An OOM Tutorial

Herbert Jaeger

Jacobs University Bremen
Overview

1. From HMMs to OOMs
2. OOMs as sequence generators
3. Equivalence theorem
4. OOMs and HMMs
5. Interpretable OOMs
6. Basic learning algorithm
7. Efficient learning algorithms
8. The dreaded nonnegativity problem
9. From stochastic processes to OOMs
10. Historical notes
11. General OOM theory
12. Beginnings of a Hilbert space theory
13. Research topics
Some Shorthand Notation

Let \((X_n)_{n=0,1,2,...} \) be a discrete-time stochastic process.

- For \(P(X_0 = a_0, ..., X_N = a_N) \) write \(P(a_0...a_N) \) or \(P(\overline{a}) \).

- For \(P(X_{N+1} = b_1, ..., X_{N+M} = b_M \mid X_0 = a_0, ..., X_N = a_N) \) write \(P(b_{N+1}...b_{N+M} \mid a_0...a_N) \) or \(P(\overline{b} \mid \overline{a}) \).
1 From HMMs to OOMs

An HMM\(^1\):

\[
S = \{s_1, s_2\} \quad \text{hidden states}
\]
\[
O = \{a, b\} \quad \text{observable events}
\]

\[
M = \begin{bmatrix}
0.0 & 1.0 \\
0.5 & 0.5 \\
\end{bmatrix}
\]
\[
M^T = \begin{bmatrix}
0.0 & 0.5 \\
1.0 & 0.5 \\
\end{bmatrix} =: T_a
\]
\[
M^T O_a = \begin{bmatrix}
0.5 & 1.0 \\
0.5 & 0.5 \\
\end{bmatrix} =: T_b
\]

where \(w_0\) is the invariant vector of \(M^T\)

\[
P(ab) = 1T_bT_a w_0
\]

HMM: \((\mathbb{R}^2, \{T_a, T_b\}, w_0) \)

\(^1\) Graphics from slide of K. Kretschmar
HMM:

- HMM: \((\mathbb{R}^m, \{T_a, T_b\}, w_0) \)
- \(T_a + T_b = M^T \) where \(M \) is a Markov matrix
- \(w_0 \) is an invariant P-vector with component sum = 1
- \(P(ab) = 1T_b T_a w_0 \)
- non-negative entries only

OOM:

- OOM: \((\mathbb{R}^m, \{\tau_a, \tau_b\}, w_0) \)
- \(\tau_a + \tau_b = \mu \), where \(\mu \) has column sum = 1
- \(w_0 \) is an invariant vector with component sum = 1
- \(P(ab) = 1\tau_b \tau_a w_0 \)
- negative entries are permitted
Definition

An OOM is a structure \((\mathbb{R}^m, (\tau_a)_{a \in \Sigma}, w_0)\), where \(w_0 \in \mathbb{R}^m\), \(\tau_a : \mathbb{R}^m \to \mathbb{R}^m\) linear, such that

1. \(1 \mu = 1 \sum_{a \in \Sigma} \tau_a = 1\)
2. \(1 w_0 = 1\)
3. for every sequence \(a_1...a_n \in O^n:\ 1 \tau_{a_n} \cdots \tau_{a_1} w_0 \geq 0\)

Note. A formally more general, but equivalent, definition replaces the all-ones row vector \(1\) by any row vector \(\sigma\):

1. \(\sigma \mu = \sigma\)
2. \(\sigma w_0 = 1\)
3. for every sequence \(a_1...a_n \in O^n:\ \sigma \tau_{a_n} \cdots \tau_{a_1} w_0 \geq 0\)
Theorem

An OOM \((\mathbb{R}^m, (\tau_a)_{a \in \Sigma}, w_0)\) defines a stochastic process by putting

\[
P(a_1 \cdots a_n) = 1 \tau_{a_n} \cdots \tau_{a_1} w_0
\]

for every sequence \(a_1 \cdots a_n \in \Sigma^n\).

Note. The process is stationary iff \(\mu w_0 = w_0\).
2 OOMs as sequence generators

\[A = (\mathbb{R}^2, \{\tau_a, \tau_b\}, w_0) \quad O = \{a, b\} \]

\[t = 0 \]
- Compute \(1_{\tau_aw_0}, 1_{\tau_bw_0}\)
- \((1_{\tau_aw_0}, 1_{\tau_bw_0})\) is a P-vector

\[t = 1 \]
- Select \(a\) vs. \(b\) according to P-vector
- Apply operator
- Renormalize to component sum 1 to obtain \(w_1\)

\(a\) is observed
3 Equivalence theorem

Two OOMs $A = (\mathbb{R}^m, (\tau_a)_{a \in O}, w_0)$, $B = (\mathbb{R}^m, (\tau'_a)_{a \in O}, w'_0)$, where m is minimal, generate the same process iff there exists a coordinate transformation $\rho: \mathbb{R}^m \rightarrow \mathbb{R}^m$, that preserves component sums of vectors, with

$$\tau'_a = \rho \tau_a \rho^{-1} \text{ for all } a \in O.$$
Corollary 1

For a given OOM $A = (\mathbb{R}^m, (\tau_a)_{a \in O}, w_0)$ there exist infinitely many different but equivalent OOMs of same dimension.

Proof: every coordinate transformation $\rho: \mathbb{R}^m \rightarrow \mathbb{R}^m$, that preserves component sums of vectors, yields a new version of A via $\tau'_a = \rho \tau_a \rho^{-1}$ for all $a \in O$.
Corollary 2

For two OOMs $A = (\mathbb{R}^m, (\tau_a)_{a \in O}, w_0), B = (\mathbb{R}^{m'}, (\tau'_a)_{a \in O}, w'_0)$, it is decidable whether they are equivalent.

Proof: first transform them into minimal-dimensional versions (effective algorithm exists), then check whether $\tau'_a = \rho \tau_a \rho^{-1}$ for all $a \in O$, for some ρ.
4 OOMs and HMMs

The OOM

$$\tau_a = \begin{pmatrix} 0.645 & -0.395 & 0.125 \\ 0.355 & 0.395 & -0.125 \\ 0 & 1 & 0 \end{pmatrix}$$

$$\tau_b = \begin{pmatrix} 0 & 0 & 0.218 \\ 0 & 0 & 0.329 \\ 0 & 0 & 0.452 \end{pmatrix}$$

generates/describes $aaaaabaaaaabaaaaabaaaabaa...$

$$P(a \mid ba^t)$$

a "probability clock"
How the probability clock works

- τ_b is a projection: every state vector is mapped on \bullet.

- τ_a is a rotation: iterated applications yield states on a circle.

- This gives rise to oscillation of $P(a \mid ba^n)$.

Probability clocks cannot be modelled by HMMs, "because" rotation operators need negative entries.
Consequence

The processes that can be modelled by HMMs are a proper subclass of the processes that can be modelled by OOMs:

\[\text{HMM} \subsetneq \text{OOM} \]
5 Interpretable OOMs

Definition
1. Let O be a finite set (alphabet) of observables, $k \geq 1$. A \textit{k-event} is a nonempty subset of O^k.
2. Let furthermore $m \geq 1$. A partitioning $O^k = A_1 \cup \ldots \cup A_m$ into m disjoint nonempty k-events is a set of \textit{characteristic events} (of length k and dimension m).

Example
$O = \{a,b\}$, $k = 2$, $m = 3$:
$A_1 = \{aa, ab\}$, $A_2 = \{ba\}$, $A_3 = \{bb\}$
Explanation of concept. Consider a 3-dim OOM, and let A_1, A_2, A_3 be characteristic events of dim 3 and some length k (we don't care). Then this OOM is interpretable w.r.t. A_1, A_2, A_3, if the three components of state vectors = future probabilities of characteristic events A_i.

$w = (P(A_1 | w), P(A_2 | w), P(A_3 | w))$
Example

Mary had...

P

=
Theorem

Let $A = (\mathbb{R}^m, (\tau_a)_{a \in \mathcal{O}}, w_0)$ be a minimal-dimensional OOM.

Let $\mathcal{O}^k = A_1 \cup \ldots \cup A_m$ be characteristic events of dim m and some length k.

Then, generically, A can be effectively transformed into an equivalent OOM that is interpretable w.r.t. A_1, \ldots, A_m.

Proof: define a transformation ρ by $\rho(x) = (1\tau_{A_1} x, \ldots, 1\tau_{A_m} x)$, where $\tau_{A_i} = \sum_{a_1 \ldots a_k \in A_i} \tau_{a_k} \ldots \tau_{a_1}$. Then verify mechanically.
Application 1: visual comparison of OOMs

Given: two OOMs with same observables S. Both interpretable w.r.t. same characteristic events. If dim = 3, plot "fingerprints" immediately. If dim > 3, project on 3-dim subspace.
Application 2: Learning OOMs from data

Interpretable OOMs are at the core of efficient learning algorithms. It's so important that we will use a new section.
6 The basic learning algorithm

Core idea

• In an interpretable OOM:

 \[w_0 = (P(A_1),...,P(A_m)) , \]

 \[\tau_a w_0 = (P(aA_1),...,P(aA_m)) , \]

 \[\tau_a \tau_b w_0 = (P(baA_1),...,P(baA_m)), \]

 etc.

• \(w_0, \tau_a w_0, \tau_a \tau_b w_0 \), etc, can be estimated from data by counting frequencies

• Basic linear algebra: obtain \(\tau_a \) from argument-value pairs

 \[w_0 \rightarrow \tau_a w_0, \]

 \[\tau_b w_0 \rightarrow \tau_a \tau_b w_0, \]

 etc.
Technical execution

• Assume $S = a_1a_2\ldots a_N$ is generated by $(\mathbb{R}^m, (\tau_a)_{a \in O}, w_0)$.

• Task: get estimate $\tilde{\tau}_a$ from S.

Algorithm

• Choose m.

• Choose characteristic events A_1, \ldots, A_m.

• Count occurrences $\#(A_iA_j)$ and $\#(A_iaA_j)$ and put them into matrices $V = (\#(A_iA_j))$ and $W_a = (\#(A_iaA_j))$.

• Obtain estimate $\tilde{\tau}_a = W_a V^{-1}$.

• Do this for all operators.
Example

Given: $aabbabbbabababaabbbba$

Step 0: estimate model dim and choose characteristic events. Here: $\text{dim} = 2, A_1 = \{a\}, A_2 = \{b\}$.

Step 1: perform frequency counts of characteristic events:

$$V = \begin{pmatrix} #aa & #ba \\ #ab & #bb \end{pmatrix} = \begin{pmatrix} 3 & 4 \\ 5 & 6 \end{pmatrix}$$

$$W_a = \begin{pmatrix} #aaa & #baa \\ #aab & #bab \end{pmatrix} = \begin{pmatrix} 0 & 2 \\ 3 & 2 \end{pmatrix}$$
Step 2 and finish:

\[\tilde{\tau}_a = W_a V^{-1} = \begin{pmatrix} 5 & -3 \\ -4 & 3 \end{pmatrix} \]

(do the same for observable \(b \))
Two good properties of learning algorithm

If process is generated by m-dimensional OOM, and m is estimated correctly, the learning algorithm...

- is asymptotically correct (= yields correct model as size of training sequence goes to infinity) regardless of choice of characteristic events,
- is constructive and computationally efficient with $O(N + |O| m^3 / p)$, where p is degree of parallelization.

Standard HMM learning via EM algorithm has neither property 1 nor 2.
Two bad properties of learning algorithm

The algorithm

- depends in its statistical efficiency crucially on the choice of characteristic events – the **statistical efficiency problem**.

- will often yield a set of operator matrices which violate the condition \(\sum_{i} \tau_{a_n} \cdots \tau_{a_1} w_0 \geq 0 \), i.e., the model will assign negative "probabilities" to some sequences – the **non-negativity problem**.

The first of these two problems has prevented a practical use of OOMs for a long time, and the second has driven at least three people I know almost crazy.
7 Statistically efficient learning algorithms
Characterizers

Definition. Let $k \geq 1$, and $b_1 \ldots b_k$ be the alphabetical enumeration of O^k. Let $A = (\mathbb{R}^m, (\tau_a)_{a \in O}, w_0)$ be an OOM of some process with distribution P and states $w_{\bar{a}}$. Let $C \in \text{Mat}_{m \times k}$ have unit column sums. Then C is a **characterizer** of length k of A iff for all $\bar{a} \in O^*$:

$$w_{\bar{a}} = C \begin{pmatrix} P(b_1 | \bar{a}) \\ \vdots \\ P(b_k | \bar{a}) \end{pmatrix}$$
Intuitive Interpretation

$$w_{\bar{a}} = C \begin{pmatrix} P(b_1 | \bar{a}) \\ \vdots \\ P(b_k | \bar{a}) \end{pmatrix}$$

A characterizer C transforms the future distribution after initial history \bar{a} (as represented by the probs $P(b_i | \bar{a})$) into the OOM state $w_{\bar{a}}$.
Some Properties of Characterizers

1. Every OOM has characterizers of length k for sufficiently large k.

2. Characteristic events, as introduced before, are a special case of characterizers. Example:

 $O = \{a,b\}$, $k = 2$, $m = 3$,

 Characteristic events $A_1 = \{aa, ab\}$, $A_2 = \{ba\}$, $A_3 = \{bb\}$:

 \[
 \begin{pmatrix}
 P(aa | \overline{c}) \\
 P(ab | \overline{c}) \\
 P(ba | \overline{c}) \\
 P(bb | \overline{c})
 \end{pmatrix}
 =
 \begin{pmatrix}
 P(A_1 | \overline{c}) \\
 P(A_2 | \overline{c}) \\
 P(A_2 | \overline{c})
 \end{pmatrix}
 = w_{\overline{c}}.
 \]
Learning Equation

Let $\mathcal{A} = (\mathbb{R}^m, (\tau_a)_{a \in O}, w_0)$ be an OOM of some process with distribution P with characterizer C. Let

$$V = \begin{pmatrix} P(\bar{b}_1 | \bar{a}_1) & \cdots & P(\bar{b}_1 | \bar{a}_k) \\ \vdots & \ddots & \vdots \\ P(\bar{b}_k | \bar{a}_1) & \cdots & P(\bar{b}_k | \bar{a}_k) \end{pmatrix}, \quad W_a = \begin{pmatrix} P(ab_1 | \bar{a}_1) & \cdots & P(ab_1 | \bar{a}_k) \\ \vdots & \ddots & \vdots \\ P(ab_k | \bar{a}_1) & \cdots & P(ab_k | \bar{a}_k) \end{pmatrix}.$$

Then

$$\tau_a = CW_a (CV)^+$$
Generalized Learning Algorithm

1. Choose a characterizer C.

2. Estimate (by obvious frequency counting from data)

$$\hat{V} = \begin{pmatrix} \hat{P}(b_1 | \bar{a}_1) & \cdots & \hat{P}(b_1 | \bar{a}_k) \\ \vdots & \ddots & \vdots \\ \hat{P}(b_k | \bar{a}_1) & \cdots & \hat{P}(b_k | \bar{a}_k) \end{pmatrix}, \quad \hat{W}_a = \begin{pmatrix} \hat{P}(ab_1 | \bar{a}_1) & \cdots & \hat{P}(ab_1 | \bar{a}_k) \\ \vdots & \ddots & \vdots \\ \hat{P}(ab_k | \bar{a}_1) & \cdots & \hat{P}(ab_k | \bar{a}_k) \end{pmatrix}.$$

3. Compute $\hat{\tau}_a = CW_a (CV)^+$.
Properties of General Learning Algorithm(s)

1. Yields asymptotically correct estimates $\hat{\tau}_a$ with any characterizer C.

2. Model variance (statistical efficiency) depends crucially on choice of C.

3. Search for "good" (low model variance, i.e. high statistical efficiency) learning algorithms boils down to optimizing C.
Algorithms for characterizer optimizing on the market today

Notes on algorithms 1 & 2

- Algorithms 1 and 2 yield equivalent results (M. Thon, in preparation)
- Core idea: set $C = L_m^T$, where L_m is made from the first m singular vectors of \hat{V} (i.e., $C\hat{V}$ is the PCA-transform of \hat{V}).
- Theory (M. Zhao 2007, 2009): this C minimizes an upper bound on the relative error e of estimated operators $\hat{\tau}$ over the true τ:

$$e = \left\| \hat{T} - T \right\|_{Frob} \left\| T \right\|_{Frob}, \quad \text{where} \quad \hat{T} = (\hat{\tau}_{a_1} \ldots \hat{\tau}_{a_l}), \quad T = (\tau_{a_1} \ldots \tau_{a_l})$$

- Resource problem: algorithms have time and space complexity that scales with $m N^3$ in the worst case, where m is model dimension and N training data length.
- Both algorithms are constructive.
Notes on algorithm 3

• Core idea: exploit a certain algebraic (!) characterization of the statistically maximally efficient characterizer $C_{\text{max-eff}}$. Approximate this precious $C_{\text{max-eff}}$ by an iterative re-estimation method.
• About 2-5 iterations usually suffice.
• One iteration has time and space cost scaling with $m^2 N$ (as opposed to worst-case mN^3 for algorithms 1 & 2).
• Algorithm does not necessarily converge (can jitter around terminal value). For too large assumed model dimensions prone to numerical instability. Iteration dynamics is not understood.
Notes on all three algorithms

• These algorithms are rooted in the OOM-typical translation of stochastic concepts into algebraic ones:
 • algorithm 1 exploits algebraic characterization of maximal statistical efficiency,
 • the other two minimize estimation error bound on metric distance between estimated and true model matrices.

• All algorithms are technically involved and need care when implementing them in space/time efficient ways.

• Model quality is empirically found similar for algorithms 1 & 2 vs. algorithm 3

• Model accuracy (statistical efficiency) is far superior to EM-trained HMMs

• All algorithms by design are insensitive to overfitting (test performance does not decrease when model dim is chosen too big)

• Computational cost of algorithm 3 is about 10 times less than EM-learning of HMMs due to low number of iterations

• Average cost of algorithms 1 & 2 appears to be much less than that of algorithm 3 (worst-case cost is however much higher), depends much on nature of process, needs analysis
Demo 1: logistic chaos process¹)

- Data from 16-bin discretized logistic process \(x(n+1) = 4 x(n) (1 - x(n)) \), which is strongly chaotic (max. Lyapunov exponent = 2)

- CPU times here were about 1:10 of algorithm 3 vs. EM-HMM, and again 1:10 of algorithm 1 vs. algorithm 3

¹) From Zhao/Jaeger/Thon, Neural Computation, forthcoming
Demo 2: some standard benchmarks from the PSR community\(^1\)

- These are input-output processes; OOMs can accommodate
- 2 out of 7 examples shown, others are similar
- Figures show average 1-step prediction error vs. training data length

\(^1\) From Zhao/Jaeger/Thon, Neural Computation, forthcoming
Efficient learning algorithms: summary

- The problem of finding statistically efficient versions of the basic OOM learning algorithm has essentially been solved.
- Algorithms starkly outperform EM-HMM in accuracy and cost.
- Algorithms use novel learning principles:
 - Algorithms 1 & 2: minimizing error bound on model parameters
 - Algorithm 3: optimizing statistical efficiency of asymptotically correct estimator
- More research needed:
 - Algorithms 1 & 2: improving worst-case cost
 - Algorithm 3: analysis of iteration dynamics and numerical stability
- Algorithms are much more complicated than EM-HMM.
- Overview and analytic comparison/unification paper (M. Thon) is in preparation.
8 The dreaded nonnegativity problem

1. Recall defining conditions of OOM \((R^m, (\tau_a)_{a \in \Sigma}, w_0) \):
 1. \(\mu = \sum_{a \in \Sigma} \tau_a \) has column sums = 1
 2. \(\mathbf{1} w_0 = 1 \)
 3. for every sequence \(a_1...a_n \in O^n \) it holds that
 \[\mathbf{1} \tau_{a_n} \cdots \tau_{a_1} w_0 \geq 0 \]

2. Conditions 1. and 2. are easy to check; the non-negativity condition 3. isn't.
3. Learnt models often (even typically, for nontrivial data) violate nonnegativity.
4. Utterly desirable: method to check for non-negativity condition; method to transform invalid learnt OOM into "closest" valid one.
5. Every OOM researcher I know has burnt lots of lifetime on this problem, aging prematurely in the process.
Three solutions to the dreaded problem

1. **Empirical workaround:** when an invalid model is used in prediction / generation, and invalid (negative-probability) states occur, **renormalize** them on the fly.
 - A recommended method is detailed in [1]

2. **Emphatic anti-solution:** it is **undecidable** whether a set of candidate operator matrices satisfies the nonnegativity condition.
 - Proof by E. Wiewora [2], by adaptation of a related proof by Denis and Esposito [3]

3. **Emperor's solution:** disallow non-negativity by using **norm-OOMs**, which are built around the idea to set

\[
P(a_1 \ldots a_n) = \left\| \tau_{a_n} \ldots \tau_{a_1} w_0 \right\|^2
\]

 - Introduced by M. Zhao [4,5], including a general stochastic framework and a basic learning algorithm.
4. M. Zhao, H. Jaeger (2007): **Norm observable operator models.** Jacobs University technical report Nr. 8
7 From stochastic processes to OOMs

So far, we introduced OOMs as generalizations of HMMs.

Now we will re-introduce OOMs in a very different way, starting from stochastic processes and showing that (basically) every stochastic process has an OOM.
What's a future?

For a robot, or anybody else modelling stochastic processes, the future is a probability distribution over possible future developments.
Dynamics of future distributions

- Observations update expectations, that is, future distributions.
- ... E_t, E_{t+1}, ... : observations. Formally, events in observation space s-algebra.
The basic idea

observable events = operators that change distributions

- set of all distributions is a (functional) vector space V
- for every event E an "observable operator" τ_E
- observable operators operate on V
Characterizing SD processes 1

The distribution of a stationary, discrete-valued process (SD process) is fully characterized by its conditioned continuation probabilities

\[P(X_{n+1} = b_1, \ldots, X_{n+m} = b_m \mid X_1 = a_1, \ldots, X_n = a_n) \]

\[=: P(b_1 \ldots b_m \mid a_1 \ldots a_n) \]

\[=: P(\bar{b} \mid \bar{a}) \]

where \(m \geq 1, n \geq 0 \).

Special case \(n = 0 \): \(P(\bar{b} \mid \varepsilon) = P(\bar{b}) \) would suffice.
Characterizing SD processes 2

Consider the vector space of all numerical functions on finite sequences,
\[\mathcal{D} = \{ d : O^* \to \mathbb{R} \} \]

For each antecedent \(\bar{a} \), define a predictor function
\[g_{\bar{a}} : O^* \to \mathbb{R}, \quad g_{\bar{a}}(\bar{b}) = P(\bar{b} \mid \bar{a}) \]

Shorthand: \(g_{\bar{a}} = P(\cdot \mid \bar{a}) \)

The set of all such predictor functions,
\[\{ g_{\bar{a}} \mid \bar{a} \in O^* \} \subset \mathcal{D} \]

describes all \(P(\bar{b} \mid \bar{a}) \) and thus characterizes the process.
Consider the linear subspace spanned by all predictor functions \(g_{\bar{a}} \),
\[
\mathcal{G} = \left\{ g_{\bar{a}} \mid \bar{a} \in \Sigma^* \right\}.
\]

Let \(t_\alpha : \mathcal{G} \to \mathcal{G} \) be a linear mapping satisfying
\[
t_\alpha (g_{\bar{c}}) = P(a \mid \bar{c}) g_{\bar{c}a}
\]
for all \(a \in O, \bar{c} \in O^* \). (They exist!)

Let \(g_\varepsilon : O^* \to \mathbb{R}, \ g_\varepsilon (\bar{b}) = P(\bar{b} \mid \varepsilon) = P(\bar{b}) \)

Let \(1 : \mathcal{G} \to \mathbb{R} \) be a linear mapping satisfying \(1g_{\bar{c}} = 1 \)
for all \(\bar{c} \in O^* \). (exists!)
Characterizing SD processes 4

| SD process | \(\{g_{\bar{a}} | \bar{a} \in \Sigma^* \} \) |
|-------------|--------------------------------------|
| \(G = \) | \([\{g_{\bar{a}} | \bar{a} \in O^* \}]_D \) |
| \(t_a(g_{\bar{c}}) = \) | \(P(a \, | \, \bar{c}) g_{\bar{c}a} \) |
| \(g_{\epsilon}(\bar{b}) = P(\bar{b}) \) | |
| \(1g_{\bar{c}} = 1 \) | |

Theorem. For any \(a_1...a_n \in O^* \) it holds that

\[
P(a_1...a_n) = 1t_{a_n} \cdots t_{a_1} g_{\epsilon}
\]

Compare:

\[
P(a_1...a_n) = 1\tau_{a_n} \cdots \tau_{a_1} w_0
\]

Definition. \(\dim(G) \) is the dimension of the process.

Corollary. A finite-dimensional process of dimension \(m \) has a "matrix" OOM

\[
(\mathbb{R}^m,(\tau_a)_{a \in \Sigma},w_0) \equiv (G,(t_a)_{a \in \Sigma},g_{\epsilon}).
\]
Characterizing SD processes 5

Every SD process has an "abstract" OOM \((G, (t_a)_{a \in \Sigma}, g_\varepsilon)\).

These abstract OOMs are unique ("coordinate-free representation").

The dimension of a process may be infinite.

Abstract OOMs are needed for proving the equivalence theorem.
Theorem. Let \((X_t)_{t \geq 0}\) be a process with values in \((\mathcal{B}, \mathcal{B})\), not necessarily stationary. Then there exists an OOM
\[
(R^K, (\tau_{A,t})_{A \in \mathcal{B}, t > 0}, w_0)
\]
such that
\[
P(X_{t_1} \in A_1, \ldots, X_{t_n} \in A_n)
= \mathbf{1} \tau_{A_n, t_n - t_{n-1}} \cdots \tau_{A_1, t_1} w_0.
\]
Furthermore, it holds that
\[
(1) \quad \tau = \sum_{n} \tau_{A_n, t}
\]
\[
(2) \quad \tau_{A, t_1 + t_2} = \tau_{A, t_2} \tau_{B, t_1}
\]
Decomposing OOMs 1

Recall: observable operators of OOMs derived from HMMs have the form

\[T_a = M^\top O_a \]

where \(M \) is the transition matrix of a Markov chain and \(O_a \) is a (diagonal) observation matrix containing emission probabilities of \(a \).
Theorem. Let \((X_t)_{t \geq 0}\) be a process with values in \((B, \mathcal{B})\), not necessarily stationary. Then there exists an OOM with

- evolution operators \((\mu_r)_{r > 0}\)
- observation operators \((\eta_A)_{A \in B}\)

such that

\[
P(X_0 \in A_0, X_{t_1} \in A_1, \ldots, X_{t_{n-1}} \in A_{n-1})
\]

\[
= 1 \eta_{A_{n-1}} \mu_{t_{n-1}-t_{n-2}} \cdots \eta_{A_2} \mu_{t_2-t_1} \eta_{A_1} \mu_{t_1} \eta_{A_0} \psi_0.
\]
Decomposing OOMs 3

Visualization of evolution operators $\mu_{\Delta t}$ and observation operators η_A
From linear algebra back to processes

Recall: in an abstract OOM \((\mathbb{R}^K, (\tau_{A,t})_{A \in \mathcal{B}, t > 0}, w_0)\) we obtain

\[
P(\{X_{t_1} \in A_1, \ldots, X_{t_n} \in A_n\}) = \mathbf{1}_{\tau_{A_n, t_n-t_{n-1}}} \cdots \mathbf{1}_{\tau_{A_1, t_1}} w_0.
\]

Theorem. Let \((B, \mathcal{B})\) be a polish measure space, \(V\) a real vector space with basis \(E\), \(w_0 \in V\), \((\tau_{A,t})_{A \in B, t > 0}\) a family of linear operators on \(V\), \(V\) be generated by the vectors \(\tau_{A_n, t_n-t_{n-1}} \cdots \tau_{A_1, t_1} w_0\) and the numerical function \(P : (\mathcal{B} \times [0, +\infty))^* \to \mathbb{R}\) be defined by

\[
P((A_1, t_1), \ldots, (A_n, t_n)) = \mathbf{1}_{\tau_{A_n, t_n-t_{n-1}}} \cdots \mathbf{1}_{\tau_{A_1, t_1}} w_0.
\]

Then \(P\) can be extended to the distribution of a stochastic process iff

1. \(\mathbf{1} w_0 = 1\)
2. \(\mathbf{1}_{\tau_{(B,t)}} e = 1\) for all basis vectors \(e\) and times \(t\)
3. \(\mathbf{1}_{\tau_{A_n, t_n-t_{n-1}}} \cdots \mathbf{1}_{\tau_{A_1, t_1}} w_0 \geq 0\) for all \(\tau\) sequences
4. \(\tau_{\bigcup_{n} A_n, t} = \sum_{n} \tau_{A_n, t}\)
5. \(\tau_{A, t_1+t_2} = \tau_{A, t_2} \tau_{B, t_1}\)
From processes to linear algebra and back to processes

\[P(X_{t_1} \in A_1, \ldots, X_{t_n} \in A_n) = 1_{\tau_{A_n, t_n-t_{n-1}}} \cdots 1_{\tau_{A_1, t_1}} \mathcal{W}_0. \]

The theory of distributions of stochastic processes (with polish measure spaces and real or discrete time) becomes a subtheory of linear algebra.
Historical notes / related approaches

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1957-1970</td>
<td>A long series of investigations in mathematical probability theory concerning the question when two HMMs are equivalent (overviews in [1] [2])</td>
</tr>
<tr>
<td>... - 1969</td>
<td>A Roumanian school of probability theory develops theory to describe stochastic processes by observable operators (although it is not recognized that they can always be chosen linear) [5]</td>
</tr>
<tr>
<td>2001</td>
<td>Littman/Sutton/Singh [9] introduce predictive state representations (PSRs) for input-driven processes, unaware of IO-OMMs described earlier by Jaeger [10].</td>
</tr>
<tr>
<td>1969</td>
<td>Schützenberger [11] introduces multiplicity automata (MAs), which are equivalent to finite-dimensional OOMs, expressed in a context of automata theory.</td>
</tr>
<tr>
<td>1980's - present</td>
<td>A series of investigations in statistical learning theory and stochastic languages on learnability and decidability issues concerning MAs. Among other, it is found that the non-negativity problem is undecidable [12][13]</td>
</tr>
<tr>
<td>antiquity - present</td>
<td>Ancient idea in quantum mechanics, information theory [14] and statistical physics [15]: the state of a physical system is that which contains all information about the future</td>
</tr>
</tbody>
</table>
Norm OOMs [1,2]

• Motivation: avoid the non-negativity problem of standard linear OOMs
• Approach: keep basic structure of OOMs: \((\mathbb{R}^m, (\tau_a)_{a \in O}, w_0)\), but compute probabilities from states by

\[
P(a_1 \ldots a_n) = \left\| \tau_{a_n} \ldots \tau_{a_1} w_0 \right\|^2.
\]

• This avoids the non-negativity problem by design.
Norm OOMs, cont'd

Definition. Let $O = \{a_1, \ldots, a_k\}$ be a finite set of observables, and let E be a real vector space with an inner product (and hence, a norm). Let $w_0 \in E$ and for each $a \in O$, let τ_a be a linear map on E, and τ_a^* its adjoint operator (i.e., $\langle \tau_a^* u, v \rangle = \langle u, \tau_a v \rangle \forall u, v \in E$).

Then $(E, (\tau_a)_{a \in O}, w_0)$ is a norm-OOM, if

1. $\|w_0\| = 1$,
2. $\sum_{a \in O} \tau_a^* \tau_a = id_E$.

Theorem. If $(E, (\tau_a)_{a \in O}, w_0)$ is a norm-OOM, then the prescription

$$P(a_1 \ldots a_n) = \|\tau_a \ldots \tau_a w_0\|^2$$

describes the distribution of a stochastic process.

Theorem. Every stochastic process with observables $O = \{a_1, \ldots, a_k\}$ has a norm-OOM $(E, (\tau_a)_{a \in O}, w_0)$ which describes the distribution of the process by the above formula.
Norm OOMs, notes

• Mingjie Zhao [2] found a constructive, asymptotically correct learning algorithm for norm-OOMs.

• This algorithm is computationally prohibitively expensive. Mingjie explores tractable versions.

• Mingjie also has found another, iterative, EM-based learning algorithm (manuscript in preparation).

• Unlike the deplorable case of linear OOMs, it is decidable whether a structure \((\mathbb{R}^m, (\tau_a)_{a \in O}, w_0)\) is a norm-OOM.

• Every finite-dimensional norm-OOM \((\mathbb{R}^m, (\tau_a)_{a \in O}, w_0)\) can be effectively transformed into an equivalent (higher-dimensional) linear OOM. It appears that processes obtained from randomly generated norm-OOMs are generically non-HMM.

• It is unknown whether finite-dim HMM processes are a subclass of finite-dim norm-OOM processes. All that is known is that \(m\)-state Markov Chains have an \(m\)-dimensional norm-OOM.
1. M. Zhao, H. Jaeger (2007): **Norm observable operator models**. Jacobs University technical report Nr. 8

9 Beginnings of a Hilbert space theory 1

Consider a K-dimensional process $\left(\Omega, \mathcal{A}, P, X_t\right)$ with discrete values and one of its OOMs $\left(\mathbb{R}^K, (\tau_a)_{a \in \Sigma}, \omega_0\right)$.

For every $x \in \mathbb{R}^K$, one can construct a P-measurable function $\gamma(x) : \Omega \to \mathbb{R}$ where $\gamma(\omega_0) \equiv 1$, such that the following holds:

Theorem. (i) $\forall x \in \mathbb{R}^K : \gamma(x) \in L^\infty(P)$

(ii) $\langle x, y \rangle := \int_\Omega \gamma(x)\gamma(y) dP$ defines an inner product and thereby a norm on \mathbb{R}^K

(iii) The operators $(\tau_a)_{a \in \Sigma}$ are continuous w.r.t. this norm
Hilbert space theory 2: construction of \(\gamma \)

1. For every \(w = \tau_b w_0 / 1 \tau_b w_0 \), where \(P(\bar{b}) > 0 \),
we obtain a measure \(\mu_w \) on \((\Omega, \mathcal{A})\) by extending
\[
\mu_w(a_1...a_n) = 1 \tau_{a_n} ... \tau_{a_1} w
\]

2. For every such \(w \), \(\gamma(w) \) is defined as the density of \(\mu_w \) w.r.t. \(P \).

3. There exists a basis of \(\mathbb{R}^K \) consisting of such \(w \)'s.
For \(x \in \mathbb{R}^K \), \(x = \sum_{i=1}^{k} \alpha_i w_i \), define
\[
\gamma(x) = \sum \alpha_i \gamma(w_i)
\]
Open question1): it is not clear under which conditions the metric space \mathbb{R}^K (where the metric is the one induced by $\langle x, y \rangle := \int_{\Omega} \gamma(x)\gamma(x) dP$) is complete.

If we had a complete vector space, it would be a Hilbert space and we could develop an approximation theory (of infinite-dimensional operators by finite-dimensional).
10 Research topics

- Algebraic characterization of OOM matrices
- Characterization of OOMs that are HMMs
- Recovery of discrete "hidden" event structure from observation sequences
- Learning nonstationary OOMs
- Online learning algorithms
- Spatio-temporal OOMs, "Bayesian network" OOMs
- OOM and quantum mechanics
- OOMs in speech processing and biosequence modeling
- Efficient "direct" and online learning algorithms for input-output OOMs
- Incorporating prior knowledge into learning
- Learning with missing values and unequal observation intervals
- Characterization of standard processes
- Development of Hilbert space theory
11 A survey of further results
11.1 Input-output OOMs and Predictive State Representations
Controlled stochastic processes

• In open systems, future distributions depend on input.

Formally, a **controlled stochastic process** [1] is defined by conditional probabilities of the kind

\[
P(X_{n+1} = a | X_{n-k} = a_0, \ldots, X_n = a_k, U_{n-k} = u_0, \ldots, U_n = u_k, U_{n+1} = u)\]
Input-Output OOMs (IO-OOMs)

- An IO-OOM [2] is essentially a set of OOMs of same dimension; these OOMs are indexed by possible inputs; input switches between them.
- IO-OOMs standardly use σ, not 1, for projection of states on probabilities.
- If at time n the IO-OOM state is w_n, the probability to observe a at time $n+1$, given that input at time $n+1$ is u, is
 $$P(X_{n+1} = a \mid w_n) = \sigma \tau_a^u w_n.$$
- The probability to see observations a_1, \ldots, a_n, given control input u_1, \ldots, u_n, is
 $$P(X_1 = a_1, \ldots, X_n = a_n \mid U_1 = u_1, \ldots, U_n = u_n) = \sigma \tau_{a_n}^{u_n} \cdots \tau_{a_1}^{u_1} w_n.$$

$$(\mathbb{R}^m, (\tau_a^u)_{a \in O, \ u \in U, \ \sigma, w_0})$$
Learning IO-OOMs

\((\mathbb{R}^m, (\tau^u_a)_{a \in O, u \in U}, \sigma, W_0)\)

Given: training sequence \(u_1a_1 \ldots u_Na_N\).

1. Choose \(\kappa\) indicative & characteristic sequences, typically \((U \times O)^l\).
2. Let \(\hat{V} = \left(\hat{P}(\bar{q}^j \bar{c}^{i})\right)_{i,j}\) and \(\hat{W}_{ua} = \left(\hat{P}(q^j u a c^{i})\right)_{i,j}\) and \(\hat{c} = \left(\hat{P}(\bar{c}^{i})\right)_{i}\) and \(\hat{q}^T = \left(\hat{P}(\bar{q}^i)\right)_{j}\).

 Note: \(\hat{P}(u_1 a_1 \ldots u_l a_l) = \prod_{n=1, \ldots, l} \frac{\# u_1 a_1 \cdots u_n a_n}{\# u_1 a_1 \cdots u_{n-1} a_{n-1} u_n}\).

3. Estimate dimension \(m\) of IO-OOM as \(\text{numrank}(\hat{V})\).
4. Scale columns of \(\hat{V}\) and \(\hat{W}_{ua}\) by \(\sqrt{\# q_j}\).
5. Choose characterizer \(C \in \mathbb{R}^{m \times \kappa}\) such that \(C \hat{V}\) is invertible.
6. Set \(\hat{\tau}_a^u = CW_{ua}(C \hat{V})\)
 \(\hat{w}_0 = C \hat{c}\)
 \(\hat{\sigma}^T = \hat{q}^T (C \hat{V})^{-1}\)

Note: step 5 is where all the effort and quality lies. Re-use the efficient OOM-learning algorithms here.
Predictive state representations (PSR)

- PSRs are equivalent to IO-OOMs, using a slightly different formalism.

- Basic concept: tests. A test t is any sequence $u_1a_1 ... u_la_l$ of input/observation pairs.

- For an m-dimensional (in the sense of IO-OOMs) controlled stochastic process, there exist m core tests $t_1,..., t_m$, s.th. for any history $h = u_1a_1 ... u_Na_N$, the predictive state $p(h) = (P(t_1|h),..., P(t_m|h))^\top$ – i.e., an m-dimensional column vector – is a sufficient statistic of the future distribution of the process.

- This amounts to the following. For every history h, next input u and observation a, one can compute from $p(h)$ the probability $P(a \mid h, u)$ to see a under this input, by

$$P(a \mid h, u) = m_{ua} p(h),$$

where m_{ua} is an m-dimensional row vector which depends only on u and a.

- PSRs amount thus to IO-OOMs whose states are interpretable w.r.t. the core tests.
11.2 Mixture OOMs

Problem:
Continuous-valued processes have continuously many observable operators.

A solution [1]:
Combine observable operators from finite number of basis operators through membership functions.

\[\tau_x = 0.3 \tau_b + 0.7 \tau_c \]
Mixture OOMs, Results 1

- Fundamental equation transfers

\[P(X_1 \in I_1, \ldots, X_k \in I_k) = \sigma \circ \tau_{I_k} \circ \cdots \circ \tau_{I_1} \nu_0 \]

where \(\tau_I = \int_I \sum_{a \in E} \nu_a(x) \tau_a \, dx \).

- When membership functions are fixed, basic learning algorithms transfer.
Blended OOMs, results 2

Learning algorithm adapted:

- Example: learning a continuous-valued version of the probability clock - an almost white-noise process
11.3 Optimal decision making

Setup

- reward delayed for uncertain time up to time horizon h
- stochasticity in sensing, acting, environment
Optimal decision making 2

A quick recap of interpretable OOMs:

\[w = P(A_1 A_2 A_3) \]

state components = probabilities of characteristic events
Optimal decision making 3

Approach [1]: Merge into characteristic event A^+ all futures which yield reward within h
Optimal decision making 4

- Assume agent has a "self-and-world-OOM" S of how it acts and how the world reacts.

- Let $U = \{u_1, \ldots, u_k\}$ and $A = \{a_1, \ldots, a_l\}$ be the actions and world (sensed) observables. Let $O = U \times A$. Then $S = (\mathbb{R}^m, (\tau_{ua})_{ua \in O}, w_0)$.

- Put $\tau_u = \sum_{a \in A} \tau_{au}$.

- In non-deliberate mode, agent acts and updates OOM state w_n as follows:
 1. Choose action u_i according to probabilities $1 \tau_{u_i} w_n$.
 2. Execute chosen action u_i and observe world sensor feedback a_j.
 3. Update state $w_{n+1} = \tau_{u_i a_j} w_n / 1 \tau_{u_i a_j} w_n$.

- If S models world feedback correctly, $P(a_j | w_n, u_i) = 1 \tau_{u_i a_j} w_n / 1 \tau_{u_i} w_n$.
Optimal decision making 5

• Recall from previous slide: $S = (\mathbb{R}^m, (\tau_{ua})_{ua \in O}, w_0)$, $P(a_j | w_n, u_i) = 1 \tau_{ua_j} w_n / 1 \tau_{u_i} w_n$.

• Assume S is interpretable w.r.t. characteristic events A_i, where $A_1 = A^+$. Then the agent knows that the probability $P(+, h | w_n)$ to get a reward within horizon h, when the current state is w_n, is the first component $w_n[1]$ of w_n. This is subject to the condition that the agent continues operating in non-deliberative mode.

• The agent may want to do better than this, by switching to a deliberated action. That is, it would be advantageous to deliberately use action u at time n, if $P(+, h - 1 | w_n, u) > P(+, h | w_n)$.

• $P(+, h - 1 | w_n, u)$ can be computed cheaply:
 • Let $B^+ = \{u_1 a_1 ... u_{h-1} a_{h-1} | u_1 a_1 ... u_{h-1} a_{h-1} contains a reward\}$, and let $t_u = 1 \tau_{B^+} \tau_u$.
 • Then, $P(+, h - 1 | w_n, u) = t_u w_n$.
Thank you.