
PSM,	Spring	2018:	Final	Exam	
 
 

Your name: 
 
 
 
How this works. On the back side you find a list of 30 claims which are either true or 
false. To the left of each claim you find two boxes, one of which has a tiny f and the 
other a tiny t shown in it. If you think the claim is true, tick the box with the tiny t, and 
if you think the claim is false, tick the f box. In this way you can get a maximum score 
of 10 correct answers.  
 
How this is scored.  If you get everything right, you earn a 100% score. If you get 15 
out of 30 right (which means random guessing), the score is 35%. (grade 5.0). 
Anything else is obtained by linear interpolation, and never less than 0%. This spells 
out to what you find in the following table: 
 

correct n score 
0 – 6  0 

7 0,33 
8 4,67 
9 9,00 

10 13,33 
11 17,67 
12 22,00 
13 26,33 
14 30,67 
15 35,00 
16 39,33 
17 43,67 
18 48,00 
19 52,33 
20 56,67 
21 61,00 
22 65,33 
23 69,67 
24 74,00 
25 78,33 
26 82,67 
27 87,00 
28 91,33 
29 95,67 
30 100,00 

 
  



Answer 
box 

Statements (claims marked with a "(!)" are a little more challenging than 
the rest) 

T  1. Ω is the symbol standardly used to denote a set that is interpreted as 
a collection of "observation opportunities" 

T  2. On a given universe Ω, infinitely many different RVs Xi: Ω	 →	 Si 
can be defined. 

F  3. If Y: Ω	 →	 [0, 1], there exists at least one 𝜔 ∈ Ω such that          
Y(𝜔) = 0. 

F  4. If X, Y: Ω	 → 	ℝ are two real-valued RVs, then    

                  (X Ä Y)(𝜔) = X(𝜔) × Y(𝜔). 
T  5. (𝑋)(𝜔)))∈ℝ denotes a path of a stochastic process with continuous 

time. 

F  6. Let F be a s-field on S. Every subset G Í F which satisfies         
{Æ, S} Í G, is itself a s-field. 

F  7. If F is a s-field on [0, 1) and G a s-field on [1, 2], then                   
H = F È G È {[0, 2]} is a s-field on [0, 2].  

F  8. (!) For every 𝑛 ∈ ℕ, 𝑛 ≥ 2, there exists a set S and a s-field F over 
S, such that the size of F is n.  

T  9. P(X Î A È B) = 0  Þ  P(X Î A) = 0   

T  10. If A Ç B = Æ and P(Y Î C) > 0, then  

      P(X Î A È B | Y Î C) = P(X Î A | Y Î C) + P(X Î B | Y Î C). 
T  11. If X: W ® (S, ℱ) is a RV, then X–1(S) = W.  

T  12. (!) If X: W ® (S, ℱ) is a RV, (S', ℱ′) a measurable space,                      
j: S ® S' a ℱ-ℱ′-measurable function, and A' Î ℱ′, then                              
P(j ∘ X Î A') = P(X Î j–1(A')).  

F  13. Let X1, X2 be two identically and independently distributed RVs X1, 
X2: W ® ℝ, and 𝜔 ∈ Ω. Then E[X1] = ½ (X1(𝜔) + X2(𝜔)). 

F  14. For two real-valued RVs X, Y we have Cov(X, Y) ³ 0. 

T  15. (!) A fair coin is tossed repeatedly. Let T(𝜔) be the number of tosses 
until the first head comes up in a tossing trial 𝜔. A gambler offers 
you a prize of 2T(w) Euros upon the outcome of a tossing sequence 𝜔 
if you pay him beforehand a charge of 2E[T] Euros. Claim: your 
statistically expected prize is higher than this charge.  

T  16. If F(x) is the cdf of a real-valued RV X, then F(x) £ 1 for all x Î ℝ. 



T  17. P(X Î A), PX(A), and P(X–1(A)) all  evaluate to the same number.  

T  18. The covariance of two identically distributed, real-valued RVs X, Y 
is less than or equal to the variance of either of the two. 

F  19. If X, Y are identically distributed real-valued RVs with values in the 
unit interval [0, 1], then for every subinterval [a, b] one has 

P(X Î [a, b]) > 0 and P(Y Î [a, b]) > 0  Þ P(X Î [a, b], Y Î [a, b]) > 0 
F  20. Two realizations of an infinite Markov chain (𝑋3)3∈ℕ can never be 

identical (stated in mathematical formalism:                                                   
w ¹ w' Þ (𝑋3(w))3∈ℕ ¹ (𝑋3(w′))3∈ℕ). 

T  21. Consider a k-state Markov chain (𝑋3)345,7,…	whose transition matrix 
is uniformly filled with 1/k entries. Then X0 is independent of X1. 

T  22. Let p: ℝ9 → ℝ be a pdf. Then for all A,B	⊆ ℝ9, where                    
A È B = ℝ9,		one has 

              𝑝 𝑥 𝑑𝑥	>∩@   =   𝑝 𝑥 𝑑𝑥	> + 𝑝 𝑥 𝑑𝑥	@ – 1 
F  23. Let X: W ® ℝ be a numerical RV. Then Var[𝑋] £ Var[X 2]. 

T  24. Let X: W ® [0 1] be uniformly distributed, and Y: [0 1] ® {0, 1} be 
defined by Y(x) = 1 if x = ½, else 0. Then E[Y ∘ X] = 0. 

F  25. Let (Xn)n=1,2…, k, where Xn: W ® {head, tail} describe the experiment 
of tossing a fair coin k times. Let T: W ® {0, 1, …, k} be defined by 
T(w) = i  Û  X1(w) = tail, …, Xi(w) = tail, Xi+1(w) = head; that is, T 
counts the number of an uninterrupted "tail" outcome sequence from 
the beginning to the first "head". Claim: T is binomially distributed. 

F  26. Imagine you are a planespotter, monitoring landing aircraft at 
Frankfurt Rhein-Main airport. Let T be the RV that measures the 
time intervals between consecutive landings. Claim: T is (in good 
approximation) exponentially distributed. 

F  27. Imagine you are panning for gold. Let    
X Î {0, 1} be the "success" indicator, 
being 0 when there is not a single grain 
of gold found in a panning attempt, and 
being 1 if you find one or more grains. 
Claim: X is Poisson distributed. (Image 
source: thornews.com/2012/04/23/digging-for-gold-in-
norway) 

T  28. The probability that an untrained monkey hitting a computer 
keyboard will type this very problem statement that I typed into this 
box is less than 1/2 to the power of the number of letters in this box. 



F  29. Let G Î {male, female, other} be the gender RV used in a customer 
profiling study. Let q = (pm, pf, po) be the parameter vector made of 
the three probabilities characterizing the gender distribution in the 
customer population. Then the estimator t which always returns t(x) 
= (0, 0, 1) is an unbiased estimator of q. 

T  30. Consider a coin tossing scenario with 3 tosses. Let q denote the 
probability of the coin coming up with "1". Then the maximum 
likelihood estimate of q given the data x = (0, 0, 0) is 𝑞 = 0.  

 
 
 


