
Herbert Jaeger

Discovering multiscale dynamical features with
hierarchical Echo State Networks1

Technical Report No. 10
July 2007

School of Engineering and Science

1This is a corrected version of the original techreport from June 2007. Revision history:
October 2007: Change: figure 5 has been correctly instantiated (was a duplicate of figure 4 in
first version). April 2008: error in equation (22) fixed.

Discovering multiscale dynamical
features with hierarchical Echo State
Networks

Herbert Jaeger

Jacobs University Bremen
School of Engineering and Science
Campus Ring 6
28759 Bremen
Germany

E-Mail: h.jaeger@iu-bremen.de
http: // www. faculty. iu-bremen. de/ hjaeger/

Abstract

Many time series of practical relevance data have multi-scale character-
istics. Prime examples are speech, texts, writing, or gestures. If one wishes
to learn models of such systems, the models must be capable to represent
dynamical features on different temporal and/or spatial scales. One natural
approach to this end is hierarchical models, where higher processing lay-
ers are responsible for processing longer-range (slower, coarser) dynamical
features of the input signal. This report introduces a hierarchical architec-
ture where the core ingredient of each layer is an echo state network. In
a bottom-up flow of information, throughout the architecture increasingly
coarse features are extracted from the input signal. In a top-down flow
of information, feature expectations are passed down. The architecture as
a whole is trained on a one-step input prediction task by stochastic error
gradient descent. The report presents a formal specification of these hierar-
chical systems and illustrates important aspects of its functioning in a case
study with synthetic data.

1 Introduction

Many time series data of practical relevance display features on multiple temporal
or spatial scales. For instance, in dictating systems, the incoming speech signal
must be analysed on a variety of timescales that range from the millisecond domain

mailto:h.jaeger@iu-bremen.de
http://www.faculty.iu-bremen.de/hjaeger/

of phonemes to the multiple-seconds scale of phrases. Similar challenges are posed
by (hand-)writing or gesture recognition systems, by motion or action controllers
in robots, or in video sequence analysis applications.

A natural strategy to deal with multiscale input is to design hierarchical in-
formation processing systems, where the modules on the various levels in the
hierarchy specialize on features on various scales. Bengio and LeCun [2] provide
an enlightening discussion from a statistical / machine learning point of view
why hierarchical architectures are unavoidable when dealing with complex (in a
wider sense than multiscale) data. Investigating hierarchical information process-
ing is a pervasive and classical topic in the behaviour and brain sciences [6] [29]
[16]. Numerous artificial systems in artificial intelligence, robotics, pattern recog-
nition and machine learning follow this strategy, for instance (in rough chrono-
logical order) Brooks’ subsumption architecture for robot control [3], hierachical
ART/ARTMAP architectures [4], hierarchical mixtures of experts [15] [27], Shas-
tri’s SHRUTI models [25], hierarchical Markov decision processes [22], convolu-
tional neural networks [19], hierarchical HMMs [23] – not to mention standard
textbooks methods for hierarchical clustering and AI planning. I will not even
attempt to give a systematic account of any sort here.

Despite the naturalness of the basic conception and the substantial and varied
effort, it is fair to say that so far no artificial system comes close to the performance
of humans or higher animals (or even eukaryotes...) with regard to coping with,
and adapting to, multiscale input. Several reasons can be made out for this:

• Most of the artificial models have been designed for static input patterns;
ecologically realistic signals are however time series (signals).

• Most models work well only for low-dimensional input data; ecologically
relevant data streams are however often very high-dimensional.

• Many hierarchical models of information processing lack a learning mecha-
nism; learning and adaptation are however mandatory for any system aspir-
ing at coming close to biological systems.

• Many models are largely hard-wired, rely on human-designed data prepro-
cessing and feature definitions. Getting such systems to run imposes on
the human designer an enourmous workload of pre-designing the “ontology”
(from perceptual features to abstract concepts) of the internal representa-
tions needed for efficient processing.

• Hierarchical learning algorithms are often very slow and computationally
expensive, and (if gradient-based) suffer from vanishing gradients on the
layers which are remote from the input / error definition level.

• The most widely used classes of learning algorithms for hierarchical systems
are not biologically plausible (I would rate EM, backprop, and sampling-
based methods as biologically implausible, although this is certainly a matter

3

of debate). If true, this would mean we haven’t understood something basic
about biological information processing yet.

Turned positively, what one (still) would like to see is a design of a hierarchical
information processing system, which

1. feeds on high-dimensional time series data,

2. discovers its own (dynamical!) features and concepts with little human-given
priors,

3. has a computationally cheap, statistically efficient, biologically not impossi-
ble, and online adaptive learning algorithm.

In the machine learning and artificial neural networks communities, the quest
for such a design has recently been rekindled by the introduction of Deep Belief
Networks (DBNs) [7] [8]. DBNs expand on the classical Boltzmann machines of
the same authors [1] [9], obtaining a crucial increase in computational efficiency
of sampling-based learning algorithms by reducing the sampling depth to two
steps (“contrastive divergence”) and by restricting the connectivity of multilayered
networks to between-layer links (“reduced Boltzmann machines”, RBM). On high-
dimensional (image) benchmark data, DBNs outperformed previous methods in
classification tasks, which is particularly remarkable because these models were
trained on raw pixel data and had to discover relevant features by themselves.
Layered RBMs have also been applied to time series data [28] [26]. The published
work on temporal layered RBM modeling is however still scarce and hardly allows
a substantial assessment.

In this report I introduce a hierarchical learning architecture which targets the
three desirable properties listed above. I have been pondering various aspects of
this architecture for some years, and the motivations had been different than the
desiderata from the above list. But it was Hinton’s et al deep belief networks that
gave the final spur to condense earlier bits and pieces into a coherent hierarchical
architecture, and to aspire to the bold goals stated above.

I will briefly comment on the original motivation behind earlier (unpublished)
versions of the model presented in the rest of this paper.

The context in which I was working were echo state networks (ESNs). This
is an elementary recurrent neural network (RNN) architecture where a randomly
created “reservoir” RNN is passively driven be the input signal; the desired output
is distilled from the multitude of nonlinear input transform signals provided by
the reservoir, by a trainable linear combination. Thus only the reservoir-to-output
connections are trained in an ESN. For an introduction to ESNs, the reader is
referred to [10], [12], or [13].

The standard way to employ ESNs is in supervised training of temporal tasks.
The trainable parameters (i.e. the reservoir-to-output weights) are linear regres-
sion weights. Many algorithms are known to compute linear regressions, batch and

4

online adaptive ones. Among the latter, the simplest and most widely used (in
linear signal processing) is stochastic gradient descent, which for linear regression
weights is known in signal processing as the least means square (LMS) algorithm
[5]. The convergence properties of LMS are well understood. Specifically, it is
known that the attainable rate of convergence depends on the spectral spread
(ratio of largest to smallest absolute eigenvalue) of the input signal correlation
matrix. In a context of standard echo state networks, this implies that LMS can
be used to compute output weights online only if the correlation matrix of the
reservoir-internal signals has a low spectral spread. Unfortunately, with randomly
created reservoirs the spread typically is 1e+12 and higher, which precludes the
use of LMS. I tried to construct or pre-train reservoirs in many ways with the
goal of achieving a small spread, but always in vain – which is why I and oth-
ers have used recursive least squares (RLS) algorithms instead of LMS for online
adaptation of echo state networks [11] [18]. RLS algorithms are not susceptible
to spectral properties of their input signals and often converge very rapidly, but
they have quadratic (here: in reservoir dimension) update complexity, are prone
to become numerically instable, and are not biologically possible.

Thus I continued to desire an alternative approach where simple first-order
stochastic gradient descent adaptation methods would work. I envisioned an un-
supervised training scheme for reservoirs, which would lead to a decorrelation of
the signals of the reservoir units; this in turn would allow me to use this pre-trained
reservoir for stochastic gradient descent based, supervised training algorithms. In
one of the attempts to orthogonalize reservoir signals, I tried to adopt the idea of
neural “experts” which are trained competitively. This idea is familiar e.g. in the
context of unsupervised time series segmentation [24] [17] or motor control [30].
In these methods, several neural networks are trained incrementally to predict the
input signal; the adaptation rates are coupled to the current prediction perfor-
mance; this leads to a specialization of the networks which ultimately take turn
in predicting the input (or controlling a motor task) according to which sort of
input is fed. Implementing such schemes needs a scoring method (measuring the
local-in-time performance of each expert) and a voting/competing scheme (decid-
ing what adaptation rate is allotted to an expert, given the performance score). If
the training functions well and the experts take turn in a winner-take-all fashion,
their voted output signals are trivially orthogonal (because only one among them
is nonzero at each time).

Playing around with architectures of this sort, using echo state network output
nodes (not entire echo state networks!) as experts, and stacking such systems on
top of each other to realize hierarchies of experts in this way or another, and
finally drawing insight and motivation from deep belief networks, I in the end
arrived at the architecture which is presented in this report. It is the first one
that works to my satisfaction: a hierarchy of dynamical features is discovered in
the input data stream in an unsupervised fashion; these features develop pleasant
orthogonality properties and thus could serve as input signals to LMS-type, cheap,

5

supervised, adaptive learning algorithms for externally given tasks of all sorts; the
adaptation mechanisms that lead to the feature discovery in the first place are
computationally cheap and not biologically impossible.

The architecture is first explained informally in section 2, then formally spec-
ified in section 3. Section 4 presents the stochastic gradient weight update equa-
tions. A case study with a two-scale synthetic dataset follows in 5 – wherein it
is also revealed why I would like to call the new architecture by the name of Aha
Machines.

2 Elements of the Architecture: Informal De-
scription

The purpose of the proposed architecture is to discover, in an unsupervised way,
dynamical features in a (possibly high-dimensinal) stationary stochastic time series
u(n), such that

• each feature is itself a time series (a signal), possibly high-dimensional – to
emphasize this I will sometimes speak of dynamical features ;

• the dynamical features are related to each other in a hierarchical fashion,
with fast and/or local features at the bottom of the hierarchy and slow /
global features at the top;

• the original time series can be approximately reconstituted from the ex-
tracted features, that is, the features are a structured representation (or
transform) of the original time series.

Here are the global design characteristics of the proposed dynamical feature
discoverer (DFD) architecture:

• The architecture is layered, where the main component in each layer layer is
an echo state network. The bottom layer is the interface to the driving time
series u(n) and operates at the same timescale as this time series. Higher
layers operate at increasingly slower timescales. Each layer extracts features
at its respective timescale.

• In tuning itself to predict u(n), the DFD develops a hierarchy of dynam-
ical features, which can be seen as components (on several scales) of the
conditional probability distribution of the future.

• In a bottom-up flow of information, higher levels discover/extract increas-
ingly coarse/slow dynamical features, which can be combined (within a level)
to increasingly coarse/slow representations of the input signal. The input to
some level in the hierarchy is the feature-based reconstruction of the external
signal available at the next lower level.

6

• In a top-down flow of information, each level generates expectations (“votes”)
about which features on the next lower level are present in the input sig-
nal to which degree. These votes are the combination weights by which the
next-lower-level features are combined into the representation of the input
signal at the timescale of that level.

• An DFD is equipped with an unsupervised adaptation mechanism which
allows the system to “discover” features in an input signal. The basic ra-
tionale is that the DFD tunes itself to predict, at time n – discrete time
is used throughout – the next input u(n) from the already received inputs
. . . ,u(n − 2),u(n − 1). Mathematically, any system that can perform a
one-step prediction of a stochastic time series must implicitly or explicitly
host a representation of the conditional distribution of the future given the
past up to the present. The mathematical perspective for discussing DFDs
is to see them as developing a hierarchical-feature-based representation of
this conditional probability distribution of the future. This perspective is
constitutive for observable operator models [14] and their derivatives, e.g.
predictive state representations [20].

• The DFD architecture uses stochastic gradient descent (of the prediction
error gradient for the predictions of u(n)) for all adaptations.

The central concepts in dynamic feature discoverers are features and votes
- both of which are dynamical in nature (i.e., signals) and are organized in a
hierarchy. To avoid misunderstandings (the notion of a feature is used in many
ways by different authors in different traditions), I briefly explain my usage of
these terms.

Let y(n) be a vector-valued signal - for instance, a video sequence (vector
components = pixels) or a spectrographic recording of a birdsong (vector com-
ponents = frequency subband intensity). Furthermore let fi(n) (i = 1, . . . , F) be
a collection of signals of the same dimension as y(n), and let vi(n) (where again
i = 1, . . . , F) be a collection of one-dimensional signals. Then I will understand
the signals fi(n) as features of y(n), and vi(n) as votes, if y(n) can be rendered
approximately by the vote-weighted combination of these features, that is, if

y(n) ≈
∑

i=1,...,F

vi(n)fi(n). (1)

Note that according to this usage of terminology,

• the votes vi(n) need not fall in the interval [0, 1] (although this may be desir-
able for intuitive interpretability in some conditions, and is indeed enforced
in the architecture presented below),

• similarly, the votes vi(n) need not sum to unity – I have no probabilistic
interpretation of features as mixture components in mind,

7

• a feature fi(n) can be localised in time by having its vote equal to zero at
the times when the feature is not “present”,

• a feature fi(n) can be localised in space by having most of its vector compo-
nents equal to zero - the feature is then not “present” at those locations,

• a feature is not a predefined signal – nothing like a Fourier component or
wavelet; it is context-dependent, variable/stochastic, and may require a com-
plex, trained mechanism to be spotted and monitored,

• a signal is conceived as a time-varying linear combination of its features;
thus my perspective here is restricted to numerical signals.

For example, a feature and its vote in a spectrographic recording of a Bach
fugue y(n) = (y1(n), . . . , yD(n))T, where each yj is the power signal of one fre-
quency subband, could be any of the following:

• the power of the jth frequency subband, that is, fi(n) = (0, . . . , yj(n), 0, . . . , 0)T;
the vote vi(n) would then always be one;

• the spatial indicator of the jth frequency subband, that is, fi(n) = (0, . . . , 1, 0, . . . , 0)T

(the “1” at position j); the vote vi(n) then would be equal to yj(n);

• the first voice, that is, fi(n) traces the frequency power components of the
first voice; the vote vi(n) could then always be one – but could also assume
a value of 1 only when the first voice is actually active and else be zero (or
anything else);

• a temporal indicator of the part in the fugue when the second theme is
introduced in the first voice: then fi(n) could be just equal to y(n) with
vi(n) going from zero to one exactly while the second theme is played in the
first voice for the first time; alternatively, fi(n) could be the zero signal at all
times except during the introduction of the second theme, when fi(n) = y(n)
– with vi(n) being one throughout or going to one while fi(n) is nonzero.

These examples demonstrate that there is an inherent ambiguity in the feature-
vote-representation: a nonzero contribution vi(n)fi(n) is identical to a contribution
(αvi(n))(1

αfi(n)) for any α #= 0, and a zero contribution vi(n)fi(n) = 0 can be
obtained by a zero vote, a zero feature, or by both simultaneously.

The “extraction” of a feature fi(n) from a signal y(n) may involve a special-
ized, non-trivial nonlinear filter with memory. In this report these filters will be
realized by echo state networks, but this is not one of the central characteristics
of the proposed architecture. Other (maybe even linear) adaptive filters may be
considered as well. Figure 1 gives a schematic of the reconstitution of a signal as
a vote-weighted feature combination.

8

approximated
signal

vote
vector

()v n

features
()

fi n

signal
()

y n

feature
extraction

... Π

F

F

Figure 1: Schematic of approximating a signal by a voted feature combination.
This schema represents the main building block of the proposed hiearchical archi-
tecture. Vectors with same texture have same dimension. For explantation see
text.

While this account of representing a signal by voted features is very formal
and liberal, I want to point out some intuitions which may help to constrain the
design of features and their votes.

• In a feature-vote-pair, the feature can be understood as the “what” part of
explaining an aspect of a signal, while the vote can be understood as the
“when” or “how strong” part.

• Intuitively, the feature is finer-grained (spatially and temporally), more con-
crete, more informative than its vote. The vote signal vi(n) can be seen
as an abstraction of the the feature signal fi(n) in which the details of the
“what” have been lost.

• The vote vector v(n) = (v1(n), . . . , vF (n))T can thus be seen as an abstract
description of y(n). Typically and intuitively, v(n) should be slower/smoother
than y(n).

• In hierarchical representations, the vote vector v(n) of the features of a raw
input signal y(n) can be subjected to a next-level feature-vote-decomposition,
leading to a next-higher vote vector v′(n), etc.

• In such hierarchical representations, it is not necessarily the case that the
number of features in higher levels of abstraction is smaller than the number
of features in lower levels. While such a reduction of feature number can
be motivated by the goal of compactness of representations (as for instance
in [8]), it is not obvious that in human cognition the number of features
decreases with the abstraction level. To the contrary, there are more words

9

than phonemes, more canned phrases than words, more concepts than el-
ementary semantic roles (in many accounts of linguistic semantics), more
muscial motifs than notes, etc. In the perspective adopted in this report,
the purpose of feature-based representations is not dimension reduction, not
compression, but rather the opposite: the unfolding, the explication of a
stream of complex information into a rich display of relevant aspects.

3 Architecture: Formal Description

The central design idea concerns how to compose the features, which are extracted
at each level, such that together a representation of a complex multiscale input
signal is formed. See figure 2 for a graphical overview of the architecture which is
now explained in more detail.

A remark on notation: the hierarchy levels of the proposed DFD architecture
are structured in very similar ways. In order to refer to a quantity q at the first
level, we use (like in Matlab structures) the notation R1.q; for the analog quantity
at the second level we write R2.q; etc.

Assume that the input signal u has dimension d (may be one-dimensional,
low-dimensional or high-dimensional, as in image signals).

At the lowest, first processing level of the DFD, a number of features R1.fi(n),
i = 1, . . . , R1.F are extracted, each of which is also of dimension d. Notice again
that we understand features as dynamical items, that is, as time series. The
features extracted at time n should be suitable to reconstruct the external input
u(n) in the sense that a suitable linear combination of them approximates u(n).
Writing all features R1.fi(n) as columns in a matrix R1.f(n) of size d × R1.F ,
we want an R1.F -dimensional vector R1.v(n) of votes to combine the features in
R1.fi(n) into an approximation of u(n + 1):

R1.f(n) R1.v(n) = û(n) ≈ u(n). (2)

The features R1.fi(n) are computed as the outputs of an Echo State Network
(ESN) with reservoir state R1.x(n). This ESN is driven by the external input u
according to the leaky integrator state update equation

R1.x(n) = (1− R1.a) R1.x(n− 1) + σ
(
R1.W R1.x(n− 1) + R1.Winu(n− 1)

)
,

(3)
where R1.a is the leaking rate of neurons in level 1, R1.W is the weight matrix for
the reservoir-internal weights and Win is the input weight matrix. For the sigmoid
σ, which is applied element-wise, we use the standard logistic sigmoid

σ(q) =
1

1 + exp−q
. (4)

10

For each feature R1.fi(n) there is an output weight matrix R1.Wout
i , which is

used to obtain the feature from the reservoir state by

R1.fi(n) = R1.Wout
i [R1.x(n); u(n− 1)], (5)

where we use the Matlab-inspired notation [u; v] to denote vertical vector concate-
nation. In figure 1, all the output weight matrices R1.Wout

i are lumped together
in a data structure R1.Wout.

Generating the vector R1.v(n) of optimal votes is the task of the next higher
level. At this level, the signal R1.v(n) is generated in the same way as the first
level generates u(n), that is, by combining R1.v(n) from (second-level) features
R2.fi(n), i = 1, . . . , R2.F through multiplication with with another voting vector
R2.v(n) from yet a level above. In the current implementation, creating the voting
vector R1.v(n) involves an additional leaky integration and passing through a
sigmoid. The leaky integration L with leaking rate λ of a signal q(n) is carried
out according to

Lλ(q(n)) = (1− λ)Lλ(q(n− 1)) + λq(n), (6)

where the recursive leaky integration is initialized with a zero value. Writing again
the second-level features R2.fi(n) into a single R1.F × R2.F matrix R2.f(n), we
obtain the votes R1.v(n) by

R1.v(n) = σ(LR1.λ(R2.f(n) R2.v(n))). (7)

The input to the ESN on the second level is made from the predicted external
signal û(n− 1) obtained at the previous time step, which gives the following state
update equation at the second level:

R2.x(n) = (1− R2.a) R2.x(n− 1) + σ
(
R2.W R2.x(n− 1) + R2.Winû(n− 1)

)
.

(8)
This construction is repeated through the higher levels of the architecture. In

each of the higher levels k (k > 2), the input to the respective ESN with state
Rk.x(n) is the voting vector R[k − 2].v(n− 1) produced on the next lower level.

At the highest level there are no votes available from above; thus the votes
that are passed down from the highest to the second highest level are computed
directly. If for instance the highest level is the third, as in figure 1, this means
that the votes R2.v(n) passed from level 3 to level 2 are computed by

R2.v(n) = σ(LR2.λ(R3.Wout [R3.x(n); R1.v(n− 1)])). (9)

We conclude this section by an overview of all the computation steps introduced
above. For ease of notation, we denote the inputs to the level k reservoirs by
Rk.i(n). That is, R1.i(n) = u(n − 1), R2.i(n) = û(n − 1), and Rk.i(n) = R[k −
2].v(n− 1) for k > 2. Furthermore, let k̄ denote the maximal layer index.

11

time 1n– time n

external input
(1)

u n– predicted

input () û n

last predicted
input (-1) û n

d

R1.F

R1.λ

R2.λ

R2.F

level 1
votes
R1. ()v n

R1. ()p n

R2. ()p n

 R1. (1)v n– level 2
votes
R2. ()v n

R2.F

R1.F

R1. ()x n

R2. ()x n

R3. ()x n

R1.f()n

R2.f()n

R1.x(1)n–

R2.x(1)n–

R3.x(1)n–

R1.Win

R2.Win

R3.Win

R1.Wout

R2.Wout

R3.Wout

R1.W

R2.W

R3.W

Reservoir 1

Reservoir 2

Reservoir 3

level 1
features

level 2
features

...

...

Π

Π

σ

σ

Figure 2: Overview of the DFD architecture, illustrated with a 3-level instanti-
ation. The processing steps of one time increment are shown. Vectors of same
dimension are filled with same texture for clarity. For an explantation see text.

Then, within the complete nth update cycle, first all reservoir states are up-
dated (for k = 1, . . . , k̄) by

Rk.x(n) = (1− Rk.a) Rk.x(n− 1) + σ
(
Rk.W Rk.x(n− 1) + Rk.Wini(n− 1)

)
,

(10)
and the feature blocks Rk.f(n) are obtained column-wise, for k = 1, . . . , k̄ − 1 by

Rk.fi(n) = Rk.Wout
i [Rk.x(n); i(n)]. (11)

Then the votes which are passed down from the hightest level k̄ to the second
highest level are computed:

R[k̄ − 1].v(n) = σ(LR[k̄−1].λ(Rk̄.Wout [Rk̄.x(n); Rk̄.i(n)])). (12)

Next, descending to the second level, the votes Rk.v(n) are obtained, for k =
k̄ − 1, k̄ − 2, . . . , 2, by

12

Rk.v(n) = σ(LRk.λ(R[k + 1].f(n) R[k + 1].v(n))). (13)

Finally, the external output û(n) is obtained by

û(n) = R1.f(n) R1.v(n). (14)

4 Learning

The only adaptive parameters in an DFD are the ESN output weights Rk.Wout.
They are adapted at each time step and thus actually are time-varying quantities
Rk.Wout(n). On all levels they are adapted by stochastic gradient descent, where
the gradient is taken with respect to the squared prediction error

ε(n) = ‖u(n)− û(n)‖2. (15)

For convenience of notation we introduce an error vector

E(n) = u(n)− û(n). (16)

Also, as indicated in figure 1, on each non-top level k = 1, 2, . . . we refer
to a “vote potential” (the leaky integrated quantity before passing through the
sigmoid)

Rk.p(n) = LRk.λ(R[k + 1].Wout [R[k + 1].x(n); R[k + 1].i(n)]). (17)

Using these auxiliary quantities and denoting furthermore by σ′(q) = σ(q)(1−
σ(q)) the ordinary derivative of our logistic sigmoid; denoting the j-th component
of a vector q by q[j]; denoting the component-wise multiplication of two equally
sized matrices or vectors by .∗2; and denoting by ·T the vector transpose, elemen-
tary calculus gives us the following weight update equations (here given for the
three-layer case from figure 1):

2binding order: .∗ binds more weakly than ordinary vector/matrix multiplication.

13

R1.Wout
i (n + 1) = R1.Wout

i (n)

+ R1.γ R1.v[i](n) E(n) [R1.x(n); R1.i(n)]T (i = 1, . . . , R1.F) (18)

R2.Wout
i (n + 1) = R2.Wout

i (n)

+ R2.γ R2.v[i](n)
(
R1.fT(n) E(n)

. ∗ R1.λ σ′(R1.p(n))) [R2.x(n); R2.i(n)]T (19)

(i = 1, . . . , R2.F)

R3.Wout(n + 1) = R3.Wout(n)

+ R3.γ R2.fT(n)
((

R1.fT(n) E(n) . ∗ R1.λ σ′(R1.p(n))
)

. ∗ R2.λ σ′(R2.p(n))) [R3.x(n); R3.i(n)]T (20)

where Rk.γ are learning rates.
The error terms in these expressions can be computed recursively. Basing the

recursion on E1(n) := E(n), the update recursion for all non-base levels k =
2, 3, . . . reads

Ek(n) = R[k − 1].fT(n) Ek−1(n)

. ∗ R[k − 1].λ σ′(R[k − 1].p(n)) (21)

Rk.Wout
i (n + 1) = Rk.Wout

i (n)

+ Rk.γ Rk.v[i](n) Ek(n) [Rk.x(n); Rk.i(n)]T. (22)

From a perspective of stochastic gradient descent adaptations, the quantities
Ek can be formally interpreted as error vectors, although except for E1 they have
not been derived from taking a difference between some correct and some estimated
value (one could interpret higher-level Ek as “backpropagated” versions of E1

however).

5 A case study

The architecture has many free parameters which call for optimization: learning
rates at each level, leaking rates for the votes at each level, dimensions of reservoirs
and numbers of features, timescales of reservoirs, and others. Furthermore, there
are a number of architectural alternatives which call for exploration. For instance,
there are many plausible candidates for what to use as bottom-up input from
lower levels to highers; or at the various places where in the architecture described

14

above sigmoids are used to bound signals within a range of (01), these could be
abolished or replaced by other nonlinearities.

All of these optimizations or explorations have not yet been tackled in a sys-
tematic fashion. Two preliminary observations may however be worth mentioning
already at this early stage:

• Passing the votes through a sigmoid (cf. eqref5) seems to aid stability of the
learning process. In some experiments with unbounded votes, the learning
dynamics went out of bounds.

• In some experiments I used as input to the k-level reservoir the full block
of features R[k − 1]fT(n) from the level below. This appeared to function
equally well as the input suggested here. The reason for preferring the inputs
Rk.i(n) as defined above is solely computational efficiency: the full feature
blocks R[k − 1]fT(n) are of a much higher dimension than the inputs used
here, which leads to much larger-sized matrix multiplications in the state
and weight update computations.

I can at this point only report from a first case study using synthetic data.
The input time series u(n) was prepared in the following way:

1. A one-dimensional signal ũ(n) of length 50,000 was generated by a random
switching between three different generators, where at each time step n with
a probability of 0.05 a switching from the current to another generator (ran-
domly chosen from among the three) occurred. One generator produced a
constant-period sinewave ranging in [0, 1], the second generator the (chaotic)
iterated tent map, and the last one a constant value which was randomly cho-
sen in [0, 1] at each new call of this generator. Figure 3 gives an impression
of ũ(n).

2. The one-dimensional signal ũ(n) was space-coded into a 5-dimensional signal
u(n) = (u1(n), . . . , u5(n))T by triangular membership functions:

ui(n) = Triang(4 ũ(n)− i + 1) (i = 1, . . . , 5)

Triang : R → R, x (→
{

0, if abs(x) > 1,
1− abs(x), else.

This 5-dimensional signal u(n) was fed to a three-layer DFD as described in
sections 3 and 4. The three reservoirs had 40 units each. The input weights
Rk.Win were sampled from a uniform distribution over [−1, 1]. The reservoir
weight matrices Rk.W were generated as sparse matrices with 25% connectivity;
nonzero weights were first sampled from a uniform distribution over [−1, 1], then
rescaled such that the weight matrices attained spectral radii of 0.2, 0.5 and again

15

0 50 100 150 200
0

0.5

1

Figure 3: A 200 step sample of the input signal ũ(n).

0.2 respectively for levels 1, 2, and 3. At level 1 R1.F = 20 and at level 2 R2.F = 10
features were used, all of dimension 5.

The output weight matrices Rk.Wout
i were designed to be sparse: from the

possible 40 reservoir-to-output-unit connections, only 5 (randomly chosen ones)
were allowed to be nonzero. This amounts to a total of 3,600 adjustable weights.

The other control parameters were set as follows: the leaking rates R1.a, R2.a, R3.a
were put to 1, 0.5, 0.2 respectively (equipping higher level reservoirs with increas-
ingly pronounced low-pass characteristics); the vote integration leaking rates R2.λ
and R3.λ were set to 0.5 and 0.2 (similarly making higher levels slower in the sense
of being more integrative). The learning rates Rk.γ were set to 0.01 on all levels
(and not adapted during the learning process).

The reservoir states were initialized to all zeros, and the output weight matrices
to small random values ranging in [−0.05, 0.05 for the first two levels and ranging
in [−0.01, 0.01 for the third level.

This system was then driven by the 50,000 step training input u(n) for 20 Mio
steps, re-cycling the training sequence, and a number of diagnostics were recorded
during this run. The most interesting diagnostic concerns the prediction error. It
was computed, separately for each of the five components of u(n), as a normalized
root mean square error (NRMSE) for the last 1,000 step subsequence in every
cycle through the 50,000 step training sequence:

NRMSEj =

√
〈(û[j](n)− u[j](n))2〉

σ2
[j]

, (23)

where 〈·〉 denotes the mean over the steps 49, 001 – 50, 000 (modolo 50, 000), and
σ2

[j] is the variance of the jth component of u(n). For plotting the five NRMSEj

were averaged to a single NRMSE measure.
Figure 4 illustrates various aspects of the evolution of this error. The bold line

in panel a. traces the NRMSE of the aha machine. Panel b. shows the second
derivative, globally scaled by 50,000 and in addition multiplied with step index n in
order to magnify values that come late in the series. The oscillations in curvature
which are revealed in this plot indicate that progress in reducing the NRMSE is

16

concentrated in intermittent episodes of sudden improvement. A more detailed
account of this interesting phenomenon is given below. Finally, the log-log plot of
the NRMSE (panel c.) suggests that on the average, across these episodes, the
error decreases by a power law. I now proceed to discuss the observations which
can be made in figure 4a.-c. in more detail.

5 10 15 20

−2000

−1000

0

1000

2000

4 5 6 7 8
−0.4

−0.3

−0.2

−0.1

0

a.

b.

c.

5 10 15 20
0

0.5

1

1.5

2

2.5

Time (Mio Steps)

NR
M

SE

AM
LMS
offline reg 0
offline reg 0.0002
offline reg 0.002

no
ise

ad
ap

ta
tio

n
of

f
A B

Figure 4: a. NRMSE errors of various learning conditions vs. update time. The
first set of four short lines offset at the right end indicate performance degradation
under noise conditions; the second set of two short lines the performance degra-
dation when adaptation is switched off in LSM and DFD. b. Linearly magnified
curvature n × dNRMSE2(n)/dn2 of the DFD error development. “A” and “B”
mark two aha events. c. Loglog (base 10) plot of DFD NRMSE. Time axis spans
20 million update steps in all panels. For explanation see text.

5.1 Learning performance

The learning performance of this DFD was compared with standard, single-reservoir
ESNs. The DFD has altogether 3, 600 trainable ESN output weights, 720 per out-
put dimension. In order to compare the training performance with single-reservoir
ESNs, the latter should have a similar number of adjustable weights, that is, 720
per output dimension, which would mean a reservoir with 720 neurons. Due
to hardware limitations (256 MB RAM was insufficient for standard offline ESN
training on 50,000 data points) I resorted to a single-reservoir ESN with only 500
neurons, which could just be hosted on my machinery. Thus the following compar-
ison is slightly biased in disfavour of standard ESNs. The 500-unit ESN was set up
with in analogy with the first-level reservoir in the DFD, that is, with a spectral
radius of 0.2 and a leaking rate of 1.0 (which amounts to a non-integrating be-
haviour). Output weights were computed in four different fashions: (i), using the
online adaptive LMS algorithm with a learning rate of 0.01 (same as in the DFD);

17

(ii) – (iv) computing the 5 × 505 output weight matrix Wout by the regularized
Wiener-Hopf solution of the linear regression task

Wout =
(
(R + α2I)−1 d

)T
, (24)

where R is the 505×505 correlation matrix of the 48,000 reservoir-plus-input-states
[x(n);u(n)] obtained by driving the reservoir with the training sequence (n =
2001, . . . , 50, 000; states from the first 2000 time steps discarded to accomodate
for initial reservoir transients); α is the Tikhonov regularizing coefficient; d is
the 505 × 5 target matrix d = XUT, where X contains the 48,000 reservoir-
plus-input-states [x(n);u(n)] as columns and U contains the 48,000 next-outputs
u(n+1) as rows. The conditions (ii) – (iv) were distinguished by using regularizers
α = 0.0; 0.0002; 0.002 respectively.

The thin solid line in panel a. shows the NRMSE development obtained by
LMS adaptation (like in the DFD condition, the NRMSE was estimated from
the last 1000 steps in the 50,000 step training sequence; the adaptation was not
switched off during the NRMSE assessment). After an initial period of rapid
improvement, the learning rate becomes stuck in an extremely slow exponential
mode which is due to the enormous eigenvalue spread of standard ESNs (see [5]
for a textbook account of these LMS properties). The learning rate of 0.01 turned
out to be close to the admissible maximum; with a learning rate of 0.02 the LMS
algorithm became unstable. Thus the LMS adaptation of a standard ESN, in this
case again like always before, turns out to be useless.

The dotted, dotted-dashed, and dashed lines mark the NRMSE of the 500-unit
ESNs which were trained offline in conditions (ii) – (iv). The NRMSE was com-
puted on the last 1000 steps of the 50,000 training sequence, the same evaluation
subsequence used to assess the progress in the DFD and LMS conditions. The
regularizing coefficient α = 0.002 leads to an accuracy which is almost identical
to that of DFD after 20 Mio steps. The α = 0.0 accuracy of NRMSE ≈ 0.355 –
which is arguably close to the optimal NRMSE achievable with any method – gives
a baseline for optimality; the DFD accuracy after 20 Mio steps of approximately
0.465 misses this virtual optimum by about 25%.

An important quality criterium of system modelling is noise robustness – both
with regard to signal noise (in the input signal which has to be predicted) and to
system noise (internal to the model; important for analog hardware, low-precision
arithmetics, or biological modelling). To assess the susceptibility to noise, the
DFD and the four comparison models (i) – (iv) were tested in a condition where
both the input signal and the various ESN state vectors were corrupted by additive
noise sampled uniformly from [−0.005, 0.005]. For the two adaptive models (DFD
and LMS), the adaptation was not switched off during this test. The short lines
offset at the right of panel a. show the resulting NRMSE, again estimated from the
last 1000 steps. The LMS-adapted model degrades to chance output (a NRMSE
of about 1 means complete loss of correlation between teacher and model); the
medium-regularized condition (iii) exhibits a degradation to a NRMSE of about

18

1.7 (which in addition to loss of correlation means a global scaling error); the
sharp condition (iv) (α = 0.0) jumped to a NRMSE of more than 120 and is not
plotted; the cautiously regularized condition (ii) (α = 0.002) degrades to about
NRMSE ≈ 0.567. The winner in this robustness game is the DFD model which
deteriorates only slightly from 0.465 to about 0.485.

Another interesting aspect in comparing DFD vs. LMS is the different be-
haviour when the adaptation is switched off. For both models this was done after
step 20 Mio (that is, learn rates were set to zero). The second set of short lines
in panel a. shows that the LMS-trained model is completely destroyed (NRMSE
under zero adaptation jumps to 2.22), while the DFD model suffers only a mild
drop in accuracy (from 0.465 to 0.499). This indicates the the LMS model relied
heavily for its accuracy (of however only a NRMSE of approx. 0.75 after 20 Mio
updates) on an ongoing adaptation: a closer inspection of the LMS-trained model
(omitted here) would reveal that the model uses weight adaptation especially to
accomodate to the constant-value-episodes in the input signal. In contrast, the
DFD model has “really learnt” important properties of the input signal.

All in all, compared to other models, the online adaptation of this DFD model
exhibits a useful and unique combination of properties:

• The computational cost per update (equations (21) and (22)) is linear in the
number of adaptable parameters, as it is for LMS.

• The convergence is apparently not encumbered by the slow mode dominance
which plagues the LMS adaptation of standard ESNs. A performance level
which falls off from the assumed optimum by about 25% is reached after a
feasible (if admittedly long) training time of 20 Mio steps.

• The DFD model is much more robust to state and signal noise than offline-
trained ESN models or LMS-trained models.

It remains of course to be seen whether this favourable impression is repeated
in other case studies, – and what can be ascertained by mathematical analysis.
Furthermore, a comparison with a model obtained by RLS adaptation would be
of interested (not done so far).

5.2 The Aha! effect

If the DFD learning curve from figure 4a. would be plotted larger and with
a better resolution, one could see that the decrease of NRMSE proceeds in a
sequence of rather sudden drops which are followed by longer periods where the
error improvement is slower. Panel b. renders the curvature of the NRMSE;
since the curvature becomes very small for larger n, it was scaled by n for the
plot. Episodes of NRMSE drops become visible in this curvature plot as occasions
where the curvature briefly dives into negative values.

19

There are altoghether six such events which are clearly discernible in the cur-
vature plot. Each of them except the first one is connected to the “discovery” of
new features in the top level of our DFD architecture. I will first describe what
happens in the episode marked “A” in figure 4a. and b..

0 1 2 3
0.5

0.6

0.7

0.8

A1.7

A2.0

A2.2

A2.5

A3.0

0 1 2 3
 0

0.002

0.004

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

50 100 150 200
0

0.5

1

A1.7

A2.0

A2.2

A2.5

A3.0

!"

#"

$"

Figure 5: a. Closeup on the NRMSE of the DFD model for the first 3 Mio steps.
Arrows indicate locations of the snapshots given in panel c.. b. Development
of the 3rd-layer error signal E3(n) ((21)). c. Top graph, thick line: a short
subsequence of the original one-dimensional signal ũ(n). Top graph, thin line: the
prediction û(n) of the DFD version obtained after 1.7 Mio steps (retransformed
to a one-dimensional ˆ̃u(n). Other graphs show the vote vector R3.v(n) plotted
in for the same short subsequence as in the top graph. They were recorded after
training times 1.7, 2.0, 2.1, 2.5, 3.0 Mio. For explanation see text.

Figure 5 collects diagnostic graphics from that episode. Panel 5a. gives a
closeup of the NRMSE of the DFD model for the first 3 Mio steps, clearly ex-
hibiting the relatively sudden “dip” in the NRMSE that is connected to feature
discovery events. Here this dip occurs roughly between time steps 2.0 and 2.2 Mio.
Panel 5b. plots the ten components of the third-level error E3(n) ((21)). Eight
of these components remain too close to zero to become visible in this plot; two
components take a sudden rise around time n = 2Mio. Panel 5c. presents a num-
ber of snapshots of the vote vector R3.v(n), recorded for a 200-step sequence after
training times 1.7, 2.0, 2.1, 2.5, 3.0 Mio. The top graph shows the section of the
original one-dimensional signal ũ(n) which was used for this 200 steps (thick line),
together with the prediction û(n) of the DFD model obtained after 1.7 Mio steps
(re-transformed to a one-dimensional ˆ̃u(n)). The other graphs in panel 5c. show
the 10-dimensional vote vector R3.v(n) plotted for the various training stages.
Eight of the components of R3.v(n) are so close to 1 throughout that they are
not visible at the given resolution. Two components however undergo a rapid
differentiation away from a constant value of about 1 after training time 2.0 Mio.

20

These are the same two components whose corresponding errors in E3(n) exhibit
the sudden increase.

More “aha” episodes similar to this one occur around times 6 Mio and 19.5
Mio. They are centered in time at single oscillations visible in figure 4b. In each
of these events,

• one further among the 10 components of R3.v(n) becomes “recruited” and
differentiates from an constant-value-1 signal to a time-varying signal;

• simultaneously, the corresponding error component in E3(n) takes a sudden
rise, to fall off slowly thereafter;

• the overall prediction NRMSE plotted in figure 4 takes a drop (whose mag-
nitude however decreases roughly in inverse proportion to n).

5 10 15 20
0

0.01

0.02

0.03

5 10 15 20
0

0.001

0.002

Figure 6: Development of the 20-dimensional error signal E2(n) (top) and the 10-
dimensional E3(n) signal (bottom) during the 20 Mio training run. For explanation
see text.

Figure 6 (bottom) shows the development of the third-level error signal E3(n)
during the 20 Mio training run. Figure 7 depicts the votes R3.v(n) generated by
the model obtained at the termination of the run. At this time, five from the
ten components of R3.v(n) and E3(n) have developed a non-constant dynamics,
differentiating away from their initial constant values of close to 1 (votes) or close

21

0

0.5

1

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

Figure 7: Top panel: a 500 step subsequence of the original one-dimensional signal
ũ(n). Bottom: the five differentiated third-level votes from R3.v(n), recorded from
the 20 Mio step trained model on the input shown in the top panel. For explanation
see text.

to 0 (errors). Most of these differentations-away-from-constant occurred in tempo-
rally sharp events; only one of the non-constant votes visible in figure 7 acquired
its interesting behaviour relatively slowly (in an interval from about n = 14 Mio
to about n = 18 Mio, compare the slowly rising curve in figure 6, (top)).

Furthermore, there is one oscillation visible in figure 4 b., at about time 4
Mio, which is not accounted for by a differentiation of a layer-3 vote. This drop
in NRMSE may be tentatively attributed to the differentiation of one layer-2 vote
which is reflected in a rise of an isolated component of the error E2(n) around
time 4 Mio (visible in figure 6 top). The majority of votes R2.v(n) in the second
layer differentiate, with much temporal overlap, during the early training stages
before n = 2 Mio (again visible in figure 6 top).

The differentiated level-3 voting signals are related to the succession of the
three types of generators that make up the input ũ(n). Inspecting figure 7, one
can find, for instance, that the vote drawn by the bold dotted line behaves almost
like an indicator for the slow sine generator; the vote drawn by the bold black line
largely follows the slow sine input when it is the current generator, while it rises
to close to maximum values when the iterated tent map generator is in command;
the other votes are not so clearly to characterize. It may be worth pointing out
that one does not find a clear “segmentation voting”, that is, one doesn’t observe
that for each of the three generators an indicator vote develops – which one might
have hoped.

Finally, I want to point out a remarkable decorrelation phenomenon. As
pointed out in the Introduction, transforming an input signal into decorrelated

22

nonlinear transform signals was a major original motivation for me to develop this
architecture.

104 105 106 107 108
0

0.1

0.2

0.3

0.4

0.5

Figure 8: Development of the correlation measure cij (circles) and c′ij (crosses).
Time axis is logarithmic. Measurements were taken from models trained at times
50K, 100K, 200K, 500K, 1Mio, 2Mio, 5Mio, 10Mio and 20Mio. Each plotted point
represents the mean absolute value of all off-diagonal entries in the 20×20 matrix
(cij) or (c′ij) (diagonal entries cii, c′ii measure autocorrelation and have unit values).

The desired decorrelation effect is obtained between the features. Consider
the first-level features R1.fi(n) (i = 1, . . . , 20). To compute a numerical esti-
mate of the (de-)correlation between two such feature vectors (in our example
each of length 5), each feature was recorded within the training run for the last
1,000 steps in each 50,000 cycle (like other diagnostics described earlier). For
each feature R1.fi(n) and every diagnostic recording of length 1,000 this yielded
a feature value matrix Fi of size 1000 × 5. These matrices were first normal-

ized to Frobenius norm 1 (by division of Fi with
√∑

ν=1...1000, µ=1...5 F2
i (ν, µ)).

Then, to obtain a correlation cij between the feature signals R1.fi(n) and R1.fj(n)
(n = 49001, . . . , 50000 mod 50000), cij was calculated by the following inner
matrix product between Fi and Fj:

cij = 1T
1000 (Fi. ∗ Fj) 15, (25)

where .∗ again denotes element-wise multiplication and 1d the all-ones column
vector of dimension d. A similar correlation measure c′ij was also computed in a
version where the computation started not from features R1.fi(n) but from the
vote-weighted features R1.vi(n)R1.fi(n). Figure 8 shows the evolution of these
two correlation measures during the training run. It becomes apparent that the
vote-weighted features decorrelate almost completely in the course of the training
run, while the unweighted features decorrelate only to a lesser extent.

23

6 Discussion

6.1 Summary

The take-home points from this report are the following:

• DFDs build on a feature-vote concept where features have the same dimen-
sion as the signals they are features of, and vote vectors can be seen as
abstract representations of the feature dynamics (which gives rise to hierar-
chical stacking).

• DFDs are trained by stochastic gradient descent on the next input prediction
task. However, it is not the actual prediction output which is the learning
target of interest, but the hierarchy of features and votes which evoloves in
the process.

• These features and votes apparently (as far as one can say after one sim-
ple case study) exhibit striking orthogonality properties, which recommends
them as inputs for cheap LMS-type learning algorithms.

• The appropriate background intuition for DFDs is not one of representa-
tional efficiency (as in most if not all other approaches) but one of unfold-
ing, explication of a complex input signal into a rich spectrum of informative
dynamical features.

• With all caution, the reported case study suggests that DFD learning leads to
models with superiour noise robustness (compared to offline or LMS training
of standard ESNs).

• Still with due caution, a functional role of higher-level features may be to
facilitate (= speed up) the learning of the next input prediction task, i.e.
the learning of a predictive state representation.

6.2 Related work

This technical report presented an early stage of development of a rather complex
learning architecture, which was checked so far only on a rather simple synthetic
dataset. It is therefore too early for any quantitative evaluation of its performance
or a comparison with other approaches. Some qualitative comments however are in
place to highlight essential points that distinguish the DFD from other hierarchical
dynamical learning architectures.

Hierarchical hidden Markov models (HHMMs). HHMMs [23] are hierar-
chic in the sense that an input sequence is segmented into segments, which
in turn are segmented into subsegments, etc., up to a predefined order. An
illustrative example is the segmentation of a text into phrases into words into

24

syllables into letters. In contrast, the features extracted by a trained DFD
need not have a segment-subsegment temporal relationship as one descends
one level; features within one level may temporally overlap; the votes can
gradually blend features in and out without sharp segmentation boundaries.
This point made, I add that one may find in higher-level votes indicators for
segmentation (as in figure 7). Another obvious and fundamental difference
between HHMMs and DFD is that the former yield a rigorous model of a
process distribution, while the latter are not a statistical model at all.

Hierarchical mixtures of experts (HMEs). HMEs are originally and mostly
described as models of static distribution [15], but lend themselves also to
dynamical tasks when the expert and gating subsystems are implemented by
HMMs or RNNs ([27]). A variety of HME variants has evolved, some more
of a statistical and others more of a neuro-dynamical flavour. The all share
however three characteristics which sets them apart from DFDs: (i) higher
(gating) levels receive the same external input signal as the lowest (expert)
level, while in DFDs higher processing levels receive higher-level input which
is distilled in levels below; (ii) by design, the hierarchy in HMEs is tree-like,
with higher levels having (exponentially) fewer gating modules than lower
ones, while in DFDs there is no rule that ties the “width” of a layer to its
height in the hierarchy, (iii) since HMEs are set up as mixture distribution
models, the gating weights within one hierarchical level must sum to unity,
while in DFDs the votes of one level don’t have to satisfy a sum constraint.

Deep Belief Networks (DBNs). DBNs are hierarchically stacked, restricted
Boltzmann machines and inherit from the latter the statistical physics back-
ground of associating a distribution with an energy function and of learning
a distribution with energy minimization. DBNs are arguably the currently
most powerful proven machine learning architecture for learning complex
static distributions and may eventually claim the same for distributions of
processes. A unique feature of DBNs which distinguishes them from HH-
MMs, HMEs and DFDs alike is the reliance on binary neurons (which have
their origin in the spin lattice models of statistical physics). The most com-
monly (only?) used learning algorithm, contrastive divergence [7] also is
unique to DBNs. DBNs share with DFDs that higher levels do not nec-
essarily have to have fewer features than lower ones (although all work on
DBNs accessible to me uses “thinning-out-upwards” structures). It is not
immediately obvious how different timescales can be implemented in differ-
ent DBN levels, but an approach may be to provide bias for not changing
a neuron state in order to engender slower dynamics (Y. Bengio, personal
communication).

Furthermore, DFDs are different from all the mentioned other models in their
conception of a feature as a signal with the same dimensionality as the external
input.

25

6.3 Further research

There are so many open questions and urgent next steps that it is even difficult
to arrange them in an orderly overview. Here is a unordered list of natural next
steps:

• More simulations on more complex datasets are needed to see whether the
observations made here, especially the aha effect, persist.

• The architecture, as presented in this report, has many features which are
accidental and result from ad hoc design decisions. Examples are the leaky
integration and squashing of the votes, or the type of neurons employed in
the reservoirs, or the type of input which is propagated bottom-up to higher-
level reservoirs. The only design characteristic which I consider fixed (and
defining for this approach) is the multiplication of trainable feature outputs
with voting vectors to give the outputs of one layer, where the voting vectors
are the outputs of the next higher level in turn. So there is a large space of
design options to be explored.

• While in this report I have exclusively focussed on temporally multiscale
properties, there are also spatially multiscale data which could be tackled
with the presented architecture (e.g., videosequences), or even mixed tem-
poral/spatial multiscale data. This will require significant adjustments of
the architecture.

• Granularity, whether temporal or spatial, is not the only cause for hierarchic-
ity. Another prime motif for hierarchic representations in AI is abstraction.
Whether DFDs can be geared towards, or interpreted as, abstraction hier-
archies remains to be investigated.

• The architecture has so many tuning parameters (learning rates, time con-
stants, leaking rates, spectral radii of reservoirs, input scalings, dimen-
sions...) that a manual optimization will be infeasible except for the coarsest
adjustments. Automated adaptation rules for these tuning parameters are
a necessity. As far as the core control parameters for the reservoirs are con-
cerned, current research in reservoir computing has some approaches to offer
which should be checked out (see [21] for a survey). As to the larger picture,
my perception is that principles for adaptation/tuning of control parameters
in complex learning architectures will become an interdisciplinary research
area of its own standing, connecting neuroscience with machine learning,
statistics, and dynamical systems theory.

• The original motivation to develop this architecture was to transform an
input signal into a set of nonlinear transforms with nice decorrelation prop-
erties. The latter are important for using the LMS algorithm and for noise
tolerant yet precise models. It remains to investigate whether the presented

26

architecture comes close to this target. Concretely, for some complex super-
vised training task (like dynamic pattern classification) one would first train
the presented architecture on the task’s input signal. After training, when
the voting signals in higher levels are well differentiated, one would use the
vote-weighted features Rk.vi(n)Rk.fi(n) as input signals for an LMS (or any
other linear regression) algorithm, just as in standard ESNs one uses the
reservoir signals.

• The “aha” dynamics, the most intriguing phenomenon in this architecture,
needs to be analysed theoretically.

• From figure 6 it appears that the error E3(n) which drives the adaptation in
the third layer is smaller than the second-layer error signal E2(n) by an order
of magnitude. This may foreshadow a serious problem of error gradients
which vanish as one climbs up the layers of this architecture. A theoretical
analysis is called for (in conjunction with analysing the aha effect).

• Humans, as social beings, do not learn everything they know in an unsu-
pervised way. Arguably, most of the concepts hosted by a modern human
are acquired in a supervised / imitation-driven way. Complex hierarchical
learning architectures for multiscale data, like the one presented here or oth-
ers [2], ultimately aim at the complexity levels of human intelligence. In
my opinion this target can possibly only become reachable if the learning
system is allowed to acquire “ultra-informative” priors by direct teach-in.
With respect to the architecture sketched in this report, this may for in-
stance mean that some higher-level features are trained in a supervised way
with large learning rates, in relatively short training episodes interspersed in
the “training lifetime” of a large and enduring learning system.

References

[1] D.H. Ackley, G.E. Hinton, and T.J. Sejnowski. A learning algorithm for
Boltzmann machines. Cognitive Science, 9:147–169, 1985.

[2] Y. Bengio and Y. LeCun. Scaling learning algorithms towards ai. In Bottou
L., Chapelle O., DeCoste D., and Weston J., editors, Large-Scale Kernel
Machines. MIT Press, 2007.

[3] R.A. Brooks. New approaches to robotics. Science, 253:1227–1232, 1991.

[4] G.A. Carpenter and S. Grossberg. ART 3: Hierarchical search using chemi-
cal transmitters in self- organizing pattern recognition architectures. Neural
Networks, 3(2):129–152, 1990.

[5] B. Farhang-Boroujeny. Adaptive Filters: Theory and Applications. Wiley,
1998.

27

[6] P. Greenfield. Language, tools and brain: The ontogeny and phylogeny of
hierarchically organized sequential behavior. Behavioral and Brain Sciences,
14:531–595, 1991.

[7] G. Hinton, S. Osindero, and Teh. Y. W. A fast learning algorithm for deep
belief networks. Neural Computation, 2006.

[8] G. E. Hinton and R. R. Salakuthdinov. Reducing the dimensionality of data
with neural networks. Science, 313(July 28):504–507, 2006.

[9] G.E. Hinton, P. Dayan, B.J. Frey, and R.M. Neal. The wake-sleep algorithm
for unsupervised neural networks. Science, 268:1158–1161, 1995.

[10] H. Jaeger. The ”echo state” approach to analysing and training recurrent
neural networks. GMD Report 148, GMD - German National Research In-
stitute for Computer Science, 2001. http://www.faculty.iu-bremen.de/hjae-
ger/pubs/EchoStatesTechRep.pdf.

[11] H. Jaeger. Adaptive nonlinear system identification with echo state networks.
In S. Becker, S. Thrun, and K. Obermayer, editors, Advances in Neural Infor-
mation Processing Systems 15, pages 593–600. MIT Press, Cambridge, MA,
2003. http://www.faculty.iu-bremen.de/hjaeger/pubs/esn NIPS02.

[12] H. Jaeger and H. Haas. Harnessing nonlinearity: Predicting chaotic sys-
tems and saving energy in wireless communication. Science, 304:78–80, 2004.
http://www.faculty.iu-bremen.de/hjaeger/pubs/ESNScience04.pdf.

[13] H. Jaeger, M. Lukosevicius, D. Popovici, and U. Siewert. Optimization and
applications of echo state networks with leaky integrator neurons. Neural
Networks, 20(3):335–352, 2007.

[14] H. Jaeger, M. Zhao, K. Kretzschmar, T. Oberstein, D. Popovici, and
A. Kolling. Learning observable operator models via the es algorithm. In
S. Haykin, J. Principe, T. Sejnowski, and J. McWhirter, editors, New Di-
rections in Statistical Signal Processing: from Systems to Brain, chapter 20,
pages 417–464. MIT Press, 2006.

[15] M. I. Jordan and R. A. Jacobs. Hierarchical mixtures of experts and the EM
algorithm. Neural Computation, 6:181–214, 1994.

[16] A.H. Klopf, J.S. Morgan, and S.E. Weaver. A hierarchical network of control
systems that learn: Modeling nervous system function during classical and
instrumental conditioning. Adaptive Behavior, 1(3):263–319, 1993.

[17] J. Kohlmorgen, K.-R. M/”uller, J. Rittweger, and K. Pawelzik. Identification
of nonstationary dynamics in physiological recordings. submitted to Biological
Cybernetics, 83(1):73–84, 2000.

28

[18] A. U. Kü cükemre. Echo State Networks for Adaptive Filtering. Master
thesis, University of Applied Sciences Bonn-Rhein-Sieg, 2006.

[19] Y. LeCun, L. Bottou, J. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324,
1998. http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf.

[20] M. L. Littman, R. S. Sutton, and S. Singh. Predictive rep-
resentation of state. In Advances in Neural Information Pro-
cessing Systems 14 (Proc. NIPS 01), pages 1555–1561, 2001.
http://www.eecs.umich.edu/∼baveja/Papers/psr.pdf.

[21] M. Lukosevicius. Overview of reservoir recipes. Technical Report 8, School
of Engineering and Science, Jacobs University Bremen, 2007. to appear.

[22] A.W. Moore, L.C. Baird, and L. Kaelbling. Multi-value-functions: Efficient
automatic action hierarchies for multiple goal MDPs. In Th. Dean, editor,
Proc. IJCAI-99, Vol. 2, pages 1316–1323. Morgan Kaufmann, 1999.

[23] K. Murphy and M. Paskin. Linear time inference in hierarchical HMMs.
In Proceedings of Neural Information Processing Systems (NIPS), 2001.
http://www.cs.cmu.edu/Groups/NIPS/NIPS2001/papers/.

[24] K. Pawelzik, K.R. Müller, and J. Kohlmorgen. Divisive strategies for pre-
dicting non-autonomous and mixed systems. Arbeitspapiere der GMD 1069,
GMD, Sankt Augustin, 1997.

[25] L. Shastri. Advances in shruti – a neurally motivated model of relational
knowledge representation and rapid inference using temporal synchrony. Ar-
tificial Intelligence, 11:79–108, 1999.

[26] I. Sutskever and G. Hinton. Learning multilevel distributed representations
for high-dimensional sequences. Technical Report UTML TR 2006-003, De-
partment of Computer Science, University of Toronto, 2006.

[27] J. Tani and S. Nolfi. Learning to perceive the world as articulated: an ap-
proach for hierarchical learning in sensory-motor systems. Neural Networks,
12(7-8):1131–1142, 1999.

[28] G. W. Taylor, G. E. Hinton, and S. Roweis. Modeling human motion using
binary latent variables. In B. Schölkopf, J. Platt, and T. Hoffman, editors, Ad-
vances in Neural Information Processing Systems 19. MIT Press, Cambridge,
MA, 2006.

[29] T. Tyrrell. The use of hierarchies for action selection. Adaptive Behavior,
1(4):387–420, 1993.

29

[30] D.M. Wolpert and M. Kawato. Multiple paired forward and inverse models
for motor control. Neural Networks, 11(7-8):1317–1330, 1998.

30

