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Some Shorthand Notation 

•  For                                              write                     or 

•  For                  

write                                           or  

),...,( 00 NN aXaXP == )...( 0 NaaP ).(aP

),...,|,...,( 0011 NNMMNN aXaXbXbXP ==== ++

)...|...( 01 NMNN aabbP ++ ).|( abP

Let                      be a discrete-time stochastic process. 

€ 

(Xn )n= 0,1,2,...



OOM tutorial 4 

1 From HMMs to OOMs  
An HMM1): 

hidden states 

O = {a,b} observable events 0.5 

1.0 
0.0 

0.5 

a  1.0 

b  0.0 

a  0.5 

b  0.5 

         invariant vector of  

  

€ 

HMM : (2,{Ta,Tb},w0)
1) Graphics from slide of K. Kretschmar 
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                 HMM:                  OMM: 

•   

•                     where  
   M is a Markov matrix 

•   

•   

•    

•   

•   

•   

•   

•   

has column sum = 1  
,  where 

W0 is an invariant P-vector with 
component sum =1  

is an invariant vector with 
component sum =1  

non-negative entries only     negative entries are permitted     

  

€ 

HMM : (m,{Ta,Tb},w0)   

€ 

OOM : (m,{τ a,τ b},w0)
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An OOM is a structure                              , where                 , 
                      linear, such that  

  

€ 

w0 ∈ m

  

€ 

τ a :
m → m

1.                      

2.                                                   

3.  for every sequence                    :        
€ 

1µ = 1 τ a
a∈Σ
∑ = 1

€ 

a1...an ∈ On

Definition 

  

€ 

(m ,(τ a )a∈Σ,w0)

€ 

1τ an ⋅ ⋅ ⋅ τ a1w0 ≥ 0
Note. A formally more general, but equivalent, definition replaces the all-
ones row vector 1 by any row vector σ:   

1.    
2.    
3.    for every sequence                       : 

€ 

σ µ =σ

€ 

σ w0 =1

€ 

a1...an ∈ On

€ 

σ τ an ⋅ ⋅ ⋅ τ a1w0 ≥ 0
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Theorem 

An OOM                                 defines a stochastic process by 
putting  

  

€ 

(m ,(τ a )a∈Σ,w0)

for every sequence                     .   

Note. The process is stationary iff    

€ 

µw0 = w0.
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2 OOMs as sequence generators 

A = (2, {ta, tb}, w0)       O = {a, b} 

1 

1 

H 

taw0 

tbw0 

w0 

1 

1 taw1 

tbw1 

w1 

t = 0 t = 1 

a is observed 

•  Compute 1taw0 , 1tbw0 

•  (1taw0,, , 1tbw0)  is a         

P-vector 

•  Select a vs. b according 
to P-vector 

•  Apply operator 
•  Renormalize to 

component sum 1 to 
obtain w1 
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3  Equivalence theorem 

Two OOMs A = (m, (ta)a∈O, w0), B = (m, (t'a)a∈O, w'0), 
where m is minimal, generate the same process 

iff 
there exists a coordinate transformation r: m → m, 
that preserves component sums of vectors, with 

t'a = r ta r-1   for all a∈O. 
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Corollary 1 

For a given OOM A = (m, (ta)a∈O, w0) there exist 
infinitely many different but equivalent OOMs of 
same dimension. 

Proof: every coordinate transformation r: m → m, 
that preserves component sums of vectors, yields a 
new version of A via t'a = r ta r-1   for all a∈O. 
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Corollary 2 

For two OOMs A = (m, (ta)a∈O, w0), B = (m', (t'a)a∈O, w'0), 
it is decidable whether they are equivalent. 

Proof: first transform them into minimal-dimensional versions 
(effective algorithm exists), then check whether t'a = r ta r-1    

for all a∈O, for some r . 
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4 OOMs and HMMs 
The OOM 

generates/describes    aaaaabaaaabaaabaaaabaa...


P(a | bat)


t


a "probability clock" 
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How the probability clock works 

. 
•   tb is a projection: every state 

vector is mapped on Ê.  

•   ta is a rotation: iterated 
applications yield states on a 
circle.  

•  This gives rise to oscillation of 

P(a | ban).


Probability clocks cannot be modelled by HMMs, "because" 
rotation operators need negative entries. 
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Consequence 

The processes that can be modelled by HMMs are a 
proper subclass of the processes that can be modelled by 
OOMs: 

HMM       OOM 
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5 Interpretable OOMs 

Definition  
1.  Let O be a finite set (alphabet) of observables, k ≥ 1. A 

k-event  is a nonempty subset of Ok. 
2.  Let furthermore m ≥ 1. A partitioning Ok = A1 ∪ ... ∪ Am 

into m  disjoint nonempty k-events is a set of 
characteristic events (of length k and dimension m). 

Example 
O = {a,b}, k = 2, m = 3:    
A1 = {aa, ab} , A2 = {ba} , A3 = {bb}  
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A1


A2


A3


Explanation of concept. Consider a 3-dim OOM, and let 
A1, A2, A3 be characteristic events of dim 3 and some 
length k (we don't care). Then this OOM is interpretable 
w.r.t. A1, A2, A3, if the three components of state vectors = 
future probabilities of characteristic events Ai. 

...abbabaabab ba 
bb 

w = (P(A1| w), P(A2| w), P(A3| w))  

past       now      future 

w 
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Example 

M    a    r     y     h     a     d  ... 

=

P


a  b  c  d  e  f  g  h   i   j   k  l  m n  ...  z 
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Theorem 

Let A = (m, (ta)a∈O, w0) be a minimal-dimensional OOM.  

Let Ok = A1 ∪ ... ∪ Am be characteristic events of dim m and 
some length k.  

Then, generically, A  can be effectively transformed into an 
equivalent OOM that is interpretable w.r.t. A1, ..., Am . 

Proof: define a transformation ρ by ρ(x) =                                , 
where                                . Then verify mechanically. 
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Application 1: visual comparison of OOMs 

Given: two OOMs with same observables S. Both 
interpretable w.r.t. same characteristic events. If dim = 
3, plot "fingerprints" immediately. If dim > 3, project on 
3-dim subspace. 
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Application 2: Learning OOMs from data 

Interpretable OOMs are at the core of efficient learning 
algorithms. It's so important that we will use a new 
section. 
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6  The basic learning algorithm 

•                             etc, can be  
   estimated from data by     
   counting frequencies 

•  Basic linear algebra: 
obtain     from argument-
value pairs 

etc. 

€ 

w0 = (P(A1),...,P(Am )),
τ aw0 = (P(aA1),...,P(aAm )),
τ aτ bw0 = (P(baA1),...,P(baAm )),

etc. 

•  In an interpretable OOM: 

Core idea 
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Technical execution 
•   Assume                         is generated by  (m, (ta)a∈O, w0) . 

•   Task: get estimate       from S.  

Algorithm 

•   Choose m. 

•   Choose characteristic events A1, ..., Am . 

•   Count occurences #(AiAj) and #(AiaAj) and put them into 
matrices  V = (#(AiAj))  and Wa = (#(AiaAj)). 

•  Obtain estimate                   .  

•  Do this for all operators. 
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Example 

Given:  aabbabbbaabbabaabbba

Step 0:  estimate model dim and choose characteristic 

events. Here: dim = 2, A1 = {a}, A2 = {b}.  
Step 1:  perform frequency counts of characteristic 

events:  
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Step 2 and finish: 

(do the same for observable b) 
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Two good properties of learning algorithm 

If process is generated by m-dimensional OOM, and m is 
estimated correctly, the learning algorithm... 

•  is asymptotically correct (= yields correct model as size 
of training sequence goes to infinity) regardless of 
choice of characteristic events, 

•  is constructive and computationally efficient with       
O(N + |O| m3 / p), where p is degree of parallelization. 

Standard HMM learning via EM algorithm has neither 
property 1 nor 2. 
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Two bad properties of learning algorithm 

The algorithm 
•  depends in its statistical efficiency crucially on the 

choice of characteristic events – the statistical 
efficiency problem.   

The first of these two problems has prevented a practical 
use of OOMs for a long time, and the second has driven 
at least three people I know almost crazy.  

•  will often yield a set of operator matrices which violate 
the condition                                  , i.e., the model will 
assign negative "probabilities" to some sequences – 
the non-negativity problem.   

€ 

1τ an ⋅ ⋅ ⋅ τ a1w0 ≥ 0
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7 Statistically efficient learning algorithms 
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Characterizers 

Definition. Let         , and              be the alphabetical 

enumeration of Ok.  Let  = (m, (τa)a∈O, w0)  be an 

OOM of some process with distribution P and states       . 

Let C ∈ Matm×κ have unit column sums. Then C is a 

characterizer of length k  of  iff  for all              : 

















=

κ )|(

)|( 1

abP

abP
Cwa 

κbb ...1

∗∈Oa

aw

1≥k
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Intuitive Interpretation 

A characterizer C transforms the future distribution after 

initial history      (as represented by the probs                   ) 

into the OOM state      .  

















=

κ )|(

)|( 1

abP

abP
Cwa 

a )|( abP i

aw
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Some Properties of Characterizers 

1.  Every OOM has characterizers of length k for sufficiently 

large k.  
2.  Characteristic events, as introduced before, are a special 

case of characterizers. Example:   

 O = {a,b}, k = 2, m = 3,    
 Characteristic events A1 = {aa, ab} , A2 = {ba} , A3 = {bb}:  

€ 

1 1 0
0 0 1
0 0 0

0
0
1

 

 

 
  

 

 

 
  

P(aa | c 
P(ab | c 
P(ba | c 
P(bb | c 

 

 

 
 
 
 

 

 

 
 
 
 

=

P(A1 | c )
P(A2 | c )
P(A2 | c )

 

 

 
  

 

 

 
  

= wc .
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Learning Equation 

Let  = (m, (τa)a∈O, w0)  be an OOM of some process 

with distribution P with characterizer C. Let 

.
)|()|(

)|()|(
,

)|()|(

)|()|(

1

111

1

111

















=
















=

κκκ

κ

κκκ

κ

abaPabaP

abaPabaP
W

abPabP

abPabP
V a













Then 
+=τ )(CVCWaa
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Generalized Learning Algorithm 

.
)|(ˆ)|(ˆ

)|(ˆ)|(ˆ
ˆ,

)|(ˆ)|(ˆ

)|(ˆ)|(ˆ
ˆ

1

111

1

111



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
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







=















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κ

κκκ
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abaPabaP

abaPabaP
W

abPabP
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V a








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

1.  Choose a characterizer C.   

2.  Estimate (by obvious frequency counting from data) 

3.  Compute .)ˆ(ˆˆ +=τ VCWC aa
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Properties of General Learning Algorithm(s) 

1.  Yields asymptotically correct estimates       with any 

characterizer C. 

aτ̂

2.  Model variance (statistical efficiency) depends 

crucially on choice of C. 

3.  Search for "good" (low model variance, i.e. high 

statistical efficiency) learning algorithms boils down to 

optimizing C. 
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Algorithms for characterizer optimizing 
on the market today 

1.  Error controlling algorithm: M. Zhao, H. Jaeger, M. Thon (2009): A Bound 
on Modeling Error in Observable Operator Models and an Associated 
Learning Algorithm. Neural Computation, posted online 6/2009, doi:
10.1162/neco.2009.01-08-687 

2.  An unnamed, PCA based algorithm: Rosencrantz, M., Gordon, G., Thrun, 
S. (2004): Learning Low Dimensional Predictive Representations. 
Proc. 21st Int. Conf. on Machine Learning (ICML), Banff, Canada, 2004 

3.  Efficiency sharpening algorithm: H. Jaeger, M. Zhao, K. Kretzschmar, T. 
Oberstein, D. Popovici, A. Kolling (2006): Learning observable operator 
models via the ES algorithm. In: S. Haykin, J. Principe, T. Sejnowski, J. 
McWhirter (eds.), New Directions in Statistical Signal Processing: from 
Systems to Brain. MIT Press, Cambridge, MA., 417-464 
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Notes on algorithms 1 & 2 

•  Algorithms 1 and 2 yield equivalent results (M. Thon, in 
preparation) 

•  Core idea: set C = Lm
T, where Lm is made from the first m singular 

vectors of       (i.e.,       is the PCA-transform of     ).  
•  Theory (M. Zhao 2007, 2009): this C minimizes an upper bound on 

the relative error e of estimated operators    over the true     : 

•  Resource problem: algorithms have time and space complexity 
that scales with m N3 in the worst case, where m is model 
dimension and N  training data length.  

•  Both algorithms are constructive. 

€ 

ˆ V 

€ 

C ˆ V 

€ 

ˆ V 

€ 

ˆ τ 

€ 

τ

€ 

e = ˆ T −T
Frob

/ T Frob, where  ˆ T = ˆ τ a1
...ˆ τ al( ), T = τ a1

...τ al( )
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Notes on algorithm 3 

•  Core idea: exploit a certain algebraic (!) characterization of the 
statistically maximally efficient characterizer Cmax-eff. Approximate 
this precious Cmax-eff by an iterative re-estimation method. 

•  About 2-5 iterations usually suffice.  
•  One iteration has time and space cost scaling with m2 N (as 

opposed to worst-case m N3  for algorithms 1 & 2). 
•  Algorithm does not necessarily converge (can jitter around terminal 

value). For too large assumed model dimensions prone to 
numerical instability. Iteration dynamics is not understood. 
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Notes on all three algorithms 
•  These algorithms are rooted in the OOM-typical translation of stochastic 

concepts into algebraic ones: 
•  algorithm 1 exploits algebraic characterization of maximal statistical efficiency, 
•  the other two minimize estimation error bound on metric distance between 

estimated and true model matrices. 
•  All algorithms are technically involved and need care when implementing 

them in space/time efficient ways. 
•  Model quality is empirically found similar for algorithms 1 & 2 vs. algorithm 3 
•  Model accuracy (statistical efficiency) is far superior to EM-trained HMMs  
•  All algorithms by design are insensitive to overfitting (test performance does 

not decrease when model dim is chosen too big) 
•  Computational cost of algorithm 3 is about 10 times less than EM-learning of 

HMMs due to low number of iterations 
•  Average cost of algorithms 1 & 2 appears to be much less than that of 

algorithm 3 (worst-case cost is however much higher), depends much on 
nature of process, needs analysis 
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Demo 1: logistic chaos process1) 

•  Data from 16-bin discretized logistic process x(n+1) = 4 x(n) (1 – x(n)), 
which is strongly chaotic (max. Lyapunov exponent = 2) 

•  CPU times here were about 1:10 of algorithm 3 vs. EM-HMM, and again 
1:10 of algorithm 1 vs. algorithm 3 

1) From Zhao/Jaeger/Thon, Neural Computation, forthcoming 



OOM tutorial 39 

Demo 2: some standard benchmarks 
from the PSR community1) 

•  These are input-output processes; OOMs can accomodate 
•  2 out of 7 examples shown, others are similar 
•  Figures show average 1-step prediction error vs. training data length 

1) From Zhao/Jaeger/Thon, Neural Computation, forthcoming 
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Efficient learning algorithms: summary 

•  The problem of finding statistically efficient versions of the basic 
OOM learning algorithm has essentially been solved. 

•  Algorithms starkly outperform EM-HMM in accuracy and cost. 
•  Algorithms use novel learning principles: 

•  Algorithms 1 & 2: minimizing error bound on model parameters 
•  Algorithm 3: optimizing statistical efficiency of asymptotically correct 

estimator 

•  More research needed: 
•  Algorithms 1 & 2: improving worst-case cost 
•  Algorithm 3: analysis of iteration dynamics and numerical stability 

•  Algorithms are much more complicated than EM-HMM. 
•  Overview and analytic comparison/unification paper (M. Thon) 

is in preparation. 
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8 The dreaded nonnegativity problem 

•  Recall defining conditions of OOM                                  :  

•  Conditions 1. and 2. are easy to check; the non-negativity condition 3. isn't.  

1.                     has column sums = 1 

2.                            

3.  for every sequence                          it holds that 

€ 

a1...an ∈ On

  

€ 

(m ,(τ a )a∈Σ,w0)

€ 

1τ an ⋅ ⋅ ⋅ τ a1w0 ≥ 0

•  Learnt models often (even typically, for nontrivial data) violate non-
negativity. 

•  Utterly desirable: method to check for non-negativity condition; method to 
transform invalid learnt OOM into "closest" valid one.  

•  Every OOM researcher I know has burnt lots of lifetime on this problem, 
aging prematurely in the process. 
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Three solutions to the dreaded problem 

1.  Empirical workaround: when an invalid model is used in 
prediction / generation, and invalid (negative-probability) states 
occur, renormalize them on the fly. 
•   A recommended method is detailed in [1]  

2.  Emphatic anti-solution: it is undecidable whether a set of 
candidate operator matrices satisfies the nonnegativity condition. 
•  Proof by E. Wiewora [2], by adaptation of a related proof by 

Denis and Esposito [3]  

3.  Emperor's solution: disallow non-negativity by using norm-
OOMs, which are built around the idea to set 

•  Introduced by M. Zhao [4,5], including a general stochastic 
framework and a basic learning algorithm.  

  

€ 

P(a1…an ) = τ an …τ a1w0

2
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7 From stochastic processes to OOMs 

So far, we introduced OOMs as generalizations of HMMs. 

Now we will re-introduce OOMs in a very different way, 
starting from stochastic processes and showing that 
(basically) every stochastic process has an OOM. 
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What's a future? 

For a robot, or anybody else modelling stochastic 
processes, the future is a probability distribution over 
possible future developments. 
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Dynamics of future distributions 

     t     t + 1 
 
  
 t + 2 
    . . . . . . 

observed 
event Et


observed 
event Et+1


•   Observations update expectations, that is, future 
distributions. 

•   ... Et , Et+1 , ... : observations. Formally, events in 
observation space s-algebra. 
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The basic idea 
observable events = operators that change distributions 

•   set of all distributions is a (functional) vector space V  

•  for every event E an "observable operator" tE


•  observable operators operate on V


V


tE
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Characterizing SD processes 1 

The distribution of a stationary, discrete-valued process 
(SD process) is fully characterized by its conditioned 
continuation probabilities 

where  

Special case n = 0:                               would suffice.  
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Characterizing SD processes 2 

SD process  
Consider the vector space of all 
numerical functions on finite sequences, 

    

€ 

D = {d :O*→ }
For each antecedent     , define a 
predictor function  

    

€ 

ga :O*→ , ga (b ) = P(b | a )
Shorthand:    

€ 

ga = P(⋅ | a )
The set of all such predictor functions,  

  

€ 

{ga | a ∈ O*} ⊂ D
describes all                and thus 
characterizes the process.  
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Characterizing SD processes 3 

    

€ 

≅

all P(b | a )
≅

{ga | a ∈ Σ*}

SD process  
Consider the linear subspace spanned 
by all predictor functions        ,   

€ 

ga 

  

€ 

G = [{ga | a ∈ Σ*}]D

Let                          be a linear mapping 
satisfying  

  

€ 

ta :G → G

for all                             (They exist!)  
  

€ 

ta (gc ) = P(a | c )gc a

€ 

a∈ O, c ∈ O* .
Let  

    

€ 

gε :O*→ , gε (b ) = P(b |ε) = P(b )
Let                       be a linear mapping 
satisfying  

    

€ 

1 :G → 

for all                   (exists!)  
  

€ 

1gc =1

€ 

c ∈ O* .
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Characterizing SD processes 4 

  

€ 

≅

{ga | a ∈ Σ*}

SD process  

  

€ 

G =

[{ga | a ∈ O*}]D

  

€ 

ta (gc ) =

P(a | c )gc a

  

€ 

gε (b ) = P(b )

  

€ 

1gc =1

Theorem.   
For any                           it holds that  

    

€ 

P(a1…an ) = 1tanta1 gε
Compare:  

Definition. dim() is the dimension of 
the process. 

Corollary. A finite-dimensional process 
of dimension m has a "matrix" OOM 

    

€ 

(m ,(τ a )a∈Σ,w0) ≅ (G,(ta )a∈Σ,gε ).

€ 

a1...an ∈ O*
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Characterizing SD processes 5 

  

€ 

≅

{ga | a ∈ Σ*}

SD process  

  

€ 

G =

[{ga | a ∈ O*}]D

  

€ 

ta (gc ) =

P(a | c )gc a

  

€ 

1gc =1

  

€ 

(G,(ta )a∈Σ,gε )

Every SD process has an "abstract" 
OOM                             .   

€ 

(G,(ta )a∈Σ,gε )

These abstract OOMs are unique 
("coordinate-free representation"). 

The dimension of a process may be 
infinite. 

Abstract OOMs are needed for proving 
the equivalence theorem. 

  

€ 

gε (b ) = P(b )
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8 General OOM theory 1 

Theorem. Let             be a 
process with values in (B,), 
not necessarily stationary.  
Then there exists an OOM  

such that            
    

€ 

(K ,(τA ,t )A∈B,t>0,w0)

Furthermore, it holds that 

(1) 

(2) 

  

€ 

τ

n

•
An ,t

= τAn ,t
n
∑
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Decomposing OOMs 1 

Recall: observable operators of OOMs derived from 
HMMs have the form 

  Ta = MT Oa 

where M is the transition matrix of a Markov chain and Oa 
is a (diagonal) observation matrix containing emission 
probabilities of a. 
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Decomposing OOMs 2 

Theorem. Let             be a process with values in (B,), not 
necessarily stationary.  Then there exists an OOM with 

evolution operators 
observation operators 

such that            
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Decomposing OOMs 3 

Visualization of evolution operators mDt and observation 
operators hA  

time 
Dt1
 Dt2
 Dt3


mDt1
 mDt3


mDt2


A1
 A2
 A3


hA1

hA2
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From linear algebra back to processes 

    

€ 

(K ,(τA ,t )A∈B,t>0,w0)Recall: in an abstract OOM                                           we obtain    

Theorem. Let (B,) be a polish measure space, V a real vector space with 
basis E, w0    V,                        a family of linear operators on V, V  be  

generated by the vectors                                     and the numerical function 

                                       be  defined by 

Then P can be extended to the distribution of a stochastic process iff 

(1)                          (2)                           for all basis vectors e and times t 

(3)                                              for all t sequences 

(4)                                             (5)    

    

€ 

P : (B ×+)*→ 
€ 

∈



OOM tutorial 58 

From processes to linear algebra and 
back to processes 

stochastic  
processes their  

OOMs 

linear 
algebra 

=


The theory of distributions of stochastic processes (with 
polish measure spaces and real or discrete time) becomes a 
subtheory of linear algebra. 
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Historical notes / related approaches 
1957 - 
1970 

A long series of investigations in mathematical probability theory concerning the 
question when two HMMs are equivalent (overviews in [1] [2]) 

1984 Ito/Amari/Kobayashi [1] solve problem by embedding HMM processes in OOM-like 
processes. Further refinements and extensions in [3] [4] 

... - 1969 A Roumanian school of probability theory develops theory to describe stochastic 
processes by observable operators (although it is not recognized that they can 
always be chosen linear) [5] 

1997 Upper [6] and Jaeger [7][8] independently find that OOM processes can be learnt by 
estimating linear operators. Jaeger introduces OOM formalism. 

2001 Littman/Sutton/Singh [9] introduce predictive state representations (PSRs) for input-
driven processes, unaware of IO-OMMs described earlier by Jaeger [10].  

1969  Schützenberger [11] introduces multiplicity automata (MAs), which are equivalent to 
finite-dimensional OOMs, expressed in a context of automata theory.  

1980's - 
present 

A series of investigations in statistical learning theory and stochastic languages on 
learnability and decidability issues concerning MAs. Among other, it is found that the 
non-negativity problem is undecidable [12][13] 

antiquity - 
present 

Ancient idea in quantum mechanics, information theory [14] and statistical physics 
[15]: the state of a physical system is that which contains all information about the 
future  
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Norm OOMs [1,2] 

•  Motivation: avoid the non-negativity problem of standard linear OOMs 
•  Approach: keep basic structure of OOMs:                               ,  but compute 

probabilities from states by 

•  This avoids the non-negativity problem by design. 

  

€ 

P(a1…an ) = τ an …τ a1w0

2
.

  

€ 

(m ,(τ a )a∈O,w0)
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Norm OOMs, cont'd 

Definition. Let O = {a1, ..., ak} be a finite set of observables, and let E be a real vector 
space with an inner product (and hence, a norm). Let  w0 ∈ E  and for each a ∈ O, let τa 
be a linear map on E, and τa* its adjoint operator (i.e.,                                                   ). 
Then                              is a norm-OOM, if   

1.                     2.   

Theorem. If                              is a norm-OOM, then the prescription  

describes the distribution of a stochastic process. 

Theorem. Every stochastic process with observables O = {a1, ..., ak} has a norm-OOM  
                            which describes the distribution of the process by the above formula.  

€ 

w0 =1,

€ 

(E,(τ a )a∈O,w0)

€ 

τ a*
a∈O
∑ τ a = idE .

€ 

τ a* u, v = u, τ av ∀u,v ∈ E

€ 

(E,(τ a )a∈O,w0)

€ 

(E,(τ a )a∈O,w0)

  

€ 

P(a1…an ) = τ an …τ a1w0

2
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Norm OOMs, notes 

•  Mingjie Zhao [2] found a constructive, asymptotically correct learning algorithm for 
norm-OOMs. 

•  This algorithm is computationally prohibitively expensive. Mingjie explores tractable 
versions.  

•  Mingjie also has found another, iterative, EM-based learning algorithm (manuscript 
in preparation). 

•  Unlike the deplorable case of linear OOMs, it is decidable whether a structure        
                  is a norm-OOM. 

•  Every finite-dimensional norm-OOM                               can be effectively 
transformed into an equivalent (higher-dimensional) linear OOM. It appears that 
processes obtained from randomly generated norm-OOMs are generically non-
HMM. 

•  It is unknown whether finite-dim HMM processes are a subclass of finite-dim norm-
OOM processes. All that is known is that m-state Markov Chains have an m-
dimensional norm-OOM. 

  

€ 

(m ,(τ a )a∈O,w0)

  

€ 

(m ,(τ a )a∈O,w0)
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1.  M. Zhao, H. Jaeger (2007): Norm observable operator models. Jacobs 
University technical report Nr. 8 

2.  M. Zhao, H. Jaeger (2010): Norm Observable Operator Models Neural 
Computation, to appear 
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9  Beginnings of a Hilbert space theory 1 
Consider a K-dimensional process                          with discrete 
values and one of its OOMs                               .    

€ 

(K ,(τ a )a∈Σ,w0)
  

€ 

(Ω,A,P,Xt )

For every               , one can construct a P-measurable function 

                           where                      such that the following holds:  

  

€ 

x ∈ K

  

€ 

γ(x) :Ω→ 

Theorem. (i) 

(ii)                                          defines an inner product and  

     thereby a norm on 

(iii) The operators                are continuous w.r.t. this norm   

    

€ 

∀x ∈ K : γ(x)∈ L∞(P)

  

€ 

K
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Hilbert space theory 2: construction of g


1.  For every 

      we obtain a measure mw on (W,) by extending  

2.  For every such w,  g(w) is defined as the density of mw w.r.t. P. 

3.  There exists a basis of          consisting of such w 's.  

 For              ,                          ,  define 

  

€ 

K

  

€ 

x ∈ K
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Hilbert space theory 3: the open issue


Open question1): it is not clear under which conditions the 

metric space          (where the metric is the one induced  

by                                          ) is complete. 

If we had a complete vector space, it would be a Hilbert 
space and we could develop an approximation theory (of 
infinite-dimensional operators by finite-dimensional).  

  

€ 

K

1) Pointed out by A. Schönhuth 
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10 Research topics 
•  Algebraic characterization of OOM matrices  
•  Characterization of OOMs that are HMMs 
•  Recovery of discrete "hidden" event structure from observation 

sequences 
•  Learning nonstationary OOMs 
•  Online learning algorithms 
•  Spatio-temporal OOMs, "Bayesian network" OOMs 
•  OOM and quantum mechanics 
•  OOMs in speech processing and biosequence modeling 
•  Efficient "direct" and online learning algorithms for input-output OOMs 
•  Incorporating prior knowledge into learning 
•  Learning with missing values and unequal observation intervals 
•  Characterization of standard processes 
•  Development of Hilbert space theory 
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11 A survey of further results 
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11.1 Input-output OOMs  
and Predictive State Representations 



OOM tutorial 71 

Controlled stochastic processes 

•  In open systems, future distributions depend on input. 

control strategy / 

agent actions 

plant state / 

sensor input 
now t


control 
feed- 
back 

•  Formally, a controlled stochastic process [1] is defined by 
conditional probabilities of the kind 

  

€ 

P(Xn+1 = a |Xn−k = a0,…,Xn = ak,Un−k = u0,…,Un = uk,Un+1 = u)
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Input-Output OOMs (IO-OOMs)  

•  An IO-OOM [2] is essentially a set of OOMs of same dimension; these OOMs 
are indexed by possible inputs; input switches between them. 

•  IO-OOMs standardly use σ, not 1, for projection of states on probabilities. 
•  If at time n the IO-OOM state is wn,  the probability to observe a at time  n+1, 

given that input at time n+1 is  u, is  

•  The probability to see observations a1, ..., an,  given control input u1, ..., un, is 

(m,(ta
u)a∈O, u∈U, σ,w0)


u1  u2  u3  u4  u5  u6  u7  ...


€ 

P(Xn+1 = a |wn ) =σ τ a
u wn .

  

€ 

P(X1 = a1,…Xn = an |U1 = u1,…,Un = un ) =σ τ an
unτ a1

u1wn .

a1 a2  a3  a4  


control inputs 

observations 
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Learning IO-OOMs1)  

Given: training sequence u1a1 ... uNaN. 

1.  Choose κ indicative & characteristic sequences, typically (U × O)l. 

2.  Let 

3.  Estimate dimension m of IO-OOM as 

4.  Scale colums of                      by 

5.  Choose characterizer                     such that          is invertible. 

6.  Set  

(m, (ta
u)a∈O, u∈U, σ, w0)


    

€ 

Note :   ˆ P (u1 a1ul al ) =
# u1 a1unan

# u1 a1un−1an−1unn=1,...,l
∏ .

  

€ 

ˆ V = ˆ P (q jc i)( )i, j
 and ˆ W ua =  ˆ P (q j uac i)( )i, j

 and ˆ c = ˆ P (c i)( )i
 and ˆ q T = ˆ P (q j )( ) j

.

€ 

numrank( ˆ V ).

  

€ 

ˆ V   and  ˆ W ua

€ 

#q j .

  

€ 

C ∈ m×κ

€ 

C ˆ V   

  

€ 

ˆ τ a
u = C ˆ W ua (C ˆ V )

ˆ w 0 = C ˆ c 
ˆ σ T = ˆ q T (C ˆ V )−1

1) adapted from a slide of M. Thon 

Note: step 5 is where all the effort and 
quality lies. Re-use the efficient OOM-
learning algorithms here. 
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Predictive state representations (PSR) 
•  PSRs are equivalent to IO-OOMs, using a slightly different formalism. 

•  Independently discovered by Littman, Sutton and Singh 2001 [3]. Context: 
modeling action selection of agents in stochastic environments; PSRs introduced 
as generalizations of POMDPs. Now a fertile field of research (try Google). 

•  Basic concept: tests. A test t is any sequence  u1a1 ... ulal of input/observation pairs. 

•  For an m-dimensional (in the sense of IO-OOMs) controlled stochastic process, 
there exist  m core tests t1,..., tm, s.th. for any history h =u1a1 ... uNaN, the predictive 
state   p(h) = (P(t1|h),..., P(tm|h))T – i.e., an m-dimensional column vector – is a 
sufficient statistic of the future distribution of the process.  

•  This amounts to the following. For every history h, next input u and observation a, 
one can compute from p(h) the probability  P(a | h, u) to see a under this input, by 

where mua  is an m-dimensional row vector which depends only on u and a. 

•  PSRs amount thus to IO-OOMs whose states are interpretable w.r.t. the core tests. 

•    € 

P(a | h,u) = mua p(h),
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2.  H. Jaeger (1998): Observable operator models of stochastic processes: a tutorial. GMD Report 42, 
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3.  Littman, M. L., Sutton, R. S., Singh, S. (2001), Predictive representation of state. In: Advances in Neural 

Information Processing Systems 14 (Proc. NIPS 01), 1555-1561 
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11.2 Mixture OOMs 

Problem:  
Continuous-valued 
processes have 
continuously many 
observable operators. 

A solution [1]: 
Combine observable 
operators from finite 
number of basis 
operators through 
membership functions. observable values 

ta
 tc
tb


τx= 

0.3 tb 
+0.7 tc


x
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Mixture OOMs, Results 1 

•  Fundamental equation transfers 

    where                                              . 

•  When membership functions are fixed, basic learning 
algorithms transfer. 
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Blended OOMs, results 2 
Learning algorithm adapted: 
•  Example: learning a continuous-valued version of the 

probability clock - an almost white-noise process 
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1.  H. Jaeger(2001): Modeling and learning continuous-valued stochastic 
processes with OOMs. GMD Report 102, German National Research Center for 
Information Technology, 2001 
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11.3 Optimal decision making 

Setup 
•  reward delayed for uncertain time up to time horizon h  
•  stochasticity in sensing, acting, environment 

...
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Optimal decision making 2 

state components = probabilities of characteristic events  

A1


A2


A3
w   
w  =  

P


A1
 A2
 A3


A quick recap of interpretable OOMs: 
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Optimal decision making 3 

+ + + + 

Approach [1]: Merge into characteristic event 
A+ all futures which yield reward within h 

A1


A+ 

A3
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Optimal decision making 4 

•  Assume agent has a "self-and-world-OOM"  of how it acts and how the 
world reacts. 

•  Let U = {u1,...,uk} and  A = {a1,...,al}  be the actions and world (sensed) 
observables. Let O = U ×A. Then   = (m, (τua)ua ∈O, w0).  

•  Put  

•  In non-deliberate mode, agent acts and updates OOM state wn as follows: 

1.  Choose action ui according to probabilities 1 τui wn. 

2.  Execute chosen action ui  and observe world sensor feedback aj. 

3.  Update state  wn+1 = τui ajwn  / 1τui ajwn  . 

•  If   models world feedback correctly,   

€ 

τ u = τ au.
a∈A
∑

€ 

P(a j | wn, ui) = 1τ ui a j
wn / 1τ ui wn .
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Optimal decision making 5 

•  Recall from previous slide:   = (m, (τua)ua ∈O, w0), 

•  Assume   is interpretable w.r.t. characteristic events Ai, where  A1 = A+. Then the 
agent knows that the probability P(+, h | wn) to get a reward within horizon h, when 
the current state is wn, is the first component  wn[1] of  wn.  This is subject to the 
condition that the agent continues operating in non-deliberative mode. 

•  The agent may want to do better than this, by switching to a deliberated action. That 
is, it would be advantageous to deliberately use action u at time n, if          
P(+, h – 1 | wn, u) > P(+, h | wn). 

•  P(+, h – 1 | wn, u) can be computed cheaply: 

•  Let B+ = {u1a1... uh-1ah-1  | u1a1... uh-1ah-1 contains a reward}, and let 

•  Then,   

€ 

P(a j | wn, ui) = 1τ ui a j
wn / 1τ ui wn .

€ 

tu = 1τ
B +τ u .

€ 

P(+, h −1|wn ,u) = tu wn .
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1.  H. Jaeger (1999): Action selection for delayed, stochastic reward. Proc. 
4th Annual Conf. of the German Cognitive Science Society (KogWis99), Infix 
Verlag, 213-219. 
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Thank you. 


