
Art in Echo State Networks:
Music Generation

by

Aulon Kuqi

Bachelor Thesis in Computer Science

Prof.Dr. Herbert Jaeger
Name and title of the supervisor

Date of Submission: May 12, 2017

Jacobs University — School of Engineering and Science

With my signature, I certify that this thesis has been written by me using only the indicates
resources and materials. Where I have presented data and results, the data and results
are complete, genuine, and have been obtained by me unless otherwise acknowledged;
where my results derive from computer programs, these computer programs have been
written by me unless otherwise acknowledged. I further confirm that this thesis has not
been submitted, either in part or as a whole, for any other academic degree at this or
another institution.

May 12, 2017, Bremen
Signature Place, Date

Abstract

The ability to construct a model of music from examples presents a great intellectual
challenge that, if successfully met, could foster a range of new creative applications. This
guided thesis proposal describes a music generation task using Echo State Networks
(ESNs); a research based on Tomas Pllaha’s Bachelor thesis. The task is as follows:
feeding multi-track ’melodies’ into the system should result in a fitting bass track for those
melodies.

The usage of such a system falls into four potential categories: practice, improvisation,
composing, and further research on creative AI. The generated bass track adds a further
musical dimension while practicing scales and exercises; it helps composers that lack
knowlegde of the instrument complete their music; it makes improvisation sessions more
lively, especially when the bass is missing or needed; it forwards research on creative AI.

Recurrent Neural Networks (RNNs) and other Machine Learning techniques have been
previously used for music generation tasks. The novelty in this approach lies in using
ESNs. ESNs are generally faster and much easier to train than other classical RNNs.
They are very suitable for prediction of time series (data points - measured typically in
equally-spaced time intervals). Music, as a sequence of tones measured at different
points in time, fits perfectly with ESNs.

This guided research will focus on computational processing of a suitable track while lis-
tening to pre-recorded leading tracks. For this purpose, MIDI files will be used as training
data and output.

iii

Contents

1 Introduction 1

2 Statement and Motivation of Research 2
2.1 Echo State Networks . 3
2.2 Statement of Research . 5
2.3 Research Questions . 6

3 Representation of Musical Data 6
3.1 Representation of Pitch . 6
3.2 Representation of Duration . 7
3.3 Representation of Rhythm . 8
3.4 Selecting and Manipulating the Training Data 8

4 Network Setup 10
4.1 Network Design . 10
4.2 Network Parameters . 12
4.3 Training the network . 13

5 Conducted Experiments 13
5.1 Supplying two-note chords . 19
5.2 Including a feedback connection . 19

6 Evaluation Criteria 19

7 Conclusions 20
7.1 Known Drawbacks . 20
7.2 Potential Improvements . 20
7.3 Potential Expansions . 21

8 Acknowledgements 21

9 Appendix 21
9.1 Source Code . 21
9.2 List of Data . 22

iv

1 Introduction

The ability to construct a model of a musical style from examples presents a great intellec-
tual challenge that, if successfully met, could foster a range of new creative applications.
The act of musical composition involves a highly structured mental process. Although it
is complex and difficult to formalize, it is clearly far from being a random activity [1].

Researchers commonly agree that expectations based on recent-past context guide mu-
sical perception [1]. A generative theory of music can be constructed by explicitly coding
music rules in some logic or formal grammar. This approach is called an expert sys-
tem and although it can achieve impressive results, it requires extensive exploitation of
musical knowledge often specific to a composer or style [2].

Several methods have been explored to tackle music generation tasks. Markov chains
have been exploited for music composition ([15]), however, they suffer from drawbacks.
The most significant drawback is that the structure of music violates the Markov hypoth-
esis: the output at each step only depends on the output of the previous step. Recurrent
Neural Networks (RNNs) have also been used for music generation tasks. One example
is CONCERT ([3]), a network that composes melodies with harmonic accompaniment.
This network achieved satisfying results in 1994, however, it had a complex structure.

A more recent example is WaveNet ([4]). Wavenet is based on Convolutional Neural
Networks, the deep learning technique that has been working very well in image clas-
sification and generation tasks, in the past few years. Its most promising purpose is to
enhance text-to-speech applications by generating a more natural flow in vocal sound.
However, its method can also be applied to music as both the input and output consists
of raw audio. It uses raw audio as input. Therefore it can generate any kind of instrument,
and even any kind of sound. However, the algorithm is computationally expensive. It
takes minutes to train on a second of sound. Furthermore, WaveNet’s sample outputs
only contain 10 seconds of generated piano notes.

Focusing on RNNs extensive use and their satisfying results for music generation tasks,
a type of Recurrent Neural Network (RNN) was selected for this thesis: Echo State Net-
works (ESNs) (Figure 1). ESNs contain a set of input neurons, a set of output neurons,
and a reservoir of randomly-generated recurrent neurons. This reservoir creates the abil-
ity to approximate arbitrary dynamical systems. Unlike other RNNs, where all weights
need to be updated, in ESNs only the output weights need to be learned, fixing reservoir
weights with a random value. The lack of cyclic dependencies between the trained read-
out connections makes ESN training a simple linear regression task [5]. Ridge regression
yields more stable solutions [6].

RNNs capitalize on a massive short-term memory, and can be used for different tasks,
including: time series prediction and event classification. The advantages of ESNs are
the following:

1. ESNs are easy to train and solutions are calculated in a single step.

2. Their Echo State Property [7] makes them very suitable for this particular task.
Events in the more recent past affect the output at the present step more than
events that occured earlier.

1

Figure 1: (A) Schema of other approaches to RNN learning. (B) Schema of ESN ap-
proach. Solid bold arrows: fixed synaptic connections, dotted arrows: adjustable con-
nections. Both approaches aim at minimizing the error d(n) − y(n), where y(n) is the
network output, and d(n) is the ”teacher” time series observed from the target system
(figure and text taken from [5])

Section 2 contains the statement and motivation of research, along with a detailed expla-
nation on ESN. Section 3 describes representation of musical data. Section 4 describes
the network setup. Section 5 contains conducted experiments. Section 6 describes the
evaluation criteria. Section 7 concludes with a summary of the main findings of this thesis
and a list of known drawbacks, and discusses potential focus areas of future research on
this topic.

2 Statement and Motivation of Research

Inspired from biological neural networks, artificial neural networks have units analogous
to neurons, and connections that carry ’impulses’ between units, analogous to synapses
and axons. This biological inspiration can be used to exploit simulated creativity from
artificial neural networks. Thus, tasks requiring ’creativity’, such as music generation, fit
very well in the RNN model. It is important to clarify that the term ’creativity’ is used in
a loose sense. The drawback using RNN is that they require significant computational
power and an advanced level of expertise to build such a system. This is where ESNs
come in hand, with their low computational power required, and their relatively simple
architecture. The trade-off for this gain in speed is the increased reservoir size.

Subsection 2.1 gives a formal description of ESNs. Subsection 2.2 is the statement of
Research, and subsection 2.3 includes some research questions to be addressed during
experimentation.

2

2.1 Echo State Networks

ESNs present an alternative that often works well enough even without full adaptation of
all network weights [8]. They are conceptually simple and computationally inexpensive.
However, this apparent simplicity of ESNs can be deceptive.

ESNs are applied to supervised temporal ML tasks where for a given input signal u(n), a
desired target output signal ytarget(n) is known. The task is to learn a model with output
y(n), where y(n) matches ytarget(n) as well as possible, minimizing an error measure
E(y(n),y(n)), and, more importantly, generalize well to unseen data. The error measure
E is typically a Mean-Square Error (MSE). ESNs are fed an input vector u of size K,

u(n) = (u1(n) . . . uK(n))

a reservoir (random vector) x of size N ,

x(n) = (x1(n) . . . xN (n))

and an output vector y of size L.

y(n) = (y1(n) . . . yL(n))

The input-to-reservoir connection weights are stored in a matrix Win of size N ×K. The
reservoir connection weights are stored in a matrix W with size N × N and the output
connection weights are stored in a matrix Wout with size L×K +N .

Win = (winij) W = (wij) Wout = (woutij)

The output units may optionally project back to internal units with connections whose
weights are collected in a N × L backprojection weight matrix Wfb

Wfb = (wfbij)

A weight value of ’zero’ can be interpreted as ”no connection”. Output units may have
connections not only from internal units, but also from input units and (rarely) from output
units.

In addition, let f be a sigmoid function (either the logistic function, or tanh). The network
is then governed by the following state update equation:

x(n+ 1) = f(Winu(n+ 1) +Wx(n) +Wfby(n)) (1)

where f denotes the component-wise application of the activation function. ESNs use an
RNN type with leaky-integrated discrete-time continuous-value unit. The update equation
is:

x(n+ 1) = (1− α)x(n) + αf(Winu(n+ 1) +Wx(n) +Wfby(n)) (2)

where α ∈ (0, 1] is the leaking rate. The network is then exploited on testing data by
producing an output:

y(n) = g(Woutx(n)) (3)

3

Where g is the output activation function (typically a sigmoid or identity function).

The learning task is computing the output weights W out by minimizing the mean squared
error. This can be achieved by linear regression; ridge regression, however, is the most
frequently used method, due to its regularization power [6]. In cases where the ESN is
trained on a signal generation task with output feedback (such as here), ridge regression
provides and enhanced stability. The desired outputs for all timesteps are stored in a ma-
trix Dnmax×L, where nmax is the length of the training sequence. The extended reservoir
states [x;u] are stored in a matrix Snmax×(N+K).

Ridge regression (or Tikhonov regularization): Wout = (R + γ2I)−1P , where R = S′S
is the correlation matrix of the extended reservoir state, P = S′D is the cross correlation
matrix of the extended network states and the desired outputs, γ is a regularization pa-
rameter, and I is the identity matrix. Other solutions include the Wiener-Hopf solution:
Wout = R+P.

The algorithm for training an ESN can be summarized as follows:

Given: Input training signal u(n) ∈ RK and a desired output signal yteacher(n) ∈ RL,
where n ∈ {1, 2, . . . , T} is the discrete time step and T represents the number of training
data points.

Wanted: A trained ESN that generalizes well to new data, characterized by the weight
matrices Win,W,Wout,Wfb, whose output y(n) approximates teacher signal yteacher(n).

Algorithm[7]:

1. Procure an untrained DR network (Win,W,Wfb) which has the echo state prop-
erty, and whose internal units exhibit mutually interestingly different dynamics when
excited. This involves some sub-steps:

(a) Randomly generate an internal weight matrix W0.

(b) Normalize W0 to a matrix W1 with unit spectral radius by putting W1 =
1

|λmax|W0, where |λmax| is the spectral radius of W0.

(c) Scale W1 to W = αW1, where α < 1, whereby W obtains a spectral radius
of α.

(d) Randomly generate input weights Win and output backpropagation weights
Wfb.

Then the untrained network (Win,W,Wfb) is an Echo State Network, regardless
of how Win, Wfb are chosen.

2. Train the network.

(a) Initialize the activations of the internal neurons to an arbitrary value, e.g. x(0) =
0.

(b) Drive the network using the training data for times n = 0 . . . T , by present-
ing the input u(n), and by teacher-forcing the teacher output yteacher(n − 1),
computing

x(n) = (1− α)x(n− 1) + αf(Winu(n) +Wx(n− 1) +Wfbyteacher(n− 1))

At time n = 0, where yteacher(n − 1) is not defined, use yteacher(n − 1) = 0.
Collect all x(n), where n > washout time into a matrix X. Discard x(n), where

4

n < washout time. Washout time is a time T0 > 1 where initial transient
dynamics of the network which are invoked by the arbitrary network starting
state, are washed out. Collect all yteacher(n) into a matrix D.

3. Compute the linear readout weights Wout from the reservoir by minimizing the
Mean Squared Error (MSE) between y(n) and ytarget(n), using ridge regression

(a) R = X′X

(b) P = X′D

(c) Wout = (R+ γ2I)−1P

4. Exploitation. The network (Win,W,Wout,Wfb) is ready for use. It can be driven
by novel input sequences u(n) using

x(n) = (1− α)x(n− 1) + αf(Winu(n) +Wx(n− 1) +Wfby(n− 1))

y(n) = f(Woutx(n))

It is very important to note that y(n) here is not yteacher(n).

This algorithm generates a reservoir which ensures the Echo State Property. This prop-
erty is required in order to be able to approximate the desired output signal. That is, the
current network state (activation values of internal neurons) is uniquely determined by the
history of the input and the teacher-forced output, after the network has been run longer
than its washout time (i.e the dynamical reservoir asymptotically forgets its initial state).

2.2 Statement of Research

This guided research is built upon Tomas Pllaha’s Bachelor thesis([9]). The pitch range
was suited for the bass guitar, and more training data was used. Tomas’ network was
re-implemented with more ’generic’ songs that are closer to a genre-specific musical-
progression, and less musically complex. ’Generic’ in this case means a song whose
bass-melody is repetitive, yet not monotonous. Examples include music of the genres of
rock n’ roll, hard rock, classical rock, blues, etc. Additionally, the network is upgraded to
support two-note guitar chords from the lead track. Although, optimization for such an
extension was not achieved.

Restating Tomas Pllaha’s statement of research: ”Through this guided research, the suit-
ability of ESNs for the music accompaniment task will be tested. Additionally, an attempt
wil be made to find the network parameters that yield the best performance, by manual
experimentation. Ideally, the presentation of ESNs will produce faster and more ’creative’
solutions than other RNNs.”

One of ESNs advantages is the fading short-term memory. The Echo State Property
uniquely determines the current network state by the history of the input and teacher-
forced output after the network has been run for a long time. The effect of the initial
state of the reservoir on the output vanishes after sufficiently long runs, thus the output
is a function of the input vectors only. In other words, the recent input affects the output
more than earlier input. This property is very suitable for music generation tasks, because
songs may change as they progess, but close sequences have to fit into the same melody.
This short-term memory ([7]) property of ESNs is expected to be of great use for the music
generation task.

5

However, further challenges are presented by the instrumental accompaniment task. One
restriction is creating a bassline without any leading tracks. Other restrictions can be
easily handled. For example, the rhythm and duration of a musical measure will not
exceed 4

4 .

This research started by re-implementing Tomas’ network. Then the data was adjusted
to better fit notes on an electric bass. Afterwards, the network was trained with more
generic songs. In the end, the network leading track input was upgraded to support
simple two-note chords.

2.3 Research Questions

Through this guided research the following questions will be addressed:

1. How can ESNs be used as an instrumental accompaniment system?

2. What network parameters yield best results?

3. Will the network produce aesthetically-pleasing, or even new, music?

4. How does the performance of the system depend on the input?

3 Representation of Musical Data

As mentioned in the introduction, a generative theory of music can be constructed by
explicitly coding music rules in some logic or formal grammar. However, this requires
extended expertise. Thus, it is of crucial importance how musical notes are represented
and what information is retrieved from them. More knowledge in the system equals better
prediction, and more information from a single note equals a more complex network.
MIDI carries event messages that specify notation, pitch and velocity, control signals for
parameters such as volume, vibrato, audio panning, cues, and clock signals that set and
synchronize tempo between multiple devices. A balanced trade-off will be achieved by
representing notes with two main features: pitch and duration. All songs in a major key
are transposed to Gmajor, and respectively all songs in a minor key are transposed to
Eminor (Gmajor ’s relative minor). The representation follows Tomas’ model ([9]).

Subsectios 3.1, 3.2, 3.3, describe the representation of pitch, duration, and rhythm, re-
spectively. Subsection 3.4 describes the procedures of selecting and manipulating the
training data.

3.1 Representation of Pitch

The pitch of a note is its frequency. A 24-fret, 5-string bass guitar produces notes from
B0 to G5. Thus, notes range from G0 to G5, encircling all notes produced by the bass
guitar. Whenever chords appear on the training set, only the lowest note are used. They
are represented by CONCERT ([3]).

The pitch of each note is encoded as a 5-dimensional vector. In this vector, the first unit
has a value proportional to the logarithm of the absolute pitch of the note. The second and

6

third units are (x, y) coordinates of the position of the note in the chroma circle. Similarly,
the fourth and fifth units code the (x, y) coordinates of the note in the circle of fifths. This
representation is based on Shepards theory of generalization ([10]), according to which
the perceived similarity of two items decreases exponentially with the distance between
them in an internal or psychological representational space ([3]).

Figure 2: Shepard’s (1982) pitch representation [3]

The logarithmic transformation of absolute pitch places tonal half-steps at equal distances
from one another along the pitch axis. In the chroma circle, neighboring pitches are a
tonal half-step apart. In the circle of fifths, the perfect fifth of a pitch is the pitch that
follows immediately counterclockwise ([3]).

The relative importance of each of these three components in determining the similarity
of two different notes can be adjusted by changing the diameters of the chroma circle and
the circle of fifths. Both circles are be given same diameter, making it equal to the length
of one octave on the pitch axis ([11]).

3.2 Representation of Duration

Duration is represented by an integer value 1
16 →

16
16 . The duration of each note is en-

coded with only one duration height dimension. The duration height is proportional to
the logarithm of the duration. This logarithmic transformation follows the general psy-
chophysical law (Fechner’s law) relating stimulus intensity to perceived sensation ([3]).

7

Figure 3: Euclidean Norms of differences between notes

3.3 Representation of Rhythm

The rhythm is taken from percussion instruments of the training and testing set and is
encoded with a single unit. This unit has a value of 1 whenever a percussion instrument
is hit, and 0 at any other time.

3.4 Selecting and Manipulating the Training Data

A personal collection of Guitar Pro files is used. Guitar Pro is a software that allows
you to write/read/listen musical sheets, as well as import/export other musical file formats
(such as MIDI). The collection contains approximately 60′000 songs, grouped by artist (or
band). Unfortunately, due to time constraints, lack of automation, and the quality of each
file, only a fraction of this large dataset is used. The dataset used for experimentation
contains 100 training songs, in addition a ’secret’ set of 10 testing songs is available for
after the network is optimized. Such Guitar Pro files can be found online for free on
different websites (UltimateGuitar, etc.). The conversion from the original dataset onto
the dataset used in Matlab follows these steps:

8

1. Manually select artists (or bands) that contain music which fits the generic bass-line
category mentioned above. All these files are in a Guitar Pro format.

2. For every artist (or band), open every song available using the Guitar Pro software.
Since these Guitar Pro files are not written by the same person, and since these
files are not original musical sheets from the artists themselves, manually check if
these two conditions are met:

(a) The Guitar Pro file contains at least these three tracks: a bass track, a guitar
track, a drum track.

(b) The Guitar Pro file does include the full song.

Delete the files that do not meet the two requirements.

3. After Step 2, a smaller dataset is present. For every artist (or band), open every
song using the Guitar Pro software. Use a feature of the software to transpose
every track from the original key to the desired key of Gmajor (or its relative minor,
Eminor). Depending on the original key of the song, this leads to all notes being
shifted up or down the pitch scale. Caution must be taken, for a low enough shift
might put bass notes outside of the electric-bass pitch range, thus deleting the
note from the file, and ultimately losing the note. Conversely, a high enough shift
might put bass notes on a higher pitch, thus resembling guitar notes. This is not
desired. However, the most problematic part is finding the correct key of a song.
Unfortunately this is not a trivial task, and there is no explicit information in the file
regarding the key of the song. In order to find the correct key, cross-referencing
combined with a personal expertise is applied.

4. Export to MIDI. For every song, after transposing all tracks to the desired key, mute
all tracks except one guitar track, the bass track, and the drums track. The network
only supports three tracks at the moment. Muting these tracks will exclude them
from being exported into the MIDI format. Also it is important to note that the tracks
should be in the following order: guitar - bass - drums. This is easily achieved by
changing the order of tracks in the software.

5. Select songs to be used for training, and songs to be used for testing. Since the
songs were grouped by artist, represent the testing set with songs by including
various artists from the training set.

6. Collect all training MIDI files into one MIDI file. This is done using a DAW (Digital
Audio Workstation), in this case Cubase. Caution must be taken when importing
multiple MIDI files because some information might be lost. This is due to default
settings on a DAW. It is highly important to import information regarding tempo and
time signature from MIDI, especially while dealing with a large set of MIDI files.
Since each MIDI import will create 3 additional (separate) tracks, manual relocation
is required. All guitar parts tracks all MIDI files must be on one track; all bass tracks
from all MIDI files must be on another track; all drum tracks from all MIDI files must
be on a third track. This leaves you with only three tracks which contain information
about all the training set. In this case, the training is a 7 hour 15 min MIDI file.
Additionally the DAW generated a tempo track which contains information about all
tempo and time signature changes throught the training set.

7. Export a singe training MIDI file, containing all the information.

9

8. On a Linux machine, use the tools csvmidi and midicsv to convert the MIDI to a
CSV (comma-separated value) file. The CSV is chosen because it is easier and
faster to read onto Matlab. If a language that supports MIDI input is chosen, this
step is disregarded. However, the conversionMIDI → CSV is lossless, thus either
choice is allowed.

All training data is now in a CSV format. This format is read onto Matlab.

4 Network Setup

First and foremost, a replica of Tomas’ network was built, with the changes mentioned in
the previous section. The network was trained from scratch with a larger data set of less
complex music. As mentioned earlier, songs are selected from the genres of rock n’ roll,
hard rock, classical rock, and blues.

Subsection 4.1 explains how the network was designed. Subsection 4.2 explains how net-
work parameters were optimized. Subsection 4.3 explains how the network was trained.

4.1 Network Design

The CSV file containing all training data is further divided and simplified in Matlab:

1. Use a Matlab function that reads a CSV file into a matrix (cell-array), called data.

2. Divide the matrix containing all data into three different matrices: guitar, bass, and
drums.

3. To create the guitar information matrix, read the guitar track from data, and take
only one note at a time, with its duration. This means from chords, only the first
note is selected. A second implementation which reads two notes from a chord will
be explained in Section 5.

4. To crate the bass information matrix, read the bass track from data, take only one
note at a time with its duration. Bass tracks do not usually have chords (or harmonic
intervals) thus no information is lost here.

5. To create the drum information matrix, read the drum track from data. If a drum part
was hit at that time, store a value of 1, otherwise store a value of 0.

It is important to note that each note on the guitar track and bass track is further converted
into a 5-dimensional vector. The conversion is as follows ([9])

% chroma contains the position of each note in the chroma circle

% 1 indicates the first note in the chroma circle, in this case G

chroma = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

radius_chroma = 1

% c5 contains the position of each note in the circle of fifths

c5 = [1, 8, 3, 10, 5, 12, 7, 2, 9, 4, 11, 6]

radius_c5 = 1

10

% 55 is the MIDI value of the note G3

note = mod(midi_note - 55, 12) + 1

% find the angle in the chroma circle and circle of fifths

chroma_angle = (chroma(note) - 1) * (360/12);

c5_angle = (c5(note) - 1) * (360/12);

% compute the (x,y) coordinates for the chroma circle and circle of fifths

% sind stands for sin in degrees

chroma_x = radius_chroma * sind(chroma_angle);

chroma_y = radius_chroma * cosd(chroma_angle);

c5_x = radius_c5 * sind(c5_angle);

c5_y = radius_c5 * cosd(c5_angle);

% n is the distance (in semitones) of midi_note from A4 (69 in MIDI),

% whose frequency os 440 Hz. fx is the frequency of the note

n = midi_note - 69;

fx = 2^(n/12)*440;

% min_note and max_note are the lowest and highest notes

% trained in the network

min_p = 2 * log2(2^((min_note - 69)/12) * 440);

max_p = 2 * log2(2^((max_note - 69)/12) * 440);

% the representation of pitch is scaled in such a way that a pitch

% distance of 1 octave in the first dimension, is equal to the distance of

% notes on the opposite sides on the chroma circle or the circle of fifths

pitch = 2 * log2(fx) - max_p + (max_p - min_p)/2;

% y is the 5-dimensional representation of midi_note

y = [pitch, chroma_x, chroma_y, c5_x, c5_y];

However, the output at each step during testing, is a vector of probabilities of selecting
each note (and duration) as the next one on the accompanying track. In ESNs an output
consisting of discrete values is required.

The input of the network consists of 14 units: 1 is a bias input, 1 contains the rhythm,
5 units contain the 5-dimensional representation of a guitar note, 1 unit contains the
duration of the respective guitar note, 5 units contain the 5-dimensional representation of
a bass note, and the last 1 contains the duration of the respective bass note.

Since the output must be discrete, it is represented differently than the input. The output
is a vector of size 1 + note range + duration, where 1 is the no-note-played switch,
note range is the difference between the highest note and the lowest note in the dataset
(note values are based on the MIDI scale - that is a note is an integer between 0− 127),
and duration has a value of 16 as explained above.

One example is the extreme case where all possible notes are present in the large
dataset. This means that the range is 128 since the highest note has a MIDI value of
127, and the lowest note has a MIDI value of 0. Thus the output is a vector of size
1 + 128 + 16 = 145. Note G3 with a MIDI value of 55 and a duration of 1

4 = 4
16 is repre-

11

sented by an output vector [0 . . . 0 1 0 . . . 0 1 0 . . . 0], with the first 1 being at the 55+1 = 60
position (indicating the note) and the second 1 being at the 129 + 4 = 133 position (indi-
cating the duration).

Another example is the absence of a note, or simply put, the time where an instrument
does not play. This is represented by the output vector [1 0 . . . 0]. Note that the duration
of a ’no-note-played’ event is not required, since the first output dimension contains the
no-note-played switch. The MIDI format writes only notes that are present in a song. A
’no-note-played’ event in the MIDI format is simply not written (or needed). MIDI calcu-
lates time from the MTC (MIDI Time Code), an absolute time clock that starts from the
beginning of the song or reference point. Therefore, the duration of a note is not an ex-
plicit information in the MIDI format. This information was converted to an explicit number
only for the purpose of this thesis. Additionally, the output vector [1 0 . . . 0] is simply not
written onto the MIDI version of the network bass output, because it is not needed.

After the tracks have been converted into their respective matrix, the data is ready to be
driven into the neural network.

4.2 Network Parameters

In order to determine the best parameters, further research and trials must be under-
taken. This is a complex task, that requires proper dedication. The reservoir acts as
(i) as a non-linear expansion and (ii) as a memory of input u(n) at the same time [8].
Relying heavily on [8], this practical approach was taken

1. Size of the reservoir. The bigger, the better its performance, provided appropri-
ate regularization measures are taken against overfitting. The bigger the space of
reservoir signals x(n), the easier it is to find a linear combination of the signals
to approximate yteacher(n). Practically, this falls under the computational capacity
of your machine. In this case sizes of 100, 200, 500, and 1000 neurons were tested.
The network started with 100 neurons and only proceeded to a higher number when
its global parameters were tested. After optimizing a smaller reservoir, scale to a
bigger one.

2. The amount of training data used depends on the computational power of the ma-
chine. In this case, the data used was always split 70 − 30 for training-testing.
Portions of the data used for training started from 1

20 of the entire dataset, and were
gradually increased to the entire dataset. Since the original data contains more
than 7 hours of music, it is time-consuming to train all of it while tuning the global
parameters.

3. Generate a dense Win. Input scaling determines how non-linear the reservoir re-
sponses are. For very linear tasks, Win should be small, letting units operate
around 0 where the activation tanh is virtually linear. If different input channels
contribute differently, it is advised to scale them separately. Such is the case here,
where the input u(n) contains data regarding the lead track, bass track, and drum
track. Win is generated with uniformly distributed random numbers from the inter-
val [−1 1], whereas W and Wfb are generated with uniformly distributed random
numbers from the interval [0 1]. The scaling of Win determines the proportion of
how much the current state x(n) depends on the current input u(n).

12

4. Normalize the input. All input channels were normalized and shifted to [−1 1].

5. Generate a sparse W. The scaling of W determines the proportion of how much
the current state x(n) depends on the previous state x(n − 1). An initial reference
point is a spectral radius of 1. The spectral radius determines how fast the influence
of an input dies out in a reservoir with time, and how stable the reservoir activations
are.

6. The leaking rate α of the reservoir nodes in (2) can be regarded as the speed of
the reservoir update dynamics discretized in time. A small α may indicate slow
dynamics of x(n), thus increasing the duration of short-term memory in an ESN.

Knowing that randomly generated reservoirs even with the same parameters vary in per-
formance and that good average performance is not found in a very narrow parameter
range, a manual approach trying different ranges of one parameter at a time was taken.

4.3 Training the network

During training, at every step n, as input is fed the nth note on the accompaying track,
the nth note on the leading track, and the nth rhythm value. The (n + 1)th note of the
accompanying track is forced at every time step n. By doing so, the network is taught to
predict the next note on the accompanying track. The output of duration is coded in the
same manner with 16 neurons. This form of representation is chosen to ensure network
output interpretation as a probability vector. I.e, at every time step during testing, each
neuron should have a value proportional to the probability of selecting the respective note
at that time.

During testing, at every step n, as input is fed the nth node of the leading track and the
nth beat value. The network produces as an ouput a hypothesis vector where a note is
selected for the accompanying track. The selected note is fed back to the network as
the accompanying track input at step (n+ 1), together with (n+ 1)th note on the leading
track, and the (n + 1)th beat value. The process is repeated until the end of the testing
sequence.

5 Conducted Experiments

Since ESNs include elements generated randomly, it is important that every random-
number-generator function is seeded with the same seed. This ensures that only changes
to global parameters result in changes of performance, and not the changes of randomly-
generated matrices. Furthermore, dealing with high dimensional data results in poor hu-
man intuition. Therefore, it is advised to plot different states of the network, at different
times. Following 4.2, one parameter will change at a time. All experimental results start
with 100 neurons, unless mentioned otherwise. All experiments favored the deterministic
choice for selecting the next output, that is, the highest value of the output probability
vector was selected.

The raw training input was first normalized and then stored into a vector u(n) for n
timesteps. This ensured that the network was trained within bounds of [−1 1]. Other
bounds can be chosen, but they must be consistent within the ESN. If the network is

13

trained on raw data, this can lead to malfunctions. The following graphs show normalized
and raw data of the input bass track, the input drum track, and the input guitar track,
during the same timesteps.

Figure 4: Bass input - normalized vs. raw

Figure 5: Drums input - normalized vs. raw

14

Figure 6: Guitar input - normalized vs. raw

As mentioned in Section 4.2, Win should be generated densely. In addition, the drums
and bass input channels were scaled by a factor of 0.8, allowing the network to rely more
on the guitar track since, it is assumed, the guitar track has a higher influence on the bass
track.

Figure 7: Win activations

Figure 8: Win activations

However, W should be generated sparsely, typically around 0. It is important to note that
the scaling in the plots below has a range of [−0.2 0.2]. It is also important to note that
W has a uniform distribution [0 1], unlike Win which has a uniform distribution [−1 1].

15

Generating W between [−1 1] led to instabilities.

Figure 9: W activations

Arguably the most crucial parts of an ESN are its activations x(n). Continuous plotting of
the activation states of different activation units (neurons), will aid the network diagnose
during experimentation. The aim is to obtain activations that visit different areas of the
plot, slightly resembling periodic functions with high frequency.

Figure 10: X activations

16

The following parameters have yielded best results

1. spectral radius = 0.95

2. α = 0.9

3. Win scale = 1

This setup already produced great results. The data is divided in timesteps. This is
an arbitrary choice, thus for simplicity let us just give timesteps its value from the data
set. All data contains timesteps = 210000. At first, timesteps = 40000 were used. The
training-testing ration was 70% − 30% during all experiments. Data was collected and
merged by artist, thus AC/DC was present in the first 75000 timesteps. This means that
the network just trained with AC/DC songs, was tested on new AC/DC songs. The
output produced a very pleasing and artistic bass output, while maintaining the AC/DC
characteristic. This was believed to happen due to the simple and periodic bass melody
of all AC/DC songs. Furthermore, the output kept the rhythm, and smoothly changed it
while songs switched. One explanation could be the two empty bars between two songs
in the dataset, which were purpousely inserted to train a smooth transition and for the
network to understand when a particular song is over.

All new reservoir activations xnew(n) during testing were stored in a matrix Xnew. As we
can observe, the reservoir neurons during testing provide a rich variety of activations.
This is desired in ESNs.

Figure 11: Xnew activations

To better help understand the network output, the original bass track from testing is plot-
ted against the network output-bass from testing. Here it should be mentioned that ’net-
work ouput-bass from testing’ means the ’network ouput-bass’ after the decision function
was applied, i.e not a noisy hypothesis vector, but the output vector as explained in Sec-
tion 4.1.

17

Figure 12: network output vs. real output

However, due to the nature of the network output, not much can be understood from
the graphs. As explained in Section 4.2, the output is a probability vector of size 1 +
note range + duration. The note range comes from the difference between the highest
note and lowest note in the training data. This can lead to testing data that may contain
higher (or lower) limits, which in turn leads to a network that is unable to generate a bass
melody similar to the original one. In fact, after multiple trials, this has not been an issue.
Such is the case in the graphs above, where the testing data does indeed contain higher
bass notes. However, the output was still musically pleasing, and it followed the rhythm
perfectly. Furthermore, it was observed that note range must be the range of training
data, otherwise the network will misbehave.

Since this network setup already produced great results, more and more timesteps were
used, until timesteps reached all training data. This means that 70% of a 7 hour long
dataset was used for training and the remaining 30% was used for testing. The difference
between timesteps = 40000 and timesteps = 210000 was clear. Using the entire dataset
resulted in an output that was sometimes absent, sometimes off-key, and sometimes
fitting. Two symptoms are believed to have produced this outcome: (i) the network was
not tuned for such a scale, and (ii) the data was arranged by artist. Arranging the training
set by artist may yield unexpected results. One example is testing previously-unknown
artists. If the dataset is arranged by artist, then the testing partition will contain artists that
are unknown to the network. As such, producing a fitting bass melody is more difficult.
One solution for this case is cross-validation, but a direct issue is the disproportion of
songs per artist. Some artists have more songs in the dataset than others. Because
creating the dataset required a significant amount of time, symptom (i) was tackled.

After training the network on different numbers of reservoir neurons (network size), it
is observed that values above 200 produce an unstable, off-key output if the dataset is
small. On the other hand, values between 100− 200 neurons yield best results. However,
if the entire dataset is trained with a 70 : 30 ratio, a network size of 400 yields a better
result, especially after using a feedback connection. Additionally, a ’secret’ dataset was

18

used for testing. This dataset includes 10 songs from different artists present in the large
dataset. This ’secret’ dataset was never used for training. After training the network
on the entire timesteps = 210000, the ’secret’ songs were tested one by one. Here the
arrangement problem of the artists was present once again, making it difficult to find a
fitting bass melody for the testing songs. A more fitting melody was achieved if the training
set included only songs from the same artist (band) as the ’secret’ test song.

5.1 Supplying two-note chords

So far, the guitar track used for training only contains single notes with their respective
duration. This means that whenever a chord (or more than one note at a time) was
present, only the lowest note was selected. MIDI representation of a chord starts with the
lowest note of that chord. This particular note is usually the root of the chord, especially
if the genre of training data is rock. A feature like this proved to be more helpful in
training, even though the guitar track was simplified to one note. However, believing that
an extension of the guitar track will provide better data for generating an accompanying
bass, the network was upgraded to support two-note chords. The current guitar matrix
now has 3 rows: the first row includes all single notes plus the lowest note of every chord,
the second row includes the second note of a chod (if it exists), the third row includes
the duration of the note. Here an assumption is made; notes of a chord have the same
duration. A careful reader might ask how the elements of the ’chord’ row are filled if no
chord was present. Two alternatives are present, (i) fill them with zeros (the equivalent
of ’no-note’), or (ii) fill them with the same note as the the first row. The former yielded
better results. Unfortunately, after a lot of trial and error, this extension of the guitar input
mislead the network, and produced a worse output.

5.2 Including a feedback connection

Music generation by accompaniment requires feedback connections to better train the
network. However, dealing with feedback connections is tricky since even the slightest
change can drive the network into an unwanted state. After different trials, Wfb scale
performed better around 0.25.

6 Evaluation Criteria

In order to determine the best parameters, further research must be taken. Tomas divided
his evaluation in two parts: one was computing the log of the product of probabilities of
selecting the right input at the right time, the other was conducting a survey and run
statistical tests on results. While the survey was part of the evaluation, a mathematical
evaluation must be further tackled with more literature and more recent approaches. The
MSE was not reliable in this task, therefore most of the evaluation was done manually by
listening to the output produced by the network.

19

7 Conclusions

The main focus of this guided research is the use of Echo State Networks for a music gen-
eration task. Advantages of ESNs make them a perfect fit for this particular task. An ideal
outcome with the ’right’ evaluation is far from this thesis’ reach. However, a musically-
pleasing model, trained on a larger set of data, with hopefully better network parameters,
has been a desired goal. Due to time constraints, a more detailed experimentation is
lacking. This is crucial to better understand the network and its parameters.

7.1 Known Drawbacks

1. All data is transposed to the same key.

2. The network only supports three tracks.

3. The drums are represented binary, with a 1 if the drumkit was hit and 0 otherwise.

4. The duration of a note is a fraction of 16th, i.e faster notes are not included.

5. Note information only includes pitch, and duration. Other MIDI information, such as
velocity, are disregarded.

6. The dataset contains a disproportionate number of songs per artist.

7. Evaluation criteria relies primarily on manual observation.

8. The note range of the testing set is not included in training.

7.2 Potential Improvements

First and foremost, a fully comprehensive experimentation is requried. This includes
different network sizes, tested on different timesteps, with and without feedback connec-
tions, generated with different seeds, and tested on single and multiple songs. However,
as previously mentioned, in order to understand the impact of a parameter, only one
parameter should change at a time. This can exponentially grow ways of conducting ex-
periments, thus a lot of research must be taken before embarking on trial and error. Data
should be arranged differently in order to understand its impact on the training dynamics
of the network. A better way of reading the drumkit will drastically improve the network.
Especially since the bass guitar is usually connected to the rhythm of the bass drum.
A better understanding on the impact of certain network parameters is required. Unfor-
tunately, changing a parameter by raising (or lowering) its value will not have the same
effect if other parameters are also changed. This means that underneath the decep-
tively trivial appearance of the network, there exists a more complex correlation between
parameters.

20

7.3 Potential Expansions

1. Full chord support

2. Support for more (or all) different keys

3. Support of additional instruments

8 Acknowledgements

My sincerest gratitude goes to my supervisor Prof. Dr.Herbert Jaeger for his constant
support and guidance, and to my friend Tomas Pllaha for his insight regarding his thesis.

9 Appendix

9.1 Source Code

Source code with some graphs and sample outputs can be found at github.com/aulon/rapsodi.

21

9.2 List of Data

ACDC Baby Please Don’t Go
ACDC Back In Black
ACDC Big Balls
ACDC Can’t Stand Still
ACDC Can’t Stop Rock N’ Roll
ACDC Cover You In Oil
ACDC Dirty Deeds Done Dirt Cheap
ACDC Dog eat dog
ACDC Flick Of The Switch
ACDC For Those About To Rock
ACDC Gimme A Bullet
ACDC Heatseeker
ACDC Hells Bells
ACDC Highway to Hell
ACDC If You Want Blood (You’ve Got It)
ACDC Inject The Venom
ACDC Jailbreak
ACDC Let There Be Rock
ACDC Moneytalks
ACDC Problem Child
ACDC Rock And Roll Damnation
ACDC Rocker
ACDC Rock ’n’ Roll Singer
ACDC Sattelite Blues
ACDC Shoot To Thrill
ACDC Shot Down In Flames
ACDC Sin City
ACDC Sink The Pink
ACDC Stiff Upper Lip
ACDC The Jack
ACDC Thunderstruck
ACDC TNT
ACDC Touch Too Much
ACDC Walk All Over You
ACDC Who Made Who
ACDC You Ain’t Got A Hold On Me
ACDC You Shook Me All Night Long
Black Sabbath Behind the Wall of Sleep
Black Sabbath Country Girl
Black Sabbath Electric Funeral
Black Sabbath Hand Of Doom
Black Sabbath Heaven and Hell
Black Sabbath Iron Man
Black Sabbath N.I.B.
Black Sabbath War Pigs
Chapman, Tracy Fast Car
Chapman, Tracy Give Me One Reason

22

Deep Purple Burn
Deep Purple Kentucky Woman
Deep Purple Space Truckin’
Def Leppard Armageddon It
Def Leppard Bringin’ On The Heartbreak
Def Leppard Hysteria
Def Leppard Photograph
Def Leppard Pour Some Sugar On Me
Def Leppard Switch 625
Def Leppard Women
Dio, Ronnie James Rainbow In The Dark
Dio, Ronnie James Holy Diver
Hendrix, Jimi All Along the Watchower
Hendrix, Jimi Crosstown Traffic
Hendrix, Jimi Fire
Hendrix, Jimi Foxey Lady
Hendrix, Jimi Hey Joe
Hendrix, Jimi Little Wing
Hendrix, Jimi Long Hot Summer Night
Hendrix, Jimi Purple Haze
Hendrix, Jimi Stone Free
Hendrix, Jimi The Wind Cries Mary
Hendrix, Jimi Wait Until Tomorrow
Iron Maiden 2 minutes to midnight
Iron Maiden Hallowed be thy name
Iron Maiden Running Free
Iron Maiden Run To the Hills
Iron Maiden Sign Of the Cross
Iron Maiden The Evil That Men Do
Iron Maiden The Number Of The Beast (guitar pro)
Iron Maiden Wasted Years
Judas Priest Dreamer Deceiver
Judas Priest Hell Bent For Leather
Judas Priest Reckless
Judas Priest Rock Hard Ride Free
Judas Priest The Hellion
Judas Priest You’ve Got Another Thing Comin’
Lynyrd Skynyrd Free Bird
Lynyrd Skynyrd Gimme Three Steps
Lynyrd Skynyrd Simple Man
Lynyrd Skynyrd Sweet Home Alabama
Lynyrd Skynyrd Tuesday’s Gone

23

ZZ Top Beer Drinkers Hell Raisers
ZZ Top Cheap Sunglasses
ZZ Top Got Me Under Pressure
ZZ Top I’m Bad, I’m Nationwide
ZZ Top I Thank You
ZZ Top Just got paid today
ZZ Top Nasty Dogs Funky Kings
ZZ Top Old Man
ZZ Top Planet Of Women
ZZ Top Sharp Dressed Man
ZZ Top Tush

’Secret’ testing data

ACDC It’s A Long Way To The Top
ACDC Little Lover
ACDC Whole Lotta Rosie
Black Sabbath Paranoid
Deep Purple Smoke Of The Water
Hendrix, Jimi Voodoo Child
Iron Maiden The Trooper
Judas Priest Breaking the Law
ZZ Top Gimme All Your Lovin’
ZZ Top La Grange

24

References

[1] Shlomo Dubnov, Gerard Assayag, Olivier Lartillot, and Gill Bejerano. Using machine-
learning methods for musical style modeling. Computer, 36(10):73–80, 2003.

[2] Nicolas Scaringella, Giorgio Zoia, and Daniel Mlynek. Automatic genre classifica-
tion of music content: a survey. IEEE Signal Processing Magazine, 23(2):133–141,
2006.

[3] Michael C Mozer. Neural network music composition by prediction: Exploring the
benefits of psychoacoustic constraints and multi-scale processing. Connection Sci-
ence, 6(2-3):247–280, 1994.

[4] Aäron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals,
Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet:
A generative model for raw audio. CoRR abs/1609.03499, 2016.

[5] Herbert Jaeger and Harald Haas. Harnessing nonlinearity: Predicting chaotic sys-
tems and saving energy in wireless communication. science, 304(5667):78–80,
2004.

[6] Mantas LukošEvičIus and Herbert Jaeger. Reservoir computing approaches to re-
current neural network training. Computer Science Review, 3(3):127–149, 2009.

[7] Herbert Jaeger. The echo state approach to analysing and training recurrent neural
networks-with an erratum note. Bonn, Germany: German National Research Center
for Information Technology GMD Technical Report, 148:34, 2001.

[8] Mantas Lukoševičius. A practical guide to applying echo state networks. In Neural
networks: Tricks of the trade, pages 659–686. Springer, 2012.

[9] Tomas Pllaha. Echo state networks: Music accompaniment by prediction. pages
1–24, 2014.

[10] Roger N Shepard et al. Toward a universal law of generalization for psychological
science. Science, 237(4820):1317–1323, 1987.

[11] Roger N Shepard. Geometrical approximations to the structure of musical pitch.
Psychological review, 89(4):305, 1982.

[12] Mantas Lukoševičius, Herbert Jaeger, and Benjamin Schrauwen. Reservoir com-
puting trends. KI-Künstliche Intelligenz, 26(4):365–371, 2012.

[13] Herbert Jaeger. Short term memory in echo state networks. GMD-
Forschungszentrum Informationstechnik, 2001.

[14] Michael A Casey, Remco Veltkamp, Masataka Goto, Marc Leman, Christophe
Rhodes, and Malcolm Slaney. Content-based music information retrieval: Current
directions and future challenges. Proceedings of the IEEE, 96(4):668–696, 2008.

[15] Frederick P Brooks, AL Hopkins, Peter G Neumann, and WV Wright. An experiment
in musical composition. IRE Transactions on Electronic Computers, (3):175–182,
1957.

25

	Introduction
	Statement and Motivation of Research
	Echo State Networks
	Statement of Research
	Research Questions

	Representation of Musical Data
	Representation of Pitch
	Representation of Duration
	Representation of Rhythm
	Selecting and Manipulating the Training Data

	Network Setup
	Network Design
	Network Parameters
	Training the network

	Conducted Experiments
	Supplying two-note chords
	Including a feedback connection

	Evaluation Criteria
	Conclusions
	Known Drawbacks
	Potential Improvements
	Potential Expansions

	Acknowledgements
	Appendix
	Source Code
	List of Data

