Short term memory in echo state networks *

Herbert Jaeger
Fraunhofer Institute for Autonomous Intelligent Systems

May 28, 2002

! Appeared as technical report, GMD Report 152, GMD - Forschungszentrum
Informationstechnik GmbH. Publication date March 28, 2002.






Abstract. The report investigates the short-term memory capacity of
echo state recurrent neural networks. A quantitative measure MC of short-
term memory capacity is introduced. The main result is that MC < N for
networks with linear output units and i.i.d. input, where N is network size.
Conditions under which these maximal memory capacities are realized are
described. Several theoretical and practical examples demonstrate how the
short-term memory capacities of echo state networks can be exploited for
dynamic pattern recognition and stochastic sequence modeling tasks.

key words: recurrent neural networks, echo state networks, short-term
memory, supervised learning

Zusammenfassung. Die Kurzzeitgedachtnis-Kapazitat von Echo-State-
Netzwerken wird untersucht. Ein quantitatives Mass MC fiir diese Kapazitat
wird eingefiihrt. Das Hauptresultat ist MC < N fiir Netze mit linearen
Ausgabeneuronen und unabhéngig identisch verteiltem Input, wobei N die
Netzwerkgrosse ist. Es werden Bedingungen beschrieben, unter denen die
maximale Gedachtnis-Kapazitat erreicht wird. Eine Reihe von theoretischen
und praktischen Beispielen demonstrieren, wie das Kurzzeitgedachtnis von
Echo-State Netzen fiir die Klassifikation dynamischer Muster und die Mod-
ellierung stochastischer Sequenzen ausgenutzt werden kann.

Stichworter: rekurrente neuronale Netze, Echo-State Netze, iberwachtes
Lernen, Kurzzeitgedachtnis



1 Introduction

Echo state networks are a novel approach to analysing and training recur-
rent neural networks (RNNs). It leads to a fast, simple and constructive
algorithm for supervised training of RNNs. A detailed introduction to the
approach is given in [9]. The present article, while self-contained, is essen-
tially a continuation of that work.

This article is concerned with short-term memory (STM) effects in RNNs.
We use the term “short term memory” here to denote memory effects con-
nected with the transient activation dynamics of networks, as opposed to (i)
the long-term memory effects afforded by synaptic weight changes in learning,
and (ii) memory effects brought about by switching phenomena in attractor
dynamics.

Many tasks in signal analysis and control require system models with sig-
nificant STM spans, i.e. the system output y(n) should depend significantly
on the input history u(n),u(n — 1),.... The standard approach in systems
engineering to achieve such STM capabilities is to make a finite input his-
tory u(n),...,u(n — k) available to the model system by sliding window
techniques: the current input is “tapped” from a delay line.

Recurrent neural networks offer an alternative solution to STM demands.
From a mathematical point of view, RNNs are dynamical systems with a
high-dimensional internal state x(n). When driven by external input u(n),
the state x(n) preserves some information about the input history. It is
therefore not necessary to feed delayed input versions into the network. Even
better, it is in principle possible to achieve arbitrarily long memory spans
even with small RNNs.

This is witnessed most strikingly by the “long short-term memory” net-
works investigated by Gers and Schmidhuber (e.g., [6]). Those memory spans
are achieved with a highly specialized network architecture which seems to
work well in specific tasks (most prominently regular language learning), but
poorly on other standard tasks requiring STM, like chaotic systems predic-
tion [5].

More generic approaches to RNN design and training use gradient descent
on error surfaces to obtain RNNs from teacher data (overviews: [11], [2]).
The STM spans achievable are severely limited by the fact that gradient
information has to be propagated iteratively through the network. Since this
information degrades quickly through propagation, only a small propagation
depth (order of 10) can be efficiently mastered. This effective propagation
depth coincides with the effective memory spans achievable.

A recent, novel approach to RNN analysis and training, “echo state net-
works” [9] holds promise to overcome this situation.



The basic idea of echo state networks is to use a large “reservoir” RNN
as a supplier of interesting dynamics from which the desired output is com-
bined. This idea has been independently discovered and investigated under
the name of “liquid state machines” by Wolfgang Maass and collaborators
[10]. The two approaches are complementary in many respects: (i) Maass et
al. analyze the question which input-output dynamics are at all realizable in
the class of echo state/liquid state networks, whereas the work on echo state
networks focusses on concrete conditions that enable a particular network to
function as an echo state network. (ii) The work on liquid state machines is
rooted in a biological setting of continuous-time, spiking networks, while the
ideas on echo state networks were first conceived in a framework of discrete-
time, non-spiking networks in engineering applications. (iii) Maass et al.
consider a very general class of “readout” functions for transforming the net-
work state into the desired output signal, which can basically be realized
by postprocessing the network state by a feedforward network. By contrast,
research on echo state networks has so far concentrated on linear or linear-
plus-sigmoid readout functions which can be realized simply by attaching an
output unit to a network.

This article investigates the STM capacity of echo state networks. It is
organized as follows.

Section 2 gives a brief re-introduction to echo state networks. As a didac-
tic example, it is shown how an echo state network can be trained to function
as a delay line.

Section 3 presents the main theoretical findings, including a formal def-
inition MC of STM capacity, and a theorem that gives an upper bound on
MC < N for networks with linear output units and i.i.d. input, where N is
network size.

Section 4 shows how an echo state network trained as a delay line can
serve as a rehearsing mechanism, repeating an input signal over and over,
without involving attractor dynamics.

Section 5 treats a number of basic tasks of dynamic pattern recognition,
including instances of one-shot learning and discrimination learning. These
techniques are then taken to a robotics task: an echo state network is trained
to recognize facts like “robot has passed through a door from a corridor into
a room” from sensor and motor variables available to the robot.

Section 6 shows how their STM capabilities enable echo state networks
to model stochastic symbol processes generated by hidden-Markov models
or even more expressive sources. The technique described is applied to a
real-world modeling task in Section 7, where an echo state network is trained
as a model of a fairytale text.

Section 8 wraps things up with a brief discussion.



2 Echo state networks: a brief introduction

First we fix our terminology. We consider discrete-time neural networks with
K input units, N internal network units and L output units. Activations
of input units at time step n are column vectors u(n) = (ui(n)...ug(n))",
of internal units x(n) = (z1(n)...zx(n))", and of output units y(n) =
(y1(n)...yr(n))". Input u(n) comes from a compact set U C RE of admis-
sible inputs. Real-valued connection weights are collected in a N x K weight
matrix W™ = (w;?) for the input weights, in an N x N matrix W = (w;) for
the internal connections, and in an L x (K + N + L) matrix W = (w}")
for the connections to the output units. We do not admit backprojections
from the output units to the internal units or connections between output
units (unlike in [9] where such connections are included). Note that con-
nections directly from the input to the output units are allowed. We will
not formally require, but generally intend that the internal connections W
induce recurrent pathways between internal units. Without further mention,
we will always assume real-valued inputs, weights, and activations. Figure
1 shows the basic network architecture considered here. We remark at this
point that the training algorithms for echo state networks adjusts only the
output connection weights, which are therefore highlighted in Figure 1.

Kinput N internal units L output

units - units

Figure 1: The basic network architecture assumed in this article. Dashed
arrows indicate trainable connections.

The activation of internal units is updated according to

x(n +1) = f(Wx(n) + W"u(n + 1)), (1)

where f = (fi,..., fv) are the internal unit’s output functions (typically
sigmoid functions). The output is computed according to

y(n+1) =£"(W* (u(n +1),x(n + 1)), (2)



where foUt = (fout .. fout) are the output unit’s output functions and

(u(n+1),x(n+ 1)) is the concatenation of the input and internal activation
vectors.

We introduce a network state update operator 7" and write x(n + h) =
T(x(n),u") to denote the network state that results from an iterated appli-
cation of Eq. (1) when the input sequence @" = u(n+1),...,u(n+ h) is fed
into the network which at time n is in state x(n).

2.1 Echo states

Under certain conditions (detailed out in [9]), the activation state x(n) of a
recurrent neural network (RNN) is a function of the (infinite) input history
u(n),u(n — 1),... presented to the network. More precisely, under certain
conditions there exists an echo function E = (e, ..., ey), where ¢; : U N —
R, such that for all left-infinite input histories ..., u(n —1),u(n) € U " the
current network state is

x(n) =E(...,u(n —1),u(n)). (3)

We repeat here a proposition from [9] which gives (a) a sufficient condition
for echo states, and (b) a sufficient condition for the non-existence of echo
states.

Proposition 1 Assume a sigmoid network with unit output functions f; =
tanh. (a) Let the weight matric W satisfy Omee = A < 1, where oy, 18 its
largest singular value. Then the network has echo states for all admissible
inputs u. (b) Let the weight matriz have a spectral radius | Apaq| > 1, where
Amaz 18 an eigenvalue of W with the largest absolute value. Then the network
has no echo states if the zero input sequence u(n) = 0 is an admissible input
sequence.

These conditions are easy to check and mark the boundaries of an interesting
scaling range for weight matrices, as follows. In practice, a convenient strat-
egy to obtain useful echo state networks is to start with some weight matrix
W and try out global scalings «W until one is satisfied with the properties of
some finally fixed weight matrix W = aoptVV. Let 0max(W) and | Apax | (W)
denote the largest singular value and the spectral radius of a matrix W.
Observe that the maximal singular value and the spectral radius of W scale
with @, i.e. Omax(@W) = @0max(W) and | Amax | (W) = o | Amax | (W).
Observe further that for every square matrix W, | Apax | (W) < 0max(W).
Thus, if one puts apin = 1/amaX(W) and amax = 1/ | Amax | (W), one obtains
a scaling range api, < @ < Quax, Where below the smallest scaling factor
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Omin one would certainly have echo states, and above aupay, certainly not (if
0 is an admissible input). My experience with this scaling game indicates
that one obtains echo states even when « is only marginally smaller than
Omax: the sufficient condition from Prop. 3(a) apparently is very restrictive.

2.2 Training echo state networks

As mentioned above in passing, echo state networks are trained in a way
which only changes the output connection weights. Obtaining an echo state
network with a desired (trained) I/O-performance is therefore a two-stage
task. First, one procures a RNN, including input units and input connections,
which has the echo state property. According to experience, it is sufficient to
ensure that | Amax | < 1. Second, one attaches output units and trains suitable
output connection weights. We now describe the basic idea underlying this
strategy.

Since we wish to deal with input-driven systems, we adopt a standard
perspective of systems theory and view a (deterministic, discrete-time) dy-
namical system as a function G which yields the next system output, given
the input history:

y(n+1)=G(...,u(n),u(n+1)). (4)

Note that (4) is rather restrictive in that we do not admit that the output
y(n+1) depends on previous outputs y(n),y(n—1),...in an auto-regressive
way. The echo state approach can also deal with auto-regressive systems
([9] actually deals exclusively with that case), but in this article we restrict
ourselves to the purely non-auto-regressive case.

We proceed by stating the intuitions of echo state network training in
informal terms, using a simple example for illustration. Assume that we have
some echo state network. Assume that a long input sequence is presented to
the network. Due to the echo state property, after some initial transient the
internal unit’s activation can be be written as follows (with some liberty of
notation)

zi(n) = e(...,u(n),u(n+1)), (5)

where ¢; is the echo function of the ¢-th unit. If the network is suitably
inhomogeneous, the various echo functions will significantly differ from each
other. For an illustration of this fact, consider a single-channel random input
u(n) = v(n), where the v(n) is an i.i.d. random signal from a uniform
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Figure 2: Traces of three arbitrarily selected units of a 20-unit echo state
network driven by random input. The input signal is shown in the last trace.

distribution over [—0.5,0.5]. Figure 2 shows traces of some units of a 20-unit
echo state network that was driven by this input signal.

Now assume we want to train this 20-unit network to reproduce delayed
versions of the input signal at its output units. Concretely, we attach 4
output units to the network and wish to approximate an output vector y(n) ~
(v(n —1),v(n — 5),v(n — 10),v(n — 15)) " as closely as possible. In terms
of Eq. 4, this means we want to approximate the system yieaen(n + 1) =
Gieach (- - -, u(n), u(n+1)) = (v(n—1),v(n—5),v(n—10),v(n—15)) " through
the network output . The idea is to approximate Gyeacn through combining
the echo functions E = (e,...,e9) in a mean square error minimizing way.
To this end, recall that the network output is given by Eq. 2. We use f"* =
tanh, ({ =1,...,4), which are invertible, therefore (2) is equivalent to

(F") 'y (n+ 1) = W (u(n + 1), x(n + 1)). (6)
Inserting the echo function E yields
() My +1) = W™u(n+1),E(..,u(n — 1), u(n),u(n +1)). (7)
Now we determine the weights WU such that the 4-element error vector

€train (Tl) - (fout)il}"teach(n) - (fOUt)il}I(n)
= (") Yeean (n) — W (u(n), E(..., u(n — 1),u(n)) (8)



is component-wise minimized in the mean square error (MSE) sense, i.e. such
that the 4-element mean square error

mSeyrain = 1/(Mmax — Mmin) Z €train (1) (9)
1=Nmins---»"max
becomes minimal, where n.;, refers to some data point of the training se-
quence after dismissal of an initial transient, and n.., is the last training
point. We will refer to mseq.;, as training error. Inspection of (8) reveals
that minimizing (9) is a simple task of computing a linear regression, to be
carried out separately and independently for the 4 output channels.
Concretely, in our little delay learning demo task (i) we let the network
run for n = 0 to nyay = 200, starting from a zero network state, (ii) dismiss
an initial transient of 100 steps after which the effects of the initial state have
died out, (iii) collect the network states x(n) from nyi, = 101 to nymax = 200,
and (iv) compute the weights W°" offline from these collected states, such
that the error (9) becomes minimal.
There is another statement of this task which is somewhat imprecise but

more intuitive. Rename (£°") ™' Gyeaen t0 G, Then, compute the weights
such that

G ~ W'E (10)

!

becomes a MSE approximation of Gi,,,

echo functions E.

Figure 3 shows the output of the trained network. It appears that up to a
delay of 10, the task is basically mastered. We will later investigate findings
of this kind in more detail. For now, suffice it to say that we found training
errors of mseg,i, = (0.000049, 0.00030, 0.014,0.062). When the trained net-
work was tested, a test error mseges; = (0.000047,0.00035,0.016,0.060) was
obtained (estimated from averaging over a 100-step run).

Two important points should be highlighted:

by a weighted combination of the

1. The learning procedure computes only the weights of connections lead-
ing to the output units; all other connections remain unchanged. This
makes it possible to employ any of the many available fast, construc-
tive linear regression algorithms for the training. No special iterative
gradient-descent procedure is needed.

2. In order to achive a good approximation G|, , ~ W°"E, the echo
functions should provide a “rich” set of dynamics to combine from.
The network should be prepared in a suitably “inhomogeneous” way

to meet this demand. Metaphorically speaking, the echo state network
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Figure 3: Testing the trained delay network. Correct delayed input signal
(solid line) is superimposed on output of trained network (dashed line) for
delays 1, 5, 10, 15.

should provide a rich “reservoir” of dynamics which is “tapped” by the
output weights.

One simple method to prepare such a “rich reservoir” echo state network is
to supply a network which is sparsely and randomly connected. Sparse con-
nectivity provides for a relative decoupling of subnetworks, which encourages
the development of individual dynamics. The 20-unit network used in the
example was randomly connected; weights were set to values of 0, +0.47
and —0.47 with probabilities 0.8, 0.1, 0.1 respectively. This means a sparse
connectivity of 20 %. (The value of 0.47 for non-null weights resulted from
a global scaling such that | Apax |~ 0.9 < 1 was obtained — see again [9] for
details about this scaling).

The input weights were set in an ad hoc decision (without any optimiza-
tion) to values of +0.1, -0.1 with equal probability.

Calculations were done with the Matlab software package!. The linear
regression was done by first calculating the pseudoinverse A~ of the matrix
A whose rows consist of the network states collected during the training run,
and then multiplying A~ with the vector consisting of the teacher outputs
of that run to obtain the desired output weight vector.

We conclude the section with a more rigorous and general formulation of
the training procedure.

! The author gratefully acknowledges the re-implementation of the original Mathematica
routines in Matlab by Christina Jager.
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Task. Given: a teacher I/O time series (Wseach(7), Yteach (7)) n=0,....nmax -
Wanted: a RNN whose output y(n) approximates yieach (7).

Procure an echo-state network. Construct a RNN that has echo states.
As a general rule, this RNN should be the larger the more complex
the task, or the higher the desired precision, or the longer the required
short term memory.

Run network with teacher input, dismiss initial transient. Start
with an arbitrary network state x(0) and update the network with the
training input for n =0,..., Nmax:

x(n + 1) = f(W™ (weaen (n + 1)) + Wx(n)). (11)

Choose an initial transient such that after the transient time n,,;, the
internal network state is determined by the preceding input history up
to a negligible error.

Compute output weights which minimize the training error. Let

Yteach (n) — (ytea.ch,l(n)a s aytea.ch,L(n))a put G{;each(n) = (fOUt)ilywa.ch(n)-
Compute output weights WU such that the MSE vector mse;ain

Zzn:lilxmin (Ggeach (n) - Wout (utea.ch(n)a E( -+, Uteach (TL - 1)7 uteaCh(n)))2

(nma.x - nmin)

(12)
is minimized element-wise. Use your favorite linear regression algo-

rithm for this. With these output weights, the network is ready for
use.

3 Analysis of STM capacity

In this section we investigate the short-term memory capacity of echo state

networks. The basic question is, if we train an echo state network to generate

at its output units delayed versions v(n — k) of a single-channel input v(n),

what memory spans can we expect, and which precision in the outputs?
We first define a quantitative measure MC of STM capacity.

Definition 1 Let v(n) € U (where —oo < n < +o0 and U C R is a compact
interval) be a single-channel stationary input signal. Assume that we have
a RNN, specified by its internal weight matrizc W, its input weight (column)
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vector w' and the the unit output functions £, £°“. The network receives v(n)
at its input unit. For a given delay k and an output unit y with connection

weight (row) vector wi* we consider the determination coefficient

dlwi"](v(n — k), yr(n)) = (13)

where cov denotes covariance and o? variance.

1. The k-delay STM capacity of the network is defined by

MC. = max diw)(v(n = k), i (m). (14)

k

2. The STM capacity of the network is

MC = imck. (15)

k=1

The determination coefficient of two signals is the squared correlation
coefficient. It ranges between 0 and 1 and represents the fraction of variance
explainable in one signal by the other. Thus, the STM capacity measures how
much variance of the delayed input signal can be recovered from optimally
trained output units, summed over all delays. Note that the output units
do not interfere with one another; arbitrarily many output units ¥y, can be
attached to the same network.

We start by investigating the special case where we have linear output
units, namely, where fo* = id. Our fist goal is to show that if the input
signal is i.i.d., then MC < N.

With linear output units, the output signal y, is a linear combination of
the signal v(n) and the internal unit activations z;(n) (i = 1,..., N). Denote
by v(n) = (vy(n)...vx41(n)) " the vector of signals (v(n+1) z,(n) ... xx(n))’.
For convenience we assume that the N + 1 x N + 1 correlation matrix
R = E[v(n)v'] has full rank (we will later see that we can drop this as-
sumption).

We treat random signals s(n) as vectors (in the vector space of nu-
merical random variables) and introduce the inner product (s(n),s'(n)) =
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corr(s(n), s'(n)) = E[s(n)s'(n)], which allows us to define s(n),s'(n) to be
orthogonal if (s(n),s'(n)) = 0. Because R has full rank, the dimension
of the signal space S spanned by the v; is N + 1. We choose new sig-
nals v = (9;(n),...,0n41(n))" which constitute an orthonormal basis of this
space. (We will generally indicate by ~ orthonormal vectors and related quan-
tities.) The choice is arbitrary, with the provision that if the constant signal
1(n) = 1 is contained in S, we require 0;(n) = 1(n). Note that 1(n) € S if
at least one of the signals v; has nonzero expectation.

It is easy to see that the change to the new signal basis ¥;(n) does not
affect the k-delay STM capacity of the network, in the sense that the k-delay
STM capacity defined in (14) is equivalently given by

MCy = mai(d(y(n — k), w{"v(n)). (16)
wou

By the well-known Wiener-Hopf equation (see e.g. [4] Sec. 3.2 for an intro-
duction), the least mean square error weight vector (it minimizes E[(v(n —

out

k) — wi'v(n))?]) is given by

~ out

w, = (R7'pr)’, (17)

where R is the correlation matrix of the signals 7;(n) and pj, = E[v(n) v(n—
~out _

k)]. vzvzllt yields the maximum in (16), i.e. MCy = d(v(n — k), w, v(n)).

Denote by gx(n) = vivszf the signal obtained when we tap the signals
0;(n) with v:vzm. (Jx(n) is also the signal that we would get as the trained

network’s output if we could train the network on an infinite training data
set.) We find the following alternative characterization of g, (n):

gk(n) = w, v(n

We continue by making the assumption that the v(n—k) (where k = 1,2,...)
are i.i.d. We distinguish two cases, (i) E[v(n)] =0, (ii) Elv(n)] = a # 0. We
treat only the second (more complicated) case. The signal v(n — k) can be
split into two signals v(n — k) = al(n) + u(n — k), where E[u(n — k)] = 0.
The representation (18) of gx(n) then becomes

14



Uk(n) = al(n) + Z(ﬁz(n), v(n —k)) 0;(n). (19)

We compute the variance of 7 (n)

o*(gx(n)) = llg(n) — Elgr(m)lll”
= | Z(ﬁi(n), v(n—k)) ;(n)|*
= z:@i(n),l/(n—k»2 (20)

and the correlation coefficient of g (n) with v(n — k):

(
(2 ). (o

S vl = 1) _ S =B o
o(Gk(n)) o(v(n - k)) o(Gk(n)) o(v(n —k)) -
Observing that d = r?, from (20) and (21) it follows that
(). v(n — b)) = iz Dln P )

o?(v(n —k))
Combining the findings from (16) to (21), we can compute a boundary on the
STM memory capacity, using the notation i(n—k) = p(n—k)/||u(n—k)|| =
p(n —k)/o*(v(n)) for the normalized signals pu(n — k):

MC = ) d(k(n), p(n — k)

- 1 S ).l — B2 [use that the p(n — k)
= ;JQ(V(H)) Z; i(n), n(n — k) are i.i.d.]
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< N, (23)

where the last inequality follows from Y 7% (7;(n), i(n — k))* < 1 (note that
the ji(n — k) are orthonormal).

The case (i) E{v(n)] = 0 can be treated in a similar fashion. Furthermore,
it is clear that if the correlation matrix R is rank deficient, the STM memory
can only be smaller than with a full-rank R. We sum up our insight:

Proposition 2 The memory capacity for recalling an i.i.d. input by a N-
unit RNN with linear output units is bounded by N.

Both conditions (i.i.d. input and linear output units) are necessary for this
bound.

This is clear for the first condition. Consider, for example, the case of
a constant input signal vn = 1(n). Then, any linear-output network with
output weights wp'* = (1,0,...,0) would “recover” all (identical) delayed
versions of the input perfectly, formally yielding an infinite memory capacity.
This suggests the following refinement of the definition of STM memory
capacity, which we briefly indicate for zero mean input signals. Compute from
the original input signals v(n — k) a new set of signals v/(n — k) = v(n—k) —
m(v(n—k),S(v(n—k—1),v(n—k-2),...)), where S(v(n—k—1),v(n—k—2), ...)
is the signal space spanned by the preceding inputs, and 7 (v, S) denotes the
projection of a vector v into a space S. v'(n — k) thus is reduced to the
information contribution of the signal v(n — k) which is novel, i.e. is not
already contained in previous inputs. Use v/(n—k) instead of v(n—k) in the
above definitions. The resulting alternative version of Prop. 2 would then
not need the i.i.d. condition.

Echo state networks are indeed capable to exploit dependencies in the
input data, to achieve a memory capacity exceeding N. For a demonstra-
tion, the 20-unit network used above was re-used, but modified a little (now:
linear output units, scaling | Apax |[= 0.95, input connection weights randomly
sampled from {—0.001,+0.001}). The input signal jumped to a new random
value every 10 steps, thus introducing temporal dependencies which can be
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exploited by the network in the STM task. The network was equipped with
40 output units, which were trained on the delays 1 —40. This setup resulted
in a memory capacity of MC = 25.5 > 20 = N. Figure 4 shows the network
output in the testing phase for output units trained on delays 10, 15, 20, 25.

0.5 0.5

delay 1 delay 15

delay 20 delay 25
0 20 40 0 20 40

Figure 4: Testing the trained delay network for delays 10, 15, 20, 25. Correct

delayed input signal (solid line) is superimposed on output of trained network
(dashed line).

Figure 5 shows the “forgetting curve”, a plot of the k-delay memory
capacities. It exhibits a close-to-100% recall for delays up to 13, followed by
an rugged slope that still is significantly above zero at a delay of 40.

1
=
3
051
[}
=]
0 Delays
0 20 40

Figure 5: The forgetting curve of the trained network. The plot shows MCj
vs. delay k, estimated numerically over a 3000 step run.

If we drop the other condition from Proposition 2, namely, linear output

units, we can likewise obtain memory capacities exceeding N. Specifically,
if we go as far as to admit different output functions f; for different delays,
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infinite memory capacity can be obtained even with a single-unit network.
Consider a “network” whose single, linear unit x is updated according to
z(n+1) =1/2x(n)+1/2v(n+1), where v(n) is a random binary 0-1-signal.
Then, the network state at time n is z(n) = Y o, 2~ **v(n — k), which,
written out in digits to base 2, is just the input history. If we use for f; the
(highly nonlinear) function that picks from the digit-base-2 representation of
x(n) the k-th digit, we recover the full input history from the network state
in the output units. This is of course an extreme and theoretical example,
but it underlines the necessity of the conditions in Proposition 2.

We can shed more light on the STM mechanism in echo state networks
when we assume that the network is linear throughout, i.e. when both f and
fout are identity functions id. We will show that in this case the forgetting
curve is monotonically decreasing, and that generically MC = N. Again, we
work under the assumption that the input v(n) is i.i.d.

To reduce notational complexity, we assume that E[v(n)] = 0 (the case
Elv(n)] # 0 can be dealt with in a similar fashion as above).

We assume again that the signals v(n),z;(n) (where j = 1,..., N) are
linearly independent and introduce a set 9;(n) (i = 1,..., N+1) of orthonor-
mal signals spanning the same space as the v(n),z;(n) (j =1,...,N), with

the convention that ©;(n) = v(n)/||v(n)||. The main step toward showing
that the forgetting curve decreases monotonically is expressed in the following
“masking lemma”. It states that in (18) we can replace the input v(n—£k) by
Uk—i(n — 1), where [ < k. Intuitively, this means that any information about
v(n — k) contained in the current state 7;(n) is the same as the information
about 7, ;(n — [) in the current state — i.e., optimal estimates gy _;(n — 1)
of v(n — k) from intermediate states 7;(n — [) “mask” the propagation of
v(n — k) through the temporal sequence of states v;(n — k), 0;(n — k+1),...
to the present state v;(n).

Lemma 1 (“Masking lemma”) For all k > 1, for all0 <1 < k, it holds that

i(n) = 3 (5(n), (n = ) () = D (@), Gha(n = 0) Bun). (24)

The first equality in (24) is a variant of (18) (note that (0;(n),v(n—k)) = 0);
the proof of the second equality is given in the Appendix.

The masking lemma is actually stronger that what we need for our pur-
poses. From (24) we only make use of the case | = 1, which implies that
Uk(n) is the projection of g, 1(n — 1) into the space spanned by the 7;(n).
Therefore, ||gx(n)|| < ||gk—1(n — 1)||. By an argument of shift invariance,
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19k-1(n = DIl = llge—1(n)]|. Thus, we obtain [|g(n)|| < [|gx-1(n)ll. We
observe that the following variant of (22) holds for zero-mean inputs:

d(in(),v(n — ) = 22 GO R) 25

From (25) and (18) we can infer that d(gx(n),v(n — k)) is proportional to
|19 (n)]|* by a factor of 1/02(v(n)); likewise d(gy_1(n),v(n — k + 1)) is pro-
portional to ||jx_1(n)[|? by the same factor. Therefore, d(jx(n),v(n —k)) <
d(Gg_1(n),v(n—k+1)). A similar argument yields d(gx_1(n),v(n—k+1)) <
d(Yk—2(n),v(n — k +2)), etc. The case where the signals v(n), z;(n) (where
j =1,...,N) are not linearly independent can be dealt with in an analog
fashion, by limiting the argument on the space spanned by those signals. We
collect our findings:

Proposition 3 The k-delay STM capacity for an i.i.d. input of a N-unit
linear RNN decreases monotonically with k.

We stay with linear networks and ask under which conditions the full
STM capacity N is achieved. An obvious necessary requirement is that the
internal states z1(n),...,xy(n) are linearly independent (which amounts to
saying the the correlation matrix R has full rank). We show that this is also
a sufficient condition provided the linear network has the echo state property.

Observe that the memory capacity of a linear echo state network is in-
dependent of input scaling, so we can assume normalized input v(n) =
v(n) /|l (n)]| = #(n).

An iterated expansion of the state update equation (1) represents the
internal states in terms of the input history:

x(n) = Wx(n—1)+w"(n)

= ) Whw"i(n — k). (26)

(Note that (26) presupposes the echo state property). Let [w]; denote the
i-th component of a vector w. Putting ay, = [WFw];, (26) can be rewritten
component-wise (1 =1,..., N):

zi(n) = Z g, 7(n — k). (27)

Likewise, the input can formally be written as 7(n) = 19(n) =: ag 7(n) =
> re o 0o 7(n), where ag = 0 for & > 0.
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We rename the signals 7(n), z1(n),...,zy(n) to vi(n),...,vx11(n) and
obtain, fori =1,..., N +1

vi(n) = Z iy V(n — k). (28)

Now we again assume that the signals v(n) = (vi(n)...vn41(n))" are lin-
early independent, and carry out a coordinate transformation to novel, or-
thonormal signals v(n) = (#1(n)...oy11(n))" with the understanding that
01(n) = ©v(n). The transformation is effected by a matrix T defined by
Vn :v(n) = Tv(n). Let a = (apk...ank) ', and let T; denote the i-th row
of T. For i = 2,...,N + 1 derive a representation of 9;(n) in terms of the
input history, as follows:

v;(n) = Z Tiag(n — k)
= Z T;axv(n — k) [use (7;(n),v(n)) = 0]
=: Z Bkt (n — k). (29)

Because ||7;(n)|| = 1, it holds that

Zﬁfk =1 (30)

k=1
Observing orthogonality of the v(n — k) (k > 0), from (29) we can conclude

N+1 N+1

gr(n) =Y (Bi(n), v(n — k) Bi(n) = Z Bir Vs (n). (31)

1=2

Combining (30) with (31) we arrive at our goal:

MC = 3 dgu(n), 70— F)

= DD (), o0 — k) [use (25)]
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To round up, we give a criterium to decide when the signals v(n) =
(v1(n)...vn41(n))" are linearly independent. We consider the first N + 1
terms in the expansion (28):

() - w
— <W01Win> v(n) + <W10Win> v(n—1)4 -+ (ngwin> V(n—N)+ -

Let My denote the (N + 1) x (N + 1) matrix made from the column
vectors appearing on the rhs. of (33). Obviously, a sufficient criterium for
v(n),z1(n),...,xy(n) to be linearly independent is that M, has full rank. By
virtue of the zeros in its first row, My has full rank iff the N x N right lower
submatrix M made from columns W!w® ... WY¥w" has full rank. This
latter condition is also necessary for v(n),zi(n),...,zx(n) to be linearly
independent. This follows from a basic fact of linear algebra, viz., that
for a vector vi € RY, an N x N matrix M, vectors v; defined by v; =
Myv,_; (¢ > 2) it holds that if v; € span(vy,...,v;_1), then Vj > 1: v, €
span(vy, ..., vi_1).

We assemble our findings:

||
N

[

Proposition 4 The STM memory capacity of a linear network is N iff the
matriz My = (Wlw™. .. W¥w™) has full rank.

For a demonstration, the same 20-unit network as used previously was
re-run with linear unit output functions, input weights randomly chosen to
be +0.5, —0.5, i.i.d. input, and a spectral radius | Ayay |= 0.98. The network
was trained on a 2000 step teacher sequence, of which the first 1000 steps
were discarded (the initial transient is long when | Ayayx | is close to unity,
which requires discarding a long initial portion of the training run). This
yielded a network with a memory capacity of 19.2 (estimated numerically
from a 3000 step test run). Fig. 6A shows the forgetting curve. Note that
a substantial portion of the memory capacity resides in delays greater than
the network size.

21



The matrix My in this example had full rank — so why falls the obtained
MC = 19.2 short of the theoretical memory capacity of 20.07 I cannot provide
a conclusive analysis, but the singular values of the weight matrix W suggest
that numerical error accumulation is the answer (Fig. 6B). The ratio of the
largest vs. the smallest singular value is about 50, which means that W
is moderately ill-conditioned. At each iteration, when W is applied to the
current state vector, it is “compressed” in the direction of the axis in RY
corresponding to the smallest singular value. The loss of state information
due to roundoff errors is particularly salient in this direction. Considering
that the MC computed here results from up to 40 iterated mappings of W,
it is not surprising that 0.8 of the theoretical MC of 20 is lost.

2
1
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0 Delays 0 # SV
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Figure 6: A. The forgetting curve of a trained, full-memory capacity linear
network with 20 units. The plot shows MC, vs. delay k, estimated numer-
ically over a 3000 step test run to be 19.2. B. Singular values (logarithmic
scale) of the matrix M y. For explanation see text.

To explore STM capacity a bit further, a linear 400-unit network was
trained (input weights chosen from +0.5, —0.5, i.i.d. input, spectral radius
of W was | Amax |= 0.95, 1500 training steps of which 500 were discarded,
testing on 1000 steps). A value of MC ~ 145 was found. On the one hand,
this falls dramatically short of the value of MC = 400.0 that we would
expect from Prop. 4. This demonstrates clearly that Prop. 4 assumes infinite-
precision state representations and calculations. But on the other hand, if
one does consider the effects of numerical error accumulation, the forgetting
curve in Fig. 7 is rather surprising: the input information is preserved in the
network state almost perfectly for about 130 update steps. Again, [ cannot
present a rigorous analysis of this observation; a hand-waving explanation
might attribute the long memory span to network redundancy in the sense
that as the input signal v(n) is passed through the successive network states
x(n+1),x(n+2),..., there are always some directions in R*®® in which the
current update does not “squeeze” the v(n) component of x(n+1i) too much.
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Figure 7: A. The forgetting curve of a trained, full-memory capacity linear
network with 400 units, plotted for delays up to 200. B. Same as A, but with
a sigmoid network. C. Same as A, but with noisy network update, plotted
for delays up to 40. D. Same as B, but with noisy network update.

If the same experiment is repeated with the same network, but with
sigmoid units instead of linear ones, the memory capacity shrinks to a value
of about 51. Fig. 7B shows the forgetting curve.

One might assume that the long memory span obtained here crucially
exploits of the double-precision arithmetics used in the Matlab simulation of
the network. What happens if noise is added to the network update equation,
i.e. when instead of (1) we use

x(n+1) = Wx(n) + w"v(n +1) + u(n + 1), (34)

where p(n) is a noise vector? The previous experiment was repeated using
(34) during training and testing. The noise was sampled uniformly from
[—0.01,0.01]. As expected, the memory capacity shrinks. Trained from 2500
input points (initial 500 discarded), a memory capacity MC' =~ 31 was cal-
culated (only 40 output units contributed to this number, which therefore
underestimates the true MC a bit). Figure 7C shows the resulting forgetting
curve.

Finally, when we redo the experiment a fourth time, now with sigmoid
units and noisy state update, the memory capacity shrinks further, but only
a last little bit, to MC =~ 28 (Figure 7D).
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At this point a comment on the choice of input connection weights in
the example from the previous section should be made. They were set to
very small values of 0.001. The reason for doing so was that such small-
sized input made the network work with an activation level close to zero,
in a range where the sigmoids f are almost linear. Thus, the network ran
almost in the conditions of Proposition 3. Similarly, if the 400-unit network
experiment without noise, but with sigmoid units, is repeated with very small
input connection weights, memory spans approaching the linear network can
be reached.

The reduction in STM span by noisy state update observed above — from
a memory capacity of 145 to 31 — is rather dramatic. Noisy state update is
an important phenomenon. In engineering, noise enters digital simulations of
networks in the form of rounding errors, and it pervades analog VLSI neural
network chips in the form of imprecise and shifting physical gate proper-
ties. Biological spiking neural networks, one could say, are made of noise.
Therefore, a theoretical analysis of the effects of noise on the STM memory
phenomena treated here is desirable. In the remainder of this section, we
describe preliminary explorations in this direction, and suggest a remedy.

There are at least two mechanisms involved in the rapid decay of memory
span through noise:

1. As the input signal is propagated through the network’s state space
through repeated state updates, its norm shrinks (asymptotically expo-
nentially). By contrast, the noise contribution is a (sphere of ) constant-
norm signal(s). When the target signal norm becomes comparable in
size with the diameter of the noise sphere, it cannot be recovered from
the network state with a high precision any more.

More precisely, let E[WEw''v(n — k)] = WEWE[v(n — k)] =: x, (k)
denote the averaged contribution of the k—delayed input signal on the
network state. Then if the spectral radius of W is less than unity (which
we may assume here), the norms ||x,(k)|| will (under some genericity
assumptions which are granted with random matrices W) asymptoti-
cally shrink exponentially with increasing k. Figure 8 is a logarithmic
plot of these norms for the first 200 delays. It reveals that decreasing
signal strength (in the sense of decreasing ||x,(k)||) cannot be the sole
reason for the breakdown of memory span through noise. With noisy
state update (cf. Fig. 7C), the STM span collapses between delays 20
and 40; by contrast, Fig. 8 shows that the signal strength falls down to
the magnitude of the noise only after about delay 100.

2. A second mechanism which explains more of the STM breakdown un-
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Figure 8: A. The norms ||x, (k)| of the iterated input traces in the network
state (logarithmic plot) for the first 200 iterations. B. The portion of iterated
input traces falling into the subspace spanned by the input traces with delays
k = 191,...,200. For explanation see text. C. Averaged absolute output
weights of trained outputs for delays 1,8, 16, ...,200 (logarithmic plot).

der noise resides in the fact that repeated iterations W¥ of a matrix W
for large k generically yield mappings which are projections into a low-
dimensional subspace of RV, after a suitable normalization. More pre-
cisely, consider for any v € RY the sequence vi = W'v/||Wlv||,v, =
W2v/||[W2v]|,.... Then, as k increases, most of the normalized vectors
v;, will become confined in a low-dimensional linear subspace S of RV,
in the sense that ||rgvg|| — 1 as & — oo, where g denotes projection
into S. (Actually, generically S is one-dimensional; however, conver-
gence of v, into the one-dimensional asymptotic subspace can be very
slow; we use here that there are small-but-greater-than-one-dimensional
subspaces into which the v converge quickly).

To witness this fact, we compute ||rsX, (k)| for the normalized sig-
nals x,(k) = x,(k)/||x,(k)|| and the 10-dimensional linear subspace
spanned by the averaged signals x,,(191),...,x,(200). Figure 8B is a
plot of ||rs%,(k)|| for & = 1,...,200. After about 100 updates, the
network state traces of the input signals become almost completely
immersed in this 10-dimensional subspace.

25



Consider the case of noise-free training (forgetting curve in Fig. 7A). As
k increases, increasingly greater portions of the signal W*wiv(n — k)
fall into the subspace S, which is also heavily “populated” by projec-
tions of competing signals W* wi"v(n—k"). In order to sort W*wy(n—
k) out from among its competitors, the least mean square algorithm
has to come up with increasingly large weights. Fig. 8C is a logarithmic
plot of the average absolute output weights of the trained networks in
the non-noise training scheme, for delays up to 200. Very fast growing,
and eventually very large weights indeed are required for the extraction
of delayed signals.

This works only well as long as there is no noise in the state update.
With noise, large output weights would transport and magnify the
noise into the output signals, leading to high mean square errors. The
least mean square weight estimation prevents this by computing small
weights. The necessity to have small weights (in order not to boost
noise into the output) quickly overwhelms the necessity to have large
weights (in order to sort out signals from each other which populate
the same small subspace).

The two mechanisms discerned here suggest a remedy for the noise sus-
ceptibility of STM learning. When the matrix W is unitary, both of these
memory-destructive mechanisms are circumvented: The norms ||x, (k)| will
stay constant, and the linear subspace S into which signal traces are forced
remains the full RY. Now we cannot use a precisely unitary W because its
spectral radius | Apax | would be unity, whereby we would lose the echo state
property. However, when W is unitary, and C' is a constant slightly smaller
than 1, CW is “almost” unitary and yields a network with the echo state
property.

To test whether our reasoning is sound, we procured a random unitary
matrix W) [technical note: this was done by replacing the singular value diag-
onal matrix in the SVD of our original weight matrix by the identity matrix|
and scaled it with the scaling factor C' = 0.98 standardly used in the above
experiments. Using a linear network with this almost unitary weight matrix,
a memory capacity of 395 was obtained for the no-noise setup. When noise
sampled again from [—0.01,0.01] was inserted to the states during training
and testing, the memory capacity decreased again, but not so dramatically
as before: MC = 138 was obtained. Figure 9A B shows the forgetting curves
for these two trials.

Finally, we tested what happens when the scaling factor C' grows toward
unity. For delays smaller than the network size 400, the signal trace x, (k) is
propagated once through a set of orthogonal directions of RY. For k > 400,
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Figure 9: A. Memory curve of almost unitary 400 unit linear network with
scaling factor C' = 0.98, no noise inserted. B. Same as A, with noise. C.
Same as A, but with a scaling factor C' = 0.999.

the signal trace x, (k) folds into a second cyclic tour through RY and so
forth for £ > 800,k > 1200,.... The magnitude shrink of these higher
iterations is determined by C'. As C' — 1, we would expect that the repeated,
overlayed “folds” of the signal trace are unraveled by the mean square error
minimization algorithm, at the cost of a reduction of MCy, for each k£ due to
competition with other “folds”. In fact, this is what is obtained. Figure 9C
shows the forgetting curve for C' = 0.999, (MC = 269 was found), featuring
a long tail beyond k = 400.

Short term memory is a fundamental property of recurrent neural net-
works. The treatment given here is only a first step toward understanding
STM phenomena. We conclude this section by pointing out two kinds of
open questions.

e Asymptotic properties: e.g., given noisy update, how does the opti-
mally achievable MC grow with network size?

e Nonlinear networks: e.g., is the forgetting curve monotonically decreas-
ing in nonlinear networks? Are linear networks always optimal for large

MC?
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4 Something like phone number rehearsal

In the remainder of this paper we present theoretical and practical examples
of RNN training tasks which make direct use of the STM capability of echo
state networks.

We begin with a network which mimicks a familiar everyday phenomenon.
If T want to memorize a short sequence, e.g. a phone number, I recite it
repetitively in my mind (my short-term memory? working memory?) — until
[ use it a few moments later, or until it is transferred to my long-term memory.
Echo state networks, trained as short-term memories, can be used for this
cyclic rehearsal task, by feeding their output back into the input channel.
The interesting point about this is that there is no attractor involved.

We demonstrate this effect with a little example. A 100-unit single-input,
single-output linear network was trained on an i.i.d. training signal as a 50-
step-delay system (input weights sampled randomly from [—0.1,0.1], spectral
radius of W was 0.98, test error for mseg s, = 0.0000053). In the exploitation
phase, the network was started by running it for 50 steps during which a
custom-made signal was fed into the input unit. After the 50th step, the
network ran on its own, with its output fed back into its input unit. Figure
10 provides plots of the network output in the first 50 steps of the free run
(corresponding to the first re-cycling of the fancy signal), then of the 10th,
50th, 200th repetition period.

As should be expected from a non-attractor dynamics, the 50-step target
sequence is reproduced with increasing loss in precision as the number of
repetitions grows. By contrast, I can repeat a phone number in my mind
without it getting fuzzier over time. Apparently there are stabilizing mech-
anisms available in humans which reach beyond the simple repetition effect
demonstrated here.

5 Dynamical pattern recognition

A fundamental task in signal processing is dynamical pattern detection. For
our present purpose we define a pattern as a set P = {p,(1)---p;(l;) |
j € J}, where p is a numerical vector, J is an index set and the sequences
p;(1)---p;(l;) are the realizations of the pattern. One way to formalize the
pattern detection task is to demand a binary output signal d(n) that classifies
the input signal u(n) as follows:

d(n) = { 0.5, ifu(n =1+ 1)---u(n) € P for some [ >0 (35)

0, else.
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Figure 10: Overlays of network output (dashed) and correct signal (solid) in
the testing phase of the cyclic rehearsal task. Plots A — D show repetitions
1, 10, 50 and 200.

(We use the value d(n) = 0.5 instead of the more standard d(n) = 1, because
we will use standard sigmoid output units to produce d(n); but such units
can only generate values properly smaller than 1.)

We will investigate how echo state networks can be trained as dynamical
pattern detectors. First, we will explore some elementary types of patterns
with synthetic data (Subsection 5.1), then demonstrate discrimination learn-
ing (Subsection 5.2), and finally report on a robot application (Subsection
5.3). All calculations described in this section and the next one were done
with the Mathematica software package.

5.1 Basic types of patterns, and their detection

In this section we consider various sorts of one-dimensional random patterns
which occur as rather rare events, embedded a random “background” signal.
All patterns which we will consider have a uniform length of 10, i.e. Vj € J :
l; = {10}. The training and test sequences are all prepared in the following
way:

1. The pattern is defined by specifying a set P = {p;(1)---p;(10)|j € J}.
Typically, the pattern instances p;(1) - - - p;(10) will be drawn from from
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a uniform distribution over [—0.5, 0.5]*.

2. Ani.i.d. “background” signal ug(1),..., up(nmax) is prepared by draw-
ing each ug(n) from a uniform distribution over [—0.5,0.5].

3. A collection of “pattern insertion points” is chosen. This is a subset
R={m; <---<m,} C{1,...,nmax}, selected such that (i) m; > 10
and (ii) m; and m,; are at least 10 points apart.

4. For each m; € R, one instance p;(1)---p;(10) € P is chosen and in-
serted into the background signal by replacing ug(m; —9), ..., ug(m;)
with p;(1),...p;(10). This yields an input signal wu(l),..., u(nmax)
which is mostly the background noise, speckled with mutually sepa-
rated instances of the pattern, each ending at one of the pattern inser-
tion points.

5. A correct (teacher or testing) output signal Yseach (1), - - -, Yteach (Pmax) 1S
prepared by putting yeacn(n) = 0.5 if n € R, else yieacn(n) = 0. Le., the
teacher signal goes up to 0.5 each time a pattern instance is completed
in the input signal.

Since the background signal is a random sequence, chance patterns very close
to the original pattern may pop up in the background. These “spurious”
pattern instances are not reflected in the teacher output.

We begin by investigating how a singleton pattern P = {p(1)---p(10)}
is learnt.

The pattern was obtained by a random draw from a uniform distribution
over [—0.5,0.5]"°. Figure 11A shows the single instance of the pattern. A
500-step background signal ug(n) was generated, and the pattern inserted at
points 200, 350, 400, 450, 500 to yield the final input signal u(n). Accordingly,
the teaching signal was a 500-step sequence of zeros except at the insertion
points, where it was 0.5.

The 500-step sequence was split into subsequences of lengthes 100+ 200+
200 = 500, which were used as initial transient, training data, and testing
data, respectively. This means that the portion used for actual training
contained only a single positive instance of the pattern, and the last 200
steps used for testing contained four such instances.

Fig. 11B shows the last 200 steps of the input signal. The inserted
patterns (ending at steps 50, 100, 150, 200 in this plot) are not easily
discerned by visual inspection, because the “figure” here has locally the
same statistical properties as the “ground”. This impression of difficult de-
tectability is underlined if we try to detect the pattern with a linear filter.
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The optimal linear filter in this case (modolo normalization) is djpear(n) =
Y et 10 u(n — 10+ k)p(k). Applying this filter to the input signal gives a
rather f)oor pattern detection performance. Fig. 11C shows djipear(n). We
characterize the performance of a pattern detection filter d(n) by the dis-
crimination ratio

DR = v/ E[d?(n*)]/ Eld*(n)], (36)

where n™ ranges over the pattern insertion points and n~ over the others. The
DR of the linear detector djpear(n) is about DR & 3.47 (numerical estimate
from data shown in Fig. 11C).

UNAYE: mmluml
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Figure 11: The singleton pattern detection task. A. The single-instance
pattern used. B. Last 200 steps of the input signal (used for testing), with
instances of the pattern at insertion points 50, 100, 150, 200. C. Output of a
linear detection filter applied to the test sequence. D. Output of a 100-unit
echo state network trained on only a single occurence of the pattern. E.
Output of the same network, trained with a teacher data set containing 5
instances of the pattern. F. Same as E., but with 0.01-sized noise inserted
into network during training.
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A 100-unit network was trained with the training data thus prepared. The
network was essentially the same as the one used in [9], scaled to | Apax |= 0.6.
Two input units were attached to the network, with input connection weights
chosen randomly to be 0.5 or -0.5 (first input unit) or 0.25 / -0.25 (second
input unit). The first input unit was fed with a constant bias signal of
size 0.2, the second was used to feed the 500-step input signal u(n) into
the network. A single output unit was trained with the teacher sequence
described previously. The output function was the sigmoid f°'* = tanh. The
first 100 steps of the run were discarded, and the steps n = 101,...,300
were used for training the network. Note that within this period, only one
instance of the pattern occurred, so we have here a single-shot learning task.
Before step 301, the output weights were computed and the then trained
network was run on the remaining 200 test data points. Fig. 11D shows the
performance of the signal detector thus obtained. Its discrimination ratio
was DR ~ 6.35, about twice as good as with the linear detector. Note that
one might obtain a perfect binary signal detection by thresholding the output
signal shown in this figure (and others).

The performance improves when more instances of the pattern are avail-
able in a longer training sequence. Repeating the experiment with a longer
training sequence (1000 steps of actual training data, containing 5 occurences
of the pattern) yielded a performance of DR & 12.4 (see Fig. 11E for a plot
of the detection signal).

The achievable detection ratio obviously depends significantly on the size
of training data and the number of positive patterns contained in it. This
dependency was elucidated by systematic variation of (i) length of input
data actually used for training, (ii) density of positive examples of patterns
in the training data. The training data length was varied from 200 to 1000 in
increments of 200, the density of positive examples was incremented from 1 to
5 instances per 200 training steps. This yielded a 5 x 5 scheme of conditions.
50 to-be-detected patterns were drawn randomly from [—0.5,0.5]'°, and a
network was trained in each condition on each of the patterns. The 50
discrimination ratios achieved in each condition were averaged.

Figure 12A is a plot of the findings. Two observations are conspicuous:
(i), an increase of the density of positive patterns has almost no effect, if
any, it is detremental; (ii) increasing the length of training data leads to a
significant improvement of discrimination performance. This suggests that
an important factor to obtain good “singleton” pattern detectors is to present
the network with a large number of negative examples. This seems to be more
important than to increase the number of positive examples. This requires a
more thorough investigation in the future.
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The variation of DR across the 50 patterns in each condition is not shown,;
it was quite large. For instance, in the single-shot learning condition (leftmost
cell in the plot of Fig. 12A) the best DR found among the 50 trials was 11.7
and the worst was 2.5. One may assume that much of this large variation is
due to the random background signal, which will lead to good DR’s when the
background is mostly dissimilar to the pattern and vice versa. The example
considered above (plots in Fig. 11) is representative of the average in this
50-trial sample.
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Figure 12: A. Discrimination ratio achieved with different setups of training
data. B. Average absolute output weights across same setups. For explana-
tion see text.

Another observation worth pointing out is the absolute size of the output
weights computed by the learning algorithm. Fig. 12B shows the average
absolute weights obtained across the 5 x 5 training conditions. The order
of magnitude is 100, which is very large. We have met large output weights
before: in the discussion of why learning long delays is so susceptible to noise.
We can make a similar experiment here and retry the pattern detection learn-
ing task with noise injected into the network during the training phase. The
observation is that the network performance strongly deteriorates. When,
for instance, the experiment shown in Fig. 11E was repeated with noise of
size 0.01 added to network states during training, the DR went down from
12.4 to 3.4. Fig. 11F shows the output of the resulting pattern detector. The
average absolute output weight size was 0.14 in this condition. The following
table lists the relationships between size of inserted noise, DR and average
output weights for these and a few other noiselevels, all obtained in otherwise
identical replications of the experiment.
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noiselevel DR weights

0.0 12.4 104.0
0.0001 10.5 138
0.001 6.2 1.7
0.01 3.4 0.14

I include all these findings concerning noise, output weights, and perfor-
mance, because I believe here is a key to a better understanding of how echo
state networks might eventually be optimized by suitable network design.
However, currently I can offer no theoretical account of these issues.

In the remaineder of this subsection we give a brief account of other exper-
iments where different types of patterns were tested. The same network and
training setup as described above was used throughout these experiments.

Noisy patterns. A more natural type of pattern than the pure singleton
pattern is a pattern that consists of a “prototype” pattern and variations of
it. In this sense, a length-10 pattern was defined as a set of random variations
of a basis pattern py(1) - - - po(10)

P ={po(1) +v(1) -+~ po(10) + v(10) | v(k) € [<0.2,0.2]},  (37)

where v(k) is a uniformly distributed random variable with values from
[—0.2,0.2]. The same network as previously was used. The prototype pat-
tern py(1) - - - pp(10) was generated by a random draw from [—0.5,0.5]'9. The
training sequence had a total length of 100 initial plus 1000 actual training
plus 200 test points. In the 1000 steps used for training, 19 random instances
of P were inserted at 50-step intervals; in the 200 test steps, 4 test instances
were placed at positions 50, 100, 150, 200 within this test sequence.

Figure 13A shows how a linear filter optimized to detect the prototype
pattern po(1) - - - po(10) responds to the complete 1300-step training sequence.
The regularly spaced peak spikes mark the positions of the inserted pattern
instances; their variablity is an indicator of the variations between the pattern
instances.

The discrimiation ratio obtained in this single trial was DR = 11.8; the
trained output connections featured average absolute weights of 194. Both
values are similar to what was obtained in the pure singleton pattern task.

Shifted patterns. Another elementary kind of variations of a prototype
are shift transformations. Thus, a pattern was defined by shifting a basis
pattern po(1) - --po(10) by a random amount between -0.5 and 0.5:

P={po(1)+v - po(10) + v | v € [-0.5,0.5]}. (38)
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Figure 13: A. Output of a linear filter for detecting the prototype pattern in
the training sequence. B. Output of the trained network on the test sequence.
For explanation see text.
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Figure 14: A. Training and testing sequence for the shifted pattern task
(overall length 1300). B. Output of the trained network on the test sequence.

The training sequence was prepared like in the previous example. Fig. 14A
shows the training input signal; the shifted versions of the pattern stick out
at places. Fig. 14B is a plot of the trained network’s output on the test
sequence. Again, no substantial difference from the pure singleton pattern
is apparent. The discrimination ratio found numerically in the short test
sequence was DR = 8.3; the average absolute output weight was 188.

Two-element patterns. Yet another basic kind of patterns are dis-
junctive patterns. To test a simple exemplar, a pattern was defined as a
set P = {p1(1)---p1(10),pa(1)---p2(10)} of two independently generated
patterns. Fig. 15A shows the two patterns used, and Fig. 15B the trained
network’s output on the test sequence (training setup as in previous two ex-
amples). The first two response spikes are triggered by two occurrences of
the first pattern in the test data, the second two spikes by the other pat-
tern. The discrimination ratio in this example was DR =~ 12.1; the average
absolute output weight was 200.
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Figure 15: A. The two instances making for the pattern in the disjunctive
pattern experiment. B. Output of the trained network on the test sequence.
For explanation see text.

Pattern defined by a short description. Another standard type of
pattern is a collection of instances which superficially may look quite different
from each other, but which share a simple description. We procure a synthetic
pattern of this kind by putting

P ={p(1)---p(10) | D(p(1),...,p(10)) > C}, (39)

where D is a nonlinear decision function and C some threshold. Concretely,
and quite arbitrarily, we used

10
D(uy, ..., up) = sin(us) + tan®(ug) /10 + Z Ui, (40)
i=1
and C' = 2. A 1300-step input signal u(n) signal was obtained by drawing
a random sequence from the interval [—0.5,0.5]. The teacher signal was
constructed by putting each () = 0.5 when D(u(n —9),...,u(n)) > 2, else
yteach(n) = 0.

It was found in preliminary trials that for this kind of task a different
setting of the global network parameters was preferable: the spectral radius
of our by now familiar 100-unit network was scaled to | Apax |= 0.5; the input
connection weights for the constant bias input (of size 0.2) were randomly
chosen to be 2 or -2; the input connection weights for the u(n) signal input
unit were chosen from -0.1 and 0.1.

Figure 16A gives a plot of the teacher signal in the last 200 steps used
for testing, overlayed with the trained network output. The discrimination
ratio was DR = 5.3. When the network output is thresholded at a value of
0.25, a binary detector signal is obtained, which is opposed to the correct

36



(teacher) signal in Fig. 16B. The thresholded network output gives a correct
indication of the pattern in 97.5% of the 200 test points.
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Figure 16: The “short description” pattern. A. Teacher and network output
on the testing sequence. B. Teacher (solid line) and thresholded network
output (dashed line) in a mirrored representation. For explanation see text.

Pattern defined by a system with a state. The types of patterns
considered so far were all static — sets of 10-dimensional vectors with no
inherent temporal aspect. Our final example is a type of pattern which
is inherently dynamic; and furthermore, it depends on historical context.
Real-life examples of such patterns would be e.g. gestures; plant failures;
thunderstorms; economical crises — actually, almost every real-life dynamical
phenomenon which we can detect and classify. Our original definition of a
pattern as a set of finite-length instances, P = {p;(1)---p;(;) | j € J},
should actually be accomodated in deference to the circumstance that the
beginning of a dynamical pattern is often not well-defined. The variant
P ={...pj(—-2)pj(—1)p;(0) | j € J} would be more suitable, but we will
not dwell on this subject.

A simple mathematical model of a truly dynamical pattern is to model
it by a decision function which is actually the output of a dynamical system
driven by the input signal u(n):

P={-p(=2)p(=1)p(0) | D(...,p(=2),p(-1),p(0)) > C}, (41)

where D(...,u(—2),u(—1),u(0)) is the output of a dynamical system at time
0 after an input history ..., u(—2),u(—1), u(0).

Again, we choose D quite ad hoc, by defining a dynamical system with
two state variables x1, x5 and an output variable D by

[Vl 5(n)

14+5u?(n) 1+ 2%(n)+ 23(n)
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ro(n+1) = ud(n) - %

D(n) = 5zi(n—1)u(n) —xe(n — 1) sin(xy(n —1)).

(42)

A 1300 step random sequence was prepared to serve as input u(n). Figure
17A shows the last 200 steps of the dynamical system’s (42) output D(n)
when driven by u(n). A cutoff C' =1 was used to generate a binary pattern
indicator teacher signal from D(n). The same network and training setup as
in the previous task was used. Fig. 17B shows a plot of the teacher signal
(rescaled from 0.5 to 0.2) vs. the thresholded (cutoff 0.25) trained network
output (rescaled and mirrored) in the final 200 steps used for testing. The
discrimination coefficient (for the unthresholded network output) was 4.2.
The thresholded network output is equal to the teacher in 95.5% of the 200
test points.
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Figure 17: The “truly dynamic” pattern. A. Output D(n) of the dynamical
system (40) driven by the random input signal u(n). B. Teacher (solid line)
and thresholded network output (dashed line).

5.2 Discrimination learning

Discrimination learning refers to a situation where a learnt pattern detector
first falsely includes some signals into the pattern, and then has to be changed
in order to exclude those signals. In this section we will present an illustrative
demonstration of this important task within the echo state network approach.

First, we trained a network on a singleton pattern again. The pattern is
a simple ramp (Fig. 18A, solid line). This time we chose a 400-unit network
(the same as in [9]), which was scaled to | Apax |= 0.6, with two input units
for a constant bias and the input signal (input connection weights 0.5 / -
0.5 and 0.25 / -0.25, respectively; sigmoid output function of output units;
all like the 100-unit network used futher above). A background sequence of
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length 1300 was prepared (100 initial steps, 1000 actual training steps, 200
testing steps). 14 instances of the ramp signal were inserted into the 1000-
step training subsequence, and 2 further instances at points 150 and 200 in
the 200-step testing subsequence. The teacher signal consisted of 0.5’s at all
of these insertion points and was zero elsewhere. Additionally, a modified
version of the ramp, — let’s call it a “wedged ramp” — (Fig. 18A, dashed line)
was inserted into the test sequence at positions 50 and 100.

Fig. 18B shows the output of the trained network on the testing sequence.
The ramp signal is correctly detected (last two spikes), but the modified
ramp signal also leads to a clear detection spike (first two), although during
training the wedged ramp was not presented to the network. The network
obviously has generalized from the teaching examples. To gain a clearer
impression of the network’s response to the two kinds of ramps, the network
was re-run on another 10 test sequences with different background signals,
but with the ramps at the same places (the kind of signal augmentation
known from averaging EEG signals!). Fig. 18C shows the averaged response,
which reveals no significant difference between the responses to the ramp vs.
the wedged ramp.

Of course, generalization from training examples is often desirable. How-
ever, the converse of generalization, discrimination, is as important. We now
train the network to discriminate between the two ramps. Two trials were
carried out, with training data made up differently for illustration. They
contained R instances of the original ramp and W instances of the wedged
ramp, where R = W =1 in the first trial and R = W = 14 in the second.
The teacher signal was 0.5 only at the positions of the original ramp, and zero
elsewhere. Thus, the network encountered negative examples during train-
ing in these two trials. Figures 18D E show averaged responses of networks
trained on the two teaching sequences: D: R=W =1, E: R=W = 14. [t
is apparent that a exposure to a single negative instance in training already
significantly weakens the network response to the wedged ramp, and that a
repeated presentation of both the positive and the negative instances yields
a convincing discriminiation between the two signals.

The 100-unit network, put to the same set of discrimination learning
tasks, performed much like the 400-unit network except for the R =W = 14
condition, where its performance was not markedly better than in the R =
W =1 case. It seems that the 100-unit network was not expressive enough
to achieve the desired discrimination as well as the 400 unit network.

39



O O o o o
H N W !

Figure 18: Discrimination learning. A. The ramp signal (solid line) and the
“wedged ramp” (dashed line). B. Network response of the network trained on
14 positive examples of the ramp. The input signal contained two instances
of the wedged ramp (positions 50 and 100) and two of the original ramp
(before points 150 and 200). C. Averaged response of network trained on 13
positive examples (ten trials superimposed). D. Averaged response, trained
on R = 1ramps and W = 1 wedged ramps. E. Same as D, with R = W = 14.

5.3 A robot application: event detection

In this subsection we sketch a first application of echo state networks as
dynamical pattern recognizers in a robotics task. The work reported here was
carried out in collaboration with Joachim Hertzberg and Frank Schonherr of
AiS, who provided the task and training data. A more detailed account can
be found in [7].

A simulated robot was made to wander through an office environment for
a simulated duration of approximately 21 minutes. The environment con-
sisted of two rooms and a corridor with connecting doors between corridor
and rooms and between the two rooms. The environment contained a few
obstacles and featured mostly 90 degree corners but also a few “rounded”
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ones. Various variables available to the robot were sampled during this run:
raw sensor data (e.g., infrared sensor readings, together 10 channels), pro-
cessed sensor data (e.g., robot heading, 3 channels), motor measurement data
(robot speed and angular velocity readings, 3 channels), and activations of
the various behavior control modules of the robot (i.e., modules like “aviod
collision”, “follow left/right wall”, “go through door”, altoghether 9 chan-
nels). The sampling rate was 4 per simulated second. All in all, 25 channels
with sensor and control related quantities were collected.

We consider only facts that correspond to events of short duration (as
opposed to “state” facts that hold true for an extended period of time). From
among the numerous event categories trained, we select here the following
five:

1. 1 = “robot passes by a 90 degree corner, excluding corners at corridor
ends” [at the end of corridors, there are two 90 degree corner close to
each other]

2. 9 = “robot passes by a 90 degree corner, including corners at corridor
ends”

3. 3 = “robot passes by a corridor end”

4. 4 = “robot passes trough any door”

5. w5 = “robot passes through a door, thereby entering a room from
the corridor” [this excludes room-to-corridor and room-to-room door
passages]

The first three and the last two event types each were rather similar to
each other; distinguishing between events ¢, s, 03 and between g4, @5 is
not apparently trivial.

The variables ¢y, . . ., @5 were put from 0 to 1 for one simulated second by
the human experimenter immediately after the corresponding event occured.

Fig. 19A shows a portion of the training data.

These data were used to train an echo state network with 5 output units
for ¢1,...,p5 — note that these output units are trained and operate inde-
pendently and simultaneously. The network was our familiar 100 unit RNN,
scaled to a spectral radius of | Ayax |= 0.95, with sigmoid output units at-
tached. Weights from input units to the network were put at random to
values of 0, -0.5, 0.5 with probabilities 0.7, 0.15, 0.15 respectively.

From the data collected in the simulation run, roughly the first simulated
15 minutes (4000 update cycles) were used for training and the remaining
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Figure 19: A. Some of the input and teacher channels in the event detection
training for a robot. From top, four input channels: an infrared distance sen-
sor reading, a motor velocity, an estimated robot heading, a behavior control
module activation, and (last plot) a teacher output signal. B. The trained
network’s output (fat solid line) vs. the human event detection (dashed line).
From top: ¢; = “90 degree corner W/O corridor ends”, ps = “90 degree
corner with corridor ends”, p3 = “corridor ends”, ¢, = “through any door”,
s = “through door from corridor into room”.

approx. 5 minutes (1000 cycles) for testing. Fig. 19B shows the network
output for the five event detector channels during the testing phase. We
point out some main observations:

e The network outputs provide reasonable event hypotheses. With a
suitable cutoff threshold, event detection with very few false positives
or false negatives could be achieved.

e The event class distinctions between the first three and last two event
types was mastered. They illustrate not quite trivial instances of dis-
crimination learning.

e Hand-coding event detection routines with classical Al techniques would
require substantial effort and time for each class of event. In compari-
son, the supervised training of an echo-state network was done in one
afternoon, for all event types in one sweep, including data collection
and teacher output signal definition.
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We also mention some observations from similar experiments not pre-
sented here:

e A network size of 100 units is roughly appropriate for this task: a 400
unit network did not lead to significantly better results, whereas a 25
unit network performed poorly.

e Relevant global network parameters, especially | Apax |, can be scaled
in a wide range without significant changes in performance. From the
perspective of echo state network theory, the present filtering task ap-
pears to be rather simple; “any reasonably sized and scaled network
does the job”.

e Longer training sequences result in a better discrimination ratio of the
trained network output, but useful networks can be obtained already
from very scarce training date (for conspicuous, apparently context-
insensitive events like “go through door”, training from a single positive
example was satisfactory).

6 Stochastic symbol sequences

In this section we consider how echo state networks can be trained to model
stochastic symbol dynamics of the kind usually modeled by (higher-order)
Markov chains, hidden Markov models, or more recently, observable operator
models [8].

The general setup is the following. Let £ = {aj,...,ap} be a finite
alphabet and (Z,,),ez be a familiy of random variables with values in the ob-
servation space /. We assume that the random variables Z,, are a stationary
stochastic process. Stationarity implies that the distribution of the process is
determined by the finite-length sequence probabilities Py(Z; = a;,, ..., Zy =
a;, ), where k > 1 and a;, € E/. We use the shorthand notation Py(a;, ... a;,)
for Pk;(Zl = Qjyy e vy Zk = aik).

A model of the process Z,, is another stationary stochastic process (Zn)nez,
usually embodied in a generative algorithm, which has a “similar” distribu-
tion. It has marginal distributions pk(Zl = Qjpye ey 7 = a;,). Similarity
can be quantified in a number of ways. We will employ the Kullback-Leibler
distance of the finite marginal distributions,

~

Pk(ail . aik)

iy - Qg

Ay Qi cEk

(43)
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to quantify similarity between original and model.

Our goal is to use a training sequence a;, . ..a;, generated from the orig-
inal process Z,, to teach an echo state network, which can then be used as a
generator of stochastic sequences whose finite-length distributions P, should
have small KL-distances to the original distributions F.

The echo state network is equipped with M input units and M linear
output units with no feedback connections (as in all examples in this article).
During training, the symbols from the training sequence are read into the
input units, one symbol per network update cycle, by coding a;, through a
unit signal in the 7,-th input unit:

u(n) = (0,...,0,1,0,...,0), (44)

where the “1” occurs in the i,-th input unit. The teacher signal is a similar
encoding of the next symbol, i.e.

Yteach(”) - (07"'7071707"'70)7 (4'5)

where the “1” occurs in the 7,;-th output unit. The network should thus
learn to predict the next symbol.

After training, the network is used to generate a random symbol sequence
aj,---,0a;, in the following way.

1. Start the network from an arbitrary initial network state. Compute
the output activation vector (y;(1) ... yau(1)).

2. Turn the output vector into a probability vector (pi(1) ... p,(1)), by
setting all negative entries to zero and renormalizing the remaining
entries such that they sum to unity.

3. From the obtained probability vector, select one index position j; by
a weighted random draw, where the weights are given by (p1,...,ps)-
For example, with (p1(1) p2(1)) = (0.2 0.8) we would choose j; = 1 with
probability 0.2. Write a;, out as the first generated symbol.

4. Feed a;, back into the input units of the network by the coding scheme
described above.

5. Update the network with this input and compute the output activation
vector (y1(2) ... yam(2)). Iterate the previous steps until a sequence of
desired length is generated.
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We expect that network-generated symbol sequences ajy,...,a; , have
similar finite distributions as the original process after initial transients due
to the arbitrary starting state have died out. We give first two reasons that
justify this expectation, and then report on experiments to show that indeed
complex processes can be modeled in this way.

The first argument why our setup should work is of a general, some-
what intuitive nature. Many stationary stochastic processes (among them,
Markov chains of any order, hidden-Markov processes and observable op-
erator processes) are asymptotically forgetting. Concretely, this means the
following. Let ...,b 5,b_1,by be a left-infinite path of Z,, and by,..., b
a finite observation sequence. Consider the conditional probabilities P, =
P(Zl = bl,...,Zk = bk | Z_l = b_l,...,Zg = bo), where [ = 0,1,.... Then,
the sequence Py, P,..., converges for almost every history ..., b_s,b_1, bg.
Stated more simply: the recent past is more important for predicting the
future than the distant past, and the effects of ever more distant inputs van-
ish asymptotically. Now consider an echo state network that is fed with an
input sequence ...,b_s,b_1,by. As we have seen in the forgetting curves in
Section 3, the state of the network contains information about the past input
history in a way which also reflects the recent history well and decays with
the delay time. Thus, the information about the past which is most relevant
for predicting the future of ..., b _5,b 1, by is readily available in the network
state.

The second argument why things should work out concerns the question
why we should be allowed to treat the output vector as a probability vector.
For a moment, let us forget about sequences and networks, and consider a
simple numerical experiment. Let y;,...,yr be a path of an i.i.d. process Y,
with values 0 and 1, where P(Y,, = 1) = p and P(Y,, = 0) = 1 —p. Then, the
least mean square error estimation p of p from the path is p = (y1+. . .+yr)/L,
which converges to p almost surely with growing L. Now, equipped with this
little reminder, let us return to our sequences and networks. Assume that
we have a very long training sequence in which all possible subsequences
b_i11,...,by of some length [ appear very often, and where [ is suitably
large to allow us good predictions of the future distribution from a history
of length [. Consider a symbol b € E and the probability p = P(Z; =
b | Z.41 = bysr,...,Zy = by). Then, the training procedure outlined
above will lead to a trained network whose activation in the output unit
corresponding to b is approximately p at times when the recent input history
was b_;11,...,by. This holds for all such input histories of length [. Therefore,
the network output activation at the node corresponding to any symbol b
should be a sensible estimate of the probability of this symbol to occur next
in the sequence after all preceding histories.
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We demonstrate the viability of this approach with two synthetic exam-
ples. (In the next section, a real-world process will be treated.)

The first example is a process generated by a hidden Markov model
(HMM). We assume that the reader is familiar with the basic concepts of
HMMs. The alphabet of emitted (observable) symbols is £ = {1, 2,3}, and
there are three hidden states {s1, so, s3}. The probabilities of the hidden state
transitions are given in the following stochastic matrix (we use an obvious
shorthand):

0.9 0.1 0.0
(P(Sl — 5j))z',j:1,2,3 = 0.0 0.9 0.1 , (46)
0.1 0.0 0.9
i.e., the hidden state process basically cycles through the three states, remain-
ing in each state with probability 0.9. The emission probabilities for the three
observable symbols 1, 2, 3 are (0.1,0.2,0.7) in the first state, (0.5,0.05,0.45)
in the second state, and (0.5,0.4,0.1) in the third state.

Three training sequences of length 500, 2000, and 5000 were generated
from this HMM, which was started from the asymptotic hidden state distri-
bution vector (1/3,1/3,1/3), so the training sequences were samples from a
stationary process.

A 100-unit echo state network with four input and three output units was
employed (the same network as used previously in this article). The weight
matrix was scaled to a spectral radius of 0.95. The first input unit served to
feed a constant bias of size 0.2 into the network. This unit was connected
to the network by weights randomly chosen from the interval [—1,1]. The
remaining three input units served for reading in the symbols; each of them
was connected to the network by weights randomly put to 1 or -1.

Figure 20 shows the output of the network trained from the 5000 step
sequence when it was fed with a HMM-generated sequence. It becomes ap-
parent that the output units produce varying “hypotheses” about the next
symbol. Actually, at each time the three output signals sum to unity with a
10-digit precision, and no negative outputs occurred, so the renormalization
step 2. in the generation procedure was unneccessary.

For a quantitative judgement of model quality, various Kullback-Leibler
distances were estimated from data, in the following way. Consider first the
network estimated from the 500 step sequence. It was used to generate a sym-
bol sequence Spet.,, Of length 2000. Furthermore, a test sequence Sies of same
length was generated from the original HMM. Probabilities Pj(a;, ... a;) of
finite-length subsequences of length [ = 1,...,7 were estimated from Shet,
by frequency counts (which gives the maximum-likelihood estimates of these
probabilities). Analogously, probabilities P(a;, ...a;) were estimated from
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Figure 20: HMM process learning. Output of the trained network (dashed

line) and teacher signal (solid line) during a 50 step episode. Each plot
corresponds to one output unit. For details compare text.

the test sequence. Using these empirical estimates, for each [ the Kullback-
Leibler distance (43) was computed. (A technical detail: for larger [, some of
the subsequences occurring in Spet,,, did not occur in Sies;. This would lead
to a zero denominator in the rhs. of Eq. (43). To circumvent this impasse, in
these cases an apriori probability of 37! was substituted for the non-defined
P/(ai, ...a;) in the computation of Eq. (43). Since with [ larger than 7,
the portion of subsequences not occurring in Sies; becomes noticable, only
subsequences up to this length were considered).

Furthermore, the Kullback-Leibler distances of finite-length subsequence
distributions between the test sequence and the original 2000-step training
sequence was also computed in the same manner. These distances yield a
baseline, being the empirical KL distances that would be obtained with a
perfect model.

Figure 21A shows the findings. The larger the training sample, the better
the model quality. The network trained from the 5000 step sequence gives a
very good approximation to the original distributions.

For a further comparison, the length 2000 training sequence was also used
to estimate an observable operator model (OOM) of the HMM process. We
cannot give an introduction to OOMs and their estimation here and refer the
reader to [8] for an introduction. Suffice it to say that OOMs are superior to
standard HMM models estimated by means of the EM algorithm and can be
considered the best available modeling tool for symbol processes of the kind
considered here. Figure 21B reveals that the model obtained with this dedi-
cated technique is only marginally better than the echo state network model.
When this comparison was repeated on the 500 and 5000 step sequences, the
OOM model was slightly worse than the corresponding echo state network
models. (It should be noted however that OOM models — like HMM models
— allow one to compute explicit probabilities for subsequences; this is not
possible with echo state network models, which are purely generative). A
detailed investigation remains to be carried out.
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Figure 21: A. Empirical KL distances for subsequences of length 1 to 7.
Solid line: baseline KL distance corresponding to perfect model. Star, box,
triangle lines: KL distances between processes generated from the networks
trained on 500, 2000, 5000 steps, respectively. B. Comparison with dedicated
model estimation technique (OOM modeling). Empirical KL distances for
subsequences of length 1 to 7. Solid line: baseline. Starred line: KL distances
from network trained from 2000 steps. Boxes: KL-distances from OOM
model trained with state-of-the-art technique.

The second example uses the “probability clock” process Z,, described in
[8]. It is a stationary process with two symbols F = {1,2} whose central
property is that the conditional probabilities P(Z; =2 | Z, = 1,7 ;41 =
2,..., 7y =2) yield an undamped sinusoidal oscillation in [ of period length
27, so roughly (but not exactly) 6 update steps make one oscillation. The
probability clock cannot be modeled by finite-dimensional HMMs. It can
however be generated by a 3-dimensional OOM, and such OOM models can
be learnt from data. The previous experiment was identically repeated with
this process. Figure 22 summarizes the findings, which turn out to be quali-
tatively the same as in the first experiment.

o of 3 Eest vs tr?int * + test vs train x
* ne vs tes :
B net2K vs test -08)l x net2K vs test

0.15/ 4~ net5K vs test 06 ‘B OOM2K vs test
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Figure 22: The analog of Fig. 21 for the probability clock process.

The network setup used in these two experiments was chosen quite ad
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hoc; no optimization of spectral radius of the weight matrix and of input
weights was undertaken.

Allin all, these preliminary observations made in this section suggest that
for learning short subsequence distributions of stochastic symbol processes,
echo state networks are an approach worthy of further investigation.

7 Little red riding hood

The modeling approach used in the previous section will now be taken to a
real-world stochastic sequence: a fairytale.

As a text source, the tale of Little Red Riding Hood (LRRH) was chosen.?
The text was simplified by putting all letters to smallcaps and reducing the
set of interpunctuation symbols to “,”, “.” and “_”, which left a total of 29
different symbols. This gave a teacher sequence LRRHy,, = 51 ... 83412 Of
length 3412. Tt is given in Appendix B.

A number of researchers have trained recurrent neural networks on text
symbol prediction tasks. The classical work is [3], a recent example in the
same vein is [1]. The goal of those investigations is to analyse whether
the trained network represents in its states linguistic categories. The ra-
tio training sample size / network size is large in these approaches (e.g.,
10,000,000/120 words/units in [1]). This makes sense for the particular in-
vestigation goal, because grammatical structure can be inferred by statistical
learning only when a particular grammatical role filler (e.g., a word) occurs in
many combinations with other role fillers in a particular grammatical struc-
ture. When there are many different role fillers — a condition obtained in
real-world texts —, a large text corpus is mandatory.

The goal that we pursue in this section is more moderate. Like in the
previous section, we only want to obtain a black-box model of the sym-
bol subsequence distribution. Only a single, comparatively short text is
used for training. The ratio training sample size / network size is small
(3412/400 symbols/units). This ratio becomes effectively even smaller be-
cause the training text contains numerous repeated subsequences. We do not
want to discover structure “under” the text surface but want to capture in
the model the surface itself.

A 400-unit network (the same as used in other tasks described previously

2Source: Little Red Riding Hood & The History of Tom Thumb, illus. H. Isabel
Adams (London: J. M. Dent & Co., 1893). Electronic text file obtained from http://www-
dept.usm.edu/ ‘engdept/lrrh/lrrhhome.htm, the website of Michael N. Salda’s ” The Little
Red Riding Hood Project” at The de Grummond Children’s Literature Research Collec-
tion, University of Southern Mississippi.
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in this article) was scaled to | Amax | = 0.95, and equipped with 30 input
units and 29 linear output units. The first input unit served to provide a
constant bias of size 0.2; its connection weights were set at random values
between -1 and 1. The remaining 29 input units were used to feed text into
the network; their weights were set to either +1 or -1 randomly. As in all
examples covered in this article, no feedback projections from the output
units were present. Like in the previous section, the network choice was ad
hoc and no optimization was attempted.

The training was done in the same way as described in the previous sec-
tion. In order not to waste training text through discarding an initial tran-
sient, the first 100 steps of LRRH;.in were duplicated and prepended to the
original training sequence; the network was then trained on the 100+3412-
step total sequence and the first 100 steps of that run were discarded.

When the trained network is fed with text, it generates in its output units
a “hypothesis vector” of the next symbol. Fig. 23 shows the output of the
trained network during a 50 step episode, where the input sequence was the
following passage taken from the training text:

she_live_a great_way_off_said_the_wolf._oh_yes_sai

The output activation traces in Fig. 23 show significant peaks in the correct
places. It also becomes apparent that negative output values do occur, so
the renormalization step 2. in the generation procedure from the previous
section will be necessary. A curious fact is that the output values at each
time sum to unity with 10-digit precision, as in the previous section. This
observation is somewhat surprising and waits for an explanation.

The trained network was tested in various ways. First, it was checked how
the network performed in the next-symbol-prediction task on the training
data set. It was fed with LRRH.,. The output unit with the largest
activation was taken to code the network’s next-symbol-prediction. 70.5 %
of the symbols were correctly predicted. This is possible because in English
texts very often the next symbol can be predicted with certainty; the network
has learnt to exploit this determinism.

Next, the network was used to generate a symbol sequence LRRH,; of
length 3412 on its own, using the generation procedure from the previous
section. This is a 50-step subsequence of the network production thus ob-
tained:

hey_go_aut_hograndmothe_pot_at,trromdt,__telht_e_w...

This looks like a perfect mess with an English flavor. The latter derives from
fragments with a correct English text morphology, like hograndmothe, and
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Figure 23: 50-step output sample of trained LRRH network. Letters q, x, z
did not occur in training text, therefore network output is zero here.

from altogether correct words like _go_. English text is different from random
sequences like the ones considered in the previous section, in that there are
correct and incorrect subsequences. Therefore, it becomes an interesting
question to quantify the proportion of correct subsequences.

To this end, the network production was compared to the training se-
quence by checking which subsequences in LRRH,,¢; occurred also in LRRH i,
and vice versa. Figure 24A shows the fraction of subsequences of lengthes
[ =2,...,10 in LRRH, that also occur in LRRHyp,i, (solid line with dia-
monds). Multiple occurrences of a subsequence in LRRH,¢; are counted mul-
tiple times. (Example: with LRRH,,, = “ababed” and LRRHp,i, = “xabyz”
the diamond plot would give 2/5 for subsequence length 2). The dashed line
with stars gives the converse statistics, i.e. the fraction of subsequences from
LRRHain also appearing in LRRH,¢ .

In English text, most of the time most of the existing 29 symbols are
impossible as next symbols. In terms of our learning task, “impossible” next
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Figure 24: Comparing LRRH network babble with original. A. Network pro-
duction generated by random draw. Solid line: proportion of “correct” subse-
quences in network production (for lengthes 2 — 10). Dashed line: proportion
of subsequences in test sequence which also appear in network production.
B. Same as A., network production generated by concentrated random draw.

symbols in a given context are symbols that never occurred in the context
in the training sequence. A closer inspection of Figure 23 shows that the
network’s next-step-probability hypotheses for impossible successors are not
zero, but jitter around zero. The generation procedure used so far will there-
fore not infrequently choose impossible next symbols. When such a “wrong”
symbol is fed back into the network input, the resulting network state will be
dissimilar from any network states obtained during training; consequentially,
the next network output vector will even be more “jittery” and the likeli-
hood of another impossible selection will increase. Figure 25 shows traces of
some output units during the production of the hey_go_aut... string. It
becomes apparent that the network runs more jittery than when fed with
correct input (as in Fig. 23), and in the second half of the shown trace truly
“stumbles over its own feet”.

& @ﬂ@ I R
-0.21 1020304050 -0.2% 1020304050 -0.2"1020304050 -0.2"1020304050

Figure 25: 50-step output sample of trained LRRH network in free-running
generation. Outputs of nodes corresponding to letters d,e,f,g are shown.

This self-induced messing up of the network state can be diminished by
a modification of the generation procedure. Obviously, the proportion of
correct productions can be increased when higher output values are favored
over-proportionally. This can be effected for instance by a potentiation of
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the outputs with a “favor-factor” F'. Step 2. from the generation procedure
is then generalized to

2’. Turn the output vector into a probability vector (pi(1),...,pn(1)), by
setting all negative entries to zero, raise all remaining entries to the
F-th power, and renormalize such that they sum to unity.

For F' = oo, we obtain a winner-takes-all selection. For illustration and plea-
sure, we present five instances of network babble generated with exponents
F =1,2,3,4,00 (note that F' =1 corresponds to the original procedure).

F=1

1i_ghill ngwogp._tbienctogrhn, md, woein and,otne_tdw_king, there ofhithd..
fdylcgoreo_hee,ycmichff umfforoug, hmtter_cha,wanrmot_, oelnriwftvwvg_

yoidgurlfy grangttou_uet_auhrecheegat_thoeylsfrloet ubfonungirpbuormahy.e.,_

hyonugetdiong yufr w_yawithmttbnield grasfnevere retas, up_tlerh r_vitls_to_

F =2

rned_riding hood red_the better_to_atter_top_fckngirgoghtf butter_butter_to._
her_nigr_a__the wolf_sone_chgeyouvery gobbled he_tging hooding hood_who_whher_
days_the_door_chhu w_do_hnolf_littlered_a_littlered riding hood ma_she was_
grandmamma,_gat_let_sayou_hhe bed riding hood_pulleget_a_t__upst_wha

F=3:

who_wolf, who_were_the_wolf_cold grandmamma, grand and see_wor_sd_a__ahe_bed_
downlt_ove_and_the_lited_her_grandmamma, _grandmamma, who_have__the wolf_so_en,
_her_see_her_see her_a_the_wolf_so_nt, grandmother_thir_of_so_ding hood._a_
cake_and_a_little_red_her_gobbin_and ther_see_her_the_l_the_bet_he_he

F =4

what_grandmother_see_her_grandmamma, what_great_the_little red riding hood_
wood_see_her_see_her_see_door_her_the wolf_some wolf_said_the wolf_somnot._a__
the_wolf_so_ding hood_who_was_in_the_wolf_so_did_the wolf_so_her_see_her_the_
bobbin_and_the_bed,_she_little red riding hood_who_was_in_the_better_to

F = oo0:

e_got_a_littlered riding hood wolf_so_her_grandmother_the better_the wolf_
so_her_grandmother_the better_the_wolf_so_her_grandmother_the better_the wolf_
so_her_grandmother_the better_the_wolf_so_her_grandmother_the better_the wolf_
so_her_grandmother_the better_the_wolf_so_her_grandmother_the_better_
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We find that with increasing F', the fraction of correct subsequences increases
— but the variability, or “interestingness”, decreases at the same time. With
winner-take-all selection, the generation process becomes deterministic and
runs into a cycle which is made from substrings that occur in the training
sequence very often: the essence of LRRH!

Figure 24B shows the fractions of correct subsequences for F' = 3, the
favor factor which yields the intuitively most pleasing network talk.

We conclude our excursion into fairyland with an inspection of KL dis-
tances computed like in the previous section. In order to obtain some sort
of baseline plot, the original training sequence was segmented into length
30 subsequences, which were alternatingly assigned to two test sequences
LRRHest1 and LRRHyegi2, each of approximate length 1700. For F' = 1,2, 3, 4,
network productions of length 1700 were generated. The KL distances be-
tween the two test sequences, and between the four network productions and
LRRHest; were computed. Figure 26 plots the results.
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* netl vs testl g
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* e
7.5} ' et
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Figure 26: KL distances for LRRHes1 vs. LRRHyego (solid line), and for
network productions with F' = 1,2,3,4 vs. LRRHye; (star, box, triangle,
dot).

KL distances do not lend themselves easily to an intuitive interpretation.
What can be gleaned from Fig. 26 is that with larger F' one obtains network
productions that are increasingly similar to LRRH;est1 — for ' = 3,4 even
more similar than LRRHego. Intuitively, this means that larger F' yield
productions containing the most frequent subsequences in the right fractions.

The material presented in this section is only a first, admittedly unsys-
tematic step toward an exploration of echo state networks as text or language
“surface models”. Many interesting ramifications offer themselves for further
investigation, of which I would like to point out the following. Because there
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are no feedback connections from the output units into the network, it is
possible to attach additional sets of 29 output units to the same network and
train them on other texts. Each set of output units would then incorporate a
“local” language model, or in other words, a language model in a particular
context. It should be possible to train another network to recognize con-
texts (these context-recognition networks should be trained with word input
rather than with symbol input). The context-recognition network could then
be run in parallel with the symbol-prediction network, exploiting the context
hypotheses of the first to switch between appropriate sets of output units in
the latter. In this way one might obtain an altogether quite compact and
at the same time, quite rich model of a language. A language, in this sense,
would of course be understood merely as a nonstationary stochastic process
with alternating “expert” generators (= contexts, particular training texts).
The charm of this all lies in the fact that current mixture of experts models
for nonstationary sequence modeling require multiple networks to model con-
texts; in our approach, only multiple sets of output units would be required.
This promises interesting savings in required space allocation.

8 Discussion

All results presented in this article are variations on a common theme:

e A suitably configured recurrent neural network preserves in its current
state information about the input history: the state is an “echo state”.

e By training output units in a supervised way, systems can be obtained
whose output depends on the input history.

e Because echo state networks are high-dimensional, nonlinear systems,
the echo state represents in its components a rich reservoir of nonlinear
transformations of the input history. This wealth of input-history-
related dynamics can be eploited to realize complex nonlinear filters in
a simple and computationally efficient way.

e Because there are no feedback connections from the output units into
the network, an arbitrary number of output units can be attached to a
single echo state network, and can be trained on different tasks simul-
taneously. This allows one to obtain compact multi-purpose filters, as
witnessed especially in the robotics example.

Having memory is a fundamental precondition for non-trivial information
processing. There are many phenomena that are usually counted as memory
effects. A rough classification would be the following:
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Static long-term memory realized by parameter change. During
learning, parameters (aka “synaptic weights”) are adjusted and remain
fixed thereafter, equipping a learning system with acquired properties.

Dynamic long-term and short-term memory realized through at-
tractor dynamics. In a previous article on echo state networks [9],
various attractor dynamics were trained which realized sequence gener-
ators and switchable stable state dynamics (multi-state flipflops). Such
systems can be seen as incorporating diverse forms of memory that ex-
press themselves in ongoing attractor dynamics. For instance, a peri-
odic attractor which cycles through the output sequence 0,0,0,0,0,1
must “remember” at each zero output how many zeros it has already
generated, in order to produce the “1” at the appropriate place. This
is a case of an attractor-based memory of finite duration. A switchable
multe-state attractor preserves in its current dynamic state the infor-
mation about the last triggering input event, which can lie back in an
arbitrarily deep past. This is an instance of an unbounded-duration
dynamic memory. In the echo state framework, these kinds of memory
dynamics require feedback connections from the output units to the
network.

Dynamic short-term memory realized through transient dynam-
ics. This kind of STM was the running theme in the present article,
which contained a collection of variations ranging from pure delay lines
to transient rehearsal to recognition and prediction tasks that implicitly
are also short-term memory tasks.

The upshot of this brief and incomplete list is that there are many kinds
of “memory” which complex dynamical systems can acquire, display and
exploit. A principled classification would be welcome, but I doubt it can
be achieved: high-dimensional, adjustable nonlinear dynamical systems are
beautiful beasts which very likely can never be completely tamed. Put into
this perspective, echo state networks procure one further strategy to make
friends with these wild things.
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A Proof of lemma 1

We show gi(n) = 3255 (5i(n), git(n — 1))
[ = 0: The fact that j,(n) = 370N,
clear from the first equality in (24).
[ = 1: We have to show that x(n) = SN (5;(n), Gk _1(n—1)) #(n) for all
k. Observe that a state #;(n) is a linear combination #;(n) = S0 " v, (n —
1) of the previous states (we assume a linear network!). Let §;; denote the

Kronecker delta. Then conclude

U;(n) by induction over .
(n), gx(n)) 0;(n) for all k& > 1 is

Tz:;wi(n),@k_l(n 1)) () =
_ :f;l@(n),gk_l(n — D)) [use (@ (1), s — 1)) = 0]
- i(ﬂi(n),]il@j(n —1),v(n —k)) 5;(n — 1)) @i(n)
- NZND(n — 1), — K E(n), 5 — 1) ()
_ NZNZn_l Nza — 1), 5500 = 1) ()
_ i?}g%@("‘”’”(”"W“(”_”’f’"’(”_l” 5i(n)
_ NZNZNZM@ 1) (0 — )by ()
_ g;llgjaj(@j(n—l),u(n—k» B;(n)
- g;lwi(n),u(n—k» Bi(n)

[ +1: We can assume that for all £ > 1 it holds that gy(n) =
Zﬁl(ﬂi((n),@kz(n—l» 0i(n). We show that ix(n) = 3275 (#:(n), fe-r-1(n—
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= Z@i(”)a?ﬁk—z(” — 1)) vi(n)
= Z(f)i(”)a@k—z(” = 1)) vi(n)
= S ), Y 0 D2l L D), Byl D) ()
: [use]E47) and shift invariance]
= 3Dl aln = 1= 1), 8500 = D) (n — 1), 5:(n) 0:(n)
= 3 il — 1= 1, 5(0) )
i [use that
0;(n) € span(vy(n —1),...,0n11(n =10, v(n—=1+1),...,v(n))
and that (g, 1(n —1—1),v(n—1+10))y=0for ' =1,...,]]
= Z(?)kfz—l(” —1—1),%(n)) vi(n). (48)

B Text source for the LRRH task

LRRH;ain =

once_upon_a_time_there was_a_little village girl, the prettiest_ever_seen_
her_mother_doted_upon_her,_and so_did_her_grandmother._she, _good_woman, made_
for_her_a littlered hood which_suited her_so_well, that_everyone_called her_
littlered.riding hood._one_day her mother, who_had_just_made_some_cakes,_
said_to_her_my_dear,_you_shall go_and_see how_your_grandmother_is, for_i_have_
heard she_is_ailing, _take her_this_cake_and_this_little_pot_of_butter._little_
red riding hood_started off_at_once_for_her_grandmothers_cottage, which was_
in_another_village. while_passing through_a wood_she met_a wolf, who_would_
have_liked well_to_have_eaten_her, but_he_dared not,_because_of_some_
woodcutters_who_were_hard by_in the forest._so_he_asked her_where_she_was_
going._the_poor_child, who_did not_know_it_was_dangerous_to_listen_to_a_wolf,_

answered,_i_am_going to_see_my_grandmother, to_take_her_a_cake_and a_little_

58



pot_of_butter_that my mother_sends_her._does_she_live_a_great_way_off_said._
the_wolf. oh_yes_said little red riding hood, _she_lives_beyond_themill_you.
seeright_down_there,_in_the_first_house_in_the_village._well, _said_the_wolf,_
i_shall_go_and_see_her_too._i_shall_take_this_road,_and_do_you_take_that_one,_
and_let_us_see_who_will get_there first._the_wolf_set_off_at_a_gallop_along_
the_shortest_road, but_the_little_girl took_the_longest_way_and_amused_
herself by _gathering nuts, running after butterflies, _and plucking daisies_
and_buttercups._the wolf_soon reached her_grandmothers_cottage, he_knocks_at_
the_door, _rap,_rap._whos_there_tis_your_granddaughter little red_riding hood,_
said_the_wolf_in_a_shrill voice,_and_i_have brought_you_a cake_and_a_little_
pot_of_butter_that my mother_sends_you._the_good_old _grandmother, who_was_ill_
in_bed,_called_out, pull_the bobbin and the_latch will go_up_the_wolf_pulled.
the_bobbin,_and the_door_opened. he_leaped_on_the_old_woman_and _gobbled her_
up-in_a minute, _for_he_had had no_dinnerfor_three_days_past._then_ he_shut_the_
door_and_rolled himself up_in_the_grandmothers_bed, _to_wait_for_little red_
riding hood._in_a while_she_came knocking at_the_door, rap, rap._whos_there_
littlered riding hood, who_ heard the_gruff voice_ of_the_wolf, was_frightened.
at_first, but_thinking that her_grandmother_had_a cold, _she_answered, tis_
your_granddaughter, littlered riding hood,_and_i_have_brought_you_a_cake_and_
a_little_pot_of_butter_that my mother_sends_you._then the wolf_called to_her_
in_as_soft_a_voice_as_he_could, _pull_the bobbin_and_the_latch will_go_up._
littlered riding hood_pulled_the_bobbin_and_the_door_opened. when_the wolf_
saw_her_come_in,_he covered himself up_with_the_clothes,_and_said,_put_the_
cake_and_the_little_pot_of_butter_on_the_chest,_and come_and lie_down_beside_
me._littlered_ridinghood_took off her_cloak_and went_over_to_the_bed,_she_
was_full of _surprise_to_see how_strange her_grandmother_looked_in her_
nightcap._she_said_to_her_then,_oh, _grandmamma, grandmamma, what_great_arms._
you_have_got_all_the better_to_hug you with, my dear_oh, _grandmamma,_
grandmamma, what_great_legs_you_have_got_all_the_better_to_run_with, my dear_
oh,_grandmamma, _grandmamma, what_great_eyes_you_have_got_all_the better_to_
see_with, my_dear_oh,_grandmamma, _grandmamma, what_great_teeth_you_have_got_
all_the_better_to_gobble_you_up_so_saying, the wicked wolf_leaped_on_little_
red_riding hood_and_gobbled her_up._here_endeth the tale_of_little red riding._
hood.
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