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Abstract. We investigate how unsupervised training of recurrent neural
networks (RNNs) and their deep hierarchies can benefit a supervised task
like temporal pattern detection. The RNNs are fully and fast trained by
unsupervised algorithms and only supervised feed-forward readouts are
used. The unsupervised RNNs are shown to perform better in a rigorous
comparison against state-of-art random reservoir networks. Unsupervised
greedy bottom-up trained hierarchies of such RNNs are shown being
capable of big performance improvements over single layer setups.

1 Introduction

Here we will investigate a way of training unsupervised hierarchies from exclu-
sively temporal signals, where internal dynamics of the models match in time
the external dynamics of the input and output signals. We will use recurrent
neural networks (RNNs) as the generic model to implement such systems.

There is a considerable body of research showing that even using untrained
random or hand-crafted features at bottom layers of deep architectures works
reasonably well, e.g., [16,7,17]. Reservoir Computing (RC) has demonstrated a
similar effect in RNNs (see, e.g., [13] for an overview). This makes the untrained
feature detectors a viable contender to the unsupervised learning and provides
a performance baseline to evaluate the usefulness of the unsupervised learning.

To evaluate the different systems we will use errors from supervisedly trained
readouts for two temporal pattern detection tasks.

2 Computational models of a single RNN

We will investigate RNNs of two types of simple neuron models: Weighted Sum
and Nonlinearity (WSN) and Radial Basis Function (RBF).

Our RNN update equations for the WSN model is:

x̃(n) = tanh
(
Win[1;u(n)] + Wx(n− 1)

)
, (1)

x(n) = (1− γ)x(n− 1) + γx̃(n), (2)

where u(n) ∈ RNu is the input signal, x(n) ∈ RNx is a vector of reservoir neuron
activations and x̃(n) ∈ RNx is its update, all at time step n, tanh(·) is the neuron
activation (nonlinearity) function applied element-wise, [·; ·] stands for a vertical
vector concatenation, Win is the input weight matrix, W is the recurrent weight
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matrix, and γ ∈ (0, 1] is the leaking rate. This is a classical model of an Echo
State Network (ESN) reservoir with a leaky integration [5].

Our RNN update equation for the RBF model is:

x̃i(n) = exp
(
−α

∥∥vin
i − u(n)

∥∥2 − β‖vi − x(n− 1)‖2
)
, i = 1, . . . , Nx, (3)

instead of (1), and the same (2), where x̃(n) = [x̃1(n), . . . , x̃Nx
(n)]

T ∈ RNx ,
‖·‖ stands for the Euclidean norm, vin

i ∈ RNu is the ith column of the input
weight matrix Vin, vi ∈ RNx is the ith column of the recurrent weight matrix
V, and α and β are scaling parameters for the input and the recurrent distances
respectively. The RBF neurons have some very different properties from the
WSN.

This model is most similar to Recursive Self-Organizing Maps (RSOMs)
[20,18], but is different in that we use leaky integration (2), which makes it
also resemble the earlier temporal Kohonen networks [1] and recurrent SOMs
[19] that use leaky integration as the only type of recurrence (see [4] for a sys-
tematic review). Even though the unit activation (3) is in fact a Gaussian Radial
Basis Function, to the best of our knowledge, this type of fully recurrent sys-
tems has not been investigated in the RBF literature, the closest of such being
the recurrent RBF network [14] which is similar to the temporal Hebbian SOM
[9]. There seem to not be any citations between the recurrent RBF and SOM
communities. We will call our model (3) (2) a Self Organizing Reservoir (SOR).

A recent biologically-motivated contribution with similar objectives was in-
troduced in [10]. Also, RSOMs are used as a pre-processor in the context of
reservoir computing in [3].

3 Network generation and training

To test how much the different SOR computational model affects the reservoir
computations compared to the standard ESNs, we will include random networks
of both kinds in our empirical simulations. We will also include the SORs trained
unsupervisedly. Unfortunately there are no really powerful successful unsuper-
vised methods that fully train ESN reservoirs, despite numerous attempts (see
[13] for an overview).

We used classical random ESN reservoirs (1) where the input weight matrix
Win is a randomly-generated matrix with elements uniformly distributed in a
range set by the input scaling parameter, and the recurrent weight matrix W is
a random sparse matrix with 20% connectivity and scaled to have a predefined
spectral radius ρ(W). For the random case of the (3) model the input Vint and
recurrent V weights were all simply drawn from a uniform [0, 1] distribution.

Most of the many unsupervised training methods available for RBF type
of feed-forward NNs, combining competitive and collaborative learning, are also
applicable to our recurrent model (3). One natural option is the classical SOM
learning algorithm [8]:

vall
i(n+1) = vall

i(n)+η(n)h(i, n)
(
[u(n);x(n)]− vall

i(n)
)
, vall ≡ [vin;v] (4)
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with η(n) being the learning rate and the learning gradient distribution function

h(i, n) = exp
(
−dh(i,bmu(n))2/bh(n)2

)
, (5)

where bmu(n) = arg maxi (xi(n)) is the index of the “best matching unit”
(BMU), dh(i, j) is the distance between units with indices i and j in the ad-
ditionally defined topology for reservoir units, and bh(n) is the neighborhood
width of the gradient distribution. In our experiments we use a 2D rectangular
lattice where dh(i, j) is the Manhattan distance between nodes i and j on it.
Note, that we are using x(n) for finding bmu(n) as in recurrent SOMs [19] as
opposed to using x̃(n) as in temporal Kohonen networks [1]. η(n) and bh(n)
control the schedule of the training process by varying the overall learning rate
and amount of learning done outside the BMU at each time step respectively.

Neural gas (NG) [15] is a closely related alternative to SOM, that we used.
It differs only in the gradient distribution function, which instead of (5) is

hng(i, n) = exp (−dng(i, n)/bh(n)) , (6)

where dng(i, n) is the zero-based index of the node i in the descending ordering
of nodes by their xi(n). As in SOMs, dng(bmu(n), n) ≡ 0 and h(bmu(n), n) ≡ 1.
In our experiments we got similar results with both SOM and NG training.

To empirically evaluate the quality of the reservoirs for the given tasks, a
linear readout y(n) ∈ RNy from the reservoir can be trained in a supervised
way to match a desired output ytarget(n) ∈ RNy :

y(n) = Wout[1;x(n)], (7)

where [·; ·] stands for a vertical vector concatenation. The output weight matrix
Wout is learned using linear regression, common in reservoir computing [5]. The
input u(n) can also be concatenated to [1;x(n)] in (7), expanding the Wout.

In this work we will not put much emphasis on designing elaborate output
schemes for particular applications, but rather use the same simple readouts for
all models to estimate the quality of the unsupervised adaptation in x(n).

4 Empirical comparison of SORs and ESNs

In our empirical simulations we used two different temporal pattern datasets.
To have a greater control over the task, a synthetic dataset was generated

as a three-dimensional red noise background signal with up to five different short
temporal patterns of the same nature embedded by cross-fading with smooth
envelopes (Figure 1 left). The whole signals are in addition moderately time-
warped. See Section 6.2 in [6] for technical details. We will use the envelopes as
ytarget(n) to evaluate the quality of reservoir representations.

To have a more close to life task we generate “infinite” strings of hand-
written digits taken from the USPS dataset1 [11]. Each digit image is selected

1 From Sam Roweis’ homepage http://www.cs.nyu.edu/~roweis/data.html.

http://www.cs.nyu.edu/~roweis/data.html
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Fig. 1. A sample of a three-dimensional smooth pattern dataset with five different
patterns highlighted in colors (left) and USPS concatenated data (right) with their
respective supervised targets.

randomly, they are allowed to overlap or have gaps as a result of up to ±3 pixels
random uniform displacement (Figure 1 right), making segmentation nontriv-
ial. The generated long images are treated as time series, taking the rows as
Nu = 16 input dimensions, and columns as time n, presenting each pixel column
as the current input u(n), going from left to right. For evaluation we also gen-
erate targets ytarget(n) (Ny = 10) indicating classes of the images, i.e., digits in
the images. The delay and duration of the indicators were manually adjusted to
values that work well with all the investigated single reservoir models.

To avoid unfair comparison of the models by setting wrong parameters, the
main three parameters of ESNs: γ (2), Win scaling, and spectral radius ρ(W);
and of SOR: γ (2), α, and β (3), are selected through grid search, separately for
every scenario. We ran through eight values of each parameter over a reasonable
interval. It took multiple trials to get the parameter ranges right. We use long
enough data sequences (50k time steps for synthetic and 64k for USPS) so that
overfitting was found not to be an issue, and selection of the best parameters
was based on the average performance on the training sets.

To keep things fast and manageable all types of reservoirs used were of size
Nx = 50. All models in every task have the same number of parameters Wout ∈
RNy×(Nx+Nu+1) trained in the same supervised way, (7) with the concatenated
input. Parameters trained in a supervised way can not by directly compared with
the ones trained in an unsupervised way, because information about the desired
output is not available in unsupervised training. In fact, it is not self-evident
or always true that unsupervised training helps the supervised one at all, this
is that we want to investigate. Thus, we only compare the models with equal
number of supervisedly trained parameters.

The unsupervised training (SOM or NG) is done by passing through the
training data once. The supervised readouts (7) are trained by passing through
the training data once (again). Training of a single model took several seconds
on a regular PC, unsupervised training taking about the same as supervised.

We use normalized root mean square error (NRMSE) between the supervised
output y(n) (7) from [x(n);u(n)] and the target ytarget(n) as the performance
criterion of reservoir activations (a.k.a. “separation error”).

Results. The pattern separation errors of the models with synthetic (differ-
ent numbers of patterns) and USPS data are presented in Figure 2.
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Fig. 2. Test separation NRMSE errors with best parameter values of regular ESNs
(black), SORs: random (dark red), trained with SOM (blue) and NG (green) with 10
data instances (dots) and mean values (lines). Results with one to five different patterns
in the synthetic data are on the left, and with concatenated USPS data on the right.

The results show clearly that unsupervised training benefits the pattern sepa-
ration in the reservoir space. The performance of both SOM and NG training are
virtually indistinguishable for synthetic, and slightly worse for SOM on USPS
(the 2D lattice becomes a hindrance with this more complex data).

The benefit of unsupervised SORs is bigger with fewer synthetic patterns
Ny in the data, because of the limited expressive capacity of the unsupervised
SOR, while the random reservoirs are universal and the readouts are virtually
independent. Still, the performance decreases with Ny for all models due to
each pattern appearing more rarely in the input. In all cases recognition of the
synthetic patterns would be virtually perfect.

The performance of the random SOR model is similar, to the classical ESN
(slightly worse in synthetic and better in USPS), showing it as a viable alterna-
tive RNN. For random SORs good α and β in (3) had to be considerably smaller
to compensate bigger distances in (3), since vectors in Vin and V are distributed
randomly and not centered on the typical respective u(n) and x(n) values by
unsupervised training.

5 Hierarchies of self-organizing reservoirs

One of the main benefits of unsupervised learning is that components trained this
way can be easier assembled into more complex architectures. Here we investigate
a simple layered hierarchy of such reservoirs where the bottom reservoir receives
the external input u(n) and every reservoir above receives the activations x(n)
of the reservoir directly below it as the input. Such an architecture features
only bottom-up interactions and can be trained in a greedy layer-by-layer way
starting from the bottom. Since every layer is trained independently from the
rest, the training effort of the hierarchy scales linearly with the number of layers,
with no additional complexity.

When comparing a hierarchy to a single reservoir, a natural question to ask
is whether it is better to invest the additional effort in training many layers of
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the hierarchy or in better training of the single reservoir. More concretely, we
take the training time measured in epochs as the “effort”. As a generalization
of this question, we investigate how the performance depends on the number of
layers in the hierarchy for a given fixed training effort. In our experiments, if a
hierarchy has k layers and the fixed training effort is l epochs, then each layer
receives l/k epochs of training.

For the experiments with the hierarchies we used the same synthetic data as
in Figure 1 (left) with Ny = 5 different patterns. In these experiments, however,
we have gone through the training data multiple times (epochs). We again used
reservoirs of Nx = 50 units and the same unsupervised SOM algorithm (4)(5).
The same more gentle training schedule was used independently of the length of
the training: if the training is taking more epochs, the learning parameters are
simply changing slower, but the end-points remain the same. For every architec-
ture the readout (7) was trained only from the activations of the top-most layer,
thus number of supervised parameters is constant Wout ∈ RNy×(Nx+1) = R5×51.
We used the same pattern separation error performance criterion.

Results. The results showing how different numbers of layers and different
numbers of training epochs per layer affect the testing performance are presented
in Figure 3. The performance is plotted against the total number of unsupervised
training epochs. Each curve represents a hierarchy trained with the same amount
of epochs per layer. The points on the curves represent the mean test separation
errors in different layers. Every tenth layer is annotated. They are colored from
blue (the top-most curve, 120 layers, each trained with 1 epoch) to red (a single
point in the middle right, a single layer trained with 120 epochs) as the two
extreme cases.
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Fig. 3. Mean testing separation errors in layers of differently trained hierarchies plotted
against the total epochs of training. See text for the details.

We can see that if the layers are not trained well, stacking them in a hier-
archy is not going to improve the result. The extreme case with each layer only
trained in one epoch is the top-most blue curve. We can see that in this case the
performance decreases with every additional layer and is approaching the worst
NRMSE of 1. If a layer is not able to learn a good representation of its input,
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this bad representation is passed to the upper layers, information from the input
is lost and the performance only decreases. Because we use quite small learning
rates here the training time of one epoch per layer might simply be not enough.

However, when we give each layer enough time to learn a good representation
of the input, we observe that adding additional layers improves the performance.
The better the individual layers are trained, the better the improvement in the
upper layers.
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Fig. 4. Errors in the first six layers across differently trained hierarchies plotted against
the total epochs of training. See text for the details.

In Figure 4 we look at the data from a different angle: we connect the dots
representing layers of the same level across differently trained hierarchies. Here
each of the six curves represents a hierarchy with a fixed number of layers. We
can see that putting more effort in unsupervisedly training a single layer (the
top-most blue curve) does improve the performance but only to a point. The
additional layers are able to break this performance saturation achieving much
smaller separation errors. This shows that with the same total number of training
epochs hierarchical architectures clearly outperform a single reservoir.

The same hierarchical training with the concatenated USPS data was only
a partial success, at least with the small Nx = 50 reservoirs: the performance
already peaks at the second layer. Due to the richer nature of data, such bottom
reservoirs are most probably inadequate to learn good representations, and thus
we get a similar effect to the second blue curve in Figure 3.

6 Discussion

We have demonstrated that RBF-RNNs can learn unsupervised representations
of the temporal data that enable better results in supervised tasks such as sep-
arating repeated slow patterns or recognizing handwritten digits. We have also
demonstrated that hierarchies of our unsupervised reservoirs can improve pat-
tern separations by a large margin, even though the data has no longer-term
structure. This is in line with the results for static data [2]. Random RBF-RNNs
are also introduced as viable alternative to classical ESN reservoirs.
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These findings are, however, not universal for just any task. A more complete
understanding of the mechanisms and limitations involved is still lacking, but is
partially addressed in [12].
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3. I. Farkaš and M. W. Crocker. Systematicity in sentence processing with a recursive
self-organizing neural network. In Proceedings of ESANN 2007, pages 49–54, 2007.

4. B. Hammer, A. Micheli, A. Sperduti, and M. Strickert. Recursive self-organizing
network models. Neural Networks, 17(8-9):1061 – 1085, 2004.

5. H. Jaeger. Echo state network. Scholarpedia, 2(9):2330, 2007.
6. H. Jaeger, M. Lukoševičius, D. Popovici, and U. Siewert. Optimization and ap-

plications of echo state networks with leaky-integrator neurons. Neural Networks,
20(3):335–352, 2007.

7. K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun. What is the best multi-
stage architecture for object recognition? In Proceedings of ICCV’09. IEEE, 2009.

8. T. Kohonen and T. Honkela. Kohonen network. Scholarpedia, 2(1):1568, 2007.
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