Machine Learning, Spring 2019: Exercise Sheet 7

Problem 1. (Visualization of the bias-variance characteristics of learning procedures).
Consider a learning task where a two-parametric model of a decision function D with
parameters 0 = (0;, 0,) is learnt from a training sample. For instance, 6; and 6, might
be two weights for a linear decision function. Consider an repeated learning
experiment where D is learnt ten times from ten different, freshly drawn training
samples (xi/, v;/)i—1...vj 1. ... 10. This gives ten model estimates 8[1], ..., #[10]. The
outcome of such learning trials depends on the training algorithm that is used.
Consider a scenario where three different training algorithms S, 7, U are compared,
leading to three times ten model estimates 0°[1], ..., 8°[10]; 87[1], ..., 8T [10];
6Y[1], ...,0Y[10]. Note that each of the models 85[1], etc., is a two-element
parameter vector which can be conveniently plotted in a drawing plane. Furthermore
let 6* = (6*,, 6*,) be the true model, that is, the parameters of the distribution from
where the training samples were drawn. Assume that learning procedure S is
characterized by zero bias and high variance, 7 is characterized by zero bias and small
variance, and U has very small variance but nonzero bias. Draw a schematic plot in
which you depict the 31 points 6%, §5[1], ..., 8°[10]; 87[1], ..., 8T[10];
6Y[1],...,0Y[10] in different colors (black: 8*, green: 85[1], ..., 85[10]; red:

67[1], ...,67[10]; blue §V[1], ..., 8V[10].

Problem 2 (Proving equation (41) from the LN) Consider a supervised learning task
based on samples (x;, y;);=1....n Which have been obtained from random variables X
and Y which take values in R"” and R, respectively. Let D: R" — R be a decision
function. Show that the quadratic risk Ex y [(D(X) — Y)*] is minimized by

Dopi: R" > R, Doyt (x) = E[Y | X = x].

Problem 3. Consider two identically distributed, independent random variables X, Y
which take values in R. We require that X has a finite expectation, E[X] < oo (and
hence, the expectation E[Y] is finite too, because E[Y] = E[X]). Otherwise we impose
no conditions on the distributions Py, Py. Consider a supervised learning task with a
training sample (x;, y;);=1,... v Which has been obtained by drawing real numbers x; and
i with X'and Y. A function D: R — R is trained on this sample, using linear
regression (with the constant-bias-1 extension) to minimize the MSE training error.
What function D will be obtained in the limit of training sample size going to infinity?



