
ANNs @ IK 2008 

Artificial Neural Networks 

A Basic Course at IK 2008  

Herbert Jaeger 

Jacobs University Bremen  

ANNs @ IK 2008 

Course overview 

1 Introduction  

2 Feedforward Networks 

3 Hopfield Networks and Boltzmann Machines  

4 Recurrent Neural Networks for Time Series Processing 



ANNs @ IK 2008 

Session 2: Feedforward networks  

1.1 For starters: the Perceptron 

1.2 Multilayer perceptrons and the backpropagation algorithm  

1.3 Convolutional Networks 

ANNs @ IK 2008 

2.1   For starters: the Perceptron 



ANNs @ IK 2008 

The forefather of artificial neural networks (ANNs) 

Developed by the US American (neuro-)psychologist Frank Rosenblatt 
at the Cornell Aeronautical Laboratory 

First techreport 1957, book publication 1962 (Principles of 
Neurodynamics)

Contemporary with beginnings of symbolic Artificial Intelligence
Has all the standard features of the ANNs of today:

•  A specific task (binary classification)
•  A biologically oriented "architecture" of interconnected, abstracted 

neural processing elements
•  A learning algorithm
•  A mathematical analysis
•  A state-of-the-art computer implementation 

   

•  A history of hype

   

ANNs @ IK 2008 

The Perceptron's task: binary pattern classification 

1) Data from Robert Duin, 
http://ftp.ics.uci.edu/pub/ml-repos/machine-learning-databases/mfeat/mfeat-pix 

Typical data format: binary (black & white) pixel images from 
two classes, for instance handwritten zero and one images1): 

Task: binary classification, that is, upon input of such a pixel 
image, compute the following...  

Output = "0", if the input image is an image of a zero 

Output = "1", if the input image is an image of a one 



ANNs @ IK 2008 

Input "retina" 

Picture taken from Kanal (2001) 

"Associator" units:  
•  randomly connected to (few) 

retina cells 
•  can compute arbitrary Boolean 

functions ("predicates") of their 
inputs 

Trainable connection 
weigths 

(One of) the classical 
Perceptron architecture
(s) 

"Response" unit:  
•  Computes binary function f of 

input  

•  Typical choice: threshold unit 

"0" 

"1" 
 f 

€ 

a j y j∑

€ 

f (u) =
0, if u + b < 0
1, if u + b ≥ 0
 
 
 

bias 

ANNs @ IK 2008 

Early implementations 

First implementations by Rosenblatt on an IBM 704 programmable digital 
computer at the Cornell Aeronautical Laboratory.  

Rosenblatt went on to build an analog hardware implementation, the 
Mark 1 Perceptron. His rationale is very interesting: 

 "As the number of connections in the network increases, ... the 
burden on a conventional digital computer soon becomes excessive, 
and it is anticipated that some of the models now under consideration 
may require actual construction before their capabilities can be fully 
explored. [...] The results of these [digital] programs, therefore, should 
be interpreted as indicating performances which might be expected 
from an "ideal" ... system, and not necessarily as representative of 
any particular engineering design. A Mark I perceptron, ... is expected 
to provide data on the performance of an actual physical system, 
which should be useful for comparative study." (Rosenblatt 1960) 

A perfectly outdated attitude, right? Well... actually, no.  



ANNs @ IK 2008 

The Mark 1 perceptron  
Pattern input: brightly lit 

B/W patterns taken by 
an array of 20 x 20 

photocells 

Input wiring 

Adaptive weights 
realized by motor-driven 

potentiometers 
(all images from Bishop 

2006, Chapter 4.1) 

ANNs @ IK 2008 

Historical and modern perceptrons 
Rosenblatt's classical perceptrons... 
•  Came in many variations 
•  incorporated "biologically plausible" features and terminology, e.g. 

–  multilayer structure loosely modelled after visual system of 
mammals

–  random, local connectivity from retina to associator unit

Modern textbook perceptrons... 
•  Stripped off everything mathematically redundant 
•  Formal model becomes 

€ 

y = f ( w j x j
j=1,...,m
∑ + b)

where y ∈ {0,1} is the output, f defined by f(u) = 1 iff u ≥ 0 else f(u) = 

0 is the unit step function, xj are inputs (raw pixel values or 

preprocessed features – was yj on previous slide), wj are trainable 

weights – was aj on previous slide, b is a constant bias. 



ANNs @ IK 2008 

The perceptron in today's terminology and notation 

Basic formula: 

€ 

y = f ( w j x j
j=1,...,m
∑ + b) = f (w'x + b)

Where y ∈ {0,1}, where ' denotes transpose,  w = (w1,...,wm)' is 
the weight vector, x = (x1,...,xm)' is the input pattern vector, f is 
the unit step function, b is a bias constant. 

An equivalent, more convenient variant: 

€ 

y = f ( ˜ w ' ˜ x )

Where      = (b, w1,...,wm)' is an extended weight vector, and 
    = (1, x1,...,xm)' is an input pattern with additional constant  
input 1. 

€ 

˜ w 

€ 

˜ x 

This trick is common practice in the field of ANNs, and we will use it 
without further mention. That is, we will use the simple formula 

and understand it in the sense of  bias-included variant. 

€ 

y = f (w'x)

ANNs @ IK 2008 

The classification task  

Remember our perceptron formula: 

Task specification:  given a family P of classified patterns 

     find weights w such that for all instances i,  

     that is, the trained perceptron computes the correct class 
labels when given inputs from either of the two pattern 
classes.  

€ 

y = f (w'x)

€ 

P = (x i,yi)( )i∈I
where the xi ∈ m are m-dimensional pattern vectors (which 
includes a constant 1 input), and the  yi ∈ {0,1} are class labels, 

€ 

yi = f (w'x i),



ANNs @ IK 2008 

How do humans learn 1's and 0's (and even more)? 

One way how humans acquire tricky feats is by learning from a 
teacher, essentially trying to become able of imitating them. 

teacher 

It's a 0!! 

I see a 0!! 

learner 

It's a 1!! 
I see a 1!! 

It's a 0!! 
I see a 0!! 

This is supervised learning  
(or supervised training). 

ANNs @ IK 2008 

The learning task for perceptrons 

Remember the basic formula: 

Remember the task specification:  given classified patterns                            
          , find weights w such that for all i:  
This task is solved by supervised learning: 

•  The perceptron is repeatedly "shown" samples from the set P 
•  At  each presentation, say the n-th one, where the example        (x

(n), y(n)) is shown, the current weights w(n – 1) are slightly adapted 
to become w(n)  according to the perceptron learning rule: 

€ 

y = f (w'x)

€ 

P = (x i,yi)( )i∈I

€ 

yi = f (w'x i).

Case 1: y(n) = f (w'(n – 1) x(n)), that is, correct classification of n-th training 
sample with old weights w(n – 1). Then, no change: w(n) = w(n – 1). 

Case 2a: y(n) = 1 ≠ 0 = f (w'(n – 1) x(n)), false classification of class-1 
sample as class-0. Then adapt w(n) = w(n – 1) + x(n). 

Case 2b: y(n) = 0 ≠ 1 = f (w'(n – 1) x(n)), false classification of class-0 
sample as class-1. Then adapt w(n) = w(n – 1) – x(n). 



ANNs @ IK 2008 

Perceptron learning rule convergence  
Theorem (Rosenblatt 1962) (simpli- and sloppified formulation): Let the two 
classes C0 and C1 of the family                          be linearly separable. Then 
the perceptron learning rule will converge after a finite number of steps, that 
is, after some step n0, w(n0) = w(n0 + 1) = w(n0 + 2) ... 

€ 

P = (x i,yi)( )i∈I

Definition. Let P0, P1 ⊆ n be two subsets of n. Then P0 and P1  are 
linearly separable if there is an n–1-dimensional hyperplane  H ⊆ n 
such that P0 and P1 fall on the two different sides of this hyperplane.  

H 

?? 

Linearly 
separable 
sets in 2  

Linearly 
inseparable 
sets 

Note. P0 and P1 are linearly separable 
in n if and only if there is some         
w ∈ n, such that for all p ∈ P0 it holds 
that w'p < 0, while  for all p ∈ P1 it holds 
that w'p ≥ 0 – or vice versa.  
Thus, P0 and P1 are linearly separable 
if and only if there exists some 
perceptron that can classify them. 

ANNs @ IK 2008 

The hype 

A sniplet from the New York Times ("New Navy Device Learns 
by Doing", NYT July 8, 1958), after a press conference held by 
Rosenblatt at the US Office of Naval Research on July 7, 1958 
(cited after Olazaran 1996): 



ANNs @ IK 2008 

The shattering 
1969: Marvin Minsky and Seymour Papert, pioneers of (symbolic) AI, 
publish Perceptrons.  
In this book they strip down the "biologistic" original perceptron account 
to the bare-boned textbook understanding that we also considered here 
and point out, among other things, that the XOR function is not linearly 
separable and thus cannot be learnt by perceptrons. 

X1  X2  XOR(X1, X2) 
0  0   0 
0  1   1 
1  0   1 
1  1   0 X1 

X2 

1 

1 

As a consequence of this simple insight ("perceptrons can't even learn 
the simplest Boolean functions"), ANNs become disreputable as an 
approach to realize machine intelligence for a decade, and research in 
the field takes a dive... 

ANNs @ IK 2008 

2.2 Multilayer perceptrons and the 
backpropagation algorithm  



ANNs @ IK 2008 

The flows of Science... 

Rosenblatt's (and his contemporaries') perspective was a (one 
might say, romantic) mixture of ideas concerning 

•  Human cognitive processing 
•  Brain physiology 
•  Computing machinery (digital and analog) 
•  Applications 
•  Mathematics 

Over the years, these views differentiated and separated (cf. 
the "habitats" of neural networks) 
In Machine Learning, the mathematics (and applications) angle 
is dominating 
This has led to a completely unromantic view on ANNs (and 
other ML methods) 

ANNs @ IK 2008 

The completely unromantic view on ANNs in ML 

ANNs (as any other formalism in machine learning) are seen as 
trainable representations of some general types of mathematical 
objects: 

•  Functions 
•  Probability distributions 
•  Dynamical systems 

(see session 3) 
(see session 4) 

The most basic view on ANNs in ML is that they are function 
approximators. 
Almost every "intelligent" information processing task can be 
cast as a function, for example: 

•  Classification and pattern recognition (function from pattern set 
to class label set) 

•  Time series prediction (function from previous history to future 
observation) 

•  Evaluation (function from input pattern to degrees of belief / 
quality / reward) 

(we'll stick to this for a while) 



ANNs @ IK 2008 

a "wave" of activation  
sweeps through the network, transforming the input,  

Function approximator = feedforward ANN 

A function f: U ö Y maps to each input argument u œ U 
(exactly) one output value y œ Y . 

In feedforward ANNs, the connections between neurons are all 
directed "from left to right" (figuratively speaking): 

Upon presentation of an  input pattern u,  

until at the ouput layer an output pattern y is obtained.  

ANNs @ IK 2008 

The perceptron as a function approximator 

The perceptron, whether in the original "romantic" version (a) or 
the modern textbook version (b),  

(a) (b) 

€ 

y = f (w'x)

is a feedforward ANN und thus "just" implements a function f.  

The shattering of the perceptron hype by Minsky and Papert 
amounts to the observation that perceptrons can implement only 
rather limited functions: 

•  Functions with values in {0, 1} that can be described by a 
linear "decision hyperplane".  



ANNs @ IK 2008 

1986, -- 17 years later... 
Neural networks reappear with a 
flourish: 
Rumelhart, D.E. and McClelland, J.L. 
(eds.): Parallel Distributed Processing: 
Explorations in the Microstructure of 
Cognition. Vol 1, MIT Press (still in 
print!)  

st
at

ic
4.

fil
ef

ro
nt

.c
om

/im
ag

es
/w

w
sr

zk
ur

gj
.jp

g
w

w
w

.to
til

.c
om

 1969: Minsky and Papert 
point out the obvious. 

ANNs @ IK 2008 

The PDP bible An edited collection of (long, 
foundational) articles 
Two landmark chapters: 
•  G.E. Hinton and T.J. Sejnowski: Learning 

and Relearning in Boltzmann Machines 
(session 3) 

•  D.E. Rumelhart, G.E. Hinton, and R.J. 
Williams: Learning Internal 
Representations by Error Propagation (this 
session) 

The Rumelhart/Hinton/Williams 
chapter (re-)introduces the error 
backpropagation, or simply 
"backprop" algorithm  
This algorithms allows, in principle, 
to train feedforward ANNs to 
represent essentially any nonlinear 
function f.   
Backprop is typically applied to 
multilayer feedforward ANNs, aka 
"multilayer perceptrons". 



ANNs @ IK 2008 

Multilayer perceptrons: architecture 

Input layer 

Hidden layer 1 

Hidden layer 2 

Output layer  •  MLP is made of many individual processing 
elements (neurons, units) 

•  Units are ordered in layers: input, hidden, output 
•  Number of input units is dimension of input 

arguments, number of output units dim of output 
values 

•  Units are connected by directed, weighted links 
(synapses, connections) 

•  MLP from figure is a "three-layer 
perceptron" (layers of connections are counted) 

•  Each unit represents a real number x (activation) 
•  Input is written into input layer by setting 

activations to input arguments 
•  Activation is propagated forward through network 

along connections 
•  Each unit (except input) computes its activation 

according to formula on the left: a weighted sum 
of activations of ingoing units, passed through an 
activation function 

•  Activations of output units are read out as value 
vector 

)( 1

1layer  in  units

−

−
∑= m

j
mj

m
ij

m
i xwgx

i-th unit in layer m 

weight of connection from unit         to  

output activation function 

m
ix
m
ijw

1−m
jx

m
ix

g

ANNs @ IK 2008 

Multilayer perceptrons: single neuron update 

Input layer 

Hidden layer 1 

Hidden layer 2 

Output layer  Activation function g is a sigmoid ("s-
shaped") function 

There are two standard options for g:  
•  the logistic function 

•  the hyperbolic tangent 

-3 0 3 -1   

-0.5 

0    

0.5 

1    
€ 

g(a) = tanh(a) =
ea − e−a

ea + e−a€ 

g(a) =
1

1+ e−a

€ 

xi
m = g( wij

m

units j in layer m−1
∑ x j

m−1)



ANNs @ IK 2008 

Multilayer perceptrons: bias units 

Input layer 

Hidden layer 1 

Hidden layer 2 

Output layer  •  A frequent modification 
to the basic architecture 

•  Each neuron layer 
(except outputs) gets an 
additional bias unit 
whose activation is 
frozen at 1. 

1 

1 

1 

ANNs @ IK 2008 

Multilayer perceptrons: special treatment of output units 

Input layer 

Hidden layer 1 

Hidden layer 2 

Output layer  

Problem: using a sigmoid activation function 
g in the output units makes it impossible to 
learn output values greater than 1. 
Solutions: 
(a) Use teacher values g(y) instead of y; in 
applying the trained network, transform 
network output by g-1 to recover original 
output range. 
(b) Use linear output units (drop g in output 
layer) 

-3 0 3 -1   
-0.5 

0    
0.5 

1    



ANNs @ IK 2008 

MLP training 
Objective: for a given MLP structure, minimize the training squared error 

where yn is the correct teacher output value,      the network output (depends on 
the weights wij!). 

•   SEtrain is an "error landscape" over weight space.  

•   Weights are the model parameters q here.  

Approach: gradient descent on SEtrain, finding a local minimum of the error over 
weight space, thus a set of network weights that gives a (locally) minimal training 
error.  

•   requires, for every weight       ,  an analytical expression for  

∑∑
==

=−=
NnNn

nn nESE
,...,1

2

,...,1
train )(~yy

ny~

m
ij

Nn nn
m
ij

Nn
m
ij

train

ww
nE

w
SE

∂

−∂
=

∂

∂
=

∂
∂ ∑∑ ==

2

,...1,...1
~)( yy

m
ijw

ANNs @ IK 2008 

•  A scheme to iteratively compute the gradients                      , starting from the 
output units for whose weights the gradient is easily obtained, working 
backwards through the network.  

•  For details see accompanying script or any NN textbook. 
•  Rather easy to implement and understand.  
•  Was the breakthrough for making neural networks useful for, and accepted by 

the engineering community. 

The backpropagation algorithm 1 
Objective: find analytical expression for  

Difficulty: each                          depends on all training points and all (other) 
weights! 

Solution: the famous backpropagation algorithm (Rumelhart, Hinton and 
Williams 1986; precursors / co-inventors: Werbos 1974, Le Cun 1986; history: 
Frasconi et al 1993).  

m
ij

Nn nn
m
ij

Nn
m
ij

train

ww
nE

w
SE

∂

−∂
=

∂

∂
=

∂
∂ ∑∑ ==

2

,...1,...1
~)( yy

m
ijtrain wSE ∂∂ /

m
ijtrain wSE ∂∂ /



ANNs @ IK 2008 

The backpropagation algorithm 2: how to use it 

•  Given: training data (xn, yn)n = 1,..., N , MLP with fixed structure but 
unknown weights.  

•  Wanted: set of weights that minimize training error. 
•  Procedure: 

1.  Initialize network with random weights (usually some random small 
values) 

2.  Repeat the following routine (an "epoch"):  
i.  For each training input xn, compute all activations of the 

network's units. 
ii.  Use these to compute the gradient                        for all 

weights (i.e., parameter set q), using the backpropagation 
algorithm. 

iii.  Update the weights with our familiar gradient-descent formula 

3.  Terminate when the error SEtrain saturates, or when a fixed maximum 
number of iterations is reached. 

m
ijtrain wSE ∂∂ /

)( oldtrainoldnew SE θ∇η−θ=θ

ANNs @ IK 2008 

The backpropagation algorithm 3: comments 
•  The "backpropagation algorithm" is actually not a complete learning 

algorithm, but "just" a method for the substep of computing the gradient 
within a gradient-descent learning algorithm. 

•  The generic difficulties of gradient descent algorithms strike: careful 
tuning of learning rate h, danger of slow convergence in the presence of 
different curvatures of error landscape, local minima only are found. 

•  A single gradient-descent-step (epoch) requires evaluation of the 
network on all training samples.  

•  Typical number of epochs: 50 to 1000.  
•  On large datasets becomes computationally expensive. 
•  A lot of experience and hand-tuning and trial-and-error is needed for 

very good results.  
•  Not biologically plausible  
•  The MLP structure (number of units, number of layers) has to be 

optimized heuristically.  
•  Typical network sizes in applications: about 10 to 30 hidden neurons. 
•  Many ready-made, free and commercial implementations  



ANNs @ IK 2008 

Multilayer perceptrons: universal approximation property 

•  Roughly speaking, every nonlinear function f: d ® m can be approximated 
arbitrarily well by MLPs. 

•  A bit more precisely, for every error tolerance e,  and a compact subspace I of d 
(e.g., an d-dim interval), there exists some MLP that for inputs x Î I  yields outputs 
that differ from f(x) by less than e. 

•  Naturally, the smaller the tolerance, the larger must the MLPs become. 

•  Theorems about universal approximation property are of little practical value 
because they are very generous about network size (large MLPs are prone to 
overfitting!), and because they ignore that we have only finite training data. 

•  It is more interesting to connect network size to the average square error R (risk) 
on new data. Not so many theorems. A classic for two-layer MLPs is due to Barron 
(1994): 

   where Cf is a certain complexity measure for f, L1 is number of hidden neurons, d 
is input dimension, and N is size of training sample.   

,)log(
1

1

2









+









= N

N
dLO

L
C

OR f

ANNs @ IK 2008 

Why should one use neural networks? 

•  There are many other methods for function approximation, e.g. Fourier 
decompositions, Volterra series,...  

•  What is the advantage of using ANNs? Why have they created such excitement? 
•  One reason is claimed biological plausibility. ANNs look smart... 
•  A harder reason lies in the following theorem, likewise due to Barron. When the 

number of hidden units is optimized for minimal generalization error, depending on 
the training sample size N, the average square error R on new data is 

    R = O(Cf ((d/N) log N)1/2) 
•  Thus the rate of risk convergence with optimally selected network sizes, as a 

function of sample size is of order (d/N)1/2, where the exponent 1/2 is independent 
on the input dimension d.  

•  In contrast, in Taylor, Fourier, Volterra expansion or other methods, where a fixed 
set of smooth basis functions is linearly combined to approximate the target 
function, one obtains a rate of convergence of (1/N)2s/(2s+d) (for some s). Here d 
occurs in the exponent by essentially 1/d.  

•  Take-home conclusion: compared to other methods, whose performance 
degrades quickly with increasing dimension d, MLP function approximation is not 
exponentially sensitive to input dimension d. For high-dim input data, MLPs are 
thus superior. 



ANNs @ IK 2008 

MLPs: the workhorse and showcase ANN 

MLPs (with a single hidden layer), trained by backprop, today ... 
•  are an established basic modelling technology, 
•  are used routinely when nonlinear functions have to be 

approximated from teaching data, 
•  are supported by a large number of software tools, 

–  for Matlab users I recommend the "netlab" toolbox, 
www.ncrg.aston.ac.uk/netlab/ which is accompanied by a 
fully-fledged textbook;

•  make up for (fully subjective personal estimate) 90% at least of 
all deployed ANNs, 

•  fail when the target functions become really complex. 

ANNs @ IK 2008 

2.3  Convolutional networks: towards really  
complex function approximation 



ANNs @ IK 2008 

What does "really complex" mean? 
Mathematically (selection):  
•  highly varying; multiscale; heterogeneous; high-dimensional inputs 

Technologically:  
•  Needs multi-module, multidisciplinary software architectures to be 

computed 

Non-complex 
example (by today's 
standards): classify 
isolated digits 0 - 9 
from preprocessed, 
standardized pixel 
images 

Veeery complex 
example: follow CNN 
video stream and 
generate an abstract 
library, semantically 
annotated 

blog.eventful.com

Complex example: 
transcribe handwritten 
text (close to 
impossible today, even 
with large-scale 
integrated software 
architectures):  

w
w

w
.sonofthesouth.net 

ANNs @ IK 2008 

Towards ANNs for "really complex" functions 
A freshly emerging topic (Bengio and LeCun 2007) 
No thorough theoretical insights yet 
It seems clear that hierarchical or multilayer or multimodular model 
architectures are needed 
•  "Higher" processing levels deal with more abstract / slower / coarser 

aspects of the data 
•  Similar to what is known about processing levels in mammalian cortex 
•  Similar to multi-module "engineering solutions" for speech recognition 

systems  

Multilayer perceptrons with larger number of layers (> 2!) don't train well 
with backprop, for apparently two reasons: 
•  The back-propagated error gradient has a tendency to vanish  

exponentially; that is, the layers close to the input train exceedingly slowly 
•  The problem of ending in poor local optima becomes more severe as the 

number of layers increases 

Solution approach: don't use backprop (sessions 3 & 4) 
Solution approach: use backprop, but exploit task specifics to avoid 
vanishing gradients (rest of this session) 



ANNs @ IK 2008 

LeCun's LeNets 

LeNet-1, ..., LeNet-7: a family of really multi-layered feedforward 
networks specialized on visual pattern recognition 
Check out  http://yann.lecun.com/, 
http://www.cs.nyu.edu/~yann/research/norb/index.html, 
http://yann.lecun.com/exdb/lenet/index.html for a spectacular 
impression of state-of-the art machine learning (and of professional 
self-advertising...) 
Starting paper: Le Cun et al 1998, comparison with other recognition 
methods on a very difficult dataset: Le Cun et al 2004 
Design goals: classify patterns in a way that tolerates  

•  Noise 
•  Scaling, shifting, rotation 
•  Graphical variants 

LeCun claims that about 10% of all cheques in the U.S. are read with 
software built on LeNets.  
Very similar, earlier, classical approach: the Neocognitron (Fukushima 
2007).  

ANNs @ IK 2008 

Basic rationale of LeNets 
"Double pyramid of features" (Le Cun et al 1998): 
•  Close to input retina, have small number of types of low-level features, but 

large number of locations where these features are measured 
•  High-up in the processing cascade, have large number of high-level feature 

types but only few or a single instance of each. 

Low-level features: local graphical 
primitives, like "vertical line", 
"corner", ... 

Shown: some occurences of 
feature "diagonal rising line" 

Highest-level features: object 
concepts, like "elephant", "car", 
"person", ... many thousands more 

Shown: singular occurrences of 
two top-level features "elephant" 
and "car" 



ANNs @ IK 2008 

LeNet architecture 

7 layers (+ input layer); per layer as many "feature maps" as there are features 

Altogether 360,000 connections and 60,000 trainable parameters 

Trained by (refined) backprop 

Used as primary processing layer in commercial cheque reading systems 

See Le Cun et al (1998) for details 

Figure from Le Cun et al 1998 

ANNs @ IK 2008 

Performance examples 1: LeNet-5 for digit recognition 

Movies from http://yann.lecun.com/exdb/lenet/index.html  

Layer 1 
Layer 3 

Layer 5 Input 

outputs 

Classi-
fications 



ANNs @ IK 2008 

Performance examples 2: LeNet-7 for invariant object 
recognition in cluttered scenes 

Training samples (about 200,000 
of these): cluttered and jittered 
photographs of 50 plastic models 
of animals, humans, cars, planes 
and trucks (5 classes) 

Pictures from LeCun et al 2004 

Test error on similar images: 16.7%. 
Trained LeNet-7 generalizes to real-life 
images: 


