
Modeling and learning continuous-valued

stochastic processes with OOMs

Herbert Jaeger

GMD { German National Research Center

for Information Technology

June 8, 2000

Abstract. Observable operator models (OOMs) are a generalization

of hidden Markov models (HMMs). They support a fast, novel learning

algorithm. Standardly, OOMs model discrete-valued (\symbol") processes.

This report shows how OOMs for continuous-valued processes can be de�ned,

and how the learning algorithm can be extended.

key words: stochastic processes, observable operator models

Zusammenfassung. Observable Operator Modelle (OOMs) sind eine

Verallgemeinerung von Hidden Markov Modellen (HMMs). Sie sind mit

einem neuartigen, schnellen Lernalgorithmus ausger�ustet. Die bisher bekan-

nten OOMs modellierten diskretwertige Prozesse. In diesem Report werden

OOMs und der Lernalgorithmus auf kontinuierlichwertige Prozesse erweitert.

Stichw�orter: Stochastische Prozesse, observable operator models

3

1 Introduction

In this report it is shown how observable operator models (OOMs) and their

learning algorithm can be generalized from discrete-valued to continuous-

valued processes. It is assumed that the reader is familiar with discrete

OOMs. Introductions can be found e.g. in [9] [7].

We start with a crash review of discrete observable operator models

(OOMs) for �xing terminology and notation. OOMs model distributions

of stochastic processes very much like hidden Markov models do. Consider a

discrete-time stochastic process (
;F ; P; (Xt)t2N) (or shortly, X) with values

in a �nite set E = fa1; : : : ; ang, i.e., a symbol process. An OOM of X is a lin-

ear algebra structure A = (Rm
; (�a)a2E; w0), (where R

m is its state space; for

every a 2 E, the observable operator �a : R
m ! R

m is a linear map rendered

by a matrix, and w0 2 R
m is a starting vector), such that the probabilities

of �nite sequences can be calculated by iterated matrix multiplications, as

follows:

P (X0 = ai0 ; : : : ; Xk = aik) = 1 �aik
� � � �ai0w0; (1)

where 1 is the (row) vector (1; : : : ; 1) of length m. We will use shorthand

P (ai0 : : : aik) or even P (�a) to denote these and similar probabilities.

The vector �aik � � � �ai0w0=1 �aik
� � � �ai0w0 is the state vector obtained in

the OOM after the generation of a sequence ai0 : : : aik . Note that it is nor-

malized to unit component sum. It is also written as wai0 :::aik
. It follows

from (1) that the conditional probability P (bik+1
: : : bik+l

j ai0 : : : aik) to ob-

serve a sequence bik+1
: : : bik+l

after a prior history of ai0 : : : aik , is equal to

1 �bik+l
� � � �bik+1

wai0 :::aik
.

Two OOMs are equivalent when they yield the same distribution accord-

ing to (1). An OOM A is minimal-dimensional if every OOM B which is

equivalent toA has a state space dimension not smaller than that ofA. Given

some OOM A, a minimal-dimensional, equivalent OOM can be e�ectively

constructed. Two minimal-dimensional OOMs A = (Rm
; (�a)a2E; w0);A

0 =

(Rm
; (� 0a)a2E ; w

0
0) are equivalent if and only if there exists a matrix % whose

column vectors each sum to unity, and which renders A and A0 conjugate,

i.e., 8a 2 E : %�a = �
0
a% and %w0 = w

0
0. Historically, it has been the quest

for a similar equivalence theorem for HMMs [2] that led to the stepwise dis-

covery and elaboration of OOMs (called linearly dependent processes in [5]

and generalized HMMs in [10]). The vector space dimension of a minimal-

dimensional OOM that describes X is called the dimension of X. This

notion of dimension of a process can be generalized to arbitrary-valued (e.g.,

continuous-valued), discrete or continuous-time processes [9] [8].

4

If A = (Rm
; (�a)a2E ; w0) is a minimal-dimensional OOM of X, then m is

called the dimension of the process X. The dimension of a process is a fun-

damental characteristic of its stochastic complexity (see [9] for a probability

theoretic account of this dimension).

If A is a minimal-dimensional OOM of X, then X is strictly stationary

if and only if �w0 = w0, where � =
P

a2E
�a.

The state vectors of an OOM cannot in general be interpreted as proba-

bility distributions, as it is possible with HMMs. However, an interpretable

version of OOMs can be obtained as follows [6]. Let A = (Rm
; (�a)a2E; w0) be

an m-dimensional OOM. Select some � � 1, and some partition of E� = A1[

� � �[Am intom disjoint, non-empty subsets Ai (i.e., Ai consists of observation

sequences of length �). Then, in general (some pathological selections of sets

Ai excepted) one can construct a conjugate mapping % and use it to transform

A into an equivalent OOM A0 =: A(A1; : : : ; Am) = (Rm
; (%�a%

�1)a2E; %w0),

which has the following property. Let wai0 :::aik
= (x1; : : : ; xm) be the state

vector obtained after an initial sequence ai0 : : : aik . Then the j-th component

xj of the state vector is equal to the probability that the event Aj is observed

after the initial history ai0 : : : aik :

xj = P (Aj jai0 : : : aik); (2)

where P (Aj j ai0 : : : aik) denotes
P

bj1 :::bj�2Aj
P (bj1 : : : bj� j ai0 : : : aik) =P

bj1 :::bj�2Aj
1 �bj�

� � � �bj1wai0 :::aik
. In other words, state vectors w that occur

in an interpretable OOM A(A1; : : : ; Am) can be interpreted as the probability

distribution of the characteristic events Aj to be observed after the OOM is in

the state w. By consequence, state vectors in an interpretable OOMs always

fall into the non-negative hyperplane H
�0 = f(x1; : : : ; xm) 2 R

m j xi �

0; x1 + � � �xm = 1g. Figure 1 depicts this hyperplane for m = 3 and shows

state diagrams of three di�erent OOMs, all of which had three observable

events E = fa; b; cg and were interpretable w.r.t. the singleton characteristic

events A1 = fag; A2 = fbg; A3 = fcg.

In an interpretable OOM A(A1; : : : ; Am), it holds that

�al � � � �a1w0 = (P (a1 : : : alA1); : : : ; P (a1 : : : alAm))
T
; (3)

where �T denotes transpose. (3) leads directly to a constructive estimation

of OOMs from data. We describe it here for stationary processes.

Assume that a (long) path S of length N has been generated by some

unknown, m-dimensional, stationary OOM A. Let A(A1; : : : ; Am) be an

interpretable version of A. The learning task considered here is to (i) es-

timate the dimension m from S; and (ii) estimate an interpretable OOM

5

1
1

1

P A w(|)1
P A w(|)2

P A w(|)3

w
H

Figure 1: From left to right: the admissible state hyperplane H�0 in an in-

terpretable OOM, and three exemplary state diagrams obtained from runs

of length 1000. Three grayscales in these diagrams correspond to three op-

erators/events. For details see text.

~A(A1; : : : ; Am) from S such that ~A(A1; : : : ; Am) converges to A(A1; : : : ; Am)

(in some matrix norm) almost surely as N !1.

Task (1) can be solved by adapting a criterium used in numerical linear

algebra for deciding the rank of a noisy matrix. The procedure is detailed

out in [7]. We omit this step here and assume that m has been correctly

estimated.

Estimating an OOM basically means to construct its observable oper-

ators, i.e., linear maps ~�a : Rm ! R
m . Such a linear map is de�ned by

the values it takes on m linearly independent argument vectors. That is,

in order to obtain an estimate ~�a, we have to procure estimates ~u1; : : : ; ~um
of m linearly independent vectors u1; : : : ; um, and estimates ~u01; : : : ; ~u

0
m of

the images u01; : : : ; u
0
m of u1; : : : ; um under �a. Equation (3) points out how

this can be achieved in an interpretable OOM A(A1; : : : ; Am): for u1, take

w0 = (P (A1); : : : ; P (Am))
T. An estimate ~u1 of w0 can be estimated from

S by an obvious frequency count. Then, (3) tells us that u
0
1 = �au1 =

(P (aA1); : : : ; P (aAm))
T, which can likewise be estimated by a frequency

count. For u2, select some other vector, e.g. �aw0 (which we already have

estimated), and estimate it and its image under �a again by a frequency

count.

This is the basic idea. If it is systematically assembled, one obtains an

asymptotically correct estimation procedure that has a time complexity of

O(N + nm
3).

In order to make this estimation algorithm work in practice, two auxiliary

procedures have to be carried out. The �rst is the selection of characteristic

events. This has to be done with some care, because the selection greatly

a�ects the convergence rate of the estimation procedure. [7] presents some

rules-of-thumb. Secondly, the estimation procedure sometimes may return

6

a set of matrices which is no valid OOM, i.e. if one uses these matrices to

compute probabilities according to (1), negative \probability" values may

be obtained for some sequences. This problem calls for a renormalization

procedure which transforms the estimated matrices into the nearest valid

OOM (work in progress).

2 OOMs for continuous-valued processes

Basic OOMs, as described in the Introduction, characterize distribution of

discrete-valued processes. However, many interesting systems are observed

through continuous-valued (but discrete-time) measurements in some mea-

surement interval I � R
p . One way to cope with such processes would be to

discretize the observation space and use discrete-valued OOMs.

A more satisfactory approach is to use continuous-valued OOMs, de�ned

as follows. Let (
;F ; P; (Yt)t2N) be a process with values in the continuous

measurable space (I;B), where B is the Borel-�-algebra on I. An (�nite-

dimensional) OOM of Y is a structure C = (Rm
; (�J)J2B; w0), which allows

to calculate the distribution of Y according to the following variant of (1):

P (Y0 2 J0; : : : ; Yk 2 Jk) = 1 �Jk � � � �J0w0: (4)

In [8] it is shown how an OOM (not necessarily �nite-dimensional) can

be constructed for every continuous-valued process. The contribution of this

article is to describe a way in which the uncountably many observable op-

erators (�J)J2B of a continuous-valued OOM can be \blended" from �nitely

many observable operators of a basic OOM, and how this basic OOM can be

identi�ed from continuous-valued data. The basic idea of blended OOMs is

illustrated in Figure 2 and formalized in De�nition 1.

De�nition 1 Let A = (Rm
; (�a)a2E; w0) be a discrete-valued OOM, where

E = fa1; : : : ; ang. Let I � R
p be an interval. For a 2 E let �a : I ! R be

a probability density on I. We call the �a membership functions. For every

x 2 I, de�ne

�x =
X
a2E

�a(x)�a; (5)

and for every J 2 B de�ne

�J =

Z
J

�xd�; (6)

7

200 400 600 800100012001400

-50

-40

-30

-20

-10

(a) (b)

I

I

τ τ τx a b= .7 + .3

τx

τa τb
τc

Figure 2: (a) A process with observation values in a one-dimensional interval

I. A value x is modeled by an observable operator �x. (b) A real-number-

indexed operator �x is linearly combined from �nitely many symbolically

indexed operators (here: �a; �b) via membership functions.

where � is the Borel measure on I. Then C = (Rm
; (�J)J2B; w0) is the

(continuous-valued) OOM blended from A via the membership functions

(�a)a2E.

Blended OOMs can be used as sequence generators for the process whose

distribution is given by (4):

Proposition 1 Let C = (Rm
; (�J)J2B; w0) be an OOM blended from A =

(Rm
; (�a)a2E ; w0) via (�a)a2E. Use C to generate sequences x0x1x2 : : : 2 I

N in-

ductively, as follows. Compute a probability density �0 =
P

a2E
(1 �aw0) �a on

I. Randomly select x0 2 I according to this density. Put w1 = �x0w0=(1 �x0w0).

To select x1, repeat previous steps, using state vector w1 instead of w0. It-

erate ad in�nitum. The process whose paths are obtained according to this

algorithm is distributed according to (4).

Furthermore, if A0 is equivalent to A and C 0 is blended from A0 via the

same membership functions (�a)a2E, then the process distribution described by

C 0 is the same as the one described by C. Finally, if the discrete-valued process

described by A is stationary, then the continuous-valued process described by

C is stationary, too. (The proof is given in the Appendix).

It is easy to see that blending is invariant w.r.t. equivalence of the under-

lying basic OOM. I.e., if C is blended fromA via (�a)a2E, and A
0 is equivalent

to A, and C 0 is blended from A0 via (�a)a2E, then C and C 0 generate the same

process.

Blended OOMs are related to continuous-valued HMMs in the following

way.

8

Proposition 2 Let H be an ordinary HMM with values in E = fa1; : : : ; ang

and hidden states S = fs1; : : : ; smg. Let I � R
p be an interval, and for every

a 2 E, let �a be a probability density on I. Let P (a j s) be the probability

that H emits a from hidden state s. For every s 2 S de�ne a probability

density �s =
P

a2E
P (a j s)�a. De�ne a continuous-valued process by letting

the hidden Markov process emit x 2 I from state s according to �s. This

process is the same as the one that is obtained when (i) H is formulated as

an OOM A, and (ii) this OOM A and the membership functions �a are used

to generate a process according to Proposition 1.

A precise statement of (i) and a proof are given in the Appendix. Note

that the class of continuous-valued HMMs constructed in this way is what is

called semi-continous HMMs in the HMM literature [1]. However, the emis-

sion densities of semi-continuous HMMs are usually mixtures of Gaussians,

whereas here we allow mixtures of arbitrary density functions.

Example. For a basic OOM, we take the \probability clock" OOM A =

(R3
; f�a; �bg; w0), which is described in detail in [9]. The most conspicu-

ous property of the two-symbol-process generated by this OOM is that the

conditional probabilities P (a j at) to observe an a after a prior history of t

consecutive a's is an oscillation (in t). Note that such a probability oscilla-

tion cannot be modeled by HMMs (they can only approximate it by sampling

the time axis with hidden states, cf. [7]). Figure 3 (a) shows the �fty most

frequently visited states in an interpretable version A(faag; fabg; fba; bbg),

which actually lie on an ellipse (a fact which is closely related with the prob-

ability oscillation). Figure 3 (b) depicts the evolution of P (a jat).

(a) (b) 5 10 15 20 25 30t

0.2

0.4

0.6

0.8

1
P(a|a^t)

Figure 3: The probability clock. (a) \Fingerprint" of the probability clock.

The 50 most frequently visited states are shown. (b) The probability oscil-

lation.

From A we construct a continuous-valued process with values in [0; 1] by

blending �a; �b via the membership functions �a(x) = 2�2x and �b(x) = 2x, to

obtain a continuous-valued OOM C = (R3
; (�J)J2B; w0). Figure 4 (a) shows

9

a path generated by this blended OOM, which on visual inspection looks

very much like an i.i.d. process with a uniform distribution. This impression

is corroborated by the autocorrelation plot (Fig. 4(b)), which reveals that

the process is almost a pure white noise process. This is mirrored by the

(equivalent) fact that the OOM states all fall into a small cluster (Fig. 4(c)),

which implies that the conditional distributions P (� jprior history) vary only

little with prior histories, i.e. the process is almost memoryless.

(a)

10 20 30 40 50

0.2
0.4
0.6
0.8
1

(b)
1 2 3 4 5lag

-0.02

0.02
0.04
0.06
0.08
0.1
corr

(c)

Figure 4: The process blended from the probability clock. (a) A 50-step path

of the blended process. (b) Autocorrelation diagram. (c) Fingerprint of the

blended OOM obtained from a 100 step run.

3 Blended OOMs and their underlying dis-

crete OOMs

The symbolic process X generated by a basic OOM A = (Rm
; (�a)a2E; w0)

is connected to the process Y generated by an OOM C = (Rm
; (�J)J2B; w0)

blended from A via (�a)a2E, by virtue of the following transfer function T :

Proposition 3 Let E = fa1; : : : ; ang. De�ne a function T : Rn ! R
n by

T (y1; : : : ; yn) = (

Z
I

�a1(x)

nX
i=1

yi�ai(x) d�(x); : : : ;

Z
I

�an(x)

nX
i=1

yi�ai(x) d�(x)):

(7)

T has the following properties:

1. T is linear.

2. (h�ai ; �aj i)i;j, where h�ai ; �aj i denotes the inner product
R
I
�ai(x) �aj (x) d�(x),

is a matrix representation of T .

10

3. T is invertible if and only if the density functions (�a)a2E are linearly

independent.

4. T (P (X0 = a1); : : : ; P (X0 = an)) = (E[�a1 Æ Y0]; : : : ; E[�an Æ Y0]), where

E[�ai ÆY0] is the expected value of the random variable obtained through

concatenating Y0 with �ai.

The proof is given in the Appendix. Point 4. establishes a connection be-

tween X0 and Y0. We proceed to extend this connection to length k sequences

X0; : : : ; Xk�1 and Y0; : : : ; Yk�1. The idea is to partition both processes into

blocks of length k, and re-use Proposition 3 for the blocked process. We �rst

describe the partition:

Proposition 4 Let A and C be as above. Let k � 2. For every length k se-

quence ai0 : : : aik�1
= �a 2 E

k de�ne a function ��a : I
k ! R by ��a(x0; : : : ; xk�1) =

�ai0
(x0) � : : : � �aik�1

(xk�1). Then (1) ��a is a probability density. De�ne

��a = �aik�1
Æ � � � Æ �ai0 . Let A

k = (Rm
; (��a)�a2Ek; w0). A

k describes a k-blocked

version X
k of X in an obvious analogy of Eq. (1), and it holds that P (Xk

0 =

a0;i0 : : : a0;ik�1
; : : : ; X

k
l�1 = al�1;i0 : : : al�1;ik�1

) = P (X0 = a0;i0 ; : : : ; Xl�k�1 =

al�1;ik�1
). In analogy to De�nition 1, de�ne �x0:::xk�1

=
P

�a2Ek ��a(x0 : : : xk�1) ��a
and for �

J = J0 � � � � � Jk�1 de�ne � �J =
R
�J
��xd�(�x) (the �� notation should

be self-explanatory). De�ne Ck = (Rm
; (� �J) �J2Bk ; w0). Then (2) Ck de�nes a

distribution of a process Y k with values in R
k by P (Y k

0 2 �
J0; : : : ; Y

k
l 2 �

Jl) =

1 � �Jl
� � � � �J0w0. Furthermore, (3) this distribution is the same as the one of the

process obtained when Ck is used as a generator similar to the procedure from

Proposition 1. Finally, if T k : Rnk ! R
nk denotes the analog for the blocked

process of T described in Proposition 3, it holds (4) that T k = T
 � � �
 T ,

where the right hand side is an outer (Kronecker) product with k factors.

The proof is given in the Appendix. Note that T
k is invertible i� T

is invertible, i.e., i� the density functions (�a)a2E are linearly independent.

Furthermore, note that the following k-block version of Prop. 3(4) holds:

T (P (Xk
0 = a1 : : : a1); P (X

k
0 = a1 : : : a1a2); : : : ; P (X

k
0 = an : : : an)) =

= (E[�a1 :::a1 Æ Y
k
0]; : : : ; E[�an:::an Æ Y

k
0]): (8)

A standard operation on a discrete OOM A = (Rm
; (�a)a2E; w0), where

E = fa1; : : : ; ang, is to join two observations, say, a1 and a2, into an ob-

servation b with the semantics \a1 or a2". The corresponding OOM is

A0 = (Rm
; f�b; �a3 ; : : : ; �ang; w0), where �b = �a1 + �a2 . We conclude this

section with a description of a similar construction for blended OOMs, and

11

how that relates to the underlying discrete OOMs. This (technical) result is

needed in the learning procedure.

Proposition 5 Let the continuous-valued OOM C = (Rm
; (�J)J2B; w0) be

blended from A = (Rm
; (�a)a2E; w0) via membership functions (�a)a2E , and

let Y be the corresponding continuous-valued process. Let � = 1�a1w0; � =

1�a2w0. De�ne a probability density function

�b =
��a1 + ��a2

� + �

: (9)

Rename fb; a3; : : : ; ang to E
0 = fb1; : : : ; bn�1g. Construct a transfer function

T
0 = (h�bi ; �bj i)i;j=1;:::;n�1. Let Y 0 be the continuous-valued process obtained

through blending from A0 via membership functions �b1 ; : : : ; �bn�1
. Then it

holds that

T
0(P (X0 = a1) + P (X0 = a2); P (X0 = a3); : : : ; P (X0 = an)) =

= (E[�b1 Æ Y
0
0]; : : : ; E[�bn�1

Æ Y 0
0])

= (E[�b1 Æ Y0]; : : : ; E[�bn�1
Æ Y0]): (10)

The proof is given in the Appendix.

4 Learning continuous-valued OOMs

We solve the following learning task. Let S = x0 : : : xN be a path of a

continuous-valued, ergodic, strictly stationary process Y generated by an

unknown OOM C = (Rm
; (�J)J2B; w0), which in turn is blended from an

unknown, discrete-valued, minimal-dimensional OOM A = (Rm
; (�a)a2E; w0)

of a process X, via known membership functions (�a)a2E, which are linearly

independent. The task is to derive from S an asymptotically (in N) correct

estimate ~A of A.

Our approach is to translate, using the transfer function, information

about Y contained in S into information pertaining to A, and use the known

learning algorithm for discrete-valued OOMs to obtain an estimate ~A of A

from this information. An estimate ~C of C is then trivially obtained from ~A

by blending via (�a)a2E.

The learning procedure both (i) �xes an appropriate model size, such that

teaching data are neither under-exploited nor over�tted, and (ii) calculates

a model estimate.

The learning proceeds in three major steps. In the �rst step, certain

statistics of the teaching data S are collected and arranged in matrices. The

12

size of these matrices is (roughly) selected as large as needed to ensure that

information in S be not under-exploited. In the second, �ne-tuning step,

these matrices are stepwise reduced in size, until they have a size that guar-

antees that S is not over�tted. The third and �nal step is an application of

the standard learning procedure for discrete OOMs.

The learning procedure will be illustrated by a probability clock example1.

The OOM C blended from the probability clock (as described in section 2) was

run for N = 2; 000; 000 time steps to yield a path S. The task is to recover

from S the original probability clock. Throughout the following description

of the learning process, we will refer to this example.

4.1 First major step

Overview.. We start with the continuous-valued observation sequence S and

compute from it nl � n
l matrices ~

Vbl = (~E[��bj�ai Æ Y
2l
0])i;j=1;:::;nl and Wa;bl =

(~E[��bja�ai Æ Y
2l+1
0])i;j=1;:::;nl, where a 2 E, n is the cardinality of the set E =

fa1; : : : ; ang of observations of the underlying discrete OOM A, l is an integer

that must be selected properly (which is the essential task in the �rst step),

�ai and �
bj (i; j = 1; : : : ; nl) each are alphabetical enumerations of El, and

~
E[��bj�ai Æ Y

2l
0] is an estimate of E[��bj�ai Æ Y

2l
0] derived from S. (Subscript "bl"

stands for \blended".)

The task of selecting l has the following signi�cance. In later steps, the

observable operator matrices will be computed from (among others) ~
Vbl, and

the resulting model dimension will be the dimension k of ~
Vbl. Therefore,

if k is selected too big, the resulting estimated model ~A will over�t data.

Conversely, if k is too small, data will be under-exploited. In the �rst step,

the matrix ~
Vbl has some dimension k = n

l. While in the second major step

k is �ne-tuned, in the �rst step k is adjusted on a coarse scale by varying l.

This is done by initializing l with the smallest possible value of l = 1, testing

whether an n
1-dimensional model under-exploits data, if yes, increment l by

1, test again, etc. until data are not under-exploited.

Substep 1.1. Initialize l = 1.

Substep 1.2. Test whether a nl-dimensional model under-exploits

data. If yes, increment l by 1 and repeat. If not, go to major

step 2.

1A self-explaining implementation of the learning procedure written in Mathematica,
and its application to the probability clock example, is available at the author's homepage
at www.gmd.de/People/Herbert.Jaeger/Resources.html.

13

We describe this step in detail. First, from S we compute the matrix
~
Vbl = (~E[��bj�ai Æ Y

2l
0])i;j=1;:::;nl, by exploiting the ergodic theorem for strictly

stationary processes, (aka strong law of large numbers for strictly stationary

processes [3]). It states that

lim
M!1

1

M + 1

MX
n=0

��bj�ai
Y

2l
n (!) = E[��bj�ai Æ Y

2l
0] (11)

with probability 1 for every �
bj�ai 2 E

2l. Therefore, we obtain asymptoti-

cally correct estimates of E[��bj�ai Æ Y
2l
0] from S by putting ~

E[��bj�ai Æ Y
2l
0] =

1
N�2l+1

PN�2l

i=0 �b1j
(xi) : : : �bl

j
(xi+l�1)�a1i (xi+l) : : : �ali(xi+2l�1), where �bj = b

1
j : : : b

l
j;

�ai = a
1
i : : : a

l
i, and xi is the i-th observation in S.

We describe in more detail the construction of ~
Vbl. Actually, instead of

the matrix ~
Vbl we construct a vector ~vbl = (~E[� �d1 Æ Y

k
0]; : : : ;

~
E[� �d

nk
Æ Y k

0]),

where k = 2l and �
d1; : : : ;

�
dnk is the alphabetical enumeration of E2l. The

vector ~vbl contains the same entries as the matrix, and will be used in later

steps.

Let ToDigits be a function that assigns to the numbers 1; : : : ; nk the

length-2l vectors of the n-adic digits (where digit 0 is replaced by n), i.e. the

vectors (1; : : : ; 1; 1); (1; : : : ; 1; 2); : : : ; (n; : : : ; n), and let subscript v[i] denote

the i-th component of a vector v. Using this auxiliary function, compute ~vbl
from S with the following procedure:

~vbl = (0; : : : ; 0); /* initialization; vector length n
k */

For p = 1; : : : ; N � 2l + 1 Do

For q = 1; : : : ; nk Do

(obs1; : : : ; obs2l) = (xp; : : : ; xp+2l�1);

(digit1; : : : ; digit2l) = (ToDigits(q)[1]; : : : ;ToDigits(q)[2l]);

~vbl[q] = ~vbl[q] + �adigit1
(obs1) � : : : � �adigit2l (obs2l);

~vbl = (N � 2l + 1)�1 � ~vbl;

The time complexity of this construction is O(Nkn
k) for a straightforward

execution of the described procedure. Note however that if the absolute

increments jxi+1 � xi j have a small bound and if the membership functions

overlap only with neighboring membership functions (i.e., the transfer matrix

is a band matrix) { both conditions will often be satis�ed {, then a majority

of the entries of ~vbl can be put to zero right away.

The entries of ~vbl are rearranged into the matrix ~
Vbl.

We now explain how the matrix ~
Vbl can be used to decide whether the

�nal model estimate under-exploits data.

14

In step 2.2, a k � k invertible matrix ~
V will be obtained from ~

Vbl by a

(nonlinear) transformation which never increases (and typically preserves)

rank. ~
V is a main input for the learning procedure for discrete OOMs, which

will be carried out in major step 3. The dimension k of ~V then becomes the

dimension of the process described by the estimated model. Matrices ~
V can

be constructed in di�erent dimensions k. The greater k, the greater detail

in the training data can be captured by model estimates. Thus, k must be

selected just right: if it is too small, data are under-exploited; if too big, the

resulting models will over�t data.

Over�tting and under-exploitation are both connected with the numerical

rank of ~
V . The numerical rank of a matrix is smaller or equal to its usual

rank; intuitively, it is the rank that is justi�ed under the assumption that

the matrix is a noisy sample. Technically, the numerical rank r of a matrix

is the number of its singular values that are signi�cantly greater than zero.

When one constructs a sequence of matrices ~
Vk of increasing size k � k

(k = 1; 2; : : :), one will �nd that for small k the numerical rank r of ~
Vk is

equal to k (i.e., ~
Vk is numerically full-rank). For k > k0 however, one will

�nd that the numerical rank of ~
Vk is smaller than k, i.e., ~Vk is numerically

rank-de�cient. The right dimension k is obtained when ~
Vk is numerically

full rank (this means that data are not over�tted), and ~
Vk+1 is numerically

rank-de�cient (which means that ~
Vk does not under-exploit data).

Deciding the numerical rank of a noisy matrix is a standard task in nu-

merical linear algebra, and a number of techniques are available (see [4] for

algorithms). In [7] a particularly simple one is applied to the matrix ~
V in a

task of estimating discrete-valued OOMs.

In the present case, however, it would be incorrect to test ~
V for its nu-

merical rank, since it is only indirectly connected to the training data. These

are directly mirrored in ~
Vbl instead. Since ~

V is connected to ~
Vbl by a non-

rank-increasing transformation, the justi�able rank of ~
V (i.e., the number

of singular values which are signi�cantly greater than zero, given data) is

bounded by the numerical rank of ~
Vbl (typically, this bound is strict since

the transformation from ~
Vbl to ~

V is typically rank-preserving). Therefore,

we have to test whether ~
Vbl has full numerical rank.

In order to check whether ~
Vbl has full numerical rank, we apply the test

criterium introduced in [7], which we repeat here for conveniance. First the

matrix ~
Vbl is normalized such that the sum of its entries becomes N (the

size of training data). Then, its singular values s1; : : : ; sk are computed (in

descending order). We accept the hypothesis that sk > 0 if sk > � k ~
Vbl k1,

where the 1-norm of a matrix (�ij) is maxi
P

j
j �ij j. The parameter � is

equal to 1=d2
P

i;j
�ij, where

15

�i;j =

(q
~
Vbl(i; j)(1� ~

Vbl(i; j)=N)= ~Vbl(i; j); if ~Vbl(i; j) > 0

0 if ~Vbl(i; j) � 0
(12)

In our probclock learning example, the singular values of the k = n
1 = 2-

dimensional matrix ~
Vbl are approximately (1000270; 17389), and the cuto�

criterium � k ~
Vbl k1 is 1245. Therefore, for l = 1 we would obtain a 2-

dimensional model which certainly would not over�t data, but possibly might

be under-exploiting.

In order to exclude this possibility, we increment to l = 2. We then obtain

singular values of the 4-dimensional matrix ~
Vbl of (500421; 8828; 2441; 0:23)

with a cuto� of 1394. This means that ~
Vbl has numerical rank 3, therefore

is numerically rank de�cient, and a 4-dimensional model would over�t data.

Thus, we �x l at a value of 2 and proceed to the second major step.

(a)
2 4 8 16

k
0.0025
0.005

0.0075
0.01

0.0125
0.015

0.0175

SV
cutoff
SV3
SV2

(b)

5 10 15 20
Nx10^5

0.0025
0.005

0.0075
0.01

0.0125
0.015

0.0175
SV

cutoff
SV4
SV3
SV2

Figure 5: Determining an appropriate model dimension. For explanation see

text. (a) Second and third largest singular values and cuto� obtained for

matrix dimensions k = 2; 4; 8; 16 (i.e., l = 1; 2; 3; 4) for the full length run (2

M steps). SVs and cuto� are normalized such that the largest SV becomes

1 (not shown). (b) Normalized singular values for k = 4, calculated from

matrices ~
Vbl obtained from initial sequences of increasing length. { Note

that after normalization, singular values maintain approximately constant

mutual ratios in (a) and (b); however, the cuto� grows with l (in (a)) and

falls with N (in (b)).

Fig. 5 (a) depicts the second and third singular values of k = n
l-dimensional

matrix ~
Vbl for l = 1; 2; 3; 4. For l = 1(k = 2), two SV's are obtained, of which

only the second is shown. It is far above the cuto�, which indicates that

a 2-dimensional model would be warranted by data by a far margin. For

k = 4 we �nd that a 3-dimensional model is justi�ed by data, although by

just a small margin. For k = 8 and k = 16, the cuto� criterium justi�es only

16

2-dimensional models. The reason is that the information from S becomes

dispersed over many more matrix entries as k grows; the \noise to signal"

ratio of the individual matrix entries grows worse; accordingly, the numerical

rank deteriorates.

Fig. 5 (b) illustrates the development of singular values of ~Vbl (case l = 2)

and the cuto�, when the learning procedure is applied to teaching data of in-

creasing size N . Note the the original process is 3-dimensional, which implies

that the 4th singular value in the true matrix Vbl = (E[��bj�ai Æ Y
2l
0])i;j=1;:::;nl

is zero. Accordingly the 4th SV goes to zero in the Figure as N grows.

Because the cuto� crosses the 3rd singular value at about N = 700; 000, a

model dimension of 3 would be justi�ed by data of that or greater size.

4.2 Second major step: �ne-tuning the model dimen-

sion

We enter this step with a model dimension k = n
l which would lead to an

over�tting model. The dimension is now decreased by steps of -1 until a

numerically full rank matrix ~
Vbl is obtained, which leads to a model that is

neither over�tting nor under-exploiting.

Substep 2.1. Compute the transfer matrix T .

Since the membership functions �ai are givens, computing the transfer ma-

trix T = (h�ai ; �aj i)i;j=1;:::;n is straightforward. The time complexity depends

on various contingent factors (e.g., whether the integrals have an explicit

solution or must be approximated numerically; in the latter case, desired

precision; how many entries can be simply put to zero because the member-

ship functions don't overlap). Be this as it may, this step will typically be

much cheaper than the previous substeps.

Substep 2.2. Compute n
l-dimensional matrices ~

V and ~
Wa.

These matrices are de�ned as ~
V = (~P (�bj�ai))i;j=nl and (for every a 2 E)

~
Wa = (~P (�bja�ai))i;j=1;:::;nl, where �bj and �ai (i; j = 1; : : : ; nl) each are alpha-

betic enumations of El, and ~
P (�bj�ai); ~P (�bja�ai) are estimates of the probabili-

ties P (�bj�ai); P (�bja�ai) of sequences �bj�ai;�bja�ai in the process X generated by

the discrete OOM A.

The entries ~
P (�bj�ai) of ~

V can be obtained from the vector ~vbl by an

application of Eq. (8). Observe that the transfer function T is invertible

according to Proposition 3. Thus, one can construct T
�1. Eq. (8) de-

17

mands that we apply (T
 � � �
 T)�1 (2l factors) to ~vbl. It holds that

(T
 � � �
 T)�1 = T
�1
 � � �
 T

�1. The calculation of T�1
 � � �
 T
�1(~vbl)

can be done incrementally (without explicitly calculating T
�1
 � � �
 T

�1)

with a complexity of O(knk+1) (where k = 2l).

The entries ~
P (�bja�ai) of all ~

Wa (a 2 E) can be obtained in a similar way

from the length k
0 = n

2l+1 vector ~wbl = (~E[� �d1 Æ Y
k0

0]; : : : ; ~E[� �d
nk

0

Æ Y k0

0]),

where �
d1; : : : ;

�
dnk

0 is the alphabetical enumeration of Ek0. The vector ~wbl

is calculated from S in a similar way as was ~vbl (step 1.2) with a cost of

O(Nk
0
n
k0). The cost incurred by the subsequent application of T�1
� � �
T�1

is O(k0nk
0+1).

We conclude the description of this substep by explaining why the rank

of ~V is less or equal to the rank of ~Vbl (here we refer to the \mathematical"

matrix rank, not the numerical rank). This can be seen as follows. Since T

� � �
T has 2l factors, it holds that T
� � �
T = T
0
T 0, where T 0 = T
� � �
T

(l factors). Let k = n
l. Let U be the linear subspace in Rk spanned by the

column vectors v1; : : : ; vk of ~Vbl. T
0 is invertible because T is. Therefore, the

subspace T 0U spanned by the vectors T 0vi has the same dimension as U . For

i = 1; : : : ; k consider the vector ui =
Pi

j=1 T
0(i; j)T 0vi. Obviously ui 2 T

0
U .

But ui is just the i-th column vector of ~
V . Thus, rank(~V) � rank(~Vbl).

Furthermore, a closer inspection of this line of argument reveals that the two

ranks will be equal except for carefully designed special cases.

Substep 2.3. Reduce dimension of ~
Vbl by 1 such that the numerical

rank is optimized.

In this step two rows and two columns in ~
Vbl (and ~

V , respectively) are

joined, thus reducing the matrix dimension.

Rows and columns should be selected such that after joining them, the

resulting matrix ~
V
0
bl is optimally conditioned in the sense that if we tested it

again like in substep 1.2, the numerical rank should be as big as possible. One

way to achieve this optimality would be to test out all possible combinations.

However, this is computationally expensive. A principled yet cheap method

for optimal selection is not known.

Currently we use a greedy local optimization that with each row (or

column) joining step maximizes a certain volume. Maximizing this volume

is connected to an optimal conditioning of numerical rank in an intuitively

plausible way.

We �rst explain the case of joining rows. We try out every possible

combination i; j of two rows, compute for each such combination a certain

volume vol(i; j), and �nally select those two rows where this volume was

18

found maximal. Concretely, this is done as follows. Let ~vibl; ~v
j

bl in
~
Vbl be a

pair of rows in the k�k matrix ~
Vbl. We �rst join them according to the joining

operation described further below, obtaining a (k � 1)� k matrix ~
VrowJoined.

We also join the corresponding rows in ~
V to obtain ~

VrowJoined ; here we use

simple addition as a joining operation. For each row vector of ~VrowJoined we

compute the component sum, thus obtaining k � 1 weights
1; : : : ;
k�1. We

then multiply the k�1 row vectors of ~VrowJoined with these weights, obtaining

k� 1 weighted vectors. The desired volume vol(i; j) is the k� 1-dimensional

volume of the polyhedron spanned by these weighted vectors.

The same is done for columns.

Let i; j be the pair of row indices where this volume was found maximal,

and m;n the pair of column indices.

The actual joining in ~
Vbl is not a simple addition but a pairwise weighted

sum, where the weights stem from the matrix ~
V . The theoretical justi�cation

for this operation will be explained after we have described the operation

itself. We �rst join rows. Let ~vibl = (�1; : : : ; �k); ~v
j

bl = (�1; : : : ; �k); v
i =

(
1; : : : ;
k); v
j = (Æ1; : : : ; Æk), where v

i
; v

j are the ith and jth rows in ~
V .

Compute a new vector w = (�1; : : : ; �k), where �� = (
���+ Æ���)=(
�+ Æ�).

In ~
Vbl replace ~vibl by w and delete ~v

j

bl, to obtain a (k � 1) � k matrix ~
V
�
bl.

In ~
V , simply add vj to vi and delete vj, to obtain a (k � 1) � k matrix ~

V
�.

Repeat an analog procedure for the columns m;n of ~
V
�
bl and

~
V
�, to obtain

the �nal (k � 1)� (k � 1) matrices ~
V
0
bl and

~
V
0.

This joining procedure has a simple semantics, which is revealed by

Proposition 5. For an explanation, assume that the �rst two rows and

columns are joined. Before joining, the matrix ~
V of our running example

looks like this:

~
V =

0
BB@

~
P (aaaa) ~

P (abaa) ~
P (baaa) ~

P (bbaa)
~
P (aaab) ~

P (abab) ~
P (baab) ~

P (bbab)
~
P (aaba) ~

P (abba) ~
P (baba) ~

P (bbba)
~
P (aabb) ~

P (abbb) ~
P (babb) ~

P (bbbb)

1
CCA : (13)

Now assume that the �rst two rows and columns have been joined (i.e.,

added) in ~
V . This gives

~
V
0 =

0
@ ~

P (aEaE) ~
P (baaE) ~

P (bbaE)
~
P (aEba) ~

P (baba) ~
P (bbba)

~
P (aEbb) ~

P (babb) ~
P (bbbb)

1
A
; (14)

where E = fa; bg is the observation of a or b. Now assume that instead

of using the original 2-symbol discrete probability clock A to construct a

19

blended OOM C, we started with a discrete 9-symbol process X 04 with sym-

bols E 0 = faEaE; baaE; bbaE; aEba; baba; bbba; aEbb; babb; bbbbg, described

by an OOM A0 = (R3
; (�e)e2E0; w0), where �aEaE = �aaaa+�aaab+�abaa+�abab,

etc. (�abab is shorthand for �b Æ �a Æ �b Æ �a). Actually, X 04 is nothing but

a 4-blocked version of X, in which additionally we coarsen the observa-

tion resolution by joining certain observations. Now assume furthermore

that from A0 we construct a blended process Y 04 via membership functions

�e derived from the membership functions ��a of the 4-blocked version X
4

of X (as described in Prop. 4). For instance, �aEba would be equal to

(P (aaba)�aaba + P (abba)�abba)=(P (aaba) + P (abba)). Then, Prop. 5 tells us

that the expectations E[�e Æ Y
04
0] would be the same as E[�e Æ Y

4
0]. But the

entries of ~V 0
bl, as constructed above, are estimates of these E[�e Æ Y

4
0].

Thus, in a nutshell, the adding of rows and columns in ~
V and the si-

multaneous pairwise weighted joining of corresponding rows and columns in
~
Vbl can be interpreted as a simultaneous coarsening of the description of the

blocked process X2l and its sibling Y 2l. This justi�es repeated applications

of the numerical rank estimation in further iterates of the second major step.

Substep 2.4 Reduce dimension of ~
Wa;bl;

~
Wa analogically.

Take the row indices i; j and column indices n;m computed in the pre-

vious step, and repeat the joining procedure for every pair ~
Wa;bl;

~
Wa, where

rows and columns in ~
Wa;bl are joined with the weighted addition method

(weights taken from ~
Wa), and rows and columns in ~

Wa are joined by simple

addition. This results in (k � 1)� (k � 1) matrices ~
W

0
a;bl;

~
W

0
a.

The costs for substeps 2.3 and 2.4 are negligible compared to earlier steps.

Substep 2.5 Test for full numerical rank.

Put k := k � 1; ~V := ~
V
0; ~Wa := ~

W
0; ~Vbl := ~

V
0
bl;

~
Wa;bl := ~

W
0
a;bl. Repeat

the test described in substep 1.2 for the new ~
Vbl. If it is found to have full

numerical rank, go to major step 3; else repeat 2.4 and 2.5.

In our experience, the simple heuristics of joining rows / columns accord-

ing to the maximum volume heuristics works well when the ratio between the

dimension n
l of the initial matrix ~

Vbl and its numerical rank is not too big

when step 2 is entered. If this is not the case, a local and greedy strategy like

this may yield unsatisfactory results. Instead, one should perform some clus-

tering analysis on the rows (columns, resp.), and join rows (columns, resp.)

that fall into the same cluster. Principled strategies remain to be worked

out.

20

In our example, the second major step was entered with 4-dimensional

matrices ~V ; ~Wa;
~
Vbl;

~
Wa;bl. After the �rst dimension reduction step, the cuto�

criterium found the numerical rank to be 3 (singular values 667453, 10794,

3557; cuto� 1375). Rows (3,4) and columns (2,4) were joined according to

the outcome of the maximum volume tests. These pairings actually are the

ones that intuitively suggest themselves as optimal, since (in the terminol-

ogy of discrete OOMs) this yields indicative events faag; fab; bbg; fbag and

characteristic events faag; fabg; fba; bbg, which are the only natural choices

considering that the event \b" resets the probability clock (see [9] for more

about this).

For a rough assessment of the quality of this joining strategy, 3-dimensional

matrices ~V ; ~Wa were computed for all possible combinations of row / column

pairings. This makes a total of 36 di�erent outcomes. From each of these

a probability clock was re-constructed (as described below in step 3) and

compared to the original probability clock. This comparison was done by

computing the weighted absolute prediction error " for length 5 sequences

as " =
P

�a2E5 P (�a) jP (�a)� ~
P (�a) j. It turned out that the estimate that re-

sulted from the row / column selection (3,4), (2,4) was indeed a good choice:

the error for this model was " = 0:000572, which was the fourth best model

possible (best model had error " = 0:000432, worst had " = 0:103). Fig. 6

shows the cumulative distribution of errors from all models.

0.001 0.005 error
0.2
0.4
0.6
0.8
1
cdf

Figure 6: Cumulative distribution function of errors from the best 28 out of

36 possible 3-dimensional model estimates. Arrow marks the solution singled

out by the row/column joining strategy driven by greedy local maximization

of correlation. For explanation see text.

A similar assessment was also carried out for models obtained from ten

smaller training samples of size N = 200; 000 each. As in our running exam-

ple, for each of these ten trials, 36 possible matrices ~
V ;

~
Wa were computed,

21

transformed into estimates of the probability clock, and their prediction er-

rors "i (i = 1; : : : ; 36) were computed. One of these prediction errors, "i0,

belonged to the model that was computed with the volume maximization

strategy. For each of the trials, the ranking of "i0 in the (ordered) sequence

of the "i was determined. These rankings turned out to be 3,3,1,1,1,1,1,4,3,1

(mean 1.9); i.e., in more than half of the trials, the volume maximization

strategy found the best possible model.

In this assessment, the volume maximization strategy was only applied to

the task of reducing matrix size from 4� 4 to 3� 3. The Mathematica demo

implementation contains an example of reductions from 8�8 to 3�3, where

this heuristics also works to satisfaction; and an example of a reduction from

16� 16 to 3� 3, where it yields a clearly suboptimal result.

It is clear that the strategy of major steps 1 and 2 is not the most eÆcient

one could think of. Consider, for instance, the case of n = 10 membership

functions and assume that the proper model dimension would be 11. Then

major step 1 would require from us to construct 100� 100 matrices, which

would then have to be reduced again to 11 � 11 matrices in major step

2 by increments of -1. It would be much more e�ective, e.g., to have a

method to increase matrix dimension from 10 to 11 in step 2 by splitting

rows and columns, instead of decreasing dimension from 100 to 11 by our

joining procedure. However, developing such methods remains a goal for

future investigations.

4.3 Third major step: computing the discrete model

estimate

The third major step uses only the matrices ~
V ;

~
Wa (a 2 E) computed so

far. This step is just the core step of the learning procedure for discrete-

valued OOMs. From ~
V ;

~
Wa an estimate ~A = (Rk

; (~�a)a2E ; ~w0) of A =

(Rm
; (�a)a2E ; w0) is obtained by putting ~�a = ~

Wa
~
V
�1 (for all a 2 E) and

~w0 = ~
V 1T. This step has been explained in detail elsewhere (e.g., in [9], [7]).

Its time complexity is O(nk3).

The overall learning algorithm is asymptotically correct in the following

sense. Let the teaching sequences S be generated by an OOM blended from

a minimal-dimensional discrete OOM A = (Rm
; (�a)a2E; w0). Then, as the

length N of sequences S goes to in�nity, it holds that (i) the dimension k

of the estimated OOM ~A stabilizes at m with probability 1 (see [6], Prop. 7

for the reason why) and (ii) if both A and its estimate ~A are converted into

interpretable equivalents A(A1; : : : ; Am) and ~A(A1; : : : ; Am), the operator

matrices that make up ~A(A1; : : : ; Am) converge to the corresponding matrices

22

in A(A1; : : : ; Am) with probability one in any matrix norm.

Comparing the costs of all substeps, we �nd that the total cost is domi-

nated by the contribution O(Nk
0
n
k0) from the calculation of ~wbl in substep

2.2, where N is size of data, k0 = 2l + 1 is the maximal length of the data

collection window used for collecting statistics from S, and n is the number

of observable symbols in the discrete process. This is a worst-case complexity

which is greatly reduced when many of the membership functions are non-

overlapping and the sequence S features suÆciently bounded increments.

4.4 Assessing the quality of the learnt blended proba-

bility clock

We conclude this section by discussing the outcome of the learning procedure

in our running example, i.e., the probability clock estimated from a blended

process path of length 2,000,000.

The model ~A estimated from the full length sample S was transformed

into an interpretable version ~A(A1; A2; A3) = A(faag; fabg; fba; bbg), which

allowed a direct comparison with the original, interpretable probability clock

A(A1; A2; A3). It turned out that the matrix parameters were estimated with

an average absolute relative error of 2.20 %. This rather notable inaccuracy

(given the enormous size of training sample) results from the fact that this

particular blended process was almost white noise and contained only thinly

diluted information about the underlying probability clock.

Fig. 9(a) shows the error made when ~A is put to the task of calculating

the probabilities of sequences of length N = 10; 20; 30; 40; 50. For each N ,

500 sequences SN;i were generated by the original probability clock, and their

true probabilities P (SN;i) and estimated probabilities ~
P (SN;i) according to

the learnt model were calculated. The diagram shows the mean absolute per-

centual error eN = 1=500
P500

i=1 100 � abs(P (SN;i) � ~
P (SN;i)=P (SN;i)). Prob-

abilities of length 50 sequences were miscalculated, on average, by 22 per

cent. Given the long-range e�ects of the probability oscillation, this is quite

satisfactory.

An inspection of the probability oscillation according to the learnt model
~A(A1; A2; A3) reveals the major source of estimation error (Fig. 8(a)). It is

a faulty estimation of probabilities of long uninterrupted sequences of a-s

(any occurence of a b would \reset" the learnt model properly). While the

oscillatory nature of these probabilities has been captured in principle, for

sequences longer than about 15 consecutive a-s, the estimated oscillation gets

out of hand. Even negative \probabilities" are then claimed by the model,

which thereby reveals itself as being not a valid OOM (i.e., the nonnegativity

23

(a) (b)

Figure 7: (a) A �ngerprint of the estimated model. States from a 1000 step

run are plotted. (b) For comparison, the 6 most frequently visited states of

the original probability clock.

condition in the de�nition of OOMs [9] is violated). An equivalent observa-

tion is that the �ngerprint (Fig. 7(a)) features a state that falls out of the

admissible triangular region.

(a)

5 10 15 20 25 30 t

-1
-0.5

0.5
1

1.5
2

P(a|a^t)

(b) 5 10 15 20 25 30t

0.2

0.4

0.6

0.8

1
P(a|a^t)

Figure 8: (a) The probability oscillation according to the estimated model

(dots) vs. the original one (solid line). (b) Same as (a), but for a model

estimated from another training sample (N = 400; 000).

This disturbing �nding needs an explanation. The operator �a in the orig-

inal probability clock is a pure rotation of R3 . In terms of dynamical systems

theory, a rotation mapping is not structurally stable: any disturbance will

change it qualitatively. Either it will become a mapping that has a single

global attractor { or a repellor. Estimating this rotation from data can be

seen as a disturbance. In cases where this disturbance leads to a repellor, the

estimated probability clock features an \undamped" probability oscillation

like in Fig. 8(a). In cases where an attractor is obtained, the probability

oscillation would be damped and die out eventually, as in Fig. 8(b).

The possibility to obtain models that are no valid OOMs is a major

nuisance for theory. Fortunately, for practical purposes there exists a simple

24

workaround. First transform the learnt model into an interpretable one (as

we did here to get ~A(A1; A2; A3)). It has the property that all state vectors

w�a that occur in the course of probability calculations must be non-negative.

If the learnt model is not a valid OOM, negative vector components will

(rarely) arise. If they are obtained, one puts them to zero (and renormalize

the vector to a unit component sum) and continues with the calculation.

Clearly what would be needed here is a method to \renormalize" an

invalid (pseudo-) OOM to the nearest valid one. However, such a method is

not known.

We proceed with an inspection of the prediction accuracy for the pro-

cess Y achieved by the learnt model. For simplicity, we divide the interval

[0; 1] into two intervals I1 = [0; :5] and I2 = [:5; 1:0], and consider the re-

sulting symbolic process Z with symbols I1; I2 (i.e., Zt = I1 i� Yt 2 I1).

From the original discrete probability clock A we compute operators �I1 ; �I2
as speci�ed in Eq. (6). Similarly, we compute operators ~�I1 ; ~�I2 from the

estimated probability clock ~A(A1; A2; A3). Thus, we obtain a two-symbol

OOM D = (R3
; f�I1 ; �I2g; w0), which describes Z, plus its estimate ~D =

(R3
; f ~�I1; ~�I2g; w0). Mean prediction errors eN were computed as before for

the discrete probability clock. Fig. 9(b) shows the results. It turns out the

true probabilities and their estimates di�er, on average, only for approxi-

mately 1:7% even for length 50 sequences.

1020304050N
25
50
75
100
125
150
175

error

1020304050N

2

4

6

8

10
error

1020304050N
25
50
75
100
125
150
175

error

(a) (b) (c)

Figure 9: Average percentual error when model estimates were put to cal-

culate probabilities of length k sequences. (a) Errors made by the estimate
~A of the discrete probability clock. (b) Errors for the two-interval process

described by D. (c) Errors obtained when the two-interval process was ap-

proximated as an i.i.d. process. Refer to text for details. Error bars indicate

intervals into which 95 % of obtained single-sequence errors fall. Note di�er-

ent scalings.

One might suspect that this high precision of probability estimates is

25

due to the almost white noise nature of the process, a circumstance that

facilitates probability estimation. To check this possibility, the probabilities

of test sequences were estimated with a pure white noise model by ~
P (SN;i) =

P (I1)
�
P (I2)

�, where �; � are the number of occurences of I1; I2 in SN;i. Fig.

9(c) shows the errors that result from this estimation strategy. For length

50 sequences, they are about 25 %. On the one hand, this highlights again

how close this process comes to white noise, but on the other hand, it also

demonstrates how much is gained in precision by the OOM estimation.

Out of curiosity, we cast a brief look on the �ngerprints of the two-interval-

OOM D and its estimate ~D. Both OOMs were transformed into inter-

pretable versions D(A1; A2; A3) and ~D(A1; A2; A3), where A1 = fI1I1g; A2 =

fI1I2g; A1 = fI2I1; I2I2g. Fig. 10(a) shows the �ngerprint obtained from a

1000-step run of D(A1; A2; A3), of which Fig. 10(b) is a closeup. Finally,

Fig. 10(c) is the equivalent closeup for ~D(A1; A2; A3). Two things are worth

mentioning. First, the covered region in state space is very small, which

means that regardless of prior history the conditional future distributions

are all very similar. Second, while they occupy little space, the state plots

are nonetheless highly structured; in fact, they have inherited essential fea-

tures of the probclock's dynamics. This means that, although minuscule in

quantity, the qualitative phenomenology of this process is rich; speci�cally,

there are strong long-range memory e�ects. A comparison of Fig. 10(b) and

(c) illustrates how well this qualitative phenomenology has been captured

by the learning procedure, and explains the high estimation precision re-

ported above. From the experience of this example, one is tempted to call

the blended OOM learning procedure a \noise microscope"!

5 Discussion

One way to view blended OOMs is as a twofold generalization of semi-

continuous HMMs, in that (i) mixtures of arbitrary emission densities are

used instead of mixtures of Gaussians; and in that (ii) the underlying dis-

crete model is an OOM instead of a HMM. Blended OOMs can be learnt

from data with a constructive, asymptotically correct estimation procedure,

which additionally o�ers the convenience of a automatic over�tting vs. un-

derexploitation negotiation.

Although these facts are promising, one must bear in mind that OOM

theory is young and was not yet put to real-world applications. Furthermore,

two important issues remain to be worked out for the discrete OOM learning

algorithm. The �rst is a principled treatment of the �ne-tuning step within

the learning algorithm. The goal is to join those rows and columns that

26

0.010.02
0.19

0.2

0.21

0.22

0.23

0.24

0.25

0.010.02

0.010.02
0.19

0.2

0.21

0.22

0.23

0.24

0.25

0.010.02

(a) (b) (c)

Figure 10: (a) State plot for D(A1; A2; A3). (b) Closeup of (a). (c) Similar

closeup for ~D(A1; A2; A3). See text for details.

render the resulting matrices maximally informative about the underlying

process. This is highly relevant in practice, speci�cally if one wishes to

achieve a fully automated learning. Currently, only heuristic methods are

available. The second open issue is that the learning algorithm may return

invalid OOMs. This is not too worrisome for applications, since the prediction

powers of the (possibly) invalid OOMs appear to be unimpaired. But from

a theoretical point of view this is very unsatisfactory, and current work is

devoted to solving this problem.

6 Appendix: Proofs

6.1 Proof of Proposition 1

We �rst show that the function �t obtained at time step t (where t =

0; 1; 2; : : :) is a probability density. It suÆces to demonstrate that (1 �a1wt; : : : ;

1 �anwt) is a probability vector. The components of this vector sum to unity

since obviously 1wt = 1 and since in A it holds that 1(
P

a2E
�a)wt = 1wt.

Thus, we must show that 1 �awt � 0. According to Proposition 6 from [9],

there exists a convex cone K � R
m , such that (i) 1 v � 0 for all v 2 K, (ii)

w0 2 K, (iii) �aK � K for all a 2 E. We show that (a) wt 2 K and that (b)

1 �awt � 0 for all t, by induction on t. (a) is true for t = 0 by virtue of (ii),

and (b) follows from (i) and (iii). Assume wt�1 2 K and 1 �awt�1 � 0 for

all a. This implies that the prescription in the Proposition to select xt�1 is

well-de�ned. Exploiting (iii) again, and the fact that according to (5) �xt�1

27

is a linear combination from �a1 ; : : : ; �an with non-negative coeÆcients, by an

argument of convexity it follows that �xt�1
wt�1 2 K. Therefore, wt 2 K. (b)

follows immediately using (iii).

Having shown that every �t is a probability density, it is clear that

the generation procedure is well-de�ned and implicitly de�nes a process

(
;F ; P; (Yt)t2N) with values in I. We now show that the distribution of

this process can be calculated with (4). Let �x0:::xk�1
be the probability dis-

tribution obtained in the above generation procedure at time k after a path

x0 : : : xk�1 has been generated (where k � 1), and let �0 be as in Proposition

1. It holds that

P (Y0 2 J0; : : : ; Yk 2 Jk) =

=

Z
J0

�0(x0)

Z
J1

�x0(x1) � � �

Z
Jk

�x0:::xk�1
(xk) d�(xk) : : : d�(x0); (15)

where � is the Borel measure on I. We construct an explicit represen-

tation of �x0:::xk�1
. Let wx0:::xk = �xk � � � �x0w0=(1�xk � � � �x0w0) be the state

vector obtained after generating x0 : : : xk (where k � 0), and let w0 be as in

Proposition 1. We �rst isolate a term �xk�1
wx0:::xk�2

in �x0:::xk�1
:

�x0:::xk�1
(xk) =

=
X
a2E

(1�awx0:::xk�1
) �a(xk)

=
1

1�xk�1
wx0:::xk�2

X
a2E

1�a�xk�1
wx0:::xk�2

�a(xk)

=
1

1
P

a2E
�a(xk�1)�awx0:::xk�2

X
a2E

1�a�xk�1
wx0:::xk�2

�a(xk)

=
1P

a2E
�a(xk�1)1�awx0:::xk�2

X
a2E

1�a�xk�1
wx0:::xk�2

�a(xk)

=
1

�x0:::xk�2
(xk�1)

1 (
X
a2E

�a(xk)�a) Æ �xk�1
wx0:::xk�2

: (16)

The term �xk�1
wx0:::xk�2

can be expressed in terms of �xk�2
wx0:::xk�3

:

�xk�1
wx0:::xk�2

=

=
1

1�xk�2
(wx0:::xk�3

)
�xk�1

�xk�2
(wx0:::xk�3

)

28

=
1

�x0:::xk�3
(xk�2)

�xk�1
�xk�2

(wx0:::xk�3
)

=
1

�x0:::xk�3
(xk�2)

(
X
a2E

�a(xk�1)�a) Æ �xk�2
(wx0:::xk�3

): (17)

This directly leads to a recursion scheme for expressions �xk�i
wx0:::xk�(i+1)

.

Applying this recursion to (16), observing that �x0w0 = (
P

a2E
�a(x0)�a)w0,

yields

�x0:::xk�1
(xk) =

=
1

�x0:::xk�2
(xk�1)

� � � � �
1

�0(x0)
�

� 1 (
X
a2E

�a(xk)�a) Æ (
X
a2E

�a(xk�1)�a) Æ � � � Æ (
X
a2E

�a(x0)�a) w0: (18)

Inserting (18) in (15) gives

P (Y0 2 J0; : : : ; Yk 2 Jk) =

=

Z
J0

1

Z
J1

1 � � �

Z
Jk

1 (
X
a2E

�a(xk)�a) Æ

Æ(
X
a2E

�a(xk�1)�a) Æ � � � Æ (
X
a2E

�a(x0)�a) w0 d�(xk) : : : d�(x0)

= 1
X

a0:::ak2E
k+1

(

Z
J0

� � �

Z
Jk

(�ak(xk)�ak) Æ � � � Æ (�a0(x0)�a0) d�(xk) : : : d�(x0)) w0

= 1
X

a0:::ak2E
k+1

(

Z
Jk

�ak(xk)�akd�(xk) Æ � � � Æ

Z
J0

�a0(x0)�a0d�(x0)) w0

= 1 (

Z
Jk

X
a2E

�a(xk)�a d�(xk) Æ � � � Æ

Z
J0

X
a2E

�a(x0)�a d�(x0)) w0

= 1 �Jk Æ � � � Æ �J0 w0:

Proving the statement that one obtains equivalent continuous-valued OOMs

C; C 0 when their discrete-valued parents A;A0 are equivalent is a routine

exercise. It remains to prove the stationarity statement. Without loss of

generality we may assume that A is minimal-dimensional. In that case,

stationarity is equivalent to the fact that �w0 = w0, where � =
P

a2E
�a.

Observe that � =
P

a2E
�a

R
I
�a(x)dx =

R
I

P
a2E

�a(x)�adx =
R
I
�xdx = �I .

Thus, w0 is an invariant vector of �I . By Proposition 9 from [8] it follows

that the process described by C is stationary.

29

6.2 Proof of Proposition 2

First we render precise point (i) from the proposition. Let M be the m�m

Markov transition matrix of H, and let � = M
T be its transpose. For

a 2 E let oa be the m � m diagonal matrix with entry P (a j si) at place

(i; i). Let w0 2 R
m be the initial distribution of H. De�ne an OOM A =

(Rm
; (�Æoa)a2E; w0). It describes the same process as H (for a proof see [9]).

Now we prove that the continuous-valued process generated by H by

emission through �s from state s, is the same as the process generated by

the OOM obtained from blending A w.r.t. the membership functions �a. It

suÆces to show that if A is taken through a state sequence w0; wx0; wx0x1; : : :

when an observation sequence x0; x1; : : : is emitted, and if H generates the

same sequence, then the discrete state distribution vectors obtained in H is

w0; wx0; wx0x1 ; : : :, too. We proceed by induction. Both H and A start with

w0 by de�nition. Assume that at time step t � 1, the state distribution

vector of H is wx0:::xt�1
, and that xt is emitted. We calculate the new state

distribution vector wx0:::xt obtained in H (notation: subscript v[i] denotes

the i-th entry of a vector):

wx0:::xt =

0
B@

P (s1 jwx0:::xt�1
; xt)

...

P (sm jwx0:::xt�1
; xt)

1
CA =

= �

0
B@

wx0:::xt�1
[1]
P

a2E
oa[1]�a(xt)

...

wx0:::xt�1
[m]
P

a2E
oa[m]�a(xt)

1
CA � (

X
i=1;:::;m

wx0:::xt�1
[i]
X
a2E

oa[i]�a(xt))
�1

= � Æ (
X
a2E

�a(xt)oa)(wx0:::xt�1
) � (1

X
a2E

�a(xt)oa(wx0:::xt�1
))
�1

=

P
a2E

�a(xt)�a(wx0:::xt�1
)

1 �

P
a2E

�a(xt)oa(wx0:::xt�1
)

=
�xt(wx0:::xt�1

)

1 �xt(wx0:::xt�1
)

= wx0:::xt: 2

6.3 Proof of Proposition 3

Points 1. and 2. are trivial. 3. follows from 2.: it is a general property of n-

dimensional Hilbert spaces that n vectors x1; : : : ; xn are linearly independent

if and only if the matrix (hxi; xji) is regular. To see 4., observe that P (X0 =

ai) = 1 �aiw0. This implies
Pn

i=1 P (X0 = ai) �ai(x) = �0, where �0 is as in

Proposition 1. As a consequence we have

30

T (P (X0 = a1); : : : ; P (X0 = an)) =

= (

Z
I

�a1(x) �0(x) dx; : : : ;

Z
I

�an(x) �0(x) dx)

= (E[�a1 Æ Y0]; : : : ; E[�an Æ Y0]): 2

6.4 Proof of Proposition 4

Point (1) is an instance of the general fact that the product of probability

measures is a probability measure. (2) and (3) follow from the fact that the

mapping �x0:::xk�1
, as de�ned in the Proposition, is equal to the concatenation

�xk�1
Æ � � � Æ �x0 of observable operators from C. Finally, in order to show (4),

let p(i)[l] be the l-th digit (from the left) in the n-adic representation of i

(�lled with leading zeros to length k). Then

T
k =

= (h�ap(i�1)[1]+1
� � � �ap(i�1)[k]+1

; �ap(j�1)[1]+1
� � � �ap(j�1)[k]+1

i)
i;j=1;:::;nk

=

Z
Ik

�ap(i�1)[1]+1
� � ��ap(i�1)[k]+1

(x0; : : : ; xk�1) �

� �ap(j�1)[1]+1
� � � �ap(j�1)[k]+1

(x0; : : : ; xk�1) d(x0; : : : ; xk�1)

=

Z
I

�ap(i�1)[1]+1
(x0)�ap(j�1)[1]+1

(x0) dx0 � � � �

� � � �

Z
I

�ap(i�1)[k]+1
(xk�1)�ap(j�1)[k]+1

(xk�1) dxk�1

= (h�ap(i�1)[1]+1
; �ap(j�1)[1]+1

i � � � h�ap(i�1)[k]+1
; �ap(j�1)[k]+1

i)
i;j=1;:::;nk

= T
 � � �
 T: 2

6.5 Proof of Prop. 5

The �rst \=" is an instance of Prop. 3(4). To see why the second \=" holds,

let �0 =
P

a2E
(1 �aw0)�a, (as in Prop. 1), and let � 00 =

P
b2E0

(1 �bw0)�b be

the analog for Y
0. It is easy to see that �0 = �

0
0. Use this to conclude

E[�b1 Æ Y
0
0] =

R
I
�b1(x)�

0
0(x)dx =

R
I
�b1(x)�0(x)dx = E[�b1 Æ Y0]. The other

vector entries are likewise pairwise equal.

31

References

[1] Y. Bengio. Markovian models for sequential data. Neural Computing

Surveys, 2:129{162, 1999.

[2] D. Blackwell and L. Koopmans. On the identi�ability problem for

functions of �nite Markov chains. Annals of Mathematical Statistics,

38:1011{1015, 1957.

[3] J.L. Doob. Stochastic Processes. John Wiley & Sons, 1953.

[4] G.H. Golub and Ch.F. van Loan. Matrix Computations, Third Edition.

The Johns Hopkins University Press, 1996.

[5] H. Ito. An algebraic study of discrete stochastic systems. Phd thesis,

Dpt. of Math. Engineering and Information Physics, Faculty of Engi-

neering, The University of Tokyo, Bunkyo-ku, Tokyo, 1992. ftp'able

from http://kuro.is.sci.toho-u.ac.jp:8080/english/D/.

[6] H. Jaeger. Observable operator models II: Interpretable models and

model induction. Arbeitspapiere der GMD 1083, GMD, Sankt Augustin,

1997. http://www.gmd.de/People/ Herbert.Jaeger/Publications.html.

[7] H. Jaeger. Discrete-time, discrete-valued observable operator mod-

els: a tutorial. GMD Report 42, GMD, Sankt Augustin, 1998.

http://www.gmd.de/People/ Herbert.Jaeger/Publications.html.

[8] H. Jaeger. Characterizing distributions of stochastic processes by lin-

ear operators. GMD Report 62, German National Research Center

for Information Technology, 1999. http://www.gmd.de/publications/re-

port/0062/.

[9] H. Jaeger. Observable operator models for discrete stochastic

time series. Neural Computation, (6), 2000. Draft version at

http://www.gmd.de/People/Herbert.Jaeger/Publications.html.

[10] D.R. Upper. Theory and algorithms for Hidden Markov models and

Generalized Hidden Markov models. Phd thesis, Univ. of California at

Berkeley, 1997.

32

