Machine Learning, Spring 2018: Final Exam

Your name:

How this works. On the back side you find a list of 30 claims which are either true or false. To the left of each claim you find two boxes, one of which has a tiny f and the other a tiny t shown in it. If you think the claim is true, tick the box with the tiny t, and if you think the claim is false, tick the f box. In this way you can get a maximum score of 10 correct answers.

How this is scored. If you get everything right, you earn a 100% score. If you get 15 out of 30 right (which means random guessing), the score is 35%. (grade 5.0). Anything else is obtained by linear interpolation, and never less than 0%. This spells out to what you find in the following table:

correct n	score
0-6	0
7	0,33
8	4,67
9	9,00
10	13,33
11	17,67
12	22,00
13	26,33
14	30,67
15	35,00
16	39,33
17	43,67
18	48,00
19	52,33
20	56,67
21	61,00
22	65,33
23	69,67
24	74,00
25	78,33
26	82,67
27	87,00
28	91,33
29	95,67
30	100,00

Ans box	swer	Claims (claims marked with a $\[\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	
A.	Elen	nentary probability and basic math notation	
F		1. The expectation of a numerical random variable is always at least as large as its variance.	
F		 If p: R → R is the pdf of the distribution of a RV X, and [a, b] is an interval of R, then p cannot be exactly equal to zero everywhere in this interval. 	
Т		 3. If p: R → R is the pdf of the distribution of a RV X, then q: R → R, defined by q(x) = p(x + E[X]), is the pdf of the centered version of X. 	
Т		4. If <i>X</i> is a RV that takes values {male, female} and <i>Y</i> is a RV that takes values in {tall, short}, the probability $P(X = male)$ can be computed from the two joint probabilities $P(X = female, Y = tall)$, $P(X = female, Y = short)$.	
Т		5. If $a \neq b$, then always $P(X = a \mid Y = c) + P(X = b \mid Y = c) \le 1$.	
F		6. $\underset{x \in [-1,1]}{\operatorname{argmax}} \cos(x) = 1.$	
В.	B. Features and dimension reduction, PCA.		
Т		7. The grayscale value of the topmost leftmost pixel of a picture is a feature.	
Т		 8. ^IConsider a real-life, high-dimensional pattern space of <i>n</i>-dimensional patterns (like image spaces), and a training sample size <i>N</i> which is large (millions of examples as in deep learning it usually is). The training sample has been obtained by i.i.d. sampling. You pick a random pattern <i>x</i> from that training sample. Then, the probability that there is another pattern <i>x'</i> in that sample, which is very similar to <i>x</i> (in the metric distance sense that <i>x</i> − <i>x'</i> < 0.1), is so exceedingly small that it would lead to numerical underflow if represented by floating-point precision on a digital computer. 	
F		9. If one has two feature vector functions $\mathbf{f}_1, \mathbf{f}_2: \mathbf{P} \to \mathbb{R}^k$, then there always exists a feature transformation $T: \mathbb{R}^k \to \mathbb{R}^k$, such that for all patterns $x, T(\mathbf{f}_1(x)) = \mathbf{f}_2(x)$.	
Т		10. The codebook vectors c_i obtained from <i>K</i> -means clustering of patterns can be used to construct features defined by $f_i(x) = x - c_i $.	

Notation used in this exam: let $\mathbf{P} \subseteq \mathbb{R}^n$ always denote a pattern space of patterns given as vectors, $x \in \mathbf{P}$ patterns, $f: \mathbf{P} \to \mathbb{R}$ features, $\mathbf{f}: \mathbf{P} \to \mathbb{R}^k$ feature vector functions.

F	11. If $\mathbf{L}_1, \mathbf{L}_2 \subseteq \mathbb{R}^n$ are a 2 <i>l</i> -dimensional mark	two <i>l</i> -dimensional manifolds, then $L_1 \cup L_2$ is a hifold.	
Τ	12. Carrying out a full image pattern space yield 1,440,000 prin 1,440,000.	PCA on the world's image data in our TICS e (which has dimension $n = 1,440,000$) would ncipal component vectors u_i , each of dimension	
F	13. Given a <i>centered</i> da vector u_1 is the data	tset $(x_i)_{i=1,,N}$, the leading principal component mean μ .	
	14. (question dismissed	- was not stated precisely enough)	
C.	Classification problems, loss and decision functions		
F	15. A binary decision to many leaves as ther	ree learnt for a classification task has exactly as e are classes.	
F	16. A loss function assi labelled data.	gns a real number to a set $(x_i, y_i)_{i = 1,, N}$ of	
F	17. Consider a fea linear classifiers d(findex of the maxim vector of the correct the minimal expect a linear classifier, a expected quadratic	ture representation with feature vectors \mathbf{f}_i and \mathbf{f}_i) = $W \mathbf{f}_i$ where the class decision is given by the al value in $d(\mathbf{f}_i)$. Let z_i denote the binary indicator c class for pattern <i>i</i> . Claim: if $d_1(\mathbf{f}_i) = W_1 \mathbf{f}_i$ achieves ed misclassification rate that is possible for such nd if $d_2(\mathbf{f}_i) = W_2 \mathbf{f}_i$ achieves the minimal possible loss $[[d_2(\mathbf{f}_i) - z_i]]^2$, then $d_1 = d_2$.	
F	18. In a two-cla problem with 3-dim distributed in pa indicated in the figur features $f_1, f_2: \mathbb{R}^3$ – needed such that classification becom only those features to the decision p	ss classification hensional patterns attern space as re to the right, two → R are minimally (almost) perfect hes possible when are used as input rocedure. [image bience.com/category/data-science/]	
Т	19. A <i>k</i> -class classificat $x \in \mathbb{R}$ can be solved $w x_i$ only if $k \le 2$.	tion problem with one-dimensional patterns d by a simple linear classifier of the kind $d(x_i) =$	
D.	Bias-variance dilemma, cross-	validation, and friends	
F	20. A simple linear clas overfitting.	sifier of the kind $d(\mathbf{f}_i) = W \mathbf{f}_i$ can never be	
Т	21. In cross-validation, risk.	the validation error serves as an estimate for the	

Т	2	2. The bias-variance problem becomes less of an issue if one has more training data available.
F	2	3. Let <i>D</i> and <i>D'</i> be two decision functions that achieve exactly zero training error. Then their risks are equal, that is $R(D) = R(D')$.
F	2	4. When using ridge regression to solve a linear regression task (formula below), then the optimal α found by cross-validation will move closer to zero when one has smaller training data sets. $w'_{opt} = (\frac{1}{N} X X' + \alpha^2 I_{n \times n})^{-1} \frac{1}{N} X Y$
Т	2	5. An optimal model capacity has been determined by <i>m</i> -fold cross-validation in two separate learning experiments. The experiments differed only in a single aspect: the choice of the number <i>m</i> of folds. In the first experiment, $m = 5$ was used, and in the second, $m = 10$. It was observed that the validation error plots (green and red line in figure) came out differently. Claim: the green and red lines have been labelled correctly, that is, the green line indeed shows the results of 5-fold and the red line that of the 10-fold setting.
F	2	6. The "variance" mentioned in the phrase "bias-variance dilemma" derives from the fact that that when a model with high capacity is used for training, its estimated parameters $\hat{\theta}$ will vary more strongly across different learning trials (using freshly sampled data each time) than when a model of low capacity is used.
Е.	MLPs and	l gradient descent
Т	2	7. After training, an MLP with <i>n</i> input units and <i>k</i> output units represents a function from \mathbb{R}^n to \mathbb{R}^k .
F	2	8. Let \mathcal{M}_1 be an MLP with a single input unit, a single output unit, and 100 hidden units in a single hidden layer. Let \mathcal{M}_2 be an MLP with a single input unit, a single output unit, and 10 hidden units in each of 10 hidden layers. Both MLPs are without bias units. Then \mathcal{M}_1 has more trainable parameters than \mathcal{M}_2 .
F	2	9. When one uses early stopping as a method to prevent overfitting, one must split the available data into <i>one</i> training and <i>one</i> validation set; that is, one cannot use <i>k</i> -fold cross-validation with $k > 2$.

F	30. When applying the backpropagation algorithm for training an MLP,
	the MLP parameters θ will remain frozen at their initial zero values
	if the model is initialized with all parameters set to zero.