
A Framework for Plan Execution in Behavior-Based Robots

J. Hertzberg, H. Jaeger, U. Zimmer P. Morignot

GMD, Schloss Birlinghoven, ILOG, 9, rue de Verdun,

53754 Sankt Augustin, Germany 92253 Gentilly, France

ABSTRACT

We present a conceptual architecture for autonomous robots

that integrates behavior-based and goal-directed action as by

following a traditional action plan. Dual Dynamics is the for-

malism for describing behavior-based action. Partial-order pro-

positional plans are used as a basis for acting goal-directedly;

the concept is suitable for using other planning methods and

plan formats, though. We describe the corresponding action

and plan representations at the plan side and at the behavior

side. Moreover, we demonstrate how behavior-based action is

biased towards executing a plan and how information from the

behavior side is fed back to the plan side to determine progress

in the plan execution.

KEYWORDS: Plan execution, agent architectures,

perception, reactive systems

1 INTRODUCTION

An agent that cannot pursue long-term goals or that does

not act in accordance with these goals whenever possible,

is a bunch of re
exes, but not worth being called an agent.

An agent that endlessly ponders its goals and is unable to

react if and when circumstances so dictate, is a wise guy,

but not worth being called an agent either. Much e�ort

is currently put into the direction of building embedded

agents that can do both, and the idea itself has a long

tradition in AI, e.g., [7].

Taking an autonomous robot for an agent, robot ar-

chitectures typically specify di�erent layers (often, three

of them), with a layer for symbolic reasoning and stra-

tegic planning on top, and at the bottom sits a control

layer of low-level actions (often called re
exes or beha-

viors) that can map sensor signals directly into e�ector

operation. Plans from the symbolic layer are translated

into \programs" in terms of these low-level actions, whose

execution may be 
exibly modi�ed to cope with unforseen

events in the environment (often, this is demonstrated in

obstacle avoidance in navigation). [11, 2] are examples pro-

ving that this architecture can work.

There is a problem, though. The 
ow of control from

the strategic planning layer down to the control layer can

be handled, as shown by the research just mentioned. But

the information 
ow up to the planning layer is often im-

poverished. Ideally, the status of plan execution should be

reported, including problems and failures, which should

lead to, �rst, updating the planner's symbolic world model

based on available sensor and control information, and, se-

cond, plan repair or replanning if necessary. Such a schema

does work for navigation, where the world model consists

essentially in a robot position and orientation on a map; it

has not been demonstrated to work generally in domains

that are more typical for action planning, which require

complex facts to be represented, tracked, derived, and sen-

sed. This paper describes a new instance of coupling stra-

tegic planning and behavior-based action. Its ingredients

are not new, but their combination is, and so is its result.

As a �rst, technical ingredient, we are using dual dy-

namics (DD) as a framework for formulating behaviors.

DD is special in that it allows the target dynamics and the

activation dynamics of a behavior to be expressed separa-

tely, thereby adding some 
exibility to describing the ro-

bot's low-level actions. Second, we do not treat an agent's

plans like a program that, once embarked on, does liter-

ally program its behaving. Rather, we treat a plan as a

resource for acting that is used as one among several in-

formation sources that together shape the combination of

currently active behaviors. This plans-as-resources rather

than plans-as-programs metaphor has been advocated by

several researchers, e.g., [10]. Third, we present a way of

deriving high-level world features from the enabledness or

disabledness of behaviors, thereby �ltering from the possi-

bly huge amount of sensor data those parts that are rele-

vant for acting by de�nition of the behaviors.

This paper describes these ingredients and their in-

terplay. Presently, our work is in the state of a concept,

with no complete implementation on a robot available yet.

Work in this direction is underway. The paper is structu-

red as follows. Section 2 introduces basic DD concepts as

well as the demo domain of this paper. Section 3 gives the

representation of the demo domain as used in the planner.

We are using a standard planner, graphplan [1], to de-

monstrate that our framework does not require a specially

designed planning method; accordingly, we use a proposi-

tional representation language for planning. Section 4, the

heart of the paper, describes how behaviors that corre-

spond to plan operators in
uence the robot's action, and,

second, how information from the execution is fed back

into the planning representation. Section 5 concludes.

2 DUAL DYNAMICS

This section sketches some basic features of DD. For de-

tails, see, e.g., [4, 6]. It also introduces the demo domain



a

b cmug

book

Figure 1: A scene in the errands domain.

of this paper, as seen from the DD side.

DD is an approach to put behavior-based robotics [3, 9]

on a formal basis in terms of self-organizing dynamical sy-

stems. It models an agent's complete behavior control sy-

stem as a continuous dynamical system, which is speci�ed

by ordinary di�erential equations (ODE's). The behaviors

are modeled as subsystems. The theoretical contribution of

DD is to explain how these subsystems are coupled by sha-

ring certain variables and by inducing bifurcations on each

other. DD restricts these couplings, resulting in an overall

system performance that is transparent although subsy-

stems undergo bifurcations. This transparency allows to

design and debug complex behavior systems. Ample expe-

rience exists in using DD for robot control, e.g., [5], and a

DD programming language called PDL [14, 13] as well as

teaching material for DD/PDL [12] are available.

In general, DD behavior systems are hierarchic, with

comprehensive, long-term behaviors (such as work or

replenish-energy) at higher levels and elementary, short-term

behaviors (like roam) at lower levels. Much of DD theory is

concerned with interactions between levels, but this sketch

omits all that DD has to say about level organization, as

a single-level system is su�cient for the purpose of the

paper.

For explaining DD, we shall use the errands domain:

an enclosed area with obstacles and three distinct locati-

ons a, b, c, over which some books and co�ee mugs are

distributed (not necessarily at a, b, c). A variety of errand

tasks can be formulated in this setup. Fig. 1 sketches that

instance of the scenario which will get used for planning

later.

The robot's two wheels are controlled by independent

motor signals mr;ml, where mr = 1 means full speed for-

ward of the right motor, and mr = �1 means full retract

(analogously for ml). Thus, the robot can move forward

and backward and turn with di�erent speeds. It has a grip-

per, which it can use to gather and dump a book and a

mug. For ease of presentation, we assume that the gripping

system is quite sophisticated. It can be triggered to gather

the book and put it in its loading space, simply by setting

a 0-1-valued control input gbook to 1 for some time. Ana-

logically, the gripper is triggered to gather the mug, dump

the book, and dump the mug by raising gmug, dbook, and

dmug to 1.

The robot senses obstacles ahead with two range sen-

sors on its left and right front, which return continuous

values ol; or 2 [0; 1]. ol = 1 (resp. or = 1) if an obstacle is

immediately ahead left (right), and ol = 0 (or = 0) if space

is open to the left (right). Acoustic beacons are installed in

a, b, c and can be perceived by sensors that return values

'a; 'b; 'c 2 [�1; 1], where 'a = �1 means that a's sound

comes at 90 degrees from the right, 'a = 0 means a is

straight ahead, and 'a = 1 implies a lies exactly left. Pro-

ximity to a, b, c is signalled by binary variables �a; �b; �c,

which usually read 0 but jump to 1 when the correspon-

ding beacon is reached. Finally, we assume the robot has

a special book-and-mug detector, yielding binary variables


book; 
mug which jump to 1 when a book (mug) is percei-

ved close enough for gripping.

A simplistic behavior system for this robot consists of

the behaviors (1) approacha, (2) approachb (3) approachc,

(4) roam, (5) gatherbook, (6) gathermug, (7) dumpbook, and

(8) dumpmug. (In some formulas presented below, we will

refer to the behaviors by their numbers.) When no plan

is present, these behaviors interact and produce the follo-

wing default, global behavior pattern. The robot randomly

alternates between approaching the beacons, and roaming

about the arena, avoiding obstacles in the process. When-

ever a book (mug, resp.) is passed close enough for gath-

ering, the robot �rst dumps a book (mug) if carrying one,

and then loads the book (mug) just found.

The �rst thing to note about DD is that an elementary

behavior is speci�ed as a compound system consisting of

a target dynamics and an activation dynamics|hence the

name \dual dynamics". The target dynamics subsystem of

a behavior speci�es the target trajectories of all actuators

relevant for the behavior. Taking approacha (�g. 2) as an

example, the relevant target variables are ml and mr, since

only the drive motors are relevant for approaching a. Thus,

the target dynamics of approacha consists of two ODE's for

ml and mr .

The _ml equation has three additive components. The

�rst component tells the left motor to take on a default for-

ward speed of 1/2, which is accelerated when an obstacle is

sensed to the left, decelerated when an obstacle is sensed to

the right, and changed according to 'a. The second com-

ponent results in a slowdown near obstacles.1 The third

component breaks when a is reached.

The ki are time constants that have to be suitably

chosen for the dynamics to work as desired. Much of the

domain modeler's knowhow concerns the suitable selection

of such time constants. In this article, we shall not further

1In this equation and others to follow, factors (0 � v) occur in
de�nitions of _v for variables v. We use them instead of writing �v
to make clear that the respective term pulls v towards 0 in the same
way that a factor (1� v) pulls v towards 1.



Target dynamics

_ml = k1(1=2(1 + ol � or � 'a) �ml)

+k2(ol + or)(0�ml) + k3�a(0 �ml)

_mr = k1(1=2(1� ol + or + 'a) �mr)

+k2(ol + or)(0�mr) + k3�a(0 �mr)

Activation dynamics

_�1 = k4(1� �(
P

i6=1 �i)� �1) + k5�a(0� �1)

+noise + operator-coupling terms

Figure 2: De�nition of behavior #1: approacha for approa-

ching location a. See text for explanations.

discuss this hairy issue. If k3 is considerably greater than

k1, then approacha's target dynamics should make the robot

generally drive toward a, avoiding obstacles on the way,

and slow down almost to a standstill at a.

Now turn to the activation dynamics. This subsystem

regulates a single variable �1, the behavior's activation.

Generally, every DD behavior owns an activation variable,

whose range is [0,1]. An activation of 1 means that the be-

havior is \enabled", i.e., the target values produced by the

target dynamics subsystem are passed on to the actuators.

Activation 0 means target values are not passed on, but

are \inhibited". Thus, the activation variable of a beha-

vior can be viewed as a gatekeeper, which decides when

the behavior in
uences the actuators.

Although the activation dynamics rules just a sin-

gle variable, this subsystem can become quite complex.

approacha's activation dynamics consists of 4 kinds of ad-

ditive terms. �, appearing in the �rst, is a suitable thres-

holding function (e.g., a sigmoid), which rises to 1 when its

argument surpasses some threshold, and is about 0 other-

wise. The �rst term thus states that �1 rises to 1 unless

some other behavior's activations are noticeable, in which

case �1 is pulled to 0. The second term pulls �1 to 0 when

a is reached. Some noise is added to avoid deadlocks. Fi-

nally, \operator-coupling terms" in
uence the activation

dynamics to enable plan execution. They will be explained

in section 4.

The remaining behaviors shall be described more

brie
y. approachb and approachc are analogous to approacha.

The target and activation dynamics for behavior#4, roam

are similar to those of approacha|in fact, the equations are

those of �g. 2 with fresh time constants and 'a; �a set to 0.

As a result, while roam is active (i.e., while �4 is big), the

robot would drive forward with default speed 1/2, slow

down before and turn away from obstacles, and resume

standard forward motion in a new direction. roam's activa-

tion dynamics basically says, \as long as no other behavior

(mug OBJECT) (book OBJECT)

(a LOCATION) (b LOCATION) (c LOCATION)

(preconds (at mug c) (at book b) (at robot a))

(effects (at mug a) (at book a))

Figure 3: Types, initial situation, and �nal situation for

the errand domain.

(operator GOTO

(params (<l1> LOCATION) (<l2> LOCATION))

(preconds (at robot <l1>))

(effects (del at robot <l1>) (at robot <l2>)))

(operator LOAD

(params (<o> OBJECT) (<l> LOCATION))

(preconds (at <o> <l>) (at robot <l>))

(effects (del at <o> <l>) (has-robot <o>)))

(operator UNLOAD

(params (<o> OBJECT) (<l> LOCATION))

(preconds (has-robot <o>) (at robot <l>))

(effects (at <o> <l>) (del has-robot <o>)))

Figure 4: graphplan errand domain operators.

is active, roam", making it the fallback behavior.

The target \dynamics" of gather and dump are con-

stants, setting their respective g or d variables to 1 and all

other d and g variables to 0. The activation dynamics are

a bit more involved. The rationale is that after, e.g., spot-

ting a book (i.e., after 
book jumps to 1), dumpbook becomes

active for some �xed time interval, after which gatherbook

gets active in another time interval. Implementing such a

timing mechanism as triggered by 
book is mostly techni-

cal, and we skip it here for brevity.

3 ERRANDS DOMAIN PLANS

We now very brie
y look at the errands domain from the

planning side, starting with its representation for the plan-

ner. We chose graphplan[1] to be that planner, the ra-

tionale being: We wanted to use a standard planner and

to keep simple the planning representation and the plan-

ning process for investigation and explanation at the pre-

sent state of work. Having a richer representation language,

such as ADL [8], and a planner that is able to handle it

might be helpful in the long run, and it is not excluded by

the framework that we are presenting. However, this issue

has not yet been studied in depth.

Fig. 3 gives the domain signature, start situation and

goal conditions as appropriate for graphplan. The origi-

nal robot location is a; the goal is to have both the book

and the mug at a. We have three operators Goto, Load,

and Unload, all with the intuitive interpretation. Fig. 4

de�nes them in graphplan syntax. A plan for solving

the resulting planning problem, which graphplan �nds

in milliseconds, is given in �g. 5.



1 GOTO_a_c 2 LOAD_mug_c 3 GOTO_c_b

4 LOAD_book_b 5 GOTO_b_a

6 UNLOAD_mug_a 6 UNLOAD_book_a

Figure 5: A plan for solving the errands problem in graph-

plan's output format. Numbers before operators specify

execution order; operators with equal numbers may be exe-

cuted in either order.

Planning operators may, but need not correspond di-

rectly to behaviors in the DD representation. In the er-

rands domain, there are the obvious correspondences bet-

ween Load and gather, Unload and dump, and Goto and

approach, where the behaviors need not mention the current

or past locations. In more complex domains, the planner

may work with operators that correspond to higher-level

behaviors, or it may work with macros that get expanded

before plan execution into elementary operators correspon-

ding to behaviors of some level. We have not investigated

that yet, but we assume it is practical. The point is: In

any case, the designer of the complete plans-plus-DD do-

main representation has to make sure that the operators

make connection to the behaviors in the technical sense

explained next.

4 COUPLING SYMBOLS AND

DYNAMICS

4.1 From Symbols to Dynamics

Operators, which are symbolic entities, have to be execu-

ted by the DD system, which is dynamic. We assume a

plan execution monitor on the symbolic side picks a single

operator for execution at every point of time. Usually, this

is one of the operators that are next in the current plan

according to its execution order. Alternatively, a user may

give the robot single operators to execute.

As will become apparent, \execute" is a misleading

term, as the DD system is not strictly commanded to carry

out an action. Rather, it is biased more or less strongly in

its ongoing activity towards achieving the operator's ef-

fects. Assume, e.g., that Goto(L; a) for some location L

is next for execution. That does not mean the robot should

rush toward a regardless of circumstances. If, e.g., its bat-

tery is low, it should recharge �rst. Calling Goto(L; a)

should result in a general, persistent tendency for the ro-

bot to proceed toward a, yet leave some freedom to do other

things if circumstances so require. If a is reached, the plan

execution monitor will notice it (by the mechanism to be

described in sec. 4.2) and pick the next operator. As will

be clear from the description given next, the monitor may

abandon execution of an operator prior to termination; this

possibility is not further discussed here.

This \operator-oriented biasing" of the DD system is

e�ected by the operator-coupling terms (OCTs). In every

approacha _�1 = : : :+ sGoto(L;a)c
1
Goto(L;a)(1 � �1)

roam _�4 = : : :+ sGoto(L;a)c
4
Goto(L;a)(1 � �4)

all others _�i = : : :+ sGoto(L;a)c
i
Goto(L;a)(0� �i)

Figure 6: OCTs for Goto(L; a).

behavior's activation dynamics, there is an OCT for the

operator Goto(L; a). These OCTs should result in the de-

sired persistent tendency to move toward a. Fig. 6 presents

suitable OCTs for Goto(L; a). As visible from these ex-

amples, OCTs have a simple common format:

_�j = : : :+ sopc
j
op(Z � �j);

where sop is a switch variable which jumps to 1 when op

is called and is otherwise 0, c
j
op is a time constant, and

Z 2 f0; 1g.
OCTs work by superimposing an in
uence on the dy-

namics of �j. This in
uence is a pull toward 0 if Z = 0,

i.e., a \discouragment" of the corresponding behavior. It

is an encouraging pull toward 1 if Z = 1. The strength of

this dis- or encouragment is determined by c
j
op. If it is low,

the behavior's activation dynamics is only mildly modi�ed

by the OCT. If it is much higher than other time constants

in the rest of the behavior's activation dynamics equation,

then the behavior is mandatorily activated (Z = 1) or de-

activated (Z = 0) by the OCT. The in
uence is switched

on or o� by sop, which yields the causal connection bet-

ween the symbolic plan execution mechanism and the DD

system: whenever plan execution calls op, the switches sop
jump to 1 in all behavior's activation dynamics.

Returning to �g. 6, we now see that when Goto(L,a)

is called, approacha and roam are encouraged with strengths

c1
Goto(L;a) and c4

Goto(L;a), respectively. Since approacha di-

rectly does what the operator is intended for, the encourag-

ment should be strong. It seems reasonable to also encou-

rage roam a bit, just in case approacha does not get active

for some reason. The other behaviors do not apparently

contribute to (or even contradict) the operator's intention.

Therefore, the corresponding OCTs feature Z = 0.

Using this metaphor of dis- and encouragment, and the

mechanism of OCTs, plausible OCTs for the other opera-

tors used in our errand scenario are straightforward. E.g.,

an operator Load(book,L) should encourage the behavior

gatherbook rather strongly, discourage dumpbook strongly,

and discourage mildly all other behaviors.

By transforming operators into OCTs, we do not \con-

trol" action by plans, nor do we oversoo all eventualities

and account for them. We believe, though, that this is all

right for the types of robots and worlds that we consider|

control cannot be enforced in environments that are fun-

damentally unknowable and unpredictable.



4.2 From Dynamics to Symbols

We now turn to closing the gap between the information

available on the DD side and the information required on

the symbolic side. In this paper, we can only sketch the

main features of our approach.

We require that every perception be active. There are

three sources of information about the world. First, there

is information from past action; this is described below

in some detail. Second, information in symbolic form can

be communicated from other agents, such as fellow ro-

bots or human users. And third, information in the re-

quired format may result from the activation of particu-

lar information-seeking behaviors; the complexity of these

behaviors may vary depending on how \directly" the pro-

position in question can be mapped to the robot's sen-

sor con�guration. E.g., we have assumed above that proxi-

mity to a, b, c can be sensed directly (variables �a; �b; �c),

which means we have in fact assumed that the proposition

At(robot; a) could be directly mapped to a sensor request;

other propositions may be impossible to be sensed that di-

rectly. We do not go into detail with regard to the latter

two information sources, but concentrate on drawing infor-

mation from past action as a way of information gathering

that is special for our DD context.

The history of the activation variables �i contains the

essence of what the robot did. For instance, At(mug; b)

holds currently if approachb was recently active and unin-

terrupted, followed by dumpmug. There is a caveat, though.

Since the activation dynamics of a behavior obeys di�erent

rules at di�erent times, according to which sop are swit-

ched on, we must also consult the history of the switch

parameters in order to interpret the activation variables

properly. Thus, as the source of information from which

we permanently update the world model, we take the past

history of all �i and all sop. (The other two ways of acqui-

ring information may be used in addition.)

Let us give an example. The errands domain involves

just two types of propostions: For objects O and locations

L, these are Has-Robot(O) and At(O;L); At(robot; L) is a

special instance of At. To start with Has-Robot(book), the

only way of having the book on board is having gathered it

in the past, and not dumped it later. Writing �i(t) for �i

in the past time point t, we have

Has-Robot(book) 
9t1:�5(t1) � 1 ^ 8t2: [t2 > t1 ! �7(t2) 6� 1]

At(robot; a) would be somewhat clumsier. We have no-

ted above that it could be mapped to a simple sensing be-

havior that checks �a. But there is a way to derive it from

past action, if so required. Let � be a constant denoting

an upper limit of the duration that it takes to deactivate

approacha. Then

At(robot; a) 
9t1; t2: t1 < t2 ^ t2 � t1 < � ^

�1(t1) � 1 ^ �1(t2) � 0 ^
8t; i: [t2 < t ^ �i(t) � 1 ! i 62 f2; 3; 4g] ^
9L: 8t 2 [t1; t2]: sGoto(L;a)(t) = 1

Let us explain this line by line: t1 was less than � before

t2; approacha was active in t1, and inactive in t2; none of

the behaviors that would have destroyed At(robot; a), i.e.,

none of behaviors 2, 3, and 4, was active after t2; and the

robot was determined to go to a within the critical interval

[t1; t2], i.e., approacha has not been switched o� by chance,

such as by spotting a book to be gathered.

Before de�ning At(O;L), notice that we cannot|nor

want to|guarantee that the robot knows the locations of

all objects, not even of all those that it has dumped before

and not touched later. If such a dump did not take place at

one of the locations a, b, c, then the object is simply lost.

(The robot may �nd it while roaming about the arena; in

this case, it may gather the object and thus bring it back

into focus.) O, then, is known to be at L if at some time

At(robot; L), within a small, user-de�ned time window �0

after deactivation of approachL, if O was then dumped, and

O was not gathered later. The corresponding formalization

is simply technical.

Using these predicate de�nitions, the robot can make

available a situation description at any time, which is for-

mulated in terms of the planner's vocabulary. It may be

practical to update the situation description incrementally

rather than computing it from the complete activation hi-

story all the time.

5 CONCLUSION

At the present state of work (and within the limits of this

paper), many issues remain unaddressed and many pro-

blems unsolved. The �rst is to implement on a real robot

the concept that we have described, work being underway

on a RWI B-14. Among the other issues are: choice of di�e-

rent planners and planning domain representations; a plan

execution scheme that could make use of serendipituous

events by encouraging \future" behaviors to facilitate jum-

ping ahead opportunistically in plan execution; screening

the world information available to prevent overloading the

planner with irrelevant detail; and analyzing past activa-

tion sequences to �nd regularities that might be exploited

for planning or in the domain representation.

The contribution of this work can be seen from two

perspectives. From the behavior-based action point of

view, it o�ers a way of sequencing behaviors to achieve

longer-term goal-directedness, yet keeping intact the ba-

sic ideas and principles of behavior-basedness. The current

plan is used as an important source of information|no



sense

model

plan
plan generation

action selection

act
activation dynamics

target dynamics
World

Figure 7: Sketch of the framework presented here. Ellip-

ses are borrowed from the classical SMPA robot control

framework [3]; boxes are new ingredients. Arrows denote

in
uence between components; an arrow to an ellipse in-


uences all sub-boxes. Light arrows depict model update

by direct sensing and by symbolic information.

more and no less. It modulates ongoing action rather than

enslaving it. We feel that this is an adequate way of putting

the plans-as-resources metaphor [10] to work.

From the planning point of view, our work contributes

a principled way of coupling plans and dynamical action.

It has been obvious from the beginnings of planning re-

search that operators must be \implemented" in terms of

executable procedures. Plans intended for helping humans

organize their work have never su�ered from this coupling

problem, because the human in the loop maps plans to

actions and action results back to the planning represen-

tations. In the case of autonomous robots, no humans are

in the loop, and no homunculi should be replacing them.

While there are quite a number of examples for systems

that couple plans successfully with physical action (e.g.,

[7, 2]), it seems that feeding back information about the

world into the planning representation is still a problem.

This does not seem to come by chance as turning sensor

readings into symbolic descriptions poses all sorts of pro-

blems, from technical to epistemological ones.

As a new feature of our framework, we allow the world

to be perceived through the history of activation values.

This does respect the sensor data, but sees it indirectly as

�ltered through action, thus reducing information sucked

out of the environment to that part which is relevant for

acting by the very de�nitions of the behaviors. As a result,

the ingredients of the naive sense-model-plan-act (SMPA)

framework [3] for robot control are assembled in a di�erent

way, see �g. 7. Conceptually, two circles of activity con-

cur, with the mutual in
uence as described above: sensori-

motor coupling as by the DD behaviors alone (World-

sense-act circle), and deliberation (model-plan-act circle).

We are not aware of a like approach. It seems to have some

potential for merging in a principled way the best of the

behavior-based and the plan-based world for controlling

autonomous robots.

ACKNOWLEDGEMENTS

While participating in this work, Morignot was an er-

cim postdoctoral research fellow at GMD. Hertzberg takes

part in the European Commission's TMR network Virgo,

grant erbfmrxct960049.

REFERENCES

[1] A. Blum and M. Furst. Fast planning through plan

graph analysis. Artif. Intell., 90:281{300, 1997.

[2] P. Bonasso, J. Firby, E. Gat, D. Kortenkamp, D. Mil-

ler, and M. Slack. Experiences with an architecture for

intelligent, reactive agents. J. Expt. Theor.Artif. Intell.,

9:237{256, 1997.

[3] R. A. Brooks. Intelligence without reason. A.I. Memo

1293, MIT AI Lab, 1991.

[4] H. Jaeger. The dual dynamics design scheme for

behavior-based robots: A tutorial. Arbeitspapier 966,

GMD, Jan. 1996.

[5] H. Jaeger. Multifunctionality: A fundamental property

of behavior mechanisms based on dynamical systems. In

Proc. SAB-98, 1998. in press.

[6] H. Jaeger and T. Christaller. Dual dynamics: Designing

behavior systems for autonomous robots. In S. Fujimura

and M. Sugisaka, editors, Proc. Int. Symposium on Arti-

�cial Life and Robotics (AROB'97), pages 76{79, 1997.

[7] N. Nilsson. Shakey the robot. Technical Report

TN 323, SRI International, Apr. 1984.

[8] E. Pednault. ADL: Exploring the middle ground bet-

ween strips and the situation calculus. In Proc. Int.

Conf. on Principles of Knowledge Representation (KR-

89), pages 324{332, 1989.

[9] R. Pfeifer and C. Scheier. An Introduction to New Ar-

ti�cial Intelligence. MIT Press, 1997.

[10] M. Pollack. The uses of plans. Artif. Intell., 57(1):43{

68, 1992.

[11] A. Sa�otti, K. Konolige, and E. Ruspini. A multiva-

lued logic approach to integrating planning and control.

Artif. Intell., 76:481{526, 1995.

[12] E. Schlottmann, D. Spenneberg, T. H�opfner, and

T. Christaller. Die Programmierumgebung f�ur den Kurs

D2 auf der IK-97 { Navigation mobiler Roboter. Arbeit-

spapier 1081, GMD, 1997.

[13] D. Spenneberg, E. Schlottmann, T. H�opfner, and

T. Christaller. PDL programmingmanual. Arbeitspapier

1082, GMD, 1997.

[14] L. Steels. The PDL reference manual. Memo 92-5,

Free University, AI Lab, Brussels, 1992.


