
Resource Description Framework

Jan Wilken Dörrie

January 10, 2013

Contents

1 Introduction 2

2 Concepts 2
2.1 Graph data model . 2
2.2 URI-based vocabulary . 2
2.3 Datatypes . 3
2.4 Literals . 3
2.5 XML serialization syntax . 3
2.6 Expression of simple facts . 3
2.7 Entailment . 4

3 Syntax 4
3.1 RDF Schema . 4

4 Semantics 5
4.1 Entailment Rules . 7

4.1.1 Simple Entailment Rules . 7
4.1.2 RDF Entailment Rules . 8
4.1.3 RDFS Entailment Rules . 8

5 Conclusion 10

1

1 Introduction

The Resource Description Format (RDF) is a semantic web standard introduced by the W3C designed to
represent information in the web. RDF has an abstract syntax that reflects a simple graph-based data
model, and formal semantics with a rigorously defined notion of entailment providing a basis for well
founded deductions in RDF data. RDF was designed with the following goals in mind [KC04]:

• having a simple data model

• having formal semantics and provable inference

• using an extensible URI-based vocabulary

• using an XML-based syntax

• supporting use of XML schema datatypes

• allowing anyone to make statements about any resource

The modeling of information is inspired by object orientated programming languages, with the
difference that anybody can add information without altering already existing information. For example
extending an existing class with another property does not lead to an update of all previous usages of this
class. The restrictive syntax and semantics make the problem of RDF entailment decidable and tractable.

2 Concepts

RDF makes use of the following concepts [KC04]:

• Graph data model

• URI-based vocabulary

• Datatypes

• Literals

• XML serialization syntax

• Expression of simple facts

• Entailment

2.1 Graph data model

Any expression in RDF can be understood as a collection of triples, each consisting of a subject, a
predicate and an object. Each such set of triples is also called an RDF graph. This makes intuitive sense,
because one can think of the subject and the object as nodes and the predicate as a directed, labeled arc
connecting the two.

2.2 URI-based vocabulary

A Uniform resource identifier (URI) is a string of characters used to identify a name or a resource.
Although they look similar to URLs, they should not be confused with them. Examples for URI references
are http://xmlns.com/foaf/0.1/Person and http://xmlns.com/foaf/0.1/Person/name, being the
identifiers for a person and the name of a person. Subjects and objects of RDF triples can be, and
predicates have to be URI references. Additionally it is allowed for subjects and objects to be blank
nodes which can be thought of variables without a special meaning. To be able to reference the same
blank node in a given graph it is common to give them a blank node identifier. However, when graphs are
merged, one needs to pay attention that the identifiers of different graphs stay distinct and a re-allocation
might be necessary. Finally objects are also allowed to be strings of characters, called literals.

Putting this together an example of a valid RDF triple is the following:
http://xmlns.com/foaf/0.1/Person http://xmlns.com/foaf/0.1/Person/name “Jan Wilken Dörrie”.
stating there exist a person with the name Jan Wilken Dörrie.

2

2.3 Datatypes

RDF introduces datatypes, in order to be able to describe numerical values, such as integers, floating
point numbers and dates. Each datatype consist of a lexical space, a value space and a lexical-to-value
mapping. For example to describe the XML Schema datatype xsd:boolean where each member of the
value space has two lexical representations the following is used:

Value Space {T, F}
Lexical Space {“0”, “1”, “true”, “false”}
Lexical-to-Value Mapping {<“true”, T>, <“1”, T>, <“0”, F>, <“false”, F>}

RDF only predefines the datatype rdf:XMLLiteral which is used for embedding XML into RDF.

2.4 Literals

As mentioned in 2.2 literals in RDF are strings of characters and only objects can possibly be literals.
There are two types of literals one has to distinguish, plain literals and typed literals. Plain literals are
strings optionally equipped with a language tag and represent plain text in a natural language. Typed
literals have to be equipped with a datatype URI and denote the member of the value space of the given
datatype one obtains when applying the lexical-to-value mapping to the string. As an example the string
“true” only denotes the corresponding boolean value when written <xsd:boolean, “true”>.

2.5 XML serialization syntax

Alongside with RDF the W3C introduced a specification for an XML format used to serialize RDF
statements. Its MIME type is application/rdf+xml and it comes with a full specified context-free
grammar [Bec04].

In XML serialization RDF also makes use of namespaces, which are useful to abbreviate notation and
prevent name clashing when a given word has several meanings. When writing the previous example in
this syntax one obtains the following:

<rdf:RDF xmlns:foaf="http://xmlns.com/foaf/0.1/">

<foaf:Person>

<foaf:name>Jan Wilken Dörrie</foaf:name>

</foaf:Person>

</rdf:RDF>

2.6 Expression of simple facts

The fact that RDF is built on a very simple structure makes it very easy to extend a given RDF graph
and to transform in and from other ways of knowledge and data representation, as for example relational
databases. To transform a table of a relational database into an RDF graph one can represent every row in
the table as a blank node. Then add one triple for each column of the table with the corresponding blank
node as the subject and the data as an object. Consider the following table entry and the corresponding
RDF graph as an example:

3

Staff ID Street City Postal Code State

85740 1501 Grant Avenue Bedford 1730 Massachusetts

2.7 Entailment

RDF is designed to allow for entailment and interference. Its strict syntax makes the entailment problem
decidable, i.e. it is possible to say if a given RDF graph entails another one. See section 4 for more
details.

3 Syntax

As already mentioned in section 2.5 there exists a file format for RDF based on XML. It was developed
together with the RDF specification and is widely used. However, due to the verbosity of XML, it is
often easier to write down RDF statements in a shorter and for humans more readable form. Because
of this there is another file format to serialize RDF graphs, N-triples [GB04]. It was designed as
a fixed subset of N3 (Notation 3) and it is recommended to use the .nt file extension. Its MIME
type is text/plain. Each line is of the form subject predicate object ., an example of this was
given earlier: http://xmlns.com/foaf/0.1/Person http://xmlns.com/foaf/0.1/Person/name “Jan
Wilken Dörrie”.

3.1 RDF Schema

In order to be able to make statements about classes, containers, properties and their range and domain,
etc. RDF comes with a vocabulary description language called RDF Schema [BG04]. Not only it
provides basic classes and properties, but also defines them and how they have to be used. Examples
are general purpose containers such as lists, bags and sequences, or statements about membership,
and contents of those containers. Also it defines classes for the previously mentioned Datatypes and
(XML)Literals. A summary of all provided classes and properties along side with explanations and
domain and ranges can be found in the following two tables. The prefixes rdf and rdfs denote the
RDF namespace (http://www.w3.org/1999/02/22-rdf-syntax-ns#) and the RDF Schema namespace
(http://www.w3.org/2000/01/rdf-schema#).

Class name comment

rdfs:Resource The class resource, everything.

rdfs:Literal The class of literal values, e.g. textual strings and
integers.

rdf:XMLLiteral The class of XML literals values.

rdfs:Class The class of classes.

rdf:Property The class of RDF properties.

rdfs:Datatype The class of RDF datatypes.

rdf:Statement The class of RDF statements.

rdf:Bag The class of unordered containers.

rdf:Seq The class of ordered containers.

rdf:Alt The class of containers of alternatives.

rdfs:Container The class of RDF containers.

rdfs:ContainerMembershipProperty The class of container membership properties, rdf: 1,
rdf: 2, ..., all of which are sub-properties of ’mem-
ber’.

rdf:List The class of RDF Lists.

Table 1: RDF classes

4

Property name comment domain range

rdf:type The subject is an instance of a class. rdfs:Resource rdfs:Class

rdfs:subClassOf The subject is a subclass of a class. rdfs:Class rdfs:Class

rdfs:subPropertyOf The subject is a subproperty of a prop-
erty.

rdf:Property rdf:Property

rdfs:domain A domain of the subject property. rdf:Property rdfs:Class

rdfs:range A range of the subject property. rdf:Property rdfs:Class

rdfs:label A human-readable name for the subject. rdfs:Resource rdfs:Literal

rdfs:comment A description of the subject resource. rdfs:Resource rdfs:Literal

rdfs:member A member of the subject resource. rdfs:Resource rdfs:Resource

rdf:first The first item in the subject RDF list. rdf:List rdfs:Resource

rdf:rest The rest of the subject RDF list after
the first item.

rdf:List rdf:List

rdfs:seeAlso Further information about the subject
resource.

rdfs:Resource rdfs:Resource

rdfs:isDefinedBy The definition of the subject resource. rdfs:Resource rdfs:Resource

rdf:value Idiomatic property used for structured
values.

rdfs:Resource rdfs:Resource

rdf:subject The subject of the subject RDF state-
ment.

rdf:Statement rdfs:Resource

rdf:predicate The predicate of the subject RDF state-
ment.

rdf:Statement rdfs:Resource

rdf:object The object of the subject RDF state-
ment.

rdf:Statement rdfs:Resource

Table 2: RDF properties

In addition to these classes and properties, RDF also uses properties called rdf: 1, rdf: 2, rdf: 3...
etc., each of which is both a sub-property of rdfs:member and an instance of the class rdfs:Container
MembershipProperty. There is also an instance of rdf:List called rdf:nil that is an empty rdf:List.

4 Semantics

In order to be able to talk about entailment of RDF graphs, we need to define what an interpre-
tation of an RDF graph is. There exist three different kinds of interpretation: Simple interpre-
tation, RDF interpretation and RDFS interpretation. We will give the definition of a simple in-
terpretation [HKR09], the definitions for RDF and RDFS interpretation are a bit more involved,
but can be found here: http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#InterpVocab, http:

//www.w3.org/TR/2004/REC-rdf-mt-20040210/#rdfs_interp.
A simple interpretation I of a vocabulary V consists of

• IR, a non-empty set of resources, alternatively called domain or universe of discourse of I

• IP, the set of properties of I (which may overlap with IR),

• IEXT, a function assigning to each property a set of pairs form IR, i.e. IEXT : IP→ 2IR×IR, where
IEXT(p) is called the extension of the property p,

• IS, a function, mapping URIs from V into the union of the sets IR and IP, i.e. IS : V → IR ∪ IP,

• IL, a function from typed literals from V into the set IR of resources and

• LV, a particular subset of IR, called the set of literal values, containing (at least) all untyped literals
from V .

Now define an interpretation function ·I (written as exponent).

5

http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#InterpVocab
http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#rdfs_interp
http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#rdfs_interp

• every untyped literal “a” is mapped to a, formally: (“a”)I = a,

• every untyped literal carrying language information “a”@ t is mapped to the pair 〈a, t〉,
i.e. (“a”@ t)I = 〈a, t〉

• every typed literal l is mapped to IL(l), formally: lI = IL(l), and

• every URI u is mapped to IS(u), i.e. uI = IS(u).

• The truth value s p o.I of a grounded triple (i.e. a triple not containing a blank node) s p o. is
true exactly if s, p, o are contained in V and

〈
sI , oI

〉
∈ IEXT(pI).

Furthermore a grounded RDF graph evaluates to true, iff all of its triples evaluateto true. With this
simple interpretation model we are able to assign a truth value to a given grounded graph and can
decide if a set of RDF graphs S simple entails another RDF graph E (every interpretation satisfying each
member of S has to satisfy E as well). To be able to cover non-grounded graphs we need to extend our
interpretation function. This again we will not cover, but give a link: http://www.w3.org/TR/2004/

REC-rdf-mt-20040210/#unlabel. In addition RDF and RDFS entailment rely on axioms, which we will
list in the following [Hay04]:

RDF axiomatic triples.

rdf:type rdf:type rdf:Property .

rdf:subject rdf:type rdf:Property .

rdf:predicate rdf:type rdf:Property .

rdf:object rdf:type rdf:Property .

rdf:first rdf:type rdf:Property .

rdf:rest rdf:type rdf:Property .

rdf:value rdf:type rdf:Property .

rdf:_1 rdf:type rdf:Property .

rdf:_2 rdf:type rdf:Property .

...

rdf:nil rdf:type rdf:List .

RDFS axiomatic triples.

rdf:type rdfs:domain rdfs:Resource .

rdfs:domain rdfs:domain rdf:Property .

rdfs:range rdfs:domain rdf:Property .

rdfs:subPropertyOf rdfs:domain rdf:Property .

rdfs:subClassOf rdfs:domain rdfs:Class .

rdf:subject rdfs:domain rdf:Statement .

rdf:predicate rdfs:domain rdf:Statement .

rdf:object rdfs:domain rdf:Statement .

rdfs:member rdfs:domain rdfs:Resource .

rdf:first rdfs:domain rdf:List .

rdf:rest rdfs:domain rdf:List .

rdfs:seeAlso rdfs:domain rdfs:Resource .

rdfs:isDefinedBy rdfs:domain rdfs:Resource .

rdfs:comment rdfs:domain rdfs:Resource .

rdfs:label rdfs:domain rdfs:Resource .

rdf:value rdfs:domain rdfs:Resource .

rdf:type rdfs:range rdfs:Class .

rdfs:domain rdfs:range rdfs:Class .

rdfs:range rdfs:range rdfs:Class .

rdfs:subPropertyOf rdfs:range rdf:Property .

rdfs:subClassOf rdfs:range rdfs:Class .

rdf:subject rdfs:range rdfs:Resource .

rdf:predicate rdfs:range rdfs:Resource .

rdf:object rdfs:range rdfs:Resource .

6

http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#unlabel
http://www.w3.org/TR/2004/REC-rdf-mt-20040210/#unlabel

rdfs:member rdfs:range rdfs:Resource .

rdf:first rdfs:range rdfs:Resource .

rdf:rest rdfs:range rdf:List .

rdfs:seeAlso rdfs:range rdfs:Resource .

rdfs:isDefinedBy rdfs:range rdfs:Resource .

rdfs:comment rdfs:range rdfs:Literal .

rdfs:label rdfs:range rdfs:Literal .

rdf:value rdfs:range rdfs:Resource .

rdf:Alt rdfs:subClassOf rdfs:Container .

rdf:Bag rdfs:subClassOf rdfs:Container .

rdf:Seq rdfs:subClassOf rdfs:Container .

rdfs:ContainerMembershipProperty rdfs:subClassOf rdf:Property .

rdfs:isDefinedBy rdfs:subPropertyOf rdfs:seeAlso .

rdf:XMLLiteral rdf:type rdfs:Datatype .

rdf:XMLLiteral rdfs:subClassOf rdfs:Literal .

rdfs:Datatype rdfs:subClassOf rdfs:Class .

rdf:_1 rdf:type rdfs:ContainerMembershipProperty .

rdf:_1 rdfs:domain rdfs:Resource .

rdf:_1 rdfs:range rdfs:Resource .

rdf:_2 rdf:type rdfs:ContainerMembershipProperty .

rdf:_2 rdfs:domain rdfs:Resource .

rdf:_2 rdfs:range rdfs:Resource .

...

Most of those rules should seem familiar, as they formally describe what we already listed in the
tables in the RDF Schema section.

4.1 Entailment Rules

For completeness we will list all the entailment rules there are in RDF graphs (simple, RDF and RDFS
entailment) and give explanations [Hay04]. We make use of the following variables:

• a, b, ... denoting an arbitrary URI reference, i.e. any possible predicate of a triple

• u, v, ... denoting an arbitrary URI reference or blank node identifier, i.e. any possible subject of a
triple

• x, y, ... denoting an arbitrary URI reference, blank node identifier or literal, i.e. any possible object
of a triple

• l denoting an arbitrary literal

• :n denoting a blank node identifier

4.1.1 Simple Entailment Rules

Simple Entailment Rules

se1
u a x .

u a :n .
where :n identifies a blank node allocated to x by rule se1 or se2.

se2
u a x .

:n a x .
where :n identifies a blank node allocated to u by rule se1 or se2.

Explanation: For every RDF triple u a x . we can entail another RDF triple where a blank node is
allocated to either the subject or object of the triple. This blank node has to be either a new one, or
was previously created by either se1 or se2.

Although these are very simple rules, the problem of determining simple entailment between two
RDF graphs is NP-complete [Hay04]. One reason for this is that both se1 and se2 can be applied to

7

themselves again, resulting in an infinite amount of entailments. Because of this the following more
restrictive rules are introduced.

Literal Generalization Rule

lg
u a l .

u a :n .
where :n identifies a blank node allocated to the literal l by this rule.

Literal Instantiation Rule

gl
u a :n .

u a l .
where :n identifies a blank node allocated to the literal l by rule lg.

4.1.2 RDF Entailment Rules

RDF Entailment Rules

rdf1
u a y .

a rdf:type rdf:Property .

rdf2
u a l .

:n rdf:type rdf:XMLLiteral .
where :n identifies a blank node allocated to l by rule lg.

RDF Entailment Lemma
S rdf-entails E if and only if there is a graph which can be derived from S plus the RDF axiomatic triples
by the application of rule lg and the RDF entailment rules and which simply entails E.

4.1.3 RDFS Entailment Rules

RDFS Entailment Rules

rdfs1
u a l .

:n rdf:type rdf:Literal .
where :n identifies a blank node allocated to l by rule lg.

rdfs2

a rdfs:domain x .

u a y .

u rdf:type x .

Explanation: Given a predicate a with domain x, then if 〈u, y〉 ∈ IEXT(a), u ∈ x

rdfs3

a rdfs:range x .

u a v .

v rdf:type x .

Explanation: Given a predicate a with range x, then if 〈u, v〉 ∈ IEXT(a), v ∈ x

rdfs4a
u a x .

u rdf:type rdfs:Resource .

Explanation: If there is a predicate a relating a URI reference u to an object x, then u is a resource.

rdfs4b
u a v .

v rdf:type rdfs:Resource .

Explanation: If there is a predicate a relating a URI references u and v, then v is a resource.

rdfs5

u rdfs:subPropertyOf v .

v rdfs:subPropertyOf x .

u rdfs:subPropertyOf x .

Explanation: rdfs:subPropertyOf is transitive.

8

rdfs6
u rdf:type rdf:Property .

u rdfs:subPropertyOf u .

Explanation: Every property is a sub-property of itself.

rdfs7

a rdfs:subPropertyOf b .

u a y .

u b y .

Explanation: If a predicate a is a sub-property of another predicate b, then if a relates subject u and
object y b does as well.

rdfs8
u rdf:type rdfs:Class .

u rdfs:subClassOf rdfs:Resource .

Explanation: Every class is a sub-class of rdfs:Resource.

rdfs9

u rdfs:subClassOf x .

v rdf:type u .

v rdf:type x .

Explanation: Every class is a sub-class of rdfs:Resource.

rdfs10
u rdf:type rdf:Class .

u rdfs:subClassOf u .

Explanation: Every class is a sub-class of itself.

rdfs11

u rdfs:subClassOf v .

v rdfs:subClassOf x .

u rdfs:subClassOf x .

Explanation: rdfs:subClassOf is transitive.

rdfs12
u rdf:type rdfs:ContainerMembershipProperty .

u rdfs:subPropertyOf rdfs:member .

Explanation: Every container membership property is a sub-property of rdfs:member.

rdfs13
u rdf:type rdfs:Datatype .

u rdfs:subClassOf rdfs:Literal .

Explanation: Every data-type is a sub-class of rdfs:Literal.

RDFS Entailment Lemma
S rdfs-entails E if and only if there is a graph which can be derived from S plus the RDF and RDFS
axiomatic triples by the application of rule lg, rule gl and the RDF and RDFS entailment rules and
which either simply entails E or contains an XML clash (an XML clash is a statement of the form x

rdf:type rdfs:Literal . where xxx is allocated to an ill-typed XML literal by rule lg).

Note that although RDFS entailment is decidable, the rules are not complete. Consider the following
RDF graph [tH05]:

a rdfs:subPropertyOf :n.

:n rdfs:domain x.

u a y.

This graph entails u rdf:type x (proof omitted), however when using the previously listed rules rdfs7
and rdfs2 we obtain the triple u :n y . as an intermediate step violating the rule that the predicate is
always a URI reference (and never a blank node). In order to fix this the notion of RDF graphs needs
to be extended to allow blank nodes in predicate position. [tH05] does this, showing that completeness

9

can be achieved. Also it gives proofs that this extension as well as entailment for RDFS is decidable,
NP-complete, and in P if the target graph does not contain blank nodes. This is a very remarkable result,
since it allows for efficient queries of RDF graphs giving rise to the query language SPARQL doing exactly
that (http://www.w3.org/TR/rdf-sparql-query/).

5 Conclusion

In this essay we have explained what RDF is, and with what goals it was designed. Also we listed and
described its concepts Graph data model, URI-based vocabulary, Datatypes, Literals, XML serialization
syntax, Expression of simple facts and Entailment. Furthermore we explained another serialization format
called N-triples, and talked about the RDF Vocabulary Description Language, RDF Schema. Lastly
we looked at the semantics of RDF, describing the different interpretations of an RDF graph (simple,
RDF, RDFS), listed RDF axioms and also gave entailment rules together with entailment lemmas. We
stated that simple, RDF and RDFS entailment is decidable, and that the problem of entailment is in NP
or P, depending on if there are blank nodes in the graphs or not. Also we showed that the given RDF
entailment rules are not complete and need to be extended in order to have completeness. RDF is an
important standard for the semantic web, as it allows for easy writing down and querying of knowledge.
Its wide usage is motivation to transform other type of information on the web into RDF, for example it
is possible to extend HTML with RDF attributes, this technique is called RDFa.

References

[Bec04] Dave Beckett. RDF/XML Syntax Specification, W3C Recommendation. http://www.w3.org/
TR/2004/REC-rdf-syntax-grammar-20040210/#section-Infoset-Grammar, February 2004.
[Online; accessed 8-January-2013].

[BG04] Dan Brickley and R.V. Guha. RDF Schema, W3C Recommendation. http://www.w3.org/TR/
2004/REC-rdf-schema-20040210/, February 2004. [Online; accessed 8-January-2013].

[GB04] Jan Grant and Dave Beckett. RDF Test Cases, W3C Recommendation. http://www.w3.

org/TR/2004/REC-rdf-testcases-20040210/#ntriples, February 2004. [Online; accessed
8-January-2013].

[Hay04] Patrick Hayes. RDF Semantics, W3C Recommendation. http://www.w3.org/TR/2004/

REC-rdf-mt-20040210/, February 2004. [Online; accessed 8-January-2013].

[HKR09] Pascal Hitzler, Markus Krötzsch, and Sebastian Rudolph. Foundations of Semantic Web
Technologies. Chapman & Hall/CRC, 2009.

[KC04] Graham Klyne and Jeremy J. Carrol. RDF Concepts and Abstract Syntax, W3C Recommenda-
tion. http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/, February 2004. [Online;
accessed 8-January-2013].

[tH05] Herman J. ter Horst. Completeness, decidability and complexity of entailment for RDF Schema
and a semantic extension involving the OWL vocabulary. http://smtp.websemanticsjournal.
org/index.php/ps/article/viewFile/66/64, May 2005. [Online; accessed 8-January-2013].

10

http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/#section-Infoset-Grammar
http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/#section-Infoset-Grammar
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/
http://www.w3.org/TR/2004/REC-rdf-testcases-20040210/#ntriples
http://www.w3.org/TR/2004/REC-rdf-testcases-20040210/#ntriples
http://www.w3.org/TR/2004/REC-rdf-mt-20040210/
http://www.w3.org/TR/2004/REC-rdf-mt-20040210/
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://smtp.websemanticsjournal.org/index.php/ps/article/viewFile/66/64
http://smtp.websemanticsjournal.org/index.php/ps/article/viewFile/66/64

	Introduction
	Concepts
	Graph data model
	URI-based vocabulary
	Datatypes
	Literals
	XML serialization syntax
	Expression of simple facts
	Entailment

	Syntax
	RDF Schema

	Semantics
	Entailment Rules
	Simple Entailment Rules
	RDF Entailment Rules
	RDFS Entailment Rules

	Conclusion

