PSM, Spring 2018: Final Exam

Your name:

How this works. On the back side you find a list of 30 claims which are either true or false. To the left of each claim you find two boxes, one of which has a tiny f and the other a tiny t shown in it. If you think the claim is true, tick the box with the tiny t, and if you think the claim is false, tick the f box. In this way you can get a maximum score of 10 correct answers.

How this is scored. If you get everything right, you earn a 100% score. If you get 15 out of 30 right (which means random guessing), the score is 35%. (grade 5.0). Anything else is obtained by linear interpolation, and never less than 0%. This spells out to what you find in the following table:

correct n	score
0-6	0
7	0,33
8	4,67
9	9,00
10	13,33
11	17,67
12	22,00
13	26,33
14	30,67
15	35,00
16	39,33
17	43,67
18	48,00
19	52,33
20	56,67
21	61,00
22	65,33
23	69,67
24	74,00
25	78,33
26	82,67
27	87,00
28	91,33
29	95,67
30	100,00

Ans box	wer	Statements (claims marked with a "(!)" are a little more challenging than the rest)
T		 Ω is the symbol standardly used to denote a set that is interpreted as a collection of "observation opportunities"
Т		2. On a given universe Ω , infinitely many different RVs $X_i: \Omega \rightarrow S_i$ can be defined.
F		3. If $Y: \Omega \to [0, 1]$, there exists at least one $\omega \in \Omega$ such that $Y(\omega) = 0$.
F		4. If $X, Y: \Omega \to \mathbb{R}$ are two real-valued RVs, then $(X \otimes Y)(\omega) = X(\omega) \cdot Y(\omega).$
Т		5. $(X_t(\omega))_{t\in\mathbb{R}}$ denotes a path of a stochastic process with continuous time.
F		 6. Let F be a σ-field on S. Every subset G ⊆ F which satisfies {Ø, S} ⊆ G, is itself a σ-field.
F		7. If \mathcal{F} is a σ -field on $[0, 1)$ and \mathcal{G} a σ -field on $[1, 2]$, then $\mathcal{H} = \mathcal{F} \cup \mathcal{G} \cup \{[0, 2]\}$ is a σ -field on $[0, 2]$.
F		 8. (!) For every n ∈ N, n ≥ 2, there exists a set S and a σ-field F over S, such that the size of F is n.
Т		9. $P(X \in A \cup B) = 0 \implies P(X \in A) = 0$
Т		10. If $A \cap B = \emptyset$ and $P(Y \in C) > 0$, then $P(X \in A \cup B \mid Y \in C) = P(X \in A \mid Y \in C) + P(X \in B \mid Y \in C).$
Т		11. If $X: \Omega \to (S, \mathcal{F})$ is a RV, then $X^{-1}(S) = \Omega$.
Т		12. (!) If $X: \Omega \to (S, \mathcal{F})$ is a RV, (S', \mathcal{F}') a measurable space, $\varphi: S \to S'$ a \mathcal{F} - \mathcal{F}' -measurable function, and $A' \in \mathcal{F}'$, then $P(\varphi \circ X \in A') = P(X \in \varphi^{-1}(A')).$
F		13. Let X_1, X_2 be two identically and independently distributed RVs X_1 , $X_2: \Omega \to \mathbb{R}$, and $\omega \in \Omega$. Then $E[X_1] = \frac{1}{2} (X_1(\omega) + X_2(\omega))$.
F		14. For two real-valued RVs X, Y we have $Cov(X, Y) \ge 0$.
Т		15. (!) A fair coin is tossed repeatedly. Let $T(\omega)$ be the number of tosses until the first head comes up in a tossing trial ω . A gambler offers you a prize of $2^{T(\omega)}$ Euros upon the outcome of a tossing sequence ω if you pay him beforehand a charge of $2^{E[T]}$ Euros. Claim: your statistically expected prize is higher than this charge.
Т		16. If $F(x)$ is the cdf of a real-valued RV X, then $F(x) \le 1$ for all $x \in \mathbb{R}$.

Т	17. $P(X \in A)$, $P_X(A)$, and $P(X^{-1}(A))$ all evaluate to the same number.
Т	18. The covariance of two identically distributed, real-valued RVs <i>X</i> , <i>Y</i> is less than or equal to the variance of either of the two.
F	19. If <i>X</i> , <i>Y</i> are identically distributed real-valued RVs with values in the unit interval [0, 1], then for every subinterval [<i>a</i> , <i>b</i>] one has
	$P(X \in [a, b]) > 0 \text{ and } P(Y \in [a, b]) > 0 \implies P(X \in [a, b], Y \in [a, b]) > 0$
F	20. Two realizations of an infinite Markov chain $(X_i)_{i \in \mathbb{N}}$ can never be identical (stated in mathematical formalism: $\omega \neq \omega' \Rightarrow (X_i(\omega))_{i \in \mathbb{N}} \neq (X_i(\omega'))_{i \in \mathbb{N}}).$
Т	21. Consider a <i>k</i> -state Markov chain $(X_i)_{i=0,1,\dots}$ whose transition matrix is uniformly filled with $1/k$ entries. Then X_0 is independent of X_1 .
Т	22. Let $p: \mathbb{R}^n \to \mathbb{R}$ be a pdf. Then for all $A, B \subseteq \mathbb{R}^n$, where $A \cup B = \mathbb{R}^n$, one has $\int n(x)dx = \int n(x)dx + \int n(x)dx - 1$
F	23. Let $X: \Omega \to \mathbb{R}$ be a numerical RV. Then $\operatorname{Var}[X] \le \operatorname{Var}[X^2]$.
Т	24. Let $X: \Omega \to [0 \ 1]$ be uniformly distributed, and $Y: [0 \ 1] \to \{0, 1\}$ be defined by $Y(x) = 1$ if $x = \frac{1}{2}$, else 0. Then $E[Y \circ X] = 0$.
F	25. Let $(X_n)_{n=1,2,k}$, where $X_n: \Omega \to \{\text{head, tail}\}$ describe the experiment of tossing a fair coin <i>k</i> times. Let $T: \Omega \to \{0, 1,, k\}$ be defined by $T(\omega) = i \iff X_1(\omega) = \text{tail},, X_i(\omega) = \text{tail}, X_{i+1}(\omega) = \text{head};$ that is, <i>T</i> counts the number of an uninterrupted "tail" outcome sequence from the beginning to the first "head". Claim: <i>T</i> is binomially distributed.
F	26. Imagine you are a planespotter, monitoring landing aircraft at Frankfurt Rhein-Main airport. Let <i>T</i> be the RV that measures the time intervals between consecutive landings. Claim: <i>T</i> is (in good approximation) exponentially distributed.
F	27. Imagine you are panning for gold. Let $X \in \{0, 1\}$ be the "success" indicator, being 0 when there is not a single grain of gold found in a panning attempt, and being 1 if you find one or more grains. Claim: X is Poisson distributed. (Image source: thornews.com/2012/04/23/digging-for-gold-innorway)
Т	28. The probability that an untrained monkey hitting a computer keyboard will type this very problem statement that I typed into this box is less than 1/2 to the power of the number of letters in this box.

F	29. Let $G \in \{\text{male, female, other}\}$ be the gender RV used in a customer profiling study. Let $\theta = (p_m, p_f, p_o)$ be the parameter vector made of the three probabilities characterizing the gender distribution in the customer population. Then the estimator <i>t</i> which always returns $t(x) = (0, 0, 1)$ is an unbiased estimator of θ .
Т	30. Consider a coin tossing scenario with 3 tosses. Let q denote the probability of the coin coming up with "1". Then the maximum likelihood estimate of q given the data $x = (0, 0, 0)$ is $\hat{q} = 0$.