Machine Learning, Spring 2019: Exercise Sheet 7

Problem 1. (Visualization of the bias-variance characteristics of learning procedures). Consider a learning task where a two-parametric model of a decision function D with parameters $\theta = (\theta_1, \theta_2)$ is learnt from a training sample. For instance, θ_1 and θ_2 might be two weights for a linear decision function. Consider an repeated learning experiment where D is learnt ten times from ten different, freshly drawn training samples $(x_i^{j}, y_i^{j})_{i=1}$ $N_{i=1}$ 10. This gives ten model estimates $\hat{\theta}[1], \dots, \hat{\theta}[10]$. The outcome of such learning trials depends on the training algorithm that is used. Consider a scenario where three different training algorithms S, T, U are compared, leading to three times ten model estimates $\hat{\theta}^{s}[1], \dots, \hat{\theta}^{s}[10]; \hat{\theta}^{T}[1], \dots, \hat{\theta}^{T}[10];$ $\hat{\theta}^{U}[1], \dots, \hat{\theta}^{U}[10]$. Note that each of the models $\hat{\theta}^{S}[1]$, etc., is a two-element parameter vector which can be conveniently plotted in a drawing plane. Furthermore let $\theta^* = (\theta^*_1, \theta^*_2)$ be the true model, that is, the parameters of the distribution from where the training samples were drawn. Assume that learning procedure S is characterized by zero bias and high variance, T is characterized by zero bias and small variance, and U has very small variance but nonzero bias. Draw a schematic plot in which you depict the 31 points θ^* , $\hat{\theta}^s$ [1], ..., $\hat{\theta}^s$ [10]; $\hat{\theta}^T$ [1], ..., $\hat{\theta}^T$ [10]; $\hat{\theta}^{U}[1], \dots, \hat{\theta}^{U}[10]$ in different colors (black: θ^* , green: $\hat{\theta}^{S}[1], \dots, \hat{\theta}^{S}[10]$; red: $\hat{\theta}^{T}[1], \dots, \hat{\theta}^{T}[10];$ blue $\hat{\theta}^{U}[1], \dots, \hat{\theta}^{U}[10].$

Problem 2 (Proving equation (41) from the LN) Consider a supervised learning task based on samples $(x_i, y_i)_{i=1,...,N}$ which have been obtained from random variables X and Y which take values in \mathbb{R}^n and \mathbb{R} , respectively. Let $D: \mathbb{R}^n \to \mathbb{R}$ be a decision function. Show that the quadratic risk $E_{X,Y}[(D(X) - Y)^2]$ is minimized by

 D_{opt} : $\mathbb{R}^n \to \mathbb{R}$, $D_{\text{opt}}(x) = E[Y | X = x]$.

Problem 3. Consider two identically distributed, independent random variables *X*, *Y* which take values in \mathbb{R} . We require that *X* has a finite expectation, $E[X] < \infty$ (and hence, the expectation E[Y] is finite too, because E[Y] = E[X]). Otherwise we impose no conditions on the distributions P_X , P_Y . Consider a supervised learning task with a training sample $(x_i, y_i)_{i=1,...,N}$ which has been obtained by drawing real numbers x_i and y_i with *X* and *Y*. A function $D: \mathbb{R} \to \mathbb{R}$ is trained on this sample, using linear regression (with the constant-bias-1 extension) to minimize the MSE training error. What function *D* will be obtained in the limit of training sample size going to infinity?