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Abstract� This paper is a tutorial on a particular method for designing behavior�based
robots� the dual dynamics �DD� scheme� The DD scheme guides the speci�cation of multi�
level control architectures in a format of di�erential equations� DD design is characterized
by two principal properties� First� behaviors are construed as dynamical systems� which
consist of two subsystems �hence the name� �dual dynamics	�� One subsystem generates
the behavior
s dynamics proper� the other is responsible for activating and de�activating
the behavior� The second principal property is that higher levels in the control architecture
do not directly �call	 lower�level behaviors to execute� Rather� a higher�level behavior can
�con�gure	 the entire lower level� which thereafter can operate fully on its own� without
ongoing supervision by the higher level�

Zusammenfassung� Dies ist ein Tutorial f�ur das �Dual Dynamics	 �DD� Entwurfs�
schema� eine spezielle Entwurfsmethode f�ur behavior�basierte Roboter� Das DD�Schema
gibt Anleitungen zur Spezi�kation vonmehrschichtigen Kontrollarchitekturen durch Di�er�
entialgleichungen� Das Schema ist durch zwei haupts�achliche Eigenschaften gekennzeich�
net� Erstens werden Behaviors als dynamische Systeme modelliert� die jeweils aus zwei
Subsystemen bestehen �daher der Name �Dual Dynamics	�� Das erste dieser Subsysteme
generiert die eigentliche Dynamik des Behaviors� w�ahrend das zweite seine Aktivierung
bzw� Deaktivierung regelt� Die zweite Haupteigenschaft besteht darin� da� Behaviors auf
h�oheren Ebenen in der Kontrollarchitektur Behaviors auf tieferen Ebenen nicht direkt
�aufrufen	� Vielmehr �kon�guriert	 ein h�oheres Behavior die ganze n�achsttiefe Ebene von
Behaviors� Diese tiefere Ebene operiert danach als Ganze selbst�andig� ohne ��Uberwa�
chung	 durch die h�ohere Ebene�
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� Introduction

This paper is a tutorial on a particular method for designing PDL�based robots� the dual
dynamics �DD� scheme� It is assumed that the reader is familiar with PDL� The tutorial is
primarily intended to serve in practicals where students learn how to design behavior�based
robots�
The DD approach models robots as continuous dynamical systems� using di�erential

equations �DE
s�� The mathematical aspects of the DD design scheme are tightly coupled
to aspects of agent architecture� The scheme o�ers a particular way of structuring a multi�
level system of behaviors� while at the same time o�ering the mathematical tools for
e�ectively constructing this architecture� Fig� � shows the scope of DD�
The DD scheme in itself gets as concrete as DE
s �point 
 in �g� ��� but no further�

Therefore� it can be used for designing robots that are not PDL�based� provided that DE
s
can be implemented� Since PDL is particularly suited to implement DE
s� I will extend
the treatment in the present tutorial to describing how DE
s translate into PDL processes�
The DD design scheme can brie�y be characterized as follows�

� Behaviors are ordered in levels� with simple� elementary behaviors at the bottom �e�g�
move forward or turn left�� and complex behaviors at higher levels ��rst� second�
� � ��� For instance� at some higher level one might �nd a complex behavior work which
enables a complex� situation�driven� dynamic pattern of elementary behaviors�

� Two aspects of a behavior
s performance are cleanly distinguished� �rst� what the
behavior does when it is active� and second� when it becomes active� The �rst aspect
is referred to as target dynamics� the second� as activation dynamics� Both aspects
are construed as dynamical systems� Thus� each behavior essentially is a dynamical
system comprising two subsystems� and hence the catchword� �dual dynamics	�

� The dynamics for activating an elementary behavior usually changes qualitatively
with the �mode	 a robot is currently in� The mode of a robot depends on what
complex behaviors are active� If� say� the complex behavior work is active� and all
other complex behaviors are inactive� the robot will be in a pure working mode�
Several complex behaviors can be active simultaneously � which will result in the
robot
s being in a mixed mode�

� The mode a given level of behaviors is in typically changes on a slower time scale than
that of the behaviors
 activity� A work mode will typically remain present for an ex�
tended period of time� during which many elementary behaviors �like move forward

or turn left� will have several activation episodes� The only in�uence that hig�
her levels exert over lower ones is the regulation of modes� While a mode remains
set� a lower level does not receive any �commands	 or �calls	 form higher levels�
For instance� as long as work is active� elementary behaviors like move forward or
turn left are activated due to being stimulated by sensor input and� possibly� by
monitoring each other
s activity� Given a mode� the elementary level performs auto�
nomously and situation�driven� without any top�down control on its behaviors� This
is the inheritage of the behavior�oriented tradition in robotics�

� Modes provide the robot with expectations about what might happen next� which in
turn enable it to react appropriately and swiftly� For instance� in a pure work mode�
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Figure �� Contributions to robot design� The DD design scheme proposes a particular
agent architecture ��� which is cast into a corresponding� �co�evolved	 mathematical fra�
mework ���� The result is a behavior system speci�cation by di�erential equations �
��
The DD method covers ��� to �
�� Translating the di�erential equations into PDL ��� and
implementing the program on a robot ��� is not actually part of the DD methodology�
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a Coke can collecting robot will perform taxis toward red spots� In a pure recharge
mode� it will ignore this kind of stimulus completely and perform taxis to the white
light mounted on the charging station instead� When the mode is a mixture of work
and recharge� both types of taxis will compete� with the relative strength of stimuli
and of work
s vs� recharge
s activation determining the outcome� The management
of mode variation is the core of the DD model�

The DD design scheme aims at enabling a modular� localized fashion of designing robot
control programs� The target dynamics of a behavior is mode�independent and is only
designed once per behavior� Walking towards a food source in replenish�energy mode is
assumed to be the same kind of walking as in walking towards a mate in reproduce mode�
Therefore� what it means to be walking� has to be speci�ed only once� The activation
dynamics� on the other hand� is mode�speci�c� Walking towards a food source is activated
by internal and external conditions that have not much in common with the conditions
activating walking towards a mate� However� the design of the activation dynamics still
is modular in that di�erent� situation�speci�c variants of the activation dynamics can
be constructed separately and incrementally� All in all� the dual design scheme supports
incremental development and re�usability of behavior subsystems�
The DD design scheme combines� and develops further� ideas from architectures for

behavior control that have been proposed earlier in ethology ��� and� more recently� in
autonomous agents research ��� ���� ��� ��� ����� While I defer a more detailed discussion
of methodological questions to another occasion� I will brie�y point out what I think are
some main di�erences between DD and previous work�

� Modeling the activation dynamics as a dynamical system allows one to shape the
activation characteristics of a behavior eplicity and with sophistication� This concerns
both the onset and fadeout dynamics per se �e�g�� steepness and delay of onset�
fatigue� self�reinforcement� oscillatory activation�� and the context sensitivity of a
behavior
s activation� By contrast� many classical approaches model the activation of
a behavior in a more coarse�grained fashion as a selection boiling down to a yes�no�
decision� In behavior�oriented approaches ��� or in neural network controllers� complex
activation dynamics can emerge at runtime� but it is hard to explicitly design them
since they cannot be easily described in the �rst place� Dynamical systems theory�
the language of the DD scheme� provides rich and well�understood descriptions for
temporal phenomena� This is in agreement with recent trends in cognitive science
and psychology� where the importance of understanding the temporal dynamics of
mental phenomena has been emphasized ����

� The guiding notion for most classical robotic systems is action control� Typically� it
is decided at higher levels when an action should be carried out� and then this action
is �called	 in a top�down fashion� By contrast� the DD scheme should be understood
in terms of con�guration rather than of control� Each mode con�gures the level of
elementary behaviors� Once con�gured� elementary behaviors work together as an
integrated dynamic system which is independent from top�down in�uences�

The tutorial begins with a brief presentation of sigmoid functions� a commodity that
will be much used throughout �section ��� Then� the presentation of the DD scheme starts
with a detailed description of elementary behaviors �section 
�� followed by a more concise






treatment of complex behaviors �section ��� Then� the full picture of a multi�level archi�
tecture is given in section �� Additional remarks on actuators �section �� and translating
di�erential equations into PDL processes �section �� round o� the tutorial�

� Sigmoids

Sigmoid functions will occur in many examples throughout this article� This section pro�
vides a brief introduction to them� Students already familiar with the concept can skip
this section�
The term� �sigmoid function	� refers to any �S�shaped	 functions� There are many

mathematical formulae that yield S�shaped functions� We will present here the one that
is most commonly used� In its basic form� it is de�ned by

��x� �
�

� � e�x
���

It looks like in �g� �a� It is point symmetric in ��� ���� and has a steepest slope� at the
turning point ��� ����� of ����
It is often useful to shift the turning point to some value a on the x�axis� and to change

the maximal slope �called the �steepness	 of the sigmoid� to some value �� in order to get
the sigmoid �a�� �see �g� �b�� It is de�ned by the formula

�a���x� �
�

� � e����x�a�
���

Sigmoids are particularly useful to equip continuous systems with a conditional switching�
like characteristics� or� which amounts to the same thing� with a kind of �if�then�else	 me�
chanism� It often occurs that we wish a dynamical system to behave like �if the value of
the control parameter C is below threshold a� then behave according to type A� else behave
according to type B��� This can be achieved with a di�erential equation of the kind

�x � ��� �a���C�� �A�x� � �a���C� �B�x� �
�

The parameter � determines how decisively the switching between cases is� For small
values of �� the alternatives A and B blend smoothly into one another� while for big ��
one can generate almost �digital	 switching�
By suitable combination of sigmoids� one can mimick almost any kind of conditional

expressions in di�erential equations� multiple conditions� boolean expressions� etc�

� The makeup of an elementary behavior

The basic building block within the DD design scheme is a behavior� Behaviors are
arranged in several levels� On the lowest level� elementary behaviors are simple senso�
motoric regulations� like move forward or turn left� On higher levels� behaviors corre�
spond to increasingly integrated modes which refer to the interactions of lower�level beha�
viors with each other and with the environment� For instance� the elementary behaviors
move forward and turn leftmight occur� among others� as relevant in a mode determined
by a phototaxis behavior on the next higher level� In order to simplify our way of talking�
we will say that move forward and turn left participate in phototaxis� Phototaxis� in
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Figure �� Two sigmoids�

turn� might participate in even higher�level behaviors like work or replenish energy� The
mathematical makeup of behaviors is similar on all levels� However� the e�ects of a beha�
vior
s activity are di�erent on the elementary vs� higher levels� In this section I explain
how elementary behaviors are speci�ed as dynamical systems�
Mathematically� an elementary behavior is made up from two dynamical systems�

plus a product term in which the e�ects of these two systems are combined� The two
dynamical systems generate the target dynamics and the activation dynamics� respectively�
The former speci�es how the actuators should work� while the latter determines when and
how strongly the behavior is to be activated� I will now introduce the target dynamics�
activation dynamics� and the product term� in this order�

��� Target dynamics

In order to illustrate the central distinction between target and activation dynamics� I will
use the example of an elementary behavior walk forward� which one might assume to
exist in an insect�like robot� When this behavior is active� it should issue to the actuators
�of which there are many in this case� signals which induce a walking pattern to be
physically executed� The signals will vary in time� on several accounts� First� walking
is in itself a rhythmic activity� which implies that signals to most actuators will have
a periodic component� Second� there might be small�scale obstacles detected by tactile
sensors on the extremities� which should induce local accomodations of the basic walking
pattern in the legs concerned� While a good deal of a perturbation might locally be coped

�



with in the leg a�ected� the other legs must to some extent accomodate to that local
variation� which means that the overall pattern of walk forward is modulated� Third�
external conditions might change on a larger scale that globally a�icts the walking pattern�
For instance� walking on di�erent slopes might induce an accomodation of walking velocity
and stance amplitude� All of these dynamic contributions to the actuator signals �basic
rhythm� externally conditioned variations� concern how the actuators should do their job
while walking is active� Therefore� all of this is handled in the target dynamics� It becomes
clear from this example that the target dynamics is generated in an open system� which
is modulated by input from sensors and other behaviors�
In order to preclude a likely misunderstanding� I should emphasize that the target

dynamics is unrelated to goals � A goal� in the standard sense of the term� is a �nal state
of a�airs that is typically satis�ed after an action� or a sequence of actions� has been
executed� By contrast� the target dynamics prescribes how the behavior should work at
each moment while it is active� No explicit handling of classical goals exists in the DD
scheme�
The target dynamics of an elementary behavior gives a target trajectory gi�t�� where

i � �� � � � � n� for each of the n degrees of freedom �df� of actuators involved� Thus� the
target dynamics yields an n�dimensional vector g�t� which has the gi�t� for its components�
While in a Lego vehicle� g�t� will be typically two�dimensional �two motors with one df
each�� g�t� can have a considerable number of dimensions for less simplicistic devices �say�
a six�legged walking machine or a redundant robot arm�� not to mention the number of
df
s that are involved in biological systems�
Fortunately� this does not imply that we have to come up with a dynamical system of

n dimensions in order to generate g�t�� It is a general observation that �bio��mechanical
systems with many df
s actually can be reduced in their dynamics to a low�dimensional
system� The reason is that the many mechanically possible df
s are coupled and do not
vary independently from each other� One popular physico�mathematical approach to un�
derstanding this reduction in dimensionality is the slaving principle �
�� This topic deserves
a more detailed discussion than is possible here� Let me only mention that motor action
patterns involving many dozens of muscular and joint df
s have been described in terms
of low�dimensional systems in human psychophysics ��� ����
DD target dynamics makes use of this potential for simpli�cation by generating g�t�

in two steps� In the �rst step� a low�dimensional dynamical system produces a target
representation trajectory x�t�� from which the high�dimensional target trajectory that
regulates the e�ectors is computed in a mechanical fashion� The target dynamics of a
behavior thus comes in two �sets of� equations�

�x � G�x� sensor�input�t�� � � �� ���

g�t� � ��x� ���

The dynamical system ��� can be considered as a representation of the behavior
s target
dynamics� albeit not a symbolic one� It carries the �essentials	 necessary for qualifying
how the behavior should work� For a walking behavior in a six�legged walking machine� for
instance� it might be su cient to keep record in ��� of ground slope� position of the walker
with respect to small obstacles� and acceleration!deceleration �in systems with noticeable
inertia� the target dynamics during acceleration conditions might di�er qualitatively from

�



constant�velocity dynamics��
In mechanically simplicistic systems like ��df Lego robots� it is not worth going through

the modeling e�ort of splitting ��� from ���� A single dynamic system

�g � G�g� sensor�input�t�� � � ��� ���

or even a simple functional expression like

g�t� � G�sensor�input�t�� � � �� ���

will su ce in such cases� Here� the �representation	 of the target trajectory coincides
with the target trajectory itself� An example for such a simple target dynamics is the
following version of the elementary behavior turn left� Assume that the voltages Vright
and Vleft currently issued to the right and left motor� respectively� are known to the control
program� One intuitive version of what it means to �turn left	 is the following prescription�
�increase the current voltage of the right motor� and decrease the current voltage of the
left motor� both by a default amount D	� This would yield the target dynamics

gleft�t� � Vleft�t��D

gright�t� � Vright�t� �D
���

Some mysterious dots appear within the rhs� of ���� They represent optional time�
varying input into the trajectory representation dynamics� which comes from other sources
than sensors� The question of which sources of information can be used as input into an
elementary behavior is answered in section 
�
�

��� Activation dynamics

Now let us turn to the activation dynamics� It is responsible� in our example� for when
walking is to occur� It regulates a single parameter� �� which determines whether the
behavior is inhibited �� � �� or active �� � ��� or something in between� Thus� while
the target dynamics potentially is high�dimensional �each relevant actuator requiring a
dimension�� the activation dynamics is expressed in a one�dimensional trajectory�
However� the impression would be misleading that this is a simple system� It can be

very complex� This is due to the fact that behaviors are activated di�erently in di�erent
modes� Let us consider an example� It leans on experiments carried out at the VUB AI Lab�
Assume that a Lego vehicle is to be designed� which has to work in an obstacle�cluttered
arena� and which has to autonomously recharge its batteries at a charging station� In
the VUB setup� �working	 means that the robot has to repeatedly push against cylindric
�push�boxes	� which are distributed in the arena� and which can be detected by the vehicle
due to modulated red light that they emit� The charging station can be detected by an
unmodulated white light mounted on it�
Now� if the vehicle has nearly emptied its batteries� it will be desperately �hungry	 and

should be in a rather pure recharge mode� In this case� the elementary behavior turn left

should be activated when the white light of the charging station is perceived at the left�
By contrast� if the batteries are full and the robot is in work mode� turn left should

not be triggered by a white light at the left �at least not easily�� Rather� turn left should

�



become active when there is a modulated light source detected at the left side� indicating
a push�box waiting for work to be spent on�
Thus� in di�erent modes we usually �nd di�erent conditions which should activate

an elementary behavior� In order to accomodate for this mode�speci�c di�erentiation�
the dynamical system that regulates a behavior
s activation dynamics can become quite
complex�
Technically� this accomodation to di�erent modes is done in the following fashion�

Assume that we have i � �� � � � � m di�erent �pure	 modes to account for� Then� for an
elementary behavior we have to construe �up to� m di�erent kinds of activation conditi�
ons� To this end� to each �pure	 mode we devote an additive term Ti in the activation
dynamics of the elementary behavior� The various such terms are weighted with factors
�i� These factors vary in time �due to top�down mechanisms that will be explained in
subsequent sections�� Thus� the activation dynamics of an elementary behavior is realized
by an equation of the following kind�

�� � ��T���� � � �� � � � �� �mTm��� � � �� ���

When the agent is in a �pure	 mode� exactly one of the �i should be roughly equal to
�� the others roughly equal to �� leaving only one Ti to determine the activation dynamics
for the time being� �Mixed	 modes occur when several �i are appreciably greater than
�� This scheme supports an incremental design of the activation dynamics� since further
terms T can be added when the behavioral repertoire is expanded to more modes�
For a simple example of ���� consider the elementary behavior turn left in our work

and recharge mode example� Let us �rst deal with the activation dynamics for the work
mode� In intuitive terms� we would like to shape the activation of turn left along the
following guidelines�

�A� turn left should be activated only if the signal MLleft of the left modulated light
sensor is above some threshold min� i�e� if MLleft � min� This precludes triggering
by background noise�

�B� turn left should be activated only if MLleft is greater than the signal MLright of
the right modulated light sensor� i�e� only if MLleft �MLright �� di� � ��

�C� The activation of turn left should not be all�or�nothing� Rather� it should decrease
as the alignment to the modulated light becomes better� i�e� as di� goes to zero� The
reason for this is to prevent overshoot and oscillations� More speci�cally� we wish the
activation strength to depend on di� according to a function f as sketched in �gure

 �a function of this kind can easily be derived� e�g� from a sigmoid��

The requirements �A� � �C� can be met e�g� by the following speci�cation of an acti�
vation dynamics�

�� � k�min����MLleft� � ������di�� � �f�di��� �� ����

�� Twork���MLleft�MLright� ����

k is a time constant that adjusts the overall time scale of the dynamics� �a�� denotes a
sigmoid with turning point in a and steepness �� MLleft and di� are as introduced before�

�
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and f is a suitable function that should look like in �gure 
� The three factors in the rhs�
of ���� account for �A�� �B�� and �C�� in that order�
Since time constants like k will be used in nearly every formula to come� I will not

start trying keeping them cleanly apart by naming or indices� Thus� if some k appears in
some formula� it
s a constant local to that formula�
A completely analogous consideration can be made for the recharge mode� The only dif�

ference is that we have to use white light signalsWLleft�WLright instead ofMLleft�MLright�
This gives us the following activation dynamics for the case of a pure recharge mode�

�� � Trecharge���WLleft�WLright� ����

Assembling the pure mode activation dynamics ���� and ���� in DD fashion lets us
arrive at the following instantiation of ����

�� � �workTwork���MLleft�MLright� � �rechargeTrecharge���WLleft�WLright� ��
�

Mode regulation is achieved through varying �work and �recharge � If �work � � and
�recharge � �� turn left reacts to sensor input according to a pure work mode� If �work � �
and �recharge � �� pure recharge mode is on� These are the �clean	 cases that one probably
has in mind when one designs ���� and �����
However� in principle �work and �recharge can assume all combinations of values between

� and � during operation time� so turn left can react to white and modulated light in
�mixed	 modes� It is up to the designer to en� or discourage mode mixing� A simple
mechanism for �xing the propensity toward mode mixing will be presented in the next
section�
This regulation of �work and �recharge is e�ected top�down from the complex behaviors

work and recharge� We will treat this topic in detail in the next section�
The activation dynamics as introduced so far would work reasonably in many cases�

but things can go awry when all of the �i in ��� drop to zero� This would result in the
activation � just staying where it last was� which might mean that a behavior stays active
even though it does not participate in the currently active �if any� mode� This case is
provided for in a standard way by adding a decay term to ���� which brings � down to
zero after the �i have gone to zero�
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�� � ��T���� � � �� � � � �� �mTm��� � � ��� �k
Y

i�������m

��� �i�
r ����

In this �nal form of the activation dynamics� k is a constant that determines the decay
rate� The exponents r determines the degree of nonlinearity for when the decay sets in�
A standard value would be r � �� Note that decay is not a �background	 process that is
active all the time� Rather� decay of � sets in only when other in�uences are absent� Thus�
the decay rate k can be selected appreciably great� in order to ensure a rapid fading out
of � when it becomes irrelevant�
The example ��
� should be augmented by a decay term as in �����

��� Input to the target and activation dynamics

Now we will deal with the notorious dots appearing in the equations of the target dynamics
��� and the activation dyanmics ����� These dots represent input to the dynamical systems
concerned�
An obvious source of input is from sensors� We will denote it by s�t��
The DD scheme has a single� iron rule concerning input to behaviors� The only input

that comes top�down from higher�level behaviors is the mode regulation parameters �i in
the activation dynamics�
This rule implicitly allows to use any kind of input for a behavior as long as it doesn
t

come from higher�level behaviors� In particular� an elementary behavior can receive infor�
mation about what is going on in other elementary behaviors� For instance� an elementary
behavior B� could receive from another elementary behavior B� the activation ���t�� the
derivative of the activation ����t�� the representation of the target trajectory �x��t� and
its derivative� or the target trajectory g��t� itself� or higher derivatives thereof� or time�
delayed versions� or whatever one �nds useful in a particular instance�
Among all of these� the activations of other elementary behaviors are probably the most

universally useful� Therefore� we will explicitly include them into the system equations ���
and ����� tacitly assuming that other parameters of the kind just mentioned can be received
if necessary�
Also� we assume as a standard case that the activation dynamics of a behavior depends

on the target dynamics and vice versa� I�e�� in an elementary behavior Bj we standardly
note down xj�t� as an input for the activation dynamics� and �j�t� as an input for the
target representation dynamics�
Assembling these remarks� and assuming that there are n elementary behaviors� we

get the following full version of ��� and ���� for the elementary behavior Bj �

�xj � Gj�xj� sj�t�� ���t�� � � � � �n�t�� ����

��j � ��Tj������ � � � � �n�xj� sj� � � � �

��mTj�m���� � � � � �n�xj � sj� ����

��jk
Y

i�������m

��� �i�
rj

��



��� The product term

The target dynamics g�t� and the activation dynamics ��t� are combined in the following
product assignment�

u�t�� � k��t���g�t��� z�t���� ����

where z�t�� is the perceived current state of the actuators� g�t�� is the target trajec�
tory as delivered by the target dynamics� ��t�� is the current activation as delivered by
the activation dynamics� k is a gain constant particular to each behavior� and u�t�� is
the incremental signal issued from the behavior to the actuators which induces them to
increment �if u�t�� � �� or decrement �u�t�� � ���
It is important to understand how ���� works mathematically� Since many things come

together in this product term� I will explain it with some care�
The �rst thing to note about ���� is that it is evaluated at discrete time steps t� �

This is a technical conveniance� not a fundamental property� It makes ���� blend in more
easily with standard robot control circuitry� which typically works with a discrete update
cycle� The corresponding di�erential �i�e�� continuous� version of ���� would read �u �
��t��g�t�� z�t���
In simple robots �e�g� typcial PDL�based Lego vehicles�� actuators are more often than

not controlled in an open loop� which means that z coincides with the signal issued to the
actuator� The evaluation of ���� would in this case proceed in the following steps�

�� At time t� � read the current value of the actuator quantities z� and compute the
current values of g and ��

�� Calculate the value of the rhs� in ���� and assign it to u�


� At the end of the 	�th cycle� i�e� at time t���� add u to the value of the actuator
quantities z� which they had at the begin and during the cycle�

The second thing to note about ���� is that it concerns vectors �remember that a
behavior tends to a�ect many actuators�� In order to understand this equation� however�
it will su ce to assume that we have only a single ��df actuator to deal with� in which
case ���� reduces to a scalar assignment u�t�� � k��t��g�t��� z�t����
In order to understand the essence of ����� let us assume that k � � and � � �� so we

can ignore these parameters for a moment� ���� represents the core of a regulatory loop
which tries to make the actuator follow the target trajectory� It evaluates� at each time
step� how much the perceived state z�t�� of actuators di�ers from the desired target state
g�t��� by computing the di�erence g�t��� z�t��� u�t�� is then set equal to this value� and
sent to the actuator� which increments its state if u�t�� � � and decrements if u�t�� � ��
This is a regulatory loop� if the perceived state z�t�� is smaller than the target state� the
di�erence is positive" hence� u�t�� is positive" hence� the state of the actuator increments"
hence� the perceived state z should increase its value� which is what one expects from a
regulatory mechanism�
This is the basic idea� It implements a particularly simple� but not necessarily the

most e�ective type of regulatory feedback loop� However� due to the fact that � and g are
time�varying� this loop already is loaden with more intricacies than we might expect at
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�rst sight� Before we explore the temporal properties of ���� a bit further� I will say some
words about the �perceived	 current state z of the actuator�
It is important to be aware of the distinction between an actuator
s state and the

state of a�air that one actually wishes to govern by the actuator� For instance� when we
wish to maintain a constant forward velocity in a simple two�motor Lego vehicle� we have
to distinguish between the motors
 current state �which can e�g� be speci�ed in terms of
voltage� and the current robot velocity� which is the state of a�air that we actually want to
control� Due to slippage� the motor state and the velocity of the robot can be quite di�erent
things� At some place or other� in the design of robot control systems one has to account for
this possible mismatch� since one can only directly in�uence actuators� although one wishes
to control the external state of a�airs� In the DD design scheme� the load of this mismatch
handling is placed on the target dynamics subsystem� Using its external sensor input� it
has to adapt the target trajectory� which prescribes the actuator state� For instance� if the
Lego robot deviaties to the right due to slippage on the right wheel� the target trajectory
subsystem of a move straight forward behavior would have to increase the value of the
right motor target trajectory� The regulatory loop in the product term� then� only has to
take care of making the motor follow the target trajectory�
Even if the regulatory task of ���� is reduced to maintaining the actuator state� this

may be far from trivial� One of the di culties is that the current actuator state may be hard
to ascertain� This is the case� for instance� when propriosensors give delayed responses� In
such cases� coming up with sound values for the �perceived	 current actuator state� z�t��
may involve complex estimation procedures� e�g�� Kalman �lters� Interestingly� there are
indications that in mammals some processing within the cerebellum is devoted to this task
��� ����� Fortunately� the current state of motors in Lego vehicles can be measured without
much ado� which is why we won
t have to bother about z�t� very much�
In order to get a better understanding of the temporal properties of ���� when �

and g are time�varying� let us review the properties of the mathematical archetype of
����� This is the one�dimensional dynamical system ����� which describes the exponential
approximation of a limit point g�

�x � 
�g � x� ����

Solution curves for this system are shown in �g� �a��a
� They reveal the e�ect of
choosing di�erent values for the constant 
 � The greater 
 � the faster trajectories converge
to g� The constant 
 is often called time constant � The symbol 
 is customary in dynamical
systems theory for time constants� In the DD framework� however� I use the symbol �
instead� as a mnemotechnic aid to indicate that the time constant here determines the
activation of a behavior�
When g is allowed to vary in time� i�e� when we consider a system

�x � 
�g�t�� x�� ����

di�erent time constants lead to qualitatively di�erent behaviors� When 
 is su ciently
great� the convergence rate of trajectories to g�t� is big enough to ensure that g�t� is
nicely followed by the system trajectories� Of course� the faster g�t� is allowed to vary� the
greater 
 must be in order to warrant a target following dynamics like in �g� �b�� If 
 is
not su ciently great� a cleanly following isn
t possible any longer ��g� �b��� If� �nally� 
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Figure �� The e�ects of the time constant 
 on exponential approximation of a �xed point
g �a� # a
� and of a time�varying target trajectory g �b� # b
��

is about �� system trajectories degrade to constants which don
t take any notice of g�t�
��g� �b
��
The time constant 
 from �g� �b� corresponds to the activation factor ��t�� in the

product term ����� The situation in ���� di�ers from the situation in ���� in that the
latter is a di�erential equation with x appearing on both sides� whereas in ���� instead of
a single system variable we have an output signal u on the lhs and a perceived actuator
state z on the rhs� with a possibly complex physical connection between u and z� Yet� in
principle ���� and �g� �b tell us how we should understand �����
For the purposes of behavior control in robots� the cases from �g� �b� and b
 are

of particular interest� When the activation factor is su ciently great� the product term
���� yields an overall dynamics of target following like in �g� �b
� When� by contrast�
the activation factor is about zero� the actuator is not a�ected by the behavior at all�
although the target dynamics g�t� might show strong �uctuations� The case shown in �g�
�b� is what system analysts and designers are afraid of� the system behavior is unruly
and cannot be understood either in terms of the target trajectory g�t� or in terms of
simple constants� Thus� if one wishes to design behavior systems such that they behave in
an understandable way� one should make sure that the activation dynamics yields either
su ciently large values of �� or values that are near �� but not values that vagabond in
between� For the sake of simplicity� we will assume that �su ciently large	 means �about
equal to �	 # this normalization can be made to work by setting the gain k in ����� Thus�
the task of engineering a transparent activation dynamics implies that we have to look for
more or less bistable� ����valued dynamics for �� This is not necessarily the most e�ective
kind of activation dynamics" it is just a starting point for making things transparent for a
human designer�
It will often be the case that several elementary behaviors issue signals u to the same

actuator� A strategy for transparent engineering is to ensure that at a given time� only one

�




of the behaviors tries to control the actuator� i�e�� only one of the behaviors is activated�
This means that one has to design winner�take�all mechanisms for the activation dynamics
of behaviors that can be simultaneously relevant in a situation�
Again� this strategy for neatly selecting one behavior at a time is helpful for keeping

matters transparent� but does not necessarily lead to optimal solutions� However� it is
interesting to note that in animal ethology� it is standardly observed that behaviors are
mutually inhibitory� i�e� that there is a strong winner�take�all principle ruling between
them ��� ��� ���
For the sake of convenience� I repeat all equations �cf� ���� ��
�� from our turn left

example� in their �nal form�

target dynamics �simpli�ed form� without representation system x	�

gleft�t� � Vleft�t��D

gright�t� � Vright�t� �D

activation dynamics �

�� � �workTwork���MLleft�MLright� � �rechargeTrecharge���WLleft�WLright�

�k���� �work�
r��� �recharge�

r

product term�

uleft�t�� � k��t���gleft�t��� Vleft�t��

uright�t�� � k��t���gright�t��� Vright�t��

where uleft�t�� and uright�t�� are voltage increments added to the current voltage at
the left and right motor after the time cycle 	� k is a suitable� �xed time scaling factor
whose value will depend on the duration of a time cycle �the k
s in both equations above
should be equal�� and Vleft�t��� Vright�t�� are the voltages at the left and right motor at
the beginning of the time cycle 	�

� Complex behaviors

The DD scheme allows to construct multi�level architectures with any number of levels�
Since higher levels are formally similar to each other� we can restrict this presentation to
the case of a two�level behavior system �the bottom level of elementary behaviors plus the
�rst level of complex behaviors�� Thus� in this section the phrase �all complex behaviors	
actually means �all behaviors from the �rst level of complex behaviors	� etc�
From a formal point of view� complex behaviors are quite similar to elementary ones�

Like the latter� they consist of a target and an activation subsystem� whose e�ects are
combined in a product term� The central di�erence between elementary and complex be�
haviors is that the former control actuators� whereas the latter control behaviors from
the next lower level �elementary behaviors in the two�level case which we are focussing��

��



Also� the meaning of �control	 di�ers in the two cases� Whereas elementary behaviors
issue signals to actuators that directly put them to work� complex behaviors issue �mode
instructions	 to elementary behaviors� They don
t �call	 elementary behaviors to execute"
rather� they instruct them under which situative circumstance they should activate them�
selves� To put it in a nutshell� elementary behaviors control actuators� while higher�level
behaviors con�gure lower levels� by determining their mode� This is one of the central
ideas in the DD scheme� It distinguishes it from other hierarchical architectures for action
selection� where higher�level behaviors actually call lower�level behaviors to execute�
Although complex behaviors come with a fully��edged target dynamics in the general

case� I will restrict this section to the case where the target dynamics is trivially � ��
This means that the output of a complex behavior solely re�ects its activation dynamics�
which leads to the further simpli�cation that we can dispense with the product term�
Therefore� all we shall care about in this section is the activation dynamics of complex
behaviors� This makes sense for two reasons� First� didactically� we can concentrate on the
fundamental idea of �con�guring	 the level of elementary behaviors� Second� for the kind
of Lego vehicles that are the current primary aim of the DD design scheme� non�trivial
target dynamics in complex behaviors seem to be unneccessary�
Before we get going� a notational convention will be helpful� we will use dashed symbols

when we are dealing with complex behaviors� Thus� �� will denote the activation of a
complex behavior B�� etc�

��� Mode regulation through complex behaviors

Now that we have simpli�ed matters considerably� the �con�guration	 of the elementary
level by mode assignment through complex behaviors is easily explained� Assume that
there arem complex behaviors B�

�� � � � � B
�

m� Each of them represents a �pure	 mode� Recall
that the activation dynamics of each elementary behavior essentially is a sum of m terms
�iTi������ where i � �� � � � � m �plus a decay term that we do not have to consider here� see
������ The basic idea is to have �i follow the activation �

�

i of the complex behavior B
�

i� we
simply put� in each elementary behavior
s activation system�

�i�t� �� ��i�t�� ����

This is how the elementary level is �con�gured	 by the activation of complex behaviors�
Before we turn to the question of how the activation of complex behaviors is determined�
some remarks should be made concerning �����

� Simply setting �i equal to �
�

i is possible since we use simplicistic complex behaviors
without target dynamics and hence� without product term� In the general case� where
behaviors have target dynamics and a product term� �i is controlled in a closed
loop by B�

i
s product term just like actuators are controled by the product term of
elementary behaviors� In the general case� therefore� �i may well deviate from ��i�
and we have to distinguish between them� However� in our simplicistic case� we may
rewrite the activation dynamics ���� of an elementary behavior� as follows�

�� � ���T���� � � �� � � � �� ��mTm��� � � ��� �k
Y

j�������m

��� ��j�
r ����

��



� Loosely speaking� the dynamical system ���� is likely to undergo bifurcations when
it changes from one mode to another� This is to say that it will behave qualitatively
di�erently in di�erent modes� However� the notion of bifurcations is not neatly de�
�ned for open systems� and should be used with caution when one is talking to a
mathematician� Yet� physicists will understand�

� ���� is formally a linear combination of modes �again� disregarding the decay term
that is irrelevant when the modes are relevant�� However� it would be misleading to
think of modes a entities that can be �linearly superimposed	� The mixed mode that
occurs when ��� � ��� � � cannot be in general understood in terms of the pure modes
��� � �� �

�

� � � and �
�

� � �� �
�

� � �� In general� the two pure modes will be qualita�
tively di�erent� and one cannot just �mix	 qualitatively di�erent things� One might
say� modes don
t mix� they get entangled� It is probably good advice for designers to
prevent modes from getting entangled� This may be achieved with suitable winner�
take�all mechanisms� one of which will be described below in an example� At least
this is good advice when one sets out for behavior systems whose behavior one can
understand �and modify and maintain and sell ����� It is unclear whether �opaque	
systems� which can e�g� be obtained through evolutionary techniques rather than by
explicit design� might be more e�ective� Be this as it may� the scheme ���� certainly
admits mode mixing� so one can go for it if one wishes�

� When an elementary behavior does not participate in the complex behavior B�

i� Ti is
the zero function� The term ��iTi�� � �� can then be omitted from ����� For instance�
in the VUB AI Lab scenario� an elementary behavior sit still would probably
participate in the complex behavior recharge but not in work� Thus� there would
be no term ��rechargeTrecharge�� � �� in the activation dynamics of sit still�

��� Activation dynamics

Now we turn to the activation dynamics of a complex behavior� Like in elementary beha�
viors� it is a dynamical system�

��� � T ����� � � �� ����

Again� the notorious dots �� � �	 will su�er some explanation� They represent various
kinds of time�varying input to the system ����� The iron rule stated in section 
�
 applies
to complex behaviors� too� Recall that it explicitly disallows input from higher levels� and
implicitly allows everything else� Thus� the dots in ���� might stand for the activation
parameters ���� � � � � �

�

m of �other� �rst�level complex behaviors� or derivatives thereof� or
any kind of elementary�level quantity discussed in section 
�
� and� of course� sensor input�
As a general rule �with many exceptions�� sensor input to complex behaviors should

tend to come from slow internal sensors �like battery level� as opposed to fast external
sensors feeding into elementary behaviors �like modulated light sensors��
For most practical purposes in Lego vehicles� the following explicit version of ����� for

a complex behavior B�

i� will do�

���i � T �

i ��
�

�� � � � � �
�

m� s
�

i�t�� ��
�

��



��� An example

Let
s design a rudimentary activation dynamics for the two complex behaviors �and hence�
two pure modes� work and recharge of our Lego vehicle� We wish them to have the
following properties�

�A� There should be an adjustable winner�take�all competition between the activations
��work and �

�

recharge � It should be possible� in the one extreme� to make them mutually
exclusive ���work � � i� �

�

recharge � � and vice versa�" or� in the other extreme� to let
the one take no notice of the other at all �such that ��work and �

�

recharge can assume
all values between � and � independently�" or anything in between�

�B� Assume that there is a battery level sensor BL that reads � when the battery is full�
� when it
s empty� and behaves linearly in between� Then� the tendency for being in
working mode should correlate positively with BL� while the tendency for being in
recharging mode should correlate negatively�

�C� We want recharging to happen opportunistically when the robot accidentally passes
the charging station nearby� even when everything else being equal it should be in
working mode�

�D� There should be an emergency mechanism that puts the robot into pure recharging
mode when the battery level BL drops below an alarm value alarm�

Let us �rst turn to requirement �A�� A transparent and simple method to come
up with an adjustable winner�take�all mechanism is to model the activation dynamics
of work and recharge with two variables each� i�e� using ��work��� �

�

work�� for work and
��recharge ��� �

�

recharge�� for recharge� The �rst of these variables ��
�

work�� and �
�

recharge��� are
the ones which eventually adjust modes in elementary behaviors" it is they that appear�
for instance� in ����� The second ones in each pair ���work�� and ��recharge ��� are auxiliary
variables that appear only inside the dynamical systems responsible for the activation of
work and recharge�
The role of ��work�� and �

�

recharge�� is to collect and assemble the in�uences from requi�
rements �B���C���D�� yielding a kind of �vote	 for the current appropriateness of working
and recharging� These �votes	 for recharging and working are then passed into the equati�
ons for ��work�� and �

�

recharge��� where a winner�take�all mechansim of adjustable e ciency
determines the �nal arbitration between work and recharge�
The following equations yield the desired dynamics for ��work�� and �

�

recharge���

���work�� � k���������
�

work�� � ��recharge���� ��work���

���recharge �� � k���������
�

recharge�� � ��work���� ��recharge���
����

In these equations� k is a gain factor that adjust the overall time scale� and ����� is a
sigmoid function with turning point in � and steepness ��� For large �� one gets a sharp
winner�take�all characteristics�
Now let
s turn to the �voting	 part� i�e� to the dynamics of ��work�� and �

�

recharge��� For
the complex behavior work� we will not invest much ingenuity and simply let its activation
�vote	 follow the battery level� the idea being that the propensity to work is proportional
to the energy reserve� This accounts for �B� in the case of work and gives us

��



���work�� � k��BL � ��work���� ����

Since BL changes very slowly� the time scale adjustment factor k� can be set quite
small while still guaranteeing that ��work�� essentially is equal to BL all the time�
In the case of recharge� we invest a bit more ingenuity in order to account for �B��

�C�� and �D��
For �C�� the robot must be able to sense that the charging station is near� Assume

that CL�t� is a sensor quantity representing the overall sensor input from the white light
sensors that respond to the light source mounted on the charging station� Thus� CL should
yield a rough and highly nonlinear estimate of the robot
s distance to the charging station
# provided it is roughly aligned toward it� CL will thus have an appreciable size only when
the robot is near the charging station and more or less directed towards it� which makes
CL a good trigger for opportunistic visits at the charging station� We may further assume
that CL maximally reads �� Figure � gives a sketch of how CL relates to the distance from
the charging station�

distance

perfect alignment

imperfect alignment

CL

1

Figure �� Distance from the charging station� as represented in the sensor quantity CL�

Now we possess all ingredients for meeting the requirements �B�� �C�� and �D�� Each
of them is accounted for by a separate additive component in the following equation�

���recharge�� � k���� BL � ��recharge��� ����

�k	CL�t���� ��recharge��� ����

�k��������alarm �BL� � ��recharge��� ����

In this equation� the �rst term ���� is the analogue of ���� and needs no further
explication� It accounts for �B��
���� accounts for the opportunism requirement �C�� when CL becomes appreciable�

indicating that the charging station is near� the term ���� pushes ��recharge�� towards ��
overriding the slow process ����� The constant k	 essentially determines the crucial distance
�i�e� the crucial value of CL� when this happens� It is easy to further re�ne ���� by an
additional factor that makes the crucial distance depend on the battery level �opportunistic
recharging should be harder to trigger when the battery level is quite high�� but this shall
not concern us here�
Finally� ���� yields the alarm mechanism �D�� The constant k� should be much greater

than k� and other similar time factors that one might use inside the activation dynamics

��



of work in order to ensure that ���� really becomes the all�overriding in�uence when BL
drops below alarm� Accordingly� �� should be set to yield a very steep sigmoid�

� All parts assembled

I shall now collect everything we have got so far and present it with a bit more indices
than in the preceding sections� Furthermore� I will add another level of complex behaviors�
so that it becomes clearly visible how multi�level architectures can be designed�
Assume that there are l second�level complex behaviors B��

� � � � � � B
��

l � m �rst�level com�
plex behaviors B�

�� � � � � B
�

m� and n elementary behaviors B�� � � � � Bn�
The elementary behavior Bj has a target dynamics as described in ��� and ����

�xj � Gj�xj � sj�t�� ���t�� � � � � �n�t�� ����

gj�t� � �j�xj� �
��

sj is sensor input made available to Bj � and ���t�� � � � � �n�t� are the activations of
B�� � � � � Bn�
The product term of Bj � copied from ����� is

uj�t�� � k�j�t���gj�t��� zj�t���� �
��

Finally� the activation dynamics of Bj � adapted from ����� embellished with indices�

��j � ���Tj������ � � � � �n�xj� sj� � � � �� ��mTj�m�� � ��� �jk
Y

i�������m

��� ��i�
rj �
��

In this equation� ��� � � � � �n are the activations of B�� � � � � Bn� ���� � � � � �
�

m are the acti�
vations of B�

�� � � � � B
�

m� xj is the �representation	 of Bj 
s target dynamics� sj is the sensor
input made available to Bj � k is a constant that determines the maximal decay rate� and
rj determines how sensitively the onset of decay depends on all the �

�

i being near to zero�
�
�� provides a basic format for the activation dynamics of Bj � As discussed in section


�
� the inputs to the components Tj�i can be any quantity found or de�ned within the
elementary level �e�g� derivatives of other quantities�� The arguments listed in �
�� only
propose the quantities that seem to be the most standardly useful ones� Furthermore� like
in the example ����� ����� one can introduce auxiliary variables in order to endow the
activation dynamics with interesting properties�
In our simpli�ed version of the DD scheme� complex behaviors consist of nothing but

an activation dynamics� For a �rst�level complex behavior B�

i� we get

���i � ����T
�

i����
�

�� � � � � �
�

m�x
�

i� s
�

i� � � � �� ���l T
�

i�l�� � ��� ��ik
Y

h�������l

��� ���h�
r�

i �

�

�

� di�ers from the version given in ��
�� since now we have to account for second�
level complex behaviors that regulate modes of the �rst level of complex behaviors� Still�
�

� should be self�explaining�
Last but not least� the activation dynamics of a second�level complex behavior B��

h has
the form

��



����h � T ��

h ��
��

�� � � � � �
��

l �x
��

h� s
��

h� �
��

What has been said about �
�� concerning additional kinds of input and auxiliary
variables applies to �

� and �
��� too� The DD scheme allows that input into a higher
level can come from all lower levels� It seems� however� wise to be restrictive� It would
probably make the design intransparent if one used input from lower levels than the one
immediately lower� In the present case this means that one should not use parameters
from the elementary level as input for the second level�

� Actuators

The part of the DD scheme that lies closest to actuators is the product term ���� of
elementary behaviors� It is assumed that actuators are controled by a one�dimensional
signal� which is additively updated at each time step by u�t���
This is certainly far from being a ready�to�use actuator interface� Actuators di�er

widely from each other # a servo motor� an electromagnet� and a IR emitter have not
much in common� Since this paper in its present version aims at readers who work with
��df Lego robots� I will say a few words about how to interface their motors in a PDL
environment� given the product terms of elementary behaviors�
Assume that there are n� elementary behaviors B�� � � � � Bn� that issues signals to a

particular motor� This means that at each PDL working cycle t� � the motor quantity M
of this motor �which roughly corresponds to the voltage fed to the motor� is updated
according to

M�t���� �M�t�� �
X

i�������n�

ui�t��� �
��

where ui�t�� is the vector component from the lhs� of Bi
s product term which is
responsible for M �
This PDL way of handling actuator quantities likeM e�ectively endows actuators with

a state # the expression �M�t���	 on the rhs� of �
�� makes the actuator remember what
its state was in the preceding working cycle� and the rest of the rhs� only changes what
state there already is� This has the unwanted side e�ect that if the motor is in a state
where M is appreciable �say M � a � ��� and then all behaviors B�� � � � � Bn� become
inactive� M stays in this state a� which means that the motor keeps on running although
no behavior is active that wants this�
A method to overcome this problem is to endow the motor with a decay mechanism

similar to the one we are already familiar with� Thus� we would change �
�� to something
like

M�t���� �M�t�� �
X

i�������n�

ui�t���M�t��
Y

i�������n�

��� �i�
r� �
��

which makes the motor signal M go toward zero when all relevant behaviors are inac�
tive�

��



� Translating DE�s to PDL processes

The DD scheme describes robot control programs at the level of di�erential equations�
Translating DE
s into PDL processes is� however� a straightforward a�air�
The DE
s we are dealing with in the DD scheme have the basic form

�x � f�x� s�t��� �
��

where s�t� is some input �sensoric� in this case� to the system� We assume that time is
measured in seconds� and that the temporal scaling of �
�� yields the right dynamics with
respect to seconds as units of time�
In order to derive a PDL process from �
��� we proceed in two steps� First� we construct

a discrete process from �
��� and second� we rewrite this discrete process as a PDL process�
The basic working cycle of PDL has a duration of �!�� seconds� Thus� the time incre�

ment for the desired discrete process is b �� �����
The simplest method for discretizing �
�� is linear extrapolation �consult textbooks on

numerical methods for solving DE
s for more sophisticated methods�� I�e�� we approximate
solutions of �
�� by curves that are piecewise linear within intervals of length b �cf� �g� ��

x�t� b� � x�t� � b � �x�t�

� x�t� � b � f�x�t�� s�t�� �
��

ttν

x

νt +b

} ν νb f(x(t ) + I(t ))

Figure �� Discretization by linear extrapolation�

The second� and �nal� step is to rewrite �
�� in PDL� This yields the following code�
���

quantity X� Sensor�

���

void DISCRETE�DE �void�

f

float s�

s � value�Sensor��

add value�X� f�value�X�� s��	
�� �� b � ��	

 ��

g

��
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