Machine Learning, Spring 2018: Final Exam

Your name:

How this works. On the back side you find a list of 30 claims which are either true or false. To the left of each claim you find two boxes, one of which has a tiny f and the other a tiny t shown in it. If you think the claim is true, tick the box with the tiny t, and if you think the claim is false, tick the f box. In this way you can get a maximum score of 10 correct answers.

How this is scored. If you get everything right, you earn a 100% score. If you get 15 out of 30 right (which means random guessing), the score is 35%. (grade 5.0). Anything else is obtained by linear interpolation, and never less than 0%. This spells out to what you find in the following table:

correct n	score
0-6	0
7	0,33
8	4,67
9	9,00
10	13,33
11	17,67
12	22,00
13	26,33
14	30,67
15	35,00
16	39,33
17	43,67
18	48,00
19	52,33
20	56,67
21	61,00
22	65,33
23	69,67
24	74,00
25	78,33
26	82,67
27	87,00
28	91,33
29	95,67
30	100,00

Notation used in this exam: let $\mathbf{P} \subseteq \mathbb{R}^n$ always denote a pattern space of patterns
given as vectors, $x \in \mathbf{P}$ patterns, $f: \mathbf{P} \to \mathbb{R}$ features, $\mathbf{f}: \mathbf{P} \to \mathbb{R}^k$ feature vector
functions.

Ans box	swer	Claims (claims marked with a are a little more challenging than the rest)		
А.	Eler	Elementary probability and basic math notation		
		1. The expectation of a numerical random variable is always at least as large as its variance.		
		2. If $p: \mathbb{R} \to \mathbb{R}$ is the pdf of the distribution of a RV <i>X</i> , and [<i>a</i> , <i>b</i>] is an interval of \mathbb{R} , then <i>p</i> cannot be exactly equal to zero everywhere in this interval.		
		3. If $p: \mathbb{R} \to \mathbb{R}$ is the pdf of the distribution of a RV <i>X</i> , then $q: \mathbb{R} \to \mathbb{R}$, defined by $q(x) = p(x + E[X])$, is the pdf of the centered version of <i>X</i> .		
		4. If X is a RV that takes values {male, female} and Y is a RV that takes values in {tall, short}, the probability $P(X = \text{male})$ can be computed from the two joint probabilities $P(X = \text{female}, Y = \text{tall}), P(X = \text{female}, Y = \text{short}).$		
		5. If $a \neq b$, then always $P(X = a \mid Y = c) + P(X = b \mid Y = c) \le 1$.		
		6. $\underset{x \in [-1,1]}{\operatorname{argmax}} \cos(x) = 1.$		
B.	B. Features and dimension reduction, PCA.			
		7. The grayscale value of the topmost leftmost pixel of a picture is a feature.		
		8. Consider a real-life, high-dimensional pattern space of <i>n</i> -dimensional patterns (like image spaces), and a training sample size <i>N</i> which is large (millions of examples as in deep learning it usually is). The training sample has been obtained by i.i.d. sampling. You pick a random pattern <i>x</i> from that training sample. Then, the probability that there is another pattern <i>x'</i> in that sample, which is very similar to <i>x</i> (in the metric distance sense that $ x - x' < 0.1$), is so exceedingly small that it would lead to numerical underflow if represented by floating-point precision on a digital computer.		
		9. If one has two feature vector functions $\mathbf{f}_1, \mathbf{f}_2: \mathbf{P} \to \mathbb{R}^k$, then there always exists a feature transformation $T: \mathbb{R}^k \to \mathbb{R}^k$, such that for all patterns $x, T(\mathbf{f}_1(x)) = \mathbf{f}_2(x)$.		
		10. The codebook vectors c_i obtained from <i>K</i> -means clustering of patterns can be used to construct features defined by $f_i(x) = x - c_i $.		

	11. If 1 2 <i>l</i> -	$L_1, L_2 \subseteq \mathbb{R}^n$ are two <i>l</i> -dimensional manifolds, then $L_1 \cup L_2$ is a dimensional manifold.
	12. Ca ima yie 1,4	rrying out a full PCA on the world's image data in our TICS age pattern space (which has dimension $n = 1,440,000$) would eld 1,440,000 principal component vectors u_i , each of dimension 440,000.
	13. Gived	ven a <i>centered</i> datset $(x_i)_{i=1,,N}$, the leading principal component ctor u_1 is the data mean μ .
	14. (q u	estion dismissed – was not stated precisely enough)
C.	Classification p	problems, loss and decision functions
	15. A t ma	binary decision tree learnt for a classification task has exactly as iny leaves as there are classes.
	16. A l lab	loss function assigns a real number to a set $(x_i, y_i)_{i=1,, N}$ of belled data.
	17. lind ind vec the a li exp	Consider a feature representation with feature vectors \mathbf{f}_i and ear classifiers $d(\mathbf{f}_i) = W \mathbf{f}_i$ where the class decision is given by the lex of the maximal value in $d(\mathbf{f}_i)$. Let z_i denote the binary indicator ctor of the correct class for pattern <i>i</i> . Claim: if $d_1(\mathbf{f}_i) = W_1 \mathbf{f}_i$ achieves e minimal expected misclassification rate that is possible for such inear classifier, and if $d_2(\mathbf{f}_i) = W_2 \mathbf{f}_i$ achieves the minimal possible pected quadratic loss $[\![d_2(\mathbf{f}_i) - z_i]\!]^2$, then $d_1 = d_2$.
	18. prodise ind fea nece cla onl to tak	In a two-class classification oblem with 3-dimensional patterns stributed in pattern space as licated in the figure to the right, two stures $f_1, f_2: \mathbb{R}^3 \to \mathbb{R}$ are minimally eded such that (almost) perfect assification becomes possible when ly those features are used as input the decision procedure. [image ten from lovingscience.com/category/data-science/]
	19. A	<i>k</i> -class classification problem with one-dimensional patterns \mathbb{R} can be solved by a simple linear classifier of the kind $d(x_i) = x_i$ only if $k \le 2$.
D.	Bias-variance d	lilemma, cross-validation, and friends
	20. A s	simple linear classifier of the kind $d(\mathbf{f}_i) = W \mathbf{f}_i$ can never be erfitting.
	21. In risl	cross-validation, the validation error serves as an estimate for the k.

		22. The bias-variance problem becomes less of an issue if one has more training data available.
		23. Let <i>D</i> and <i>D'</i> be two decision functions that achieve exactly zero training error. Then their risks are equal, that is $R(D) = R(D')$.
		24. When using ridge regression to solve a linear regression task (formula below), then the optimal α found by cross-validation will move closer to zero when one has smaller training data sets. $w'_{opt} = (\frac{1}{N} X X' + \alpha^2 I_{n \times n})^{-1} \frac{1}{N} X Y$
		25. An optimal model capacity has been determined by <i>m</i> -fold cross-validation in two separate learning experiments. The experiments differed only in a single aspect: the choice of the number <i>m</i> of folds. In the first experiment, $m = 5$ was used, and in the second, $m = 10$. It was observed that the validation error plots (green and red line in figure) came out differently. Claim: the green and red lines have been labelled correctly, that is, the green line indeed shows the results of 5-fold and the red line that of the 10-fold setting.
		26. The "variance" mentioned in the phrase "bias-variance dilemma" derives from the fact that that when a model with high capacity is used for training, its estimated parameters $\hat{\theta}$ will vary more strongly across different learning trials (using freshly sampled data each time) than when a model of low capacity is used.
Е.	ML	Ps and gradient descent
		27. After training, an MLP with <i>n</i> input units and <i>k</i> output units represents a function from \mathbb{R}^n to \mathbb{R}^k .
		28. Let \mathcal{M}_1 be an MLP with a single input unit, a single output unit, and 100 hidden units in a single hidden layer. Let \mathcal{M}_2 be an MLP with a single input unit, a single output unit, and 10 hidden units in each of 10 hidden layers. Both MLPs are without bias units. Then \mathcal{M}_1 has more trainable parameters than \mathcal{M}_2 .
		29. When one uses early stopping as a method to prevent overfitting, one must split the available data into <i>one</i> training and <i>one</i> validation set; that is, one cannot use <i>k</i> -fold cross-validation with $k > 2$.

30. When applying the backpropagation algorithm for training an MLP, the MLP parameters θ will remain frozen at their initial zero values
if the model is initialized with all parameters set to zero.