
Machine	Learning,	Spring	2018:	Final	Exam	
 

Your name: 
 
How this works. On the back side you find a list of 30 claims which are either true or 
false. To the left of each claim you find two boxes, one of which has a tiny f and the 
other a tiny t shown in it. If you think the claim is true, tick the box with the tiny t, and 
if you think the claim is false, tick the f box. In this way you can get a maximum score 
of 10 correct answers.  
 
How this is scored.  If you get everything right, you earn a 100% score. If you get 15 
out of 30 right (which means random guessing), the score is 35%. (grade 5.0). 
Anything else is obtained by linear interpolation, and never less than 0%. This spells 
out to what you find in the following table: 
 

correct n score 
0 – 6  0 

7 0,33 
8 4,67 
9 9,00 

10 13,33 
11 17,67 
12 22,00 
13 26,33 
14 30,67 
15 35,00 
16 39,33 
17 43,67 
18 48,00 
19 52,33 
20 56,67 
21 61,00 
22 65,33 
23 69,67 
24 74,00 
25 78,33 
26 82,67 
27 87,00 
28 91,33 
29 95,67 
30 100,00 

 
  



Notation used in this exam: let P ⊆ ℝ# always denote a pattern space of patterns 
given as vectors, x Î P patterns, f: 𝐏	 → ℝ features, f: 𝐏	 → ℝ' feature vector 
functions. 
 
Answer 
box 

Claims (claims marked with a A are a little more challenging than the rest) 

A. Elementary probability and basic math notation 

F  1. The expectation of a numerical random variable is always at least as 
large as its variance. 

F  2. If p:	ℝ → ℝ is the pdf of the distribution of a RV X, and [a, b] is an 
interval of ℝ, then p cannot be exactly equal to zero everywhere in 
this interval.  

T  3. If p:	ℝ → ℝ is the pdf of the distribution of a RV X, then q:	ℝ → ℝ, 
defined by q(x) = p(x + E[X]), is the pdf of the centered version of 
X. 

T  4. If X is a RV that takes values {male, female} and Y is a RV that takes 
values in {tall, short}, the probability P(X = male) can be computed 
from the two joint probabilities P(X = female, Y = tall), P(X = female, 
Y = short). 

T  5. If a ¹ b, then always P(X = a | Y = c) + P(X = b | Y = c) £ 1.  

F  6. argmax
.∈[12,2]

cos 𝑥 = 1. 

B. Features and dimension reduction, PCA.  

T  7. The grayscale value of the topmost leftmost pixel of a picture is a 
feature.  

T  8. A Consider a real-life, high-dimensional pattern space of n-
dimensional patterns (like image spaces), and a training sample size 
N which is large (millions of examples -- as in deep learning it 
usually is). The training sample has been obtained by i.i.d. 
sampling. You pick a random pattern x from that training sample. 
Then, the probability that there is another pattern x' in that sample, 
which is very similar to x (in the metric distance sense that 
𝑥 − 𝑥′ < 0.1), is so exceedingly small that it would lead to 

numerical underflow if represented by floating-point precision on a 
digital computer.  

F  9. A If one has two feature vector functions f1, f2: 𝐏	 → ℝ', then 
there always exists a feature transformation T: ℝ' 	→ ℝ', such that 
for all patterns x, T(f1(x)) = f2(x). 

T  10. The codebook vectors ci obtained from K-means clustering of 
patterns can be used to construct features defined by                     
fi(x) = 𝑥 − 𝑐A . 



F  11. If L1, L2 ⊆ ℝ𝒏 are two l-dimensional manifolds, then L1 È L2 is a 
2l-dimensional manifold.  

T  12. Carrying out a full PCA on the world's image data in our TICS 
image pattern space (which has dimension n = 1,440,000) would 
yield 1,440,000 principal component vectors ui, each of dimension 
1,440,000. 

F  13. Given a centered datset (xi)i=1,…,N, the leading principal component 
vector u1 is the data mean µ. 

  14. (question dismissed – was not stated precisely enough)  

C. Classification problems, loss and decision functions 

F  15. A binary decision tree learnt for a classification task has exactly as 
many leaves as there are classes.  

F  16. A loss function assigns a real number to a set (xi, yi)i = 1, …, N of 
labelled data.  

F  17. A Consider a feature representation with feature vectors fi and 
linear classifiers d(fi) = W fi where the class decision is given by the 
index of the maximal value in d(fi). Let zi denote the binary indicator 
vector of the correct class for pattern i. Claim: if d1(fi) = W1fi achieves 
the minimal expected misclassification rate that is possible for such 
a linear classifier, and if d2(fi) = W2 fi achieves the minimal possible 
expected quadratic loss 𝑑D 𝐟A − 𝑧A D, then d1 = d2.  

F  18. A In a two-class classification 
problem with 3-dimensional patterns 
distributed in pattern space as 
indicated in the figure to the right, two 
features f1, f2: R3 → R are minimally 
needed such that (almost) perfect 
classification becomes possible when 
only those features are used as input 
to the decision procedure. [image 
taken from lovingscience.com/category/data-science/] 

T  19. A k-class classification problem with one-dimensional patterns        
x Î R can be solved by a simple linear classifier of the kind d(xi) = 
w xi only if k £ 2.  

D. Bias-variance dilemma, cross-validation, and friends 

F  20. A simple linear classifier of the kind d(fi) = W fi can never be 
overfitting. 

T  21. In cross-validation, the validation error serves as an estimate for the 
risk. 



T  22. The bias-variance problem becomes less of an issue if one has more 
training data available. 

F  23. Let D and D' be two decision functions that achieve exactly zero 
training error. Then their risks are equal, that is R(D) = R(D'). 

F  24. When using ridge regression to solve a linear regression task 
(formula below), then the optimal a found by cross-validation will 
move closer to zero when one has smaller training data sets. 

 

T  25. A An optimal model capacity 
has been determined by m-fold 
cross-validation in two separate 
learning experiments. The 
experiments differed only in a 
single aspect: the choice of the 
number m of folds. In the first 
experiment, m =5 was used, and 
in the second, m = 10. It was 
observed that the validation error 
plots (green and red line in figure) came out differently. Claim: the 
green and red lines have been labelled correctly, that is, the green 
line indeed shows the results of 5-fold and the red line that of the 
10-fold setting. 

F  26. The "variance" mentioned in the phrase "bias-variance dilemma" 
derives from the fact that that when a model with high capacity is 
used for training, its estimated parameters 𝜃 will vary more strongly 
across different learning trials (using freshly sampled data each 
time) than when a model of low capacity is used. 

E. MLPs and gradient descent 

T  27. After training, an MLP with n input units and k output units 
represents a function from ℝ# to ℝ'. 

F  28. Let M1 be an MLP with a single input unit, a single output unit, and 
100 hidden units in a single hidden layer. Let M2 be an MLP with a 
single input unit, a single output unit, and 10 hidden units in each of 
10 hidden layers. Both MLPs are without bias units. Then M1 has 
more trainable parameters than M2.  

F  29. When one uses early stopping as a method to prevent overfitting, 
one must split the available data into one training and one validation 
set; that is, one cannot use k-fold cross-validation with k > 2. 



F  30. When applying the backpropagation algorithm for training an MLP, 
the MLP parameters q will remain frozen at their initial zero values 
if the model is initialized with all parameters set to zero.   

 


