2' ∈ trans2.

This is written as σ: G1 → G2.

The next proposition lists two direct consequences of this definition:

Proposition 24:
(i) Simulations are transitive.
(ii) When σ: G1 → G2 is a simulation of G1 in G2, then CG1 ⊆ CG2

. 

Two cyclic generators of a coherent language need not simulate each other. In the example
shown in fig. 3.1, the generator G1 cannot be simulated in G2. However, every cyclic generator
of a coherent language can be simulated in the corresponding phase generator:
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Proposition 25: If G = (S, trans) is a coherency generating C, and Gϕ is the phase generator
of C, then there exists a unique simulation σ: G → Gϕ.

Sketch of proof: Define σ by ϕ ∈ σ(x) :iff there exists a phase-fixing p ∈ C such that ϕ = ϕp
and p can be derived in G on a path terminating in x. It is straightforward to show that
σ: G → Gϕ. To show that σ is unique, consider an arbitrary simulation σ': G → Gϕ and some
x ∈ S. Let p be phase-fixing such that in G there exists a derivation of p terminating in x. Use
23(ii) and 20(iv) to show that ϕp ∈ σ'(x), which means that σ'(x) ⊇ σ(x). Now take an
arbitrary ϕ ∈ σ'(x) and a phase-fixing p for which there exists a derivation in G starting and
ending in x. Use again 23(ii) and 20(iv) to show that ϕ = ϕp, which means that σ'(x) ⊆ σ(x).
Thus, one has σ'(x) = σ(x). Since x was selected arbitrarily, this implies σ' = σ. 

The next theorem is the key for any deeper analysis of coherencies and their interrelationships.

Simulation theorem 26: Let C1, C2 be coherent languages. Let G1ϕ = (S1, trans1) and
G2ϕ = (S2, trans2) be their phase generators. Then C1 ⊆ C2 iff there exists a simulation
σ: G1ϕ → G2ϕ.

Sketch of proof:
"⇐": follows from 24(ii).
"⇒": This requires some work. Let u = u1u2... be a universal continuation in C1. From C1 ⊆ C2
it follows that u ∈ C2

∞. u can therefore be derived on an infinite path in G2ϕ. Fix some such
derivation DG2ϕ

(u) = x0u1x1u2x2... . Since G2ϕ is finite, there exists some i0 such that for all
i ≥ i0, xi appears infinitely often in DG2ϕ

(u). Since u is a universal continuation in C1, there
exists some j0 such that for all i ≥ j0, u1...ui is phase-fixing in C1. Let m := max {i0, j0}. Let
DG1ϕ

(u) = y0u1y1u2y2... be a derivation of u in G1ϕ. Then yi is uniquely determined for i ≥ m
since m ≥ j0. Let G' = (S', trans') be the substructure of G2ϕ which consists of the local states
xm, xm+1, xm+2, ... and the transitions xmum+1xm+1, xm+1um+2xm+2, ... . Define σ': S1 → P(S')
by x ∈ σ'(y) :iff there exists i ≥ m such that x = xi and y = yi. Observe that σ' is well-defined
since every y ∈ S1 appears (even infinitely often) in ymum+1ym+1um+2ym+2... due to the choice
of j0. In order to prove "⇒" it obviously suffices to show

(1) σ' simulates G1ϕ in G'.

Define another generator G'' = (S'', trans'') by

S'' := {xy | x ∈ σ(y)},
(xy, r, x'y') ∈ trans'' :iff (y, r, y') ∈ trans1 and (x, r, x') ∈ trans'.

G'' has the following properties:

(2) G'' is a cyclic generator of C1.
(3) G'' is deterministic in the sense of 20(iii), i.e. if xyrx'y', xyrx''y'' ∈ trans'', then x'y' = x''y''.

(2) follows from that on the one hand, u can be derived in G'' in a fashion which "uses" every
transition infinitely often due to the choice of m ≥ i0 (which implies that G'' is cyclic and that in
G'' there can be derived at least the words from C1), and that on the other hand, ϕ(xy) := y
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defines a homomorphism from G'' to G1ϕ (which implies that in G'' there can be derived at
most the words from C1). (3) is inherited from G2ϕ.

Define σ'': S1 → P(S'') by xy ∈ σ''(z) :iff z = y. In order to show (1) it obviously suffices to
show that σ'': G1ϕ → G'' is a simulation. It is easily confirmed that σ'' is well-defined and that
23(i) holds. Thus 23(ii) remains to be shown, i.e.

(4) for all zrz' ∈ trans1, for all xy ∈ σ''(z), there exists x'y' ∈ σ''(z') such that xyrx'y' ∈ trans''.

Due to the definition of G'' this is equivalent to

(4') for all yry' ∈ trans1, for all xy ∈ σ''(y), there exists x'y' ∈ σ''(y') such that xyrx'y' ∈ trans''.

Now comes the crucial argument. Define

k := min {n ∈ |N | there exists p ∈ C1 which is phase-fixing in C1 and whose possible 
      derivations in G'' terminate in n different xy ∈ S''}

Let yry' ∈ trans1 and xy ∈ σ''(y). It has to be shown that there exists x'y' ∈ σ''(y') such that
xyrx'y' ∈ trans''. Let q = q1...ql ∈ C1 be phase-fixing in C1 such that the possible derivations of
q in G'' terminate in k different local states from S''. Since G'' is cyclic, there exists a finite
continuation qt = q1...qltl+1...tn of q, one of whose derivations in G'' terminates in xy.

The following holds:

(5) The possible derivations of qt in G'' terminate at exactly k different local states from S''.

In order to show (5), assume that there were k' > k local states from S'' which are termination
points of derivations of qt. Use (3) to conclude that there must exist at least k' local states from
S', which are possible termination points for derivations of q1...qltl+1...tn-1. Iterate this argu-
ment to show that there exist at least k' local states from S'' that are possible termination points
for derivations of q1...ql. This is a contradiction.

Since qt can be derived in G'' terminating in xy, it can be derived in G1ϕ terminating in y (this
follows from a simple argument involving ϕ). Since yry' ∈ trans1, it holds that qtr ∈ C1.
Assume that there exists no x'y' ∈ σ''(y') such that xyrx'y' ∈ trans''. Then no derivation of qt in
G'', which terminates in xy, can be continuated by r. Use (3) and (5) to conclude that there exist
at most k-1 local states in S'' that are possible termination points for derivations of qtr in G''.
This contradicts the definition of k. Therefore, there exists x'y' ∈ σ''(y') such that
xyrx'y' ∈ trans''. 

The simulation theorem is a remarkable result. "C1 ⊆ C2" is a brute extensional statement,
which at a first glance does not appear to be technically well manageable. This impression is
nourished, for instance, by a "density theorem" that I mention without proof: if C1 ⊂ C2, then
there exist "interpolating" C1 ⊂ C ⊂ C2 with arbitrarily large phase generators. I.e., chains of
the type C1 ⊂ C2 ⊂ C3 ... are arbitrarily "erratic" with respect to the size of the corresponding
phase generators. Yet, such chains correspond to chains of simulations.
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The following is an ad hoc demonstration of the theorem's handiness:

Proposition 27: For two coherent languages C1, C2 with given generators G1, G2, it is decid-
able whether C1 ⊆ C2.

Sketch of decision procedure: Construct the phase generators G1ϕ, G2ϕ, and test whether there
exists an involution σ: G1ϕ → G2ϕ. This test can be carried out, e.g., by trying out all mappings
from Φ(C1) to P(Φ(C1)). (Of course, since coherent languages are regular, one could also
make use of decision procedures for inclusion of regular languages.) 

Summary of 3.1

• Interpreting words of formal languages as local observations of dynamic systems moti-
vates consideration of segmentable languages, i.e., languages that are closed under sub-
words.

• In segmentable languages, words act as filtering contexts for their potential continuations.
• Segmentable languages are conveniently described by generators, i.e., edge-labeled

directed graphs, where paths yield derivations of words.
• Regular segmentable languages are characterized by having finite generators.
• Coherent languages are regular segmentable languages that have cyclic finite generators,

which are called coherencies.
• For coherent languages, there exist universal continuations, i.e., infinite words that con-

tain all words of the language infinitely often. They can be interpreted as observations of
a dynamic system that performs a random walk.

• When a coherency is an epimorphic image of another coherency, the latter can be
interpreted as a symmetry breaking of the former.

• Phases are sets of words that can be interpreted as the semantic contents of maximally
informative observations of an oscillation generating system. They yield the local states of
a normal form of generators, i.e., phase generators.

• Phases are used to specify the notions of meaning and information of words, where the
former concerns the contents of the knowledge provided by a word (interpreted, again, as
an observation) about an observed system, and the latter a numerical value.

• Phase generators can be effectively constructed from arbitrary finite cyclic generators.
• The "natural" morphisms for coherencies are simulations. The simulation theorem states

that a coherent language is a sublanguage of another coherent language iff there exists a
simulation between their phase generators.

3.2  Dynamic symbol spaces

Dynamic symbol spaces are the DSS model of "long-term memory". The latter term is slightly
misleading, since long-term memory is commonly associated with the conceptual level of an
intelligent agent, whereas DSS assigns to every level on the periphery-centre axis its own
"long-term memory". Unfortunately, there seems to be no better term available to denote the
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fact that in some level or module, dynamic symbols are processed according to some long-
term, stable "law".

Throughout this and the subsequent subsections, I rely on the conceptual level as a source of
examples, because concepts are the most directly accessible type of dynamic symbols for
human readers. Thus, the dynamic symbols to be used in examples will typically be rendered by
formal symbols (i.e., symbols from the observer's theory) like apple , paradise , or buy . In
making use of such examples, I tacitly assume that there exists a reliable observation procedure
for the corresponding physical dynamic symbols in an agent, and that the external reference
mechanism of these dynamic symbols is empirically explained (cf. sections 2.4, 2.5). For
instance, the dynamic symbols in question might be neocortical activation patterns; however,
empirical neuroscience is not yet in a state to record such patterns on-line with high resolution.
A variety of conceptual-level dynamic symbols, which is easier to detect, are uttered words.
This is, however, problematic for another reason: words that are uttered reflect only a fraction
of what happens within the agent on a conceptual level, and they will do so in a sequential
form. A third variety of conceptual-level dynamic symbols is electronic activation patterns in an
artificial agent that is programmed symbolically on its conceptual level (in particular, a
programming technique based on DSS might be used). These patterns can be reliably detected
by their traces on a computer screen. The last kind of dynamic symbols that I want to mention
here are the concepts at work in the researcher him- or herself. The observation procedure is
introspection, a method whose value I hesitate to judge. Be this as it may, the important thing
to note is that an apple  symbol appearing in an example is not considered as a classical,
"platonic" category name, but as the formal rendering of an observable informational entity that
plays a dynamic role in an agent's information processing.

      

Fig. 3.5: A coherency as it might appear in a dynamic symbol space.

Dynamic symbols appear in a dynamic symbol space within coherencies. In subsection 3.1,
coherencies have been treated in an abstractly formal way. To afford the reader with a less
formal intuition, fig. 3.5 gives an example of how one of the coherencies in a dynamic symbol
space (on the conceptual level) could look like.
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The intuition behind this example is to see it as a generating device for words, i.e., sequences
of dynamic symbols like apple  cost  buy  or tempting  apple  Eve. In practice, such
sequences might be observed, e.g., in free association tasks.

Observe, in particular, the filtering effects of contexts. For instance, the sequences buy
apple  and apple  Eve are each derivable, whereas the concatenation buy  apple  Eve is
not: the continuation Eve of apple  is filtered out when apple  lies in the context of buy .
This simple mechanism for contextual influences on "associations" of dynamic symbols is one
of the central features of DSS. It grows directly out of the notion of segmentable languages
(cf. proposition 4), which in turn is derived directly from the background interpretation of
words as local observations.

Furthermore, observe that any two dynamic concepts can be interlinked by a suitable inter-
mediate sequence. For instance, buy  apple  tempting  apple  Eve is derivable. The
context buy , which formerly ruled out apple  Eve, is, one might say, "shadowed" by
tempting , which serves as a "semantic bridge" between a supermarket and a garden-of-Eden
setting. Using cyclic generators, i.e., coherencies, as the basic component of dynamic symbol
spaces is generally motivated by the considerations made in the preceding subsection before
definition 11. When the conceptual level is concerned in particular, an additional motivation
comes from the cyclic closedness that is characteristic for conceptual systems (cf. section 2.4).

Dynamic symbol spaces are, however, more complex than a single coherency. They consist in a
two-dimensional array of coherencies. Each of the dimensions contributes a particular aspect
to what is classically called "abstraction".

One way of approaching dynamic symbol spaces is to consider them as rough equivalents of
classical semantic networks for terminological knowledge, e.g., KL-ONE T-boxes. There are
two basic differences.

The first concerns the structure of dynamic symbol spaces vs. semantic networks. In the latter,
there exists a single abstraction dimension. The former, by contrast, are two-dimensional. Both
dimensions are related to classical abstraction, but they distinguish two factors of it. The first
dimension arises from the abstraction of dynamic symbols as observables, as discussed in 2.6.
The second dimension accounts for the fact that a given dynamic symbol can interact with
others in varying degrees of precision. This dimension is technically effected by a sequence of
symmetry breakings. It can be interpreted in terms of a computational temperature: when it is
"hot", the interactions are close to random, when it is "cool", they are specific and context-
sensitive.

The second difference between classical semantic networks and dynamic symbol spaces
concerns their use. A classical semantic network is accessed locally via the concepts contained
in it, with information pertaining to the accessed concept being read out. It can in principle be
accessed at several levels of abstraction simultaneously. A dynamic symbol space, by contrast,
can rather be compared to the global state space of a thermodynamic system. Its two
dimensions provide global states which are interpreted as global processing modes for the level
or module whose "long-term memory" it is. A helpful metaphor is to view the module as a
chemical reactor, and the global state as the temperature and pressure setting that controls the
processes in the reactor. A dynamic symbol space, thus, is "accessed" not at arbitrary points,
but, for some lapse of time, in a single point of its two-dimensional space, which characterizes
such a processing mode.
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So much for a first intuitive impression of the whole. Turning to the technicalities, I first
specify an abstraction relation for dynamic symbols in terms of an abstraction tree. The
definition is a formal reconstruction of abstraction hierarchies of the kind discussed in 2.6 (cf.
fig. 2.7). Note that the term "dynamic symbol" appears in the definition, instead of "symbol", as
in the preceding, formal-language-oriented subsection. Fig. 3.6 provides an example.

Fig. 3.6: An abstraction tree.

Definition 28: Let Σ = Σn ∪ Σn-1 ∪ ... ∪ Σ0 be a set of dynamic symbols, and let αj: Σj → Σj-1
be a mapping. Then ((Σj)j=n,...,0, (αj)j=n,...,1) is an abstraction tree :iff

(i) each αj is surjective,
(ii) if r ∈ Σj ∩ Σj-k, then r ∈ Σj ∩ Σj-1 ∩ ... ∩ Σj-k and αl(r) = r for l = j, j-1, ..., j-k+1,
(iii) no αj is the identity mapping.

The mappings αj are called abstraction mappings. When r = s, or for some j, k it holds that
r ∈ Σj, s ∈ Σj-k, and s = αj-k+1o...oαj(r), then s subsumes r. This is written as s ≥ r.

Condition (i) implies that in intermediate Σj there cannot occur dynamic symbols that have no
subsumees in the more specialized Σj+k. This reflects that an increase in resolution or differen-
tiation cannot lead to the disappearance of an observable. Conversely, all dynamic symbols
contained in Σj have subsumers in the more abstract Σj-k, since the abstraction mappings are
totally defined. This reflects the assumption that poorer differentiation or resolution cannot
make an observable disappear; at worst, still "something" is observed. This "something" is
rendered in fig. 3.6 by top .

Condition (ii) ensures that a dynamic symbol cannot occur at distant levels of abstraction
without occuring in all the intermediate levels, and that the abstraction mappings are the identi-
ty for dynamic symbols occuring in several of the Σj. This reflects an obvious "monotonicity"
of observations of empirical entities: by sharpening resolution and/or differentiation, the
information about an entity can only remain constant or increase. Note that the Σj need not be
disjoint; this reflects that neither an increase in resolution, nor in differentiation, neccessarily
yields a more informative observation of a particular dynamic symbol.
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Furthermore, note that in this definition no mention is made of the particular resolution and
differentiation contributions to abstraction. The formalism reflects only the net result of these
factors. The notions of resolution and differentiation belong to the background interpretation
of DSS.

The next two definitions prepare the specification of dynamic symbol spaces, which will be
given in definition 32. Definition 29 describes how a generator that uses dynamic symbols from
Σn can be stepwise abstracted via an abstraction tree.

Definition 29: Let ((Σj)j=n,...,0, (αj)j=n,...,1) be an abstraction tree, and Gn = (S, transn) a
generator, where transn ⊆ S×Σn×S. For j = n-1, n-2, ..., 0, let βj := αj+1oαj+2o ... oαn. For
j = n-1, n-2, ..., 0, define Gj = (S, transj) by

transj := {xβj(r)y | xry ∈ transn}.

This is more briefly written as Gj = βj(Gn) or, equivalently, as Gj = αj+1(Gj+1). Then,
(Gj)j=n,...,0 is an abstraction sequence of Gn with respect to ((Σj)j=n,...,0, (αj)j=n,...,1).

Abstraction sequences of generators are reflected in the generated languages in an obvious
fashion:

Proposition 30: Let (Gj)j=n,...,0 be an abstraction sequence of Gn with respect to
((Σj)j=n,...,0, (αj)j=n,...,1). Then, LGj = {βj(r1)...βj(rk) | r1...rk ∈ LGn

}. 

The next definition prepares the other dimension of dynamic symbol spaces.

Definition 31: Let (Gi)i=m,...,0 be a sequence of finite cyclic generators, such that Gi+1 is a
symmetry breaking of Gi. Then (Gi)i=m,...,0 is a symmetrification sequence of Gm.

The "space" spanned by an symmetrification sequence and an abstraction sequence is a
dynamic symbol space:

Definition 32: Let Gmn be a finite cyclic generator, ((Σj)j=n,...,0, (αj)j=n,...,1) an abstraction tree,
and (Gin)i=m,...,0 a symmetrification sequence of Gmn. Define for each i = m, m-1, ..., 0 an
abstraction sequence (Gij)j=n,...,0 of Gin with respect to ((Σj)j=n,...,0, (αj)j=n,...,1). Then
(Gij)i=0,...,m j=0,...,n is a dynamic symbol space. The generators Gij  are called the global states
of the dynamic symbol space.

A dynamic symbol space is, thus, a matrix (Gij) of generators. In definition 32, this matrix is
constructed from the rightmost lowest element Gmn by first establishing the rightmost column
as an symmetrification sequence, and then by specifying the rows from their rightmost element
via an abstraction sequence. Fig. 3.7 provides an example. Derivation paths in its global states
should be interpreted as temporal associations of dynamic symbols, which could be observed,
e.g., on instructing a subject to utter words that come into his or her mind while thinking about
human emotions.
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Fig. 3.7: A dynamic symbol space. The horizontal dimension is induced by abstraction of dyna-
mic symbols (from right to left), the vertical dimension to symmetry breakings (downward).

In definition 32, only the rightmost column of (Gij) is required to be a symmetrification sequen-
ce. However, it is straightforwardly confirmed that all other columns are symmetrification
seqences, too. Thus, going down in (Gij) means symmetry breaking, going right means
dynamic symbol specialization:

Proposition 33: Let (Gij) be a dynamic symbol space. Then Gij  = αj+1(Gij+1), and Gij  is a
symmetry breaking of Gi-1j. 

Both the abstraction and symmetrification sequence dimension carry aspects of what is
understood outside DSS as "abstraction". This should be clear for the abstraction dimension of
dynamic symbol spaces. As the symmetrification dimension is concerned, shifting down on the
symmetry breaking axis means that although the same dynamic symbols are used, they are so in
a more context-sensitive manner. For instance, in G12 (fig. 3.7) the sequence woman rage
can be derived, whereas in G22 the dynamic symbol rage  is filtered out by the context
woman. In other words, the use of rage  is more general in G12 than in G22. In classical
semantic networks, a generalization of usability is connected with classical abstraction. For in-
stance, in applications that rely on a KL-ONE terminologic knowledge base, it is always
permissible to substitute a concept by any of its superconcepts, but not vice versa; i.e.,
superconcepts are more generally usable than subconcepts. In classical systems, this generali-
zation of use is always coupled to a generalization of the very concepts concerned, whereas in
DSS these aspects are treated separately in the two dimensions of dynamic symbol spaces.
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Working with dynamic symbol spaces needs some habituation, when one is used to classical
semantic networks. In the remainder of this subsection, I comment on several points which
help to get a firmer grasp on these spaces.

Global states as "processing modes"

In the perspective of DSS, information processing is a collective process, in which many
dynamic symbols interact. The site where such interactions occur are self-organizing scenes or
streams (introduced in subsequent subsections). They are the DSS model of a conceptual-level
"working memory", or another information processing module elsewhere on the periphery-
centre axis. Each such module comes with its own dynamic symbol space.

A self-organizing stream is, in the DSS view, more like a chemical reactor than like an
algorithm or a calculation machine. Staying in the metaphor, information processing is assumed
to be influenced by global parameters, just like a chemical reaction is influenced by pressure
and temperature. Such global parameters could be, for instance, tiredness, performance
pressure, or somatic arousal.

DSS offers several parameters which can be set to control the global processing conditions of a
self-organizing stream. Two of these parameters are the dimensions of (Gij). A self-organizing
stream is modeled as a collective process for which a global state Gij  acts as a global
"processing mode". While processing is going on, the global state can be shifted, thereby
driving the collective process in its entirety along a trajectory in the corresponding dynamic
symbol space.

A very brief note on learning

A dynamic symbol space can always be expanded by adding new columns at its right side, and
(when Gmn is not a single cycle graph) new rows can be added at the bottom. This means that
a dynamic symbol space can be further elaborated. Since a dynamic symbol space is analogous
to long-term memory, an elaboration of it is a kind of learning. However, learning mechanisms
are not included in the present state of the DSS formalism, which focusses on short-term
dynamics.

Balance of the two dimensions

It seems plausible to assume that in many natural or artificial systems, the two dimensions of
(Gij) are not entirely decoupled. Specialized dynamic symbols will, as a tendency, be used in a
specific manner. In classical semantic networks, this coupling is strict. In dynamic symbol
spaces, global states that lie near the diagonal in (Gij) are particularly "balanced" in this sense.
The diagonal can be seen as the region in (Gij) that most closely resembles classical abstraction
hierarchies. When the coherencies from the diagonal are isolated from the rest, and written one
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below the other, what one gets is quite similar to a classical semantic network. Note, however,
that (Gij) need not be quadratic. Thus, "diagonal" is an approximate notion.

The strongest possible interdependence occurs when the abstraction sequence corresponds
exactly to the symmetrification sequence. This happens when the contextual filtering effects,
which are governed by the symmetrification dimension, correspond exactly to abstraction.
Such special dynamic symbol spaces are called balanced.

For an illustration, assume that apple  occurs in the contexts paradise  and buy  in some
global state that lies left from the diagonal (say, in G21), i.e., the words paradise  apple
and buy  apple  are derivable in G21. This "contextual promiscuity" of apple  in an off-
diagonal global state would, in a balanced dynamic symbol space, disappear in G22. There
would be two different specializations of apple , say, apple_of_Eden  and
apple_as_merchandise , corresponding to the two contexts. Generally, a balanced
dynamic symbol space is quadratic, and in a coherency on the diagonal, there is a one-to-one
correspondence between dynamic symbols and local states. Transitions leading into a particular
local state are all labeled by the same dynamic symbol, and every dynamic symbol occurs as a
label of transitions that lead into a unique local state. The "breaking" of local states in going
down the symmetry breaking dimension corresponds exactly to specializations of dynamic
symbols. Figure 3.8 sketches the example.

Fig. 3.8: A portion of a balanced dynamic symbol space. Parts of G11, G12, G21, and G22 are
shown. In the transition from G11 to G22, the local state characterized by the apple  transition
that leads into it becomes broken into two local states. Thus, apple  becomes specialized into
two versions, namely, apple_of_Eden  and apple_as_merchandise . The other local
states and dynamic symbols are not subject to symmetry breaking or specialization in this
example.
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The definition of a balanced dynamic symbol space is now obvious:

Definition 34:
(i) A generator G = (S, trans) is state-transition-balanced :iff

∀ xsx', yry' ∈ trans: s = r ↔ x' = y'.
(ii) A dynamic symbol space (Gij) is balanced :iff it is quadratic, and the generators on the

diagonal are state-transition-balanced.

The following proposition is easily verified:

Proposition 35: A balanced dynamic symbol space has the following properties:

(i) It is already determined by either Gnn and the abstraction sequence, or by Gnn and the
symmetrification sequence alone. It is thus essentially one-dimensional.

(ii) For j ≥ i, Gij features no contextual filtering, i.e., continue(s) = continue(rs) for all rs ∈ CGij
.

(iii) For j ≥ i, in Gij  = (Sj, transij ) it holds that for all xsx', yry' ∈ transij , if s = r, then x' = y'.
A local state z is thus uniquely determined by any of the dynamic symbols r that occur as
labels of transitions leading into the local state. This can be written as z = zr.

(iv) For i ≥ j, in Gij  = (Sj, transij ) it holds that for all xsx', yry' ∈ transij , if x' = y', then s = r.
A dynamic symbol s is thus uniquely determined by any of the local states z into which it
can lead in a transition. This can be written as s = sz.

(v) For every dynamic symbol specialization in the left triangular submatrix of (Gij) there
exists a corresponding "context specialization" in the right triangular submatrix and vice
versa. I.e., if a dynamic symbol r from Gij becomes specialized to r1, ..., rk in Gij+l  (both
Gij  and Gij+l  in the left triangular submatrix), then the local state xr in Gji  becomes broken
into xr1

, ..., xrk
 in Gj+li , and vice versa.  

It is debatable to what extent natural dynamic symbol spaces (on the conceptual level) are
balanced. The phenomenon seems common enough: a subconcept typically corresponds to a
contextual differentiation of usage of its superconcept.

Cognitive interpretation of the two dimensions

In which situations will an intelligent agent be in processing modes represented by global states
from different areas of (Gij), and what will induce a shift of these modes? Some relevant
observations can be gleaned from everyday experience.

• A factor that influences the position on the horizontal (i.e., abstraction) axis is the agent's
familiarity with the situation at hand. When a situation is relatively incomprehensible,
specialized dynamic concepts from the agent's stock will be inapplicable. The processing
mode will thus be pushed towards the left in (Gij), where dynamic concepts are more
general.

• Another factor concerning this dimension springs from communicative demands. When
the agent communicates with a relative novice, it is forced to recur to general categories
shared by both parties. For instance, a scientist explaining his or her approach to a grant-
deciding government executive will take care to use simple concepts. Note that even with
abstract dynamic concepts, it is possible to articulate specific information, by working in
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global states from the lower region of (Gij), where the use of dynamic concepts is highly
context-sensitive. One can express subtle things in simple terms.

• On the lower levels of signal processing, the horizontal axis reflects the quality of signals.
When signals are noisy, it is difficult to extract highly specific features. A module that
processes these features will be shifted towards the less specialized left region of its (Gij).

• On a conceptual level, the vertical axis reflects effects of mental acuity. When a human is
in a smalltalk situation, or simply tired, s/he will tend to use concepts in an undifferen-
tiated manner, i.e. s/he will be driven towards the upper regions in (Gij). A similar effect
can be expected from time pressure or other stress factors.

• In dreaming, concepts are often used in a fashion where contexts "cross over". This again
is an instance of modes from the upper regions of (Gij). The famous nonsense example
found in many linguistic textbooks, "colorless green ideas sleeping furiously", is of this
dream kind; it obviously has been invented in a processing mode far up in (Gij).

• Low-level modules processing signal features will be shifted upwards in their mode when
the features are, for themselves, precise, but mutually contradictory, such that they cannot
be interpreted in a conclusive manner.

"Thermodynamic" interpretation of the two dimensions

DSS, being a well-defined model of a particular brand of complex dynamic systems, should be
equipped with a principled interpretation in terms of statistical mechanics and information
theory. Only then will effects of self-organization be properly understood (cf. section 6).

Two preliminary observations on this behalf are suggestive. First, it seems that both dimensions
of a dynamic symbol space contribute to the entropy of self-organizing streams. This is, of
course, not a precise statement, since an entropy remains to be defined. It is, however, reason-
able to expect that an entropy measure will reflect the average information of words occuring
in streams. In the average, the information of a word grows when the global state is shifted
towards the bottom (symmetry breaking). Similarly, when it is shifted to the right
(specialization of dynamic symbols), the specialized version of a word will be, in the average,
more informative. At its present state, the formalism is not mature enough to prove whether
(or when) the increase of word information is strictly monotonous with global state shift. The
reason for this unsatisfying situation is that the information of a word is defined in terms of
phase generators, whereas a dynamic symbol space is made from arbitrary generators.

Second, the vertical dimension (i.e., the symmetry breaking dimension) seems to correlate with
temperature. Again, this remains a metaphorical statement as long as there is no well-defined
temperature measure. A closer look at this dimension reveals, however, that this choice of
metaphor seems the right one.

Consider two global states Gij  and Gi+kj. A word r derivable in Gij  is a concatenation r = r1...rn
of shorter words r1, ..., rn from Gi+kj. Seen the other way round, r1...rn can be regarded as
being the result of an "extraordinary" derivation procedure in Gi+kj. In such extraordinary
derivations, it is allowed to "jump" from certain local states to certain other ones. It is
suggestive to ascribe this jumping to some "local excitatory energy" available to the derivation
procedure (again, "energy" remains to be defined). In statistical thermodynamics, temperature
is interpreted by the average energy of micro-entities. By analogy, this would support an
interpretation of Gi+kj as being "hotter" than Gij . This also conforms with the common usage in
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emergent computation approaches of calling the superposition of noise on computations a
"computational temperature".

With due reserve, such observations indicate a route that a future analysis of DSS in terms of
statistical thermodynamics might take. In section 6, a related approach (Smolensky's "harmony
theory") is examined, where such an analysis is fully carried out. Harmony theory is, on this
behalf, a model for DSS.

Monotonic concept specialization

Monotonic concept specialization is mainly achieved by two mechanisms in classical semantic
networks. First, information can be added to a concept in order to specify a subconcept.
Second, information can be passed down from concepts to subconcepts, becoming specialized
on the way. Examples are role restrictions and role differentiations in KL-ONE (Brachman &
Schmolze 1985). All these mechanisms have counterparts in dynamic symbol spaces.

The inheritance of information, which becomes specialized itself, is a direct consequence of
abstraction and symmetrification. For instance, the word (i.e., the sequence of dynamic
symbols) apple  pick  might be abstracted to fruit  harvest  by going left on the
abstraction dimension. The subsumee apple  of fruit  inherits the continuation harvest ,
which becomes specialized to pick  in the process. This corresponds directly to KL-ONE role
differentiation. For an anlogue of role value restriction, compare fruit  harvest  plant
and apple  harvest  apple-tree . The former word can occur in a dynamic symbol space
by virtue of an abstraction of the latter (i.e., going left), or by virtue of a combined abstraction
and symmetrification (i.e., going left and up). Interpreting harvest  as a role that relates
fruit  to plant , it is restricted in its second argument from plant  to apple-tree .

The other mechanism of specialization, i.e. the introduction of new information, is not so easily
accomplished. Suppose, for example, that fruit  (in some Gij) becomes specialized to
apple  (in Gij+1), and apple  is to be equipped with the continuation fall-of-Man . There
seems to be no likely subsumer of fall-of-Man  which could serve as a continuation of
fruit  in Gij , so fall-of-Man  has to be newly attached to the apple context in Gij+1.

A technique for doing so is to exploit the top  concept as a source for fall-of-Man . One
would require that there exist a dynamic symbol top , which subsumes all others. Furthermore,
one would demand that there exist an expansion fruit  top  in Gij . The desired continuation
apple  fall-of-Man  in Gij+1 is then achieved by the canonical abstraction mapping
αj+1(apple ) = fruit  and αj+1(fall-of-Man ) = top . I.e., the "addition" of new informa-
tion is not really an addition out of the blue; technically, it is a specialization of the already
available, completely unspecific, top . To make this mechanism generally applicable, one has
to require that for every dynamic symbol r in every global state there exists the continuation r
top . A further natural generalization leads to the notion of conservative abstractions:
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Definition 36:
(i) An abstraction tree ((Σj)j=n,...,0, (αj)j=n,...,1) is conservative :iff Σj-1 ⊆ Σj for j = n, ..., 1, and

Σ0 = {top }.
(ii) (Gj)j=n,...,0 is a conservative abstraction sequence of Gn with respect to ((Σj)j=n,...,0,

(αj)j=n,...,1) :iff

(1) ((Σj)j=n,...,0, (αj)j=n,...,1) is conservative,
(2) if r1...rx ∈ CGj

, ri' ≥ ri, then r1...ri'...rx ∈ CGj
.

(iii) A dynamic symbol space is conservative :iff it is constructed from a conservative
abstraction sequence of Gmn.

In a conservative dynamic symbol space, "spontaneous" new continuations can be introduced
in Gij+1 through a specialization of top  in Gij , or of other "generic" dynamic symbols in Gij
(like thing  or event ).

Conservative dynamic symbol spaces can be written down economically, without explicitly
carrying all the abstract dynamic symbols through the entire abstraction dimension. For
instance, when the dynamic symbol space from fig. 3.7 were taken as a shorthand notation of a
conservative dynamic symbol space, then, e.g., G22 would tacitly be assumed to be, in fact, of
the form depicted in fig. 3.9:

Fig. 3.9: G22 from fig. 3.7, as it would be tacitly interpreted if the dynamic symbol space were
conservative.

From the perspective of the background interpretation of dynamic symbols as observables,
conservative abstraction mirrors a situation where, regardless of the resolutive powers of the
observation procedure, arbitrarily abstract findings will occur. This implies that in the observed
system arbitrarily de-differentiated entities are present. For dynamic symbol spaces as models
of "long-term memory" this means that even when the processing module is in a processing
mode from the bottom right area of (Gij), arbitrarily abstract dynamic symbols can occur. In a
cognitivistic interpretation of these dimensions, this corresponds to the assumption that even in
a state of mental acuity, one uses, amongst more specialized concepts, their abstract
superconcepts as well, which is plausible. Conservative dynamic symbol spaces appear natural
at a conceptual level of information processing; in this sense, the monotonic inheritance
mechanism that exploits conservativism is natural, too.
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Nonmonotonic effects, and again the role of the diagonal

Birds fly, Tweety is a bird, Tweety flies, penguins don't fly, Tweety is a penguin!, Tweety folds
its wings and swims. Figure 3.10 shows how this can be modeled in a dynamic symbol space.

Fig. 3.10: Flightless waterfowl in a dynamic symbol space. Small portions of some of the Gij
are shown. top  transitions are assumed to accompany other transitions; they are not shown.
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Several points concerning this example might need some explanation:

• Tweety  and Opus are dynamic symbols just as well as bird . DSS has no extensional
semantics; thus, there are no individuals or instances in the classical sense (more about this
in the next subsection).

• The AI  concept appearing in column 7 has been monotonically added by a specialization of
suitable top -transitions in column 6. The dynamic symbol space is assumed to be
conservative; the economic presentation mentioned above is adopted, which hides abstract
dynamic symbols in specialized global states.

• Nonmonotonicity is a combined effect of symmetrification and abstraction. Penguins are
construed as flightless derivates of birds by first breaking the bird  transition into two
variants, one of which swims and one of which flies, in the shift from G55 to G65. These
variants are then allocated to different dynamic symbols, i.e., to penguin  and robin , in
the step from G65 to G66.

Summary of section 3.2

• Dynamic symbol spaces are the DSS model of "long-term memory".
• Every processing module or level in a multi-module or multi-level architecture is

equipped with its own dynamic symbol space.
• A dynamic symbol space's basic components are coherencies. They yield a fundamental

mechanism for context-sensitivity, which is one of the central aspects of DSS.
• Roughly, a dynamic symbol space resembles a classical semantic network. But, the single

classical abstraction dimension gets split into two. Formally, a dynamic symbol space is a
two-dimensional array of coherencies. One dimension is due to abstractions of dynamic
symbols, the other to symmetry breakings of coherencies.

• DSS focusses on fast self-organization phenomena. In its present state, it omits long-term
learning.

• The coherencies in a dynamic symbol space yield global processing modes for self-
organizing streams.

• In a cognitivistic interpretation, such modes should be interpreted to mental states like
acuity or tiredness.

• In a thermodynamics-oriented interpretation, they correspond to global thermodynamic
states. Symmetry breakings can be interpreted in terms of computational temperature.

• In the special case of balanced dynamic symbol spaces, both dimensions essentially col-
lapse into one. Dynamic symbols are, then, essentially characterized by their mutual rela-
tionships.

• Monotonic and nonmonotonic inheritance can be reconstructed in dynamic symbol
spaces.
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3.3  Self-organizing scenes and streams

In this subsection, first a simple kind of a parallel dynamic system is described, namely, self-
organizing scenes. They are closed systems without output or input. Obviously, closed systems
are not suited as a model of an agent's subsystems. I introduce them mainly for expository
reasons, in order to fix the basic dynamics mechanisms first, without having to bother from the
outset about the complications afforded by input and output. A generalization to open systems
(self-organizing streams) is derived afterwards, by way of constructing a (not quite trivial)
input/output mechanism.

A self-organizing scene is always equipped with a dynamic symbol space, which serves as its
"long-term memory". This dynamic symbol space describes how certain "orderly" sequences of
dynamic symbol can be derived. However, such derivations of orderly sequences are not the
dynamics in self-organizing scenes. In self-organizing scenes, the information is represented
(just like in dynamic symbol space) by directed graphs with edges labeled by dynamic symbols.
Again, just like in the dynamic symbol space, sequences of dynamic symbols can be derived in
these graphs. But, these sequences are typically "disordered". They are concatenations of
mixed sequence fragments from the underlying dynamic symbol space. The dynamics of a
scene shuffles, duplicates, deletes, completes, abstracts or specializes these fragments in a
fashion whose net effect is that the "order" in the derivable sequences increases. I.e., increa-
singly long and interconnected sequences form, which "correctly" correspond to sequences
derivable in the underlying dynamic symbol space. This is likely to be a rather fast effect, and
the scene is likely to equilibrate swiftly to a stadium where it locally resembles a coherency
from its dynamic symbol space. In a nutshell, self-organization consists in the local conver-
gence of a disordered graph towards the order prescribed by long-term memory.

So much for a first intuition. More specifically, self-organizing scenes rest on the following
ideas:

• A self-organizing scene is a directed graph whose edges are labeled by dynamic symbols
from a dynamic symbol space (Gij).

• A self-organizing scene develops in time through self-organizing, collective processes,
which are incessantly active.

• The informational entities that interact in an self-organizing scene are words which
essentially come from a particular global state in (Gij). They are called associations. The
interaction of associations is stochastic and asynchronous. It is effected by a single kind of
local operation, microchanges.

• Global "working parameters" of a self-organizing scene are set by selecting a global state
from the corresponding dynamic symbol space. The selected global state rules certain
details of microchanges. It can be "shifted" in (Gij), which yields macrodynamics. Macro-
dynamic change is externally imposed on an self-organizing scene. It is typically slow in
comparison with microdynamic change. A suitable analogy from physical systems is the
temperature and pressure control of a chemical reactor.

This frame is now worked out in detail. I begin with some preparatory definitions centered
around the notion of associations.

For the remainder of subsections 3.3 and 3.4, let (Gij)i=0,...,m j=0,...n be a dynamic symbol space
with an underlying abstraction tree ((Σj)j=n,...,0, (αj)j=n,...,1), where Σ = Σ0 ∪ Σ1 ∪ ... ∪ Σn, and
let Gij  = (Sj, transij ).
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Definition 37:
(i) Let r1...rk, s1...sk ∈ Σk. Then s1...sk subsumes r1...rk :iff si ≥ ri for i = 1, ..., k.

(ii) Let r ∈ Σj+k, s ∈ Σj, s = αj-1o ... oαj+k(r). Then s is the Σj-abstraction of r.

(iii) Let r ∈ Σ, 0 ≤ j ≤ n. Then r(j) denotes the Σj-abstraction of r, in case that r ∈ Σi for some
i ≥ j. In other cases, put r(j) := r.

Comment: It is easily confirmed that this definition of r(j) is independent from the choice of a
particular i ≥ j. Intuitively, the (j)-operation "lifts" dynamic symbols belonging to some abstrac-
tion level that is more specific than level j, to the level j. For technical conveniance, the
(j)-operation is also defined when r cannot be subsumed by any s ∈ Σj. Dynamic symbols can
only become abstracted by the (j)-operation, not specialized. Using the abstraction tree from
figure 3.6, examples are thing (2) = thing , or Eve (1) = human.

(iv) s1...sk ∈ Σk is a Gij-association :iff k ≥ 1, and s1
(j)...sk

(j) subsumes some r1...rk ∈ CGij
.

r1...rk is called a Gij-interpretation  of s1...sk.

Comment: Intuitively, s1...sk is a Gij-association if it can be made a word from CGij 
by abstrac-

ting the si which are too special for Σj, and by specializing the si which are too abstract for Σj.
Note that the empty word does not count as an association.

(v) Let s1...sk be a Gij-association. Then the Gij-meaning of s1...sk is the set

Φij (s1...sk)   = {ϕ | ϕ is a phase in CGij
, and ϕ is a terminal point in some

       derivation of some Gij-interpretation r1...rk of s1...sk in the
       phase generator of CGij

}.

(vi) Let s1...sk be a Gij-association. Then the Gij-information  of s1...sx is

Hij(s1...sk) = -log2 |Φij (s1...sk)|/M,

where M is the total number of phases in CGij
.

Comment: (v) and (vi) essentially recall definition 21, with technical modifications to account
for the fact that a Gij-association can correspond to several words from CGij

, i.e., that it can
have several Gij-interpretations.

(vii) Let s1...skt, s1...skt' be Gij-associations, where t ≥ t'. Then t' is a Gij-specialization of t in
the context s1...sk :iff

t' = t, or
t > t', and for all t'' ∈ Σ, where t'' ≠ t', t ≥ t'', and s1...skt'' is a Gij-association, it holds

            that t'' > t' or t' > t''.

t' is a maximal Gij-specialization of t in the context s1...sk :iff there does not exist some
t'' < t' which is a Gij-specialization of t in the context s1...sk.

Comment: It can be straightforwardly shown that a maximal Gij-specialization of t in the
context s1...sk exists and is uniquely determined. It is simply called the Gij-specialization of t in
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the context s1...sk. In less technical terms, the Gij-specialization t' of t in the context s1...sn is
the most specific subsumee of t which preserves s1...snt' as a Gij-association, and which is still
uniquely determined. In connection with a microchange, the Gij-specialization of t in the
context s1...sn will be used to model the phenomenon that if some abstract t comes into the
scope of a context s1...sn, the context can induce a specialization of t. For instance, when
fruit  comes into the context of paradise  Eve, it should automatically be specialized to
apple . Another example is provided when G12 from fig. 3.7 is used. There, e.g., human is
the G12-specialization of top  in the context time  love  top . Note that human could be
further specified: time  love  top  man and time  love  top  woman are also G12-asso-
ciations. But this further specialization destroys uniqueness and is, therefore, excluded in (vii).

Associations occur abundantly in the sequel. The next proposition collects some easily verified
properties:

Proposition 38:
(i) If s1...sk ∈ Σk subsumes r1...rk, and r1...rk is a Gij-association, then s1...sk is a Gij-associa-

tion. I.e., abstraction preserves Gij-associations.
(ii) For all indices ij, it holds that every word of length 1 from Σ*, i.e., every s ∈ Σ, is a

Gij-association.
(iii) If r1...rk is a Gij-association, and i' ≤ i, j' ≤ j, then r1...rk is a Gi'j'-association.
(iv) If r1...rk is a Gij-association, then every subword of r1...rk is a Gij-association.
(v) If Gij  contains only top -transitions (as in the leftmost column in fig. 3.7), or if it is a

single-node, single-loop graph (as in the uppermost row in fig. 3.7), then every word
from Σ* is a Gij-association.  

A self-organizing scene develops in time. This is technically managed by conceiving a scene as
a sequence of (closed) configurations. A closed configuration is a phase coherency whose
transitions are labeled by dynamic symbols from Σ:

Definition 39: Let Σ be a set of dynamic symbols. Let G be an arbitrary coherency whose
transitions are labeled by dynamic symbols from Σ. Let C be the phase generator of the
language generated by G. Then C is a closed Σ-configuration. When no misunderstandings
are expected, C will be simply called a configuration.

Note that C is required to be a phase generator. The reasons for this will be discussed later in
this subsection.

The term "configuration" is adopted from the theory of cellular automata (Wolfram 1986),
which has, to some extent, co-influenced the DSS formalism. Both in cellular automata and in
self-organizing scenes, a configuration is a structured pattern of discrete informational entities,
which develops in time by virtue of local interactions. A crucial difference is that in self-
organizing scenes, the very topology of the pattern is arbitrarily inhomogenous and changes in
time (as will shortly become clear), whereas in cellular automata, the pattern is a temporally
stable, homogenous grid.

In a configuration C, words from Σ* can be derived that need have nothing to do with the
languages CGij

 that are generated by the coherencies in the underlying dynamic symbol space.
However, for each Gkl ∈ (Gij), the words derivable in C can be interpreted piecewise as
Gkl-associations:
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Proposition 40: Let (Gij) be a dynamic symbol space with an underlying set of dynamic
symbols Σ, and let Gkl ∈ (Gij). Let C be a Σ-configuration. Then, every word derivable in C
can be segmented into subwords that are Gkl-associations.

This is clear, since the "trivial" segmentation into subwords of length 1 yields Gkl-associations
(cf. 38(ii)). 

A configuration C can thus be perceived, for every Gkl ∈ (Gij), as a network of interconnected,
and possibly overlapping, Gkl-associations. At worst, these Gkl-associations all have length 1.
When Gkl is shifted upwards or to the left in (Gij) to become Gk'l', then 38(iii) implies that
words from C, which have been found to be Gkl-associations, will be re-established as
Gk'l'-associations. When a derivation path in Gkl, which yields a Gkl-association r, is of maximal
length (i.e., it is not a proper subpath of another derivation of a Gkl-association), and when Gkl
is shifted upwards or to the left in (Gij) to become Gk'l', then it is possible that the derivation
can be properly extended and still yields a Gk'l'-association. In the extreme, when Gk'l' is of the
"degenerate" kind mentioned in 38(v), every path in C yields a Gk'l'-association. In sum,
shifting Gkl upwards or to the left only increases the length of associations that can be found in
C.

An illustrative way to see configurations is to consider them as snapshots of a working memo-
ry. A working memory is typically loaded with only a small subset of the concepts available in
long term memory. Analogically, the set of dynamic symbols appearing in a configuration
should be a small subset of Σ.

I want to emphasize again, in order to preclude a suggestive misunderstanding, that the genera-
tion of words, either in C or in some Gij , is not what makes the dynamics of a self-organizing
scene. The dynamics stems from an altogether different kind of operation, microchanges,
which locally modify C, giving rise to a history C0, C1, C2, ... . Each of these configurations is
formally a generator of a language, but again, their "generating power" is not to be taken as a
dynamic process but rather as an implicit description of a language. The right way to see
C0, C1, C2, ... is not to look for the generation of words, but to watch the evolution of a
language. The self-organization aspect of the history is that the languages CC0

, CC1
, CC2

, ...
converge towards a sublanguage of CGij

, where Gij  is the coherency from the underlying (Gij),
which serves as the global processing mode for the history.

Microchanges are the crucial element in the whole affair. Before describing an algorithm for
their computation, I sketch an intuitive picture of how a microchange works.

Assume that Ci is a configuration in a history, which is currently under the "control" of a global
state Gkl ∈ (Gij). A microchange essentially consists in "moving" a Gkl-association along a
transition that branches from the association. Fig. 3.11 sketches such a move, which transforms
Ci into Ci+1. The association that moves is marked by bold arrows, the transition selected as a
"railway" for the move is shaded:
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Fig. 3.11: A microchange. Only a portion of configurations is shown, with edge labels omitted.

The general intuition behind microchanges is that when many of them are executed, they
thoroughly "mix" the configuration. Associations "migrate", using each other as "railways".
Mere shuffling, however, would be of little use. Important side-effects are connected with
microchanges. When a moving association hits a transition that can serve as a continuation of
the association, the association grows in length. Associations, so to speak, "hunt" through the
configuration (more correctly, through a sequence of configurations), "in search" of suitable
continuations. They can also compete with each other, "catching" pieces from each other.
Furthermore, labels of transitions can become specialized or abstracted to fit better with
passing associations. All these effects are accounted for in the definition of a microchange,
which, therefore, is not a simple one. The following definition gives the basic version of the
microchange algorithm.

Algorithm 41: Let C = (S, trans) be a closed Σ-configuration. Let Gkl ∈ (Gij). Then a
Gkl-microchange of C is computed as follows (compare fig. 3.12, where Gkl is G22 from fig.
3.7):

Step 1: Select a derivation assoc = x0r1x1...xn-1rnxn in C which yields a Gkl-association r1...rn.

In fig. 3.12a, 5rage 5top 1 is selected. This is a G22-association since rage  top  subsumes
the CG22

-word rage  scream . The transitions concerned are marked by bold arrows in fig.
3.12a.

Comment: assoc can be selected at random. The selected association need not have maximal
length. However, in the comments below I argue that self-organiziation is fostered by prefer-
ring "informative" associations for selection.

Step 2: Compute the direct continuations of assoc in C, i.e., compute the set cont of transitions
that continuate assoc:

cont = {xrx' ∈ trans | x = xn}
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In fig. 3.12a, cont = {1time 2, 1love 3, 1human3, 1man4} (dotted and broken arrows).

Step 3: Split cont into cont1 and cont2, where cont1 contains those transitions which make
Gkl-compatible continuations of assoc, (i.e., assoc continuated by these transitions yields again
a Gkl-association), and where cont2 contains the Gkl-incompatible continuations. When cont2 is
empty, then stop. The microchange, in this case, is an "empty change", which changes nothing.

In fig. 3.12a, cont1 = {1human3, 1man4} (broken arrows) and cont2 = {1time 2, 1love 3}
(dotted arrows). I.e., 5rage 5top 1human3 and 5rage 5top 1man4 yield G22-associations
rage  top  human and rage  top  man, whereas 5rage 5top 1time 2 and
5rage 5top 1love 3 yield rage  top  time  and rage  top  love , which are no
G22-associations.

Comment: In subsequent steps of the algorithm, the transitions contained in cont1 will be
"moved" along together with assoc, as indicated in fig. 3.11. The transitions from cont2 yield
the "railways" for the move. The association cannot move along a transition that would itself
be suitable as a continuation of the association. Once an association "locks" to continuations,
they cannot be cut off by moving the association. However, they can be cut off by other
associations that pass by in another microchange, and which compete for these continuations.

Step 4: Put

S1 := {x ∈ S | there exists some xnrx in cont1}, and
S2 := {y ∈ S | there exists some xnry in cont2}.

Modify trans to make trans':

trans' := trans  -  {xn-1rnxn}
 -  cont1
∪ {xn-1rny | y ∈ S2}
∪ {y rx | y ∈ S2, xnrx ∈ cont1}

In the example of fig. 3.12, S1 = {3, 4} and S2 = {2, 3}. The effects of computing trans' are
shown in fig. 3.12b.

Comment: In intuitive terms, trans' is computed from trans by "moving" the terminal end of
assoc along cont2 (assoc "disperses" during the move when cont2 contains more than one
element, since then the former single transition xn-1rnxn is replaced by several xn-1rny). The
Gkl-compatible continuations of assoc are carried along with the terminal end of assoc (thus,
they also may disperse).

Step 5: Select all transitions which directly continuate the moved assoc and which yield
Gkl-associations with assoc. Compute for the dynamic symbols r occuring in these transitions
the Gkl-specializations in the context of r1...rn, or their Σl-abstractions.

More precisely, consider the set cont+ := {yrz ∈ trans' | y ∈ S2, r1...rnr is a Gkl-association}.
All of these transitions are one-step continuations of assoc (after the move of the latter). For
each of the r ocurring in transitions from cont+, compute r' as follows:

If r > s for some s ∈ Σl, compute r' as the Gkl-specialization of r in the context r1...rn. In other
cases, put r' := r(l).

85



Now compute

trans'' := trans' - cont+ ∪ {y r'z | yrz ∈ cont+}

and change the configuration accordingly. Intuitively, step 5 adapts the abstraction level of
concepts which come into the contextual scope of the moved association.

Comment: In this step, assoc exerts some influence on the local environment where its "head"
has arrived after the move. This influence afflicts the level of abstraction of dynamic symbols in
its vicinity. They are specialized insofar as a specialization is uniquely determined by assoc (in
terms of yielding continuations of assoc); they are abstracted when their original level of
abstraction is more special than the one of the underlying global state Gkl.

Step 6: If in trans'' there are no transitions left that lead into xn, then delete xn and the
transitions that lead away from it. The result will be a cyclic generator.

Fig.3.12c depicts the result of steps 5 and 6. The continuations top  and human have become
specialized to man at several places. No abstraction of dynamic symbols occurs in the example.
The local state 1 is deleted together with its attached transitions.

Comment: The move of assoc may destroy the cyclicity of C. The local state xn, when it has no
transitions leading to it after the move, has become "inaccessible": no further move of another
association in another microchange can arrive at xn. Step 6 restores cyclicity. As a side effect,
this prevents C from breaking apart into disjoint substructures.

Step 7: "Renormalize" the generator, as constructed so far, to a phase generator C' (when there
is no "dispersion", a recomputation will usually be unnecessary). More precisely, if C+ is the
generator constructed in steps 1-6, then compute the phase generator of CC+. C' is the result of
the microchange.

A recomputation is necessary in the example. The result is shown in fig. 3.12d.

Comment: The reason for insisting on phase generators will be discussed in detail further
below.
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Fig. 3.12: The execution of a microchange according to algorithm 41.

Definition 42:
(i) A self-organizing scene (more specifically, a self-organizing (Gij)-scene) is a finite or

infinite, alternating sequence C0, Gi0j0, C1, Gi1j1, C2, ... of Σ-configurations and global
states from (Gij), which starts with a Σ-configuration and (in the finite case) ends with a
Σ-configuration, and where Cn+1 is derived from Cn by a Ginjn-microchange.

(ii) If C 0, Gi0j0, C1, Gi1j1, C2, ... is a self-organizing scene, then the sequence (Ci)i=1, 2, ... is its
history. A subsequence of a history, in which the global state is constant ≡ Gkl, is a
Gkl-passage.

The intentions behind the DSS approach suggest that the global state remain fixed for com-
paratively long intervals, i.e., that a history consists of relatively long Gkl-passages, and that
changes in global states are "smooth", i.e., that when a global state shift occurs at some point
in the history, then it is a minimal alteration from Gkl to Gk±1l or Gkl±1. In other words, macro-
dynamics should be slow in comparison with microdynamics. In cognitivistic terms, a global
mental state, like the degree of tiredness, has a slower dynamics than the dynamics of
reasoning itself; in thermodynamic terms, the global thermodynamic state of a system changes
slowly, compared to local interaction timing on the microlevel.
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The remainder of this subsection is devoted to a discussion of several points of interest concer-
ning microchanges and self-organizing scenes. References to "steps" mean the steps in algo-
rithm 41.

A closer look at microchanges

The basic idea of microdynamics is to enable associations to wander about in a self-organizing
scene, and, by meeting with suitable interaction partners, connecting into longer associations,
or competing for sub-associations. Microchanges lead to such a behavior. But the specific
details of algorithm are by no means cogent. There are many "knobs to turn" in the algorithm.
Some variations will have considerable impact on ergodic phenomena in self organizing scenes.
I hint at four variations of microchanges, which are of particular interest. Let them be called
type 1 - 4 microchanges, with the original algorithm yielding type-0-microchanges.

Type 1: In step 1, do not select associations at random but prefer informative associations, i.e.,
associations with a high Hkl value according to definition 37(vi).

"Preferring" more informative associations does not imply that one has to compute Hkl for all
associations in a configuration in order to select the most informative one. One of the many
alternatives to this catch-all approach is to volunteer a small random collection of associations
for the computation of Hkl, and then select the most informative of these candidates.

Preferring informative associations increases the average informativeness of associations in
long-term runs of self-organizing scenes. In cognitive terms, more informative associations
should be interpreted as being more salient. Preferring them means that salient parts in a self-
organizing scene are microdynamically more active than parts that are poor in information.

Type 2: Type-0-microchanges have an undesirable effect. Associations that "belong together",
in that they lead into a common local state and have there a common continuation, can become
separated. Fig. 3.13a,b shows how the (length 1) association Adam becomes separated from
Eve due to a type-0-microchange.

Fig. 3.13: An undesired side effect of a Gkl-microchange (from a to b) and its remedy (from a
to c). The coherency from fig. 3.5 is taken for Gkl in this example.
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Figure 3.13 also indicates how this counterintuitive side effect can be mended by a variation of
step 4. The basic task is to define which other transitions yr'xn leading into xn, besides xn-1rnxn,
have a "related meaning" to assoc = x0r1x1...xn-1rnxn such that they should move together with
xn-1rnxn. A natural approach is to use the Gkl-meaning of s1...sn, as defined in 37(v). More speci-
fically, define r' to have a related meaning to r1...rn :iff Φkl(r') ⊆ Φkl(r1...rn) or
Φkl(r') ⊇ Φkl(r1...rn). Note that it would not suffice to require that r' and r1...rn possess a
common continuation, as witnessed by the counterexample r' = paradise , r1...rn = r1 = buy .
They share the continuation apple  but should not be considered as having a related meaning.

With a notion of related meaning available, it is easy to adjust the definition of a microchange,
as indicated in fig. 3.13c.

Type 3: In step 4 (i.e., the "move" step), do not delete from trans all the transitions
{x n-1rnxn}  ∪ cont1 that are deleted in the original version of this step. I.e., select a subset
trans* ⊆ {xn-1rnxn}  ∪ cont1 and define

trans' := trans  -  trans*
∪ {xn-1rny | y ∈ S2}
∪ {y rs | y ∈ S2, xnrx ∈ cont1}

The net effect of this variant is less competition between associations, since a "moving" asso-
ciation can now copy parts of other associations instead of cutting them off. This fosters the
parallel development of associations that share subsequences, which might be helpful when an
exploratory type of processing is desired. Too little cutting, however, will be harmful. In the
extreme, when there is no cutting at all, a Gkl-passage is likely to degenerate to a stationary,
trivial single-phase configuration which looks like G02 in fig. 3.7. This happens because the
passage converges to the language (ΣC0

)*, where ΣC0
 is the set of dynamic symbols that are

present in C0. The phase generator of this language is the trivial single-phase generator.

Type 4: Use only a subset of S2 in step 4. This reduces the degree of "spreading" of
associations. In the extreme, use only one element of S2 for step 4, thus suppressing spreading
altogether. An intuitive metaphor for this alternative is to think of step 4 as "wave spreading"
(in type-0-microchanges) vs. "particle movement" (in the extreme case of type 4).

These variations (and others that remain to be invented) can be dynamically tuned during a
history: the first, by changing the stringency of preference, the second, by restraining or
relaxing the notion of semantic relatedness, the third, by adapting the percentage of transitions
that become deleted, the fourth, by adapting the percentage of S2 used for moving an
association. Such tuning offers a great amount of flexibility in the control of self-organizing
scenes - and makes their management a subtle affair. This should not come as a surprise.
Complex, collective processes are intrinsically difficult to guide (compare Forrest & Miller
1990 for analog remarks concerning classifier systems).
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Resonances

It may happen that in the course of a Gkl-passage, an association meets with itself and finds
itself a continuation of itself. A cyclic association forms. More generally, cyclic substructures in
a configuration, which are generators of a sublanguage of CGkl

, may occur. Such substructures
are a conspicuous and important phenomenon. Definition 43 specifies such resonances:

Definition 43: A cyclic substructure R of a configuration is a Gkl-resonance :iff CR contains
only Gkl-associations.

I have chosen the term "resonance" for its obvious associations with physical phenomena.
Carpenter and Grossberg (1990) use the same term in a related sense. Their "adaptive reso-
nance theory" (ART) describes recurrent, distributed neural network architectures for real-time
pattern recognition. The input can consist in single patterns, or sequences thereof. When a
pattern is found to match with a stored goal pattern, the system turns into a "resonant" state,
where activation can persist even after the pattern is removed from the input field. Thus, input-
free intervals can be bridged, and the interpretation of successive input is influenced. In DSS,
resonances likewise allow a self-organizing stream to decouple its activity from input timing
(cf. 3.4).

An obvious precondition for resonances to be formed in a history is that dynamic symbols in
C0, which can become interconnected in "cyclic" associations, exist. That taken as granted, the
likeliness of Gkl-resonance generation in a Gkl-passage and their stability, further depend on
many factors. It is promoted, for instance, by the following tendencies:

• There is a low degree of competition between associations. I.e., when a subset of all
available dynamic symbols can form several associations, then these associations are
prone to interconnect instead of competing destructively. As an example for "co-oper-
ative" dynamic symbols, take {apple , paradise , Adam, Eve}; as an example for
destructive competition, take {apple , Eve, paradise , buy , cost } (assuming the
example from fig. 3.5 for Gkl). In the latter set, Eve and paradise  compete with buy
and cost  for apple .

• The configurations concerned are small. The chance of an association's closing back in
itself is then increased for purely combinatorial reasons.

• Informative associations are preferred for microchanges (i.e., type 1 microchanges).
Informativeness correlates, to a certain degree, with association length. Long associations
have better chances of crossing themselves than short ones have.

• Associations with related meaning are coupled in a move (i.e., type 2 microchanges). This
fosters association growth by reducing competition and thus, again, increases the
combinatorial chances of associations to loop into themselves.

• There is much copying and little cutting (i.e., type 3 microchanges). This again promotes
association growth.

A resonance formation event typically induces a sudden increase in the information value Hkl of
the associations that are contained in the resonance. When an association r1...rx loops back
into itself, the initial sub-association r1 will abruptly become equipped with a (cyclically
infinite) context ...rx-1rx. Other elements of r1...rx will likewise gain such an infinite context
where they had only a finite one before. These additional contexts yield an increase in
information. This increase renders resonances particularly interesting when there is a
preference for informative associations (type 1 microchanges). Then, resonant associations
(i.e., associations occurring in a resonance) will be preferred over non-resonant associations in
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the selection for microchanges. Since an association selected for a microchange cannot
deteriorate in the microchange (it can only grow), a resonance will be markedly more stable
than the associations partaking in it had been before the resonance formed; microchanges will
favor the resonance's accreting further continuations over losing them to competing
associations. In complex systems terminology, a resonance acts as an attractor. In cognitive
terms, it is the DSS model of gestalt formation.

It may occur as a special case that at a point in the history, the entire configuration is a
resonance. Then, nothing more will happen, since within such a total resonance the set S2 (step
3) is always empty, i.e., microchanges do not effect any further change, i.e., the history is
stationary. To put this the other way round, effective change can occur only as long as the
language generated by a configuration is not a proper sublanguge of the "goal language" CGkl

.
The temporal development is, in this sense, conflict-driven.

Self-organization I: fast equilibration

The cumulative effect of microchanges is hard to predict analytically. This situation is charac-
teristic for collective computation. Computer simulations are indispensable for a deeper
understanding of self-organizing scenes. Under the simplifying assumption that the global state
Gkl remains constant throughout the history, some theoretical prognoses are, however, on the
safe side:

• The abstraction level of dynamic symbols is likely to converge towards Σl, when there are
enough concepts apt to form associations. This is mostly due to step 5 in the microchange
algorithm, which drives the abstraction level of association continuations toward Σl.
Another effect to the same end is that "singular" dynamic symbols, which do not associate
with others (and are therefore not susceptible to step 5), are prone to be deleted in step 6.

• When there exists a set Σres of dynamic symbols in C0, from which it is combinatorially
possible to form a Gkl-resonance R, and whose elements are not competed for by other
dynamic symbols in C0, then a resonance made from the dynamic symbols from Σres is
likely to form. Its formation would be almost certain, were it not for the potential deletion
of local states in step 6. The outcome of the race between deletion and spreading/copying
is impredictable. It can, however, be influenced by tuning microchanges as outlined
above. Once a resonance is established, without there being competing associations
outside it, it is immune to the deletion of local states in step 6.

• A pathological case: When C0 contains only disparate dynamic symbols, which cannot form
Gkl-associations of length greater than 1, the history is likely to degenerate into a stationary,
trivial single-phase configuration Cn = Cn+1 = Cn+2 ... = ({x}, {x r1x, ..., xrkx}), where
{ r1, ..., rk} is a subset of the dynamic symbols occuring in C0. The reason is that the
languages generated by the configurations in the history will converge to some (Σsurvive)*,
where Σsurvive is a subset of the dynamic symbols originally present in C0.

• When C0 contains mainly top -transitions, then either C0 is already a resonance in its
entirety, or it will very likely soon become so. As a consequence, the history becomes
stationary.
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• More generally, a possible stable outcome of a Gkl-passage is the generation of several
mutually non-competitive resonances (assuming type 2+4 microchanges). These resonan-
ces move along (or rather, "through") each other without affecting each other. Further-
more, each of these resonances is likely to acquire a maximal degree of internal connecti-
vity.

The effects mentioned in this list are fast. To understand what this means, one has to examine
the notion of time in self-organizing scenes more closely.

Microchanges can, to some extent, be computed in parallel at different places in an self-
organizing scene. At least this holds when they are truly local, i.e., when the renormalization in
step 7 induces only a local change in the vicinity of the moved association, which will often be
the case. Therefore, when C0, C1, ..., Cn is a Gkl-passage, there are typically many other routes
C0, C1', C2', ..., Cn-1', Cn, which also lead from C0 to Cn, and which are, therefore, essentially
equivalent to the first development. The moral is that a sequence of configurations is only a
technical contrivance to manage temporal development. It should not be misunderstood as
reflecting time proper. As a first approximation, one might define a subsequence of arbitrarily
permutable microchanges as a global system time step. The issue of time will be discussed at
greater detail below. At this point, it suffices to observe that a natural measure of "system
time" should be considerably coarser than "configuration sequence time".

For their full expression, the self-organization effects mentioned above apparently need system
time steps in the order of magnitude of the number of local states in a self-organizing scene. In
more suggestive terms, a Gkl-passage equilibrates in many respects during the interval of time
it takes for local effects to spread once over the width of configurations.

Such equilibration effects can be compared in their rapidity, e.g., with the development of
structure in self-organizing cellular automata (Wolfram 1984), with equilibration in many kinds
of neural networks in a single pattern recognition episode, with the equilibration of pressure
gradients in a reactor containing a gas, or with the interpretation of a conflict-free sentence in
humans. These fast processes have to be contrasted with long-term structure-forming
processes as, e.g., genetic adaptation of classifier systems, learning in neural networks,
biochemical adaptation of a cell to the chemistry of its environment, or long-term memory
learning in humans.

Unfortunately, the above considerations are essentially only plausibility considerations. This
situation can only be mended by extensive computer simulations, which yield statistical
support, or by a far-reaching mathematical analysis with methods from probability theory. Both
approaches are beyond what I can offer in this thesis.

Self-organization II: effects on a medium time scale

Equilibration leads to a rapid stabilization of only some characteristics of a Gkl-passage. Other
parameters settle to stability only in extended passages, or might even continue to fluctuate
indefinitely. Again it is difficult to predict what will happen without the experience of
simulations, but the following points are safe:
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• The set of dynamic symbols that appears in a Gkl-passage after an initial equilibration
towards Σl can only get smaller in an extended Gkl-passage. This is obvious, since in step 6
dynamic symbols can vanish from the scene, but there is no input mechanism for the
introduction of new dynamic symbols.

• Interesting medium-term activity can be expected when several, competing resonances
form. Then, there exists no clear winner attractor state for the self-organizing scene. The
resonances can persist potentially for an indefinite time, growing and shrinking due to
cutting portions out of each other. In the long run, however, almost certainly a population
of non-competing resonances "survives".

Cognitive candidates for such medium-range phenomena are conflict-loaden processes, e.g.,
the interpretation of garden path sentences, or ambiguous pattern recognition tasks.

A crucial parameter is the very size of configurations. Uncertainties arise from the renormali-
zation to phase generators in step 7. The reasons for step 7 will be discussed below. A micro-
change can lead both to an increase and to a diminuation in the size of the phase generator. In
case there is a persistent net growth of configurations, the growth velocity is crucial for the
likeliness of resonance formation. If it is high compared with the migration velocity of
associations, the latter will persistently be "stretched" and thereby hampered in looping back
into themselves.

Size development is affected by all of the variations of microchanges mentioned above, and by
the choice of Gkl. The latter is particularly effective for shrinking configurations: in the
extreme, shifting l to 0, i.e., abstracting dynamic symbols to top , rapidly yields trivial single-
phase configurations.

In many cases, a self-organizing scene will resolve initial competition conflicts by deletion and
resonance formation and become essentially uninteresting, if not entirely stationary. Global
state shifts may then become relevant as a means for reviving activity. However, in order to
arrive at interesting long-term developments, it seems more natural to allow external input (cf.
3.4).

Why phase generators?

There are several reasons for the renormalization step 7. One is that the renormalization is apt
to simplify the generator constructed in steps 1-6, as is indeed the case in the example of fig.
3.12.

More subtle, and much more important, reasons concern the question of what exactly, in fact,
is modeled in a self-organizing scene. It would be suggestive to interpret a self-organizing
scene (or stream) as a model of the physical realization of an information processing module.
The self-organizing scene's structure would, then, mirror physical structure. E.g., dynamic
symbols that occur at different transitions could be interpreted to correspond to local neural
activation patterns, and the topological structure of a configuration could be interpreted to
reflect the geometrical distribution of these patterns on a cortical surface.
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However, this interpretation is not intended. There are better models of physical information
processing structures than configurations - to wit, connectionist models.

A self-organizing scene is intended, much more abstractly, to model the state of a self-
organizing information processing module in purely informational terms. A self-organizing
scene's only property of interest are the words and associations derivable in it, i.e., the
languages generated by its configurations. These words are the only observables that lie in the
focus of the DSS approach, and of which a formal account is attempted. In this sense, all other
generators that yield the same language as some given Ci in a history are equivalent, since they
state the same about the observables.

But, different generators can lead to incommensurable developments of a self-organizing
scene. When Ci and Ci' are two equivalent configurations (i.e., CCi

 = CCi'), and some
microchange leads from Ci to Ci+1, it can happen that there is no microchange which can lead
from Ci' to a generator equivalent to Ci+1. Structural differences between equivalent Ci, Ci' can
thus act as "hidden variables". The reason for using phase generators, then, is to resort to the
"purest" representation format possible for the technical handling of the informational content
of a self-organizing scene. Phase generators represent, in their very structure, nothing but what
is essential for the interaction of associations, namely, contextual influences. There is no
contingent additional structural information in a phase generator that might induce artifacts to
bear on the development of languages in a history.

Another, equally fundamental reason for phase generators is that they provide a principled
answer to the question of what constitutes an "instance" of an informational entity. On the
conceptual level, for instance, the question arises of how to model one's ability to think of two
distinct apples simultaneously. In classical symbolic representation formalisms, this presents no
difficulties: simply introduce two instance variables apple_1  and apple_2 , assert
apple_1  ≠ apple_2 , and let model theory take care of making sure that there are, in fact,
two apples. In DSS, there is no difference between individuals and classes. Indeed, this
distinction does not make any sense here; there are neither individuals nor classes. The theory
is all about observables; both Eve and apple  are observables, namely, activation patterns in a
brain (for instance); and there is nothing more to be said about it. Then, how can an agent
think of two distinct apples?

The answer is that two apples occur in one's mind if and only if the two are distinguished
informationally. In DSS terms, two apples are indeed two apple s when the latter occur in
separable contexts and give rise to separable continuations. This can be conveniently expressed
using phases:

Definition 44: An occurence of a dynamic symbol r in a coherency G is a phase ϕ of CG such
that there exists some transition ϕ'rϕ in Gϕ.

Thus, there are as many distinct apples in a configuration as there are phases which can be
reached by an apple -transition. This is the other reason for phase generators.

An intriguing side effect of the renormalization to phase generators in step 7 is that sometimes
a large and complex self-organizing configuration can "collapse" into a much simpler one. This
phenomenon is accompanied by a merge of dynamic symbol occurences. Intuitively, this
models an "Aha!" effect, where disparate notions suddenly unify.
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For the same fundamental reasons as the ones just mentioned, one should require that the
generators Gij  used in a dynamic symbol space be phase generators. The only reason for not
doing so is the imperfect present state of the formalism. In order to use phase generators in
(Gij), the abstraction and symmetrification operations have to be tuned to the special
restrictions of phase generators. I have started to work in this direction, but it appears that this
requires a considerably deeper understanding of coherent languages, and morphisms between
generators, than is presently within my reach.

Time and structure

I have already mentioned that the succession of configurations in a history is a technical
contrivance rather than a natural model of time. Arriving at a satisfying account of time is
difficult. Several disparate observations and requirements must be reconciled, among them the
following:

• It is desirable to interpret time not as an extraneous parameter, which orders and measures
change, but as change itself. Such a qualitative, non-parametric account of time is readily
provided by discrete dynamic systems like cellular automata or finite automata (and by self-
organizing scenes, too, but not as convincingly). Here, time steps are identical to
qualitative changes.

• It is, however, also desirable to have a quantitive measure for time. One would like to be
able to state that some process is slower than another. The common method to make this
possible is to use a parametric time as a universal reference. An alternative is to define
systems of interacting subsystems, each of which comes with its own qualitative time.
These subsystems could then provide relative time measures for each other. How this idea
becomes effective for DSS will be indicated in 3.4.

• In many physical systems, as well as in self-organizing scences, change is caused by local
mechanisms. It is unnatural to assume a global clock for the coordination of parallel local
changes. Technically, this leads to some of the well-known difficulties in the coordination
of parallel processes. On a theoretical level, this leads to relativistic notions of time.

• One will often find a duality between time and structure. When a particular association is
traced through a history, it can be observed how it grows at its "head" and dissolves from
"behind". An association, thus, can be considered a transient trace of an ongoing process.
In this perspective, a configuration is a blurry image of an ongoing development rather than
a sharp standstill picture. The directedness of a transition can be interpreted temporally and
structurally. It is temporal insofar as it reflects the direction of growth and dissolution of
associations (incidentally, Sandewall (1993) arrives at a strikingly similar picture of head-
growing/tail-dissolving memory elements in a logic-oriented description of situated reaso-
ning). A transition is passively structural in that it yields (oriented) "railways" for moves of
other associations (cf. the dotted arrows in fig. 3.12). But then, again, these "railways" also
have a temporal aspect: when an association moves along it, then the association is earlier
at the beginning of the transition than at its end.

• A more global dualistic aspect of associations is that they are interlinked with each other,
thereby forming a grid, which serves as a frame of reference for the coordination of
interaction between associations. The cognitive phenomenon thus captured is that of a
relatively stable mental image. For instance, when one reasons about a task with a given
goal, the goal is present in mind as a relatively persistent image, while considerations about
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how to achieve the goal form an ongoing process. Note, the stability of such images is not
absolute. They are made from the same mental stuff as the ongoing considerations
themselves. The roles of structure vs. process are prone to become exchanged; mental
images are "frozen processes" which can unfreeze (the term is borrowed from Ipke
Wachsmuth). This becomes particularly apparent in informational structures that are
intrinsically temporal, as melodies or rhythms. Lashley (1951) lists many other examples
from all levels of the periphery-centre hierarchy. He claims that the question of how
"spatial" representations are transformed into "serial" ones (and vice versa) lies at the
bottom of understanding the brain. The procedural vs. declarative knowledge debate in AI,
which has exhausted itself rather than having resolved the question, is a more recent
witness of the problem's impact. When massively parallel processing of symbolic informa-
tion gains in influence, the question will predictably resurface.

The basic idea of a dynamics that locally changes the topology of a graph is partially inspired
by Zuse's (1975) proposal to investigate "net automata". Net automata are a generalization of
cellular automata, where the topology of the cell grid is modified by local rules. Zuse views net
automata as a contribution to theoretical physics, aiming at "computational" models of space-
time at a very small scale. He examines from various angles how such a conception of space-
time might correlate with insights from relativity theory and quantum mechanics. Though
Zuse's aims can hardly be compared with the intentions underlying DSS, it is interesting to note
that in that case, too, a topology-changing dynamics directly leads into fundamental questions
concerning time and structure.

This is all more enigmatic than one would like. An integration of these issues would be a great
achievement. It is not surprising that I did not yet find a way to accomplish this task. No
presently available theory of complex systems  -  physical, abstract mathematical, computa-
tional, or psychological  -  offers a comprehensive account of local interactions vs. global time,
qualitative vs. parametric time, different time scales, or time vs. structure. Before this is done,
our understanding of complex processes in general, and of self-organizing information
processing in particular, remains incomplete. DSS might be an interesting starting point for
further investigations in this area, since one of its basic constructs, namely, associations, has
dual temporal/structural characteristics.

Self-organizing streams

I shall now describe how self-organizing scenes can be generalized to account for input and
output, arriving at self-organizing streams.

Equipping self-organizing scenes with I/O-facilities could be done ad hoc by defining an open
configuration, which has transitions leading out of it, and into it (fig. 3.14a). Input would be
effected by appending new transitions to the outgoing transitions, output by deleting or
copying ingoing transitions (fig. 3.14b).

Note that input works via outgoing transitions since this is the continuation direction, i.e., the
direction in which words are derived. This needs some habituation, since one is accustomed to
represent input into a system graphically by arrows directed into a system, rather than by
arrows pointing outward. However, the unusual direction is quite correct. The directed
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transitions in DSS generators can be interpreted temporally (cf. 3.3). Traversing a path of
transitions can be considered as going with time. In this view, the c'-transition in fig. 3.14b
comes later than the c-transition. This correctly reflects the fact that c' is inputted later than c.

The problem with the simple picture of fig. 3.14b is that configurations should be phase
generators. But, a phase generator cannot be "open", since it is by definition a cyclic structure.
This difficulty can be overcome by introducing a special dynamic symbol ex  (from external,
exterior), which does not belong to the underlying dynamic symbol space, and fully cross-
connecting the terminal local states of the open configuration with the initial local states by ex -
transitions (fig. 3.14c). The resulting generator is cyclic and can be transformed to a phase
generator. In this phase generator, a unique ex -transition appears (fig. 3.14d), which serves as
the generator's I/O-port. The step from Fig. 3.14d to 3.14e replays the I/O-events from fig.
3.14b in the phase generator.

Fig. 3.14: How to construct an open configuration while leaving it formally closed.
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I call ex  a "dynamic symbol" for the sake of terminological simplicity, although it seems ques-
tionable whether one should consider the "exterior" of an information processing module as an
observable.

For the remainder of this subsection, let (Gij)i=1,...,m j=1,...n, where Gij  = (Sj, transij ), be a dyna-
mic symbol space with a Σ-abstraction tree ((Σj)j=n,...,0, (αj)j=n,...,1).

The formal definition of an open configuration should now cause no difficulties:

Definition 45: Let C = (S, trans) be a phase generator with dynamic symbols from Σ ∪ { ex },
where ex  ∉ Σ. Then C is an open Σ-configuration :iff (i) there exists exactly one transition
(x, ex , x') ∈ trans that is labeled by ex , and (ii) this is the only transition between x and x',
and (iii) x ≠ x'. More precisely: C is an open Σ-configuration :iff (i) ∀ (x, ex , x'),  (y, ex , y') ∈
trans: x = y and x' = y', (ii) ∀ (x, r, x'),  (x, s, x') ∈ trans: r = ex  → s = ex , (iii) ∀ (x, ex , x')
∈ trans: x ≠ x'.

The definition of a microchange must be slightly adjusted in order to prevent moves which
transgress the "exterior" represented by ex .

Algorithm 46: A Gkl-microchange for an open configuration is defined as in algorithm 41,
with the following modification of step 2:

Step 2': Compute the direct non-ex  continuations of assoc in C, i.e. compute the set
cont = {xrx' ∈ trans | x = xn, r ≠ ex } of transitions that continuate assoc and that are not the
ex -transition.

For open configurations, microdynamics is augmented by local input and output operations:

Algorithm 47: Let C = (S, trans) be an open configuration, and xex x' the ex -transition. Let
input = {r1, ..., rn} ⊆ Σ. Select some set {y1r1x, ..., ymrmx} ⊆ trans. Introduce a new local
state y'. Put intrans := {y'rix | ri ∈ input}. Put

trans' := (trans - {y1r1x, ..., ymrmx}) ∪ {y1r1y', ..., ymrmy'} ∪ intrans.

Compute the phase generator C' that corresponds to the generator (S ∪ {y'}, trans'). The
entire operation leading from C to C' is a micro-input . The set input is the input  of the micro-
input.

Output events are a variety of microchanges. Adapt algorithm 41 as follows:

Algorithm 48:

Step 1: Instead of assoc, use the transition xex x' in the remainder of the algorithm. Step 2
remains unchanged. Step 3: Instead of splitting cont into cont = cont1 ∪ cont2, split it
arbitrarily into two nonempty subsets cont = contreadout ∪ contkeep. Use contreadout instead of
cont1, and contkeep instead of cont2 in the rest of the algorithm. The other steps remain
unchanged with the exception of step 5, which is ignored.
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The entire operation leading from C to C' in this variant of algorithm 41 is a micro-output .
The set

output := {r ∈ Σ | x'ry ∈ contreadout}

is the output of the micro-output.

It is straightforward to show that all microdynamic operations leave the unique existence of the
ex -transition intact:

Proposition 49: Microchanges, micro-inputs and micro-outputs transform open configurations
into open configurations. 

A self-organizing stream is defined in perfect analogy to self-organizing scenes:

Definition 50:
(i) A self-organizing stream (more specifically, a self-organizing (Gij)-stream) is a a finite

or infinite, alternating sequence C0, Gi0j0, C1, Gi1j1, C2, ... of open Σ-configurations and
global states from (Gij), which starts with an open Σ-configuration and (in the finite case)
ends with an open Σ-configuration, and where Cn+1 is derived from Cn by a Ginjn-micro-
change, a micro-input, or a micro-output.

(ii) If C 0, Gi0j0, C1, Gi1j1, C2, ... is a self-organizing stream, then the sequence (Ci)i=1, 2, ... is
its history. A subsequence of a history, in which the global state is constant ≡ Gkl, is a
Gkl-passage.

The remainder of this subsection is devoted to a discussion of several topics of interest.

A closer look at input and output

Input can come from sources of different nature. The selection step should be adapted to the
particulars of the situation. I treat two different cases without going much into detail.

First, input can come in singular events "out of the blue"; different micro-inputs don't have
much to do with each other at first sight. This is characteristic, e.g., for early stages of difficult
diagnosis tasks, where input consists of symptoms which are seemingly disparate.

The selection of the yirix in algorithm 47 should, in these cases, maximize information gain in
the sense of definition 37(vi). In addition, one should augment the input procedure by adapting
the abstraction level of the input elements analogous to step 5 in algorithm 41.

Second, in contrast to coming in disparate "out of the blue"-events, input can be already
organized. This is characteristic, e.g., for signal processing. Input should, in such cases, be
considered as coming in a band, where a band itself is a non-cyclic generator. Fig. 3.15
sketches an example:
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Fig. 3.15: An input band, and how it is coupled to the input port of an open configuration.

In a micro-input that reads from an input band, the direct successors of a local state of the
input band are fed into the open configuration, yielding by their labels the input set required in
algorithm 47.

In direct analogy to input bands one can define output bands. The band conception of I/O-
organization is particularly helpful when several self-organizing (Cij )-streams are to be coupled
together (see further below). They can be linked by bands of finite length.

I have called the ex -transition a "port". Elaborating on this computer terminology a bit, the
transitions leading to and from this transition in an open configuration could be called input
and output "channels". An open configuration thus accepts input, and generates output, on
several channels in parallel. Their number can change in time.

However, the channel metaphor is not quite satisfying, since all input "channels" have access to
the same input information. This is a result of the input band's being "slimlined" in order for it
to pass through the "needle's eye" of the unique local state x. The same proviso holds for the
output side. As a consequence of the band's "slimlining", self-organizing streams of the type
described above cannot properly deal with truly parallel input, which would be required, e.g.,
for a retina-like module. One can, however, elaborate the basic form of self-organizing streams
in order to arrive at a processing of truly parallel input and output bands. I hint at two possi-
bili ties:

• The input band's original topology can be reconstituted within the self-organizing stream,
after it has passed through the "needle's eye" x. The reconstitution can be achieved by a
suitable selection of the set {y1r1x, ..., ymrmx} in algorithm 47. This leaves the definitions
from above as they are, but requires an extra, somewhat unnatural memory mechanism in
order to reconstruct the band topology after its passage through x.

• The definition of a self-organizing stream can be generalized by dropping the requirement
that there is only one ex -transition. Essentially this means that in fig. 3.14b the terminal
states are not fully cross-connected by ex -transitions with the initial states. The resulting
set of local states {x ∈ S | there exists an ex -transition xex x' ∈ trans} acts, then, as a kind
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of "input retina" of the self-organizing stream. Analogically, an "output surface" exists. The
details of this approach have to be spelled out with some care, since it must be guaranteed
that the open configuration does not fall apart into disjoint structures.

Self-organization III: "dissipative" self-organizing streams

An interesting perspective on input is to consider it not as a source of "meaningful" material,
but as a source of "energy" that helps to maintain the self-organizing stream in a state "far from
equilibrium". Analogically, output can be used not only for reading out "results", but also as a
sink for "used-up" informational entities. In thermodynamic terms, this corresponds to a
dissipative process. Examples for dissipative processes is the functioning of a car engine or a
biological cell. Energy-rich substances (gasoline or carbohydrates, fats, and proteins) enter the
device; heat and low-energy compounds leave. Such a flow of energy, which is coupled to a
"degradation" of the energy form, is a thermodynamic precondition for interesting (in
particular, adaptive) forms of self-organization (cf. Prigogine & Stengers 1980).

In the case of self-organizing streams, the "energy-rich" substance consists in top -transitions
(or more generally, in transitions of relatively abstract dynamic symbols). What happens when
micro-inputs grant a continual supply of "fresh" top -transitions, and when there is no other
kind of input? For a discussion, assume that the global state Gkl is comparatively specific, i.e.,
that it comes from the lower right region of (Gij). Then, the most notable effect of top -
transitions is that they are likely to become specialized as soon as they are hit by moving
associations (in step 5 of the microchange algorithm), thereby adding new continuations to the
association. For instance, taking the coherency from fig. 3.5 for Gkl, when an association
apple  cost  hits top , the top -transition will become specialized to a buy -transition, and
the association apple  cost  buy  will form.

The "low-energy substances", which leave the system, are any transitions that happen to be
destructively read out in micro-outputs in a random fashion. There may be top -transitions
among them, but on the average, the abstraction level of outputted transitions will be lower
than the maximally abstract level Σ0 of top .

The net effect of such a "dissipative mode" for a self-organizing stream is that the associations
contained in it can wander through the underlying Gkl. Since new dynamic symbols can be
made from top  raw material, the languages generated by open configuarations can
successively encompass symbolic material that is not initially present in C0. On a conceptual
level, such a history resembles dream-like, "free" associations. Fig. 3.16 captures the essentials
of such a dissipative "dream machine".
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Fig. 3.16: A dissipative dream engine.

Supplying fresh top -transitions can (even should) be used as an additional mechanism in
combination with another, "meaningful" input band. The self-organizing stream will then be
able to exploit a constant supply of top -transitions to fill gaps in the dynamic symbol material
provided by the input band, thereby increasing its powers to derive long associations and
resonances.

Self-organization IV: equilibration and resonance formation in an open system

The remarks made in 3.3 concerning equilibration and self-organization largely carry over to
self-organizing streams. The general picture, then, of a self-organizing stream is one of an open
system with some fast self-organization effects, which will, however, not reach a long-term
equilibrium due to incessant input and output. Since micro-inputs and micro-outputs are
essentially independent from microchanges, a self-organizing stream is an anytime-algorithm,
which (self-)organizes its input. When the frequency of microchanges is high compared to
micro-inputs and micro-outputs, the degree of organization achieved is high. When it is small,
the stream essentially degenerates to a mere transmission line, which does not change the input
band much before it is again outputted.

This general picture is, however, a simplification. Due to the ex -transgression prohibition,
some notable special effects arise. For a discussion of these effects, the notion of an open
configuration's body is helpful. The body is simply the open configuration with the ex -
transition removed:
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Definition 51: The body of an open configuration C = (S, trans) is the generator (S, trans'),
where trans' = trans - {xex x'}.

A first observation is that while an open generator is by definition cyclic, its body can, in the
extreme, be entirely cycle-free, or even consist of separate linear paths which start in x' and
terminate in x (fig. 3.17a). When all of these derivation paths yield Gkl-associations,
microchanges will be of the empty type, i.e., they do not effectively change the open configu-
ration. When such impasses occur, further interesting microchange activity can only occur after
input has introduced again some "fresh disorder" (fig. 3.17b).

However, the fresh disorder might soon be absorbed by microchanges, and the stream might
again turn stationary (fig. 3.17c). The way out of such a situation cannot solely lie in more
input. The self-organizing stream is, in such cases, not really self-organizing; at best, each
inputted transition runs through a few equilibrative microchanges, before it is either deleted or
linked into a stationary association.

More interesting and comprehensive self-organization phenomena can only arise when the
body contains one or several cyclic substructures which interconnect its "laminae" (fig. 3.17d).
Such substructures are a precondition in a self-organizing stream for associations from
different parts of the body to meet and interact. Of course, such substructures can themselves
be modified by microchanges.

Fig. 3.17: Things that can happen to bodies. a) - d) are snapshots from an extended passage.
For graphical clarity, the passage contains no micro-outputs. Micro-outputs would "eat up"
bodies from left to right.
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Since cyclic substructures are important to overcome impasses in cycle-free bodies, it is
important that they can form spontaneously in a cycle-free body. Fortunately, microchanges
can generate cycles in a cycle-free body. The mechanism is geometrically similar to the shear-
induced formation of vortices in a fluid. Figure 3.18 shows a simple example:

Fig. 3.18: The formation of a cycle as a by-product of a microchange. Only a portion of a body
is shown.

Cyclic substructures in the body can or cannot be resonances. When the frequency of micro-
changes is high compared to the frequency of micro-inputs, the considerations made in the case
of self-organizing scenes carry over to streams. This means that cyclic, but non-resonant
substructures are likely to produce resonances, provided that suitable dynamic symbols are
present. When no potentially resonance-supporting dynamic symbols are present, the
considerations from self-organizing scenes suggest that the cyclic substructure decays to a
trivial single-state subgenerator. Then again, the body becomes stationary with respect to
microchanges. In sum, only when resonances form in the body, can it become relatively
autonomous in the sense that interesting activity can persist independently from micro-inputs.

These observations lead to a refined general picture of a self-organizing stream. When there
are no cycles in the body of an open configuration, there is but a superficial equilibration-type
of self-organization, which is essentially coupled to input time. Only when feedback loops
giving rise to resonances appear within the body, can the internal microdynamics become
temporally decoupled from input.

This corresponds to a basic introspective experience: one can detach one's mental processing
from input flux only when relatively stable mental images are formed. When this is not the
case, as in a roller coaster situation or in viewing agressively short cut video clips, one is
"breathlessly" coupled into the stream of experience provided by sensory input, without much
chance of cognitive detachment.

When a resonance exists in the body, it can be read out repeatedly. This is manifest, e.g., in
that one can talk about mental images without erasing them, or perform repetitive movements.
However, in talking about a mental image, it is also "rethought". This is accounted for by the
active microchange nature of micro-outputs, which can induce modifications on the material
that remains in the body.
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Summary of section 3.3

• A self-organizing scene is the basic version of the DSS model of an information processing
module. It is a closed dynamic system with no input or output.

• Each self-organizing scene is equipped with a dynamic symbol space, which yields its
"long-term memory".

• A self-organizing scene essentially is a sequence of configurations (a history). A configura-
tion is a cyclic directed graph whose edges are labeled by dynamic symbols from the
underlying dynamic concept space. It is itself a generator of a language.

• Self-organization manifests itself in a history in that the languages generated by the
configurations converge to a sublanguage of a global state from the underlying dynamic
symbol space.

• The dynamics of a history is effected by local operations (called microchanges) in
configurations. Microchanges operate on associations, i.e., on words derivable in a
configuration that essentially belong to the language of the global state.

• Microchanges essentially let associations migrate along each other. An association that
moves can grow at its front end, and induce specialization and abstraction effects in its
vicinity. Such side-effects are the basis for the desired self-organiziation.

• A conspicuous phenomenon is the formation of resonances during a history. A resonance is
a cyclic substructure of a configuration, which generates a sublanguage of the current
global state. They are relatively stable, and they are the DSS analogue of gestalt pheno-
mena.

• When a history starts from a disordered state, it will rapidly equilibrate in many cases such
that there are only few (or one) non-competing resonances left, the history essentially
becoming stationary. When the initial material contained in a self-organizing scene is
ambiguous or conflicting, i.e., when there is a considerable degree of competition between
associations, an equilibration is likely to be reached only after a longer interval. Generally,
however, the ergodic behavior of self-organizing scenes is hard to predict analytically, and
there exist other potential long-term outcomes of a history besides an equilibration to
resonances.

• For two fundamental reasons, configurations are required to be phase generators. First,
phase generators avoid "hidden variables". Second, phases yield a natural account of what
is modeled by instances in logic-oriented AI.

• Associations have a dual process/structure character. Thus, DSS might be a suitable frame
to investigate fundamental questions of self-organizing information processing. However,
DSS cannot as yet provide a satisfying, comprehensive account of time and structure. But
then, such an account does not currently exist anywhere else.

• Self-organizing streams are a generalization of self-organizing scenes, which allows input
and output. Like the latter, they are described in terms of a sequence of configurations.

• For fundamental reasons, configurations are required to be phase generators, i.e., they are
cyclically closed. In order to "open" them for I/O, a formal trick is used. A special ex -
transition is introduced, which represents the exterior within the configuration.

• Micro-inputs and micro-outputs are added to microchanges in the account of micro-
dynamics.

• The input and output format can be specified by bands. A band is itself a (typically non-
cyclic) generator. In the simplest case, a band is a sequence of dynamic symbols.

• When input is provided that consists of top -transitions, a self-organizing stream behaves
like a dissipative system, using these transitions as a "fuel", which augments its self-
organization capabilities.
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• Being an open system, a self-organizing stream typically does not reach a stable state in its
history. However, resonances can form in it, which are likely to persist for some time.
Mental images and other gestalt phenomena are the intended cognitive correlates of reso-
nances.

3.4  Associeties

In section 2, I have outlined a general view on agent architectures in terms of processing levels
that are ordered on a periphery-centre axis. This general outline is concretely realized in DSS.
In the remainder of this section, I describe two methods by which self-organizing streams can
be coupled, thus giving rise to complex multi-stream architectures, associeties. The first
method consists in making the output band generated by one self-organizing stream the input
band of another. This technique seems to be suited for coupling modules that are "lateral" to
each other in the periphery-centre dimension.  The other method consists in re-interpreting a
lower-level self-organizing stream directly, in terms of a higher-level self-organizing stream.
This corresponds to grounding/emergence relations between adjacent levels (cf. 2.2, 2.7).
Fig. 3.19 sketches an architecture made from many self-organizing streams by means of these
two techniques.

      

Fig. 3.19: An associety. Coarse-grained dynamic symbols are rendered by large x 's, fine-
grained by small x 's.
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The following comments will help to clarify the architecture sketched in the figure.

• Streams are coupled by two mechanisms: I/O bands (banana-shaped segments), and by
grounding/emergence relations, which couple higher-level dynamic symbols to lower-level
composites (streams 0 ↔ 1 ↔ 4 ↔ 5 and 2 ↔ 3). The latter mechanism will be explained
later in the subsection.

• Higher-level streams are assumed to be coarser grained, i.e., they contain less dynamic
symbols and develop slower. This is indicated in the schematic figure by the size of the
local state dots that appear in the streams.

• All streams are assumed to be of the dissipative kind sketched further above. Thus, even
when there are no I/O bands leading to/from a stream (streams 3 and 5), they are made
from open configurations, which have an ex -transition.

• Streams 1 and 2 exchange information bidirectionally, whereas the communication from
stream 4 to stream 2 is one-way only (note again that the direction of arrows reflects time,
not communication direction!).

• The level topology is defined by emergence/grounding relations. The example has no
simple linear level topology. There are two leveled "columns", which are interconnected by
"lateral" bands. A band connection between two streams does not imply that they are on
the "same" level. Bands can connect streams of different "granularities". In the extreme, a
band could connect two streams that are also connected by emergence/grounding. This is,
however, rather not intended from the view of dynamic symbol structures. Bands should be
used to connect modules that don't stand in a (transitive) emergence/grounding relation
with each other. In modeling biological brains, bands might be an appropriate model for the
coupling of differently specialized cortical regions (e.g., auditory and visual), which is
biologically achieved by transversal fibres.

• In the example, output and input from/to the environment is conveyed through a single,
lowest-level stream (stream 0). This is an extremely simple architecture. In concrete appli-
cations, it will rather occur that external output is managed by a different module than
external input, and there may be several external I/O channels leading to/from different
streams.

The term "associety" is a free invention. It is intended to emphasize the dominant role of
associations in DSS multi-stream architectures, and it reminds one of Minsky's (1985) "society
of mind". Minsky's society of mind metaphor characterizes a perspective on agent archi-
tectures, where many symbolic information processing devices ("agents") interact on many
hierarchic levels. This generally resembles the perspective of dynamic symbol structures.

I shall only provide local specifications of the two coupling mechanisms, not a global definition
of entire associeties. The reason for refraining from fixing the term precisely is that I wish to
keep the term open in its meaning, such that it can cover any agent architecture made from
self-organizing streams. Architectures like the one from fig. 3.19 are what I have in my mind
presently. Others might be invented, for instance, exploiting the "topological" variants indi-
cated in fig. 2.1.

The term "dynamic symbol system", which gives name to the thesis, is intended to be even
more general and open. It is meant to refer to any information processing system with a
microchange dynamics controled by dynamic symbol spaces. Self-organizing scenes, self-
organizing streams, and associeties are the presently available instances of dynamic symbol
systems.

So much for a general impression. I shall treat now the two coupling mechanisms in more
detail.
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Coupling streams by bands

Different self-organizing streams are typically equipped with different dynamic symbol spaces.
Interstream communication thus requires that information from some dynamic symbol space
(Gij)i=0,...,m j=0,...,n is translated into information pertaining to another concept space
(G'ij )i=0,...,m' j=0,...,n' .

There are many reasonable ways of specifying a translation between (Gij) and (G'ij ). I will opt
for a fairly general version, which treats translations as a relation between associations.

Definition 52: Let (Gij)i=0,...,m j=0,...,n , (G'ij )i=0,...,m' j=0,...,n' be dynamic symbol spaces with
underlying sets of dynamic symbols Σ, Σ'. Let A((Gij)) denote the set of all associations which
can be sampled accross (Gij), i.e.

A((Gij)) = {r1...rn ∈ Σn | n ≥ 1, r1...rn is a Gkl-association for some Gkl ∈ (Gij)}.

Let τ ⊆ A((Gij)) × A((G'ij )). Write, as a shorthand, r1...rn ↔τ r'1...r'm for (r1...rn, r'1...r'm) ∈ τ.
Then τ is a translation between (Gij) and (G'ij ) :iff

(i) τ is total, i.e., the range of τ in its first [second] component is A((Gij)) [A((G'ij )),
respectively].

(ii) τ respects abstraction in the first component, i.e., if r1...rn ↔τ r'1...r'm, and s1...sn ∈ A((Gij)),
s1...sn ≥ r1...rn, then there exists s'1...s'm ∈ A((G'ij )), s'1...s'm ≥ r'1...r'm, such that
s1...sn ↔τ s'1...s'm.

(ii') τ respects abstraction in the second component (analogous).
(iii) τ respects specialization in both components (analogous).
(iv) τ is respects concatenations, i.e., if r1...rn ↔τ r'1...r'm, s1...sp ↔τ s'1...s'q, r1...rns1...sp ∈ A((Gij)),

and r'1...r'ms'1...s'q ∈ A((G'ij )), then r1...rns1...sp ↔τ r'1...r'ms'1...s'q.
(v) τ respects subsequences in the first component, i.e., if r1...rn ↔τ r'1...r'm, and s1...sp (p ≥ 1) is

a subsequence of r1...rn, then there exists a subsequence s'1...s'q (q ≥ 1) of r'1...r'm, such
that s1...sp ↔τ s'1...s'q.

(v') τ respects subsequences in the second component (analogous).

Note that (iv) comes not in the following, stronger form: if r1...rn ↔τ r'1...r'm, r1...rns1...sp ∈ A((Gij)),
then there exists s'1...s'q ∈ A((G'ij )), s1...sp ↔τ s'1...s'q, such that r1...rns1...sp ↔τ r'1...r'ms'1...s'q
(plus an analogical requirement for the other direction). I.e., it is not guaranteed that when a
translation of r1...rns1...sp into A((G'ij )) has got so far as to translate r1...rn by r'1...r'm, the
translation can be finished to cover all of r1...rns1...sp. This is a kind of "garden path"
phenomenon, which reflects that translations can be ambiguous with respect to contexts. The
"first attempt" to translate r1...rn by r'1...r'm pins down a context in (G'ij ) which cannot be
further continuated by any translation of s1...sp. If one would not admit this kind of continua-
tion conflict, one would essentially require that the topological structures of the phase genera-
tors of the Gij  are identical to those of the G'ij .

Two trivial cases of translations are the following:
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Proposition 53:
(i) For any (Gij) and (G'ij), τ = {(r1...rn, r'1...r'n) | n ≥ 1, r1...rn ∈ A((Gij)), r'1...r'n ∈ A((G'ij ))} is a

translation.
(ii) The identity on A((Gij)) is a translation between A((Gij)) and A((Gij)). 

When a band couples two streams S and S' with different underlying A((Gij)) and A((G'ij )), it
must be translated after it leaves S and before it enters S'. This translation usually cannot be a
simple symbol-to-symbol rewriting, since associations that are translated to each other need
not have the same length, and since continuation conflicts can arise. There are many practical
solutions for the rewriting task. One of them is sketched in the following algorithm.

Algorithm 54 (sketch): Let B = (S, trans) be a generator (intention: B is a band) that uses
dynamic symbols from (Gij), and let τ be a translation between (Gij) and (G'ij ). Then rewrite B
to arrive at a generator B', which uses dynamic symbols from (G'ij ), as follows:

Step 1: Identify in B derivations of associations from A((Gij)), such that all transitions in B are
covered by these associations. Let COVER be the set of these derivations.

Step 2: For every derivation D in COVER, apply τ to the association a derived by D, to get
some association r'1...r'n ∈ A((G'ij )). Construct for r'1...r'n a linear generator

G'D =  ({xD
0, ..., xDnD

}, {{x D
0r'1xD

1}, ..., {xD
n-1r'nxD

nD
}}).

The set of all the simple generators such constructed is COVER'.

Step 3: Interconnect the generators from COVER' as follows. For all D1, D2, for which it holds
that the initial local state of D2 is a local state that also occurs in D1, merge G'D1

 with G'D2
 by

identifying the last local state xD1nD1 
of G'D1

 with the initial local state xD20 of G'D2
. The net

result of all these merges is the desired B'.

This algorithm is "quick and dirty". Many topological details of the original B will get lost.
However, when one works with self-organizing, collective processes, one can be generous
with respect to detail. Straightforward modifications of the algorithm allow the rewriting to be
executed in an incremental fashion, such that a band B can be continually rewritten in the
measure as it is produced by micro-outputs.

Communication via bands is a simple method. In many cases, this method will also work to
couple a self-organizing stream into an agent architecture, where different modules are realized
by different techniques, e.g., connectionist and classical ones. There are two directions to be
considered: output of a non-DSS module serves as input for a self-organizing stream, and vice
versa. Implementing the first direction is likely to be easy, since any serial symbolic output
essentially is already a (linear) band, and since self-organizing streams impose no preconditions
on the "syntax" of the input band. The other direction is less likely to be easy. A module that
inputs a band generated by a self-organizing stream must be suited to use this input format,
which has no other syntax besides being a labeled directed graph, or more simply, being a
sequence of symbols. In many cases, such a type of input will be used not as the only source of
input, but rather as an additional clue for "soft" tasks. Generally, information provided by self-
organizing streams will be useful for tasks which have some or all of the following
characteristics:
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• The task can be interpreted in terms of gestalt formation.
• Some portions of the information processed in the task can be interpreted as a context for

other portions.
• The task does not consist of clearly defined subtasks with a precisely timed control.
• There is no hard success criterium; suboptimal results are acceptable when they come fast.
• The task is of a stream processing nature.
• The quality of solutions can be judged in terms of a degree of specialization, or precision,

of the output.

This list characterizes many of the pattern classification and generation tasks that occur in
situated agents. Therefore, integrating self-organizing streams into such architectures seems
generally well-motivated.

Coupling streams by emergence/grounding

In the dynamic symbol structure framework (cf. section 2), dynamic symbols ground in
dynamic composites from the next lower level. The latter's concrete nature is left open in the
abstract framework. In the DSS formalism, the basic idea is to take resonances for dynamic
composites. Intuitively, this means that a "gestalt" made from fine-grained dynamic symbols
can be perceived from a higher level as a unit, and be referenced by a single dynamic symbol
there. A desirable side-effect is that higher-level dynamics are thus made typically slower than
lower-level dynamics, since resonances are relatively persistent phenonema.

Technically, I define grounding as a relation between dynamic symbol spaces, i.e., between the
"long-term memories" of level-adjacent streams. Therefore, I consider two dynamic symbol
spaces (Gij) and (Eij), where the second is made from "coarse" dynamic symbols that ground in
resonances found in the first (G ~ Grounding level, E ~ Emergent level). Since the concrete
form of global states Gkl ∈ (Gij) and Ekl ∈ (Eij) is essentially arbitrary, a generally satisfying
account of emergence/grounding should not depend on the concrete Gkl, Ekl, but rather on the
generated languages CGkl

 and CEkl
. For the remainder of the section, I therefore take the array

(Gij ) := (CGij
) of languages of a dynamic symbol space as a starting point, instead of the

dynamic symbol space proper.

I start by considering a single coherent language G and explain what it means for another
coherent language E to emerge from it. This requires some work. The first thing to do is to
define resonances in terms of languages (the Gkl-resonance definition in subsection 3.3 relies
on generators).

Definition 55: A coherent sublanguage R ⊆ G of a coherent language G is a resonance in G.

When R is a resonance in G, and an infinite continuation s = s1s2... ∈ G∞ is observed, a
question of interest is to detect points in s where this continuation "passes through" R. This
leads to the notion of characters of R. A character of R is a word r from R, which indicates
that, wherever r is observed as a subsequence in s, the latter is, at that place, "actually in R".
I.e., from that place onward, s could be able to continue indefinitely in R:
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Definition 56:
(i) For R ⊆ G, r ∈ R, continueR(r) := {t ∈ R | rt ∈ R}.
(ii) A word r ∈ R of a resonance R in G is a character of R in G :iff for all sr ∈ G,

continueR(r) ⊆ continueG(sr).

Proposition 57: Every resonance R ⊆ G has characters.

Sketch of proof: Let r ∈ R be phase-fixing in R, ϕr the phase of r in R. Let Rϕ, Gϕ be the
phase generators of R and G. Consider all simulations σ: Rϕ → Gϕ (the simulation theorem
warrants that such simulations exist). Let Φr denote the set of all phases in G that are
ϕr-images with respect to one of the these simulations, i.e. Φr = {ϕ ∈ Φ(G) | ϕ ∈ σ(ϕr) for
some σ: Rϕ → Gϕ}. Define for ϕ ∈ Φ(G)

continueGϕ
(ϕ) := {s ∈ G | s can be derived in Gϕ on a path starting in ϕ}.

It holds that continueR(r) ⊆ continueGϕ
(ϕ) for all ϕ ∈ Φr. Let Φ* r denote the set of all phases

in G such that r can be derived in Gϕ on a path terminating in one of these phases. It holds that
Φr ⊆ Φ* r. If Φr = Φ* r, r is a character of R in G, and nothing remains to be shown. If
Φr ⊂ Φ* r, then there exists some rr1 ∈ R, such that r1 ∉ continueGϕ

(ϕ) for some ϕ ∈ Φ* r.
Define Φrr1

 and Φ* rr1
 analogous to Φr and Φ* r. It holds that |Φr| = |Φrr1

|, |Φ* r| > |Φ* rr1
|, and

Φrr1
 ⊆ Φ* rr1

. Iterate until for some n ≥ 1 it holds that Φrr1...rn
 = Φ* rr1...rn

. Then rr1...rn is a
character of R in G. 

Proposition 58: If r, r0rr1 ∈ R, and r is a character of R in G, then r0rr1 is a character of R in
G. I.e., words in R, which contain a character as a subword, are themselves characters.

Sketch of proof: That r0r is a character of R in G, follows from continueR(r0r) ⊆ continueR(r)
⊆ continueG(sr0r). Thus, it remains to be shown that if r, rr1 ∈ R, and r is a character of R in
G, then rr1 is a character of R in G. Assume that this is not true, i.e., there exists s ∈ G, such
that there exists rr1r2 ∈ R, where srr1r2 ∉ G. This is a contradiction to r being a character of R
in G. 

When lower-level resonances are interpreted via grounding/emergence by higher-level dynamic
symbols, it would be nice if one could "recognize" the lower-level resonances by their charac-
ters. I.e., each of the resonances that give rise to higher-level dynamic symbols should be
discernible from the others by at least one of its characters. This motivates the following
definition:

Definition 59: Let Res = {R1, ..., Rk} be a set of resonances in G. Then Res is separable by
characters :iff for all Ri, there exists a character of Ri which is not a character of any of the
other Rj.

The following proposition gives a sufficient condition for separability by characters:

Proposition 60: Res = {R1, ..., Rk} is separable by characters if none of the Ri is a sublanguage
of another Rj.

Sketch of proof: In order to construct, e.g., a character of R1, which is not a character of any
of the other R2, ..., Rn, take a character r of R1, select words r2, ..., rn ∈ R1 which are not
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contained in R2, ..., Rn, and construct a word from R1 which contains r and all ri as subwords.
Then apply proposition 58. 

Now the scene is prepared to define E as an emergent language over G, or, equivalently, G as
a language in which E grounds (the letters E, G are motivated by emergent and grounding).
The alphabet of E corresponds to a set Res of resonances of G.

Definition 61: Let G be a coherent language, and Res = {R1, ..., Rk} be a set of resonances in
G. Let ΣRes = {a1, ..., ak} be a set of dynamic symbols. Define the emergence mapping ε: Res → ΣRes
by ε(Ri) := ai, and the grounding mapping γ := ε-1. Then, E emerges over G (more precisely,
it emerges over G by ε), if the following condition holds:

s1...sm ∈ E iff there exists a word r1...rm ∈ G, such that ri is a character of γ(si).

When E emerges over G, then, the other way round, E grounds in G (by γ).

Extending the scope of the term "grounding", we say that ai grounds in Ri, when E emerges
over G by ε, and ε(Ri) := ai. Furthermore, when ri is a character of Ri in G, we also say that ai
grounds in ri.

Proposition 62: Let G be a coherent language. If E emerges over G, then E is segmentable
and regular.

Sketch of proof: It is clear that E is segmentable. By proposition 8, regularity is now
equivalent to the existence of a finite generator for E. Let G = (S, trans) be a coherency
generating G. Define a finite generator E for E by E = (S, trans'), where trans' ⊆ S×ΣRes×S is
given by xsy ∈ trans' :iff there exists a character r of γ(s), which can be derived in G on a path
starting in x and ending in y. 

I have not required in the preceding definitions that E be coherent. However, as a candidate for
a global state language in a "coarse" dynamic symbol space, E should be coherent. The follo-
wing definition and proposition gives a sufficient condition for E being coherent.

Definition 63: Let G be a coherent language, and Res = {R1, ..., Rk} be a set of resonances in
G. Res covers G :iff there exists a word r1...rm ∈ G, where ri is a character of some resonance
from Res, such that r1...rm can be derived in some generator of G on a path that visits every
transition of the generator.

Proposition 64: If Res covers G, then E is a coherent language.

The proof is straightforward. 

The first part of the task is thereby completed: it is now clear how a coherency can give rise to
a coarser-grained, higher-level coherency. Now assume that a dynamic symbol space
(Gij)i=0,...,m j=0,...n with the corresponding array of languages (Gij ) is given, and that Emn
emerges over Gmn, where Emn is a coherent language. What one would like is to find an array
(Eij )i=0,...,m j=0,...n of coarse-grained, coherent languages, such that Eij  emerges over Gij , and
that the Eij  are generated by some coherencies Eij , which give rise to a dynamic symbol space
(Eij). I cannot offer such a construction as yet. It is possible (albeit tedious) to construct
languages Eij , which emerge over the given Gij , and which satisfyingly mirror the abstraction
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and symmetrification series that characterize the original (Gij). However, the good news ends
at that. I cannot yet show that, or formulate conditions when, a dynamic symbol space for the
array (Eij ) actually exists.

This present shortcoming of the theory mainly lies in the fact that dynamic symbol spaces are
defined via generators, and the emergence relation is formulated for languages. It is easy to go
from an array of generators (Gij) to an array of languages (Gij ) and onwards to emergent
languages (Eij ), but the last step back to an array of generators (Eij) is barred, since the original
conditions concerning abstraction and symmetrification sequences are lost on the way, due to
their being generator-dependent. I leave the issue at rest for the time being, since I believe it is
a more productive strategy to search for a generator-independent definition of dynamic symbol
spaces, instead of patching the inconveniences afforded by the present, imperfect, generator-
dependent definition.

Taking what I have positively got, I shall now assume for the remainder of the section a fine-
grained dynamic symbol space (Gij)i=0 j=0, which consists of a single global state G00 =: G. I.e.,
(Gij)i=0 j=0 = (G). G generates the coherent language G; E emerges over G via ε: Res → ΣRes,
where Res = {R1, ..., Rk} and ΣRes = {a1, ..., ak}. Furthermore, I assume that E is coherent,
and that Res is separable by characters. Let E be some coherency generating E, and (E) the
corresponding single-global-state dynamic symbol state.

In order to facilitate the matter further, I shall treat the emergence/grounding coupling only for
closed systems, i.e., self-organizing scenes. Let CG be a closed configuration made with
dynamic symbols from G, and CE a configuration made with dynamic symbols from E. How
does ε lead to a coupling between CG and CE?

Fig. 3.20: A higher-level configuration CE, coupled to a lower-level configuration CG by
grounding/emergence. Shaded areas in CG are characters of resonances, broken lines denote χ-
links between lower-level dynamic composites (i.e., characters) and higher-level dynamic
symbols. For instance, the derivation path for a1a2 in CG is χ-linked to the a-transition in CE.
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There are many ways to specify such a coupling. I will examine a version which builds on weak
requirements. The idea is to use characters of resonances for the dynamic composites in CG in
which dynamic symbols from CE ground. Figure 3.20 shows an example and definition 65
provides the particulars.

Definition 65: Let CG = (SG, transG), CE = (SE, transE) be configurations with underlying
dynamic symbol spaces (G) and (E), where the language E generated by E emerges over the
language G generated by G via ε: Res → ΣRes.

(i) A derivation x0s1x1...xn-1snxn in CG is a dynamic E-composite :iff s1...sn is a character of
some resonance R ∈ Res. The set of dynamic E-composites in CG is denoted by
dyncompE(CG).

(ii) A partial, injective function χ: dyncompE(CG) → transE is an emergence coupling
between CG and CE, if it holds that

χ(s1...sn) = xsx'  ⇒  there exists R ∈ Res of which s1...sn is a character, and ε(R) = s.

This is quite a weak specification of an emergence coupling. Stronger versions could be
derived by additional requirements, e.g., that dynamic E-composites be cyclic (i.e., resonant)
substructures of CG, or that χ is totally defined, or that the characters used by χ separate the
resonances concerned.

The emergence coupling χ between CG and CE alone is a static relation without much use. In
order to make it effective for bottom-up and top-down interactions, it must influence micro-
changes in CG and CE. I indicate a preliminary list of methods for achieving this (referring to
the steps of algorithm 41):

• Prefer, in CG, for selection in step 1 associations which are characters mapped by χ into
CE. Intuitively, this means that lower-level associations which are "recognized" in the
higher level are more salient and more active than unrecognized associations. This will
favor the former's growth and stability relative to the latter's. Often a character will be
"long enough" to loop back into itself, forming a resonance. Preferring characters for
microchanges, therefore, enhances the likeliness of resonance formation.

• Prefer, in CE, for selection in step 1 associations whose derivations contain χ-images.
Intuitively, this favors grounded associations over such that appear "ad hoc" in CE.

• Assume that type 4 microchanges are employed in CG (i.e., a moving association does not
spread homogenously but can select a direction). Assume further that in CE there exists a
derivation for some association ab, where a, b are χ-coupled to characters a, b in CG, and
where in CG a, b are not connected (as in fig. 3.20). Then move, if possible, a into the
direction of b in CG (in fig. 3.20: move a along the e1-transition). This strategy drives the
topology of CG towards the topology of CE (modolo granularity). Analogically,
microchanges in CE can be biased to approximate the topology of CG in CE.

• Assume that the underlying dynamic symbol spaces for CG and CE have more than one
global state, featuring abstraction of dynamic symbols and associations. Assume further
that χ is suitably generalized to couple dynamic symbols in CE with characters in CG in a
fashion that allows for some variance in the abstraction of the coupled entities. Assume
that a microchange in CG concerns an association a that is interpreted in CE by a, where a
is more special than a. Modify step 5 (the generalization/abstraction step) such that the
specialization information surplus given by a is exploited for a stronger specialization of
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cont+ than would be effected by a alone. This is a realization of the "abstraction gradient"
mentioned in section 2.6. The mechanism can be analogically exploited for bottom-up
induced specializations in CE.

Such mechanisms foster self-organization in histories by exploiting higher-level information on
the lower level and vice versa. There are bottom-up and top-down variants of each mechanism,
which have equal rights. No external control strategy exists. The lower-level history and the
higher-level history each proceed autonomously at their own chosen "speed", accepting
information from the other level when suitable, but not depending on it. However, the general
intuition behind a multi-level architecture suggests that microchanges are applied to higher
levels less frequently than to lower levels.

I have tacitly ignored a technical difficulty. The renormalization to phase generators (step 7)
can have the effect that characters in CG, or transitions in CE, are merged or duplicated. This
poses the question of how χ is maintained accross the renormalization step. Again, "quick and
dirty" methods to deal with this complication are not hard to devise (e.g., do not duplicate
χ-links together with characters). Another question concerns the original source of the χ-links,
and mechanisms to introduce new such links during a history. A simple method would be to
start entirely without such links, and test every association selected for a microchange for its
ability to give rise to a χ-link.

Figure 3.20 conveys a slightly misleading impression, insofar as there are only a few isolated χ-
links in it. In systems at work, it should be expected that the coupling between levels is tighter
than fig. 3.20 suggests.

A variant of great interest is to construct an emergence relation not between two dynamic
symbol spaces, but within a single one. This is quite natural, at least on a conceptual level. For
instance, the dynamic symbol Garden_of_Eden  might ground in a resonance characterized
by, e.g., Eve Adam garden  apple . Constructions of this kind are a natural model for the
cyclic closure solution to the Münchhausen trilemma at the upper end of the periphery-centre
dimension. They capture the closedness of conceptual systems that is revealed in the cyclic
closedness of an encyclopædia (cf. section 2.4). I have mentioned on several occasions that
coarser-grained dynamics should be "slower" than the dynamics on finer-grained levels. Now,
χ-links within a self-organizing stream indicate that there are portions of the stream that are
comparatively "more dynamic" than others. Cognitively, this corresponds to the observation
that concepts, which are relatively persistent in short time memory, organize the processing of
clusters of more ephemerical concepts. For instance, one can "think about", e.g., Gar-
den_of_Eden  for quite a long time, this dynamic symbol being continually present, while the
characters it grounds in are in flux. E.g., Eve Adam garden  apple  may develop first into
apple  serpent  Eve, then into Eve apple  temptation , etc. This associative activity
does not disperse and eventually gets lost, but is continually re-focussed by the persistent
influence of Garden_of_Eden .

A self-organizing stream can be coupled, by emergence/grounding, primarily to other self-
organizing streams. In contrast to band communication, χ-links exploit the detailed internal
structure of self-organizing streams. Therefore, only modules that can be interpreted as self-
organizing streams can, in some fashion, be coupled to DSS self-organizing streams by
emergence/grounding.
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Constructing non-DSS modules that essentially behave like a self-organizing stream is not a
far-fetched idea. In particular, I believe that DSS streams can serve as a guide for constructing
quite interesting neural networks. The basic idea is,

• first, to interpret attractor states in a recurrent network as dynamic symbols. Since more
than one dynamic symbol exists in a self-organizing stream, the network must be capable,

• second, to maintain several attractor states simultaneously. They can be localized in
different regions of the network, but they might also be globally superimposed on each
other.

• Third, the attractor states AS must be able to form "associations" of the form AS1...ASn.
This boils down to a mechanism that favors the stability of ASi given the presence of ASi-1.

• Fourth, there must be a "move" dynamics, analogous to microchanges, which warrants that
existing associations are brought into mutual contact in a dynamic fashion. Such a contac-
ting mechanism can be of any nature. For instance, it can be effected by spatial neighbor-
hood, or by correlations between broadcasted spike train patterns.

When these four points are realized, the network by and large resembles a self-organizing
stream. Connectionist networks of this kind are biologically plausible; in fact, much that is
presently known about the neocortex fits into the picture. The DSS construct of a self-organi-
zing stream, in this view, is (a) an abstract model of the information processing in such
networks, and (b) possibly helpful in guiding the design of artificial networks, by providing
clues to the designer concerning which phenomena are to be realized, and how they interrelate.

Be this as it may, it seems premature to invest greater efforts into complex system architec-
tures. It is more urgent, at present, to examine the behavior of simple DSS modules in
simulations, in order to gain experience with the various phenomena of self-organization, and
their control by global states and other parameters.

Summary of section 3.4

• Several self-organizing streams can be coupled together via band communication and by
emergence/grounding relations, forming a multi-level architecture called an associety.

• Different streams in an associety will typically build on different dynamic symbol spaces.
When two such streams are coupled by a band, the band must be translated from one
dynamic symbol space's vocabulary to the other's. Thanks to the self-organizing nature of
the information processing involved, this can be done in "quick and dirty" fashions.

• Band communication is a simple method, which is suited to integrate self-organizing
streams into hybrid architectures.

• By emergence/grounding, a lower-level, fine-grained stream is coupled to a higher-level,
coarse-grained stream. The basic idea is to interpret (characteristic parts of) lower-level
resonances by higher-level dynamic symbols.

• A fully satisfying formal account of emergence/grounding is impaired by the present,
imperfect definition of dynamic symbol spaces in terms of generators (instead of languages
or phase generators).

• Emergence/grounding links between a lower-level and a higher-level stream should influ-
ence microchange activity in both, in a fashion such that bottom-up and top-down effects
have equal rights. Each side supports self-organization in the other.
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• Emergence/grounding links within a single stream provide a solution to the Münchhausen 
trilemma at a conceptual level, formalizing an aspect of cyclic closedness of conceptual 
systems. 

• Self-organizing streams might serve as a guide in the development of non-DSS modules, 
in particular, connectionist networks that capture some aspects of biological information 
processing in the neocortex. 

 
4  Application proposal: memory access 
 
 
In this section, I describe an example of how a self-organizing stream could be used as an 
auxiliary device in an otherwise classical natural language processing system. The stream's 
self-organization capabilities are exploited for focussing relevant portions of a modular 
knowledge base. The basic idea is summed up in the following points: 
 
• A classical knowledge base is partitioned into modules in a hierarchic fashion. 
• Each module is labeled by a resonance from a dynamic symbol space. 
• A sequence of dynamic symbols ("keywords") is derived from the natural language input 

and fed into a self-organizing stream. 
• Characters of resonances are detected when they develop in the stream. 
• Such a character is indicative for the knowledge base module which is labeled by the 

corresponding resonance. 
 
More specifically, I use Wachsmuth's (1989) model of a partitioned knowledge base as a 
fundament for the following considerations. The model has grown out of empirical studies in 
mathematical problem solving, where it was examined to determine which portions of specific 
knowledge subjects use. I begin with a brief review of this model, knowledge packet 
structures. 
 
A knowledge packet structure formalizes the global structuring of (parts of) long-term 
memory. The total memory content comes in separate modules, called knowledge packets, 
which are organized in an access hierarchy. General knowledge is contained in packets high 
in the hierarchy, more specific knowledge is found in lower packets. Figure 4.1 gives an 
example. The example is motivated by an assumed application of a natural language 
processing system as an information system in an urban tourist office, which proposes places 
where tourists can go. Packet P1 contains general knowledge about going out, P2 about 
finding a place to eat, P4 about going out to dine in a restaurant, P3 about cultural activities, 
P5 about the town's opera, and P6 about the town's famous textile fabrics and clothing 
museum.  
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Fig. 4.1: A knowledge packet structure and the corresponding subordination tree. 
 



Wachsmuth provides nine principles that explain how knowledge packet structures are to be
built and used:
Principles concerning knowledge organization:

• Principle of packing knowledge elements: Knowledge elements, which belong to a specific
knowledge domain, are packed together in a knowledge packet. Knowledge concerning an
identifiable, more specific portion of the domain is packed in a subordinate packet (e.g., P2
in P1).

• Principle of competitive knowledge: Knowledge elements, which concern alternative
assumptions or methods within a knowledge domain, are packed separately in "competing"
packets within a superordinate packet (e.g., P5 and P6 compete in P3).

• Principle of local consistency: Knowledge elements belonging to one packet must be
mutually consistent. Mutually inconsistent knowledge elements must be packed in compe-
ting packets.

Principles concerning static access conditions:

• Principle of eligibility of knowledge elements: A knowledge element is eligible by the
knowledge processing system iff the packet it belongs to, or a superordinate packet
thereof, is marked accessible. Eligible knowledge elements are called visible. In fig. 4.1, P3
is marked accessible (bold outline). Knowledge elements in P3 and P1 are, therefore,
visible (light shading). Knowledge elements in P2, P4, P5, and P6 are not visible.

• Principle of single access to packaged knowledge: At a given time, only one packet may
be marked accessible.

• Principle of reachability of knowledge: Knowledge elements belonging to (transitively)
subordinate packets of the one marked accessible are reachable (P5 and P6 are reachable
in fig. 4.1).

Principles concerning dynamic access conditions:

• Principle of structure-dependent access: If the processing of the current task fails, the
access mark is shifted to a direct subordinate of the packet currently marked accessible. In
the example, if the tourist's question cannot be answered using the knowledge contained in
P1 and P3, more specific knowledge from either P5 or P6 is made accessible.

• Principle of keyword-dependent access: A knowledge packet can be marked accessible by
means of keywords derived from the presented task, which are associated with knowledge
elements in the packet.

• Principle of persistence: After a (sub)task is accomplished, the access mark persists as an
initial access condition for the next (sub)task.

The knowledge packet structure approach is primarily intended for applications where
relatively well-confined problems are posed, which can be accomplished with a given subset of
knowledge elements from a stably structured knowledge base. Classification tasks are paradig-
matic for this kind of task; the assumed tourist information task is of the same nature. By
contrast, the approach is not intended for tasks where, over a prolonged period of time, the
memory focus is likely to shift continually, or where memory elements should be regrouped
dynamically (as in story understanding or in situated action).

I build my example on this basic form of knowledge packet structures. The approach has been
generalized (Wachsmuth 1989) to account for overlap between packets, which gives rise to
general acyclic directed graphs as subordination graphs (in contrast to tree graphs in the basic
model). The principle of single access is preserved. In a more recent version (Antoniou &
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Wachsmuth 1993), the subordination graph is generalized to an and/or-graph. Several packets
can be marked accessible simultaneously here. The principles of competitive knowledge and
local consistency are adapted to ensure that a set of simultaneously eligible knowledge ele-
ments still is consistent.

The importance of keyword dependent access is emphasized by Wachsmuth. Its power is
intuitively evident. Charniak (1983) provides the example of a statement which is a syntax-
free sequence of keywords ("fire match arson hotel"), but nonetheless allows the hearer's
mind to focus sharply.

The most straightforward way to exploit keyword information for the access of knowledge
packets would be to

• label packets by sets of keywords,
• generate a set of keywords from the input of the current task, and
• access the packet whose label set is closest to the generated set, in terms of some distance

measure.

This approach, however, has its limitations. Some of them can be overcome by the technique
to be described presently, which exploits the abilities of self-organizing streams to make use
of contextual information. I will justify this claim at the end of the section.

For the remainder, I assume that a tourist information system is given, with a knowledge base
as in fig. 4.1. Its knowledge packets contain knowledge in some classical symbolic format; its
particular nature is of no further importance for the example. The user poses his or her
request for counsel in spoken language. I assume that bottom-up speech processing routines
can detect within the signal (not necessarily very reliably) a number of words from a pre-
established list, without having to fist resort to top-down information. These words are
mapped to dynamic symbols and fed into a self-organizing stream, whose sole purpose is to
establish an access mark for the knowledge base. Once an access mark is set, the then visible
knowledge is used for the further analysis of the preprocessed signal, and for an answer
generation. When this fails, special coping strategies are invoked.

The general frame being set, I describe now the envisioned DSS mechanism in detail. The
first step is to map a dynamic symbol space on the knowledge packet structure (fig. 4.2).

   

Fig. 4.2: Mapping a dynamic symbol space on a knowledge packet structure: the basic idea.
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To this end, a generator G22 of a to-be-constructed dynamic symbol space (Gij)i=0,...,2 j=0,...,2 is
invented, which has three major cyclic subgenerators for resonances R4, R5, R6, which in
turn will later yield the addresses for the lowest-level packets P4, P5, P6.

G22 is mapped by an abstraction mapping α2 and an epimorphism η2 on G11, such that the
resonances R5 and R6 become a single resonance R3. This resonance and the α2/η2-image R2
of R4 correlate with P2 and P3. Finally, G11 becomes the single-resonance, abstract G00 by an
application of α1 and η1. Figure 4.4 shows these generators in detail, and figure 4.3 provides
the underlying abstraction tree.

Before I proceed, some remarks on figs. 4.3 and 4.4 may be helpful:

• The abstraction tree is conservative (cf. section 3.2), i.e., dynamic symbols from one
abstraction level re-appear on all lower levels.

• The generic going_out  plays the role of top .
• In classical concept subsumption hierarchies, it would be (to say the least) uncommon to

have an activity concept like going_out  subsume a building or institution concept like
restaurant . In a similar vein, in a classical approach, one must decide whether drink
or dress  are meant as activity or as physical object classes. This is different in DSS, since
here subsumption is not interpreted by an inclusion of sets of instances. One has the liberty
to subsume a dynamic symbol s by a more abstract r whenever one finds it motivated to
assume that s can replace r in an "associationistic" style of reasoning. It would be apriori
permissible, e.g., to specialize drink  by any of wine , drunken , and swallow  - this
being (in the classical view) classes of substances, properties, and activities. Whether
subjects can replace, in specializing associations, drink  by any of the other three, is an
empirical question concerning subject behavior, not a model-theoretic one.

Fig. 4.3: The abstraction tree used in the example.
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Fig. 4.4: The diagonal elements of (Gij). Resonance subgenerators corresponding to know-
ledge packets appear in light shading.

• Dynamic symbols do not necessarily correspond one-to-one with words extracted from the
external input signal. Extracted words are mapped to dynamic symbols, not identified with
them. For instance, all of the words "food", "meal", "eat" could be mapped to eat .

• Fig. 4.4 is drawn economically, suppressing the conservative duplication of abstract
dynamic symbols in more specialized global states. For instance, every evening_dress
transition in G22 is implicitly also a dress  and a going_out  transition.

• The epimorphisms η2 and η1, which map G22 to G12 and G12 to G02 (which induces, in
turn, the mappings α2(η2(G22)) = G11 and α1(η1(G11)) = G00), are not indicated in fig. 4.4.
They should be obvious. The local states that belong to the R6-area in G22 are mapped on
the local state that belongs to the R3-area in G11, etc.

• The entire dynamic symbol space (Gij) can be reconstructed from its diagonal, which is
given in fig. 4.4, and the abstraction tree. There is, thus, no need to present the entire (Gij)
explicitly.
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• (Gij) features both monotonic and nonmonotonic specialization effects (cf. 3.2). For
instance, museum acquires the all-new continuation shop  in the step from G11 to G22,
and the continuation eat  of restaurant  in G11 is specialized to dine . These are
monotonic specialization phenomena. By contrast, the continuation attraction  of
opera  in G11 is nonmonotonically deleted in G22.

• The shaded "resonance areas" R1, R2 etc. in fig. 4.4 are substructures of the Gii , which
generate coherent sublanguages of the languages CGii

. I.e., they are generators of resonan-
ces in the sense of definition 55 (section 3.4). These resonances have many characters. For
instance, the resonance generated by R6 has, amongst others, the characters shop  and
dress  exhibition  (the town's museum is a clothing museum!), and the resonance
generated by R5 has, among others, the character dress  visitor . In the example,
characters of length 1 abound; this is due to its unrealistic simplicity, where many dynamic
symbols occur in only one resonance.

Stepping back from the particulars of the example, the following points characterize, more
generally, how a dynamic symbol space is constructed in correspondence with a knowledge
packet structure:

• The n levels of a knowledge packet structure correspond to the diagonal elements in an
n×n dynamic symbol space.

• Each Gii  contains cyclic substructures which correspond to the knowledge packets in level
i. These substructures need not be disjoint. In Fig. 4.4., there is an overlap between R5 and
R6 (slightly darker shading).

• G00 is a trivial single-transition generator. The trivial resonance generated by G00 corres-
ponds to the topmost knowledge packet.

• When a knowledge packet P in level i has direct subordinates P1, ..., Pk in the more
specialized level i+1, the cyclic substructure R of Gii , which corresponds to P, is symmetry-
broken (and its labels are specialized) into different cyclic substructures R1, ..., Rk in
Gi+1i+1.

• A cyclic substructure R, which corresponds to a knowledge packet P, is a generator of
associations that are indicative for the domain covered by P. What "indicative" means, and
how (Gij) is in practice constructed (which requires an elicitation strategy for associative
knowledge), must be left open here. Realistic (Gij) will certainly be much larger than the
example depicted in fig. 4.4.

• The dynamic symbol space can be constructed with great liberty. Neither the exact set of
dynamic symbols used, nor its detailed structure are crucial. This liberty is typical for
computational approaches that rely on self-organization. It contrasts with the exactitude
demanded by logic-style knowledge representation.

Before I turn to dynamics, the definition of characters of resonances must be slightly speci-
fied:

Definition 66 (specifies definition 56): Let (Gij) be a dynamic symbol space, r a Gkl-associa-
tion, and R ⊆ CGkl

 a resonance in CGkl
. Then, r is a Gkl-character of R :iff the Gkl-interpre-

tation (cf. def. 37) r' of r is a character of R in CGkl
.

The reason for considering characters is that the resonances they characterize in turn indicate
knowledge packets. The next definition introduces a convenient terminology:

Convention 67: When r is a Gkk-character of a resonance R, which in turn corresponds to a
knowledge packet P in the knowledge packet structure, r is said to indicate P.
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Now I turn to dynamics. Assume that a sequence of dynamic symbols has been derived from
the user's input signal. This sequence is fed into a self-organizing stream. Then, the general
strategy is as follows. Throughout its history, the stream develops associations that indicate
knowledge packets. Let the stream run through a history, and determine, for each configura-
tion, the "best" knowledge packet that is indicated. Return, for each configuration, an access
mark for this packet. During the stream's history, this mark is likely to become successively
more special as the stream self-organizes. In parallel to the stream's activity, the classical
calling system can start working with the preliminary access marks.

I shall now describe this procedure in some more detail.

As a pre-start preparation, the original dynamic symbol sequence is fed into a single top -
transition configuration (in the example, top  is replaced by a going_out ) (fig. 4.5a). A
series of micro-inputs leads to a starting configuration C0 that consists of a single, large loop
(fig. 4.5b).

Every word derivable in C0 (and in every configuration to come) is a G00-association, and it
is also a character of the trivial resonance generated by G00. I.e., from the outset, the topmost
knowledge packet is indicated. It may happen that more specific knowledge packets are
indicated, too. In the example, P3 is indicated by, e.g., opera , museum, or culture . Also,
P5 and P6 are indicated (amongst others, by opera  and museum). Determine, among all
indicated packets, the unique packet P that satisfies

(i) no competing packet of P is also indicated, and
(ii) P does not have a subordinate P' satisfying (i).

Call P the packet that is fixed by C0. Return an access mark for P to the calling system. This is
the "best" mark that C0 can yield. In the example, P3 is fixed by C0.

Let the stream run a history. Each time some configuration fixes a packet which is
subordinate to the one fixed before, a new, more specific access mark is returned. In the
example, the configuration shown in fig. 4.5c fixes P6, and the one of fig. 4.5d fixes P5. Both
are possible configurations in a history starting with C0, which reflects that the initial
sequence of dynamic symbols is highly ambiguous concerning the distinction between P5 and
P6.

Stop when the calling system (which works in parallel to the stream) has successfully finished
its task, or when the history reaches a state where a continuation cannot yield a more specific
access mark. The latter can have at least three reasons:

• A packet is fixed that belongs to the most specific level in the knowledge packet
hierarchy (fig. 4.5c, d).

• The stream loses so many dynamic symbols by micro-outputs, that the residual material
cannot give rise to an improvement on the last returned access mark. In the extreme, the
stream can completely degenerate (fig. 4.5e).

• Resonances form in the stream which indicate competing packets, but which do not
mutually compete in the sense described in section 3.3. When a version of micro-
dynamics without micro-outputs is chosen, these resonances are perfectly stable. As a
consequence, none of the two competing packets can ever become fixed.
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Fig. 4.5: The self-organizing stream at work.

During the entire process, the stream is in the most specific global state (G22 in the example).
This setting is fixed because any more abstract state (i.e., a global state not in the rightmost
column of the dynamic symbol space) would typically destroy information contained in the
input band by abstracting dynamic symbols, and because more symmetric global states (i.e.,
higher up in the the dynamic symbol space) would impair microchange activity. In the extreme,
when a global state from the top row of (Gij) would be chosen, no non-empty microchange
would be possible at all. Besides such particular reasons, taking the most specific global state is
generally motivated by the ultimate purpose of the stream, i.e., developing packet-fixing
characters of the most specific kind possible.

Besides fixing the global state, there are many other "knobs to turn":

• the dynamics can be made more or less "dissipative" (cf. 3.4) by adding further top -input
(here: going_out -input),

• the tpye of microchange can be varied (cf. 3.3), and
• the microchange/micro-input/micro-output ratios can be varied.
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Although abstract considerations can help with understanding the effects of these parameters,
their influence will depend on the particulars of (Gij), and on the kind of user input that
typically occurs. Optimizing them requires experimentation.

Iclaimed at the beginning that an access control with a self-organizing stream is superior to
straightforwardly labeling knowledge packets by sets of keywords. This claim can now be
justified by the following observations:

• When packets are labeled by simple sets of keywords, these sets will often have nonempty
intersections. Then, when a set of keywords is derived from the user's input, which is a
subset of several of the labeling sets, a set-comparison based algorithm cannot decide
between the corresponding packets. Contextual information can upgrade the indicative
value of keywords in such cases. For instance, visitor  and dress  each occur both in
R5 and R6. Thus, the set {visitor , dress } does not help to distinguish between the
two resonances (i.e., the packets P5 and P6). However, the sequence visitor  dress  is
indicative for P5 (and it will be specialized to visitor  evening_dress  in the
stream).

• The user's input may lead to a set of dynamic symbols consisting of two subsets S and S',
such that associations generated in S and S' are indicative for two specialized, but
competing knowledge packets P and P'. Then, the access mark yielded by the stream
mechanism can fix P, P', or a superordinate packet. All outcomes are principally possible.
So far, this is not better than what could be achieved with some mechanism based on
keyword sets. However, when the words in S are more apt to form associations than the
words from S', i.e., the closer they are related, the more likely they will out-compete the
words from S' in the stream. The dynamic symbol space used in the example is too simple
to give rise to such an effect, since a more elaborate internal structure of the resonance
subgenerators is required for it to become manifest. For a positive example, assume that a
more differentiated dynamic symbol space is used by the tourist information system, and
that there is an exhibition of theatre costumes in the museum. Consider the sequence
attraction  admission_fee  actor  costume  evening . The first four of these
dynamic symbols may occur in the resonance that indicates the museum packet; all of them
may occur in the resonance indicative for the opera packet. But, only in the first case can
they give rise to a long and indicative association (which might look something like
admission_fee  attraction  actor  dress ); in the case of the opera resonance,
the three subsets {admission_fee }, { actor , costume }, and {evening }, are too
far away from each other to make a connection. Therefore, the first reading is due to come
out, although it is made from a proper subset of the words that occur in the opera
resonance.

• In set-based packet access, more general packets will typically be labeled by keywords
which are more abstract than those that label more specific packets. Then, when a set of
abstract keywords is entered, an unspecific packet is necessarily accessed. But, mutual
contextual constraints can sometimes lead to a specialization of dynamic symbols in a self-
organizing stream. A more specific packet can be accessed. The visitor  dress
example can be interpreted in this sense: the abstract dress , which is indicative only for
P3, becomes specialized to evening_dress  in the context of visitor. An occurence of
evening_dress  allows to fix P5.

Another technique for exploiting keywords for the access of knowledge packets suggests itself
besides simple set labeling and DSS streams, namely, using a feed-forward neural network.
Gängler et al. (1992) report on first experiments carried out with several types of such
networks. The network's input nodes correspond to keywords, its output nodes to knowledge
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packets. Training is done in a supervised mode, utilizing a training set of correct keyword-
set/knowledge-packet pairings. Such an approach is in principle superior to a statistical
evaluation of keyword sets, since nonlinear interdependencies between keywords within such
sets can be exploited (the preliminary experiments by Gängler et al. do not reveal such effects
due to a relatively small number of keywords and training examples). These interdependencies
are a special kind of contextual influence. However, the input to the network still is a set;
therefore, information contained in sequential order is lost. The discrimination principles des-
cribed for DSS streams in the first two of the above points cannot be captured by neural
networks of the examined types.

The stream-based technique, so far, describes the case when all goes well. But, what happens
when the system cannot complete its task of user question analysis and answer generation?
There are two cases.

First, it can happen that although a partial analysis of the user's request is achieved, the analysis
must be refined. This will typically require the access of a more special knowledge packet than
the one fixed so far. To this end, the following strategies can be invoked:

• The self-organizing stream, which has run dead, can be "reanimated", hoping that it can be
made to yield a more specific access mark yet. Measures taken towards this end include a
repetition of the original input; "energizing" the stream by top -input; or techniques of the
simulated annealing kind, i.e., shifting the global state away from the most specific state for
some time. The last two techniques seem to be particularly recommendable when the
impasse is of the many-competing-resonance type.

• The system can request a further specification from the user. This leads to additional input
into the stream, which might lead to a more specific access mark.

• The stream mechanism can be bypassed with a fall-back strategy, where the system
accesses a more specific knowledge packet either at random, or using candidates that are
already indicated by the stream. This corresponds to Wachsmuth's original principles of
structure-dependent access and of persistence.

The second kind of failure occurs when not even a partial success has been achieved in the first
run. Then, probably the most reasonable thing to do is to start again from scratch, discarding
the access mark from the first attempt completely. Trying to retain it (according to the
principle of persistence) might be harmful, since the complete failure indicates that a severe
misunderstanding has occured in the first run; therefore, the access mark might be outrightly
wrong, not merely too unspecific.

In concluding, I point out that the task sketched in this section essentially is a single-run
classification. This kind of task does not fully exploit the powers of self-organizing streams,
which lie in the continual processing of an essentially infinite input stream. The presented
technique is not restricted to the simple case of a finite one-time input. When a non-terminating
sequence of keywords is fed into the stream, it will yield a sequence of access marks for a
dynamic memory access, such that the focus continually shifts. This would be required, e.g.,
for story understanding or extended dialogues with a user. But even in its basic version, the
example demonstrates that DSS techniques appear to be suited for the non-trivial task of
memory access, by combining symbol processing with self-organization.
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Summary of section 4

• An application of a self-organizing stream in an otherwise classical AI information system
is proposed.

• The system generates proposals of places where a tourist can go in a town. For the analysis
of the user's request and the subsequent answer generation, the system makes use of a
classical knowledge base. The contribution provided by the self-organizing stream consists
in computing a focus for accessing the knowledge base.

• More specifically, the knowledge base is assumed to be organized in a knowledge packet
structure. This is an access hierarchy of modules, which are tree-ordered according to their
specificity.

• A dynamic symbol space is constructed, whose symmetry breaking and abstraction
structure mirrors the packet hierarchy. Each packet is labeled by a resonance, such that
packet subordination corresponds to symmetry breaking and specialization of the according
resonances.

• A sequence of dynamic symbols is generated from the user's input. The sequence is fed into
a self-organizing stream. Certain associations that can appear in the stream are indicative
for resonances, which in turn indicate knowledge packets.

• During the stream's history, a sequence of access marks for the knowledge packet structure
is produced, of increasing specificity, until a "best" focus is settled. The calling system can
work in parallel, focussing increasingly more specific knowledge.

• Since contextual and sequential interdependencies between keywords can be exploited, the
presented technique is in some aspects superior to a straightforward labeling of knowledge
packets by sets of keywords, and to certain connectionist techniques.
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5  Representing conceptual knowledge

The DSS formalism is intended to cover all levels on the periphery-centre axis. However, the
conceptual level deserves a special treatment. It is the level which classical AI and cognitive
science focus upon; it is the level which is (deceptively) easily accessible to introspection; and
it is of singular importance for most AI applications. In spite of the central importance of
conceptual knowledge, some basic issues concerning the nature and the representation of
concepts are not settled (surveys: of classical aspects, in Smith & Medin 1981; of current
symbolic representation techniques, in Lehmann 1992; of psychological and physiological
findings, in Treisman 1986; of concepts in linguistics, in Lakoff 1987, Mehl 1992; general, in
Wrobel 1991). In this section, I consider some of the relevant questions, comparing the
answers provided by classical AI with those proposed by DSS.

More specifically, I want to expand on the issues of concepts vs. symbols; concepts vs.
attributes; variability and contextual influences; and conceptual cycles. Some other issues,
which I have treated previously in some detail, will not be reconsidered. This concerns the
nature of abstraction (cf. 2.6, 3.2); nonmonotonic inheritance (cf. 3.2), and the nature of
"instances" of a concept (cf. 3.3).

Concepts vs. symbols

It is not a settled question how concepts and symbols relate to each other. The standard
answer given by logic-oriented AI is to define a concept by its extension, i.e., as a class of
individuals, and to view symbols as conventional and essentially arbitrary signifiers in some
language, in which a part of reality can be described. Concepts and symbols are, thus, entities
of a fundamentally different nature. This perspective is not unchallenged. At least two objec-
tions are raised from within AI:

• Humans can reason about words (i.e., symbols) in the same way as about other objects.
I.e., there seem to exist word concepts. Consequentially, Langacker's (1987) "cognitive
grammar" treats words and object concepts as the same kind of mental entity, formalizing
them in a unified fashion.

• The symbol grounding critique (Harnad 1990, Chalmers 1990) claims that symbols are not
mere conventional tokens. Rather, when a human uses a symbol, it is intrinsically
"meaningful" in an internalistic, experiential sense of "meaning". For instance, when a
human thinks "red", there must be an experience of redness involved.

I would like to hint at yet another, quite fundamental objection. In the standard proof of the
completeness of first-order logic (compare Ebbinghaus, Flum & Thomas 1978), a model is
constructed for a given formula (the Henkin model), which is essentially composed of
fragments of the formula itself. Thus, a language, and the objects about which the language
tells, are effectively identified. Now, the great importance of the completeness theorem lies in
the fact that it closely links syntactics (i.e., symbols) with semantics (i.e., models). It seems that
this cannot be done other than by identifying the two sides. To put this in intuitive terms,
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symbols and concepts must be treated as the same thing, in order to arrive at an interesting
account of what can be expressed by symbols.

In the perspective of dynamic symbol structures, neither are symbols arbitrary signifiers, nor
do they, in fact, signify externally at all in the first place. They are observables that play a
dynamic role in an agent's information processing; and that is all that constitutes them.

First, they are not arbitrary, since in a complex dynamic system, an observable entity cannot be
replaced by another one without crucially changing the system's behavior. For instance, in a
recurrent neural network that responds to stimuli by attractor formation (as in Yao & Free-
man's model of the olfactory bulb, cf. section 2.2), one of the attractors cannot be "exchanged"
for a new one, since each attractor's dynamics is interwoven with the dynamics of all other
such attractors.

Of course, in a formal account of a dynamic symbol structure (e.g., in a DSS associety), the
formal symbol that stands for a dynamic symbol is arbitrary and can be changed. For instance,
apple  could be exchanged for elppa . But, this does not concern the dynamic symbols, as
they exist, and can be observed, in an agent; it merely concerns the formal symbols that
represent the dynamic symbol in the theory. This contrasts with the physical symbol systems
paradigm, where it is assumed that symbols are principally arbitrary even within the agent.

Second, dynamic symbols do not intrinsically signify at all. Two correlates of signification are
reconstructed in dynamic symbol structures, namely, external and internal reference. Both are
considered as empirical phenomena. Detecting the first boils down to verifying a reliable causal
connection between the presence of an external object and the occurence of a dynamic symbol,
which is a major undertaking. Internal signification is explained in terms of emergence/groun-
ding links between adjacent processing levels. Importantly, neither case is a prerequisite for a
dynamic symbol to occur and to have causal influences within the system: in an associety, a
dynamic symbol can appear on any level without grounding in the next lower one, and without
being connected to any external circumstance. Thus, the classical interpretation of symbols as
referential entities plays no substantial role in dynamic symbol structures.

So much for a recapitulation of the differences between classical and dynamic symbols. I turn
now to the question of how concepts should be reconstructed in DSS. I propose to define as a
dynamic concept a dynamic symbol on the conceptual level, plus what it grounds in,
transitively through the lower levels, plus what it can associate with within the conceptual
level. More specifically:

Definition 68 (informal): Let an emergence/grounding column be given in an associety, as in
fig. 3.19, which spans the entire periphery-centre axis form the sensomotoric interface level to
a topmost, conceptual level. Let C1, C2, ..., Cn be the sequence of the corresponding coherent
languages, where C1 belongs to the peripheric level and Cn to the conceptual level. Let upper
indices of dynamic symbols and associations indicate the level from which the symbol comes,
e.g., c3 belongs to C3.

(i) A dynamic concept c*  is
• a dynamic symbol cn from the dynamic symbol space underlying the conceptual-level

stream,
• plus the set of characters {cn-1

1...cn-1
k | k ≥ 1, cn grounds in cn-1

1...cn-1
k} it grounds

in, plus the set of sequences of characters cn-2
1...cn-2

k over which these characters
cn-1

1...cn-1
k emerge (cf. definition 61), etc., down through all levels,

• plus the set of all conceptual-level associations in which c occurs.
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(ii) The dynamic symbol ck is the dynamic concept symbol of the dynamic concept.
(iii) An occurence of a dynamic concept c* in a history of the associety is an occurence of cn

in a configuration of the conceptual-level stream (cf. definition 44), plus the derivations of
characters cn-1

1...cn-1
k to which cn is actually χ-linked (cf. definition 65), plus the

derivations of the characters cn-2
i to which the cn-1

i a are actually χ-linked, etc., plus the
set of derivations of associations within the conceptual-level configuration of which the
occurence of c is a part.

The implications of this definition will become clear in the sequel, when several of its aspects
are examined in more detail. It accounts for the symbol grounding critique, since an irreducible
aspect of lower-level "experience" is ascertained by tracing a dynamic concept from the
conceptual level transitively through all grounding levels.

In sum, both symbols and concepts are considered in the dynamic symbol perspective as very
much the same kind of entity. The difference is that a dynamic symbol is observed within a
single level, whereas a dynamic concept is a rich, multi-level phenomenon, which includes not
only a conceptual-level dynamic symbol, but also the information that is connected to such a
dynamic symbol via associations and grounding. The aforementioned objections raised against
the classical symbol-concept distinction do not affect this conception of symbols and concepts.

Concepts vs. attributes

Concepts are almost always defined in terms of "attributes". However, the empirical and
logical status of attributes is problematic, which is reflected in the existence of many other,
closely related notions ("features", "relations", "properties", "slots") and a wealth of concept
representation formalisms. I shall examine two problematic aspects.

The grow-and-shrink problem. A question that is simple to state and hard to answer: Are
attributes concepts? More often than not, attributes are treated as something more "basic" than
concepts. The paradigmatic case is perceptive (in particular visual) features. For instance,
"roundness" can be a feature of a ball concept, or "red" a feature of blood. This conception fits
well with a level architecture for pattern classification devices, where features are processed at
more peripheric levels than concepts. However, the issue is not so clear as it seems: isn't "red"
also a concept? Smith and Medin (1981) acknowledge this problem. Their example is the
concept of the letter "E". The small vertical bar in this letter is, on the one hand, a typical
perceptual feature - but then, on the other hand, one can deliberately focus on it, reason about
it, etc., just as if it were a concept. Features seem to be able to "grow" into concepts.
Conversely, I would like to argue that concepts can shrink to features. For instance, the Statue
of Liberty comes close to being a perceptual feature of my concept of New York.

The class-relation problem. In many logic-oriented semantic network formalisms (KL-ONE-
like languages in particular), attributes are treated as being of the same logical type as
concepts. Both are first-order predicates. The only difference lies in their arity: concepts are
unary predicates (or "classes"), attributes n-ary (typically, binary) relations. Now, although
concepts and attributes here are "ontologically" of the same basic type, the stringency of
logical syntax and inference mechanisms requires that classes and relations be cleanly kept
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apart. Once Mother  is introduced as a binary relation in a KL-ONE network, it can no longer
serve as a class node. This compels the network designer to settle for one of the alternatives.
Kobsa (1991) describes how this cause a handicap for constructing intuitively appealing
semantic networks. A related problem lies in the technical difficulties to work with relations of
higher arity than two (Brachman et al. 1991). One would like to have such arities in the first
place, a commodity not provided for in customary KL-ONE-like formalisms. Second, one
might also desire relations with an unspecified arity, for instance, in order to formalize case
frames with optional parameters. An elegant way out of all these problems would be to use a
logic featuring what Scott (1978) calls "multi-relations", i.e., relations that accept any number
of arguments. Something like this is not done, however. The reason is, one may suppose, that
such added flexibility would intolerably increase the computational complexity of classification
algorithms, or even render them inapplicable.

To summarize, in treating concepts as something different from attributes, one faces the
problem that there are smooth transitions between the two; and in treating them as essentially
being of the same type, one runs into trouble as these entities sometimes appear in a unary
fashion (behaving more like concepts), sometimes in multi-ary fashion (behaving like relations),
which raises technical difficulties.

Before I can examine these issues from a dynamic symbol perspective, I must supply a notion
of attributes in DSS. I find it intuitive to consider the following phenomena as attributes:

• When c* is a dynamic concept, and cd is an association, then the dynamic concept d is an
associative attribute of c*. This corresponds roughly to binary relations in classical
representation formalisms like KL-ONE. In both cases, the attribute relates two conceptual
entities. For instance, the classical relation statement Mother (human_2, woman_3)
would reappear in a DSS configuration as the occurance of an association human
mother  woman, where mother  is an associative attribute of human* (remember that
the DSS counterpart of instances are occurences, cf. section 3.3).

• When c* is a dynamic concept, and it grounds in a character c1...ck, then each of the ci is a
grounding attribute  of c*. Grounding attributes come in two subspecies, according to
whether c1...ck comes from the same (i.e., conceptual) level as c, or from a properly lower
level. When c1...ck comes from a sub-conceptual level, then a grounding attribute
corresponds to what is usually called a perceptual feature (although one should not forget
similar lower-level features connected with motor action). I shall call these attributes expe-
riential attributes , since they are connected with the situated experience of a dynamic
concept. When c1...ck comes from the same (i.e., conceptual) level as c, a grounding
attribute ci plays essentially a similar role as a words that occurs in the explanation of an
encyclopædia entry. I shall call them, therefore, explanatory attributes.

Explanatory attributes and associative attributes of a concept coincide to some extent. For
instance, the concept fall-of-Man * might ground, within the conceptual level, in charac-
ters like Eve apple  or evil  serpent . The dynamic symbols that appear in these
characters are also associatively accessible from fall-of-Man : fall-of-Man  Eve or
fall-of-Man  serpent  are plausible associations. However, some other explanatory
attributes would be unlikely associative attributes, and vice versa. For instance, Eve hand
apple  might be a character in which fall-of-Man  grounds, making hand  an explanatory
attribute (albeit one that needs a more comprehensive sequence around it to become
characteristic); but fall-of-Man  hand  is hardly a sensible association. Conversely, paint
fall-of-Man  Botticelli  is a good association, but Botticelli  should not occur in
an "explanation" of fall-of-Man . The intuitive difference between explanatory and

132



associative attributes is that the former concern a concept's "substance", whereas the latter are
connected with the dynamic "behavior" of a concept in contexts.

Grounding attributes provide a satisfying answer to the grow-and-shrink problem, when a level
topology like the one in fig. 2.1c is assumed, i.e., when the conceptual level is not disjoint from
the level of perceptual (or motor action) features, but blends into it (Fig. 3.19 would have to be
redrawn, by replacing streams 4 and 5  -  which correspond to the perceptual feature level and
the conceptual level  -  by a single new one, of the kind shown in fig. 2.1c). Then, a grounding
attribute is apt to play both the role of an explanatory and an experiential attribute. Since
explanatory attributes partially correspond to associative attributes, the latter also aquire a
certain degree of level-indefiniteness in such topologies.

Grounding attributes also shed light on the issue of image-like, analogical vs. language-like,
propositional representations (cf. Sloman 1975). Experiential attributes (or lower-level charac-
ters of a dynamic concept symbol in general) can be considered as analogical components of a
concept, due to their nearness to perception and action. Associative and explanatory attributes
(or associations and conceptual-level characters in general), by contrast, are of the same non-
analogical quality as in any other logic-oriented representation format that captures a "langu-
age of mind". The possibility of blending one type of attributes smoothly into the other bridges
the gap between analogical and language-like representations, which now appear as two
extremes on a continuum.

Every conceptual-level dynamic symbol c plays a dual role as a concept c* and as an
associative attribute c (of all b* for which bc is an association). Therefore, the class-relation
problem does not occur in DSS. In fact, one of my primary motives, which guided the
development of DSS, was to find a formal account of informational entities with a dual
concept-relation nature (Jaeger 1991, 1992). The underlying intuition is that using a concept in
reasoning can always be interpreted in terms of a meaningful connection, which the concept
establishes between other concepts. A concept simply cannot be used in isolation. This is
reflected in the connectivity structure of coherencies in dynamic symbol spaces, and in the
dominant role of associations in microdynamics.

A reasonable notion of "arity" for associative attributes can be introduced in many ways. I have
compared these attributes to binary relations above, likening an association abc to a relational
statement B(a, c). Other conceptions are equally well justified, e.g., ab as a unary predication
B(a), or abcd as a multi-relational statement, which comprises B(a), B(a, c), B(a, c, d), etc.
Generally, I would prefer not to interpret DSS constructs in terms of arity at all.

As a side remark, I mention that sequential associations, as used in this thesis, can be
generalized to tree-like associations. Instead of associations abcdef, one would have nested
terms like a(b, c, d(e, f)). Associations of this kind yield a notion of arity that comes close to
the classical one: in a(b, c, d(e, f)), a occurs in a ternary, b in a 0-ary, d in a binary fashion. A
DSS version that uses tree-like associations behaves essentially like the simpler version used
here. This is not surprising, considering that (a) coherent languages are regular, (b) that regular
languages can be straightforwardly generalized to regular tree languages, and (c) that regular
tree languages exhibit virtually all the nice properties of linear regular languages (standard
reference: Gécsec & Steinby 1984). Earlier versions of DSS were formulated in this more
general fashion. I have abandoned it since, mainly because of the notational inconveniences of
tree languages.
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In sum, the grow-and-shrink problem does not arise in DSS due to the topological liberties
afforded by associety level structures, and the class-relation problem vanishes since dynamic
symbols are basically dualistic entities.

Vagueness, variability, and context sensitivity

Concepts used by humans vary in several dimensions, on several time scales, and for many
reasons. I can only pick out a few examples of relevant research:

• Bartlett's (1932) famous monograph on remembering describes, among other things, how
the recall of a story changes on a long-term time scale (days to years). The original story
has many "exotic" aspects, which do not blend easily with the subject's cultural background
and world knowledge. A basic finding is that the subject's conviction of what the story
actually tells shifts towards "making more sense" over time. This indicates that human
concepts are not separately acquired, stored, and recalled, but that they interact in memory,
maximising mental coherency. The concepts of a human are part of an evolving system;
they change together with the system.

• Barsalou (1987) reports empirical findings concerning the "graded" structure of concepts.
In contrast to what is required by the classical philosophical and logical understanding of
concepts, they turn out not to have the nature of a clear-cut set of instances in humans.
Subjects declare, e.g., that a robin is a more "typical" bird than an ostrich. Typicality
ratings vary accross subjects, with the context of concept presentation, and across time
within a subject. In a theoretical reconstruction of these phenomena, Barsalou (1989) as-
sumes that a concept is constituted by three different kinds of features: stable, mandatory,
context-insensitive ones; those dependent on the current context; and others dependent on
the subject's prior reasoning history (time scale: one to several days).

• Seidenberg et al. (1982) carry out subtle experiments in order to reveal the dynamics of
concept activation in humans on a very short time scale (tenths of seconds). They find that
a concept is not "loaded" as a unit, but rather rapidly "assembled" from different informa-
tional entities, and by different mechanisms, in a complex process. Similar to Barsalou, they
distinguish context-sensitive and mandatory, context-insensitive subprocesses.

The general picture that emerges from such observations is that empirical concepts

• are vague rather than well-defined,
• that they are variable in time rather than stable, and
• that they intrinsically interact with their context rather than being stand-alone units.

Obviously, these points are interrelated. Taken together, they amount to a hard problem for
any formal AI reconstruction of concepts: how can a concept be fixed at all, when it is a so
dynamic, flexible, and elusive kind of entity?

In symbolic AI, concepts are usually defined via attributes. The problem lies in the question of
how a concept can be determined by attributes when attributes are apt to vary with circum-
stances. Many answers have been proposed. I mention a few, without going into detail:
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• An "ideal" account of concepts is given, where attributes provide necessary and sufficient
conditions for concept definitions. This is, e.g., the strategy of KL-ONE-like concept
representation schemes. Such schemes are fully appropriate for many technical applica-
tions, but they fall short of the empirically observed flexibility of concepts in humans.

• Two types of attributes are assumed, namely, definitory and contingent ones. The first are
connected to a concept in a mandatory fashion, and they are sufficient for a characteri-
zation. Contingent attributes appear and disappear according to circumstances. This is
apparently a better approximation to natural concepts than the ideal account mentioned
before. However, for every natural concept one can find cases where any particular of its
attributes is disabled. The assumption of truly definitory "core" attributes is empirically
false. This is known as the "empty intersection" problem.

• A concept is defined as a probability distribution over attributes (e.g., Smith & Medin
1981). "Core" attributes get a high, "marginal" attributes a low probability value. Then, for
a given set of attributes, a likeliness can be computed of which concept is actually "meant".
This approach resolves the conflict between vagueness and definition by attributes, and the
empty intersection problem. However, it falls short of context sensitivity. In a given
context, a relatively unlikely combination of attributes can, in fact, be highly indicative for a
concept a, although it is more indicative for some other concept b, when context
information is not taken into account. A classification mechanism based on a probability
distribution is apt to misclassify concepts in untypical contexts, because the probability
distribution integrates over all occurences of a concept, i.e., over all contexts.

• Finally, I mention connectionist representations of concepts in localist networks (e.g.,
Waltz & Pollack 1985, Smolensky 1986, Bookman 1988). In this often-used type of
recurrent networks, concepts and attributes are represented by labeled nodes. When a
collection of attribute and concept nodes is activated in a clamped fashion, the network
returns activation values for nodes of goal concepts after a phase of equilibration. This type
of approach accounts for the vagueness of concepts. Furthermore, contextual information
(represented by the initially activated concept nodes) is also fully effective. The only
apparent shortcoming lies in the single-run type of dynamics. A classification is a "single-
shot" event, leading from an initial activation to a result. A continuous conceptual
reasoning dynamics, where a concept runs through several states over a period of time, is
not captured. However, it should be possible to overcome this restriction by elaborations
of the basic technique.

Dynamic concepts are vague, variable, and context sensitive, justifying the DSS approach in
light of these generally hard-to-match constraints for concept representation:

• Vagueness results from both associative and grounding attributes, since in different
occurences of a dynamic concept, different such attributes are typically present. No
attributes must occur by necessity; therefore, the empty intersection problem does not
arise. Furthermore, no apriori probability constraints are imposed on attribute occurences;
therefore, contextual influence is not disabled. In spite of this great liberty, concepts are
well-defined. The reason this is possible essentially rests in the fact that concepts are not
defined locally in a one-by-one fashion, but within a complete, complex system: grounding
attributes rely on characters, which characterize resonances on the background of an entire
dynamic symbol space. Only associative attributes are, to a certain degree, "local"
attributes.

• Variability also concerns both kinds of attributes. In a history, both types of attributes are
apt to appear, stay for a while, and disappear again. To my knowledge, a similar dynamics
has not yet been realized by neural networks that process conceptual knowledge, but I
believe that it is in principle possible (cf. the remarks at the end of section 3.4).
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• Context sensitivity is one of the most basic features of DSS information processing. Within
the conceptual level, an associative attribute d of a concept c* can be filtered out when c
arrives in a context b1...bk: b1...bkcd may be not an association, although b1...bkc and cd
are. Microdynamic interaction between levels couples contextual effects in one level to the
processing in other levels.

DSS does not offer an account of long-term variability of the kind observed by Bartlett,
because learning is not yet integrated into the approach.

Conceptual cycles

As a last point, I briefly consider the issue of circularity. Cyclic interrelationships between
concepts abound in human reasoning. However, on a basis of classical first-order logics, it is
hard to come to terms with this phenomenon.

Nebel (1990, 1991) discusses different types of circularity. He argues that knowledge repre-
sentation systems should tolerate a certain kind of circularity, which he calls "terminological
cycles". Terminological cycles are essentially the same phenomenon as cyclic cross-
references in an encyclopædia. For instance, a car  concept is naturally explained with the
help of an engine  concept, and vice versa. Terminologic cycles could be formally dealt with
by using non-well-founded set theory (standard reference: Aczel 1988, introduction: Barwise
& Moss 1991) for a model-theoretic semantics. However, unfounded semantics are still
unusual in symbolic AI. Nebel (1991) explicitly backs off from unfounded semantics. He
proposes several ways of arriving at founded models for terminological cycles on a back-
ground of KL-ONE-like representation languages, acknowledging that each has its draw-
backs. In (Nebel 1990), a KL-ONE-like formalism is augmented to support a kind of termino-
logical cycles that is restricted, among others, by the requirement that such cycles must not
lead (transitively) from a concept to a subconcept.

Cyclicity is a basic phenomenon in DSS. From an abstract point of view, this is a consequence
of the emphasis on self-organization, which is intimately connected with feedback and hence,
with a kind of cyclicity. When the issue is examined more closely, one finds two distinct types
of cyclicity in DSS.

First, the global states of a dynamic symbol space are coherencies, which are cyclic. This leads
to the phenomenon of associations looping back into themselves, i.e., to resonances. The for-
ming of associations and resonances in a self-organizing stream is a dynamic type of cyclicity; I
shall call it associative cyclicity.

Second, the grounding relation can give rise to cycles within the conceptual level. This corre-
sponds to terminologic cycles of the encyclopædia type, which can be considered as structural.
Let it be called, for obvious reasons, explanatory cyclicity.

In section 2.4, I have given an abstract characterization of the conceptual level in terms of, as it
now turns out, these two kinds of cyclicity. I have required there that each kind of cyclicity
leads to a global cyclic interconnectedness of the conceptual level. This requirement is satisfied
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for associative cyclicity, by virtue of the construction of dynamic symbol spaces in terms of
coherencies. Chains of grounding relations, on the other hand, have not as yet been required to
be globally cyclic. It is motivated, then, to add this as an additional condition for associeties, in
order to make the conceptual-level "encyclopædia" cyclic. This does not lead to any technical
difficulties.

Associative and explanatory cyclicity are related with each other to the extent that associative
attributes coincide with explanatory ones (see above). This coupling seems to add an important
aspect to the structure/process problem (cf. 3.3), and should have an impact on self-organi-
ziation. However, the issue remains to be worked out.

In sum, cyclicity is a built-in feature of DSS; thus, it does not pose the technical problems as in
logic-oriented knowledge representation. Furthermore, DSS provides a formal frame to distin-
guish different kinds of cyclicity, and to investigate their interaction.

Summary of section 5

• A dynamic concepts is a dynamic symbol from the uppermost "conceptual" level in an asso-
ciety, together with what it grounds in in lower levels, and with what it associates within
the conceptual level.

• This account of a concept sheds a new light on several fundamental questions concerning
the representation of concepts. In some cases, it offers an integrative perspective on
seemingly disparate alternatives.

• Two basic kinds of attributes exist for dynamic concepts. Associative attributes concern the
information that is dynamically accessible from a concept within the conceptual level;
grounding attributes concern the information that is coupled to a dynamic concept symbol
by the grounding relation.

• Grounding attributes can "grow" from a perceptual feature to a fully conceptual state. This
variability of status allows the issue of analogical vs. language-like representations to be
interpreted as a matter of degree.

• Associative attributes have a dual concept-relation nature. Technical problems concerning
the arity of relations, as they are known from classical representation formats, do not
occur.

• Dynamic concepts are vague in that many different subsets of their attributes can be present
in different occurences of the concept. The empty intersection problem does not arise.

• With respect to their attributes, dynamic concepts vary dynamically in a history. Among
other factors, this variation is influenced by context.

• "Structural" terminologic cycles and "dynamic" feedback cycles are two forms of cyclicity,
which can be observed, and conveniantly examined, in associeties.
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6  Related work

The work presented in this thesis draws from many sources, and tries to integrate insights that
have been achieved at disparate places. The most important of these sources are (in alphabe-
tical order):

(i) complex systems theories,
(ii) concept representation research in AI and cognitive science,
(iii) finite automata and regular languages, and
(iv) situated action and behavior-oriented agent design.

Its proximity to many different areas of research connects DSS with rather many threads of
other work. But, the relationship between DSS and another approach is typically confined to
some selected aspects. For instance, DSS is partially related to classical semantic networks
through some aspects of dynamic symbol spaces; or to Carpenter and Grossberg's ART (1990)
through the processing of sequential input, self-organization, and resonance formation; or to
behavior-oriented agent design through the epistemological outlook on the agent/environment
feedback loop. Such correspondences have been explored at various places in the preceding
sections, and I do not reconsider them here.

When the DSS is characterized not in terms of disciplines concerned, but in terms of system
properties, the following characteristics stand out:

(i) a fast self-organizing dynamics,
(ii) a symbolic format of information,
(iii) stream processing, and
(iv)support of hierarchic, multi-granularity architectures.

No other approach featuring this combination of properties appears to exist. However, there
exists a class of neural network techniques which typically realize (i), (ii), and (iv): localist
recurrent networks, where nodes are labeled by symbols. Being localist, these networks do not
belong to the "mainstream" of connectionism, which is more inclined towards parallel
distributed information processing. Localist networks are frequently used in cognitive science
and linguistics, where their capabilities to handle contextual influences are exploited for various
tasks (e.g., Waltz & Pollack 1985, Bookman 1988, Mangold-Allwinn 1991). These approaches
are related to classical spreading activation techniques in semantic networks (e.g., Quillian
1968, Wilks 1975), and sometimes both traditions are integrated in a single system (e.g., Mehl
1992). I shall not review the entire family of approaches. Instead, I select two of its members
for a closer inspection, namely, Smolensky's "harmony theory", and the "Copycat" architecture
of Hofstadter and Mitchell. There are two reasons for picking out these two: first, they are, in
some aspects, more closely related to DSS than others; second, they are motivated by an
exploration of fundamental computational mechanisms (like DSS), rather than being "mere"
tools for a specific application (like the majority of approaches in the field).
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Harmony theory

From a bird's eye view, Smolensky's (1986) harmony theory is a localist neural network model
for pattern recognition, which spans the entire periphery-centre axis. Its particular appeal is
formal simplicity and generality. This allows Smolensky to develop a principled mathematical
theory, which describes the context-sensitive assembly of schemas in terms of minimizing an
energy measure. In my presentation, I focus on the network architecture and the basic ideas,
omitting mathematical detail. Smolensky uses a four-letter-word recognition task as an
introductory example, which I shall use as well.

A harmonium, as Smolensky calls his architecture, is a two-layer network. The bottom layer is
made from representational feature nodes. These nodes indicate by their activation whether
some feature is present or not. No direct connections between them exist. The top layer
consists of knowledge atom nodes. Each knowledge atom node corresponds to an on-off
pattern of feature nodes. This pattern is determined by excitatory (+) and inhibitory (-) links to
some of the feature nodes. For instance, a knowledge atom node for the detection of the letter
"A" might have (+)-links to three feature nodes representing a horizontal bar "-", a diagonal
bar "\", and a diagonal bar "/", and it would have (-)-links to feature nodes that represent, e.g.,
curved line segments (fig. 6.1). Obviously, there are many ways to detect an "A" under varying
circumstances, and from different features. This is accounted for by the existence of many
knowledge atom nodes, each of which corresponds to one possible way of detecting an "A".

Features, as understood by Smolensky, are not restricted to low perceptual levels. Besides
features like bars and curve segments, there could be "features" corresponding to complete
letters, complete words, or any other entity that one wishes to treat, all in one harmonium.
Every knowledge atom responsible for detecting an "A" is (+)-connected to the "A" feature
node, besides its connections to line segment nodes.

   

Fig. 6.1: A portion of a harmonium (adapted, and slightly simplified, from Smolensky 1986).
Only (+)-links are shown.
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The introduction of feature nodes that span several levels of integration allows one to "fold" a
multi-level architecture into a two-layer network. When the harmonium from fig. 6.1 would be
rearranged vertically, it becomes clear that a harmonium can span the entire periphery-centre
axis (fig. 6.2).

Fig. 6.2: The harmonium rearranged (adapted from Smolensky 1986).

A harmonium works in a pattern completion task as follows. Initially, some of the feature
nodes are externally activated, and the activation is clamped. Then, a stochastic activation
propagation and equilibration process is run. This process is of the simulated annealing kind,
involving the successive lowering of a computational temperature. At temperature zero, the
system settles down in a global state that maximizes a numerical value called harmony.
Intuitively, the harmony value of an activation distribution measures the coherency of the
network state. The coherency increases, roughly, when (+)-linked nodes (both feature and
knowledge atom nodes) are simultaneously activated; it decreases when (-)-linked nodes are
simultaneously activated (the harmony value also depends on the computational temperature,
an aspect that I skip here). In the process, feature nodes that have not been initially activated
may become so, which is the pattern completion aspect of the harmonium's dynamics.
Furthermore, knowledge atom nodes can become activated, which is the "interpretative" aspect
of the dynamics. The collective of activated knowledge atoms forms the schema that is
recognized.

The major part of Smolensky's paper consists in a rigorous treatment of the pattern completion
process in terms of statistical thermodynamics. This also explains why the author insists on a
two-level architecture: the tools of statistical thermodynamics are tailored to deal with one
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microlevel and one macrolevel, which correspond to the feature and the knowledge atom level.
I can only highlight the central aspects of Smolensky's formal treatment:

• The harmony function and the computational temperature correspond formally to the
notions of energy (or Hamiltonian function) and temperature, as they are used in thermo-
dynamics. They allow explaining the harmonium in terms of entropy, which in turn is
formally equivalent to information. Thus, the formal treatment is dually an information
theoretic one, and one in terms of statistical mechanics, with probability theory as the
shared mathematical basis (this dualism is inherent in the two disciplines; it is not a
particular property of Smolensky's approach). It allows investigation of self-organization
phenomena, as described in thermodynamics, in an information processing system.

• During the cooling process, phase transitions, or symmetry breakings, occur. Intuitively,
they correspond to points in the process when the system arrives at an alternative of how
currently stabilized, smaller collectives of mutually supportive nodes can be further coupled
into larger such collectives. Formally, they reveal themselves in discontinuities of the
harmony function. Smolensky reports simulation runs where this phenomenon can be
clearly observed.

• The final activation values of knowledge atom nodes can be interpreted as likelihood
estimates for the presence of the corresponding feature pattern. A harmonium performs by
definition optimally, when these estimates yield exactly the probability of the completed
pattern, given the incomplete information of initially activated features. Smolensky proves
that the harmonium can behave optimally, and provides a learning strategy to arrive at
such a behavior.

There are several clear similarities between a harmonium and an associety:

• A periphery-centre hierarchy is described in terms of symbolic units of increasing
compositional integration (knowledge atoms made from feature patterns vs. dynamic
symbols grounding in dynamic composites).

• A self-organizing dynamics leads to the formation of coherent assemblies of informational
entities (schemas vs. resonances and characters).

• Contextual influences are crucial for the interaction of informational entities ((+) and (-)
links vs. filtering of continuations).

• Many circumstance-dependent "versions" of "one" informational entity are possible (e.g.,
many "A" knowledge atoms vs. many occurences of the apple  dynamic symbol in a
global state like the one from fig. 3.5).

• Computational temperature and symmetry breaking are basic phenomena in both
approaches.

Another similarity is not so easily detected, though it is, I believe, fundamental. Both in
harmony theory and DSS, concepts and attributes essentially coincide. Now, in order to make
this point, I must first determine which objects should count as "concepts" in harmony theory,
since the notion is not used by Smolensky. The most natural candidate for, e.g., an "A"
concept is, as I see it, the set of "A"-recognizing knowledge atom nodes, plus the feature
nodes they are (+)-linked to. At first sight, this defines a concept in terms of a collection of sets
of features, each of which is sufficient to establish the presence of the concept. Features (i.e.,
attributes) and concepts would be clearly distinct kinds of entities, then. But, among these
features, there exists a very special one, which leads to a revision of this first impression: the
"A" feature node. This "feature" is not a visual feature or a partial aspect of the "A" concept.
In a way, it can be regarded as the essence of the concept, since in this node, all the different
circumstantial versions of the "A" concept are tied together. Considering the role of this node
as a link for coupling adjacent levels of granularity (cf. fig. 6.2), a close similarity is revealed
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with a dynamic symbol emerging from a lower-level dynamic composite. A technical difference
lies in the fact that the "A" feature node "grounds" in lower-level composites through the
relays of knowledge atom nodes, whereas in DSS the grounding is unmediated. A feature
node, thus, can be seen dually as the "representative" of a concept, and as a feature of other
concepts. In sum, symbols, concepts, and attributes are not clearly separated from each other
in (my interpretation of) harmony theory.

On the other hand, there are many differences between harmony theory and DSS. I list the
most conspicuous ones:

• Associeties are intended for continual stream processing, whereas a harmonium performs a
single run on a single input.

• The information processed in an associety comes in a relatively expressive format (directed
edge-labeled graphs, with an abstraction defined for labels, and with the possibility to
define analogues of "instances", i.e., occurences of a concept). By contrast, a harmonium is
put to work on a simple set of features, and returns a set of knowledge atoms.

• DSS distinguishes between "long-term memory" (dynamic symbol spaces) and "working
memory" (streams and associeties), whereas in a harmonium both sites coincide.

• Microdynamics works by modifying the very connectivity structures between informational
entities, whereas a harmonium works by spreading activation through a fixed connectivity
network.

The two approaches stem from different basic motives. DSS is intended to help in the mode-
ling of situated agents. This leads to stream processing, rich formats - and some unfortunate
blanks in the formal analysis of associeties. Harmony theory aims at a rigorous formal treat-
ment of one, albeit fundamental, information processing task, i.e., pattern completion. This
leads to a simple basic architecture and working cycle - and a satisfyingly complete formal
penetration.

Interpreting DSS in terms of statistical thermodynamics (or information theory) will certainly
be much more difficult than in harmony theory. One of the major obstacles is the multi-level
structure of an associety, which would require a thermodynamic treatment of more levels than
one micro- and one macrolevel. This is uncommon but not impossible for statistical
thermodynamics. Von Weizsäcker (1985, p. 180ff) carries out such an analysis for a simple
three-level system. On the other hand, some starting points for a thermodynamic/information
theoretic interpretation of DSS can be already made out, namely, the interpretation of
abstraction in terms of resolution and differentiation (which should be amenable to information
theory), and the definition of the information contained in an association. Furthermore, there
already exists a well-established strand of research concerned with the statistical thermo-
dynamics of sequence generating systems, in particular finite automata (e.g., Crutchfield &
Young 1990). This work is directly relevant for the analysis of coherencies.
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Copycat

The Copycat project (Hofstadter & Mitchell 1992) constitutes a major endeavor to make an AI
program behave creatively in a nontrivial sense of the word. Copycat's task is to complete
letter sequences, by way of exploiting analogy. A typical question posed to the system might
run like this:

Suppose the letter-string abc were changed to abd; how would ijk  have to be changed "in the
same way"?

A plausible answer would be ijl , and indeed Copycat will very often come up with it (and
sometimes with others). Finding this answer boils down to discovering a rule that yields abd
from abc, and then transferring this rule by analogy to ijk . This example may not seem very
demanding, but Copycat can cope with much more subtle tasks. For instance, when (again)
abc changes to abd, to what changes mrrjjj ? Of course, there are several answers. The one
most frequently given by humans is mrrkkk  (rule: replace last letter by its alphabetic succes-
sor), and this is also the solution most frequently found by Copycat. However, this response is
not entirely satisfying, since abc displays alphabetical order, whereas mrrjjj  does not. There
exists a different, surprisingly elegant solution, which is less frequently found by humans, and
which is also rarer among Copycat's answers - but sometimes, indeed, the required "stroke of
genius" effectively happens in the machine (solution at the end of the Copycat review). The
authors argue that the "microdomain" of letter sequence completions contains arbitrarily
demanding tasks; therefore, it is, in a sense, a universal testbed for creative computation.

Copycat's architecture has two principal modules. The Slipnet more or less functions as a long-
term memory, and the Workspace as a working memory or blackboard. Additionally, there is a
Coderack, which is roughly analogous to an agenda of pending tasks. Before I describe these
modules, I emphasize that Copycat is a highly intricate affair, with dozens of mechanisms
interacting in a finely tuned fashion. I can outline here but some major principles.

The Slipnet is a network of labeled nodes, which are connected by links of variable length. The
node labels concern all sorts of concepts that are useful for the description of letter sequences.
For instance, there are nodes for each letter of the alphabet, nodes for relations between letters
(e.g., "alphabetic successor"), and nodes for deeper concepts like "symmetry" or "opposite".
They are not ordered in an abstraction hierarchy as one is used to from semantic networks. The
length of a link between two nodes corresponds to the "semantic distance" between the nodes.
For instance, a node for the letter b will typically have a shorter link to the c node than it has to
the r  node. The semantic distance is important, among other effects, for "mental slips" (hence,
Slipnet): when a node is read into the "working memory", it can happen that a semantically
close one is also read.

The nodes in the slipnet are dynamically activated during Copycat's run, with activation
reflecting the importance of this node for the interpretation of the currently considered letter
sequence. This activity spreads over the links to neighboring nodes; the spreading rate accross
a link is inversely related to the link's length. So far, this is all rather conventional. But now
comes Slipnet's special contribution to the art of long-term knowledge representation. The
links are labeled by nodes. For each link, there exists some node in the Slipnet that serves as a
label for the link. For instance, a link between a "left" and a "right" node might be labeled by
the "opposite" node. Furthermore, a link's length is inversely related to the corresponding
node's activation value. I.e., when the "opposite" node is highly activated, the link between the
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"left" and the "right" node becomes short, favoring the spreading of activation between the
two, and favoring mental slippage.

A concept is a node in the Slipnet, plus the nodes which are linked to it by short links.
Hofstadter and Mitchell apply the metaphor of a "probabilistic cloud around a node" to this
conception of concepts. The variability of link length, which is induced by labeling node
activation, lets these "semantic clouds" fluctuate in a context-sensitive fashion. For instance,
when the "opposite" context is highly active, then "left" belongs closely to the concept cen-
tered around "right".

The Workspace is a complex machinery, which I can sketch only superficially. At the beginning
of a Copycat run, the workspace contains the bare task description, e.g. "abc → abd; ijk  → ?".
Successively, relations between abc and abd, and between ijk  and abc are discovered, and
relations between these relations, etc. This interpretative information is added to the work-
space in several formats. During a run, a currently established interpretation (called viewpoint)
can be superseded by more consistent ones. The consistency parameter depends on many
influences, among others, on the interconnectedness of the viewpoint and its hierarchic depth
(in terms of relations between relations). This is, however, not yet a fully accurate picture;
consistency need not increase monotonically, since there are ways for less consistent view-
points to push their way stochastically into the Workspace.

The actual computation is done by calling codelets. A codelet is a small piece of executable
code. There are various types of codelets, some that can only detect and memorize some
regularity (called scouts), and others that can actually alter the state of the Workspace and the
Slipnet. New codelets can be generated by several mechanisms. At a given time, a (large)
number of codelets waits in the Coderack to be called in a stochastic fashion. Each of them is
marked with a priority value, which governs its chances to be called.

Although only a single viewpoint is explicitly present in the Workspace, competing viewpoints
can be implicit in codelets that lie "dormant" in the Coderack. When they happen to be called,
it may occur that a relatively coherent viewpoint is exchanged for a less coherent one. This is
an important mechanism to avoid getting stuck in impasses, and for finding "surprising"
solutions.

The coherency of a given viewpoint regulates a computational temperature. The greater the
coherency, the lower the temperature. High temperature has the effect that codelet execution,
roughly, is "more random". At the beginning, coherency is minimal, temperature maximal, and
the overall behavior is nearly random. At the end, the opposite is true. Thus, by and large, the
dynamics behaves like in simulated annealing. However, in simulated annealing the temperature
is an externally supplied control parameter, whereas here it reflects the current degree of
coherency; also, in Copycat the temperature is apt to fluctuate, wich it usually does not in
simulated annealing regimes.

The authors provide a metaphor for the basic principles of Copycat that is quite helpful to get
an intuitive grasp of the matter. They compare the Workspace with a biological cell, where
complex biochemical aggregates are built through the activity of enzymes, which in turn are
produced from DNA strands, with many inhibitory and positive feedback cycles being
involved, and with mechanisms to suppress or express particular portions of the DNA. The
enzymes correspond to the codelets, the DNA to the Slipnet (with suppression/expression
representing the activation dynamics), and the biochemical aggregates to the viewpoint in the
Workspace. One of the crucial things to be gathered from this metaphor is the stochastic and

144



fine-grained collective nature of the ongoing processing, where a single codelet execution has
only minimal effects.

There are several similarities between Copycat and DSS. Some of them are of a more general
nature:

• Both systems combine a self-organizing dynamics with symbolic knowledge processing
(my interpretation; the authors locate Copycat somewhere between the symbolic and the
subsymbolic paradigm).

• There is a long-term memory and a working memory (Slipnet and Workspace vs. dynamic
symbol space and self-organizing stream).

• In working memory, coherent assemblies of informational entities are formed (viewpoints
vs. resonances).

However, such similarities could be found to relate DSS with many other systems in the field
besides Copycat. The central aspect of likeness, which motivated my reviewing of Copycat,
lies in the Slipnet's principle of labeling links by nodes. By virtue of this elegant technique,
relations are effectively identified with concepts. This exactly matches the interpretion of the
conceptual level in DSS associeties (cf. section 5). The technical apparatus of DSS is not very
similar to the one realized in the Slipnet, but the basic idea, and the implications for context
sensitivity of attribute accessibility (where the attributes of a Slipnet concept node are taken to
be its proximal nodes), are very much alike.

It is, on the other hand, not difficult to spot many differences between Copycat and DSS. I list
the most important ones:

• In contrast to multi-level associetes, Copycat works only on one, namely, the conceptual
level in the periphery-centre hierarchy.

• Copycat is a single-task single-run device, whereas associeties are for stream processing.
• Copycat's dynamics is, one might say, "more collective", or "finer grained", than DSS

microdynamics. In its "evolutionary" character, it can be compared (which Hofstadter and
Mitchell do) to the dynamics of classifier systems. By contrast, the equilibration of a self-
organizing scene can be expected to be a rapid phenomenon.

One of the things that DSS might learn from Copycat concerns the control of global working
parameters. A self-organizing stream history unfolds under the given of a global state. I have
not addressed in this thesis the question of general strategies of how a "suitable" global state
can be determined (in the application described in section 4, the task is simple enough to fix a
particular global state beforehand). In Copycat, the computational temperature depends direct-
ly on the currently achieved degree of coherence. By analogy to Copycat, it might be moti-
vated to explore whether the global state might be set dynamically in agreement with some
measure of coherence of configurations.

(P.S.: When abc changes to abd, then mrrjjj  changes, quite elegantly, to mrrjjjj . That's how:
a is the 1st, b the 2nd, c the 3rd letter of the alphabet; m appears 1 time, r  2 times, and j 3
times. The transition "3 → 4" governs, then, both the original and the solution.)
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Discussion

Harmony theory, Copycat, and DSS are three approaches to realizing a kind of information
processing that is both symbolic and self-organizing. To be sure, Smolensky would not
consider his work "symbolic", and neither would Hofstadter and Mitchell be happy with this
characteriziation. However, the rejection of the term by these researchers stems from their
opposition to a logic-oriented, inferential dynamics, and the underlying model-theoretic seman-
tics; but I use the term here merely to refer to the representation of information in terms of
symbolic labels.

The three approaches aim at quite different tasks: pattern completion, creative analogy-
making, and stream processing for agents. A mutual comparison cannot, therefore, rest on the
tasks. Rather, it should focus on the mechanisms that are exploited, and the underlying prin-
ciples that are assumed to govern information processing.

I find several basic aspects that are shared by the three architectures, which might turn out to
be universal for any approach that combines a self-organizing dynamics with a symbolic format
of information:

• Local interaction in a collective of informational entities. This certainly characterizes the
three approaches in question here. Why might it be universal? First, a symbolic format
implies that there are discrete entities. Since there obviously must be more than one entity
present for anything interesting to happen, one has a collective of informational entities
with which to start. Second, it is hard to conceive how a globally controlled dynamics
might give rise to self-organization. Control and self-organization is all but a contradiction
in terms. Discarding global control, one is left with local interaction.

• Formation of "coherent" composites. In a harmonium run, a complex schema is successive-
ly assembled from mutually (+)-linked clusters and meta-clusters of nodes. In Copycat's
Workspace, interpretations of letter sequences, and their mutual analogies, are successively
built by intermeshing letters and letter-groups with relations, relations between relations,
etc. Resonances develop in a self-organizing stream. In all these cases, the authors apply
the term "coherent" to the respective phenomenon. Furthermore, there is a numerical
measure for coherency in each case, which is directly related to the relative stability of the
composite: the harmony function in harmony theory; the coherence value of a viewpoint in
Copycat; and the information of associations in DSS. This cannot be a coincidence.
Harmony theory provides the relevant insight: the harmony function can be rigorously
interpreted as a measure of energy. Principally, from a thermodynamic point of view, self-
organization is explained in terms of minimizing an energy measure. For DSS, such an
interpretation is a goal for further formal research.

• Coincidence of concepts, attributes, relations; and context sensitivity of these unified
entities. This is an ill-specified claim, since the terms "concept", "attribute", and "relation"
are not used either by Smolensky or by me, in the first place. However, in harmony theory
and DSS, these notions can be plausibly reconstructed. Then, the underlying similarity that
concepts relate between concepts is revealed. In harmony theory, this is manifest in the fact
that a node is a relay station for activation; in DSS, a dynamic concept is characterized by
when and with which others it can associate; in Copycat's Slipnet, a concept is outrightly
equivalent to a modulatory relation between other concepts. Again, this appears to be more
than a coincidence. In a dynamic, self-organizing system, an informational entity cannot be
understood in isolation from other such entities, and their mutual interactions. An
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informational entity, in such a system, is intrinsically a dynamic object, and its dynamics
intrinsically relates the object to others. An object, in a nutshell, is its own behavior
towards neighboring objects; it cannot be abstracted away from that. Context sensitivity
can be considered a necessary consequence of this situation. When a concept is a dynamic
relation, then its relating to other concepts forms a context for the latter; since this relating
activity is in some way or other causally influential for the other concepts, they are context-
sensitive. Seen this way, context sensitivity is a mere epiphenomenon, and there is nothing
in it that is remarkable in any way.

• Feedback and cyclicity. I need not expand on this issue, since it is obvious both in its role
for the three approaches in question here, and in its universal relevance for self-
organization.

• Thermodynamic states as global control parameters. The harmonium, Copycat, and self-
organizing streams are uniformly ruled in their microbehavior by global states that allow for
a thermodynamic interpretation, though only in harmony theory this interpretation is
rigorously carried out. The question is, again, how universal is this? It might seem that it is
not, considering cellular automata and neural networks that work without reference to
global states. However, this may be due to the fact that such a global state is simply not
varied there, although a fixed one could be defined. In collective computation techniques,
it should always be possible to introduce and to vary randomness, thereby equipping the
system with some kind of computational temperature. Non-random computations, in this
view, are simply computations at zero temperature (note that "heating" is generally not
possible for classical symbolic algorithms, which would typically break down completely
when randomness was allowed). Therefore, I will take it as granted that collective compu-
tation is generally subject to global states that bear out a more or less rigorous thermo-
dynamic interpretation. A question of general relevance concerns the control of such global
parameters. In the harmonium, a one-way cooling strategy is employed; in Copycat, the
computational temperature is self-adjusting to the currently achieved coherency; in DSS,
the problem is left open. It seems to me that decisive insights into the nature of this
question are still missing, in particular when a continuous processing of a stream of infor-
mation is at stake.

A general observation can be made concerning the formal reconstruction of systems like the
harmonium or DSS streams, in terms of set-theoretic mathematical structures. A standard
formalization seems inadequate or even impossible. This follows (a) from the coincidence of
concepts with relations, which disagrees with the modeling of standard fixed-arity relations by
sets of tuples (cf. Scott 1978 for "multi-relations"), (b) from feedback, which would require, at
least, an unfounded version of model theory (for unfounded set theory in accounts of stream
processing cf. Barwise & Moss 1991), and (c) from context sensitivity of concepts, which
would require "sets with context-sensitive extension". Although set-theoretic structures with
such properties would be somewhat non-standard, I believe that exploring them is fruitful for a
deeper understanding of self-organiziation, and I have started to work in this direction.

Harmony theory, DSS, and Copycat differ widely in their complexity, with harmony theory
being the simplest and Copycat the most intricate. This is mirrored in the degree of formal
analysis that has been achieved in each case, which varies from the almost complete and
rigorous treatment in harmony theory, via the formal language underpinnings of DSS and its
prospects for a further exploration in terms of statistical thermodynamics, to the non-existence
(impossibility?) of a formal model for Copycat. This raises the important question whether a
"truly" intelligent (which would include creativity, as performed by Copycat) system can be
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formally penetrable at all, or whether this might in the end turn out a contradiction in terms. Be
this as it may, DSS bears a formal analysis.

The harmonium, Copycat, and self-organizing streams differ greatly with respect to the actual
computational dynamics. Spreading activation, codelet execution, and microchanges are quite
dissimilar "micro-mechanisms". Furthermore, other approaches in the field of collective
symbolic computation, such as classifier systems and cellular automata, add yet other principles
of micro-mechanisms. This variance is repeated at the macrolevel. Slow "evolutionary" systems
(Copycat, classifier systems) contrast with fast "equilibrative" ones (harmonium and most
neural networks, cellular automata, DSS). A unified theoretical perspective is not in sight; in
the long run, statistical thermodynamics and information theory might yield an appropriate
general frame of reference.

I have selected harmony theory and Copycat for review not only because they are as close to
DSS as can be found, but also because they highlight the similarities as well as the dissimi-
larities of approaches to self-organizing, symbolic information processing. The dissimilarities
lie in the concrete computational techniques, in the nature of tasks, and, importantly, in the
suitedness for a formal analysis; the similarities lie in the generic properties of collective, yet
symbolic, information processing, which I have listed above. DSS is a new member in a family
of approaches, which are hardly yet systematically interrelated beyond those generic properties.
The field is in a stadium of initial growth, which is characterized by the co-existence of many
paradigms and techniques. Given this situation, the entry of DSS into the game is justified by
two points:

• Among the systems that perform self-organization of symbolic information, DSS is unique
in its combination of stream processing with a coverage of the full periphery-centre hierar-
chy. This reflects the central purpose of my work, i.e., to contribute to the modeling of
intelligent, situated agents.

• DSS unfolds stringently from a simple formal basis, namely, coherent languages, which are
a subclass of regular languages. It can reasonably be expected that a thorough analysis of
DSS in terms of statistical thermodynamics is possible. In a field that is far from being
understood systematically, formal stringency is particularly desirable.

Summary of section 6

• There are many approaches that combine a self-organizing dynamics with a basically
symbolic mode of information processing. However, they are quite diverse. I examine two
of them more closely, namely, Smolensky's "harmony theory" and Hofstadter and Mitchell's
"Copycat". Although these two are selected for maximal proximity to DSS, it turns out
that there are still considerable dissimilarities.

• Harmony theory is a localist connectionist technique for pattern completion tasks. An
outstanding feature is a rigorous formal analysis in terms of statistical thermodynamics,
which is made possible by the architecture's basic simplicity.

• Copycat performs on letter sequence completion tasks, which require a creative exploi-
tation of analogy.

• Several general, shared traits are abstracted from harmony theory, Copycat, and DSS. I
argue that these similar characteristics are, in fact, fundamental for any approach that com-
bines self-organization with a symbolic format of information. In particular, the following
points are identified:
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• local interaction in a collective of informational entities,
• formation of "coherent" composites,
• coincidence of concepts, attributes, relations; and context sensitivity of these unified 

entities,
• feedback and cyclicity, and
• thermodynamic states as global control parameters.

• The unique contribution of DSS to this family of computational approaches lies in its com-
bination of stream processing with a multi-level architecture. A second important justifica-
tion is its accessibility for a formal treatment.
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7  Conclusion

Looking back on the preceding sections, the following points appear as the fundamental
characteristics of my work:

• DSS unfolds, in a formally rigorous way, from the theory of coherent languages.
Coherent languages are a subclass of regular languages. They are motivated by funda-
mental aspects of local observations of dynamic systems, which in turn directly imply a
notion of context sensitivity.

• The basic informational entities in DSS are dynamic symbols. They are interpreted as
empirical observables. This leads directly to an abstraction relation between dynamic
symbols, which is formally almost, but not quite, similar to the classical abstraction
defined in terms of inclusion of extensions.

• The DSS model of long-term memory, dynamic symbol spaces, is in many aspects related
to classical semantic networks. However, the proper perspective on dynamic symbol
spaces is to view them as thermodynamic global state spaces.

• The DSS model of a processing module, the self-organizing stream, is an open, dissi-
pative, rapidly self-organizing system. In computational terms, it is an anytime-algorithm
for stream processing.

• Coherent spatiotemporal subsystems, resonances, can develop in a self-organizing stream.
They can be interpreted as a phenomenon of gestalt formation.

• Complex multi-level architectures can be constructed by coupling several self-organizing
streams. There are two coupling mechanisms. Coupling by bands is suited for connecting
streams "laterally" by distinct communication pathways. Coupling by emergence/groun-
ding relations yields multi-granular, "vertical" columns of processing levels, where top-
down and bottom-up influences have equal rights.

Contributions

The work reported in this thesis contributes to AI in general through the following points:

• The structuralistic epistemological framework of dynamic symbol structures, of which DSS
is a concrete instance, provides a unified theoretical perspective on two paradigms that are
often considered to be mutually incompatible, namely, the paradigms of situated action and
physical symbol systems.

• On the conceptual level, DSS proposes solutions for some problems that are hard for
traditional, logic-oriented concept representations formalisms:
• nonmonotonic inheritance,
• the nature of symbols vs. concepts,
• the nature of concepts vs. attributes,
• analogical vs. language-like representations,
• vagueness, variability, and context sensitivity,
• conceptual cycles.
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• DSS is unique in its combination of the following features, which are of particular interest
for modeling agents:
• a self-organizing dynamics,
• a symbolic format of information,
• stream processing, and
• support of hierarchic, multi-granularity architectures.

• DSS is unique within AI in that it exploits topology-changing graph modifications for the
micromechanism of collective computation. Since these graphs (configurations) are of a
dual temporal/structural nature, DSS is a suitable formal frame for further explorations into
fundamental questions concerning time vs. structure.

The central application aimed at by the approach lies in agent design. Associeties provide a
programming scheme for the entire periphery-centre axis of a situated agent. The following
points justify DSS in this perspective:

• Due to the symbolic nature of DSS, the design can be explicit (cf. the "explicit design
principle" in 2.10). Together with the unified format for all levels of the periphery-centre
dimension, this fosters transparency and intelligibility, which in turn are beneficial for modi-
fication and systematic experimentation.

• Due to compositionality, an ad-hoc setup of behaviors is in principle possible, which in turn
is a precondition for discover-and-modify development schemes (cf. the "open design
principle" in 2.10). However, before this can be realized, learning must be incorporated
into the approach.

• Fast self-organization, the anytime character of self-organizing streams, and the tight
interaction of bottom-up with top-down processing warrant the agent to be coupled into its
environment by a tight agent/environment feedback loop, as emphasized by situated action.

• Conversely, the relative detachment and autonomy of higher processing levels and the
representational capabilities comparable to classical semanitc networks, provide a precon-
dition for the "intellective" type of intelligence that is emphasized in classical AI.

However, this is speculation, since DSS is unimplemented as yet. It remains to be seen to what
extent these points can be realized.

Outlook

The work presented in this thesis provides only the formal groundwork for DSS. Before DSS
can be utilized in practical applications, further work must be carried out. I list some obvious
tasks, in the order of their urgency, which I am going to tackle with the least possible delay:

• Simulations of self-organizing scenes and streams must be run, in order to gain experience
with the diverse phenomena of self-organization. Such computer simulations are indispen-
sable, since a theoretical prediction of ergodic properties of the self-organization phenome-
na concerned is inherently difficult.

• Control regimes for the dynamic selection of global states for passages of a history must be
developed in the course of these simulation experiments.

• Acquisition techniques for the construction of dynamic symbol spaces must be developed.
In the long run, it would be very desirable, e.g., to acquire conceptual-level dynamic
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symbol spaces automatically from texts, by a direct transformation of observed keyword
sequences into a growing dynamic symbol space. The problem of learning, in the sense of
augmenting a given such space incrementally, is directly related.

• Dynamic symbol spaces are, as yet, defined in terms of more or less arbitrarily selected
generators. It is desirable to find a representation format that is independent from particular
generators. This requires a further mathematical elaboration of the interdependencies
between, on the one hand, abstraction and symmetry breaking, and on the other, phase
generators and simulation mappings.

• A task that is intriguing, but not quite so urgent, lies in a theoretical analysis of self-organi-
zing streams in terms of statistical thermodynamics and information theory. This constitutes
an ultimate goal for the approach.

A final remark

Self-organization, at least as it is  -  imperfectly  -  understood today, is possibly necessary, but
certainly not sufficient to explain intelligent behavior. In particular, a purely DSS-based robot
could not properly react to instructions that require a nontrivial syntax analysis. Charniak
(1983) argues that language understanding builds on two kinds of mechanisms, one being self-
organizing (though that term is not used by Charniak himself), the other exploiting functional
relations between concepts that are expressed by purely syntactical means. I find his arguments
convincing.

Furthermore, self-organization is not at all wanted for AI applications where a full control is
required. Self-organization intrinsically implies unpredictability. An AI system for the surveil-
lance of a chemical plant, or the support of air traffic control, or almost any other conceivable
application in management and industry must not behave unpredictably. Such systems
constitute the vast majority of economically relevant AI applications. The symbols manipulated
there have a clear (often externally extensional) meaning for the user of such a system, just as
the speedometer readings and the steering wheel have a clear meaning for the driver of a car. A
trained logician, I believe that a classical extensional logic is the appropriate mathematical
background. This insight notwithstanding, self-organizing mechanisms can serve auxiliary tasks
in such systems, for instance in facilitating memory access.

Thus, in sum, self-organization is far from being a panacea for AI. It may be a valuable
auxiliary mechanism in classical applications. In the particular AI subdiscipline of agent design,
however, I believe it to be, though not sufficient, essential. These closing statements put my
work in the frame where it belongs.
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Σ, Σ*, L  52

continue, continue∞ , L∞  52

G, (S, trans)  53

xrx'  53

LG  53

η: G → G'  55

C, C∞  55

ϕ, ϕp, Φ(C)  57

Gϕ  58

Φ(s), H(s)  61

σ: G → G'  63

αj, ((Σj)j=n,...,0, (αj)j=n,...,1)  69

βj  70

(Gij)  70

r(j)  81

Φij (s), Hij(s)  81

C  82

ex   98

input 98

output  99

τ, A((Gij))  108

Res 111

ΣRes  112

ε, γ  112
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χ  114
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abstraction conservative  77
abstraction gradient  32 context  52
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abstraction tree  30, 69 134ff, 146
Σj-abstraction  81
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Copycat  143ff
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explanatory attribute  132 dynamic composite  9f
grounding attribute  132

dynamic concept  130
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dynamic symbol  9fautonomy principle  17
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differentiation  12, 27ff
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rapid setup  44

dynamic symbol space  66ff, 70
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classifier systems  39 emergence coupling  114
coherency  56 emergence mapping  112

within dynamic symbol space  115coherent language  55
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evolutioncomputational temperature  147

modify-and-test strategy  47in dynamic symbol spaces  75f
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filtering  68concepts
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conceptual cycles  136f generator  53
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vs. symbols  129 grounding mapping  112
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