Machine Learning, Spring 2019: Exercise Sheet 4

Problem 1 (linear algebra training). Let $x_1, ..., x_m \in \mathbb{R}^n$ be *m* linearly independent *n*-dimensional vectors, and let μ be their mean. Prove that the centered points $\bar{x}_1 = x_1 - \mu, ..., \bar{x}_m = x_m - \mu$ span an *m*-1 dimensional subspace of \mathbb{R}^n . (Recall that a set $x_1, ..., x_m$ of vectors is called linearly independent if $a_1 x_1 + ... + a_m x_m = \mathbf{0}$ implies $a_1 = ... = a_m = 0$.)

Problem 2 (A very toy-ish demo of PCA) Assume you have a sample *S* of four 2dimensional datapoints from \mathbb{R}^2 , $S = \{(1,1)', (0,0)', (0,0)', (-1, -1)'\}$. What are the two principal component vectors \mathbf{u}_1 , \mathbf{u}_2 of this dataset?