Machine Learning, Spring 2019: Exercise Sheet 4 – Solutions

Problem 1 (linear algebra training). Let $x_1, ..., x_m \in \mathbb{R}^n$ be *m* linearly independent *n*-dimensional vectors, and let μ be their mean. Prove that the centered points $\bar{x}_1 = x_1 - \mu, ..., \bar{x}_m = x_m - \mu$ span an *m*-1 dimensional subspace of \mathbb{R}^n . (Recall that a set $x_1, ..., x_m$ of vectors is called linearly independent if $a_1 x_1 + ... + a_m x_m = \mathbf{0}$ implies $a_1 = ... = a_m = 0$.)

Solution. First we show that $\bar{x}_1, ..., \bar{x}_m$ are linearly dependent. Using unit combination coefficients $a_i = 1$ for all $1 \le i \le m$, we find that

$$\bar{x}_1 + \dots + \bar{x}_m = (x_1 - \mu) + \dots + (x_m - \mu) = \sum_{i=1}^m x_i - m \frac{1}{m} \sum_{i=1}^m x_i = 0$$

hence $\bar{x}_1, ..., \bar{x}_m$ are linearly dependent and thus span a subspace of dimension less than m.

Next we show that $\bar{x}_1, ..., \bar{x}_{m-1}$ are linearly independent (then we are done, because then $\bar{x}_1, ..., \bar{x}_m$ span an m-1 dimensional subspace). Consider a linear combination satisfying $a_1\bar{x}_1 + \cdots + a_{m-1}\bar{x}_{m-1} = 0$. We show that this implies that all a_j are zero:

$$0 = a_1 \bar{x}_1 + \dots + a_{m-1} \bar{x}_{m-1} =$$

$$= \sum_{i=1}^{m-1} a_i x_i - \left(\sum_{i=1}^{m-1} a_i\right) \mu$$

$$= \sum_{i=1}^{m-1} a_i x_i - \left(\sum_{i=1}^{m-1} a_i\right) \frac{1}{m} \sum_{i=1}^{m} x_i$$

$$= -\frac{1}{m} \left(\sum_{i=1}^{m-1} a_i\right) x_m + \sum_{i=1}^{m-1} \left(a_i - \frac{1}{m} \left(\sum_{i=1}^{m-1} a_i\right)\right) x_i$$

 $\Rightarrow -\frac{1}{m} (\sum_{i=1}^{m-1} a_i) = 0 \text{ because } x_1, \dots, x_m \text{ are linearly independent and hence} \\ a_i - \frac{1}{m} (\sum_{i=1}^{m-1} a_i) = 0 \text{ for all } 1 \le i \le m - 1, \text{ from which } a_i = 0 \text{ for all } 1 \le i \le m - 1 \text{ follows.} \end{cases}$

Problem 2 (A very toy-ish demo of PCA) Assume you have a sample *S* of four 2dimensional datapoints from \mathbb{R}^2 , $S = \{(1,1)', (0,0)', (0,0)', (-1, -1)'\}$. What are the two principal component vectors \mathbf{u}_1 , \mathbf{u}_2 of this dataset?

Solution. The first PC vector is $\mathbf{u}_1 = (1,1)' || (1,1)' || = (1,1)' / \sqrt{2}$. The second PC vector is a unit-length vector orthogonal to \mathbf{u}_1 , that is $\mathbf{u}_2 = (1, -1)' / \sqrt{2}$. Note: the negatives of \mathbf{u}_1 , \mathbf{u}_2 would likewise qualify as PC vectors, because PC vectors are unique only up to their sign.