
Comparison of the Expressive Powers of
Weighted Grammars and OOMs

Josip Djolonga

Computer Science
Jacobs University Bremen
College Ring 7
28759 Bremen
Germany

Type: Guided Research Final Report
Date: May 17, 2011
Supervisor: Prof. Dr. H. Jaeger

EXECUTIVE SUMMARY

In many problems in computer science we have to come up with models that assign probabilities to
finite strings composed of symbols from some finite alphabet. Moreover, we would like to devise
mechanisms that will allow us to empirically learn the parameters of the model from some available
corpus of data. For example, in speech processing we need a probabilistic model of the underlying
language, and in computational biology we are interested in the probabilities of protein and DNA
sequences which can be also represented as strings of letters. Some of the most widely used such
models that have been applied to many areas of science are Hidden Markov Models (HMM). A nat-
ural generalization of HMMs that have been also extensively researched are Observable Operator
Models (OOM). Similarly to HMMs, they assign probabilities by processing the input string from
left to right. However, there is a crucial difference between these two formalisms, namely OOMs
relax some of the restrictions HMMs pose and as a result have gained several benefits. They have
been shown to be properly more powerful and moreover, unlike HMMs, there exists a learning al-
gorithm that can efficiently converge to the best model. Another widely used model, that gives us
a hierarchical multi-scale insight of the language being modelled are Weighted Context Free Gram-
mars (WCFG). For each word that belongs to the language, the grammar has a set of hierarchically
structured derivation trees from which the weight of the word can be inferred. The difference be-
tween OOMs and WCFGs is not only in the way they assign the weights, but also in the power of
the methods to learn their parameters from data. As already mentioned, OOMs have a very efficient
algorithm that can find the best parameters, while the algorithms used to infer the grammatical mod-
els do not have such properties. Given that these two models provide completely different views on
the modelled language and have learning algorithms that possess different characteristics, we are
interested in the relationship between their expressive power. In this thesis report, I first develop the
mathematical framework needed to precisely state the question. Then, two theorems are proven that
decide the expressivity question, namely, there is no proper inclusion between the two models.

CONTENTS

1 Description 3

2 Theoretical Setting 4
2.1 Probabilistic Languages . 4
2.2 Weighted Grammars . 5
2.3 Pumping Lemma for WCFGs . 8
2.4 Multiplicity Automata . 8
2.5 Symbolic Stochastic Processes and OOMs . 10

3 Unambiguous WCFGs are not a superset of OOMs 12

4 OOMs are not a superset of WCFGs 15

5 Conclusion and Future Work 16

6 Acknowledgements 17

2

1 DESCRIPTION

Observable Operator Models (OOM) are a formalism of modelling symbolic, stationary stochastic
time series that have been invented as the natural extension of the well known Hidden Markov Mod-
els (HMM). They have been extensively researched in the past which resulted in a rich theory based
on linear algebra, and the Efficiency Sharpening (ES) (Jaeger et al., 2005) learning algorithm that
has been proven to efficiently converge to the best parameters. These two models keep an internal
state that is iteratively updated as the input string is processed from left to right. Probabilities are
then assigned as a function of the internal state. However, the states of these two models represent
different things. While HMMs’ states are closely related to the states of the physical system being
modelled, the states of an OOM keep the necessary information to predict the future observations
and have nothing to do with the states of the physical system. Additionally and most importantly, it
has been shown that OOMs are properly more expressive than HMMs (Jaeger, 2000). While orig-
inally invented for stochastic processes, with some small modifications these models can be also
used to model probabilities over sets of finite words (Thon, 2011). Such probability distributions
are of crucial importance in several fields, most notably speech recognition where they are used as
language models, and in computational biology where they can model protein and DNA sequences.

Another approach that gives us a different insight into the stochastic language being modelled are
Weighted Context Free Grammars (WCFG). Originally inspired by the broadly applied Context
Free Grammar (CFG), they provide a hierarchical multi-scale view of the language. The CFGs are
extended by assigning weights to each production rule. These weights can be then used to assign
probabilities to words. WCFGs have been known for quite some time in the speech processing
community (Lari and Young, 1990) and have been successfully used in many domains (Jurafsky
et al., 1995; Sakakibara et al., 1994). Unlike OOMs that possess a provably optimal algorithm,
WCFGs are trained using the Inside-Outside procedure (Lari and Young, 1990), member of the class
of Expectation Maximization algorithms which do not have the convergence properties of ES. An
interesting question that arises, and has numerous consequences to the learnability and expressibility
of the model, is where to take the weights of the production rules from. While generally they can be
assumed to come from some semi-ring (Goodman, 1999), in practice they are taken to be positive
reals or from (0, 1] (Smith and Johnson, 2007), so that some interpretation can be given. It has been
already shown that under some normalization conditions, if we allow positive weights we can not
represent more languages than if we just take weights from (0, 1] and we moreover restrict them to
have a probabilistic interpretation (Smith and Johnson, 2007).

In this thesis, I decide the question if there is a relationship between OOMs and unambiguous
positively weighted grammars, more specifically if one of them properly subsume the other. The
document is structured as follows. First, in Section 2, the mathematical framework needed to for-
mally state the question is presented. Then, in the next two Sections 3 and 4, two theorems are
proven which decide the question of inclusion between OOMs and unambiguous WCFGs. Finally,
a summary of the results with suggestions for future work is presented in Section 5.

3

2 THEORETICAL SETTING

In the following I present the formal theoretical setting needed to state the problem in a rigorous
mathematical manner. First, formal languages are discussed in general and then their extension
using a weighting function is introduced. Then, the theory of weighted grammars is presented
together with some important results which are crucial to the discussion in the subsequent sections.
Finally, OOMs are precisely formulated in a manner suitable for modelling distributions over words
and also their connection to other formalisms is outlined.

2.1 PROBABILISTIC LANGUAGES

The theory of formal languages has been extensively researched in the past, by both linguists for
modelling natural human languages, and by computer scientists as the tool for analysing and spec-
ifying programming languages. Here I give only a short introduction, for a better overview see the
standard text on the subject (Hopcroft et al., 1979).

An alphabet is a finite set of symbols and throughout this document it will be denoted by Σ. If we
concatenate symbols from the alphabet into a finite sequence, we call the sequence a string over Σ.
A special string is the string with zero occurrences of symbols, known as the empty string and will
be denoted by ε. The length of a string w, denoted by |w|, is the number of positions for symbols in
the string. As a convention, we set |ε| = 0. We denote by Σk the set of all words over Σ of length
k. Furthermore, we define Σ+ = ∪∞k=1Σk and Σ∗ = Σ0 ∪ Σ+. The concatenation of strings w and
v will be denoted as wv, and as a shorthand for concatenating multiple copies of the same string we
define wk = ww · · ·w︸ ︷︷ ︸

k copies

if k > 0, and w0 = ε.

The most important notion is that of a deterministic formal language, which is simply a collection
of words over some alphabet.

Definition 2.1 (Language). A language over an alphabet Σ is a subset of Σ∗.

Example. {b, bb, ba} and {aibi | i ∈ N} are languages over Σ = {a, b}.

Because this definition only covers the deterministic case where the membership of a word is a
boolean function, we have to extend it so that we can assign weights to each word. This is better
formalized in the next definition adapted from (Booth and Thompson, 1973).

Definition 2.2 (Word Function). A word function is a mapping f : Σ∗ → R.

Let w1, w2, · · · be the lexicographic ordering of Σ∗ induced by some order≺ on the symbols Σ. As
a shorthand, we denote

∑
w∈Σ∗ f(w) =

∑∞
i=1 f(wi). If we add the restriction that

∑
w∈Σ∗ f(w)

converges , we call f a measurable word function.

Note. We can still obtain a deterministic language L ⊂ Σ∗ of all words that appear in the language
from a word function f by setting L = supp f = {w | f(w) 6= 0}.
Remark. If f maps to R≥0 then the series converges iff it converges absolutely, so the ordering does
not matter and it will not be explicitly defined.

This definition of a language distribution is very broad and general, and even allows negative word
weights which do not have a clear intuitive meaning. As we are mostly interested in the case where

4

we can give a probabilistic interpretation of frequency, or rather likelihood, to the words, we can
further restrict the set of word functions to include only those that can be potentially utilized in
many applications.

Definition 2.3 (Probabilistic Word Function). A measurable word function f is called a probabilistic
word function if it maps to [0, 1] and

∑
w∈Σ∗ f(w) = 1.

Note. Any non-negative measurable word function can be normalized to a probabilistic word func-
tion if we divide by

∑
w∈Σ∗ f(w).

Example. To better illustrate this definition, we proceed with an example of a probabilistic word
function over Σ = {a, b}. We define a word function f equivalent to the well-known Poisson
distribution as

f(w) =

{
λke−λ

k! , w is of the form akbk for some k ≥ 0

0, otherwise

where λ is a positive constant. It is trivially true that this is indeed a probabilistic word measure,
because f(akbk) = Poisson(k;λ), hence it must hold that

∑∞
k=0 f(akbk) = 1.

2.2 WEIGHTED GRAMMARS

One formalism that can be used to assign weights to words using a hierarchical multi-scale view
of the language is that of Weighted Context Free Grammars (WCFG). They are a generalization of
classical grammars by assigning a weight to each of the production rules. It is important to note
that we follow the standard literature (Smith and Johnson, 2007) and limit the weights to positive
reals 1 . One reason for this restriction is that positive weights can be more easily interpreted and
estimated from data. There exists a more general theory of these grammars when the weights and
the operations come from a semi-ring (Goodman, 1999), but we only consider the special case when
we use (R>0,+,×) as the underlying semi-ring.

The definition below is adapted from the one for CFGs in (Hopcroft et al., 1979), which is the
standard introductory book for formal grammars.

Definition 2.4 (WCFG,GWCFG). A weighted context free grammar is a structureG = (V,Σ, R, S,Θ),
where

• V = {A1, A2, · · · , Ak} is a finite set of non-terminals (variables).

• Σ is the alphabet of terminals.

• R = {r1, r2, · · · , rm} is a finite set of rules of the form Ai → α, where Ai ∈ V and
α ∈ (V ∪ Σ)∗.

• S ∈ V is the starting symbol.

• Θ : R→ R>0 assigns positive weights to each rule in R.

For convenience, we write θA→α for the weight of the rule (A → α) ∈ R. Moreover, if we allow
weights from R, rather than R>0, we say that the grammar is a General WCFG (GWCFG).

1Zero weights are not considered, because those rules can be simply removed from the grammar.

5

An important subclass of WCFGs can be obtained by restricting the weights in such a way to get a
probabilistic interpretation of the branchings of the variables in the derivation trees.

Definition 2.5 (PCFG). A probabilistic context free grammar is a WCFG G = (V,Σ, R, S,Θ) with
the restrictions that Θ maps to (0, 1], and for each non-terminal A ∈ V it holds that∑

(A→αi)∈R

θA→αi = 1

Given the restrictions on the grammar which take away some of the degrees of freedom, it seems
that PCFGs should be less expressive than WCFGs. However, it has been shown that under some
normalization conditions WCFGs and PCFGs represent the same set of functions.

Theorem 2.1. If f ∈WCFG is a probabilistic measure function, then f ∈ PCFG.

A proof of the claim can be found in (Smith and Johnson, 2007).

Once we have assigned weights to each rule, we can use them to weigh derivations. There are two
ways equivalent ways of looking at the extension of the weights from production rules to weighted
derivations - either using leftmost derivations, or using derivation trees. I have chosen the latter
approach as I find it more intuitive and better portrays the hierarchical nature of the grammars.

Definition 2.6 (Derivation Tree). A derivation tree for a WCFG G = (V,Σ, R, S,Θ) is a tree τ that
satisfies the following conditions:

1. Each interior node is labelled with a variable from V and the root is labelled S.

2. Each leaf is labelled by an element of V ∪Σ∪{ε}. However, if the node is labelled ε, it must
be the only child of its parent.

3. If a parent is labelled A and its children are labelled X1, X2, · · · , Xk from left to right,
then A → X1X2 · · ·Xk is a production rule. We count this as one occurrence of the rule
A→ X1X2 · · ·Xk in the tree τ .

The yield of the tree τ , denoted by by yield(τ) is the concatenation of the labels of the leaves of the
tree from left to right (in a depth-first manner). For a word w, we write trees(w) for the set of all
trees with yield w.

Every tree has a weight associated to it, which is equal to the product of all the rules used in its
derivation. This is analogous to the product rule in probability, where the product of an intersection
of independent events is equal to the product of their probabilities.

Definition 2.7 (Tree Weight). For a tree τ define its weight to be

θ(τ) =
∏

(A→α)∈R

(θA→α)g(A→α,τ)

where g(A→ α, τ) is the number of occurrences of rule A→ α in the tree τ .

Example. Consider the grammar G = ({S,A,B}︸ ︷︷ ︸
V

, {a, b}︸ ︷︷ ︸
Σ

, R, S,Θ) with rules

{S 0.5→ AB, S
0.5→ S, A

0.3→ Aa, A
0.7→ ε, B

0.2→ aBb, B
0.8→ b}

6

S

A

A

A

A

ε

a

a

B

a B

b

b

Figure 1: A derivation tree of aaaabb

S

α1 A1

α2 A2

α3 A3

α4 . . .

Figure 2: A typical right-linear derivation tree

A possible derivation tree is shown on Figure 1. The corresponding tree weight is

θS→AB︸ ︷︷ ︸
0.5

×θA→Aa︸ ︷︷ ︸
0.3

2 × θA→ε︸ ︷︷ ︸
0.7

× θB→aBb︸ ︷︷ ︸
0.2

× θB→b︸ ︷︷ ︸
0.8

= 0.00504

Definition 2.8 (Right-Linear Grammar). A grammar is called right-linear if every rule is of the form
A→ αB or A→ α, where A,B ∈ V and α ∈ Σ∗.

The derivation trees that are associated with linear grammars have a characteristic form. They only
branch on one side and typically look like Figure 2. Their importance comes from the classical the-
ory of formal languages, because they are known to be equivalent with finite deterministic automata
(Hopcroft et al., 1979). Analogously, as will be shown in the next subsection, there is a relationship
between these grammars and the probabilistic counterparts of finite automata.

The weights of trees can be used to define weights over words, which is our primary interest. We
define the weight of a word as the sum of the weights of all derivation trees for that word.

Definition 2.9 (Induced Word Measure). The weight of w ∈ Σ∗, denoted by θ(w) 2 under the
WCFG G is

∑
τ∈trees(w) θ(τ) where trees(w) is the set of all trees with yield w 3. From this it

clearly follows that every weighted grammar G induces a word measure fG on Σ∗ by setting fG(w)
to be equal to the weight of w under G.

The set of all word measures that can be induced by some WCFG will be denoted by WCFG.
2As a convenience we use θ(·) to denote weights of words and trees. The meaning should be clear from the context.
3This implies that if w has no derivation trees, then θ(w) = 0 because the sum has zero terms.

7

Remark. An important observation is that while the grammar might be a PCFG, it is not generally
true that the induced word distribution is a probabilistic word measure. This is best shown by a
very simple counter-example. Consider the grammar with a single non-terminal S, and a single
production rule S 1→ S. It is clear that this is indeed a PCFG, but it assigns the weight of 0 to all
words.

There is a special kind of grammars, where each word has at most one derivation tree. This means
that in order to compute the weight for the word we do not have to consider all possibles parses of
the word, which can be infinitely many for some grammars. The expressive power of this family of
grammars is considered in Section 3.

Definition 2.10 (Unambiguous Grammar). A grammar is unambiguous if for all w ∈ Σ∗ it holds
that |trees(w)| ≤ 1. Or stated differently, if each word has at most one derivation.

We denote with WCFGunambiguous the set of all word measures that can be induced by some unam-
biguous WCFG.

2.3 PUMPING LEMMA FOR WCFGS

Naturally, there are some languages that CFGs can not represent and we need a tool to show that
that is indeed the case. A combinatorial argument on the height of the derivation trees results in a
very powerful lemma, known as the Pumping Lemma, which in some cases can be used to prove
that some language is not context-free. The version of the lemma presented here is slightly different
than the classical deterministic statement, because it applies to WCFGs, rather than CFGs. It will
be a cornerstone of the proof in Section 3.

Lemma 2.2 (Pumping Lemma for unambiguous WCFGs). Let f : Σ∗ → [0, 1] be a probabilis-
tic word measure induced by an unambiguous WCFG G = (V,Σ, R, S,Θ). Then, there exists a
constant N such that every w ∈ Σ∗ with |w| ≥ N and θ(w) 6= 0 can be decomposed as w = uvxyz

• |vy| > 0

• |vxy| ≤ N

• θ(uvnxynz) = knθ(w) for all n ∈ N+ and some k > 0.

I do not provide a proof of the claim, because it is a well known fact and detailed proofs can be
found in many standard books (Sipser, 1996). The only deviations from the standard statement are
the constant k, which is the weight of the subtree being repeated (”pumped”), and the stronger third
conclusion, which follows from the fact that the grammar is assumed to be unambiguous.

2.4 MULTIPLICITY AUTOMATA

In the same way classical grammars can be altered to assign probabilities to words, finite automata
(Hopcroft et al., 1979) can be also extended to their weighted counterparts - Multiplicity Automata
(MA) (Schützenberg, 1961). As it will be later shown they subsume OOMs, and thus provide a
different perspective of looking at OOMs as automata , rather than algebraic methods for modelling
stochastic systems. Not only MAs put OOMs in this framework of probabilistic models inspired

8

from the theory of formal languages, but this representation of OOMs will also make some of the
proofs easier and more intuitive.

Definition 2.11 (MA,PFA). A multiplicity automaton is a structure M = (Σ, Q, φ, ι, τ) where

• Σ is a finite alphabet.

• Q is a finite set of states.

• φ : Q×Σ×Q→ R is the state transition function. We can inductively extend φ to words by
setting

∀w ∈ Σ∗, a ∈ Σ : φ(q, wa, q′) =
∑
s∈Q

φ(q, w, s)φ(s, a, q′)

and φ(q, ε, q′) = δ(q, q′) 4.

• ι : Q→ R is the initialization function.

• τ : Q→ R is the termination function.

If we further pose the following restrictions 5 φ, ι, τ have codomain [0, 1]; ∀q ∈ Q : τ(q) +
φ(q,Σ, Q) = 1 and ι(Q) = 1 we get probabilistic finite automation (PFA).

To a MA M we assign the word function

fM : Σ∗ → R : fM (x) =
∑
q,q′∈Q

ι(q)φ(q, x, q′)τ(q′)

Note. The function φ has R as a codomain, more specifically it can take negative values which is
crucial to their ability to represent OOMs.

If we look closely at how fM is defined, it takes the sum of all possible paths in the automaton.
Because it is convenient to use paths when working with automata, we formally define them.

Definition 2.12 (Path in MA). We say that the sequence of states and symbols q1
a1→ q2, · · ·

an−1→
qn

an→ qn+1 is a path for the word w = a1a2 · · · an with n symbols if ∀i ∈ {1, 2, · · ·n} it holds that
φ(qi, ai, qi+1) 6= 0, ι(q1) 6= 0 and τ(qn+1) 6= 0.

The set of all induced functions is not of interest to this project, because we want those functions
that can be used as probabilistic distributions. Hence, we define a special kind of MAs that satisfy
this requirement, whose expressive power will be analysed in the next section.

Definition 2.13 (SMA). If for some MA M it is the case that fM is a probabilistic word function,
we say thatM is a stochastic multiplicity automaton and we say that f = fM is a rational stochastic
language. We shall denote the set of all probabilistic word functions that can be represented by an
SMA by SMA.

As already mentioned, similarly to the deterministic case, MAs can be converted to linear grammars.
The following theorem proves this fact.

4The delta function is defined as δ(x, y) = 1 if x = y and 0 otherwise.
5For any function if some parameter is a set of values, then it denotes the sum over all possible values. For example

φ(q,Σ, Q) =
∑
a∈Σ

∑
q′∈Q φ(q, a, q′)

9

Theorem 2.3. Given a MAM = (Σ, Q, φ, ι, τ), there exists an equivalent unambiguous right-linear
general 6 WCFG with with |Q|+ 1 non-terminals.

Proof. Construct a grammar G = (V,Σ, R, S, P) as follows

• V = {vq | q ∈ Q} ∪ {S}.

• R = {vq → avq′ | ∀q, q′ ∈ Q, a ∈ Σ such that φ(q, a, q′) > 0}.

• For each rule vq → avq′ , set a corresponding weight φ(q, a, q′).

• Add the initialization rules S → vq with weight ι(q) for all q ∈ Q such that ι(q) 6= 0.

• Finally, add the termination vq → ε with weight τ(q) for all q ∈ Q such that τ(q) 6= 0.

It can be easily seen that the induced word function will agree on every word. First, which I will
show below, there is a one-to-one correspondence between paths in the MA and derivation trees in
the grammar, and moreover corresponding pairs have the same weight. The conclusion follows from
the fact that both MAs and WCFGs assign weights to words in a similar manner. More specifically,
the weight given to a word is the sum of the weights of all paths in a MA, and the sum of all
derivations in a WCFG.

Let w = a1a2a3 · · · an ∈ Σ∗ be a word with n symbols.

(⇒) If q1
a1→ q2

a2→ · · · an→ qn+1 is a path in the MA, then by construction there exists a derivation
tree with internal nodes S, vq1 , vq2 , · · · , vqn , vqn+1 and weight

θS→vq1θvq1→a1vq2
· · · θvqn→anvqn+1

θvqn+1→ε = ι(q1)φ(q1, a1, q2) · · ·φ(qn, an, qn+1)τ(qn+1)

which is the weight of the path.

(⇐) Let τ be a derivation tree with internal nodes S, vq1 , vq2 , · · · , vqn+1 ordered increasingly by
the distance from the root. Then q1

a1→ q2
a2→ · · · an→ qn+1 has to be a path in the MA because

for each qi, qi+1 we only add a rule qi → aiqi+1 if there is such a transition in the MA. By an
analogous argument of the previous part, the weights are equal.

2.5 SYMBOLIC STOCHASTIC PROCESSES AND OOMS

In this subsection, a brief introduction is given to the theory of finite-dimensional OOMs, which
is only a special case of the more abstract theory presented in (Jaeger et al., 2005). The approach
taken here follows (Thon, 2011).

As already mentioned, OOMs were originally designed to model stationary symbolic stochastic
processes. This is quite different from probabilities over words, because stochastic processes are in
general infinite.

Definition 2.14 (Symbolic Stochastic Process). A function f : Σ∗ → [0, 1] that satisfies f(ε) = 1
and ∀w ∈ Σ∗ : f(w) =

∑
a∈Σ f(wa) is said to be a symbolic stochastic process.

Definition 2.15 (SS). A d-dimensional sequential system M is a structure (σ, {τx}x∈Σ, ωε) where

6The question about the relationship between positive WCFGs and SMAs is discussed in the next two sections.

10

• σ is a linear evaluation map Rd → R.

• Each τx is a matrix (i.e. a linear operator) from Rd×d.

• ωε ∈ Rd is the initial state 7 .

To each M we assign a word function, called the external function, which is defined as

fM : Σ∗ → R : fM (x1x2 · · ·xn) = στxn · · · τx2τx1ωε

The main idea behind SSs is that observations are identified with the operators themselves. More
specifically, for every possible symbol a ∈ Σ that can be observed there exists a corresponding op-
erator τa that updates the current state of the model. Hence, after observing a sequence a1a2 · · · an,
the new state of the model will be updated to τanτan−1 · · · τa2τa1ωε. As already mentioned, unlike
HMMs, this state is not bound to the physical states of the observed system. We are rather interested
in keeping the necessary information which will allow us to represent the probability function of
future observations. This can be best expressed in the language of linear algebra - we can think of
the components of the state vector as the representation of the probability function for future obser-
vations with respect to some basis. Thus, we can model all processes whose distribution functions
span a finite dimensional vector space by choosing sufficiently large dimension d.

As already hinted in the previous section, there is a formal equivalence relationship between MAs
and SSs. This fact can be easily seen by rewriting MAs in terms of matrices and vectors (Thon,
2011). We can say that they are just different perspectives of the same mathematical mechanism.

Besides the fact that they were originally invented for modelling infinite sequences, every stochastic
process can be used to model distributions over words by the addition of another stopping symbol
which we shall denote by $. This of course applies to SSs and the following definition characterizes
the set of languages that can be represented in such a way.

Definition 2.16 (OOM). An Observable Operator Model is a sequential system M such that the
induced word function fM is symbolic stochastic process. We say that a word function f can be
represented by an OOM if there exists an OOM M with an extra symbol $ such that

∀w ∈ Σ∗ : f(w) = fM (w$)

The set of all probabilistic word functions that can be represented in such a way will be denoted by
OOM 8 .

It turns out that OOMs and MAs (or equivalently SSs) model the same set of probabilistic languages.

Lemma 2.4.
OOM = SMA

A proof of the claim can be found in (Thon, 2011). As there is an equivalence between these two
sets, in the following discussion I only consider OOM.

7We treat elements of Rd as column vectors.
8In (Thon, 2011) OOMs that induce a probabilistic word function are called terminating.

11

Figure 3: Non-scaled probability clock and example PCL functions.

3 UNAMBIGUOUS WCFGS ARE NOT A SUPERSET OF OOMS

In this section I present the proof that unambiguous WCFGs do not subsume OOMs. This is done
by constructing an example that can be easily seen to be a member of OOM, but I will show that it
is not a member of WCFGunambiguous. First, a special set of probabilistic languages, named clock
languages, are defined in a manner similar to the definition of the clock distribution in (Jaeger,
2000) that is used to show that OOMs properly extend HMMs. After proving that they can be
indeed normalized to a probabilistic word distribution, I proceed with the proof of the main claim.

Definition 3.1 (Rotation Matrix). A rotation matrix R acting on R3 of an angle of θ around the
x-axis has the form

R =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

Definition 3.2 (PCL). Let R be a rotation matrix of an angle θ which is a non-rational multiple
of π, λ ∈ [0, 1) and w0 ∈ (R+ ∪ {0})3 the initial state. We furthermore restrict w0 to satisfy 9

w0,1 − 2w0,2 − 2w0,3 > 0. For each such constants, we define a word measure 10 11

f(an) = 1λnRnw0

over the singleton alphabet Σ = {a}. We say that f has parameters (R, λ,w0). The set of all such
functions shall be called probabilistic clock languages, and denoted by PCL.

9The second sub-index of w0 is used to denote the vector component.
10The convergence is proven in 3.1.
11We use 1 to denote the row vector of ones (1, 1, 1).

12

Some example members of PCL can be seen on Figure 3. As one can see, the probability oscillates
all the time, and intuitively we need negative values which are non-allowed as weights for WCFGs
to represent this behaviour. Moreover, we add a decaying factor λn which should guarantee that the
resulting distribution can be normalized, so we can have a probabilistic word function that exhibits
this oscillatory behaviour. This last fact is proven in the next theorem.

Theorem 3.1 (PCL convergence). For every f ∈ PCL it holds that
∑∞

n=1 f(an) converges.

Proof. Let (R, λ,w0) be the parameters of f ∈ PCL. For readability, we denote f(an) by an. First,
we show that limn→∞

n
√
|an| = λ ∈ [0, 1). The claim of the proof then follows from the Root Test

(Rudin, 1964).

To simplify the analysis of the sequence, using simple algebra and the fact that Rn is a rotation
matrix around the x-axis of an angle of nθ, we can write the analytical formula for the n-th term

an = λn(w0,1 + w0,2(cos(nθ) + sin(nθ)) + w0,3(cos(nθ)− sin(nθ)))

We define two sequences a+
n and a−n that bound an from above and below respectively.

(i)

an = λn(w0,1 + w0,2(cos(nθ)︸ ︷︷ ︸
≤1

+ sin(nθ))︸ ︷︷ ︸
≤1

+w0,3(cos(nθ)︸ ︷︷ ︸
≤1

− sin(nθ)))︸ ︷︷ ︸
≥−1

≤ λn(w0,1 + 2w0,2 + 2w0,3)

= λnC

We can always pick C > 0. Hence, if we set a+
n = λnC we get the upper bound.

(ii)

an = λn(w0,1 + w0,2(cos(nθ)︸ ︷︷ ︸
≥−1

+ sin(nθ))︸ ︷︷ ︸
≥−1

+w0,3(cos(nθ)︸ ︷︷ ︸
≥−1

− sin(nθ)))︸ ︷︷ ︸
≤1

≥ λn(w0,1 − 2w0,2 − 2w0,3)

= λnF

Because of the strict inequality restriction on w0 in the Definition 3.2, it directly follows that
F > 0. By defining a−n = λnF we get the lower bound.

Two important limits, that also turn out to be easy to calculate are

lim
n→∞

n

√
|a+
n |

a+
n>0
= lim

n→∞
n
√
λnC = lim

n→∞
λC1/n = λ lim

n→∞
C1/n = λ (1)

and

lim
n→∞

n

√
|a−n |

a−n>0
= lim

n→∞
n
√
λnF = lim

n→∞
λF 1/n = λ lim

n→∞
F 1/n = λ (2)

13

Because 0 < a−n ≤ an ≤ a+
n it follows that n

√
|a−n | ≤ n

√
|an| ≤ n

√
|a+
n |. By the Squeeze Theorem

we can conclude that limn→∞
n
√
|an| = λ < 1.

The claim of the theorem follows from the Root Test.

Corollary. Every f ∈ PCL can be normalized to a probabilistic word function by appropriately
scaling the initial vector w0.

By construction of PCL, we know that there is an SMA, and hence an OOM, that can model this
language. The following theorem completes the proof that unambiguous WCFGs are not more
powerful than OOMs.

Theorem 3.2. The probabilistic clock language p with parameters (R, λ, (5, 1, 1)/Z︸ ︷︷ ︸
w0

) can not be

generated by an unambiguous grammar (Z ∈ R>0 is chosen as the normalization constant which
was proven to exist in Theorem 3.1).

Proof. Assume the language can be generated by some unambiguous WCFG G and let N be the
pumping constant from Theorem 2.2. Then, for all w = an with n ≥ N , (∃ T ∈ N). 1 ≤ T ≤ N
and (∃r). r ∈ R>0 such that the following holds

∀k ∈ N+ : rkp(an) = p(an+Tk)

Where r is the weight of the subtree being repeated. If we expand p using its definition we get

rk1λnRnw0 = 1λn+TkRn+Tkw0

(
r

λT
)k1Rnw0 = 1Rn+Tkw0

Because n can be fixed, the expression can be simplified by setting λ̂ = r/λT and K = 1Rnw0.
This results in

λ̂kK = 1Rn+Tkw0

where K and λ̂ are positive constants. This equality must hold for all k ∈ N+. I will show that this
is not possible by analysing the asymptotic behaviour of both sides as k →∞.

(i) If λ̂ > 1, then left hand side goes to∞ as k → ∞, but the right hand side is bounded from
above by the constant C > 0 which was defined for a+

n .

(ii) If λ̂ < 1 then the left hand side goes to 0 as k →∞, but the right hand side is bounded from
below by F > 0 which was defined for a−n .

(iii) If λ̂ = 1 then the left hand side is constant, but the right hand side is not constant. This can
be easily seen, because in the previous theorem we have shown that for every m it holds that

1Rmw0 = bm = w0,1︸︷︷︸
=5

+w0,2︸︷︷︸
=1

(cos(mθ) + sin(mθ)) + w0,3︸︷︷︸
=1

(cos(mθ)− sin(mθ))

= 5 + 2cos(mθ)

14

In this case m = n + Tk, so the right hand side becomes 5 + 2cos(nθ + Tkθ). The angle
θTk is always a non-rational multiple of π, so the cosine component can not be constant.

Corollary. OOM 6⊂WCFGunambiguous

4 OOMS ARE NOT A SUPERSET OF WCFGS

In this section I consider the different direction of the inclusion relationship between the two sets
of probabilistic languages. Given that OOMs are similar to finite automata and the fact that de-
terministic finite automata are a proper subset of CFGs, this result is not surprising. We see that
the addition of negative weights still does not give us enough expressive power to represent some
languages from WCFG. For the proof, a very simple word measure over the alphabet Σ = {a, b} is
considered. We define the word function

p(w) =

{
1/2i+1, w is of the form biai for some i ≥ 0

0, otherwise

It can be easily checked that p is a probabilistic measure, because
∑∞

n=1 1/2n = 1.

Theorem 4.1. The probabilistic word measure p defined above can be modelled by a PCFG, but can
not be modelled using an OOM.

Proof. The measure is clearly modelled with an unambiguous PCFG G with single non-terminal
S, and productions {S 0.5→ ε, S

0.5→ bSa}.

Assume that p ∈ OOM. Then there exists a d-dimensional SMA M = (σ, {τa, τb},w0) that can
model the language. I will show that this leads to a contradiction.

Consider the d + 1 vectors v0 = w0, v1 = τbw0, v2 = τ2
bw0, · · · , vd = τdbw0. It can be easily

shown that they are all non-zero and distinct. Assume that for some i ∈ {1, 2, · · · , d} it holds
that vi = 0. By definition, p(biai) = στ iavi = στ ia0 = 0, which is a contradiction. Assume
that for some i, j ∈ {1, 2, · · · , d} such that i 6= j it is true that vi = vj . This would imply that

p(biai) = στ iavi = στ iavj
i 6=j
= 0, which is again a contradiction.

Because we can not have a set of d+ 1 independent vectors in a d-dimensional vector space (Axler,
1997), they must be dependent. By definition, there exist scalars αi ∈ R, not all zero, such that

α0v0 + α1v1 + · · ·+ αdvd = 0

Let i be the index such that αi 6= 0. Then using simple algebra we get

vi = − 1

αi

d∑
j=0,j 6=i

αjvj

15

Figure 4: Relationships between the classes of probabilistic languages.

If we multiply both sides from the left by στ ia and use the linearity of the map, the equation becomes

στ iaτ
i
bw0 = − 1

αi

d∑
j=0,j 6=i

αjστ
i
aτ
j
bw0

By the definition of the language it must hold that p(bjai) = στ iaτ
j
bw0 6= 0 iff i = j. Thus, the left

hand side of the equation is non-zero, but all the terms in the summation on the right hand side are
zero. This is a contradiction, hence the claim of the theorem must hold.

Corollary. WCFGunambiguous 6⊂ OOM

5 CONCLUSION AND FUTURE WORK

In this report I developed the mathematical framework needed to rigorously analyse the expressive
powers of OOMs and WCFGs when used to assign probabilities to finite sequences of symbols.
Despite their different formulation, one derived as the natural extension of HMMs and the other
inspired from the theory formal languages, it turned out that there is a relation between the two.
Namely, OOMs can be seen as a special kind of weighted grammars with weights that can also take
negative values. With the two theorems in Sections 3 and 4 it was shown that that neither of them is
strictly more expressive. The relationship between these sets of languages can be best understood
from Figure 4.

There are many possibilities to extend the results from this thesis. One obvious question that is
raised is if ambiguous weighted grammars subsume OOMs. A simple extension of the argument
in Section 3 does not work, because instead of equality we get inequalities which can not be easily
proven to be contradictory based on their asymptotic behaviour. Another important that is of a more
practical interest and deserves attention is how well can OOMs approximate languages generated
by a WCFG.

All things considered, this project made a connection between two different areas of machine learn-
ing research and answered an important question on the relationship of their expressive powers. It
has also set up the theoretical basis needed to conduct further research in this area.

16

6 ACKNOWLEDGEMENTS

I owe my deepest gratitude to my research mentor Professor Dr. Herbert Jeager for his continuous
support and guidance during this semester. I would also like to thank Michael Thon for sharing with
me the draft of his paper, and for his in-depth discussion during the meetings which were of great
help to me.

REFERENCES

Axler, S., 1997. Linear algebra done right. Springer Verlag.

Booth, T., Thompson, R., 1973. Applying probability measures to abstract languages. Computers,
IEEE Transactions on 100 (5), 442–450.

Goodman, J., 1999. Semiring parsing. Computational Linguistics 25 (4), 573–605.

Hopcroft, J., Motwani, R., Ullman, J., 1979. Introduction to automata theory, languages, and com-
putation. Vol. 3. Addison-wesley Reading, MA.

Jaeger, H., 2000. Observable operator models for discrete stochastic time series. Neural Computa-
tion 12 (6), 1371–1398.

Jaeger, H., Zhao, M., Kretzschmar, K., Oberstein, T., Popovici, D., Kolling, A., 2005. Learning
observable operator models via the ES algorithm. New directions in statistical signal processing:
From systems to brains.

Jurafsky, D., Wooters, C., Segal, J., Stolcke, A., Fosler, E., Tajchaman, G., Morgan, N., 1995. Using
a stochastic context-free grammar as a language model for speech recognition. In: icassp. IEEE,
pp. 189–192.

Lari, K., Young, S., 1990. The estimation of stochastic context-free grammars using the inside-
outside algorithm. Computer speech & language 4 (1), 35–56.

Rudin, W., 1964. Principles of mathematical analysis. Vol. 1976. McGraw-Hill New York;.

Sakakibara, Y., Brown, M., Hughey, R., Mian, I., Sjölander, K., Underwood, R., Haussler, D., 1994.
Stochastic context-free grammers for tRNA modeling. Nucleic Acids Research 22 (23), 5112.

Schützenberg, M., 1961. On the definition of a family of automata. Information and control 4 (2-3).

Sipser, M., 1996. Introduction to the Theory of Computation. International Thomson Publishing.

Smith, N., Johnson, M., 2007. Weighted and probabilistic context-free grammars are equally ex-
pressive. Computational Linguistics 33 (4), 477–491.

Thon, M., 2011. Links between multiplicity automata, observable operator models and predictive
state representations, draft.

17

	Description
	Theoretical Setting
	Probabilistic Languages
	Weighted Grammars
	Pumping Lemma for WCFGs
	Multiplicity Automata
	Symbolic Stochastic Processes and OOMs

	Unambiguous WCFGs are not a superset of OOMs
	OOMs are not a superset of WCFGs
	Conclusion and Future Work
	Acknowledgements

