
Machine	Learning,	Spring	2019:	Exercise	Sheet	3	(with	some	solutions)		
 
Problem 1 (easy, informal). Make a list of 5 classification tasks of real-world 
relevance and present them in a format similar to the table at the beginning of Section 
4 of the lecture notes. The purpose of this task is to make you aware of the (almost) 
universality of the notion of "classification" – once you start thinking of examples 
you'll find that many relevant real-life problems can be cast as picking the right labels 
for patterns.  
 
(no solution given) 
 
Problem 2. Consider the Digits dataset. Specify (in words or formulas) 8 binary 
features f1, …, f8 which assign either the value 1 or the value 0 to a digit image x, such 
that, if you know f1(x), …, f8(x), you know which digit is shown.  
 
Solution. For instance, put 
 
f1(x) = 1 if picture shows a strong centered vertical or slanted black line spanning the 
picture range, else 0. (would be a feature that gives 1 for images showing a 1, 2, or 7) 
 
f2(x) = 1 if picture contains a local patch that has a “§” shape, maybe a bit slanted, else 
0 (indicative of digits 4, 8, 9) 
 
f3(x) = 1 if picture contains an “o” shaped substructure, else 0 (indicative of digits 0, 
6, 8, 9) 
 
etc… you get the spirit; in the end, the combination of the 8 feature values should 
identify a digit. 
 
This is, by the way, the kind of hand-crafted feature design that was used by engineers 
in the early days of optical character recognition systems.  
 
Problem 3. Describe a collection of binary decision questions that yield a decision 
tree for classifying animal classes {Fish, Bird, Worm, Snake, Cat, Dog}.  
 
Solution. Here is a computer-science like rendering of a decision tree: 
 
(Has_legs?  (Y Has-Wings?  (Y Bird)  

(N Voice=Barking? 
 (Y Dog) 
 (N Cat)))  

(N Has-dry-skin?  (Y Snake) 
(N Lives-in-Water? 

(Y Fish) 
(N Worm)))) 
 

Problem 4. (computing a decision boundary). Consider a two-class classification 
problem with classes c1, c2, where the decision is based on a single feature f: P ® R. 



Let g1, g2 be the pdf’s of the class-conditional distributions PX | Y = ci (where i = 1, 2). 
Concretely, let these pdf’s be the Gaussians  
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Let the class probabilities be denoted by 
 
P(Y = ci) = gi  (i = 1, 2). 
 
Give a formula for the decision boundary. You will find that there are three distinct 
cases of how the decision boundary may look like. Draw schematic plots of these 
three situations.  
 
Solution. We have to solve  
 
g1 g1(x) = g2 g2(x) 
 
for x. Written out, this equation is  
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Taking the log on both sides, one obtains a quadratic equation in x, which may have 
zero, one, or two real-valued solutions. Case “zero solutions”: one of the decision 
functions P(Y = ci) gi(x) is everywhere larger than the other. Case “one solution”: the 
two scaled Gaussian curves intersect for only one value of the feature x. Case “two 
solutions”: they intersect twice. See figure below for these cases. The case “one 
solution” is obtained if and only if s1 = s2 and µ1 ¹ µ2.  
 

 
 


