
Machine	Learning,	Spring	2018:	Final	Exam	
 

Your name: 
 
How this works. On the back side you find a list of 30 claims which are either true or 
false. To the left of each claim you find two boxes, one of which has a tiny f and the 
other a tiny t shown in it. If you think the claim is true, tick the box with the tiny t, and 
if you think the claim is false, tick the f box. In this way you can get a maximum score 
of 10 correct answers.  
 
How this is scored.  If you get everything right, you earn a 100% score. If you get 15 
out of 30 right (which means random guessing), the score is 35%. (grade 5.0). 
Anything else is obtained by linear interpolation, and never less than 0%. This spells 
out to what you find in the following table: 
 

correct n score 
0 – 6  0 

7 0,33 
8 4,67 
9 9,00 

10 13,33 
11 17,67 
12 22,00 
13 26,33 
14 30,67 
15 35,00 
16 39,33 
17 43,67 
18 48,00 
19 52,33 
20 56,67 
21 61,00 
22 65,33 
23 69,67 
24 74,00 
25 78,33 
26 82,67 
27 87,00 
28 91,33 
29 95,67 
30 100,00 

 
  



Notation used in this exam: let P ⊆ ℝ# always denote a pattern space of patterns 
given as vectors, x Î P patterns, f: 𝐏	 → ℝ features, f: 𝐏	 → ℝ' feature vector 
functions. 
 
Answer 
box 

Claims (claims marked with a A are a little more challenging than the rest) 

A. Elementary probability and basic math notation 

  1. The expectation of a numerical random variable is always at least as 
large as its variance. 

  2. If p:	ℝ → ℝ is the pdf of the distribution of a RV X, and [a, b] is an 
interval of ℝ, then p cannot be exactly equal to zero everywhere in 
this interval.  

  3. If p:	ℝ → ℝ is the pdf of the distribution of a RV X, then q:	ℝ → ℝ, 
defined by q(x) = p(x + E[X]), is the pdf of the centered version of 
X. 

  4. If X is a RV that takes values {male, female} and Y is a RV that takes 
values in {tall, short}, the probability P(X = male) can be computed 
from the two joint probabilities P(X = female, Y = tall), P(X = female, 
Y = short). 

  5. If a ¹ b, then always P(X = a | Y = c) + P(X = b | Y = c) £ 1.  

  6. argmax
.∈[12,2]

cos 𝑥 = 1. 

B. Features and dimension reduction, PCA.  

  7. The grayscale value of the topmost leftmost pixel of a picture is a 
feature.  

  8. A Consider a real-life, high-dimensional pattern space of n-
dimensional patterns (like image spaces), and a training sample size 
N which is large (millions of examples -- as in deep learning it 
usually is). The training sample has been obtained by i.i.d. 
sampling. You pick a random pattern x from that training sample. 
Then, the probability that there is another pattern x' in that sample, 
which is very similar to x (in the metric distance sense that 
𝑥 − 𝑥′ < 0.1), is so exceedingly small that it would lead to 

numerical underflow if represented by floating-point precision on a 
digital computer.  

  9. A If one has two feature vector functions f1, f2: 𝐏	 → ℝ', then 
there always exists a feature transformation T: ℝ' 	→ ℝ', such that 
for all patterns x, T(f1(x)) = f2(x). 

  10. The codebook vectors ci obtained from K-means clustering of 
patterns can be used to construct features defined by                     
fi(x) = 𝑥 − 𝑐A . 



  11. If L1, L2 ⊆ ℝ𝒏 are two l-dimensional manifolds, then L1 È L2 is a 
2l-dimensional manifold.  

  12. Carrying out a full PCA on the world's image data in our TICS 
image pattern space (which has dimension n = 1,440,000) would 
yield 1,440,000 principal component vectors ui, each of dimension 
1,440,000. 

  13. Given a centered datset (xi)i=1,…,N, the leading principal component 
vector u1 is the data mean µ. 

  14. (question dismissed – was not stated precisely enough)  

C. Classification problems, loss and decision functions 

  15. A binary decision tree learnt for a classification task has exactly as 
many leaves as there are classes.  

  16. A loss function assigns a real number to a set (xi, yi)i = 1, …, N of 
labelled data.  

  17. A Consider a feature representation with feature vectors fi and 
linear classifiers d(fi) = W fi where the class decision is given by the 
index of the maximal value in d(fi). Let zi denote the binary indicator 
vector of the correct class for pattern i. Claim: if d1(fi) = W1fi achieves 
the minimal expected misclassification rate that is possible for such 
a linear classifier, and if d2(fi) = W2 fi achieves the minimal possible 
expected quadratic loss 𝑑D 𝐟A − 𝑧A D, then d1 = d2.  

  18. A In a two-class classification 
problem with 3-dimensional patterns 
distributed in pattern space as 
indicated in the figure to the right, two 
features f1, f2: R3 → R are minimally 
needed such that (almost) perfect 
classification becomes possible when 
only those features are used as input 
to the decision procedure. [image 
taken from lovingscience.com/category/data-science/] 

  19. A k-class classification problem with one-dimensional patterns        
x Î R can be solved by a simple linear classifier of the kind d(xi) = 
w xi only if k £ 2.  

D. Bias-variance dilemma, cross-validation, and friends 

  20. A simple linear classifier of the kind d(fi) = W fi can never be 
overfitting. 

  21. In cross-validation, the validation error serves as an estimate for the 
risk. 



  22. The bias-variance problem becomes less of an issue if one has more 
training data available. 

  23. Let D and D' be two decision functions that achieve exactly zero 
training error. Then their risks are equal, that is R(D) = R(D'). 

  24. When using ridge regression to solve a linear regression task 
(formula below), then the optimal a found by cross-validation will 
move closer to zero when one has smaller training data sets. 

 

  25. A An optimal model capacity 
has been determined by m-fold 
cross-validation in two separate 
learning experiments. The 
experiments differed only in a 
single aspect: the choice of the 
number m of folds. In the first 
experiment, m =5 was used, and 
in the second, m = 10. It was 
observed that the validation error 
plots (green and red line in figure) came out differently. Claim: the 
green and red lines have been labelled correctly, that is, the green 
line indeed shows the results of 5-fold and the red line that of the 
10-fold setting. 

  26. The "variance" mentioned in the phrase "bias-variance dilemma" 
derives from the fact that that when a model with high capacity is 
used for training, its estimated parameters 𝜃 will vary more strongly 
across different learning trials (using freshly sampled data each 
time) than when a model of low capacity is used. 

E. MLPs and gradient descent 

  27. After training, an MLP with n input units and k output units 
represents a function from ℝ# to ℝ'. 

  28. Let M1 be an MLP with a single input unit, a single output unit, and 
100 hidden units in a single hidden layer. Let M2 be an MLP with a 
single input unit, a single output unit, and 10 hidden units in each of 
10 hidden layers. Both MLPs are without bias units. Then M1 has 
more trainable parameters than M2.  

  29. When one uses early stopping as a method to prevent overfitting, 
one must split the available data into one training and one validation 
set; that is, one cannot use k-fold cross-validation with k > 2. 



  30. When applying the backpropagation algorithm for training an MLP, 
the MLP parameters q will remain frozen at their initial zero values 
if the model is initialized with all parameters set to zero.   

 


