
Advanced Computer Science 2    
Final exam, May 25, 2004 
 
 
Note: a maximum of 100 points is accredited for this exam.  
 
 
 
Problem 1 (15 or 30 points). The single-tape TMs that we considered could decide 
languages, that is sets of finite strings, that is, sets of finite one-dimensional patterns. One can 
also consider 2-D languages that consist of sets of finite two-dimensional patterns. Such a 
language might for instance look like  
 
 
 
 
 
 
 
Give a formal definition of 2-D languages and 2-D TMs that can operate on 2-D input 
patterns. Note: there are many ways of defining these items (just as there are many ways to 
define standard TMs). Think out one alternative  – you are quite free here – but make sure that 
your definitions are consistent and complete. Additional note: there are two basic approaches: 
(i) first define 2-D languages, then define how their "words" can be converted to standard 1D 
words, then just use standard TMs; (ii) define 2-D languages and devise a truly 2D-version of 
TMs that uses a 2D-"checkerboard" data carrier instead of a 1D tape. Approach (i) brings 15 
points, approach (ii) 30 points. Choose only one of the approaches. 
 
Solution: (option ii) Definition (2D-languages): Let Σ be an alphabet. A rectangle is a pair R 
= (n,m), where n, m are integers ≥ 1. A 2D-word over Σ is a pair (R, f), where R = (n,m) is a 
rectangle and f: {1,...,n} × {1,...,m} → Σ. A 2D-language over Σ is a set of 2D-words over Σ. 
 
Note: something like this suffices – it is consistent and formal. One might want to embellish 
this definition in various ways (for instance, define empty word or concatenation of words), 
but for the purpose of the exam problem this would suffice. Such add-ons would give extra 
points. 
 
Definition (2D-TMs): A 2D-Turing machine is a structure M = (K, Σ, δ, s), where K is a finite 
set of states, s ∈ K is the initial state, the alphabet Σ is a set of (tape) symbols, and where K 
and Σ are disjoint. We assume that Σ always contains the special symbols + and @ and ı and 
˜, the blank and the left margin and the upper margin and the corner symbol. Finally, δ is a 
transition function, where  
 

δ: K × Σ  → (K ∪ {h, "yes", "no"}) × Σ × {←, →, ↑,↓ ,−}. 
 
We assume that h (the halting state), "yes" (the accepting state), "no" (the rejecting state), 
and the cursor directions ←, →, ↑,↓ ,−, are extra symbols not in K ∪ Σ .  
 
Note: this is the bare definition of (one version of) a 2D-TM. Something like this would be 
enough for the exam problem. In further definitions one would define configurations, 
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transitions, input presentation, computation results, etc. Such add-ons give extra points in the 
exam (if they are correctly formulated).  
 
Note: there are many ways to define such languages and their TMs. The solution shown here 
should just indicate the degree of formal rigour expected. 
 
 
Problem 2 (20 points). Give an example of a language that cannot be accepted by a TM, and 
state why it can't.  
 
Solution: There are uncountably many languages that cannot be accepted by a TM, so there 
are very many solutions... For instance, Hc cannot be accepted. Proof by contradiction. 
Assume Hc is acceptable. We know H is acceptable. If a langage and its complement are 
acceptable, both are decidable. But H is undecidable. Therefore Hc  is not acceptable.  
 
Problem 3 (20 points). How many languages over {0,1}* are undecidable? finitely many, 
countably many, or uncountably many? Why? 
 
Solution: There are uncountably many languages over {0,1}* but only countably many TMs 
(modolo computational equivalence) exist. Therefore at only countably many languages can 
be decided. Because "uncountable minus countable is uncountable", there exist uncountably 
many undecidable languages.  
 
Problem 3 (20 points). How many functions f: Í → {0,1} are not recursive? finitely many, 
countably many, or uncountably many? Why? 
 
Solution: There are uncountably many functions from Í to {0,1} [regardless of whether you 
consider totally or partially defined functions] but only countably many TMs (modolo 
computational equivalence) exist. Therefore at only countably many (partial or total) 
functions are recursive. Because "uncountable minus countable is uncountable", there exist 
uncountably many non-recursive languages. 
 
Problem 4 (20 points). If [x1, ..., xk] = (x1, (x2, (.... (xk−1, (xk, nil)) ...))) and [y1, ..., yl] =        
(y1, (y2, (.... (yl−1, (yl, nil)) ...))) are two lists, the join of them is the list [x1, ..., xk, y1, ..., yl] = 
(x1, (x2, (.... (xk−1, (xk, (y1, (y2, (.... (yl−1, (yl, nil)) ...))))) ...))). Define a λ-expression join that if 
called with two lists returns the join of them. You may use the test nul, that is, a λ-expression 
that returns true if its argument is the empty list and false if it is a non-empty list, and you 
may use if and cons, and you may use last, which returns the last non-nil element of a list, 
and you may use beginning, which returns a list without its last non-nil element. 
 
Solution: Intuitively, one would want to define join by the recursion 
 

join L1 L2  =  if (nul L1) L2 (join (beginning L1) (cons (last L1) L2)) 
 

This is of course not an admissible definition, because the λ-expression join that we want to 
be defined occurs on the right hand side. Using Y, we obtain the correct definition 
 

join  ≡  Y(λ g L1 L2 if (nul L1) L2 (g (beginning L1) (cons (last L1) L2))) 
 
 



Problem 4 (20 points). If [x1, ..., xk] = (x1, (x2, (.... (xk−1, (xk, nil)) ...))) and [y1, ..., yl] =         
(y1, (y2, (.... (yl−1, (yl, nil)) ...))) are two lists, the join of them is the list [x1, ..., xk, y1, ..., yl] = 
(x1, (x2, (.... (xk−1, (xk, (y1, (y2, (.... (yl−1, (yl, nil)) ...))))) ...))). Define a λ-expression join that if 
called with two lists returns the join of them. You may use the test nul, that is, a λ-expression 
that returns true if its argument is the empty list and false if it is a non-empty list, and you 
may use if and cons and head and tail, and you may use reverse, which reverses lists. 
 
Solution: First, define last, which returns the last non-nil element of a list, and beginning, 
which returns a list without its last non-nil element, through reverse: 
 
beginning  ≡  λ L (reverse (tail (reverse L))) 
last ≡  λ L (head (reverse L)).  
 
Next, intuitively, you would want to define join by the recursion 
 

join L1 L2  =  if (nul L1) L2 (join (beginning L1) (cons (last L1) L2)) 
 

This is of course not an admissible definition, because the λ-expression join that we want to 
be defined occurs on the right hand side. Using Y, we obtain the correct definition 
 

join  ≡  Y(λ g L1 L2 if (nul L1) L2 (g (beginning L1) (cons (last L1) L2))) 
 
NOTE: after writing the model solutions as above (and putting them online), I learnt from an 
exam solution a simpler solution that makes do with just head and tail: 
 

join  ≡  Y(λ g L1 L2 if (nul L1) L2 (cons (head L1) (g (tail L1) L2))) 
 
Problem 5 (20 points). Relate the two statements "computers can't think" and "P ≠ NP" to 
each other. Format of solution: what I would like to see here is a short (half page) essay that 
can be witty and need not be formal.  
 
Solution: Comment: What I thought of when I formulated this problem was that P ≠ NP is 
related to human, insightful reasoning through the "guessing" part in nondeterministic TMs. If 
P = NP, then the "guessing of a correct solution" can be carried out mechanically by a 
computer in reasonable time – that is, the "insightful", "creative" aspect of human reasoning 
turns out to be something "mechanical". This is a good core idea for a little essay. I am 
curious to see what you wrote about.   
 
Problem 6 (40 points). Consider the two problems VERTEX COVER and FEEDBACK ARC SET 
(FAS) [for problem specification see below]. VERTEX COVER is NP-complete. Show that FAS 
is also NP-complete. Hint: turn edges into cycles! Components of solution: (a, 10 points) 
Describe in one sentence how one typically goes about to show NP-completeness, and in 
another sentence why this works. (b, 20 points) Describe informally a method to reduce 
VERTEX COVER to FEEDBACK ARC SET. (c, 10 points) Show how the following instance of 
VERTEX COVER looks after the transformation: 
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Specification of the two problems: An instance of the problem FEEDBACK ARC SET (FAS) is a 
directed graph G = (V, A) [where V is the set of nodes and A the set of directed edges], plus a 
constant K. The question: is there a subset A' ⊆ A [called a feedback arc set] where |A'| ≤ K, 
such that A' contains at least one edge from every directed cycle in G? (a directed cycle is a 
subgraph v1 → v2 →... → vn → v1, where n ≥ 1 and all vi are pairwise different). ––– An 
instance of VERTEX COVER is an undirected graph H = (W, B) plus a constant L. The question: 
is there a subset W' ⊆ W, where |W'| ≤ L, such that for every edge {u,v} ∈ B, at least one of u 
and v belongs to W' ?  
 
Solution (more formal than required in exam): We have to transform instances x = (W, B), L 
of VERTEX COVER  into instances R(x) = (V, A), K of FAS, such that this transformation takes 
at most polynomial time and that the FAS answer on the instance R(x) is identical to the 
VERTEX COVER  answer to x. One way of doing so (in fact, the only way I could think of) is to 
create (V, A) in three steps. Let W = {w1, w2, ... wN}, and enumerate the edges in B by e1, ..., 
eM.  Step 1: create a preliminary node set V0 by introducing, for every edge ei ∈ B, 2N nodes 
vi1, v'i1, vi2, v'i2,  ... viN, viN. Step 2: Establish on V0 a preliminary edge set A0, by connecting 
all the groups vi1, v'i1, vi2, v'i2,  ... viN, viN into cycles, that is, add directed connections vi1 → 
v'i1 → vi2 →... → viN → v'iN → vi1 to A0. Step 3: for each node wj ∈ W, consider the n nodes 
wj' ∈ W that are connected to wj. Let the connections between wj and the wj' be ea1, ..., ean. 
Take the n cycles va11 → v'a11 →... → v'a1N → va11, ..., van1 → v'an1 →... → v'anN → van1 and 
identify across them the links va1j → v'a1 j, ..., vanj → v'an j, by merging va1j with va2j with va3j  
... and v'a1j with v'a2j with v'a3j etc. After doing this for all wj ∈ W, the resulting merged node 
set and graph is (V, A). Finally, put K = L. It is clear from this construction that if in the 
context of VERTEX COVER, a node wj has connections ea1, ..., ean, then (only) the merged arc 
va1j → v'a1 j = ... = vanj → v'an j in (V, A) is common to the (merged) cycles va11 → v'a11 →... 
→ v'a1N → va11, ..., van1 → v'an1 →... → v'anN → van1, and furthermore, the only arcs that are 
common to several of these cycles correspond to nodes wj. Therefore, a vertex cover of size L 
in (W, B) corresponds to a feedback arc set in (V, A). The transformation at most twice-
squares the number of nodes and all steps in the construction can clearly be done in 
polynomial time per constructed node.  
 
 
Graphical example: 
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Second (much more elegant) solution, found by R. Rathnam in the exam!!  Ravi's 
solution is wonderful and self-explaining from the example: 
 
 

 

 

 

 

 

 

 

Computability and Complexity, Fall 2006: Final Exam – Solutions  
 
Notes: A maximum of 100 points is accredited for this exam (sum of points from all problems 
is 115) . Points reflect difficulty of the problem (as I see it). All problems can be solved using 
no more than 10 lines of (printed) text each. Best wishes! 
 
 
Problem 1 (25 points). Show that the language 
 
L = {<M>;<N>;w |  <M> is the coding of a deterministic TM M with input alphabet {0,1};  
   <N> is the coding of a deterministic TM N with input alphabet {0,1}; 
   w ∈ {0,1}*; M(w) = "yes" and  N(w) = "yes"} 
 
is undecidable, by reduction to the halting problem. (Assume that some coding convention is 
fixed). 
 
Solution. Assume L is decidable. Let N0 be a TM which accepts every input with "yes" (such 
an N0 is easy to construct). Then we can reduce L1 = {<M>;w | <M> is the coding of a 
deterministic TM M with input alphabet {0,1}; w ∈ {0,1}*; M(w) = "yes"} to L by <M>;w 
∈ L1  iff  <M>;<N0>;w ∈ L. Furthermore, we can reduce the halting language H  = { <K>;x | 
K(x) ≠ ç} to L1 by renaming the "yes", "no" and "halt" states of K into states "yes1", "no1", 
"halt1" and adding new rules ("yes1", #) → ("yes", #, −), ("no1", #) → ("yes", #, −),("halt1", 
#) → ("yes", #, −), obtaining K'; we then have  <K>;x  ∈ H iff <K'>;x  ∈ L1. Concatenation 
of the two reductions yields <K>;x  ∈ H iff < K'>;<N0>;w ∈ L, that is, we could decide H, 
contradiction. 
 
Problem 2 (15 points). Show that the factorial function defined by fac(0) = 1,     fac(n+1) = 
(n +1) fac(n) is primitive recursive, by constructing it from the axioms and rules in Definition 
5.1 in the lecture notes. You may assume that the function prod(n, m) = nm is p.r.  
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Solution. One way to solve this task is to first derive that a function prodplus(n, m) = (n + 1) 
m is p.r. Clearly prodplus(n, m) = prod(σ(n), m). Using rule 4, this is verified to be p.r. by 
setting f : Í2 → Í , f(m, n) = prod(m, n) and g1: Í2 → Í, g1(m, n) = σ(p2

1(m, n)) = σ(n) [needs 
itself a justification via rule 4, if one were painstakingly precise], g2(m, n) = p2

2(m, n) = n; 
then prod(σ(n), m) = f(g1(m, n), g2(m, n)).  
 
Then essentially we have to apply the primitive recursion rule 5. For f and g in this rule, use f:  
Í0 → Í, f() = 1, which is p.r. by f = σ0 (needs axioms 1, 2, 4). Furthermore, for g: Í2 → Í use 
prodplus. Then rule 5 says that there exists a p.r. function h: Í → Í, satisfying  
 

(i) h(0) = f() = 1 and  (ii) h(n+1) = g(n, h(n)) = (n+1) h(n), 
 
which is just the requirement for fac.  
 
 
Problem 3 (30 points).  Define a λ-expression, which when called with a list x1 ::.... :: xn :: 
nil, returns the 1-cycled list x2 ::.... :: xn :: x1 :: nil.  
 
Solution. One solution that I found late at night (your solutions will be more elegant I predict) 
is to exploit the join operator, a λ-expression which, when called with two lists a = x1 ::.... :: xn 
:: nil, b = y1 ::.... :: ym :: nil, returns the joined list x1 ::.... :: xn :: y1 ::.... :: ym :: nil. One way to 
define such a join operator turns the following naive recursion 
 
join l m =  if (null l)  

m  
(if (null m) 
 l 

   (if (null (second l))  
        (cons (head l) m) 
    (cons (head l) (join (tail l) m)))) 
 
into this λ−expression, using the Y combinator: 
 
Y(λ g l m. if (null l)  

m  
(if (null m) 
 l 

   (if (null (second l))  
        (cons (head l) m) 
    (cons (head l) (g (tail l) m)))) 
 
Using shorthand join for this λ−expression, we can obtain a λ−expression for the cycle-
operation by 
 

λ l. join (tail l) (cons (head l) nil) 
 
 
Problem 4 (15 points). The instances of the problem PARTITION are finite sets A = {a1, ..., 
an}, where for each a ∈ A there a positive integer w(a) is specified (the weight of a). The 



question is whether there exists a subset A' ⊆ A such that !! "##
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Furthermore, for any instance  I = (A, w) define the size of the instance to s(I) = |A| * 
max{log(w(a)) | a ∈  A}. Specify a method to code instances of this problem into 0-1-strings. 
Verify that your coding method is linear in instance size, that is, | code(I) | = O(s(I)).  
 
Solution. There are so many ways of doing this that a model solution makes little sense. One 
aspect of this problem that makes it a little tricky is the requirement that the coding results 
should be bitstrings, which is not very convenient. A way to deal with this is to first invent a 
coding into some other alphabet (e.g., {0, 1, #) and then recode this into binary. – Anyway, 
one natural way to encode I = (A, w) would be to (i) write the sequence code0(I) = 
bin(w(a1))#...#bin(w(an)) of binary representations of the element weights, which gives an 
encoding over {0, 1, #}, and then (ii) recode code0(I) into {0, 1}, e.g., by putting 0 → 00, 1 → 
01, # → 10. 
 
Problem 5 (20 points). A problem P in a complexity class C is called linear-time complete 
for C iff for every problem P' ∈ C there is a linear-time reduction from P' to P. Prove that 
there can be no linear-time complete problems for P. Note: this problem was found to be 
identical to an old homework problem during the final exam and was to be ignored. 
 
Solution. Assume there is a linear-time complete problem P ∈ P. Then P ∈ TIME(p(n)) for 
some polynomial p. By the time hierarchy theorem, there is a problem P' ∈ TIME(p(n)3) ⊆ P 
such that P' ∉  TIME(p(n)). Using the linear-time reduction to P, we can construct a decision 
algorithm for P' which first reduces P' to P (in time O(n)), then applies the algorithm of P to 
the result. This yields an overall time consumption of at most O(n) + p(kn) = O(n) + k' p(n) = 
O(p(n)) for deciding P', which by linear speedup can also be achieved in time p(n). This 
contradicts P' ∉  TIME(p(n)), therefore the assumption that there is a linear-time complete 
problem P ∈ P cannot hold.  
 
Problem 6 (10 points). For a class C of languages (over some fixed alphabet), co-C denotes 
the class of the complement languages, that is, co-C = {L | Lc ∈ C}. (a, 5 points) Show that P 
= co-P. (b, 5 points) Most researchers believe that NP ≠ co-NP. Explain why – if it is true – it 
is very likely very difficult to prove.  
 
Solution. (a) If we have a deterministic TM deciding some language L in polynomial time 
p(n), then by reversing the "yes" and "no" answers we get another TM deciding Lc in the same 
– that is, polynomial – time. Thus co-P ⊆ P. By symmetry we also have P ⊆ co-P.  

(b) If we had proven NP ≠ co-NP, then with (a) it would immediately 
follow that P ≠ NP – something which by all experience is hard to 
demonstrate. 



Computability and Complexity, Fall 2008: Final Exam - Solutions 
 
Revised solution sheet, May 23, 2008 
 
Notes: A maximum of 100 points is accredited for this exam (sum of points from all problems 
is 115). Points of a problem are proportional to expected working time, not to expected 
difficulty. Best wishes! 
 
Problem 1. (a, 10 points) Give a variant of the definition of nondeterministic single-tape 
TMs (Def. 9.1 in the lecture notes), which differs from the standard model in that the cursor, 
in addition to the standard moves, may be allowed to jump to an arbitrary cell on the tape. 

Furthermore, provide a definition of single-update transitions (q, w, u) 
M

! (q', w', u') for the 
new arbitrary-jump case, similar to the patterns in definition 3.3. (a) of the lecture notes. (b, 
10 points) Provide an argument  why these "jumper-TMs" cannot accept more languages than 
ordinary nondeterministic TMs.  
 
Solution. (a) A nondeterministic (single-tape) jumper Turing machine is a structure M = (K, 
Σ, Δ, s), where K, Σ, s are defined like in deterministic TMs, just as we also keep our 
conventions concerning the special symbols + and @. Δ is a relation  
 

Δ  ⊆  (K × Σ)  ×  [(K ∪ {h, "yes", "no"}) × Σ × {←, →, −, !}] 
 
If (q, w, u) and (q', w', u') are two configurations, we say that Δ takes M from (q, w, u)  to 
M

! (q', w', u') in a single step, written (q, w, u) 
M

! (q', w', u'), if one of the following cases 
holds: 
 
(i) w = va and w' = va' and u = u' and there is a rule of the form ((q, a), (q', a', −)) ∈ Δ 
(ii) w = va and w' = v and u' =a'u and there is a rule of the form ((q, a), (q', a', ←)) ∈ Δ 
(iii) w = va and u' = bu'' and w' = va'b and u' =u'' and there is a rule of the form ((q, a), (q', a', 

→)) ∈ Δ 
(iv) wu = vau and w'u' = va'u and there is a rule of the form ((q, a), (q', a', !)) ∈ Δ 
 
(only the last case was requested in the problem statement) 
 
(b) Jumper-TMs cannot accept more languages because we can turn every jumper-TM into an 
equivalent normal nondeterministic TM by replacing every !-rule ((q, a), (q', a', !)) with a rule 
((q, a), (rq', a', !)), using a novel state rq' not in K, and adding for all states q ∈ Κ and a 
∈ Σ novel rules ((rq, a), (rq, a, →)), ((rq, a), (rq, a, ←)) and ((rq, a), (q, a, −)). 
 
Problem 2 (20 points). Give a lambda-expression counts that evaluates to the infinite list 
0::1::2::3 …  . In the makeup of counts you may use the list operators ::, head, tail and the 
integer function succ. You may also use, of course, the fixed point combinator Y. 
 
Solution. We first procure a λ-expression for a function add1 that takes a right-infinite list of 
integers and transforms it into the same list, but with each element incremented by 1. The 
naïve recursion for add1 would be 
 
 add1 L = succ (head L) :: add1 (tail L). 
 



With the aid of Y, this turns into  
 
 add1 ≡ Y(λgL. succ (head L) :: g(tail L)). 
 
The naïve recursion for counts is counts = 0 :: add1 counts, with becomes the λ-expression 
Y(λg. 0 :: add1 g). Inserting the λ-expression for add1 this finally gives 
 
 counts ≡ Y(λg. 0 :: (Y(λhL. succ (head L) :: h(tail L))) g), 
 
where for better readability and "variable-hygiene" we have replaced the g in the add1 
expression by h (although this is not necessary). 
 
Problem 3 (15 points). Consider the language Hd = {<M> | Code(<M>) and M decides a 
language}. Show that Hd is undecidable. You may use all results from section 6 in the lecture 
notes. 
 
Solution. Notice that Hd = {<M> | Code(<M>) and M halts on every input with "yes" or 
"no"}. The easiest way to prove the claim is to reduce H1 = {<M> | Code(<M>) and M halts 
on all inputs} (known to be undecidable by Prop. 6.3) to Hd. For any TM N, one can 
effectively construct a TM N' which behaves exactly like N except that when N halts by going 
to the halting state h, N' halts with "yes". Then N ∈ H1 iff N' ∈ Hd. Hence, if Hd were 
decidable, so would be H1, which we know isn't, hence Hd is undecidable. 
 
Problem 4 (10 points). Consider the following variant of Rice's theorem (derived from the 
original by replacing "accepting" by "deciding"): 
 
 
 
 
 
 
 
 
Is this conjecture true or false? Give a proof of your answer. 
 
Solution. The conjecture is true (in the solution sheet posted directly after the exam, I 
provided a faulty "proof" of the opposite claim... shame on me). The most direct way to see 
this is just to repeat the proof of the original Rice's theorem; it works for M deciding L exactly 
as for the original case of M accepting L.  
 
A beautiful direct proof was found by Felix Schlesinger in the exam. It goes like this: Since C 
≠ «, if we could decide LC we could find some M  which decides a language L ∈ C. Now let N 
be an arbitrary TM. We can effectively modify N into N' such that for any input x, N'(x) first 
simulates N on empty input, and if this halts, continues to simulate M on input x. Then N' will 
decide L iff N holds on the empty input, i.e. N' ∈ LC iff N holds on the empty input. This 
would imply that it were decidable whether some N holds on the empty input, which however 
we know (from a lecture notes proposition) is not decidable.  
 
Problem 5 (20 points).  Show that there exists a decidable language over {0, 1} which is not 
in NP. Hint: one quick way to show this is by diagonalization.  
 

Let  LC = {<M> | Code(<M>) and M is a TM that decides a language L ⊆ Σ* which  
                             has property C}. 
 
Now suppose that C is a nontrivial subset of the class of decidable languages over Σ. 
("Nontrivial" means: not empty and not the class of decidable languages itself). 
Then LC is undecidable. 



Solution. Let (Mi, ki) (i = 1, 2, ...) be an effective enumeration of all pairs of nondeterministic 
TMs M with tape alphabet {0, 1} and positive integers k. Let Li be the language decided by Mi 
within time |x|ki. Notice that the set of all these languages is NP, and that every such Li is 
decidable. Let w1, w2, ... be the lexicographic enumeration of {0,1}*. Then the diagonal 
language {wi ∈ {0,1}* | wi ∉ Li} is decidable and different from all of the Li, hence not in NP.  
 
Problem 6. Consider the following problem BIN PACKING: 
 
 
 
 
 
 
 
(a, 5 points) Sketch a coding of problem instances using a coding alphabet   Σ = {0, 1, #}. (b, 
20 points) Using your coding, show that BIN PACKING is in NTIME (O(n2)). 
 
Solution. (a) A straightforward coding of an instance would be, e.g., the string x = 
bin(B)#bin(K)#bin(s(u1)#...# bin(s(u|U|), where bin(x) is the binary representation of an integer 
x. (b) We design a nondeterministic multitape TM M which operates as follows. First, M 
writes a random string S of Σ* of length at most log(K) ⋅ |U| on its first working tape. Time 
needed: O(log(K) ⋅ |U|) ≤ O(log(n) n), where n = |x|. Second, M checks whether S is of the 
form bin(k1)#...#bin(k|U|), where each ki ≤ K. If check fails, reject. Time needed: O(|S|) ≤ 
O(log(n) n). Intended interpretation: ki is the bin index where the i-th item goes. Third, for 
every 1 ≤ k ≤ K, M adds all s(ui) where       ki = k. If any of these K sums exceeds B, reject, 
otherwise accept. Time needed for each of the sums plus check: O(n2). The overall time is 
thus O(n2). 
 
 

BIN PACKING: Instance: a finite set U of items, a positive integer size s(u) for 
every item, a positive integer bin capacity B, a number K of bins. Question: can 
the items be packed into the bins, that is, is there a partition of U into K subsets Ui 
(i = 1, ..., K) such that the sum of the sizes of items in each Ui is B or less? 


