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Problem 1. Consider the polynomial curve fitting example from Section 7.2.1 in the 
LNs. In the LNs I say that polynomial curve fitting can be done by calling a ready-
made function polyfit that Matlab offers you. In fact, polyfit is just a special case of 
linear regression. Find out for yourself how polyfit can be programmed (without 
peeking at the Matlab documentation). More specifically, consider the following 
optimization problem. Given: a sample (xi, yi)i = 1, …, N of argument-value training 
points, where xi, yi are real numbers. Also given: a maximal polynomial degree m. 
Design an algorithm that finds the optimal weight vector W = (w0, …, wm)' defined by 
the loss function 
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All you have to do is to find a way to translate this problem into an instance of the 
linear regression problem specified in Equation (18) in the LNs.  
 
Problem 2. Let g[µ, s2] denote the pdf of a normal distribution with expectation µ 
and variance s2. A real-valued random variable X has a mixture of Gaussians (MoG) 
pdf p(x) = åi  = 1, …, k ai g[µi, si

2] (x), where the k mixture coefficients ai are non-
negative and sum to 1. What is E[X]?  – Note: Mixture of Gaussians representations 
of distributions are very popular in ML because they combine simplicity with 
flexibility. The three graphics in Figure 23 in the LN actually show a MoG example 
where si

2 is shrinking from the left to the right panel and all ai are equal to 1/6.  
 
Problem 3. Given a size-N training sample (xi, yi)i = 1, …, N of argument-value training 
points, setting up an L-fold cross validation scheme for model optimization requires 
one to decide on the number L of folds in the first place. The two extreme cases are L 
= 2 (smallest possible number of folds) and L = N (largest possible number of folds, 
"leave-one-out cross-validation"). Following the routines of the cross-validation 
procedure, in each of these cases one will determine an optimal model capacity. Here 
is a claim: 
 
"When one uses 2-fold cross-validation, the optimal model capacity found is likely to 
be too low, that is, one will settle on a model capacity mopt 2-fold which is smaller than 
the true optimal model capacity mopt and hence will give underfitting models in the 
end; whereas if one uses leave-one-out cross-validation, one will determine a model 
capacity mopt N-fold which is greater than mopt, hence ultimately leading to overfitting." 
 
Is this claim true? What is, in effect, the best choice for L? Give your reasoning in 
plain English. 
 
 


