
Machine	Learning,	Spring	2019:	Exercise	Sheet	6	–	Solutions			

Problem 1. Consider the polynomial curve fitting example from Section 7.2.1 in the
LNs. In the LNs I say that polynomial curve fitting can be done by calling a ready-
made function polyfit that Matlab offers you. In fact, polyfit is just a special case of
linear regression. Find out for yourself how polyfit can be programmed (without
peeking at the Matlab documentation). More specifically, consider the following
optimization problem. Given: a sample (xi, yi)i = 1, …, N of argument-value training
points, where xi, yi are real numbers. Also given: a maximal polynomial degree m.
Design an algorithm that finds the optimal weight vector W = (w0, …, wm)' defined by
the loss function

L(W) = !

"
	 𝑤% + 𝑤!𝑥(+ ⋯+ 𝑤*𝑥(* − 𝑦(-"

(.!

All you have to do is to find a way to translate this problem into an instance of the
linear regression problem specified in Equation (18) in the LNs.

Solution. This works by assigning to each data point xi a feature vector
fi = (1, 𝑥(, 𝑥(-, … 𝑥(*)′, setting zi = yi, then applying Equation (18) mechanically.

Problem 2. Let g[µ, s2] denote the pdf of a normal distribution with expectation µ
and variance s2. A real-valued random variable X has a mixture of Gaussians (MoG)
pdf p(x) = åi = 1, …, k ai g[µi, si

2] (x), where the k mixture coefficients ai are non-
negative and sum to 1. What is E[X]? – Note: Mixture of Gaussians representations
of distributions are very popular in ML because they combine simplicity with
flexibility. The three graphics in Figure 23 in the LN actually show a MoG example
where si

2 is shrinking from the left to the right panel and all ai are equal to 1/6.

Solution. Let for each i, Xi be a RV distributed with pdf g[µi, si

2]. Then
X = åi = 1, …, k ai Xi and

𝐸 𝑋 = 𝐸 𝛼(𝑋((.!,…,9 = 	 𝐸[𝛼(𝑋(] =(.!,…,9 	 	𝛼(𝐸[𝑋(] =(.!,…,9 	𝛼(𝜇((.!,…,9 .

Problem 3. Given a size-N training sample (xi, yi)i = 1, …, N of argument-value training
points, setting up an L-fold cross validation scheme for model optimization requires
one to decide on the number L of folds in the first place. The two extreme cases are L
= 2 (smallest possible number of folds) and L = N (largest possible number of folds,
"leave-one-out cross-validation"). Following the routines of the cross-validation
procedure, in each of these cases one will determine an optimal model capacity. Here
is a claim:

"When one uses 2-fold cross-validation, the optimal model capacity found is likely to
be too low, that is, one will settle on a model capacity mopt 2-fold which is smaller than
the true optimal model capacity mopt and hence will give underfitting models in the
end; whereas if one uses leave-one-out cross-validation, one will determine a model
capacity mopt N-fold which is greater than mopt, hence ultimately leading to overfitting."

Is this claim true? What is, in effect, the best choice for L? Give your reasoning in
plain English.

Solution. The claim is half true. When one uses a small number of folds, the number
of data points that are used to optimize the training error is smaller than with a larger
number of folds. With fewer training data points, models of smaller capacity can
already fit well (or overfit) the training data, so the validation leads to stronger
regularization. Thus 2-fold cross-validation will significantly tend to underfitting.
However, even leave-one-out cross-validation will lead to underfitting (though
negligible in practice) – so the second part of the claim is incorrect. The best one can
do is thus leave-one-out cross-validation (L = N), which unfortunately is also the most
expensive option. If computational costs permit, I personally typically go for 5- or 10-
fold cross-validation.

