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Abstract

This paper describes the “dual dynamics” (DD) design scheme for robotic
behavior control systems. Behaviors are formally specified as dynamical sys-
tems using differential equations. A key idea for the DD scheme is that a
robotic agent can work in different “modes”, which lead to qualitatively dif-
ferent behavioral patterns. Mathematically, transitions between modes are
bifurcations in the control system.



1 Introduction

The “behavior based” approach to designing mobile robots has been very
fertile (Brooks1, Steels2, Pfeifer and Scheier3). However, the field suffers
somewhat from a certain lack of formal theory, which in turn hampers the
understanding and the design of robots with increasingly complex behav-
ioral repertoires. This paper introduces a formal model of complete behavior
control architectures for mobile robots, the “dual dynamics” (DD) scheme.

Behaviors are construed as dynamical systems, which interact through
shared variables. There is no global control; the overall functionality of the
system arises from the interactions of the individual behavior subsystems.

Like in many other behavior-oriented control architectures (Brooks4), be-
haviors are ordered in levels in the DD scheme, too. Normally, the organi-
zation of the levels is left to the designer’s intuition. DD is distinguished by
providing formal criteria for this ordering. These criteria grow from the rigor-
ous dynamical systems approach. They are expressed in terms of timescales
and bifurcations.

The basic assumption on which DD rests is that a situated agent can work
in different “modes”. Modes are coherent, relatively stable “frames of mind”,
so to speak, which enable the agent to tune into different situations and tasks.
Specifically, agents respond to sensory signal differently in different modes.
For instance, when being in feeding mode, an agent will show orienting
reactions toward food sources, which are ignored in work mode. The DD
approach rests on the assumption that transitions between modes can be
formally captured by bifurctions of dynamical (behavior) systems.

DD helps to advance behavior-based robotics in two ways: (i) theoret-
ically, by offering a rigorous model of behavior control systems in terms of
dynamical systems and bifurcations, and (ii) practically, in that the differen-
tial equations of DD models can be run directly as actual control programs on
robots. In that case, the mathematical transparency of a DD model greatly
aids in the design-test-redesign cycle of robot development.

The DD approach has been partially inspired by ethological (e.g. Baerends
5) and biocybernetical (e.g. Ewert et al6) models of hierarchical behavior
control systems. Methodologically, it is related to current efforts to exploit
dynamical systems theory for behavior-based robotics (e.g. Beer7, Schöner et
al8).

The main part of this paper presents a concise description of the DD
model (section 2). A brief report of a DD-based robot is given in section 3.
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Section 4 concludes with a discussion.

2 The DD scheme

In this section, we shall first clarify the notion of modes, then given an
informal sketch of the DD scheme, and finally provide the mathematical
specification.

2.1 Modes

When one observes animals or humans (or even robots), one will find that
they behave differently on different occasions. Importantly, this happens even
if the environment does not change. For instance, it has been reported that
eagles attack glider airplanes in breeding season, whereas they peacefully
co-operate in searching for thermal lifts at other times (von Kalckreuth9).
Observations of this kind demonstrate that different behavior cannot be ex-
plained by different external stimuli alone, but must also be caused by some
agent-internal component.

An obvious way to account for such findings is to say that agents have
internal states in the sense of system theory or control theory (Stengel10,
Narendra11). Such states might be linked to slowly changing somatic state
variables, like hormone concentrations, or to quicker neuronal variables, like
arousal.

A consequence of modeling modes by internal state variables would be
that modes should change into one another more or less smoothly, following
the changes of the state variables. Specifically, one should expect that inter-
mediate modes can be observed. However, this is not supported by common
observations. Eagles either attack gliders, or they co-operate. They don’t
mix these options, for instance by quickly oscillating between them, or by
displaying strangely “morphed” motor patterns.

We believe that internal states are not sufficient to model the appar-
ent stability and non-mixability of behavioral modes. We propose to model
them by a stronger system-theoretic concept instead, which is called (incon-
sistently) regimes or modes in mathematics, modes in physics, or phases in
chemistry. In fact, people in these fields are less interested in the regimes/mo-
des/phases themselves but rather in the boundaries thereof: bifurcations.
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The modern theory of bifurcations has led to a deep understanding of phe-
nomena of qualitative changes in dynamical systems (Strogatz12 and Abra-
ham & Shaw13 are highly recommendable introductions; Kelso et al14 is a
crash course). The general picture is that almost every dynamical system
displays abrupt changes between qualitatively different patterns of behav-
ior, when certain control parameters transit across critical values, but keeps
displaying the same qualitative type of behavior in while control parameters
shift inside these critical values.

A classical example is the sudden onset of a stable oscillation in an elec-
tronic circuit when voltage (= control parameter) surpasses a critical thresh-
old. Importantly, voltage can change considerably beyond this threshold
without disrupting the oscillation: the regime of oscillations is qualitatively
stable. Another well-known example is provided by the three phases of water:
when temperature and pressure of a water system surpass certain critical val-
ues, water abruptly changes from liquid to gas to solid. Probably every reader
has seen in his or her life a phase diagram of water. This is a two-dimensional
graphic which has pressure P and temperature T as its coordinates, and dis-
plays the phase transitions as boundary lines in the P -T -plane.

The DD scheme builds on the mathematics of qualitatively stable regimes,
and bifurcations between them, to model behavioral modes. In this view,
state variables (like hormones) are seen as control parameters, which some-
times induce qualitative transitions between coherent patterns of behaviors,
while most of the time leaving the overall system in a stable mode.

From the aspect of behavior sciences, the notion of modes has many facets.
It is related to behavior systems in ethology (Baerends5, Tyrrell15), i.e. pat-
terns of activities that can be identified on phenomenological and functional
grounds. Functionally, modes allow the agent to “tune in” to situations,
by establishing particular, adaptive filtering and expectation mechanisms for
perception, by facilitating particular motor responses and inhibiting others,
etc.

The DD approach is not committed to a particular kind of control pa-
rameters. In particular, they need not be internally regulated parameters
like hormones in animals. In the view of DD, an agent can also get into a
particular mode due to sensory input, or by being put into a particular envi-
ronment. For instance, when a human falls from a ship into the water, he/she
will immediately start behaving differently in a very consistent fashion, due
to sensory input.

The DD design scheme for a robot control architecture is intended to en-
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able a transparent design of behavioral modes, by specifying certain guiding
constraints on the interactions between behavior subsystems.

2.2 Informal sketch of the DD architecture

The basic building blocks of a DD robot architecture are behaviors. They
are ordered in levels (fig. 1a). At the bottom level, one finds elementary
behaviors: sensomotoric coordinations with direct access to external sensor
data and actuators. Typical examples are move forward and turn left.
At higher levels, there are increasingly comprehensive behaviors, which also
have access to sensoric information but cannot directly activate actuators:
their task is to regulate modes. Typical examples of higher-level behaviors
in a robot are work and replenish energy.

Elementary behaviors are different from all higher-level behaviors in that
they are made from two subsystems (fig. 1a), which serve quite different
purposes. This has given the approach its name, “dual dynamics”.

The first of these subsystems is called the target dynamics. It calculates
target trajectories for all actuators which are relevant for the particular be-
havior. For this calculation, the target dynamics has access to every available
sensor information, and may include specific preprocessing. The output of
the target dynamics consists of as many variables as there are motoric degrees
of freedom to be controlled.

A requirement for the target dynamcis is that this system should not
undergo bifurcations. This is what makes elementary behaviors elementary,
and provides the first formal criterium for level organization, namely, for
deciding which level is elementary. For instance, the target trajectories of
turn left in a simple 2-wheeled robot which moves on a flat, clean surface
are likely to remain qualitatively unchanged in different instances of the
maneuver. Thus, turn left would be a good candidate for an elementary
behavior in such a simple robot. By contrast, in a walking machine which
has to cope with different surfaces, it is likely that there will be qualitatively
different maneuvers for turning left in different circumstances. Each of them
would thus yield a separate elementary behavior.

The other subsystem of an elementary behavior is its activation dynamics.
It regulates a single variable, the behavior’s activation. The equation ruling
this variable should be written in a way that the variable displays a dynamic
range between 0 and 1. Intuitively, a value of 1 means that the behavior is
fully active, whereas 0 means that it is completely inhibited. Technically,
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Figure 1: (a) Global structure of a DD behavior control system. At any
time, every behavior has an activation. Activations of higher-level behav-
iors (depicted in shaded boxes) act as control parameters for the activation
dynamics of lower levels. The dynamical system which maintains a behav-
ior’s activation can undergo bifurcations; this in indicated by depicting these
systems as stylized “phase diagrams” (boxes with irregular partitions). A
mode of the entire system is thus determined by the activations of all higher-
level behaviors. (b) The target and activation subsystems of an elementary
behavior.
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inhibition is the standard case, and rising values of the activation lead to a
disinhibition. Disinhibition means that the target dynamics is passed to the
actuators.

The activation dynamics is allowed to undergo bifurcations. The control
parameters which induce these bifurcations are the activation variables of
higher-level behaviors. This is the core idea behind DD. It will be shown in
the next subsection how these bifurcations are technically effected.

To illustrate this central point, assume first that the robot is “hungry”,
i.e. that some high-level behavior replenish energy has a high activation,
and other high-level behaviors like work have a low activation. In this condi-
tion, an elementary behavior turn left should raise its activation variable
to 1 when a charging station is perceived at the left. Now assume that
the robot becomes eager to work, i.e. on higher levels replenish energy

gets deactivated and work gets activated. Then, the activation dynamics of
turn left should work in a qualitatively different manner. It should now
rise toward 1 when an opportunity to work is perceived at the left but not
when a charging station is seen. In other words, the activation dynamics
of turn left should undergo a bifurcation when higher-level activations of
replenish energy and work change in a certain way.

To reiterate, only the activation dynamics subsystem undergoes bifurca-
tions in a properly designed DD scheme. The fact that bifurcations (which
are inherently difficult to master from a designer’s perspective) are confined
to these one-dimensional subsystems contributes greatly to the transparency
of DD behavior control systems.

Higher-level activation variables yield control parameters for lower-level
activation dynamics. Now, in the theory of dynamical systems it is assumed
that control parameters change on a (much) slower timescale than the sys-
tems they control. This implies that behaviors on different levels in a DD
architecture must have different timescales, with higher-level behaviors being
long-term and lower-level behaviors become active/inactive on a short-term
scale. This provides the designer with the second formal criterium for level
organization, namely, how higher-level behaviors are related to each other
“vertically”.

Concluding this subsection, we would like to emphasize that an elemen-
tary behavior is not “called to execute” from higher levels. The level of ele-
mentary behaviors is fully operative on its own and would continue to work
even if the higher levels were cut off. The effect of higher levels is not to
“select actions”, but to change the overall dynamics of the entire elementary
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level, by inducing bifurcations in that level.

2.3 The formal model

Here we present a core version of the formal DD model. A more elaborate
version is described in more detail in Jaeger16.

By convention, the level of elementary behaviors is numbered the level 0,
with the next higher level being level 1, etc.

First we describe a single elementary behavior.
The target dynamics of an elementary behavior Bj yields a vector-valued

target trajectory gj(t), where each vector component represents the target
trajectory of a particular effector. The target dynamics is expressed via
ordinary differential equations:

ġj = G(gj, αj, Ij(t)) (1)

The variable αj is the activation of Bj (see below). Ij(t) represents time-
varying input to Bj, such as sensor input.

The activation dynamics of Bj consists in the trajectory of a single pa-
rameter, αj, which determines whether the behavior is inhibited (αj ∼ 0) or
active (αj ∼ 1), or something in between.

The activation dynamics can bifurcate, yielding different modes. This
is achieved by utilizing the activations α′1, . . . , α

′
m of the level-1 behaviors

B′1, . . . , B
′
m as control parameters for the activation dynamics of Bj. It looks

as follows:

α̇j = α′1Tj,1(αj,gj, Ij(t)) + . . .+ (2)

+α′mTj,m(αj,gj, Ij(t))− αjk
∏

i=1,...,m

(1− α′i)2

Tj,i(αj,gj, Ij(t)) is a function of αj, the behavior’s target trajectory gj,
and possibly other input Ij(t). Each Tj,i corresponds to a particular mode
of (2), which is entered when α′i is roughly equal to 1, and the other α′k
roughly equal to 0. If α′i goes to zero and another α′r rises, the dynamics of
(2) changes from being determined by Tj,i to being determined by Tj,r, which
will typically result in a bifurcation of (2). The terms Tj,i can be designed ex-
plicitly and independently from one another. Thus, bifurcations, which are
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generally hard to master, are “tamed” here simply by explicitly providing
different dynamical laws Tj,i for the different regimes/modes/phases of the
dynamics of α̇j.

The decay term −αjk
∏

i=1,...,m(1−α′i)2 brings αj back to zero in case all
α′i vanish to zero.

As to the question of what kind of input Ij(t) is permissible for an el-
ementary behavior Bj, DD has an iron rule: the only input which comes
top-down from higher-level behaviors is the mode control parameters α′i in
the activation dynamics. In turn, this rule implicitly admits to use every
conceivable non-top-down source for Ij(t), e.g., sensor input, activations of
other elementary behaviors, or their target trajectories.

In order to yield an output signal from an elementary behavior to the
actuators, gj(t) and αj(t) are combined via the following product assignment:

u̇j = kjαj(gj − ẑj), (3)

where ẑj is the estimated current state of the actuators, kj is a gain
constant, and uj is the signal issued from the behavior to the actuators.
This product term implements a simple closed loop control (of P-controller
type) which tries to make the actuators follow the target trajectory gj. If this
propertional control proves inefficient, the product term can be augmented
to more complex control schemes, e.g. PID-control. The DD scheme is not
committed to a particular kind of control realized in this term. The product
term corresponds to the open circle in fig. 1b.

Taken all together, the DD model of an elementary behavior consists of
the equations (1), (2), and a suitable version of (3).

Now let us turn to the complete picture. The DD scheme allows to
construct multi-level architectures with any number of levels. Since higher
levels – the top level excepted – are formally similar to each other, we can
restrict this presentation to the case of a three-level architecture with l level-
2 behaviors B′′1 , . . . , B

′′
l , m level-1 behaviors B′1, . . . , B

′
m, and n elementary

behaviors B1, . . . , Bn. The latter have already been treated. The activation
dynamics of the level-1 behaviors is similar to (2) and looks as follows:

α̇′i = α′′1T
′
i,1(α′i, I

′
i(t)) + . . .+ (4)

+α′′l T
′
i,l(α

′
i, I
′
i)− α′ik

∏
h=1,...,l

(1− α′′h)r
′
i
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Since we assume here that there are no levels higher than 2, the activation
dynamics of level-2 behaviors does not bifurcate (since there are no control
parameters available from higher up). Therefore, the activation dynamics of
B′′h has the simple form

α̇′′h = T ′′h (α′′h, I
′′
h(t)) (5)

The iron rule concerning inputs mentioned in the previous section trans-
fers to higher-level behaviors. Thus, I ′i(t) and I ′′h(t) can be virtually anything
provided it does not come from higher levels.

3 Practical experiences with DD

A reference implementation of the DD scheme has been carried out as part
of cooperative work between GMD and the VUB AI Lab. The VUB AI Lab
offers a large experimental arena which has been devised as a model of an
ecosystem (McFarland17). Robots in this arena have to “survive” by per-
forming a robotic analogue of a “parasite fighting” task in an energy-efficient
fashion, and by recharging in due intervals. The arena is a challenging envi-
ronment since it offers no controlled lighting conditions (lighting ranges from
direct sunshine in the morning to distant artificial lighting at night hours),
while the robots have to rely on simple light sensors for achieving their tasks.

One of the Lab’s Lego-based 2df robots, the “Black Knight”(BK) was used
as a platform for a reference implementation for the DD scheme1. A reper-
toire of behaviors that is standard for many robots running in the “ecosys-
tem” arena was re-implemented using the DD scheme. The differential equa-
tions of DD were simulated on the robot’s microcontroller hardware using
the PDL language (Steels2, Spenneberg et al18) , which in turn is written in
C.

A detailed account of experiences with designing BK’s behavior control
system is not feasible here. A close-up investigation on a particular behavior
can be found in Jaeger19. Suffice it to say that specifying the behavior con-
trol system in terms of some 50 differential equations took the first author
a week, programming and getting rid of C errors 10 days. These times in-
clude learning the basics of the C programming, and overcoming the platonic

1Cf. ftp://ftp.gmd.de/GMD/ai-research/Publications/1996/jaeger.96.dd14.c for the
heavily documented code.
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misconception of the existance of reliable sensor readings – this author (math-
ematician by training) was at that time a novice in practical robotics. The
work which usually takes most of the time, namely, testing and fine-tuning,
then took only another 2 days. It was found that the conceptual clarity of
the DD design allowed, in almost all cases, to conclude from apparent faulty
external behavior where the fault in the internal control system resided.

Current work is centered on augmenting DD by planning and represen-
tation capabilities (Hertzberg et al20). The guiding idea is to use the history
of activations as the robot’s memory, from which its world model is made.
Thus, there is an intrinsic connection between representation and action.
This project is being implemented on a B14 robot platform.

4 Discussion

The DD scheme has several obvious limitations, among them the following
two. First, it is a very general scheme which helps to organize a complete sys-
tem of many behaviors, but it does not say something very specific about how
the target and activation dynamics of each behavior should be designed. Sec-
ond, the mathematical format of ordinary differential equations is confined
to handling sensoric input which consists in a few variables. Specifically, this
excludes video input.

The advantages of DD lie in its conceptual and mathematical clarity,
which in turn leads to transparent, and hence efficient, design. After all, DD
made it possible for a newcomer to practical robotics to finish a design and
implementation job within three weeks, achieving a behavioral complexity
that is state of the art in behavior-based robotics. This holds some good
promise for DD to lead beyond the limitations in behavioral complexity with
which the field seems to have gone stuck since some years.
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