
Efficient Estimation of OOMs

Herbert Jaeger, Mingjie Zhao, Andreas Kolling
International University Bremen

Bremen, Germany
h.jaeger|m.zhao|a.kolling@iu-bremen.de

Abstract

A standard method to obtain stochastic models for symbolic time series
is to train state-emitting hidden Markov models (SE-HMMs) with the
Baum-Welch algorithm. Based on observable operator models(OOMs),
in the last few months a number of novel learning algorithms for simi-
lar purposes have been developed: (1,2) two versions of an ”efficiency
sharpening” (ES) algorithm, which iteratively improves the statistical ef-
ficiency of a sequence of OOM estimators, (3) a constrained gradient de-
scent ML estimator for transition-emitting HMMs (TE-HMMs). We give
an overview on these algorithms and compare them with SE-HMM/EM
learning on synthetic and real-life data.

1 Introduction

Stochastic symbol sequences with memory effects are frequently modelled by training hid-
den Markov models with the Baum-Welch variant of the EM algorithm. More specifically,
state-emitting HMMs (SE-HMMs) are standardly employed, which emit observable events
from hidden states. Known weaknesses of HMM training with Baum-Welch are long run-
times and proneness to getting trapped in local maxima.

Over the last few years, an alternative to HMMs has been developed,observable opera-
tor models(OOMs). The class of processes that can be described by (finite-dimensional)
OOMs properly includes the processes that can be described by (finite-dimensional)
HMMs. OOMs identify the observable eventsa of a process with linearobservable op-
eratorsτa acting on a real vector space ofpredictive statesw [1]. A basic learning algo-
rithm for OOMs [2] estimates the observable operatorsτa by solving a linear system of
learning equations. The learning algorithm is constructive, fast and yields asymptotically
correct estimates. Two problems that so far prevented OOMs from practical use were (i)
poor statistical efficiency, (ii) the possibility that the obtained models might predict nega-
tive “probabilities” for some sequences. Since a few monthsthe first problem has been very
satisfactorily solved [2]. In this novel approach to learning OOMs from data we iteratively
construct a sequence of estimators whose statistical efficiency increases, which led us to
call the methodefficiency sharpening(ES).

Another, somewhat neglected class of stochastic models is transition-emitting HMMs (TE-
HMMs). TE-HMMs fall in between SE-HMMs and OOMs w.r.t. expressiveness. TE-
HMMs are equivalent to OOMs whose operator matrices are non-negative. Because TE-
HMMs are frequently referred to as Mealy machines (actuallya misnomer because origi-

nally Mealy machines are not probabilistic but only non-deterministic), we have started to
call non-negative OOMs “Mealy OOMs” (MOOMs). We use either name according to the
way the models are represented. A variant of Baum-Welch has recently been described for
TE-HMMs [3]. We have derived an alternative learning constrained log gradient (CLG)
algorithm for MOOMs [4] which performs a constrained gradient descent on the log like-
lihood surface in the log model parameter space of MOOMs.

In this article we give a compact introduction to the basics of OOMs (Section 2), outline
the new ES and CLG algorithms (Sections 3 and 4), and compare their performance on a
variety of datasets (Section 5). In the conclusion (Section6) we also provide a pointer to a
Matlab toolbox.

2 Basics of OOMs

Let (Ω,A, P, (Xn)n≥0) or (Xn) for short be a discrete-time stochastic process with values
in a finite symbol setO = {a1, . . . , aM}. We will consider only stationary processes
here for notational simplicity; OOMs can equally model nonstationary processes. Anm-
dimensional OOM for(Xn) is a structureA = (Rm, (τa)a∈O, w0), where eachobservable
operatorτa is a real-valuedm×m matrix andw0 ∈ R

m is thestarting state, provided that
for any finite sequenceai0 . . . ain

it holds that

P (X0 = ai0 , . . . Xn = ain
) = 1mτain

· · · τai0
w0, (1)

where1m always denotes a row vector of units of lengthm (we drop the subscript if it is
clear from the context). We will use the shorthand notationā to denote a generic sequence
andτā to denote a concatenation of the corresponding operators inreverse order, which
would condense (1) intoP (ā) = 1τāw0.

Conversely, if a structureA = (Rm, (τa)a∈O, w0) satisfies

(i) 1w0 = 1, (ii) 1(
∑

a∈O

τa) = 1, (iii) ∀ā ∈ O∗ : 1τāw0 ≥ 0, (2)

(whereO∗ denotes the set of all finite sequences overO), then there exists a process whose
distribution is described byA via (1). The process is stationary iff(

∑

a∈O τa)w0 = w0.
Conditions (i) and (ii) are easy to check, but no efficient criterium is known to decide
whether the non-negativity criterium (iii) holds for a structureA (for recent progress in
this problem, which is equivalent to a problem of general interest in linear algebra, see
[5]). ModelsA learnt from data tend to marginally violate (iii) – this is the unresolved
non-negativity problem in the theory of OOMs.

Thestatewā of an OOM after an initial historȳa is obtained by normalizingτāw0 to unit
component sum viawā = τāw0/1τāw0.

A fundamental (and nontrivial) theorem for OOMs characterizes equivalence of two
OOMs. Twom-dimensional OOmsA = (Rm, (τa)a∈O, w0) andÃ = (Rm, (τ̃a)a∈O, w̃0)
are defined to be equivalent if they generate the same probability distribution according to
(1). By the equivalence theorem,A is equivalent toÃ if and only if there exists a transfor-
mation matrix̺ of sizem × m, satisfying1̺ = 1, such that̃τa = ̺τa̺−1 for all symbols
a.

We mentioned in the Introduction that OOM states represent the future probability distribu-
tion of the process. This can be algebraically captured in the notion ofcharacterizers. Let
A = (Rm, (τa)a∈O, w0) be an OOM for(Xn) and choosek such thatκ = |O|k ≥ m. Let

b̄1, . . . , b̄κ be the alphabetical enumeration ofOk. Then am×κ matrixC is acharacterizer
of lengthk for A iff 1C = 1 (that is,C has unit column sums) and

∀ā ∈ O∗ : wā = C(P (b̄1|ā) · · ·P (b̄κ|ā))′, (3)

where ′ denotes the transpose andP (b̄|ā) is the conditional probability that the process
continues with̄b after an initial historȳa. It can be shown [2] that every OOM has charac-
terizers of lengthk for suitably largek. Intuitively, a characterizer “bundles” the lengthk
future distribution into the state vector by projection.

If two equivalent OOMsA, Ã are related bỹτa = ̺τa̺−1, andC is a characterizer forA,
it is easy to check that̺C is a characterizer for̃A.

We conclude this section by explaining the basic learning equations. An analysis of (1)
reveals that for any statewā and operatorτb from an OOM it holds that

τawā = P (a|ā)wāa, (4)

whereāa is the concatenation of̄a with a. The vectorswā andP (a|ā)wāa thus form an
argument-value pair forτa. Let ā1, . . . , āl be a finite sequence of finite sequences over
O, and letV = (wā1

· · ·wāl
) be the matrix containing the corresponding state vectors.

Let againC be am × κ sized characterizer of lengthk andb̄1, . . . , b̄κ be the alphabetical
enumeration ofOk. Let V = (P (b̄i|āj)) be theκ × l matrix containing the conditional
continuation probabilities of the initial sequencesāj by the sequences̄bi. It is easy to see
that V = CV . Likewise, letWa = (P (a|ā1)wā1a · · ·P (a|āl)wāla) contain the vectors
corresponding to the rhs of (4), and letW a = (P (ab̄i|āj)) be the analog ofV . It is easily
verified thatWa = CW a. Furthermore, by construction it holds thatτaV = Wa.

A linear operator onRm is uniquely determined byl ≥ m argument-value pairs provided
there are at leastm linearly independent argument vectors in these pairs. Thus, if a charac-
terizerC is found such thatV = CV has rankm, the operatorsτa of an OOM characterized
by C are uniquely determined byV and the matricesW a via τa = WaV † = CW a(CV)†,
where† denotes the pseudo-inverse. Now, given a training sequenceS, the conditional
continuation probabilitiesP (b̄i|āj), P (ab̄i|āj) that make upV ,W a can be estimated from
S by an obvious counting scheme, yielding estimatesP̂ (b̄i|āj), P̂ (ab̄i|āj) for making up
V̂ andŴ a, respectively. This leads to the general form of OOM learning equations:

τ̂a = CŴ a(CV̂)†. (5)

In words, to learn an OOM fromS, first fix a model dimensionm, a characterizerC, in-
dicative sequences̄a1, . . . , āl, then construct estimateŝV andŴ a by frequency counting,
and finally use (5) to obtain estimates of the operators. Thisestimation procedure is asymp-
totically correct in the sense that, if the training data were generated by anm-dimensional
OOM in the first place, this generator will almost surely be perfectly recovered as the size
of training data goes to infinity. The reason for this is that the estimateŝV andŴ a con-
verge almost surely toV andW a. The starting state can be recovered from the estimated
operators by exploiting(

∑

a∈O τa)w0 = w0 or directly fromC andV̂ (see [2] for details).

3 The ES Family of Learning Algorithms

All learning algorithms based on (5) are asymptotically correct (which EM algorithms are
not, by the way), but their statistical efficiency (model variance) depends crucially on (i)

the choice of indicative sequencesā1, . . . , āl and (ii) the characterizerC (assuming that
the model dimensionm is determined by other means, e.g. by cross-validation). Wewill
first address (ii) and describe an iterative scheme to obtaincharacterizers that lead to a low
model variance.

The choice ofC has a twofold impact on model variance. First, the pseudoinverse oper-
ation in (5) blows up variation inCV̂ depending on the matrix condition number of this
matrix. Thus,C should be chosen such that the condition ofCV̂ gets close to 1. This strat-
egy was pioneered in [6], who obtained the first halfway statistically satisfactory learning
procedures. In contrast, here we set out from the second mechanism by whichC influences
model variance, namely, chooseC such that the variance ofCV̂ itself is minimized.

We need a few algebraic preparations. First, observe that ifsome characterizerC is used
with (5), obtaining a model̂A, and̺ is an OOM equivalence transformation, then ifC̃ =

̺C is used with (5), the obtained modelˆ̃A is an equivalent version of̂A via ̺.

Furthermore, it is easy to see [2] that two characterizersC1, C2 characterize the same OOM
iff C1V = C2V . We call two characterizerssimilar if this holds, and writeC1 ∼ C2.
ClearlyC1 ∼ C2 iff C2 = C1+G for someG satisfyingGV = 0 and1G = 0. That is, the
similarity equivalence class of some characterizerC is the set{C +G|GV = 0,1G = 0}.
Together with the first observation this implies that we may confine our search for “good”
characterizers to a single (and arbitrary) such equivalence class of characterizers. LetC0 in
the remainder be a representative of an arbitrarily chosen similarity class whose members
all characterizeA.

In [2] it is explained that the variance ofCV̂ is monotonically tied to
∑

i=1,...,κ;j=1,...,l P (āj b̄i)‖wāj
− C(:, i)‖2, where C(:, i) is the i-th column of C.

This observation allows us to determine an optimal (minimalvariance ofCV̂ within the
equivalence class ofC0) characterizerCopt as the solution to the following minimization
problem:

Copt = C0 + Gopt, where

Gopt = arg min
G

∑

i=1,...,κ;j=1,...,l

P (āj b̄i)‖wāj
− (C0 + G)(:, i)‖2 (6)

under the constraintsGV = 0 and1G = 0. This problem can be analytically solved
[2] and has a surprising and beautiful solution, which we nowexplain. In a nutshell,Copt
is composed column-wise by certain states of a time-reversed version ofA. We describe
in more detail time-reversal of OOMs. Given an OOMA = (Rm, (τa)a∈O, w0) with an
induced probability distributionPA, its reverseOOM Ar = (Rm, (τ r

a)a∈O, wr
0) is charac-

terized by a probability distributionPAr satisfying

∀ a0 · · · an ∈ O∗ : PA(a0 · · · an) = PAr (an · · · a0). (7)

A reverse OOM can be easily computed from the “forward” OOM asfollows. If A =
(Rm, (τa)a∈O, w0) is an OOM for a stationary process, andw0 has no zero entry, then

Ar = (Rm, (Dτ ′
aD−1)a∈O, w0) (8)

is a reverse OOM toA, whereD = diag(w0) is a diagonal matrix withw0 on its diagonal.

Now let b̄1, . . . , b̄κ again be the sequences employed inV . LetAr = (Rm, (τ r
a)a∈O, w0) be

the reverse OOM toA, which was characterized byC0. Furthermore, for̄bi = b1 . . . bk let

wr
b̄i

= τ r
b1
· · · τ r

bk
w0/1τ r

b1
· · · τ r

bk
w0. Then it holds thatC = (wr

b̄1
· · ·wr

b̄κ
) is a characterizer

for an OOM equivalent toA. C can effectively be transformed into a characterizerCr for
A by Cr = ̺rC, where

̺r = (C

1τb̄1
...

1τb̄κ

)−1. (9)

We call Cr the reverse characterizerof A, because it is composed from the states of a
reverse OOM toA. The analytical solution to (6) turns out to be [2]

Copt = Cr. (10)

To summarize, within a similarity class of characterizers,the one which minimizes model
variance is the (unique) reverse characterizer in this class. It can be cheaply computed from
the “forward” OOM via (8) and (9). This analytical finding suggests the following generic,
iterative procedure to obtain characterizers that minimize model variance:

1. Setup. Choose a model dimensionm and a characterizer lengthk. Compute
V ,W a from the training stringS.

2. Initialization. Estimate an initial model̂A(0) with some “classical” OOM esti-
mation method (a refined such method is detailed out in [2]).

3. Efficiency sharpening iteration. Assume thatÂ(n) is given. Compute its reverse
characterizer̂Cr(n+1). Use this in (5) to obtain a new model estimateÂ(n+1).

4. Termination . Terminate when the training log-likelihood of modelŝA(n) appear
to settle on a plateau.

The rationale behind this scheme is that the initial modelÂ(0) is obtained essentially from
an uninformed, ad hoc characterizer, for which one has to expect a large model variation
and thus (on the average) a poorÂ(0). However, the characterizer̂Cr(1) obtained from
the reversedÂ(0) is not uninformed any longer but shaped by a reasonable reverse model.
Thus the estimator producinĝA(1) can be expected to produce a model closer to the correct
one due to its improved efficiency, etc. Notice that this doesnot guarantee a convergence
of models, nor any monotonic development of any performanceparameter in the obtained
model sequence. In fact, the training log likelihood of the model sequence typically shoots
to a plateau level in about 2 to 5 iterations, after which it starts to jitter about this level,
only slowly coming to rest – or even not stabilizing at all; itis sometimes observed that the
log likelihood enters a small-amplitude oscillation around the plateau level. An analytical
understanding of the asymptotic learning dynamics cannot currently be offered.

We have developed two specific instantiations of the generalES learning scheme, differ-
entiated by the set of indicative sequences used. The first simply usesl = κ, ā1, . . . , āl =
b̄1, . . . , b̄κ, which leads to a computationally very cheap iterated recomputation of (5) with
updated reverse characterizers. We call this the “poor man’s” ES algorithm.

The statistical efficiency of the poor man’s ES algorithm is impaired by the fact that only the
counting statistics of subsequences of length2k are exploited. The other ES instantiation
exploits the statistics ofall subsequences in the original training string. It is technically
rather involved and rests on a suffix tree (ST) representation of S. We can only give a
coarse sketch here (details in [2]). In each iteration, the current reverse model is run back-
wards throughS and the obtained reverse states are additively collected bottom-up in the

nodes of the ST. From the ST nodes the collected states are then harvested into matrices
corresponding directly toCV̂ andCŴ a, that is, an explicit computation of the reverse
characterizer is not required. This method incurs a computational load per iteration which
is somewhat lower than Baum-Welch for SE-HMMs (because onlya backward pass of the
current model has to be computed), plus the required initialST construction which is linear
in the size ofS.

4 The CLG Algorithm

We can be very brief here because the CLG algorithm is detailed out in a companion NIPS
05 submission [4]1. The CLG algorithm is an iterative update scheme for the matrix pa-
rameters[τ̂a]ij of a MOOM. This scheme is analytically derived as gradient descent in the
model log likelihood surface over the log space of these matrix parameters, observing con-
straints of non-negativity of these parameters and the general OOM constraints (i) and (ii)
from Eqn. (2). Note that the constraint (iii) from (2) is automatically satisfied in MOOMs.

We skip the derivation of the CLG scheme and describe only its“mechanics”. LetS =
s1 . . . sN be the training string and for1 ≤ k ≤ N defineāk = s1 . . . sk, b̄k = sk+1 . . . sN .
Define for somem-dimensional OOM anda ∈ O

σk =
1τb̄k

1τb̄k
wāk

, ya =
∑

sk=a

σ′
kw′

āk−1

1τsk
wāk−1

, y0 = max
i,j,a

{[ya]ij}, [ya0]i,j = [ya]i,j/y0.

(11)

Then the update equation is

[τ̂+
a]ij = ηj · [τ̂a]ij · [ya0]

λ
ij , (12)

whereτ̂+
a is the new estimate ofτa, ηj ’s are normalization parameters determined by the

constraint (ii) from Eqn. (2), andλ is a learning rate which here unconventionally appears
in the exponent because the gradient descent is carried out in the log parameter space. Note
that by (12)[τ̂+

a]ij remains non-negative if[τ̂a]ij is. This update scheme is derived in a
way that is unrelated to the derivation of the EM algorithm; to our surprise we found [4]
that forλ = 1 (12) is equivalent to the Baum-Welch algorithm for TE-HMMs.However,
significantly faster convergence is achieved with non-unitλ; in the experiments carried out
so far a value close to 2 was heuristically found to work best.

5 Numerical Comparisons

We compared the poor man’s ES algorithm, the suffix-tree based algorithm, the CLG al-
gorithm and the standard SE-HMM/Baum-Welch method on four different types of data,
which were generated by (a) randomly constructed, 10-dimensional, 5-symbol SE-HMMs,
(b) randomly constructed, 10-dimensional, 5-symbol MOOMs, (c) a 3-dimensional, 2-
symbol OOM which is not equivalent to any HMM nor MOOM (the “probability clock”
process [2]), (d) a belletristic text (Mark Twain’s short story “The 1,000,000 Pound Note”).
For each of (a) and (b), 40 experiments were carried out with freshly constructed gener-
ators per experiment; a training string of length 1000 and a test string of length 10000
was produced from each generator. For (c), likewise 40 experiments were carried out with
freshly generated training/testing sequences of same lengthes as before; here however the

1If that companion paper is not accepted for NIPS, it will be made available online and a pointer
will be provided in the final version of this paper

generator was identical for all experiments. For (a) – (c), the results reported below are
averaged numbers over the 40 experiments. For the (d) dataset, after preprocessing which
shrunk the number of different symbols to 27, the original string was sorted sentence-wise
into a training and a testing string, each of length∼ 21000 (details in [2]).

The following settings were used with the various training methods. (i) The poor man’s
ES algorithm was used with a lengthk = 2 of indicative sequences on all datasets. Two
ES iterations were carried out and the model of the last iteration was used to compute the
reported log likelihoods. (ii) For the suffix-tree based ES algorithm, on datasets (a) – (c),
likewise two ES iterations were done and the model from the iteration with the lowest (re-
verse) training LL was used for reporting. On dataset (d), 4 ES iterations were called and
similarly the model with the best reverse training LL was chosen. (iii) In the MOOM stud-
ies, a learning rate ofλ = 1.85 was used. Iterations were stopped when two consecutive
training LL’s differed by less than 5e-5% or after 100 iterations. (iv) For HMM/Baum-
Welch training, the public-domain implementation provided by Kevin Murphy was used.
Iterations were stopped after 100 steps or if LL’s differed by less than 1e-5%. All compu-
tations were done in Matlab on 2 GHz PCs except the HMM training on dataset (d) which
was done on a 330 MHz machine (the reported CPU times were scaled by 330/2000 to
make them comparable with the other studies). Figure 1 showsthe training and testing
loglikelihoods as well as the CPU times for all methods and datasets.

2 4 6 8 10 12
−1500

−1450

−1400

−1350

−1300

−1250

−1200

2 4 6 8 10 12
−2

−1

0

1

2

(a)

2 4 6 8 10 12
−1700

−1650

−1600

−1550

−1500

−1450

−1400

2 4 6 8 10 12
−2

−1

0

1

2

(b)

2 3 4 6 8 10 12
−690

−685

−680

−675

−670

2 3 4 6 8 10 12
−2

−1

0

1

2

(c)

51020 40 60 100 150
−5.5

−5

−4.5

−4

−3.5

x 10
4

51020 40 60 100 150
2

2.5

3

3.5

4

(d)

Figure 1: Findings for datasets (a)–(d). In each panel, the left y-axis shows log likelihoods
for training and testing (testing LL normalized to trainingstringlength) and the righty-axis
measures the log 10 of CPU times. HMM models are documented insolid/black lines,
poor man’s ES models in dotted/magenta lines, suffix-tree ESmodels in broken/blue, and
MOOMs in dash-dotted/red lines. The thickest lines in each panel show training LL, the
thinnest CPU time, and intermediate testing LL. Thex-axes indicate model dimension. On
dataset (c), no results of the poor man’s algorithm are givenbecause the learning equations
became ill-conditioned for all but the lowest dimensions.

Some comments on Fig. 1. (1) The CPU times roughly exhibit an even log spread over
almost 2 orders of magnitude, in the order poor man’s (fastest) – suffix-tree ES – CLG –
Baum-Welch. (2) CLG has the lowest training LL throughout, which needs an explanation
because the proper OOMs trained by ES are more expressive. Apparently the ES algorithm

does not lead to local ML optima; otherwise suffix-tree ES models should show the low-
est training LL. (3) On HMM-generated data (a), Baum-Welch HMMs can play out their
natural bias for this sort of data and achieve a lower test error than the other methods. (4)
On the MOOM data (b), the test LL of MOOM/CLG and OOM/poor man models of di-
mension 2 equals the best HMM/Baum-Welch test LL which is attained at a dimension of
4; the OOM/suffix-tree test LL at dimension 2 is superior to the best HMM test LL. (5) On
the “probability clock” data (c), the suffix-tree ES trainedOOMs surpassed the non-OOM
models in test LL, with the optimal value obtained at the (correct) model dimension 3. This
comes as no surprise because these data come from a generatorthat is incommensurable
with either HMMs or MOOMs. (6) On the large empirical dataset(d) the CLG/MOOMs
have by a fair margin the highest training LL, but the test LL quickly drops to unacceptable
lows. It is hard to explain this by overfitting, considering the complexity and the size of
the training string. The other three types of models are evenly ordered in both training and
testing error from HMMs (poorest) to suffix-tree ES trained OOMs. Overfitting does not
occur up to the maximal dimension investigated. Depending on whether one wants a very
fast algorithm with good, or a fast algorithm with very good train/test LL, one here would
choose the poor man’s or the suffix-tree ES algorithm as the winner. (7) One detail in panel
(d) needs an explanation. The CPU time for the suffix-tree ES has an isolated peak for the
smallest dimension. This is earned by the construction of the suffix tree, which was built
only for the smallest dimension and re-used later.

6 Conclusion

We presented, in a sadly condensed fashion, three novel learning algorithms for symbol
dynamics. We have given a detailed mathematical account in [2] and [4]. Since we
wrote those papers, we improved the algorithms in some aspects, documented them and
assembled them into a Matlab toolbox which can be fetched from http://www.faculty.iu-
bremen.de/hjaeger/OOM/OOMTool.zip. The numerical investigations reported here were
done using this toolbox. Our numerical simulations demonstrate that there is an altogether
new world of faster and often statistically more efficient algorithms for sequence mod-
elling than Baum-Welch/SE-HMMs. The topics that we will address next in our research
group are (i) a mathematical analysis of the asymptotic behaviour of the ES algorithms,
(ii) online adaptive versions of these algorithms, and (iii) versions of the ES algorithms for
nonstationary time series (for CLG/MOOMs this has already been done [4]).

References
[1] M. L. Littman, R. S. Sutton, and S. Singh. Predictive representation of state. In Ad-

vances in Neural Information Processing Systems 14 (Proc. NIPS 01), pages 1555–1561, 2001.
http://www.eecs.umich.edu/∼baveja/Papers/psr.pdf.

[2] H. Jaeger, M. Zhao, K. Kretzschmar, T. Oberstein, D. Popovici,and A. Kolling. Learning ob-
servable operator models via the es algorithm. In S. Haykin, J. Principe,T. Sejnowski, and
J. McWhirter, editors,New Directions in Statistical Signal Processing: from Systems to Brains,
chapter 20. MIT Press, to appear in 2005.

[3] H. Xue and V. Govindaraju. Stochastic models combining discrete symbols and continuous
attributes in handwriting recognition. InProc. DAS 2002, 2002.

[4] M. Zhao and H. Jaeger. Learning transition-emitting HMMs by a CLG algorithm. Submitted,
2005.

[5] R. Edwards, J.J. McDonald, and M.J. Tsatsomeros. On matriceswith common invariant cones
with applications in neural and gene networks.Linear Algebra and its Applications, in press,
2004 (online version). http://www.math.wsu.edu/math/faculty/tsat/files/emt.pdf.

[6] K. Kretzschmar. Learning symbol sequences with Observable Operator Models. GMD Report
161, Fraunhofer Institute AIS, 2003. http://omk.sourceforge.net/files/OomLearn.pdf.

