
Advanced Computer Science 1    
First midterm, October 4, 2006 
 
Solution sheet 
 
 
Note. You may quote any result from the lecture notes or a textbook within your solutions. 
Note. A maximum of 100 points is accredited for this exam (sum of points of all problems = 
110) 

1. (10 points) Design an ε-NFA which accepts the language over Σ = {0,1} that is described 
by the regular expression 00* + 11*1. Present your ε-NFA by a transition diagram.  

 
Solution.  

 
 

 
 
 
 

2. (15 points) Transform the following NFA into a DFA through the subset construction. 
Your DFA should have a totally defined transition function (that is, include a dead state if 
necessary). Present your DFA by a transition diagram, where the states are labelled by the 
sets of NFA states.  

 
 
 
 
 
 
 
 
 
 
Solution. 
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3. a. (15 points) Show that the DFA below is minimal. b. (15 points) Re-arrange a single 
transition arrow in the diagram below such that the resulting DFA is not minimal. Draw 
the re-arranged transition diagram and draw a transition diagram for the resulting minimal 
DFA.  

 
 
 
 
 
 
 
 
 
 
 
Solution. a. Carrying out the table-filling algorithm, one finds that in the first round the state 
pairs (a, b), (a, e), (b, c), (b, d), (c, e), (d, e)  are found to be distinguishable, and in the second 
round all remaining state pairs. Thus, no two states are indistinguishable and therefore the 
DFA is minimal.  
b. One solution is the following: 
 
re-arranged:       minimalized: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4. (15 points) Show that the language L = {0n1n2
 ∈ {0,1}* | n ≥ 0} is not regular.  

 
Solution. Pumping lemma! Assume L is regular with pumping constant k. Consider w = 0k1k2

 
∈ L. By PL, w = xyz, with |xy| ≤ k, |y| > 0. Because |xy| ≤ k, y must consist entirely of 0's. By 
PL, then also 0k-|y|1k2

 ∈ L, a contradiction.  

 

5. (20 points) Let L be a regular language. Is the language M = {w|w| | w ∈ L} always 
regular? Prove your answer.  

 
Solution. M is not always regular. For a counterexample, consider L = L(0*). Then M = {0n2

 | 
n ≥ 0}. A pumping lemma argument shows that M is not regular. (This argument should be 
carried out in the exam solution; or it might be quoted from a textbook). 
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6. (20 points) Let L be a regular language, and K be a finite language. Show that                       
M = {wk | w ∈ K, there exists v ∈ L with |v| = k} is regular.  

Solution. Let K = {w1, ..., wn}. Then M = {w1
|v| | v ∈ L} ∪ ... ∪ {wn

|v| | v ∈ L}. Since the 
regular languages are closed under finite unions, it suffices to show that {w1

|v| | v ∈ L} is 
regular. Let ΣK and ΣL be the alphabets of K and L, respectively. Define a homomorphism h: 
ΣL → ΣK* by h(a) = w1 for all a ∈ ΣL. Then obviously {w1

|v| | v ∈ L} = h(L), hence this 
language is regular.  

 
 



Advanced Computer Science 1    
Second midterm, November 8, 2006 
 
Solution sheet 
 
 
Note. A maximum of 100 points is accredited for this exam (sum of points of all problems = 
110) 
Problem 1 A sequence language L over Σ is a language with two properties: (i) for each n ≥ 
0, there exists exactly one word in L of that length; (ii) if u, v ∈ L, |u| < |v|, then u is a prefix 
(= initial subword) of v.  

 
a. (5 points, 5 minutes) Give an example of a regular sequence language. 

b. (25 points, 15 minutes) Prove that every regular sequence language L is ultimately 
cyclic, that is, there exist words w and v such that L is the set of all initial substrings of 
the infinite sequence wvvvv... . Hint: you will benefit from the PL here. 

 

Solution. a. The simplest example is surely the language L(1*). 
b. Let L be a regular sequence language. Because L is regular, the PL holds for L. Let n be a 
PL constant for L. Because a sequence language is infinite, there must exist some w in L with 
|w| ≥ n. By the PL, w can be split into w = xyz, where |y| > 0, |xy| ≤ n, and every xykz (where k 
≥ 0) is in L. Thus L contains all the words xz, xyz, xyyz, xyyyz, etc. Because in a sequence 
language L it holds that if u ∈ L, v ∈ L, |v| < |u|, then u = vx for some x, we can conclude from 
xykz ∈ L that x, xy, xyy, ..., xyk ∈ L. Because xykz ∈ L for all k, we conclude that xyk ∈ L for all 
k. By the fact that sequence languages are closed under initial subwords, it follows that all 
initial strings of the infinite sequence xyyy... are in L. Because L is a sequence language, no 
other words can be in L. Thus L is the language of all initial substrings of xyyy..., hence L is 
ultimately cyclic. 
 

Problem 2 (40 points, 30 minutes) A "yes-PDA" Pyes = (Q, Σ, Γ, δ, q0, Z0) is defined like 
ordinary PDAs, with the extra condition that {Y, E, S} ⊆ Γ. Then the language accepted by 
Pyes by a yes-answer is  
 

L(Pyes) = {w ∈ Σ* | there exists q ∈ Q such that (q0, w, Z0) ¢Pyes* (q, ε, YES)}. 

 
Show that the languages that can be accepted by some yes-PDA by yes-answers are context-
free. (Note: the B group of this exam have to show the converse statement that the context-
free languages are accepted by yes-PDAs by yes-answers – so in fact, the "yes-PDA-
acceptable" languages are exactly the context-free languages.) 
 

Solution. Let Lyes be the set of all languages that can be accepted by some yes-PDA by a yes-
answer, and Lcf the set of all context-free languages. We show Lyes ⊆ Lcf. Let L ∈ Lyes, and 

Group A 



let Pyes = (Q, Σ, Γ, δ, q0, Z0) accept L by a yes-answer. We construct a PDA P = (Q', Σ, Γ', δ', 
q0', Z0, {u}) that accepts L by final state u.   
We put  

Q' = Q ∪ {q0', r, s, t, u}   [all are new states not already in Q] 

Γ' = Γ ∪ {Z1}   [Z1 not in Γ] 

δ' is δ plus the following new transitions. We first add one transition which at startup replaces 
Z0 by Z0Z1 and goes to the old start state q0: 

• (q0', ε, Z0) → (q0, Z0Z1)   

Now the old rules from δ allow P on input w to reach a configuration (q, ε, YESZ1) iff w is in 
the language of Pyes. 

We further add to δ the following rules that can empty away a top YES from the stack without 
processing input: 

• For all q ∈ Q, add the rule (q, ε, Y) → (r, ε)  [idea: start deleting YES] 

• In addition, add the rules (r, ε, E) → (s, ε), (s, ε, S) → (t, ε)  [idea: complete deletion 
of YES] 

• Finally, add the rule (t, ε, Z1) → (u, ε). 

Clearly this will bring P to its accepting state u iff w is in the language of Pyes. 

 

Problem 3. Consider the language L = {10k1k0| k ≥ 0}.  

a. (20 points, 10 minutes) Give a CNF grammar for this language.  
b. (5 points, 3 minutes) Show that there exists no grammar for L whose productions are all of 
the type A → BCD or A → a (where A, B, C, D are variables and a is a terminal).  

 

Solution. a. An obvious grammar for L is S → 10 | 1R0, R → 01 | 0R1. Transforming this into 
CNF is easy because this grammar already has no ε-productions, no unit pairs, and all 
symbols are useful. Thus only the last steps in the construction of CNFs are needed. The first 
production S → 10 yields new rules S → AB, A → 1, B → 0; the second production S → 1R0 
yields new rules A1 → 1, A0 → 0, S → A1T, T → RA0; the production R → 01 is replaced by R 
→ A0 A1, and the production R → 0R1 gives R → A0U, U → RA1. 

b. The word 10 cannot be generated with rules of the kind A → BCD or A → a, because (i) it 
clearly cannot be generated with rules of the kind A → a only, (ii) thus at least one call of a 
rule of the type A → BCD would be needed in any derivation of 10, (iii) any word w of 
terminals resulting from a derivation that calls some rule of the kind A → BCD would result 
in |w| ≥ 3, because of the absence of ε-productions.  

 
 

Problem 4 (10 points, 8 minutes) Show that the word ababa is in the language of the CNF 
grammar with the productions S → a | AB | AA; A → a | BA; B → b | SS (S is the start symbol). 

 



Solution. Applying the CYK algorithm yields the table 

 
  {B S A} 
  {B} {S B} 
  {S B} {S} {S B} 
  {S} {A} {S} {A} 
  {S A} {B} {S A} {B} {S A} 
  a b a b a 
 

Since S figures in the top cell, S generates our target word ababa. 
 

 
Problem 5  (5 points, 2 minutes). Give a complete list of all terms that are contained in the 
FOL expression  

∀x ∀y ((Vec x ∧ Vec y) → ∀r ∀s ((Scal r ∧ Scal s). → Vec + ⋅ r x ⋅ s y))), 

where Vec and Scal are unary predicate symbols and + and ⋅ are binary function symbols 
(you might read this expression as "the sum of two scalar-weighted vectors is a vector").  
 

Solution. The terms are x, y, r, s, ⋅ r x, ⋅ s y, and + ⋅ r x ⋅ s y. 



Advanced Computer Science 1    
Final exam, December 15, 2006 
 
Solution sheet 
 
 
 
Problem 1 (8 points) Here are four languages over Σ = {0, 1}: 

L1 = {010n120k | n, k > 0} L2 = {010n120n | n > 0}  

L3 = {0n1k | n > k}  L4 = {10n1 | n > 1000} 

Which of the following statements are correct? Please mark on your solution sheet.  

 

(a) L1 and L3 are regular N 

(b) L2 and L4 are regular N 

(c) Exactly two among these four languages are regular Y 
(d) All four languages are context-free Y 

 

(a) L1 and L2 are regular N 

(b) L3 and L4 are regular N 

(c) Exactly three among these four languages are regular N 

(d) All four languages are context-free Y 
 

(a) L1 and L2 are regular N 

(b) L3 and L4 are regular n 

(c) Exactly two among these four languages are regular Y 
(d) All four languages are context-free Y 

 

(a) L1 and L3 are regular N 

(b) L2 and L4 are regular N 

(c) Exactly three among these four languages are regular N 
(d) All four languages are context-free Y 

 
Key: 2 points per correct answer, −2 points per incorrect answer, 0 points for no answer. 

 
 

Group A 



Problem 2 (16 points) Which of the following statements is correct? Mark the correct ones on 
the solution sheet! 
 

(a) Given a regular language L, the minimal DFA accepting L has always exactly as many 
states as any minimal-size NFA accepting L. N 

(b) If A is a DFA for a language L, and A has two states q ≠ p such that for some nonempty 
word w it holds that δ(q, w) = δ(p, w) and δ(p, w) is an accepting state, then A is not 
minimal. N 

(c) An NFA for a language L can be transformed into a minimal DFA for L by first carrying 
out the subset construction and then deleting all inaccessible states. N 

(d) Let A = (Q, Σ, δ, q0, F) be a DFA. Define for every q ∈ Q the language L(q) = {w  ∈ Σ* | 
δ(q, w) ∈ F }. If for all p, q ∈ Q, q ≠ p, it holds that L(p) ∩ L(q) = ∅, then A is minimal. 
Y 

 
(a) Given a regular language L, the minimal DFA accepting L may have more states than a 

minimal-size NFA accepting L. Y 

(b) If A = (Q, Σ, δ, q0, F) is a DFA for a language L, and A has two states q ≠ p such that for 
every word w it holds that δ(q, w) ∈ F ⇔ δ(p, w) ∈ F, then A is not minimal. Y 

(c) The subset construction transforms a given NFA into an equivalent DFA, which however 
need not be minimal. To make it minimal, in a final step the inaccessible states have to be 
detected and removed. N 

(d) Let A = (Q, Σ, δ, q0, F) be a DFA. Define for every q ∈ Q the language L(q) = {w  ∈ Σ* | 
δ(q, w) ∈ F }. If for all p, q ∈ Q, q ≠ p, it holds that L(p) ∩ L(q) = ∅, then A is minimal. 
Y 

 

(e) Let A = (Q, Σ, δ, q0, F) be a DFA. Define for every q ∈ Q the language L(q) = {w  ∈ Σ* | 
δ(q, w) ∈ F }. If for all p, q ∈ Q, q ≠ p, it holds that L(p) ∩ L(q) = ∅, then A is minimal. 
Y 

(a) Given a regular language L, the minimal DFA accepting L has always exactly as many 
states as any minimal-size NFA accepting L. N 

(b) If A = (Q, Σ, δ, q0, F) is a DFA for a language L, and A has two states q ≠ p such that for 
every word w it holds that δ(q, w) ∈ F ⇔ δ(p, w) ∈ F, then A is not minimal. Y 

(c) The subset construction transforms a given NFA into an equivalent DFA, which however 
need not be minimal. To make it minimal, in a final step the inaccessible states have to be 
detected and removed. N 

 
(a) An NFA for a language L can be transformed into a minimal DFA for L by first carrying 

out the subset construction and then deleting all inaccessible states. N 

(b) Let A = (Q, Σ, δ, q0, F) be a DFA. Define for every q ∈ Q the language L(q) = {w  ∈ Σ* | 
δ(q, w) ∈ F }. If for all p, q ∈ Q, q ≠ p, it holds that L(p) ∩ L(q) = ∅, then A is minimal. 
Y  



(c) If A is a DFA for a language L, and A has two states q ≠ p such that for some nonempty 
word w it holds that δ(q, w) = δ(p, w) and δ(p, w) is an accepting state, then A is not 
minimal. N 

(d) Given a regular language L, the minimal DFA accepting L may have more states than a 
minimal-size NFA accepting L. Y 

 
Key: 4 points per correct answer, −4 points per incorrect answer, 0 points for no answer. 

 
 
Problem 3 (12 points) Here are four regular expressions over the alphabet {a, b}:  

E1 = (ab + a*b*b*)*      E2 = ((ab)* (a*b*b*)*)*    E3 = (a + b)*  E4 = a(a + b)* 

Which of the following statements are true? Mark them in your solution sheet. 
 

(a) L(E2) = L(E3) Y  

(b) L(E3) = L(E4) N  

(c) L(E1) = L(E4) N  

(d) The minimal DFA for L(E1) has five states. N 

(e) The minimal DFA for L(E3) has two states. N 

(f) The minimal DFA for L(E4) has two states. Y 

 

(a) L(E1) = L(E3) Y  

(b) L(E3) = L(E4) N  

(c) L(E2) = L(E4) N  

(d) The minimal DFA for L(E2) has five states. N 

(e) The minimal DFA for L(E3) has one state. Y 

(f) The minimal DFA for L(E4) has one state. N 

 

 

(a) L(E1) = L(E3) Y  

(b) L(E3) = L(E4) N  

(c) L(E2) = L(E4) N  

(d) The minimal DFA for L(E2) has five states. N 

(e) The minimal DFA for L(E3) has one state. Y 

(f) The minimal DFA for L(E4) has one state. N 



 

(a) L(E1) = L(E3) Y  

(b) L(E3) = L(E4) N  

(c) L(E2) = L(E4) N  

(d) The minimal DFA for L(E1) has five states. N 

(e) The minimal DFA for L(E3) has two states. N 

(f) The minimal DFA for L(E4) has two states. Y 

 
Key: 2 points per correct answer, −2 points per incorrect answer, 0 points for no answer. 

 

 
Problem 4 (20 points) A grammar G = (V, T, P, S) is called reduced if for every proper subset 
P' ⊂ P, which results in a grammar G' = (V, T, P', S), the language L(G') is a proper 
sublanguage of L(G). Which of the following statements are correct? Mark in your solution 
sheet! 
 

(a) Every grammar in Chomsky normal form is reduced. N 
(b) For every infinite context-free language L which does not contain ε, and every n ∈ Í, 

there exists a grammar for L in Chomsky normal form which has at least n variables. Y 
(c) For every infinite context-free language L which does not contain ε, and every n ∈ Í, 

there exists a reduced grammar for L in Chomsky normal form which has at least n 
variables. Y 

(d) If a grammar is reduced, it does not contain unit productions. N 

 
(a) If a grammar is reduced, all its variables are generating. Y 

(b) Every grammar in Chomsky normal form is reduced. N 
(c) For every infinite context-free language L which does not contain ε, and every n ∈ Í, 

there exists a grammar for L in Chomsky normal form which has at least n variables. Y 
(d) For every infinite context-free language L which does not contain ε, and every n ∈ Í, 

there exists a reduced grammar for L in Chomsky normal form which has at least n 
variables. Y 

 
(a) Every grammar in Chomsky normal form is reduced. N 

(b) If a grammar is reduced, all its variables are generating. Y 
(c) For every infinite context-free language L which does not contain ε, and every n ∈ Í, 

there exists a grammar for L in Chomsky normal form which has at least n variables. Y 



(d) For every infinite context-free language L which does not contain ε, and every n ∈ Í, 
there exists a reduced grammar for L in Chomsky normal form which has at least n 
variables. Y 

 
(a) For every infinite context-free language L which does not contain ε, and every n ∈ Í, 

there exists a grammar for L in Chomsky normal form which has at least n variables. Y 
(b) For every infinite context-free language L which does not contain ε, and every n ∈ Í, 

there exists a reduced grammar for L in Chomsky normal form which has at least n 
variables. Y  

(c) Every grammar in Chomsky normal form is reduced. N 

(d) If a grammar is reduced, it does not contain unit productions. N 
 
Key: 5 points per correct answer, −5 points per incorrect answer, 0 points for no answer. 

 
 
Problem 5 (8 points). Here are three natural-language sentences S1 –  S3, and four FOL 
expressions ϕ1 – ϕ4: 

S1: Every man loves a woman. S2: All men love all women.  

S3: Some man loves a woman. 
ϕ1: ∀x ∃y (Man x ∧ (Woman y ∧ Loves x y))   ϕ2: ∀x ∃y (Man x → (Woman y ∧ Loves x y)) 

ϕ3: ∀x ∀y (Man x ∧ (Woman y ∧ Loves x y))  ϕ4: ∃x ∃y (Man x ∧ (Woman y ∧ Loves x y)) 

 

Please mark on the solution sheet all of the following statements which you judge correct. 
 

(a)  ϕ1 is a correct formalization of S1. N 

(b)  ϕ2 is a correct formalization of S1. Y 

(c)  ϕ3 is a correct formalization of S2. N 

(d)  ϕ4 is a correct formalization of S3. Y 

 

(a)  ϕ1 is a correct formalization of S1. N 

(b)  ϕ3 is a correct formalization of S2. N 

(c)  ϕ2 is a correct formalization of S1. Y 

(e)  ϕ4 is a correct formalization of S3. Y 

 

(a)  ϕ2 is a correct formalization of S1. Y 

(b) ϕ1 is a correct formalization of S1. N 

(c)  ϕ4 is a correct formalization of S3. Y 



(d) ϕ3 is a correct formalization of S2. N 

 
(a)   ϕ2 is a correct formalization of S1. Y 

(b)  ϕ4 is a correct formalization of S3. Y 

(c)  ϕ1 is a correct formalization of S1. N 

(d)  ϕ3 is a correct formalization of S2. N 

 
Key: 2 points per correct answer, −2 points per incorrect answer, 0 points for no answer. 

 
 

 
Problem 6 (16 points). Here are the axioms of group theory: 

ϕ1: ∀x∀y∀z  (x ° y) ° z = x ° (y ° z) 
ϕ2: ∀x x ° e = x 
ϕ3: ∀x∃y x ° y = e 

The signature is S = {e, °}, where e is a constant symbol and ° is a binary function. Here are 
two S-structures: 
A = (A, eA, °

A), where A = {1, 2}, eA = 1 and °
A is given by the table below;  

B = (B, eB, °
B), where B = {1, 2, 3}, eB = 1 and °

B is given by the table below. 

 

°
A =     °

B = 

 
In the solution sheet, please tick the statements which are correct. 

(a)  ϕ1 is satisfiable Y 

(b)  A £ ϕ3 Y 

(c) ϕ1 £ ϕ2 N 

(d)  B £ (ϕ3 → ϕ1) Y 

 

(a) ϕ2 is satisfiable Y 

(b)  B £ ϕ1 Y 

(c)  ϕ3 £ ϕ2 N 

(d) A £ (ϕ3 → ϕ1) Y 

 
(a)  ϕ3 is satisfiable Y 

(b)  A £ ϕ2 N 

2 2 
1 1 1 
2 1 1 

1 2 3 
1 1 1 1 
2 2 2 2 
3 3 3 3 



(c) ϕ1 £ ϕ2 N 

(d)  B £ (ϕ2 → ϕ1) Y 

 

(a) ϕ2 is satisfiable Y 

(b)  B £ ϕ3 N 

(c)  ϕ2 £ ϕ3 N 

(d) A £ (ϕ3 → ϕ1) Y 

 
Key: 4 points per correct answer, −4 points per incorrect answer, 0 points for no answer. 

 

Problem 7. (20 points) Which of the following statements is correct? Mark the correct ones 
on the solution sheet! 

(a) It is not decidable whether Φ  ¢ ϕ. Y 

(b) If Φ is consistent and Ψ is inconsistent, then Ψ ∪ Φ may or may not be consistent, 
depending on Ψ and Φ. N 

(c) If Φ is consistent and Ψ is inconsistent, then Ψ ∩ Φ is consistent. Y 

(d) If Φ ∪ { ¬ϕ} is not satisfiable, then Φ ∪ {ϕ} is satisfiable. N 

(e) Let the signature S be finite. Then the set { ϕ | ∅ £ ϕ } of tautological S-expressions is 
finite. N 

 
(a) It is decidable whether Φ  ¢ ϕ. N 

(b) If Φ is consistent and Ψ is inconsistent, then Ψ ∩ Φ may or may not be consistent, 
depending on Ψ and Φ. N 

(c) If Φ is consistent and Ψ is inconsistent, then Ψ ∪ Φ is consistent. N 

(d) If Φ ∪ {ϕ} is satisfiable, then Φ ∪ {¬ϕ} is not satisfiable. N 

(e) Let the signature S be finite. Then the set {ϕ | ϕ £ (ψ ∧ ¬ψ)} of contradictory S-
expressions is finite. N 
 

(a) Let the signature S be finite. Then the set {ϕ | ϕ £ ψ ∧ ¬ψ } of contradictory S-
expressions is finite. N 

(b) If Φ ∪ {ϕ} is satisfiable, then Φ ∪ {¬ϕ} is not satisfiable. N 

(c) If Φ is consistent and Ψ is inconsistent, then Ψ ∩ Φ may or may not be consistent, 
depending on Ψ and Φ. N 

(d) It is not decidable whether Φ  ¢ ϕ. Y 

(e) If Φ is consistent and Ψ is inconsistent, then Ψ ∩ Φ is consistent. Y 

 

 



(a) If Φ is consistent and Ψ is inconsistent, then Ψ ∪ Φ may or may not be consistent, 
depending on Ψ and Φ. N 

(b) Let the signature S be finite. Then the set { ϕ | ∅ £ ϕ } of tautological S-expressions is 
finite. N 

(c) If Φ ∪ { ¬ϕ} is not satisfiable, then Φ ∪ {ϕ} is satisfiable. N 

(d) If Φ is consistent and Ψ is inconsistent, then Ψ ∪ Φ is consistent. N 

(e) It is decidable whether Φ  ¢ ϕ. N 

 

Key: 4 points per correct answer, −4 points per incorrect answer, 0 points for no answer. 

 
 

 


