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Problem 1. (Visualization of the bias-variance characteristics of learning procedures). 
Consider a learning task where a two-parametric model of a decision function D with 
parameters q = (q1, q2) is learnt from a training sample. For instance, q1 and q2 might 
be two weights for a linear decision function. Consider an repeated learning 
experiment where D is learnt ten times from ten different, freshly drawn training 
samples (xi 

j, yi 
j)i = 1,…,N, j = 1, …, 10. This gives ten model estimates 𝜃 1 ,… , 𝜃 10 . The 

outcome of such learning trials depends on the training algorithm that is used. 
Consider a scenario where three different training algorithms S, T, U are compared, 
leading to three times ten model estimates  	𝜃' 1 , … , 𝜃' 10 ; 𝜃( 1 ,… , 𝜃( 10 ;  
𝜃) 1 ,… , 𝜃) 10 . Note that each of the models 𝜃' 1 ,	etc., is a two-element 
parameter vector which can be conveniently plotted in a drawing plane. Furthermore 
let q* = (q*1, q*2) be the true model, that is, the parameters of the distribution from 
where the training samples were drawn. Assume that learning procedure S is 
characterized by zero bias and high variance, T is characterized by zero bias and small 
variance, and U has very small variance but nonzero bias. Draw a schematic plot in 
which you depict the 31 points q*, 𝜃' 1 ,… , 𝜃' 10 ; 𝜃( 1 ,… , 𝜃( 10 ;  
𝜃) 1 ,… , 𝜃) 10  in different colors (black: q*, green: 𝜃' 1 ,… , 𝜃' 10 ; red: 
𝜃( 1 ,… , 𝜃( 10 ; blue 𝜃) 1 ,… , 𝜃) 10 .  

Solution. 

 

 

 

Problem 2 (Proving equation (41) from the LN) Consider a supervised learning task 
based on samples (xi, yi)i = 1,…,N which have been obtained from random variables X 
and Y which take values in Rn and R, respectively. Let D: Rn ® R  be a decision 
function. Show that the quadratic risk EX,Y [(D(X) – Y)2] is minimized by  
 Dopt: Rn ® R, Dopt (x) = E[Y | X = x]. 



Solution. We have to show that for every x,  

𝐸 𝑌 𝑋 = 𝑥 = 𝑎𝑟𝑔𝑚𝑖𝑛5∈ℝ𝐸8|:;<[ 𝑦 − 𝑌 @]. 

We carry out some transformations,  

𝐸8|:;< 𝑦 − 𝑌 @ = 𝐸8|:;< 𝑦@ + 𝑌@ − 2𝑦𝑌  =  

  = 𝐸8|:;< 𝑦@] + 𝐸8|:;<[𝑌@] − 2𝑦𝐸8|:;<[𝑌  

  = 𝑦@ + 𝐸8|:;< 𝑌@ − 2𝑦𝐸8|:;< 𝑌  

The 𝑎𝑟𝑔𝑚𝑖𝑛5∈ℝ of this sum is independent of the middle term. We thus must find 

𝑎𝑟𝑔𝑚𝑖𝑛5∈ℝ	𝑦@ − 2𝑦𝐸8|:;< 𝑌  

This is a quadratic function of y which has a minimum at y = 𝐸8|:;< 𝑌   which we 
also can write as 𝐸 𝑌 𝑋 = 𝑥 . 

 

Problem 3. Consider two identically distributed, independent random variables X, Y 
which take values in R. We require that X has a finite expectation, E[X] < ¥ (and 
hence, the expectation E[Y] is finite too, because E[Y] = E[X]). Otherwise we impose 
no conditions on the distributions PX, PY. Consider a supervised learning task with a 
training sample (xi, yi)i = 1,…,N which has been obtained by drawing real numbers xi and 
yi with X and Y. A function D: R ® R is trained on this sample, using linear 
regression (with the constant-bias-1 extension) to minimize the MSE training error. 
What function D will be obtained in the limit of training sample size going to infinity? 

Solution. According to what we saw in Problem 1, the constant function    
D*: R ® R, D*(x) = E[Y], is the function which minimizes the quadratic risk E[(D(X) 
– Y)2]. Since D* is an affine function, and the affine functions can be represented by 
the weight vectors computed by linear regression, and since linear regression finds the 
weight vector that minimizes the quadratic empirical risk, and since with sample size 
N going to infinity, the empirical risk converges to the risk, D* will be obtained by 
linear regression (on asymptotically infinite-size training samples).  

 

 


