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Problem 1. (Visualization of the bias-variance characteristics of learning procedures). 
Consider a learning task where a two-parametric model of a decision function D with 
parameters q = (q1, q2) is learnt from a training sample. For instance, q1 and q2 might 
be two weights for a linear decision function. Consider an repeated learning 
experiment where D is learnt ten times from ten different, freshly drawn training 
samples (xi 

j, yi 
j)i = 1,…,N, j = 1, …, 10. This gives ten model estimates 𝜃 1 ,… , 𝜃 10 . The 

outcome of such learning trials depends on the training algorithm that is used. 
Consider a scenario where three different training algorithms S, T, U are compared, 
leading to three times ten model estimates  	𝜃' 1 , … , 𝜃' 10 ; 𝜃( 1 ,… , 𝜃( 10 ;  
𝜃) 1 ,… , 𝜃) 10 . Note that each of the models 𝜃' 1 ,	etc., is a two-element 
parameter vector which can be conveniently plotted in a drawing plane. Furthermore 
let q* = (q*1, q*2) be the true model, that is, the parameters of the distribution from 
where the training samples were drawn. Assume that learning procedure S is 
characterized by zero bias and high variance, T is characterized by zero bias and small 
variance, and U has very small variance but nonzero bias. Draw a schematic plot in 
which you depict the 31 points q*, 𝜃' 1 ,… , 𝜃' 10 ; 𝜃( 1 ,… , 𝜃( 10 ;  
𝜃) 1 ,… , 𝜃) 10  in different colors (black: q*, green: 𝜃' 1 ,… , 𝜃' 10 ; red: 
𝜃( 1 ,… , 𝜃( 10 ; blue 𝜃) 1 ,… , 𝜃) 10 .  

 

Problem 2 (Proving equation (41) from the LN) Consider a supervised learning task 
based on samples (xi, yi)i = 1,…,N which have been obtained from random variables X 
and Y which take values in Rn and R, respectively. Let D: Rn ® R  be a decision 
function. Show that the quadratic risk EX,Y [(D(X) – Y)2] is minimized by  
 Dopt: Rn ® R, Dopt (x) = E[Y | X = x]. 

 

Problem 3. Consider two identically distributed, independent random variables X, Y 
which take values in R. We require that X has a finite expectation, E[X] < ¥ (and 
hence, the expectation E[Y] is finite too, because E[Y] = E[X]). Otherwise we impose 
no conditions on the distributions PX, PY. Consider a supervised learning task with a 
training sample (xi, yi)i = 1,…,N which has been obtained by drawing real numbers xi and 
yi with X and Y. A function D: R ® R is trained on this sample, using linear 
regression (with the constant-bias-1 extension) to minimize the MSE training error. 
What function D will be obtained in the limit of training sample size going to infinity? 

 


