Efficient Estimation of OOMSs

Herbert Jaeger, Mingjie Zhao, Andreas Kolling
International University Bremen
Bremen, Germany
h.j aeger | m zhao| a. kol | i ng@ u- br enen. de

Abstract

A standard method to obtain stochastic models for symbinfie series
is to train state-emitting hidden Markov models (SE-HMMsjhathe

Baum-Welch algorithm. Based on observable operator mg@&svis),

in the last few months a number of novel learning algorithorssimi-

lar purposes have been developed: (1,2) two versions of ffiniéacy

sharpening” (ES) algorithm, which iteratively improves #tatistical ef-
ficiency of a sequence of OOM estimators, (3) a constrainadignt de-
scent ML estimator for transition-emitting HMMs (TE-HMMs)Ve give
an overview on these algorithms and compare them with SE-HEM
learning on synthetic and real-life data.

1 Introduction

Stochastic symbol sequences with memory effects are frglyuaodelled by training hid-
den Markov models with the Baum-Welch variant of the EM ailipon. More specifically,
state-emitting HMMs (SE-HMMs) are standardly employedichifemit observable events
from hidden states. Known weaknesses of HMM training wituBa/Nelch are long run-
times and proneness to getting trapped in local maxima.

Over the last few years, an alternative to HMMs has been dpeedl observable opera-
tor models(OOMSs). The class of processes that can be described bye{finitensional)
OOMs properly includes the processes that can be descripe(inite-dimensional)
HMMs. OOMs identify the observable eventsof a process with lineaobservable op-
eratorst, acting on a real vector space fedictive statesv [1]. A basic learning algo-
rithm for OOMs [2] estimates the observable operatorby solving a linear system of
learning equations The learning algorithm is constructive, fast and yieldggstotically
correct estimates. Two problems that so far prevented OOMs practical use were (i)
poor statistical efficiency, (ii) the possibility that thbtained models might predict nega-
tive “probabilities” for some sequences. Since a few motitagirst problem has been very
satisfactorily solved [2]. In this novel approach to leaghDOMs from data we iteratively
construct a sequence of estimators whose statisticalezfligiincreases, which led us to
call the methocefficiency sharpeningeS).

Another, somewhat neglected class of stochastic modetsrisition-emitting HMMs (TE-

HMMs). TE-HMMs fall in between SE-HMMs and OOMs w.r.t. expsiveness. TE-
HMMs are equivalent to OOMs whose operator matrices areneyative. Because TE-
HMMs are frequently referred to as Mealy machines (actualigisnomer because origi-



nally Mealy machines are not probabilistic but only nonedetinistic), we have started to
call non-negative OOMs “Mealy OOMs” (MOOMSs). We use eithame according to the
way the models are represented. A variant of Baum-Welchédwently been described for
TE-HMMs [3]. We have derived an alternative learning caaisied log gradient (CLG)

algorithm for MOOMSs [4] which performs a constrained gradidescent on the log like-
lihood surface in the log model parameter space of MOOMs.

In this article we give a compact introduction to the basit®©®Ms (Section 2), outline

the new ES and CLG algorithms (Sections 3 and 4), and compaieperformance on a
variety of datasets (Section 5). In the conclusion (Sediore also provide a pointer to a
Matlab toolbox.

2 Basics of OOMs

Let (92,2, P, (X,,)n>0) OF (X,,) for short be a discrete-time stochastic process with values
in a finite symbol seOD = {ay,...,an}. We will consider only stationary processes
here for notational simplicity; OOMs can equally model natisnary processes. Air-
dimensional OOM fo( X,,) is a structured = (R™, (7,)ac0, wo), Where eaclobservable
operatorr, is a real-valuedn x m matrix andwy € R™ is thestarting stateprovided that

for any finite sequence;, . .. a;, it holds that

P(XO:aiO,...Xn:ain):lmTain "'TaiOU}O, (1)

wherel,, always denotes a row vector of units of length(we drop the subscript if it is
clear from the context). We will use the shorthand notatida denote a generic sequence
and7; to denote a concatenation of the corresponding operataevarse order, which
would condense (1) int&(a) = 175 wp.

Conversely, if a structurel = (R™, (7, )aco, wo) Satisfies

M) lwo=1, (i) 1Y 7)=1, (i) Yac O : lrgw >0, @)
acO

(whereO* denotes the set of all finite sequences @virthen there exists a process whose
distribution is described byl via (1). The process is stationary {{§ ., 7a)wo = wo.
Conditions (i) and (ii) are easy to check, but no efficientecium is known to decide
whether the non-negativity criterium (iii) holds for a stture A (for recent progress in
this problem, which is equivalent to a problem of generatii@st in linear algebra, see
[5]). Models A learnt from data tend to marginally violate (i) — this isetinresolved
non-negativity problem in the theory of OOMs.

The statew; of an OOM after an initial history is obtained by normalizing; wy to unit
component sum via; = 1w /175 wo.

A fundamental (and nontrivial) theorem for OOMs charae&si equivalence of two
OOMs. Twom-dimensional OOMsA = (R™, (7,)aco, wo) and.A = (R™, (74)aco, o)
are defined to be equivalent if they generate the same piapalistribution according to
(1). By the equivalence theorem, is equivalent tod if and only if there exists a transfor-
mation matrixe of sizem x m, satisfyingle = 1, such that?, = or,0~' for all symbols
a.

We mentioned in the Introduction that OOM states represeniiiture probability distribu-
tion of the process. This can be algebraically capturedémttion ofcharacterizers Let
A= (R™, (Ta)aco,wo) be an OOM for(X,,) and choosé such thatc = |O|* > m. Let



b1,...,b, be the alphabetical enumeration®f. Then am x x matrixC is acharacterizer
of lengthk for A iff 1C = 1 (that is,C has unit column sums) and

Va e 0" : wy = C(P(bi]a) - P(baa)), 3)

where’ denotes the transpose aft§b|a) is the conditional probability that the process
continues withb after an initial historya. It can be shown [2] that every OOM has charac-
terizers of lengthk for suitably largek. Intuitively, a characterizer “bundles” the length
future distribution into the state vector by projection.

If two equivalent OOMsA, A are related by, = oT.0~ %, andC is a characterizer fo,
it is easy to check thaiC' is a characterizer fad.

We conclude this section by explaining the basic learningaigns. An analysis of (1)
reveals that for any state; and operator;, from an OOM it holds that

ToWg = P(ala)waq, 4)

whereaa is the concatenation af with a. The vectorsw; and P(ala)ws, thus form an
argument-value pair for,. Leta,...,a; be a finite sequence of finite sequences over
O, and letV = (wg, ---wg,) be the matrix containing the corresponding state vectors.
Let againC' be am x « sized characterizer of lengthandb,, . .., b, be the alphabetical
enumeration of)*. LetV = (P(b;]a;)) be thex x I matrix containing the conditional
continuation probabilities of the initial sequenegsby the sequencds. It is easy to see
thatV = CV. Likewise, letW, = (P(ala1)wg,q - - P(ala;)wa,,) contain the vectors
corresponding to the rhs of (4), and 1&t, = (P(ab;|a;)) be the analog oV It is easily
verified thatW, = CW ,. Furthermore, by construction it holds thgl” = W,,.

A linear operator ofR™ is uniquely determined by > m argument-value pairs provided
there are at least linearly independent argument vectors in these pairs. ,Tihagharac-
terizerC'is found such thal’ = CV has rankn, the operators, of an OOM characterized
by C are uniquely determined Wy and the matrice®/, viat, = W,V = CW (CV)T,
wheret denotes the pseudo-inverse. Now, given a training sequ&ntee conditional
continuation probabilitie®(b;|a;), P(ab;|a;) that make ud/, W, can be estimated from
S by an obvious counting scheme, yielding estima®é;|a; ), P(ab;|a,) for making up
V andW ,, respectively. This leads to the general form of OOM leagréquations:

o = CW, (CV)T. (5)

In words, to learn an OOM frons, first fix a model dimensiom:, a characterize€’, in-
dicative sequences, .. ., a;, then construct estimatés andIV , by frequency counting,
and finally use (5) to obtain estimates of the operators. &dtisnation procedure is asymp-
totically correct in the sense that, if the training dataewgenerated by am-dimensional
OOM in the first place, this generator will almost surely bef@etly recovered as the size

of training data goes to infinity. The reason for this is the estimated” andﬂa con-
verge almost surely t& andW .. The starting state can be recovered from the estimated

operators by exploiting} ., 7.)wo = wo or directly fromC andV (see [2] for details).

3 The ES Family of Learning Algorithms

All learning algorithms based on (5) are asymptoticallyreot (which EM algorithms are
not, by the way), but their statistical efficiency (modelisace) depends crucially on (i)



the choice of indicative sequences, ..., a; and (ii) the characterizef' (assuming that
the model dimensiom: is determined by other means, e.g. by cross-validation).wille
first address (ii) and describe an iterative scheme to obteracterizers that lead to a low
model variance.

The choice ofC has a twofold impact on model variance. First, the pseudog®/ oper-
ation in (5) blows up variation i€’V depending on the matrix condition number of this
matrix. ThusC should be chosen such that the conditioaf gets close to 1. This strat-
egy was pioneered in [6], who obtained the first halfway stigtlly satisfactory learning
procedures. In contrast, here we set out from the secondanisch by whichC' influences
model variance, namely, choo§esuch that the variance GtV itself is minimized.

We need a few algebraic preparations. First, observe tisatife characterize? is used
with (5), obtaining a model, andp is an OOM equivalence transformation, theiif=

oC is used with (5), the obtained modélis an equivalent version of via o.

Furthermore, it is easy to see [2] that two characteriggt€’s characterize the same OOM
iff C1V = CyV. We call two characterizersimilar if this holds, and writeC; ~ Cs.
ClearlyCy ~ Cs iff Cy = C1+ G for some( satisfyingGV = 0 and1G = 0. That s, the
similarity equivalence class of some characterizes the sef C + G|GV = 0,1G = 0}.
Together with the first observation this implies that we magfime our search for “good”
characterizers to a single (and arbitrary) such equivalefass of characterizers. L& in
the remainder be a representative of an arbitrarily choseifesity class whose members
all characterizeA.

In [2] it is explained that the variance ofCV is monotonically tied to
Sict. et P(@jbi)|lwa; — C(:,4)|[?, where C(:,i) is the i-th column of C.

This observation allows us to determine an optimal (miniglance ofCV within the
equivalence class df) characterizeCyp; as the solution to the following minimization
problem:

Copt = CO + Gopt, Where
Gopt = argmin 1 Z 1 lp(ajz}i)nwaj — (Co + G)(:, )12 (6)
1=1,...,k;3=1,...,

under the constraint§V = 0 and1G = 0. This problem can be analytically solved
[2] and has a surprising and beautiful solution, which we moylain. In a nutshellCqy

is composed column-wise by certain states of a time-redersesion of A. We describe
in more detail time-reversal of OOMs. Given an OQM= (R™, (7,)aco, wo) With an
induced probability distributiod 4, its reverseOOM A" = (R™, (7] )qc0, w() IS charac-
terized by a probability distributio® 4~ satisfying

Vag:---an € 0" : Pylag---an) = Par(ay---agp). @)

A reverse OOM can be easily computed from the “forward” OOMamws. If A =
(R™, (74)aco,wo) is an OOM for a stationary process, ang has no zero entry, then

A" = R™ (D1.D™ Yo, wo) (8)

is a reverse OOM tol, whereD = diag(wy) is a diagonal matrix withw, on its diagonal.

Now letbs, .. ., b, again be the sequences employetlirLet A” = (R™, (77 )4c0, wo) be
the reverse OOM tod, which was characterized lty,. Furthermore, fob; = by ... by let



wp =Ty, - Ty wo/ 17y, -7 wo. Thenitholds tha€' = (wy ---wy ) is a characterizer
for an OOM equivalent tod. C can effectively be transformed |nto a characterizérfor

AbyC" = o"C, where

17,
0" =(C S D )

We call C" the reverse characterizeof A, because it is composed from the states of a
reverse OOM tod. The analytical solution to (6) turns out to be [2]

Copt = C". (10)

To summarize, within a similarity class of characterizéing, one which minimizes model

variance is the (unique) reverse characterizer in thisclasan be cheaply computed from
the “forward” OOM via (8) and (9). This analytical finding sygpts the following generic,

iterative procedure to obtain characterizers that mingmimdel variance:

1. Setup. Choose a model dimensian and a characterizer length Compute
V, W, from the training strings.

2. Initialization. Estimate an initial moded(®) with some “classical” OOM esti-
mation method (a refined such method is detailed out in [2]).

3. Efficiency sharpening iteration. Assume thatd(" is given. Compute its reverse
characterize€”("+1), Use this in (5) to obtain a new model estimate 1),

4. Termination. Terminate when the training log-likelihood of model$™ appear
to settle on a plateau.

The rationale behind this scheme is that the initial modlé) is obtained essentially from
an uninformed, ad hoc characterizer, for which one has teeba large model variation
and thus (on the average) a padf?). However, the characteriz&¥”(1) obtained from
the reversedd(©) is not uninformed any longer but shaped by a reasonableseveodel.
Thus the estimator producing(’) can be expected to produce a model closer to the correct
one due to its improved efficiency, etc. Notice that this dostsguarantee a convergence
of models, nor any monotonic development of any performgacameter in the obtained
model sequence. In fact, the training log likelihood of thedal sequence typically shoots
to a plateau level in about 2 to 5 iterations, after whichatrtst to jitter about this level,
only slowly coming to rest — or even not stabilizing at alisisometimes observed that the
log likelihood enters a small-amplitude oscillation arduhe plateau level. An analytical
understanding of the asymptotic learning dynamics canmwently be offered.

We have developed two specific instantiations of the gert&®alearning scheme, differ-
entiated by the set of indicative sequences used. The fingligiused = «,a;,...,a; =
bi,...,bs, which leads to a computationally very cheap iterated rgmdation of (5) with
updated reverse characterizers. We call this the “poor sh&$® algorithm.

The statistical efficiency of the poor man’s ES algorithrmipaired by the fact that only the
counting statistics of subsequences of lertjttare exploited. The other ES instantiation
exploits the statistics adll subsequences in the original training string. It is tecalhyc
rather involved and rests on a suffix tree (ST) represematfoS. We can only give a
coarse sketch here (details in [2]). In each iteration, tireent reverse model is run back-
wards throughS and the obtained reverse states are additively collecti#drbeup in the



nodes of the ST. From the ST nodes the collected states aréhéimeested into matrices
corresponding directly t@’V and CW ,, that is, an explicit computation of the reverse
characterizer is not required. This method incurs a contiput@ load per iteration which
is somewhat lower than Baum-Welch for SE-HMMs (because atigckward pass of the
current model has to be computed), plus the required irf8ffatonstruction which is linear
in the size ofs.

4 The CLG Algorithm

We can be very brief here because the CLG algorithm is ddtailéin a companion NIPS
05 submission [4] The CLG algorithm is an iterative update scheme for the imat-
rameterg7,];; of a MOOM. This scheme is analytically derived as gradiesceet in the
model log likelihood surface over the log space of theseimpsirameters, observing con-
straints of non-negativity of these parameters and therge@®M constraints (i) and (ii)
from Eqn. (2). Note that the constraint (iii) from (2) is antatically satisfied in MOOMSs.

We skip the derivation of the CLG scheme and describe onlymieschanics”. LetS =
s1...sn bethe training string and fdr< k£ < N definea; = sy ... Sk, b = Sk41--- SN-
Define for somen-dimensional OOM and € O

! o
17y, 0, Wg

— — Ak—1 — .. . = .. .
O = lTBkwak s Ya =, lTskwak,l , Yo Iilj%;({[ya]zg}y [yaO}z,] [ya}z,]//yo
(11)
Then the update equation is
[#:5i5 = 5 - [Falis - Waol3y, (12)

where7;" is the new estimate af,, ;'s are normalization parameters determined by the
constraint (ii) from Eqn. (2), and is a learning rate which here unconventionally appears
in the exponent because the gradient descent is carried the log parameter space. Note
that by (12)[7;];; remains non-negative {f,];; is. This update scheme is derived in a
way that is unrelated to the derivation of the EM algorithmptr surprise we found [4]
that for A = 1 (12) is equivalent to the Baum-Welch algorithm for TE-HMMdowever,
significantly faster convergence is achieved with non-inib the experiments carried out
so far a value close to 2 was heuristically found to work best.

5 Numerical Comparisons

We compared the poor man’s ES algorithm, the suffix-tree dafgorithm, the CLG al-
gorithm and the standard SE-HMM/Baum-Welch method on faffierént types of data,
which were generated by (a) randomly constructed, 10-dsineal, 5-symbol SE-HMMs,
(b) randomly constructed, 10-dimensional, 5-symbol MOQN3 a 3-dimensional, 2-
symbol OOM which is not equivalent to any HMM nor MOOM (the &ability clock”
process [2]), (d) a belletristic text (Mark Twain’s shomst“The 1,000,000 Pound Note”).
For each of (a) and (b), 40 experiments were carried out wéhhly constructed gener-
ators per experiment; a training string of length 1000 andsa s$tring of length 10000
was produced from each generator. For (c), likewise 40 @xgerts were carried out with
freshly generated training/testing sequences of saméhesgs before; here however the

1|f that companion paper is not accepted for NIPS, it will be made aveilatline and a pointer
will be provided in the final version of this paper



generator was identical for all experiments. For (a) — (o}, tesults reported below are
averaged numbers over the 40 experiments. For the (d) datdtes preprocessing which

shrunk the number of different symbols to 27, the originahgtwas sorted sentence-wise
into a training and a testing string, each of lengti21000 (details in [2]).

The following settings were used with the various trainingtinods. (i) The poor man’s
ES algorithm was used with a length= 2 of indicative sequences on all datasets. Two
ES iterations were carried out and the model of the lasttitaravas used to compute the
reported log likelihoods. (ii) For the suffix-tree based Hgbdathm, on datasets (a) — (c),
likewise two ES iterations were done and the model from t@iton with the lowest (re-
verse) training LL was used for reporting. On dataset (d)S4itErations were called and
similarly the model with the best reverse training LL wass#m (iii) In the MOOM stud-
ies, a learning rate of = 1.85 was used. Iterations were stopped when two consecutive
training LL's differed by less than 5e-5% or after 100 it@as. (iv) For HMM/Baum-
Welch training, the public-domain implementation proddsy Kevin Murphy was used.
Iterations were stopped after 100 steps or if LL's differgddss than 1e-5%. All compu-
tations were done in Matlab on 2 GHz PCs except the HMM traiwin dataset (d) which
was done on a 330 MHz machine (the reported CPU times weredsbgl 330/2000 to
make them comparable with the other studies). Figure 1 shiogv$raining and testing
loglikelihoods as well as the CPU times for all methods andskzts.
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Figure 1: Findings for datasets (a)—(d). In each panel dfiglaxis shows log likelihoods
for training and testing (testing LL normalized to trainistginglength) and the right-axis
measures the log 10 of CPU times. HMM models are documentadlid/black lines,
poor man’s ES models in dotted/magenta lines, suffix-treenB8els in broken/blue, and
MOONMs in dash-dotted/red lines. The thickest lines in eaaheb show training LL, the
thinnest CPU time, and intermediate testing LL. Thaxes indicate model dimension. On
dataset (c), no results of the poor man’s algorithm are dgdezrause the learning equations
became ill-conditioned for all but the lowest dimensions.

Some comments on Fig. 1. (1) The CPU times roughly exhibitvem éog spread over
almost 2 orders of magnitude, in the order poor man’s (fgstesuffix-tree ES — CLG —
Baum-Welch. (2) CLG has the lowest training LL throughoubjet needs an explanation
because the proper OOMs trained by ES are more expressipardqly the ES algorithm



does not lead to local ML optima; otherwise suffix-tree ES eiedhould show the low-
est training LL. (3) On HMM-generated data (a), Baum-WeldWiMis can play out their
natural bias for this sort of data and achieve a lower tesr ¢nan the other methods. (4)
On the MOOM data (b), the test LL of MOOM/CLG and OOM/poor mandels of di-
mension 2 equals the best HMM/Baum-Welch test LL which igia#id at a dimension of
4; the OOM/suffix-tree test LL at dimension 2 is superior te tfest HMM test LL. (5) On
the “probability clock” data (c), the suffix-tree ES train@®Ms surpassed the nhon-OOM
models in test LL, with the optimal value obtained at the {ect) model dimension 3. This
comes as no surprise because these data come from a getleaisrincommensurable
with either HMMs or MOOMSs. (6) On the large empirical datagtthe CLG/MOOMs
have by a fair margin the highest training LL, but the test liclfly drops to unacceptable
lows. It is hard to explain this by overfitting, considerifgetcomplexity and the size of
the training string. The other three types of models arelgwadered in both training and
testing error from HMMs (poorest) to suffix-tree ES traine®I@s. Overfitting does not
occur up to the maximal dimension investigated. Dependmg/loether one wants a very
fast algorithm with good, or a fast algorithm with very goodin/test LL, one here would
choose the poor man’s or the suffix-tree ES algorithm as theevi (7) One detail in panel
(d) needs an explanation. The CPU time for the suffix-tree &Sam isolated peak for the
smallest dimension. This is earned by the construction @fitiffix tree, which was built
only for the smallest dimension and re-used later.

6 Conclusion

We presented, in a sadly condensed fashion, three novelngaalgorithms for symbol
dynamics. We have given a detailed mathematical accoun®]imijd [4]. Since we
wrote those papers, we improved the algorithms in some &spdocumented them and
assembled them into a Matlab toolbox which can be fetcheu fitip://www.faculty.iu-
bremen.de/hjaeger/OOM/OOMTool.zip. The numerical itigasions reported here were
done using this toolbox. Our numerical simulations denmatstthat there is an altogether
new world of faster and often statistically more efficiengaithms for sequence mod-
elling than Baum-Welch/SE-HMMs. The topics that we will aglgs next in our research
group are (i) a mathematical analysis of the asymptotic Wieha of the ES algorithms,
(i) online adaptive versions of these algorithms, and (érsions of the ES algorithms for
nonstationary time series (for CLG/MOOMs this has alreaglgrbdone [4]).
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