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Abstract

Semantic segmentation is one of many tasks in computer vision where convolutional neural networks
(CNNs) are state of the art. However, catastrophic interference prevents feedforward networks from
learning a new task in an incremental manner without performance loss on previously learnt tasks.
To overcome this, a regularization technique named conceptor-based pseudo-rehearsal (CPR) has re-
cently been adapted for CNNs. Incremental training with CPR has been shown to yield results close
to traditional training with fully connected and partially convolutional networks, but has yet to reach
similar performance with fully convolutional networks. Segmentation, as opposed to classification,
is often solved with fully convolutional networks. To allow for CPR to be used in segmentation, it
needs to be adapted to fully convolutional networks. We apply CPR to an incremental adaptation
of the Cityscapes dataset, and find that the regularization term is initially too large and becomes
numerically unstable. A novel hierarchical conceptor, intended to regulate entire convolutional fil-
ters rather than individual weights alone, is introduced as an extension to CPR. These hierarchical
conceptors allow for CPR to be used on networks with many weights and filters per layer, but CPR
remains insufficient for solving the segmentation task incrementally. We show that, to combat the
observed numerical instability, changes to the loss and optimization scheme are required.
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1 introduction

A significant portion of human cognition revolves around visual perception. Distinguishing and
recognizing objects is done reflexively, rarely requiring conscious effort from the beholder. Yet
this fundamental task which seems so simple to us remains one of the core challenges in computer
vision. Parsing digital images in order to attain region description and identification of objects was
once thought to be a suitable summer project [1], but in actuality remains a field of active research
both theoretical and applied to this day. It is one of the primary obstacles preventing automation
of self-driving cars, diagnosis from medical images, farm and crop monitoring, theft detection, and
much more.

Figure 1: Image of a cat (left) and a possible semantic segmentation (right).
Legend: sky tree cat grass

1.1 Segmentation
The granularity of the information required from each application of computer vision differs from
task to task. In the simplest case, all that is needed is to detect the presence of an object in the image
(scene), also known as classification. From there we might like to know where the detected object
is located, segmenting the object from the rest of the scene. A next step would be to distinguish
multiple instances of the same type of object within the scene, a computer vision task named instance
segmentation. Sometimes what is required instead is to distinguish more than one type of object at



1 INTRODUCTION 8

the same time within one scene. Each pixel is allocated a single label corresponding to what object
type (class) the pixel belongs to. This is referred to as a semantic segmentation of the scene. An
example of semantic segmentation is given in Fig. 1. In this work we will primarily focus on the
semantic segmentation task, although it should apply to other tasks for which similar models are
used.

Figure 2: One-vs-all incremental learning scheme. For each task, only the labels of a single associ-
ated class are present, the other classes (rest) are unlabelled.

Semantic segmentation traditionally relies on a wide variety of techniques, including clustering
approaches, Markov processes, and random forests [2]. However, due to advancements in artifi-
cial neural networks many of these traditional techniques have been outperformed by feedforward
networks on many of the well-known datasets [3]. These networks typically rely on various deep
network architectures and variants of convolutional neural networks (CNNs) [4].

1.2 Incremental Learning
While deep neural networks are powerful function approximators that can be trained to perform
many tasks, the classical way of optimizing these networks prevents the model from learning a new
task without performance loss on previously learnt tasks. This phenomena, known as catastrophic
interference (or catastrophic forgetting), was already documented in 1989 [5], but remains an area of
active research. Catastrophic interference arises from network weights optimized for the previously
learnt tasks being adjusted by training on the new task, hence interfering with the learnt tasks. In
order to optimize the network for both the new task and the previously learnt tasks, the network
would have to be retrained from scratch including data for all tasks. However this raises a few
issues: retraining may be computationally prohibitive, the data associated with the previously learnt
tasks may not be able to be stored (legally) for long enough, and is conceptually far from human
learning. After all, humans do not forget learnt tasks just by practicing a new one.



1 INTRODUCTION 9

Figure 3: Illustration of how a single image can appear in four different One-vs-all semantic seg-
mentation tasks.
Legend: sky tree cat grass

Training the model on every task simultaneously, henceforth referred to as joint training, is also
not possible for all settings. In some cases the data is coming in from a (changing) environment, or
the task requirements shift. To deal with this, the model would have to be able to learn a sequence
of tasks rather than all tasks at once, without losing performance on all tasks learnt so far. Such



1 INTRODUCTION 10

a training scheme is commonly referred to as continual learning or incremental learning, and this
training scheme will henceforth be referred to as incremental training.

Though there is only one way to perform joint training, there are many variants on incremental
training. These variants arise from different requirements, like whether the model needs to infer
which of the learnt tasks it is performing or not [6]. Other alternatives stem from what data the
model has access to: are only the task related classes present, or are all classes present but only the
task related class is distinguished? While it may be possible to keep only the task related classes
present in classification tasks, in semantic segmentation where multiple classes can be present in a
single input this is not possible. Our incremental training task, as seen in Fig. 2 differs from those
described in [6] in that all training data is available for each task, but only the task-related class is
labelled in the straightforward One-vs-all fashion [7]. To adapt a semantic segmentation for One-
vs-all incremental learning, for each task only the pixels of the corresponding class are labelled as
1. The other pixels are set to 0. In Fig. 3 the previously shown semantic segmentation is adapted for
four different One-vs-all incremental tasks.

As in One-vs-all incremental learning the input remains the same from task to task, and only the
expected output (labels) change(s) between tasks, each task can be trained on the same network using
a different, dedicated final layer (head) for each task. The multi-headed approach is standard for one-
hot encoded output, where adding a new category implies adding a new head [8]. Furthermore, it
has seen use in transfer learning and knowledge / network distillation [9, 8].

1.3 Outline
We first go over the background of directly relevant work, and introduce the incremental learning
approach on which we use in Related Work. Our newly proposed extensions for one-vs-all incre-
mental learning of segmentation is described in detail in the Proposed Solution section. The section
Experimental Setup contains information pertaining to dataset and network architecture used, and
the design choices made. It also contains the structure of the experiments performed in order to test
our proposed solution, the results of which are detailed in section Results. The results are discussed
and thesis limitations are mentioned in section Discussion. The Discussion section also contains
a discussion on the newly proposed hierarchical conceptors, and offers directions for future work.
Lastly, we conclude with a summary in section Conclusion.
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2 Related Work

There are many ways by which the field of study dedicated to incremental learning can be subdi-
vided. Each division comes with its own approaches and applications. In the case of incremental
segmentation and image classification, most of the research relies on convolutional neural networks
to one degree or another. In this section we first distinguish the different approaches to incremental
learning with CNNs. Next, we make a further distinction between the types of incremental learning
tasks. These distinctions help narrow down and compare the existing literature. We summarize some
of the most notable approaches for incremental learning in relation to segmentation, and provide a
non-exhaustive list of relevant literature. Finally, we dedicate a significant part of this section to
conceptors and the works that are the primary sources of this thesis work.

2.1 Incremental Learning Approaches for Convolutional Neural Networks
Catastrophic interference is a problem now decades old. In convolutional neural networks this prob-
lem has been widely studied with regards to image classification. Michieli and Zanuttigh provide a
useful categorization for incremental learning techniques for CNNs [10]. These categories are given
as follows:

• Replay-based: This approach relies on replaying data associated with previously learnt tasks
while learning the new task. In the simplest case, a curated subset of training data from
previous tasks can be stored and reused to prevent catastrophic interference while learning the
next task. In cases where data cannot be stored, learning a model that generates training data
can be used instead.

• Dynamic architectures: This approach changes the architecture by adding and/or pruning neu-
rons, filters or layers. Typically, neurons trained on previous task(s) are frozen, and new neu-
rons are added to allow for further learning.

• Parameter isolation: This approach generally aims to train tasks only on a subset of the net-
work parameters. Subsequent tasks are then trained on parameters that are so far unused, thus
preventing interference with previously learnt tasks.

• Regularization: This approach is the broadest and most popular of the categories listed. In
essence, regularization techniques put an additional loss or constraint on the network or latent
space. The two primary variants on regularization are knowledge distillation and penalty
computing, of which the former is the more prevalent approach.

– Knowledge distillation: This variant aims to remember or teach knowledge of previous
tasks, often in the form of an old model, to the model that is being trained on the new
task.
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– Penalty computing: This variant identifies (combinations of) weights that are important
to previously learnt tasks, and penalizes changes in them. It shields important (combi-
nations of) weights from being changed, preventing interference with previously learnt
tasks and only learning the new task on unimportant weights.

It should be noted that this is not the only way of classifying incremental learning approaches for
CNNs, and many solutions incorporate aspects of several categories. Regardless, this categorization
allows similar approaches to be grouped, and provides the context for this work. Our approach falls
squarely in the penalty computing variant of regularization approaches.

2.2 Distinguishing Incremental Learning Tasks
Besides differentiating between approaches, another important distinction can be made by means of
the type of tasks the model has to solve. This can be defined in terms of input and expected output.
For example, in some conditions, the model may have to deal with changes in shape and meaning
of input data. Other contexts require the model to be able to change its output shape or channels
depending on the input. In this and related work, the input and output shape stays the same.

A common way of distinguishing between the different types of incremental learning tasks stems
from van de Ven and Tobias [6]. They distinguish between the following three categories:

• Task-incremental: The model knows which task it is performing, and only needs to distinguish
between the classes within said task.

• Domain-incremental: The model does not have to distinguish between tasks or classes, and
instead only has to identify the index of the correct class.

• Class-incremental: The model has to identify the correct class without knowing which task it
stems from.

When it comes to classification and semantic segmentation, the primary objective is to identify
the exact label associated with the input image or pixel. As such, our work and the relevant work
summarized in next subsection are all instances of class-incremental learning. Yet even within this
classification further distinction can and should be made. The amount of classes present in each task
(and the order of which) strongly influences the complexity of the task at hand, with learning multi-
ple classes at once rather than sequentially generally being easier than the inverse. Having multiple
classes present within one task (rather than one class per task) provides additional information about
the relationship between classes, and the level of detail necessary to generalize within a single class
while still distinguishing between other classes.

In segmentation, having access to multiple classes during training also provides more informa-
tion on the background. This alleviates the problem of background shift to some degree. Background
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shift is, as introduced in [11], the problem that all segmentation classes not present in a task are la-
belled as background. Intuitively, the problem is at its worst when only one segmentation class is
present in each task. Some of the background may in actuality belong to classes seen in previous
tasks, or to classes that are yet to be seen in future tasks. This introduces a semantic shift in what
the background means for each task.

Given the relevance of the amount of classes present in each task to task complexity, class-
incremental learning can additionally be understood by the distribution of classes over the tasks.
Some examples are:

• Uniform: Each task has the same amount of classes, typically half of the classes in the first
task, and the other half in the second.

• Step-wise: The first task has the largest amount of classes. The remaining classes are dis-
tributed uniformly over the subsequent tasks. For example, the first task features 15 classes,
the second, third and last task each feature 5 classes. The two special cases are when there are
only two tasks, or when each subsequent task beyond the first has only one class.

• One-vs-all: Each task has exactly one class. This is a special case of the uniform class distri-
bution, where the amount of tasks is equal to the amount of classes.

A final distinction is made in terms of presence of previous input images and previously seen classes:

• Sequential: Each task has a unique (task related) set of inputs, with the labels of both previous
and newly introduced classes being present for each task. For each task, there is no input
which features pixels belonging to classes that will be learnt in future tasks.

• Disjoint: Here the inputs are similarly unique as in ”Sequential”, but only the classes associ-
ated with the current task are present.

• Overlapped: The input remains the same for each task, where only the current classes are
annotated and the other classes are labelled as background. This is different from the previous
two categories as images can now contain pixels of classes that will be learnt in future tasks.

While it may seem excessive to subdivide the class-incremental learning task to such a de-
gree, the performance of relevant work provided in the next subsection will show why these sub-
categorizations are important. Crucially, solutions to catastrophic interference may respond differ-
ently to variations in task definition. Task definitions can vary along the aforementioned axes, but
broader design choices should be considered as well: explicitly distinguishing the background from
unlabelled classes, changing the order of tasks or classes, and limiting training time or network ar-
chitecture all influence performance. When an article uses a specific task definition, or makes design
choices specific to their solutions, their findings may not be replicated in subsequent studies with a
dissimilar task definition.
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2.3 Summary of Relevant Work
In this subsection we will introduce some of the prominent solutions to incremental learning ap-
plied to CNNs. Specifically we chose approaches that have been or could be applied to semantic
segmentation. Important to note is that each of the articles described here have their own model
architecture and task design choices. As such, the performance cannot be directly compared, and
instead the only comparison in performance should be between the incremental training and joint
training performance of the same model. A table containing an overview of the works listed here is
provided at the end of this subsection.

2.3.1 Selfless Sequential Learning

As an improvement to introducing network sparsity, Selfless Sequential Learning (SSL) introduces
a method for the parameter isolation approach that instead disentangles representation. Local neu-
rons are discouraged from activating together for a given task, unless weights from previous tasks
are reused. This introduces a sparsity in the network that is less likely to result in catastrophic
interference when training a new task [12].

2.3.2 Deep Generative Replay

Rather than having a model that learns a new task, and another model that teaches previously learnt
tasks for knowledge distillation, Deep Generative Replay (DGR) combines both into a scholar
model. In DGR, a scholar is trained for each task which learns from the previous scholar and
the current task [13].

2.3.3 Incremental Classifier and Representation Learning

While most classification and segmentation methods in this list use CNNs for the classification /
segmentation, in Incremental Classifier and Representation Learning (iCaRL) the CNN is a trainable
feature extracter. The features from the CNN are paired with exemplar images collected from each
task for incremental classification [14].

2.3.4 Elastic Weight Consolidation

By identifying which individual weights are important to a learnt task, Elastic Weight Consolidation
(EWC) learns new tasks without interfering with weights important to previously learnt tasks. The
weights important to a learnt task are identified by means of the Fisher information matrix. [15]
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2.3.5 Conceptor-based Pseudo-Rehearsal

This thesis work is directly based off of the Conceptor-based Pseudo-Rehearsal (CPR) work by
He [16], which was later adapted to CNNs by Hofman [17]. CPR uses regularized identity maps
computed from network activation called conceptors, as defined by Jaeger [18], to prevent interfer-
ence with previously learnt tasks. Conceptors and CPR will be given a more extensive introduction
further on in this section.

2.3.6 Learning Without Forgetting

Rather than using data from previous tasks to prevent catastrophic interference, Learning Without
Forgetting (LWF) uses models from previous tasks. After the first task, the new model is trained
on the data from the new task and on the previous model’s response to the new data (the distillation
loss). The target is to obtain a new model that is able to learn the new task while behaving similar to
the old model on data from the previous task(s) [8].

2.3.7 Learning Without Forgetting Multi-Class

The same paper that introduced iCaRL introduced a multi-class variant of LWF (LWF-MC). This
variant is derived from iCaRL by similarly using a distillation loss to prevent catastrophic interfer-
ence in the CNN, yet unlike iCaRL the predictions are made from the CNN itself, rather than on the
basis of the exemplars introduced in [14].

2.3.8 Incremental Learning Techniques

One of the few approaches developed initially for incremental segmentation rather than incremen-
tal classification, the Incremental Learning Techniques (ILT) paper proposes several extensions to
knowledge distillation. The first extension improves knowledge distillation in the output layer, the
second proposes a frozen encoder part of the model, and the final extension explores distilling the
latent space rather than the model output [19].

2.3.9 Modelling the Background

Introducing the problem of background shift, Modelling the Background (MIB) proposes a solution
by predicting the background with previously learnt classes. Unlabelled pixels can either be from
previously learnt classes or not (true background, or classes that will be learnt in future tasks). If
the model can label an unlabelled pixel as a previously learnt class then this provides additional
information to the current task, and alleviates some of the problems with background shift [11].
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2.3.10 Class-Incremental Learning

Another approach that predicts the background is named Class-Incremental Learning for Semantic
Segmentation Re-Using Neither Old Data Nor Old Labels (CIL). This approach limits the task loss
to only the pixels that are labelled in the current task, and adds a distillation loss to the background
pixels. This distillation loss is weighted to emphasize uncertainty of the teacher model [20].

2.3.11 Sparse and Disentangled Representations

Combining various approaches, Sparse and Disentangled Representations (SDR) use regularization,
knowledge distillation and parameter isolation to prevent catastrophic interference. SDR introduces
a combination of prototype matching, contrastive learning, and feature sparsity in the latent space.
Furthermore, SDR adds a distillation loss at the output level as in MIB [21].

2.3.12 Incremental Learning for Semantic Segmentation

In the case of remote sensing, data may be available for one city but not for another. Incremental
Learning for Semantic Segmentation of Large-Scale Remote Sensing Data (ILSS) exploits this by
replaying on a curated selection of training data for previously encountered cities, and distilling
previous models for previously learnt classes when training new tasks with satellite images from
new cities [22].

2.3.13 Twin-Auxiliary

Rather than only using the previous model for the distillation loss, Twin-Auxiliary (TA) modules
additionally train a segmentation and a binary classifier for the new model as well as for its twin:
the frozen, previous model. Li et al. present an extensive pipeline for recombining the outputs from
the twin modules that reportedly outperforms joint training [23].

2.3.14 Overview

Table 1 provides an overview of the aforementioned methods with a mean IoU (mIoU) score where
applicable. The source column indicates from which original work the referenced incremental and
joint training scores are. The reported incremental mIoU scores are all from experiments with step-
wise class distributions, where all but the first tasks feature one class per task. This distribution is
the closest to the one-vs-all distribution used in [16, 17] and in this work.

Different source materials sometimes compare the same methods. In the case of MIB and SDR, a
comparison is also done on the same (VOC2012) dataset. Yet even when the methods and dataset are
the same, and the class distribution is step-wise, discrepancies in performance can still be observed.
Specifically, LWF outperformed LWF-MC in [21], while the opposite is true for [11].
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Table 1: Summary of Incremental Learning Approaches in relation to Segmentation
Source Method Approach Segmentation? One-vs-all? Dataset mIoU

Incremental Joint

SSL [12] SSL Parameter isolation No No
MNIST,
CIFAR-100 &
Tiny ImageNet

- -

DGR [13] DGR Replay-based No No
MNIST &
SVHN - -

iCaRL [14] iCaRL Replay-based No No
iCIFAR-100 &
iILSVRC - -

EWC [15] EWC Penalty computing No No
MNIST &
Atari - -

CPR [16] CPR Penalty computing Yes Yes Cityscapes 0.570 0.840

MIB [11]

LWF Knowledge distillation Yes No Cityscapes 0.259 0.731
LWF-MC Knowledge distillation Yes No Cityscapes 0.396 0.731
ILT Knowledge distillation Yes No Cityscapes 0.238 0.731
MIB Knowledge distillation Yes No Cityscapes 0.607 0.731
LWF Knowledge distillation Yes No VOC2012 0.018 0.774
LWF-MC Knowledge distillation Yes No VOC2012 0.069 0.774
ILT Knowledge distillation Yes No VOC2012 0.057 0.774
MIB Knowledge distillation Yes No VOC2012 0.297 0.774

SDR [21]

LWF Knowledge distillation Yes No VOC2012 0.219 0.754
LWF-MC Knowledge distillation Yes No VOC2012 0.058 0.754
ILT Knowledge distillation Yes No VOC2012 0.046 0.754
CIL Knowledge distillation Yes No VOC2012 0.059 0.754
MIB Knowledge distillation Yes No VOC2012 0.367 0.754

SDR
Regularization &
knowledge distillation Yes No VOC2012 0.392 0.754

TA [23]

EWC Penalty computing Yes No Vaihingen 0.211 0.747
ILT Knowledge distillation Yes No Vaihingen 0.736 0.747
ILSS Replay-based Yes No Vaihingen 0.553 0.747
MIB Knowledge distillation Yes No Vaihingen 0.740 0.747
TA Knowledge distillation Yes No Vaihingen 0.757 0.747

2.4 Conceptor Regularization
A novel approach that allows for one-vs-all incremental learning with feedforward networks uti-
lizes regularized identity maps called conceptors. These conceptors form the basis of the conceptor
regularization approach and is core to this work. As such, we will first provide an introduction to
conceptors as they relate to this work. Next, we describe how conceptors were used to overcome
catastrophic forgetting in one-vs-all incremental learning. Finally we introduce the thesis work of
which this work is a direct continuation. This previous thesis work adapts the conceptor regulariza-
tion to convolutional neural networks, allowing for one-vs-all incremental segmentation, which is
the focus of our work.
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2.4.1 Conceptors

Jaeger introduces conceptors for a variety of neuro-computational functionalities [18, 24], providing
a generic computational mechanism for neural networks. While the scope of our work is limited
to fully convolutional networks, conceptors are not limited to just feedforward artificial neural net-
works. Instead they are architecture agnostic, and can be used to describe patterns in any neural
network or dynamical system. Yet conceptors are even more broadly applicable; they can be seen
as a new approach towards explaining how high-level logical reasoning can arise from low-level
dynamic processes as is happening in the human brain.

An overview of some of the applications for conceptors given by Jaeger [18] follows. Conceptors
lend themselves to:

• Perceptual focusing

• Noise filtering

• Memory management

• Incremental learning

• Smooth transitioning between modes of (motor) control

• Symbolic representations of dynamical patterns

• Hierarchical classification and Boolean logic on said representation

All of this speaks to a potential integration of otherwise disparate cognitive processes through the
conceptor as unifying factor.

There is no one ”best” way to instantiate a conceptor. For example, conceptors can be imple-
mented in individual neurons, stored explicitly as a matrix, or learnt through a separate sub-network.
An adaptation exists where the conceptor no longer needs to be calculated and stored away from the
network by an outside process, and the conceptor is instead formed over time by the network dy-
namics themselves. Efforts have even been put towards identifying a basis for conceptors that is
biologically (not im)plausible.

Unfortunately, this thesis work does not have the scope to adequately address conceptors in its
entirety. Instead we will introduce the core insight behind conceptors, and summarize useful prop-
erties as they relate to the usage of conceptors in incremental learning with feedforward networks.
Before conceptors can be more formally explained, we must first sketch the context in which the
core idea underlying conceptors arose. The key insight behind conceptors stems from the behaviour
of dynamic, non-feedforward recurrent neural networks (RNNs). These networks feature complex
dynamical behaviour in which time is an integral part of the model. Activation in the form of the
model’s internal state changes over time as dictated by model dynamics and input patterns.
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Let N be an RNN of any type with N neurons. From these neurons the internal state set {x} (the
network activations) can be obtained. In RNNs, {x} is a function of not only some input sequence
but also of previous internal state(s). This way, when a sequence (pattern) p is fed into N some
information from earlier on in the sequence is retained in the network. Formally, N is being driven
by dynamical input pattern p. The network may be driven by different patterns p1, p2, ..., p j, which
will yield different internal state sets {x1},{x2}, ...,{x j}. When driving the network with a pattern
p j, the resulting internal state set {x j} lies in an N-dimensional state cloud. The geometry of this
state cloud is a property of the dynamics in N and pattern p j. This geometry can be described in
formal terms by an ellipsoid C j, which is the conceptor C j associated with pattern p j in network
N [24]. The conceptors associated with some patterns p1, p2 and p3 are shown in Figure 4. Note
how the conceptor space is three dimensional in this example, which means activation was collected
from three neurons.

Figure 4: Neural activation in response to three different patterns projected onto conceptor space,
and the associated ellipsoidal conceptor representation. Figure from [24]

As mentioned previously, there are multiple ways of obtaining and representing a conceptor C j.
This process can generally be described as learning a regularized identity map. The most explicit
method to learn and represent C j is by means of a conceptor matrix. This conceptor matrix can be
constructed by sampling from {x j}. Going forward we will simply refer to the conceptor matrix of
C j as the conceptor C j, given that in this work we only interact with conceptors by means of their
matrix representation. To calculate a conceptor C j, drive the network N with pattern p j. Sample
the network state set x j(n) at each sampling point n ∈ {0,1, ...,V −1} from N as vectors of length
N, where N is the number of neurons in N . Collect each state activation x j(n) as rows in a L by
N state matrix X j. From the state matrix, a state correlation matrix is computed: R j = X j(X j)⊤/V .
Here V is the amount of network state samples, or the sampling time.

While the shape and dimensions of C j are defined by the ellipsoidal state correlation matrix R j,
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not all directions are equally relevant. A parameter called aperture α is introduced to regulate how
many of the leading dimensions of R j contribute to C j. The state correlation matrix together with
aperture defines a conceptor. This relationship can be made explicit by writing C j as C j(R j,α). The
conceptor C j(R j,α) can be learnt by minimizing the cost function L(C j|R j,α). Minimizing this
function means minimizing two parts, one associated with R j and one associated with α.

Because conceptors are defined as regularized identity maps, we want C j to reconstruct activation
x j that is aligned with the principal components (”thick” dimensions) of the ellipsoid represented
by C j: C jx j ≈ x j. This requirement yields the first component of the cost function: En[||x j(n)−
C jx j(n)||2]. This component is the L2 norm of the difference between a state activation x j and
its conceptor projection C jx j, averaged over each time step n. The second component of the cost
function is simply the α scaled Frobenius norm of the conceptor: α−2||C j||2f ro. A conceptor C =
C(R,α) associated with R and α is then obtained through

C(R,α) = argminCE[||x−Cx||]+α
−2||C||2f ro (1)

Which has a closed-form solution given as

C(R,α) = R(R+α
−2I)−1 (2)

Here I is the N by N identity matrix. Eq. (2) allows us to construct C from the singular value
decomposition (SVD) of R. Let the SVD of R be R = UΣU⊤. The SVD of C(R,α) is then given
as C = USU⊤. The singular values si of C are acquired from the singular values σi of R with
si = σi/(σi +α−2). The proof of this is given in [18].

A conceptor C obtained as described above has certain useful properties. The mean value of S
intuitively measures the fraction of the N dimensions of N occupied by C. This is referred to as the
quota q of C, q(C) = N−1

∑
N−1
i=0 si. If C j is obtained from a network N that has learnt pattern p j,

then q(C j) is an indication of how much of the N-dimensional memory space of N is occupied by
learning p j.

It is easy to see how such properties of conceptors are useful for memory management. When
learning a second pattern, e.g. pm after having already learnt p j, a conceptor C{ j,m} spanning both
learnt patterns can be computed from a merged state activation matrix X{ j,m}. This merged state
activation matrix is obtained by merging X j with Xm. However, if we already have C j we do not
need to merge at the dataset level to obtain C{ j,m}. Because conceptors lend themselves to Boolean
operations, merging C j with Cm (the conceptor computed from Xm) also yields C{ j,m}. This merging
operation is the logical OR operation. The Boolean operation ¬,∨,∧ on conceptors C j and Cm are
shown visually in Figure 5 and are defined as follows:

¬C := I −C (3)

C j ∨Cm := ¬(¬C j ∧¬Cm) (4)
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C j ∧Cm := ((C j)−1 +(Cm)−1 − I)−1 (5)

Figure 5: The three Boolean operations ∨ (left), ∧ (middle), and ¬ (right) on conceptors C j (red)
and Cm (blue). Figure from [18].

When learning patterns in a sequential manner, the currently learnt patterns and how much mem-
ory space they occupy can be tracked by keeping an updated conceptor which represents all learnt
patterns after learning a new pattern. For example, the updated conceptor Cm = C{ j,m} is obtained
with Cm 7→ Cm ∨C j using Eq. (4). Unused, available memory space on which new patterns can be
learnt is revealed with the NOT operator from Eq. (3): ¬Cm.

2.4.2 Conceptors in Feedforward Networks

In Section 2.4.1 we summarized some of Jaeger’s work on conceptors, and how they can be applied
for incremental learning in recurrent neural networks [18]. Even though conceptors are inherently
network agnostic, to use conceptors for incremental learning in feedforward networks they have to
be adapted to work with backpropagation. This is a non-trivial task: feedforward neural networks
learn through small changes in weights guided by a loss function. The loss has to be differentiable
to obtain the gradients, and these have to be backpropagated to change the network weights in
gradually.

The weight changes during backpropagation are also the cause of the catastrophic interference
introduced previously. Any attempt at using conceptors for incremental learning will have to do so
while preventing catastrophic forgetting. Recent work by He and Jaeger introduces an extension to
backpropagation in which interference with previously learnt tasks is prevented by shielding gradi-
ents with conceptors [25]. This extension, called conceptor aided backpropagation (CAB), is shown
experimentally to outperform two other recently proposed solutions to the catastrophic interference
problem.



2 RELATED WORK 22

Some of the terminology described in Section 2.4.1 will have to be adapted in order to relate
the use of conceptors to feedforward networks. Network N is no longer driven by pattern p, but
instead is trained on task t. Furthermore, a deep feedforward network N consists of L layers of Nl
neurons per layer l. Conceptors Cl are still calculated from a state correlation matrix Rl , but now per
layer l rather than over the entire network. Layer activation xl is sampled during the forward pass
by providing the network with V samples of training data. The conceptor obtained from layer l after
training on task t is then denoted as Ct

l .
After training normally on the first task a conceptor is computed for each layer l. CAB then aims

to train the network on each subsequent task j such that the changes W inc
l made to the previously

learnt weights W j−1
l do not interfere with any previously learnt tasks. Intuitively, this is done by

only allowing changes in weights in unused memory space. Unused memory space is characterized
by the conceptor F j−1

l . Here, F j−1
l is the result of using the NOT operation from Eq. (3) on the

updated conceptor A j−1
l . The updated conceptor characterizes the memory space of all 0, ..., j−1

previously learnt tasks thus far, such that A j−1
l =C0

l ∨ ...∨C j−1
l and F j−1

l = ¬A j−1
l . This is the case

for each layer l in the network, except for the last one which is the layer head. After training on each
subsequent task with CAB, the conceptor in each layer is updated to include the memory space of
the newly learnt task such that A j

l = A j−1
l ∨Cl , F j

l = ¬A j
l .

With F j−1 we can find a change in weights W j
inc for learning the new task j exclusively outside

the linear subspace occupied by previous tasks. This is done by requiring the Frobenius norm of
the conceptor projected gradient to approach zero: ||W inc

l A j−1. This effectively means that only
changes in weights in the ”thick” directions (directions with large singular values) of F j−1 are al-
lowed through.

In CAB, the activation state matrix for the conceptors is collected by sampling the neural activa-
tion xl−1 in the layer l −1 before a given set of weights Wl . In He and Jaeger [25] this is called the
pre-synaptic activation. Similarly, activation in neurons xl after a given set of weights Wl is called the
post-synaptic activation. CAB uses the pre-synaptic activation rather than the post-synaptic activa-
tion because the conceptors have to apply in a backwards fashion: to the backpropagated gradients.

Computing conceptors from pre-synaptic activation xl−1 to prevent catastrophic forgetting in the
subsequent weights Wl has its limits, however. When different tasks have partial or even completely
overlapping input space, the input distribution in the pre-synaptic neurons for the new task will be
similar or identical to previously learnt tasks. This causes there to be no input components available
for further adaptation, preventing significant learning from occurring in all layers except for the
model head. Many computer vision tasks, especially with the one-vs-all training scheme frequently
seen in incremental learning, have identical input spaces. This limits the applicability of CAB.

He, having identified this drawback in CAB, proposes an alternative that uses post-synaptic
activation [16]. This new solution, later called conceptor-based pseudo-rehearsal (CPR), is exper-
imentally shown to yield close to joint training performance on a one-vs-all incremental learning
task, overcoming the hurdle of shared input space. CPR introduces a novel conceptor regulariza-
tion term ΩC, which shields weights based on conceptors calculated from post-synaptic activation.
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Where CAB shields weights through the backwards projection of the gradients into conceptor space,
CPR shields weights by projecting pseudo-activation forwards into conceptor space.

CPR shields weights in tasks beyond the first by providing Gaussian pseudo-data ξ (normal
distributed noise) as input to the pre-synaptic neurons in layer l − 1, and collecting the pseudo-
activation in the post-synaptic neurons in layer l with activation function g. This is done for the
weights as they were after previously learnt task t −1: g(W t−1

l ξ), and for the new weights that are
currently being trained on the new task t: g(W t

l ξ).
Having post-synaptic pseudo-activation for both the old and the new weights allows us to gain a

measure of difference dl between the two, done here by subtracting the former from the latter such
that dl = g(W t

l ξ)− g(W t−1
l ξ). If Ct−1

l is the updated conceptor characterizing the used memory
space of all previously learnt tasks up to and including task t − 1 in layer l, then projecting dl
onto this memory space with Ct−

l dl indicates how much the new weights changed from the old
weights along directions occupied by previously learnt tasks. As changes in directions occupied by
previously learnt tasks would interfere with said tasks, we want Ct−1

l dl to approach 0. The L2 norm
is a measure for this. Averaging over each of the v ∈ {0, ...,V −1} pseudo-data samples yields the
loss term Ev[||Ct−1

l dl||22]≈ 0 for layer l.
The full conceptor regularization term ΩC for layer l, previous weights W t−1

l , current weights
W t

l , and the updated conceptor Ct−1
l is then expressed by ΩC(W t−1

l ,W t
l ,C

t−1
l ) :=Ev[||Ct−1

l (g(W t
l ξ)−

g(W t−1
l ξ))||22]≈ 0. Note that an updated conceptor Ct−1

l is the conceptor characterizing the memory
space of all tasks learnt up to and including t −1 for layer l. This is similar to how At−1

l in CAB is
obtained, through the ∨ operation on each individual task conceptor.

In CPR as in CAB, the first task is learnt normally with the task-specific loss Ltask(ŷ,yt), where
ŷ is the prediction of network N on input x, or N (x) = ŷ and yt is the true label associated with x.
Additionally, a regularization term is placed on the change in weights to prevent the network from
using the complete memory space for a single task when this is unnecessary for task performance.
This regularization term is controlled by λ, with higher values being more restrictive. We then write
this regularization term as λ∑

L−1
l=0 ||W inc

l ||2f ro. Putting this together with the task-specific loss, the
objective for the first task t = 1 becomes

J t=1 = Ltask(ŷ,yt)+λ

L−1

∑
l=0

||W inc
l ||2f ro (6)

After a (first) task t −1 is learnt, but before starting training on the next task t, a conceptor Ct−1
l

is computed for each layer l. If previous conceptors exist (after the second task onward), the newly
computed conceptors are updated with the previous ones. With these conceptors, the tasks after the
first can be learnt incrementally with the addition of the conceptor loss ΩC. The conceptor loss is
summed over each layer except the model head. Due to this summation the minimum value is still 0,
but the values can become very large and depend on both the amount of layers as well as the change
in weights from one task to the next. The summed conceptor loss is then scaled by γ. Higher values
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of γ means more of the memory space occupied by previously learnt tasks is preserved. Adding this
to Eq. (6), the objective for incremental learning in CPR beyond the first task becomes

J t ̸1 = Ltask(ŷ,yt)+λ

L−1

∑
l=0

||W inc
l ||2f ro + γ

L−2

∑
l=0

ΩC(W t−1
l ,W t

l ,C
t−1
l ) (7)

He shows both formally and empirically how training fully connected feedforward networks
incrementally with Eq. (7) overcomes the shortcoming of CAB, and achieves state-of-the-art perfor-
mance in the Disjoint MNIST [26] task [16].

2.4.3 Conceptors in Convolutional Neural Networks

Where He achieved state-of-the-art with fully-connected feedforward networks, state-of-the-art in
many other computer vision tasks is achieved with convolutional neural networks (CNNs). To utilize
CPR with CNNs, Hofman shows that conceptors can be computed and used as in [16] by unfolding
the convolutional filters and input image/feature map [17]. By vectorizing the convolutional oper-
ation, CPR can be used in CNNs without any modification to the objectives shown in Eq (6) and
Eq (7). Because the conceptor operations in Hofman’s work are identical to those in [18, 16], we
will only explore the unfolding operation for CNNS in detail. Furthermore, as this thesis work can
be understood as a direct continuation of [17], we will summarize Hofman’s experiments and results
in greater detail than that of previous works discussed in this section.

The name convolutional neural networks stem from the idea that, in a convolutional layer, one
or multiple filters convolve over the input image or feature map. This convolving operation can
be thought of as sliding the filter over the input. The convolution operation is, with this framing,
prohibitively costly. If you have fl and fl−1 filters on layers l and l − 1 respectively, each with a
square kernel of k by k weights, and the output of layer l is a feature map of hout by wout pixels, then
the naive convolution has time complexity O(k2 ∗ fl ∗ fl−1 ∗hout ∗wout).

By unfolding both the convolutional filters and the input, the convoluting operation can be im-
plemented as a single matrix multiplication. The filter dimensions are given as [k,k,c], With F k by
k filters each having c channels. The input dimensions are given as [hin,win,c], or hin pixels high by
win pixels wide, having c channels. The key insight here is that a single output from the convolution
is the result of multiplying the flattened filter(s) by a flattened input patch the size of the filters (in
this case, k by k). Repeating this flattening operation for all F filters and each of the P input patches,
the input and filters are reshaped into [k ∗ k ∗ c,P] and [F,k ∗ k ∗ c] respectively. This also makes
explicit the weight sharing in convolutional networks: the same weights are used P times.

After training on a task, the activation to compute conceptors from can be sampled as in [16]
by taking the flattened feature map as a single row in state activation matrix X . From here, the rest
of the CPR operations apply. Note that the pseudo-data used in ΩC has to be unfolded similar to
other input to a convolutional layer, and the pseudo-activation has to be flattened to be projected into
conceptor space.
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Hofman shows that a small convolutional neural network with only two convolutional layers and
a fully connected one can outperform the state-of-the-art set by He [16] for the incremental one-vs-
all MNIST experiment. Given the effective application of CNNs with CPR on incremental learning
of classification tasks, Hofman proceeded with an incremental one-vs-all segmentation experiment.
This experiment was performed on an one-vs-all incremental variant of the Cityscapes [27] dataset.
In the experiment the order of the segmentation tasks are as follows: First roads, secondly cars and
thirdly buildings.

Joint training on only the first two tasks yielded an Intersection over Union (IoU) [28] score of
0.84. However, training incrementally already showed a decrease in performance, only reaching
an IoU of 0.78. This dropped to 0.57 after learning the third task, while the performance for joint
training reportedly stayed at 0.84. While in the one-vs-all classification experiment, incremental
training with CNNs and CPR yielded results approaching joint training, this is not the case for
one-vs-all segmentation.

Theoretically, the network used by Hofman should still have capacity to learn the new tasks.
Even after training incrementally on all three tasks, the quota q of the conceptors are still signifi-
cantly below 0.5 in each layer. However, q may not be the limiting factor. Hofman poses that there
may not be a change in weights W inc that minimizes both the conceptor regularization term and the
task loss. In other words, learning the new task may require a W inc that initially increases ΩC.

CPR is still a novel approach to incremental learning, and Hofman was the first to apply CPR
with CNNs. What causes the decrease in performance in segmentation specifically, or how CPR
interacts with the weight sharing and CNNs in general, are still not well understood. Our thesis work
is a continuation of Hofman’s, with the aim to gain a better understanding of CPR for incremental
one-vs-all segmentation. To this end we propose two extensions to CPR which we believe may
improve performance with convolutional filters.
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3 Proposed Solution

While we have just discussed several solutions towards incremental learning of segmentation tasks,
there is an intersection between penalty computing approaches and the specific one-vs-all incre-
mental segmentation task described previously for which little to no literature exists. Most penalty
computing approaches regulate some encoded representation stemming from one or more fully con-
nected layers, making it incompatible with fully convolutional networks. Previously discussed work
also usually puts several classes together in each task, as opposed to the one class per task seen
in one-vs-all incremental learning. This allows the network to learn generalizations on the classes
presented together within a class, making it an easier task to solve than the one-vs-all variant.

Using unfolded convolutional layers, Hofman was able to apply CPR to convolutional networks.
This yielded good results for classification, in which the network contained fully connected layers,
but performed poorly in segmentation with a fully convolutional network. To explore what may be
causing this poor performance we repeat the experiment described in [17] with a different training
scheme, and perform additional diagnostics. As a step towards a solution, we further propose two
extensions to CPR. This section defines the newly proposed extensions to CPR. The repeated ex-
periment, as well as comparable experiments for the two extensions and diagnostic experiments, are
detailed in section Experimental Setup. The Experimental Setup section also provides full details
with regards to the specific architecture used, implementation specific settings, and other design
choices.

3.1 Filter Conceptors
The key insight for the first proposed extension is that conceptors computed from an entire convo-
lutional layer contain redundant or even misleading information. For a given convolutional layer l
its conceptor Cl is computed from autocorrelation matrix Rl . Rl contains the n by n autocorrelation
of activation samples collected from each of the n post-synaptic neurons in l. If l is a convolutional
layer with more than one filter, the weights in a given filter only affect the feature map correspond-
ing to said filter. As such, only the interaction with other weights within a filter are relevant to the
output. Computing Cl from Rl will contain correlations of weights between different filters, and the
singular vectors of Cl may be based on linear combinations of weights across more than one filter.

Small singular values might incorrectly suggest that the model still has capacity for learning
when these singular values correspond to singular vectors that are constituted by weights across
more than one filter. Learning a new task in this seemingly free memory space can inadvertently
still negatively influence previously learnt tasks, as changes in weights within a filter influences
the output of said filter differently than fully connected layers due to weight sharing. Changing
weights in this seemingly free memory space also does not ensure that learning occurs in these
(sub)dimensions, since weights in different filters do not interact with each other. Concretely, Cl
incorrectly characterizes the available memory space in l.
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A straightforward solution for fully convolutional networks would be to then compute F con-
ceptors for all layers L instead, excluding the model head L−1. This yields one conceptor for each
of the F filters ∀ f ∈ {0, ...,F −1} in each layer but the last ∀l ∈ {0, ...,L−2}. We then introduce an
additional index to the notation to specify a filter: R f

l becomes the k2 by k2 autocorrelation matrix
obtained from activation samples of the k2 neurons in filter f in layer l with kernel shape [k, k].
Similarly, C f

l is the (flattened) filter-sized conceptor computed from R f
l .

Filter-sized conceptors, or filter conceptors for short, can otherwise be used identically to how
conceptors were used by Hofman in [17]. These conceptors can be used for CPR in incremental
learning, by computing and updating the conceptors after each task [16]. We add one more index
for each task t in the total set of T tasks ∀t ∈ {0, ...,T −1}. For example after training on two tasks,
the autocorrelation matrix of filter f in layer l on the current (the second) task t is noted as Rt, f

l , and
the conceptor computed from Rt, f

l becomes Ct, f
l . The conceptor that was computed from previous

(the first) task would then be Ct−1, f
l .

Continuing the example, after training on the second task (and each subsequent task beyond the
first) every conceptor {Ct, f

l | f ∈ {0, ...,F−1}, l ∈ {0, ...,L−2}} must be updated with its counterpart
from the previous task to characterize not just the currently learnt task but also (every) previous task.
This is done with the ∨ operator, as in [17, 16]. Each conceptor is then updated to characterize all
tasks learnt thus far: {Ct, f

l 7→Ct, f
l ∨Ct−1, f

l | f ∈ {0, ...,F −1}, l ∈ {0, ...,L−2}}. Now the conceptors
are ready for the next task to be learnt incrementally with CPR.

Even though the conceptors are ready to be used with CPR, the conceptor regularization loss
ΩC from previous section needs to be adapted to use the multiple filter conceptors rather than a
single conceptor per layer. In the original regularization term the loss of each conceptor per layer is
summed up. To adapt ΩC to filter conceptors, the only change that needs to be made is to also sum
over each filter conceptor, rather than each conceptor per layer. The resulting loss is the filter con-
ceptor regularization loss ΩF , which becomes ΩF(W

t−1, f
l ,W t, f

l ,Ct−1, f
l )=E[||Ct−1, f

l (gl(W
t, f
l ξ

f
l−1)−

gl(W
t−1, f
l ξ

f
l−1))||

2
2]. Here, the weights of a filter f for layer l on previous task t −1 and current task

t are W t−1, f
l and W t, f

l respectively. The (updated) conceptor computed from the activation of the
neurons in filter f of layer l which characterizes all previously learnt tasks is Ct−1, f

l . The conceptor
regularization loss is thus the expected value of the L2 norm of the conceptor-projected (difference
in) pseudo rehearsal. As in CPR, Gaussian pseudo-data is passed through the new and old weights
with activation function gl , yielding new and old pseudo feature maps. In this case, the activation
function g is ReLU for each but the last layer ∀l ∈ 0, ...,L−2. The pseudo-data is shaped like the
input to said weights, which is equal to the output of previous layer l − 1. Hence the Gaussian
pseudo-data input to a filter f is ξ

f
l−1.

Taking the difference of the pseudo rehearsal by subtracting the old pseudo feature map from the
new pseudo feature map as done with (gl(W

t, f
l ξ

f
l−1)−gl(W

t−1, f
l ξ

f
l−1)) offers a measure of change in

the new weights W t, f
l from the old weights W t−1, f

l . By multiplying this measure of change with the
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associated conceptor that characterizes previously learnt tasks Ct−1, f
l it is projected into conceptor

space. This is similar to how this operation was described previously from Hofman’s work, except
that the operations are done on a per filter/feature map basis, rather than concatenating the feature
maps to perform the operation on a per layer basis. Once again, projecting this difference onto
conceptor space means differences in directions where the singular values of the conceptor are small
tend to zero, while differences in directions with large singular values are magnified. In other words,
changes in the new filter weights which project onto previously learnt tasks (characterized by large
singular values) that would interfere with previously learnt tasks are magnified, and changes which
would not interfere are orthogonal to previously learnt tasks (characterized by small singular values).
The L2 norm of this projection then discourages changes that interfere with previously learnt tasks,
while tending to zero for changes that do not interfere with previously learnt tasks. The use of
filter conceptors prevents unused memory space from appearing where none exists (e.g. in linear
combinations of neurons across different filters).

Replacing ΩC with ΩF , Eq. 7 can be rewritten as

J t ̸=1 = Ltask(aL−1,yt)+λ

L−1

∑
l=0

||W inc
l ||2f ro + γ

L−2

∑
l=0

F−1

∑
f=0

ΩF(W
t−1, f
l ,W t, f

l ,Ct−1, f
l ) (8)

Note the additional summation over each filter in the filter conceptor loss. Aside from this additional
summation and ΩF replacing ΩC the objective J t ̸=1 is identical to previous section and is described
in more detail there. This small change allows filter conceptors to be used with CPR, shorthand
fCPR. CPR can become computationally prohibitive as the inverse of an n by n autocorrelation
matrix has to be taken to construct the conceptor for each layer. n in the case of CPR is equal to
the number of neurons in a layer, so layers with more than approximately 10000 will not yield an
inverse of the autocorrelation matrix within reasonable time. With fCPR the dimensions of the filter
are equal to the length of the flattened filters, so if a filter has a k by k kernel only the inverse of
a k2 by k2 needs to be computed. As k is typically below 100, fCPR can be used with any sized
convolutional network. fCPR is our first extension of CPR, and is also the basis for our second
extension.

3.2 Hierarchical Conceptors
Where computing a single conceptor per convolutional layer may suggest unused memory space
where there is none, there are still reasons why having information across filters can be beneficial.
For example, two or more filters strongly correlating may hint at a redundancy in learnt filters, where
only some (linear combinations of) filters need to be kept and the others can be dedicated towards
new tasks. Additionally, identifying unused (linear combinations of) filters would allow us to learn
new tasks only on unused combinations of filters, preventing changes in combinations of filters
important to previously learnt tasks. But because filter conceptors pertain only to single filters, these
potential benefits are unattainable with fCPR.
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As filters form a natural hierarchy with convolutional layers in a convolutional network, with
each layer consisting of multiple filters and each filter consisting of multiple neurons, one way
of conceptualizing filters is to abstractly view filters to a layer as neurons are to a filter. In this
analogy, the multiple filters make the layer as the multiple neurons make the filter. Just as we want
to identify unused combinations of weights in a filter to train the next task on, we similarly want
to identify unused combinations of filters in a layer to train the next task on. With filter conceptors
we characterized this unused memory space at the level of individual neurons in a filter. Using tFhe
analogy we might be able to once more adapt CPR to characterize unused memory space, this time
at the level of individual filters in a layer.

The primary obstacle in making this adaptation is that there is no good analogy to neural activa-
tion for filters. While neural activation is a single number per neuron, each filter produces a many
valued feature map. Collecting activation to compute the autocorrelation matrix, which is the basis
for the singular values of the conceptor, is not straightforward. Concatenating feature maps results in
a conceptor identical to those used in [17]. Instead we would like a single valued analogy to neuron
activation for filters, which still contains information of how the filter output relates to current and
previously learnt tasks.

To compute a filter conceptor, we take the autocorrelation of the activation matrix. This acti-
vation matrix of S ∗V rows by k2 columns is constructed from the activation of the k2 individual
neurons in the filter in response to S samples with V input patches of training data. The concep-
tor C that can then be obtained through this activation matrix is k2 by k2 shaped. Note how C is
constructed from output patches p before they are combined into the full feature map output of the
convolutional layer. We can then flatten p, which becomes the flattened vector of the output patch
(activation) p⃗. p⃗ can be projected onto the conceptor space, yielding the vector p⃗c =C∗ p⃗. Here p⃗ is
explicitly denoted as a vector since it is the flattened output patch. This projection is an indication of
how much the activation falls into used (dimensions represented by large singular values) or unused
(smaller singular values) memory space, as characterized by C. The dot product between p⃗c and
the transpose of the original vector p⃗⊤ can be taken as an estimate of how much the original vector
differs from its conceptor projection, as in u = p⃗⊤ ∗ p⃗c. This can be shortened to u = p⃗⊤Cp⃗.

If p⃗ resulted from a filter with weights trained for a given task t, and C is the filter conceptor
characterizing the filter response to t, then u can be seen as a characteristic of the filter response p⃗ in
relation to C. This way, u is now the single valued characteristic of the many valued filter response
p⃗ in relation to C that we were looking for. We call this the conceptor activation going forward.
The conceptor activation bridges the analogical gap between neuron activation and filter response.
Similar to how we collected neuron activation to input sample patches, we can now also compute
filter conceptor activation from the filter response to input sample patches. For all S∗V input patches
and all F filters, we denote the flattened filter response p⃗ of any filter f and associated filter conceptor
C f to any such input patch as {uv

f = p⃗⊤v C f p⃗v|∀v ∈ {0, ...,S∗V −1},∀ f ∈ {0, ...,F −1}}. This gives
us the conceptor activation matrix Xc with S∗V rows and F columns filled as follows,
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Xc =


u0

0 u0
1 · · · u0

f

u1
0

. . . ...
... . . . ...

uv
0 · · · · · · uv

f

 (9)

where uv
f is the conceptor activation of conceptor C f to flattened filter response p⃗v. Notice how the

conceptor activation matrix of Eq. (9) is similarly shaped to the activation matrix seen in CPR and
fCPR. The rows still correspond to individual samples of activation. The columns now correspond
to the amount of neurons/filters over which we want to compute a conceptor.

Having constructed an activation matrix Xc, we can use this to once again compute an autocor-
relation matrix Rc as before: Rc = XcX⊤

c /(S ∗V ). From Rc we can compute another conceptor, but
note how this conceptor was computed not from neural activation but from an ”activation” involv-
ing F other conceptors: from the conceptor activation. To avoid confusion, conceptors computed
from conceptor activation in this manner shall be called hierarchical conceptors going forward and
denoted H as opposed to C. The hierarchical conceptor computed from the conceptor activation of
the F filter conceptors {Ct, f

l |∀ f ∈ {0, ...,F −1}} in layer l after training on task t is then denoted as
Ht

l .
This hierarchical conceptor can be computed, updated, and used alongside the filter conceptors

with CPR, although the order in which filter and hierarchical conceptors should be updated will be
discussed in a dedicated subsection hereafter. As in fCPR, the conceptor regularization term ΩC
must be adapted to allow for this change in the conceptors. Similar to how the conceptor activation
was collected for the autocorrelation, the same operation can be applied to the Gaussian pseudo data
for the conceptor-based pseudo rehearsal with hierarchical conceptors. The operation in this case
projects the flattened filter response to the pseudo data onto the filter conceptor space, of which the
dot product is taken with the transposed flattened filter response.

It is the same u = p⃗⊤Cp⃗ operation, where now during pseudo rehearsal p⃗ is the difference in
flattened filter response d. During pseudo rehearsal d then becomes the difference in flattened filter
response between the new and old filter to the Gaussian pseudo data, rather than input originating
from actual training samples. In this case, it is the filter response of the filter associated with the
filter conceptor C. This operation then yields a pseudo conceptor activation.

In other words, to allow for hierarchical conceptors in pseudo rehearsal the Gaussian pseudo
data is passed through the filter and activation function using the new weights and the old weights,
similar to fCPR. Their difference d is taken just as in fCPR. Unlike fCPR, the L2 norm is not yet
taken. Instead, the pseudo conceptor activation is computed for each (differenced) filter response
patch in d.

The pseudo conceptor activation can then be projected onto the hierarchical conceptor space.
This projection tends to zero when the changes in filter response to the pseudo data are in directions
associated with small singular values of the hierarchical conceptor. Conversely, the projection be-
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comes larger when changes in filter response to the pseudo data are in directions associated with
large singular values of the hierarchical conceptor. By taking the L2 norm of this projection we
encourage changes in filters in directions associated with small singular values, while discouraging
the converse. This way, hierarchical conceptors are used to shield combinations of filters in a layer
similar to how filter conceptors are used to shield combinations of neurons in a filter. This adaptation
to CPR will be referred to as hierarchical conceptor-based pseudo rehearsal, or hCPR for short.

Having illustrated the basic principles behind hCPR, we can formally change ΩC into ΩH to
accept hierarchical conceptors. As ΩH relies on both the filter conceptors and the hierarchical con-
ceptor, this then results in ΩH(W

t−1,z
l ,W t,z

l ,Ht−1
l ,Ct−1,z

l ) = E[||Ht−1
l Φl||22]. In the left hand part of

the formula, z = {0, ...,F −1} such that z enumerates all F filters. W t−1,z
l and W t,z

l are the old (t−1)
and new (t) weights as before for layer l. Note how the weights of all filters in a layer are used,
rather than only the weights of a single filter as in ΩF . Next is Ht−1

l , which is the (updated) hierar-
chical conceptor computed from conceptor activation of filter conceptors in layer l after training on
previous task t −1. Following the hierarchical conceptor is the set of all F updated filter conceptors
(as enumerated by z) in layer l: Ct−1,z

l , also obtained after training on previous task t −1.
In the right hand side of the formula, a major part is substituted by Φl for readability. Here Φl is

the differenced pseudo conceptor activation as exemplified previously. This differenced activation
is projected onto hierarchical conceptor space where, as previously mentioned, differences along
important dimensions to previously learnt tasks (directions with large singular values) are increased
and those along unimportant dimensions (directions with small singular values) tend to zero. Taking
the L2 norm of this projection as the loss encourages changes in unimportant combinations of filters
while discouraging the opposite.

For pseudo rehearsal with hierarchical conceptors, a (differenced) pseudo conceptor activation
Φl has to be collected from Gaussian pseudo data. We use the same u = p⃗⊤Cp⃗ operation described
previously to obtain the conceptor activation. We write Φl = {p⃗⊤Ct−1, f

l p⃗ | ∀p⃗ ∈ P,∀ f ∈ z} where
P = {gl(W

t, f
l ξ

f
l−1)− gl(W

t−1, f
l ξ

f
l−1) | ∀ f ∈ z}. Here P is similar to the pseudo rehearsal seen in

fCPR. To reiterate: it contains S∗V patches p⃗ which are the flattened and differenced filter response
to the Gaussian pseudo data. Here S is the amount of samples of Gaussian pseudo data, and V the
amount of input (and thus output) patches in a single sample. These flattened, differenced output
patches p⃗ are the filter responses of each filter ∀ f ∈ z with the newly trained weights W t, f

l to Gaussian
pseudo data input ξ

f
l−1 passed through activation function gl , subtracted by the same but with the

weights from previous task W t−1, f
l .

With this definition for hierarchical conceptor-based pseudo rehearsal, or hCPR, we can replace
ΩC with ΩH in Eq. (7). This gives us

J t ̸=1 = Ltask(aL−1,yt)+λ

L−1

∑
l=0

||W inc
l ||2f ro + γ

L−2

∑
l=0

ΩH(W
t−1,z
l ,W t,z

l ,Ht−1
l ,Ct−1,z

l ) (10)

While most of the formula remains identical to Eq. (7), ΩH requires an additional hierarchical con-
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ceptor, and the weights and conceptor to be split up by filter into a set of F old weights, new weights
and (filter) conceptors as enumerated by z. hCPR retains the benefits of fCPR, as it relies on the
smaller filter conceptors rather than one large conceptor per layer. The addition of an F by F hi-
erarchical conceptor computed with all F filter conceptors on a layer adds another generally small
conceptor which is intended to overcome the limitations of fCPR. The hierarchical conceptor char-
acterizes how (much) combinations of individual filters are used towards the learnt tasks, and can
give a measure of available filter dimensions on which new tasks can be learnt across filters.

3.2.1 Updating Hierarchical Conceptors

Just as the conceptors computed per layer or per filter are updated with the previously learnt tasks
to characterize not just the newly learnt task but all of the learnt tasks thus far, the hierarchical
conceptor has to be updated as well. However, because a hierarchical conceptor H is computed from
conceptor activation, which in turn relies on other conceptors Cz (where z indexes all conceptors
used in the conceptor activation), the order in which H and Cz are updated matters. We identify
three procedures by which the hierarchical and filter conceptors can be updated, though which of
the three is the best procedure is not yet explored.

Let the F filter conceptors for layer l, indexed by z = {0, ...,F − 1}, which represent the previ-
ously learnt task(s) t − 1 be Ct−1,z

l . The hierarchical conceptor obtained with Ct−1,z
l is then Ht−1

l .
Let the filter conceptors obtained after training on the new task t be Ct,z

l . The goal is to update this
new set of filter conceptors with the old set of filter conceptors using the ∨ operator such that Ct,z

l
characterizes both the new task and the previously learnt task(s). Furthermore, we want to obtain a
hierarchical conceptor with similar characterization for filters.

The three procedures listed here can be summarized as follows: Filter first, which first updates
the filter conceptors, computes a new hierarchical conceptor from the updated filter conceptors, and
then updates previous hierarchical conceptor with the new one. Hierarchical replacement, which
similarly updates the filter conceptors and computes a new hierarchical conceptor, but replaces the
old hierarchical conceptor with the new one rather than updating it. And finally, parallel updates,
which computes a new hierarchical conceptor from the new filter conceptors before updating the
filter conceptors, and then updates both the old filter conceptors and the old hierarchical conceptor
with the new ones. Each procedure is listed in more detail below, with additional remarks.

• Filter first:

– Compute the filter conceptors for the newly learnt task: Ct,z
l

– Update the new filter conceptors with those characterizing previously learnt tasks for
neurons in a filter: Ct,z

l 7→ {Ct, f
l ∨Ct−1, f

l | ∀ f ∈ z}

– Compute the new hierarchical conceptor Ht
l from the updated filter conceptors Ct,z

l for
the newly learnt task
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– Update the new hierarchical conceptor with the hierarchical conceptor characterizing
previously learnt tasks for filters in a layer: Ht

l 7→ Ht
l ∨Ht−1

l

* Note how this adds characterizations of the previously learnt task(s) into the updated
hierarchical conceptor twice: the old hierarchical conceptor Ht−1

l characterizes the
previously learnt task(s) as it is computed from Ct−1,z

l , but the new hierarchical
conceptor Ht

l through this procedure is computed from updated conceptor filters Ct,z
l

which by being updated with Ct−1,z
l also characterize the previously learnt task(s)

• Hierarchical replacement:

– Compute the filter conceptors for the newly learnt task: Ct,z
l

– Update the new filter conceptors with those characterizing previously learnt tasks for
neurons in a filter: Ct,z

l 7→ {Ct, f
l ∨Ct−1, f

l | ∀ f ∈ z}

– Compute the new hierarchical conceptor Ht
l from the updated filter conceptors Ct,z

l for
the newly learnt task

– With the new hierarchical conceptor now containing information on both previously and
newly learnt tasks from the updated filter conceptors Ct,z

l , the old hierarchical conceptor
Ht−1

l can be disregarded

* How much information from previous tasks is retained in this way in higher level
conceptors is currently unexplored.

• Parallel updates:

– Compute the filter conceptors for the newly learnt task: Ct,z
l

– Compute the new hierarchical conceptor Ht
l from the not yet updated filter conceptors

Ct,z
l for the newly learnt task

– Update the new conceptors with the old conceptors in parallel: Ct,z
l 7→ {Ct, f

l ∨Ct−1, f
l | ∀ f ∈

z} and Ht
l 7→ Ht

l ∨Ht−1
l

* This order for computing and adding new conceptors to those from previous task(s)
is the one chosen for the rest of this thesis.

Of course, this is done for each (convolutional) layer l ∈ {0, ...,L− 2}, excepting the last layer
L − 1 which is the model head and for which no conceptors are computed. After updating the
hierarchical and filter conceptors they are ready to be used for training with hCPR on the next task.
Updating conceptors is only done after training on the second task and beyond, as before that there
are no previous conceptors to update with.
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3.3 Constraints
The idea that linear combinations of weights in a filter can represent used or unused memory space
in said filter is questionable in the first place. Due to weight sharing, the same weights are used
multiple times to produce the resulting feature map. This repetition influences how changes in
(linear combinations of) weights affect the output neural activation, distinguishing them from neural
activation in fully connected networks where the weights of each neuron can be changed independent
of other neural activation in the same layer. In a convolutional filter, a change in a single weight can
affect the entirety of the output feature map, whereas in a fully connected layer a single weight will
only affect a single output.

Regulating entire filters in a layer with hierarchical conceptors is, analogies aside, distinct from
regulating weights of neurons in a fully connected layer. Dependant on deep learning architecture
and design choices, one or more feature maps are summed or averaged as input to the next (convolu-
tional) layer. The architecture used in this work simply averages all feature maps as the input to the
next layer by default. The same is seen in Hofman’s work [17], of which this work is a continuation.
This may also affect to what degree unused filters can be identified and used towards new tasks.

Hierarchical conceptors and hCPR introduces an extension to CPR that adds ΩH to the loss
in the forward pass. In this work, backpropagation is handled by the Autograd tool included in
PyTorch [29]. However, for a more complete understanding of hCPR and how to backpropagate the
new loss, ΩH should be differentiated. This is as of yet unexplored.

Finally, the idea of hierarchical conceptors stems from an analogy between neurons and filters.
It should be noted however that it is as of yet unsure whether this analogy holds, and whether the so-
called conceptor activation can be treated identically to neural activation. But even in the case where
the analogy does not hold, hCPR introduces a novel characteristic for conceptors in the conceptor
activation and lays the groundwork to hierarchies of a greater depth for feedforward networks.
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4 Experimental Setup

In previous section we proposed computing conceptors from a characteristic of filter response rather
than from the neural activation in an entire layer. Furthermore, we introduced a novel hierarchical
conceptor to overcome loss of information from splitting the activation collection procedure. To
test the efficacy of these two approaches, we perform experiments similar to the segmentation task
in [17], using the same network architecture. As our implementation, optimization scheme and
evaluation criteria might feature minute differences from previous work by Hofman, we also perform
baseline experiments to test model capacity for learning given tasks jointly and incrementally with
conceptor activation collected as in [17, 16, 25].

We first introduce the dataset used for all experiments. Secondly, we provide the structure for the
experiments we perform, split up into core and supplementary experiments. The core experiments
pertain to the performance of the model across three tasks with the following variations:

1. Baseline joint training

2. Incremental training without conceptor regularization

3. Conceptor incremental training with regularization as in [17]

4. Filter conceptors incremental training with fCPR, using ΩF instead of ΩC

5. Hierarchical conceptor incremental training with hCPR, changing ΩC to ΩH

Furthermore, to estimate learning capacity of the model and to get an upper bound in performance
for any given task under ideal circumstances, some supplementary experiments are provided:

1. Individual class training: training and testing the model on only a single class, for each of the
three classes used in the previous experiments

2. Growing of classes: training and testing the model on the first class, then the same for the first
two classes, then for the first three, all the way up to training and testing the model on the full
set of 27 classes

After this, we define the optimization scheme and further settings used for the experiments. Finally,
we provide various criteria by which performance of the different experiments are measured.
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4.1 Dataset

Figure 6: Example image from the Cityscapes dataset (top) and associated segmentation mask (bot-
tom).

The dataset used for the experiments is the Cityscapes coarse semantic segmentation dataset [27].

• Contains 17045 coarsely annotated images.
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• Over 30 distinct segmented categories.

• Overlapping and transparent regions are labelled as the foreground category.

• Images of German cityscapes of cities like Aachen, Bremen, Cologne, and more.

• Months in spring, summer and fall for consistent lighting.

• Exclusively taken during day time.

• Only features images with clear or overcast weather.

An example image with associated segmentation mask is shown in Fig. 6. Note how the segmented
areas are distinct from each other and annotated areas rarely touch. Not all categories occur in each
image, and some categories occur more frequently or consistently than others. The hood and logo
of the car are segmented out as background.

The tasks performed in the experiments are, unless stated otherwise: roads, cars, buildings. The
order in which tasks are presented can influence performance, for consistency and comparability be-
tween models the abovementioned order is adhered to unless mentioned differently. As the expected
output for each task the pixels of its associated class are set to 1, and 0 everywhere else. To reduce
computational costs, images and associated output are scaled to be 128 pixels wide by 64 pixels
high. More example input and output images are provided in Appendix A.

4.2 Network Architecture
The network architecture used here is a simple fully convolutional neural network (FCN) with 8
layers, identical to the one used in [17]. Each convolutional operation keeps the dimensions of the
input as-is, owing to a 5 by 5 filter kernel and a padding of 2. Instead, reducing and expanding the
dimensions of the feature maps depends on max-pooling and bilinear upsampling respectively. This
FCN follows the traditional U-Net architecture [30], without the skip-weight connections. Skip-
weight connections can help prevent vanishing gradients in large networks, but this network is not
deep enough for skip-weight connections to improve performance [17]. Further network details,
such as the amount of filters per layer and where feature map dimensions are reduced or expanded,
can be gleaned from the diagram in Fig. 7. A complete overview of settings used is provided in
Table 2.
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Figure 7: Network architecture with 8 convolutional layers, each with filters having a 5x5 kernel.
Input is a scaled Cityscapes image, outputs a semantic segmentation of the input.

4.3 Experiment Design
The experiments are split up in core experiments and supplemental experiments. For each core
experiment the settings and used software are listed in Table 2. The supplemental experiments are
meant as a means of estimating what optimal model performance in the incremental parts of the core
experiments would be, and to estimate model capacity outside of incremental training. The results
are, unless stated otherwise, averaged over ten trials splitting the data into a 90%/10% train/test split.
Each trial is treated as a fold in cross-validation, such that each test fold contains unique data.

4.3.1 Core

4.3.1.1 Baseline A model is trained on the three tasks/classes in a joint training fashion. This
experiment serves to establish baseline performance of the model in joint training over three tasks.
The experiment here is identical to the 3rd step of the Growing supplementary experiment.

4.3.1.2 Incremental A model is trained on the three tasks in an incremental fashion without any
form of conceptor regularization. This experiment serves to establish the degree of catastrophic
interference occurring in the model with the given (order of) tasks.

4.3.1.3 Conceptor A model is trained on the three tasks in an incremental fashion, with con-
ceptor regularization implemented as described by Hofman [17]. However, different from [17] the
network is trained with a different optimizer (RAdam [31] instead of Adam [32]) and for more
epochs, as described later on in this section.
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4.3.1.4 Filter Model is trained on the three tasks in an incremental fashion, with conceptor regu-
larization on conceptors computed from activation in individual filters, rather than over all filters in a
layer. This experiment serves to establish if the information lost by splitting the activation collection
to individual filters and computing smaller conceptors is detrimental to model performance and task
retention.

4.3.1.5 Hierarchical A model is trained on the three tasks in an incremental fashion, with con-
ceptor regularization on the hierarchical conceptor computed per layer over the individual filter
conceptors in each respective layer. Given limitations imposed by the implementation, we compute
the hierarchical conceptor using only 10,000 random input patches from the total collected activa-
tion (see Table 2). Similarly, the batch size for the pseudo-data in the loss is set to 1, as opposed to
the batch size used otherwise. Though this should be sufficient as the hierarchical conceptor is far
smaller than conceptors computed from entire layers of activation, it may lead to some more random
variation in the results. This experiment serves to establish the validity and efficacy of hierarchical
conceptors, and to assert the degree to which it remedies potential drops in performance in previous
experiment if any are present.

4.3.2 Supplementary

4.3.2.1 Individual Three models are trained and evaluated on only a single class, for each of the
three classes used in all aforementioned experiments. This experiment establishes what the optimal
performance of the model on a given task would be with the settings and optimization scheme used.
Attaining this level of performance is not necessarily realistic even in joint training with more than
one class, but serves as an upper bound on performance.

4.3.2.2 Growing Models are trained and evaluated on the first t classes, ∀t ∈ {1, ...,T}. This
yields T = 27 results, and an upper bound of performance of the model under joint training of 1 to T
tasks. It also shows at which point, if at all, the capacity of the model to learn more tasks is reached.

4.4 Optimization Scheme
While the Baseline and Conceptor experiment share model architecture and experiment design
with [17], results will still vary due to a difference in optimization scheme. We have opted for
the Rectified Adam (RAdam) optimizer, which may adapt to the extreme conceptor loss at the start
of a new task better than Adam. Furthermore, Hofman trains his model for 5 epochs, but we found
the model to still improve beyond that. Instead we train the model for 25 epochs starting with a
moderate learning rate, which is generally enough for both training loss and task performance to
plateau.
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In tasks beyond the first, when training with conceptor regularization, we observed the training
loss going up within the alotted 25 epochs. This points at a numerical instability. Common procedure
is to lower the learning rate, allowing the optimizer to make more precise changes to the gradient.
If the training loss in any given epoch is higher than that in the previous, the epoch is restarted and
the learning rate halved. However, doing this five times slows down training to the point where
no significant change is made within reasonable time. Thus we stop the training procedure after
restarting five times.

We are also using a different task training loss Ltask from [17], namely the IoU loss or Jaccard
Index [28]. It can be made differentiable as shown in [33]. Using this loss makes sense given the
Intersection-over-Union (IoU) evaluation criterion (more on that in the next subsection). It would
also allow the network to predict multiple labels for overlapping classes in the image, as argued
in [34]. Lastly, it discourages only outputting 0 for sparse classes compared to pixel accuracy, and it
discourages making large mistakes compared to a loss based on the Dice Coefficient/F-score.

4.5 Evaluation Criteria
As mentioned previously, the primary evaluation criterion of model performance is given as IoU
(for a single task), or average IoU over tasks (mIoU). To identify what is causing performance to
drop after learning only three segmentation tasks as in [17], more involved evaluation methods are
in order.

For a first indication as to what the model is or is not learning, we can look directly at the
(changes in) filters the incremental model has learnt after each epoch or task. Comparing this quali-
tatively to previously learnt filters, or to those learnt in the jointly trained model, provides an idea of
what or what degree of change is occurring in the filters with conceptor regularization.

Another evaluation method revolves around the singular values of the conceptors. Plotting these
as a singular value spectrum gives an overview of the memory space occupied by each conceptor.
More singular values close to 1 means that more linear combinations of weights contribute towards
the task(s) represented by said conceptor. In other words more dimensions of memory space are
occupied. Conversely, singular values close to 0 indicate capacity for the network to learn new tasks
on the corresponding linear combinations of weights. This metric can be quantified as the quota of
a conceptor q(C) = ∑

N
i=0 si/N for the N singular values from which C was constructed, which tends

to 1 when all dimensions are completely used towards characterizing the learnt task(s) and no more
unused memory space is available.



4 EXPERIMENTAL SETUP 41

Table 2: Settings and Experiment Design Choices
Implementation specifics Value
Layers 8
Kernel size 5x5
Stride 1
Padding 2
Dilation 1
Grouping 1
Optimizer RAdam [31]
Learning rate 0.0001
Weight decay (λ) 1e−7

Conceptor loss decay (γ) 1.0
Conceptor aperture (α) 4.0
Task loss IoU loss [28]
Task order Roads, Cars, Buildings
Batch size 15
Activation collection size 30*
Cross validation folds 10
Python version [35] 3.9.7
Pytorch version [29] 1.11.0
*: Number of batches used towards activation collection for computing R in conceptors.

The final collection features batch size * activation collection size images
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5 Results

As described in the Experimental Setup section, the experiments are broken down into two cate-
gories: core and supplementary. The core results are compacted into a single table. We also provide
some example graphs of how training loss may change over epochs. After presenting the results from
all experiments, we look at some of the singular value spectrograms. We also compare the conceptor
quota over tasks, which shows how much extra memory space is occupied by each subsequent task.
Finally, we provide some model output for visual inspection of model performance.

5.1 Core

Table 3: Results Comparison Different Models

Experiment Scheme Task IoU Average (mIoU)1 2 3
Baseline* Joint 0.913±0.001 0.827±0.001 0.754±0.001 0.831
Incremental Incremental 0.300±0.001 0.423±0.001 0.748±0.001 0.490
Conceptor Incremental 0.885±0.011 0.619±0.013 0.509±0.004 0.671
Filter Incremental 0.876±0.021 0.556±0.047 0.510±0.003 0.647
Hierarchical Incremental 0.827±0.019 0.711±0.009 0.525±0.013 0.687
*: Uses BCE for task loss and a learning rate of 0.001

The results of our core experiments are shown in Table 3. In this table, the performance of the model
in each experiment after training on all three tasks (either incrementally or jointly) are shown per
individual task and as an averaged mean IoU over the three tasks.

Unsurprisingly, the best performance is by the jointly trained model. These results show that with
the current architecture and settings, a mIoU of 0.826 is attainable when training on the three tasks.
This would be the ideal result for incremental training. More notable is the IoU of the jointly trained
model per individual task. Of the three tasks learnt, the first task (roads) appear to be the easiest to
learn while the buildings are the hardest to learn. The implication here is that task performance on
task three is likely to always be lower than that on task 2, which is in turn lower than that on task 1.

Another unsurprising result comes from the Incremental experiment. This is a clear case of
catastrophic interference, where task performance on previously learnt tasks get worse as new tasks
are learnt. Somewhat interestingly, the performance on the third and final tasks appears to be lower
in this experiment than in the jointly trained experiment, even though it had to learn only one task
rather than three. In the Incremental experiment the model started learning task three with weights
from having learnt task 2, which may be detrimental to task performance on task 3.

As for the three experiments with conceptor regularization, none of the experiments have matched
performance with joint training. The Conceptor experiment, which follows the activation collec-
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tion scheme seen in previous work [17, 16, 25], does outperform the similar experiment performed
in [17]. This confirms that the model stood to benefit from additional training epochs. Fig. 8 shows
one full training run (25 epochs) on task 3 from the Hierarchical experiment.

Conceptor regularization using hierarchical conceptors yields the highest average IoU of the
experiments with conceptor regularization. While the average is very close to that of the Conceptor
experiment, the way the average breaks down is different. The Hierarchical experiment has worse
performance on the first task, but better performance on subsequent tasks. This seems to suggest that
using hierarchical conceptors yields a better balance between learning new tasks and remembering
old tasks than other conceptors, even with the same aperture and other parameters.

Figure 8: An example training run with the training loss shown on a logarithmic scale for each
epoch. This particular run was from the first fold in the hierarchical experiment, training on the third
task.

The results shown in Table 3 only show part of the results of each model. For a more complete
overview we would like to refer the reader to Appendix B: Additional Results. This includes maxi-
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mum IoU performance over all folds, average amount of epochs trained, and the performance after
training on the first and second task.

5.2 Supplementary

5.2.1 Individual

Table 4 contains the results for training the model on one class at a time, for the three classes used
in the Core experiments. What can be seen is that the IoU is generally a bit higher when training on
a single class, except for the Roads class.

Table 4: Results for the Individual supplementary experiment

Experiment Scheme Class IoU
Roads Cars Buildings

Individual Joint 0.915±0.001 0.842±0.001 0.757±0.001

5.2.2 Growing

In this experiment 27 models were trained, each model being trained jointly on one more class than
its predecessor. Note that these are not instances of incremental learning, but instances of joint
training where the same experiment is repeated multiple times with an increasing number of classes.
The full results are shown in Figure 9. Shown are the IoUs for each class, for each model. The model
is indicated by the amount of classes it had to learn on the x-axis. We see that performance is not
limited by model capacity at any point. Had the model been limited, some or all of the performances
on previously encountered classes would drop as the model has to learn more classes. Instead the
performance per class is a straight line, in other words the performance on a given class is stable
whether the model only has to learn a few select classes or all 27 classes.
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Figure 9: An example training run with the training loss shown on a logarithmic scale for each
epoch. This particular run was from the first fold in the hierarchical experiment, training on the third
task.
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5.3 Singular Value Spectra
Looking at the singular values of the conceptors can tell us how much memory capacity of the
network is used towards the learnt tasks. The less visual but more exact quota q is a measure of the
same. Only some of the spectrograms are shown for the sake of efficiency. For each spectrogram
that is shown, the spectrogram as it was at the end of training for each task is overlaid in different
colors. For most tasks the spectrogram changes so little as to not be noticeably different from task
to task. Two spectrograms are shown for the Conceptor and Hierarchical experiment. The Filter
experiment featured too many small conceptors for visualization, so for that experiment we provide
a bar chart of the quota instead.

Layer conceptors

Figure 10: Singular value spectrogram of the first and last layer conceptors from the first fold of the
Conceptor experiment, after training incrementally on all three tasks.

The spectrograms for the first and seventh (the last layer on which conceptors are computed)
layers for the Conceptor experiment are shown in Fig. 10. These follow closely with similar spec-
trograms seen in previous work [17]. The difference over tasks is completely unapparent, and the
difference in q values is insignificant. With also no observed differences in the other layers, all of
the learning for each new task is likely occurring at the task head.
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Figure 11: Average conceptor quota across all filter conceptors in a given layer at the end of the
listed task.

While the many small spectrograms associated with filter conceptors do not lend themselves well
to visual inspection, we can still look at the average quota. The bars shown in Fig. 11 correspond
with the average quota for each layer at the end of training on each of the given tasks. Again there is
little observable difference. However, this time the seventh layer appears to change somewhat from
task 1 (roads) to task 2. Notice also how the quota is a little higher than that from the Conceptor
experiment.
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Hierarchical conceptors

Figure 12: Singular value spectrogram of the first and last hierarchical conceptors from the first fold
of the Hierarchical experiment, after training incrementally on all three tasks.

The spectrograms for the first (the input layer) and seventh (the last layer on which conceptors
are computed) layers for the Hierarchical experiment are shown in 12. These are radically different
from the ones shown before. This difference may stem from the fact that these are the singular values
for hierarchical conceptors, constructed from conceptor activation and not network activation. The
singular values in the seventh layer are all 1, but what this means for network capacity is as of yet
unknown. It appears to indicate that each filter conceptor in the seventh layer contributes fully to the
conceptor activation from which the hierarchical conceptor is constructed.

The entire set of spectrograms for both the Layer experiment and Hierarchical experiment are
given in Appendix C: Singular Value Spectra. The graphs are obtained after training on all three
tasks incrementally, on the first fold of the training data.
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5.4 Model Output

Figure 13: Expected output (left) and model output (right) overlaid on the corresponding input
image. The segmented areas for roads, cars, and buildings are given in red, blue and yellow respec-
tively.

An example of expected and predicted output is given in Fig. 13. More examples are listed under
Appendix D: Model Output Examples, for the models from the Joint, Layer, Filter and Hierarchical
experiments. Shown here is a good combination of a road, some cars, and the peculiarities of the
building class. While at first it may seem as though there should be buildings labelled in the ground
truth on the right of the road, upon closer inspection the observant reader will spot some trees in
front of the building. Looking at the model output, it is clear that the model struggles with this and
generally segments the upper half of the screen as buildings. Most of the road and the cars are still
segmented out to some degree, even after training on three tasks.
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6 Discussion

In this thesis work we set out to continue earlier thesis work by Hofman [17], with the goal of iden-
tifying why network performance drops after learning only three segmentation tasks in a One-vs-all
incremental manner. To aid in this investigation we explore a variation on how the activation for
computing the conceptors used in conceptor regularization is taken, and introduce a novel hierarchi-
cal conceptor. We additionally perform experiments to gain a better understanding of what optimal
performance would be under ideal circumstances.

Comparing the experiments with the joint training scheme to those with incremental training it
is obvious that there is still a significant gap in performance. Incremental learning of segmentation
with any version CPR explored in this work performs far below joint training on the same classes.
Interestingly, the per-class performance in joint training does not depend on the amount of classes
learnt. It appears that the model has a limit as to how well it can learn each class, which varies from
class to class. This is likely a product of several things: of the architecture used, of the imbalance
between classes and sparsity in classes, and of the quality of the annotations.

Following our findings, we identify some potential explanations as to what is causing the afore-
mentioned drop in performance over tasks. Where possible, we propose a solution as to how each
obstacle may be overcome. Furthermore, we discuss the results of our two proposed adaptations
to conceptor regularization: Firstly, that of collecting activation from individual filters rather than
entire convolutional layers; Secondly, that of using hierarchical conceptors. Finally, we disclaim the
major limitations to our work, and propose future work that we believe holds potential in light of
what is discussed.

6.1 Constraints of Conceptor Regularization

6.1.1 Bad Initialization

The operations of CPR are such that the initial conceptor regularization term is exceedingly high.
For a network of the size used in our experiments, and with the pseudo-data used, we have observed
a value of over half a billion in the first steps of the second task. The conceptor regularization term
is normalized with regards to the amount of pseudo-data samples used to compute the regularization
term. However, it still scales with the size of the network and the (conceptor projected) differences
between the old and new weights. As this conceptor regularization term invariably dominates the
objective during the first few epochs, this moves the new weights in a direction independent of
the new task to be learnt. The result is a potentially poor initial starting position for the weights
once the CPR term does become small enough for the task loss to become significant. Intuitively
this is less of a problem for smaller networks with smaller input sizes, as the initial CPR term will
be much lower. This could explain why this problem was not observed in the non-segmentation
experiments performed on MNIST in [17] and [16]. Another cause for this discrepancy could be
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that convolutional filter weights are influenced more heavily than fully connected weights due to
weight sharing.

A trivial way for the weights to be changed to minimize the conceptor loss is to set W inc to zero.
If the new weights do not change from the old weights, the conceptor loss will be zero. In Figure 10
we show that W inc beyond the first tasks are indeed likely set to zero: the singular value spectrogram
does not change beyond the first task. The conceptors do not change from task to task, which means
that the network stays the same at least for those layers regulated by the conceptors. It is likely that
the high conceptor loss pushes W inc to zero as it is not being informed by the task loss until several
epochs into training. This would also explain the decrease in train loss seen in Figure 8: it is simply
trying to set W inc to zero as fast as the learning rate (and the optimizer RAdam) allows.

If the high initial conceptor loss is indeed what is preventing the model in our experiments from
learning beyond the first few tasks, there are a couple of avenues that may alleviate this problem.
Most straightforward, a way to scale or average the CPR term such that it is no longer unbounded
might provide a simple solution. Pre-training each task with just the task loss before adding con-
ceptor regularization might put the weights in a better position for the new task, although we are
unsure how this would impact performance on previously learnt tasks. Finally, if the conceptor reg-
ularization still affects the weights too much and prevents the gradient from being informed by the
task loss, alternating between one or more optimization steps with the task loss and the conceptor
regularization term may allow both to perform gradient updates on the network.

6.1.2 Filter changes

As anyone who has owned an aquarium will be able to tell you, regular filter changes are absolutely
necessary. So too with convolutional networks. However, once a (set of) filter(s) have been learnt
for a specific task, there is no straightforward way to revisit the learnt filters. A new task may
adapt or use the learnt filter, but the optimizer may not find a transition from the old filter to a
more general filter that benefits both learnt and new tasks. While this more general solution may
exist, conceptor regularization might constrain movement in that direction due to an increase in the
conceptor regularization term before the solution is found. This could explain why we see few to no
changes in many of the filters, as shown in the results.

6.1.3 Illusory Overcapacity

Hofman suggested the idea that the remaining memory space of the model after learning two tasks
may not contain a satisfying solution for the third task. However, the reported quota of the conceptors
appear to suggest an overcapacity if anything. Not a single layer is at half of its capacity, with the
average quota being below 30%. Furthermore, every conceptor, excepting maybe that of the first
layer, have singular values of which some if not most are close to 0. These are directions in the
memory space of the layer where changes should not influence the previously learnt task(s) at all!
How then can it be that no solution exists within these directions of unused memory space?
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The first layer has few directions in memory space for which the singular values are approxi-
mately 0 (weights which are completely unused). It could be, however unlikely, that the first layer
contains filters that all prevent the network from learning the new task without changes that in-
terfere with previously learnt tasks. Given the nature of weight sharing in convolutional filters, a
single weight change influences the entire feature map associated with the filter in question. And
as established, there are few weights available in the first layer which are completely unused. Each
dimension in memory space contributes to the previously learnt tasks in at least some small way,
excepting a few individual weights.

Alternatively it may be that the unused capacity of the network is overestimated. After all,
the quota is calculated based on the singular values of the autocorrelation matrix R of activation
samples X in an entire layer. But what does it mean for the activation of neurons in different filters
to strongly or weakly correlate? Each filter outputs its own feature map, with no interaction with
weights in other filters of the same layer. This interaction only becomes meaningful in subsequent
layers which take combined inputs from multiple feature maps. Activation collection is only done
per layer however, so this information is not captured in conceptors computed per layer. To get a
closer estimate of the remaining capacity of an FCN we should thus look at the autocorrelation on a
per filter basis, rather than a per weight basis.

6.2 Filter Response
One core finding from our experiment on computing conceptors for filters rather than layers is that
performance did not suffer from a loss in information. Conceptors computed per filter rather than
per layer do not contain information on correlations between neurons in different filters, but this
did not affect performance. As mentioned previously, this makes sense as each filter outputs its
own feature map with no information shared between weights in different filters. As a similar
performance to using a single conceptor per layer (layer conceptors) can be attained, the smaller
and more computationally and memory efficient conceptors per filter (filter conceptors) should be
preferred for convolutional network layers.

Looking at the singular value spectrum for each filter conceptor tells a different story from that
told by the singular values of the layer conceptors. Excepting filters with only weights close to
0 (unused filters), the singular values confirm that all directions in memory space contribute to a
significant degree to the previously learnt task(s). This suggests that the capacity for the network to
learn new tasks may be far more limited than would inferred from the singular values of the layer
conceptors.

Alternatively it might be that aperture is too high and that the network is regulated too strictly.
All of the CPR variants perform very well in preventing catastrophic interference with the first
segmentation task. Table 3 shows that even after learning three tasks, the IoU on the first task is
still far above that of the other two. Reducing the aperture may improve performance in later tasks.
However, this would likely come at the cost of performance in the first task. Hofman explored
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various settings for aperture [17], and found that apertures below 100 already lead to a decrease in
performance. This makes it unlikely that the aperture is too high; if anything, it is too low.

6.3 Hierarchical Conceptors
Having constructed filter conceptors, a hierarchical conceptor can be defined for that layer. This
provides a much smaller, hierarchical conceptor-based characterization of the activation patterns in
an entire layer. This allows for conceptors to be used where otherwise constructing a single large
conceptor may be too computationally expensive (when using more than 10,000 weights). We find
that the best performance using hierarchical conceptors in CPR matches that of non-hierarchical
conceptors, but also observe a larger variation in performance as indicated by the higher standard
error.

Looking at the singular values again, those of the hierarchical conceptors paint a different picture
from those seen in the other experiments. Far more singular values are close to 1, and most of those
that are not are close to 0. The latter can be explained by unused filters whose weights are close to 0.
That so few singular values are somewhere between 0 and 1, as opposed to those of non-hierarchical
conceptors, may have several explanations. It may be that the aperture is too high, as it is applied
once in its constituent conceptors and once in constructing the higher level conceptor. Alternatively,
it may be that this is a consequence of how the conceptor activation is computed: it would mean that
each constituent conceptor with singular values above 0 contributes fully to the conceptor activation.

It should be noted that, while the hierarchical conceptors do appear to perform well, this may
simply be because ΩH partially contains ΩF . What exactly the conceptor activation used in comput-
ing the hierarchical conceptor and ΩH represents is still largely unexplored. The intuition is that it
characterizes some information between its constituent lower level conceptors. Whether this means
that a hierarchical conceptor H resulting from filter conceptors C can regularize individual filters as
the lowest level conceptor can regularize individual weights is not as of yet known.

Finally, the model regulated with hierarchical conceptors took more epochs before having to
restart. This may seem to indicate that it is a more stable loss, yet likely it owes to the fact that ΩH
is a harder loss to optimize than Ω with non-hierarchical conceptors. The training loss simply took
longer to reach the same point at which the other, non-hierarchical conceptor regulated experiments
had to restart.

6.4 Limitations
On top of the previously mentioned constraints on conceptor regularization, perhaps the biggest
problem of all is that the loss appears to be numerically unstable. As W inc, and thus the conceptor
regularization term, approaches zero (typically after 15+ epochs), eventually the conceptor loss will
increase again. This means that the learning rate had to be lowered to the point where the network
no longer learns in feasible time. Even if the network would (given enough time) actually be able to
learn further tasks perfectly, we will not be able to verify this with the optimization techniques used.



6 DISCUSSION 54

This puts a large disclaimer on our findings for filter conceptors and hierarchical conceptors, as the
results might actually differ from our findings would the model be allowed to converge. Perhaps
optimization techniques which compute second derivatives, such as L-BFGS [36] would be able to
overcome the observed numerical instability.

Additionally, as is often the case with thesis work, the time constraints meant we were unable
to explore the many hyperparameters involved and predominantly used those listed in Table 2. As
Hofman suggested it may very well be that a network with more capacity in additional filters and/or
layers could be a simple solution for learning more tasks. Our findings with filter conceptors may
indicate that the network capacity is indeed the bottleneck. Perhaps incremental learning is simply
more memory inefficient with regards to network capacity, as the network does perform well in joint
training.

6.5 Future Work
As shown in Section 2: Related Work, it is not always possible to compare methods across different
works simply due to differences in design choices and experimental setup. As such it is difficult
to compare our work to the other approaches we previously outlined, and to decide on what counts
as the state-of-the-art. For a better comparison, performing experiments similar to those seen in
previously seen work such as the step-wise incremental tasks would help compare our approach
to previous methods. It also would be worthwhile to see how the other approaches handle the
incremental one-vs-all segmentation tasks.

One addition to CPR that may be worth pursuing for incremental segmentation is to model the
background as done in MIB and SDR [11, 21]. This may help alleviate the problem of background
shift, which is especially an obstacle in the incremental one-vs-all segmentation experiments per-
formed in this work.

On top of the proposed solutions mentioned earlier in this section, we would hope to encourage
further research into hierarchical conceptors. Should their function align with our intentions for
implementing them, hierarchical conceptors could help break down current computational costs
associated with large conceptors. The hierarchical conceptors may characterize activation patterns
over multiple filters, layers, and even an entire network. This would typically be impossible to do
with non-hierarchical conceptors.
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7 Conclusion

Convolutional neural networks have some of the best performance in computer vision tasks and
beyond. Unfortunately, CNNs being feedforward deep neural networks suffer from catastrophic
interference. This prevents CNNs from being used more broadly and in a more versatile manner.
Specifically, it prevents the model from learning new tasks without re-training on the previously
learnt tasks. However, many use-cases of computer vision are set in an ever changing environment,
creating a demand for methods that can learn in an incremental manner.

As a now decades old problem, there is a wide variety of proposed solutions to catastrophic
interference. However, for CNNs most research is done on knowledge distillation. The majority of
this body of research is also predominantly applied to classification. Methods that employ penalty
computing for incremental semantic segmentation are seen relatively infrequently. Of those, works
that perform the challenging one-vs-all class/task distribution are rarer still. As such it is difficult
to find a direct comparison for this work, where we attempt to solve the incremental one-vs-all
semantic segmentation task with a penalty computing approach.

This thesis is an extension to earlier thesis work by Hofman which looked at overcoming catas-
trophic interference in convolutional networks using a conceptor-based regularization technique.
Conceptors were initially introduced by Jaeger as a neuro-computational device for dynamical (non-
feedforward) recurrent neural networks. The conceptor, being a regularized identity map, has since
been adapted for incremental learning in fully-connected feedforward neural networks by He.

Previous work by Hofman showed promise of using conceptors with convolutional layers in
incremental image classification. However the proposed method was unable to learn the semantic
segmentation task without performance loss after only learning three tasks in a one-vs-all incre-
mental fashion with fully convolutional networks. We set out to understand why the segmentation
performance suffers even after regularization with conceptor-based pseudo rehearsal. To this extent,
we proposed to collect activation for the construction of the conceptors on a per filter basis, rather
than on a per layer basis. We furthermore introduced a novel hierarchical conceptor computed over
multiple filter-sized conceptors. Empirical results show that using the hierarchical conceptors out-
perform using layer conceptors. This may indicate that convolutional neural networks are better
(additionally) regulated on a per-filter basis.

Further investigation showed that there were few changes in the individual filter weights. This
might stem from an extremely high initial conceptor loss, which pushes the weights at the start of
learning a new task in a direction uninformed by the new task. The trivial solution to decreasing the
conceptor regularization term is by putting any changes in the network to zero. This may contribute
towards the observed drop in performance in subsequent tasks with incremental training, as only the
non-regulated model head is able to contribute towards learning the new task.

Additionaly, we found the conceptor loss to be numerically unstable. As the change in weights
between tasks tend to zero, eventually the conceptor regularization term starts to significantly in-
crease again. As a consequence, we are unsure whether the obtained performance in the experi-
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ments is the performance that the models would have converged to, or is an artifact of the high
initial conceptor loss and subsequent numerical instability.

We believe that conceptor regularization can still become a useful tool for overcoming catas-
trophic interference. Before conceptor regularization can reach that potential for semantic segmen-
tation however, the aforementioned problems will need to be overcome. With the introduction of
hierarchical and filter conceptors, conceptor regularization can now also be used on much larger
networks, increasing the versatility of conceptor-based pseudo rehearsal. We hope to see the hierar-
chical conceptors be explored further, as it is currently unclear what exactly the conceptor activation
from which the conceptors are computed entails. The applications for and research into conceptors
is of course broader still; we look forward to learning what more conceptors have to offer.
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B Additional Results

Epochs Task 1 Task 2 Task 3 mIoUTask Max Mean Std. Err. Max Mean Std. Err. Max Mean Std. Err. Max Mean Std. Err.

Conceptor
1 24 24.000 0.000 0.901 0.897 0.001 0.897
2 24 20.400 1.275 0.901 0.886 0.010 0.672 0.617 0.014 0.752
3 24 19.500 1.241 0.901 0.885 0.011 0.673 0.619 0.013 0.519 0.509 0.004 0.671

Filter
1 24 24.000 0.000 0.900 0.897 0.001 0.897
2 15 13.700 0.335 0.900 0.874 0.022 0.721 0.574 0.037 0.724
3 17 13.400 0.653 0.900 0.876 0.021 0.722 0.556 0.047 0.531 0.510 0.003 0.647

Hierarchical
1 24 24.000 0.000 0.901 0.897 0.001 0.897
2 24 24.000 0.000 0.898 0.875 0.007 0.748 0.711 0.009 0.793
3 24 24.000 0.000 0.893 0.827 0.019 0.748 0.711 0.009 0.570 0.525 0.011 0.688
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C Singular Value Spectra

C.1 Layer conceptors
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C.2 Hierarchical conceptors
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D Model Output Examples

D.1 Joint model

Figure 14: Ground truth (left) and Joint model prediction (right)
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D.2 Layer model

Figure 15: Ground truth (left) and Layer model prediction (right)
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D.3 Filter model

Figure 16: Ground truth (left) and Filter model prediction (right)
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D.4 Hierarchical model

Figure 17: Ground truth (left) and Hierarchical model prediction (right)


