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Abstract

There is a growing understanding that machine learning architectures have to be

much bigger and more complex to approach any intelligent behavior. There is also

a growing understanding that purely supervised learning is inadequate to train

such systems. A recent paradigm of artificial recurrent neural network (RNN)

training under the umbrella-name Reservoir Computing (RC) demonstrated that

training big recurrent networks (the reservoirs) differently than supervised read-

outs from them is often better. It started with Echo State Networks (ESNs) and

Liquid State Machines ten years ago where the reservoir was generated randomly

and only linear readouts from it were trained. Rather surprisingly, such simply

and fast trained ESNs outperformed classical fully-trained RNNs in many tasks.

While full supervised training of RNNs is problematic, intuitively there should

also be something better than a random network. In recent years RC became

a vivid research field extending the initial paradigm from fixed random reservoir

and trained output into using different methods for training the reservoir and the

readout. In this thesis we overview existing and investigate new alternatives to

the classical supervised training of RNNs and their hierarchies. First we present

a taxonomy and a systematic overview of the RNN training approaches under the

RC umbrella. Second, we propose and investigate the use of two different neural

network models for the reservoirs together with several unsupervised adaptation

techniques, as well as unsupervisedly layer-wise trained deep hierarchies of such

models. We rigorously empirically test the proposed methods on two temporal

pattern recognition datasets, comparing it to the classical reservoir computing

state of art.
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The thesis is entirely written by me with an exception of Sections 2.1 and 2.3.6

that are mostly written by my supervisor and coauthor in the publications Herbert

Jaeger, and have been retained for the continuity of the thesis.

Bremen, August 31, 2011 Mantas Lukoševičius
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Chapter 1

Introduction

The human desire for building thinking machines far predates the electronic age.

It is closely related to the desire to understand what thinking, intelligence, con-

sciousness actually are and what makes a human different from a machine. The

question of whether or how these human characteristics can be replicated is of

a central philosophical importance, as humans define themselves through them.

This is the sapiens in Homo sapiens, or cogito in Descartes’ famous “cogito ergo

sum”.

From a long-term abstract perspective, this desire of humans might well be

just a manifestation of an evolutionary tendency of intelligence to expand and

replicate itself, current human condition being but an intermediate form of it.

Aside from philosophical aspirations of understanding intelligence by build-

ing it, and this understanding having enormous social implications, there are also

obvious pragmatic reasons for having machines able to substitute humans in in-

tellectual tasks.

1.1 Artificial intelligence

Formalizations of the thinking process in form of logics and mathematics dating

back from antiquity were one of the most important developments and enablers

in the history of science. Such thinking process reduced to “mechanical” manip-

ulations of concepts could be implemented outside of a human in a machine that

had sufficient computational capabilities.

The advent of electronics and digital programmable computers in the 20th

century was so far the biggest technological step toward realizing this vision. In

1



1. INTRODUCTION
1.2. Machine learning

1956 it sparkled the research field of Artificial Intelligence (AI). With continuous

exponential explosion in computational power of computers and progress in algo-

rithms, creating human-level AI seemed to be just around the corner. All what

many deemed to be necessary was to codify human knowledge in a formal language

and let good logic-based inference algorithms running on powerful computers solve

any solvable problem requiring intelligence.

While all of these innovations have a tremendous impact and success in re-

stricted domains, the general human-like intelligence turned out to be a much

more elusive goal to achieve than initially thought. It became apparent, that not

all intelligent reasoning can be expressed in logical rules and not all knowledge

can be easily expressed in a formal representation. In fact the very definition of

intelligence turned out to be quite problematic and multifaceted.

After the initial enthusiasm and later setback, the current state of affairs in

the AI field is that it is highly fragmented, (quite successfully) focusing on much

narrower problems and different aspects of intelligence, being influenced by differ-

ent disciplines, views, and motivations. For example, it is a matter of perspective

whether an artificial system should mimic human intelligence and how closely, if

it can solve a given concrete task better without doing so – which is true for many

engineered systems.

1.2 Machine learning

One of the most important aspects of intelligence is learning. Learning captures

adaptivity of an intelligent agent to its environment which is one of the defining

features of a living entity. In the realm of AI this aspect has been taken up by

Machine Learning (ML). Loosely speaking, ML investigates how artificial systems

can improve their performance with experience.

Learning is especially important because it does not only investigate this par-

ticular aspect of an existing intelligent system, but also mechanisms of how in-

telligence comes to be. ML allows artificial systems to cover areas of intelligent

tasks that are not susceptible to efficient formal codification. In fact, it is most

likely, that scaling AI systems any closer to the human intelligence level would

not be feasible without extensive use of ML if only because of the enormous man-

ual effort required otherwise. After all, even the most intelligent natural systems

known largely acquire their intelligence through many years of continuous and

2
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1.3. Neural networks and computation

intense learning.

ML is by itself a highly non-homogeneous interdisciplinary field with many

schools of thought, many different computational models and approaches to train

them. Motivations of ML research range from achieving the best performance in a

given task, to building more mathematically clean and tractable systems, develop-

ing a better mathematical understanding of them, explaining and modeling certain

characteristics of natural intelligent systems, or trying to build more integrative

and universal models, among others.

1.3 Neural networks and computation

This thesis is mostly concerned with a particular branch of machine learning deal-

ing with artificial Neural Networks (NN), a computational model loosely inspired

by the substrate of the natural intelligence, the brain. In particular, it is mainly

dealing with Recurrent NNs (RNNs) and the Reservoir Computing (RC) approach

to training them. All this, and the level of abstraction at which NNs are modeled,

is explained in detail in Section 2.1.

Surely, NNs is not the only computational model, nor in every respect the

best, to do ML. In particular, it is hard to interpret. A trained NN is most

often treated as a black-box model of a system that has learned the required

input-output mapping, but there is no good interpretation of how the problem is

being solved. This is in contrast to some other ML methods (like decision tree

learning or Bayesian networks) that extract intelligible rules which can be checked,

corrected, or combined with knowledge of human experts. The parameters and

structure of NNs have to be predefined largely based on experience and trial-and-

error. Training is typically a long iterative process the global optimum of which is

not guaranteed. It is hard to predict NN behavior with uncommon inputs. NNs

usually do not offer probabilistic interpretations. Complex and recurrent NNs are

also hard to analyze mathematically. Due to these characteristics, researchers in

ML community often choose other techniques than NNs.

But NNs also have unique advantages. Mathematically they can approximate

any function [Cybenko, 1989] or dynamical system (in the case of RNN) [Funahashi

and Nakamura, 1993] arbitrarily close. Since natural intelligence is based on neu-

ral networks, we know that such level of intelligence can in principle be achieved

with NNs (how much abstracted from the real brain they can be is a separate and

3
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open question), while there is no such guarantee for AI techniques circumventing

NNs. NNs research is also a two-way street between ML and (computational) neu-

roscience. It is essential in understanding the components of natural intelligence

better and the way they can be replicated.

Even with all the rapid expansion of computational power – growing exponen-

tially for the last 50 years, following Moore’s law – computation still remains an

issue in AI. By most estimates modern computers are still far behind the compu-

tational capacities of human brains. They also work very differently. A classical

computer model has a single very fast central processing unit (CPU) that processes

in a serial manner big amounts of information stored in a separate memory. In

contrast, the brain is a relatively slow, but vastly parallel information processing

system, where the separation between information storage and processing is not

clear-cut. This makes emulation of big parallel NNs on serial CPUs computation-

ally expensive, and thus less attractive than algorithms directly programmed and

optimized for such computational architecture.

However, looking at the trends, the current CPU technology is already slowly

approaching its technological limits. To keep up with Moore’s law, CPU producers

started to introduce more and more processing cores that work in parallel, while

the speed of a single core is starting to fall behind the trend. Such approach was

previously used only to build supercomputers that overtake in power best contem-

porary simple CPUs by many years. The importance of parallel computation is

rising fast. Graphical processing units that are vastly parallel, even though with

limited precision, have lately overtaken CPUs in computational power. Initially

designed exclusively for 3D graphics, these devises are increasingly more often

used for general-purpose computations, including ML and NNs, offering orders of

magnitude of speedup.

It is likely that in the quest to maximize computational power and making the

computing elements ever smaller at some point (and some instances) the strict

determinism of the digital computing systems will be worth sacrificing. Such com-

puters would require fault-tolerant algorithms that can cope with the “noise” of

the hardware. Currently such faults are corrected at a lower level through redun-

dancy in data storage, communication, and sometimes computation. But even

in higher levels today, to gain computational power through massively parallel

and distributed data processing in large applications, strict consistency of large

databases is compromised or non-deterministic outcomes of interacting parallel

4
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processes are accepted. The scientific community is also investigating different

concepts of computation. There is a growing understanding that our digital com-

puters is just one of many possible ways to do it. “Computation” in this broader

perspective is now becoming an as a multifaceted term as “intelligence”. The def-

initions of computation range from very narrow, where it can only be performed

by a digital computer, i.e., Turing machine; to very broad “pancomputationalist”

ones, calling basically any process in nature computation.

These trends make computers more similar to brains, and NN-like algorithms a

very promising approach of utilizing their power. In fact, the paradigm of reservoir

computing can be applied beyond NNs and digital, or even electronic, computers to

make useful computations with different kinds of dynamical systems, like physical

or optical, as explained in Section 2.3.7.

1.4 Limits of current machine learning

In contrast to the vision of general-purpose AI, ML is typically applied to a very

restricted domain, for a very concrete particular task.

A sketch of a typical workflow applying ML is to:

• Manually choose a parameterizable computational model (for example, a

rather universal one, like NN, but there is a wide variety) and its meta-

parameters (like the number of neurons in NN, their connectivity).

• Manually choose a training algorithm and its parameters for the model.

Often a multitude of algorithms exists for a single model.

• Train the model to perform a desired task by adapting its free parameters

using the algorithm. Training is done using data as the experience from

which the model learns. Technically, training is an optimization problem,

where the free parameters are adapted to optimize the measure of how good

the model is performing the task. This is put in formal terms in Section

2.2.1.

• Exploit the trained model for the designated task.

Since this typically leads to sub-optimal results, the workflow is often nonlinear,

where multiple choices are tried and the one working best is selected. In addition,

5
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performance can typically be improved by employing all kinds of task-specific

tricks that incorporate additional knowledge about it. This, for example, includes

deciding on the best way the data is coded or what kind of informative features

are extracted from it. In the end there is typically a combination of several ML

techniques custom-made for any nontrivial task.

This approach does work. In fact it is about the only way of applying ML. But

it has serious limitations. The workflow requires many subjective choices and a

lot of human supervision. The field of ML is being criticized, quoting this as the

main reason for slow progress [Dou, 2007].

In response to this criticism, ML researchers are lately trying to make their

approaches more autonomous, but this is not easy.

Simple approaches are often employed trying to automate these usually sub-

jective choices to some extent by putting the depicted workflow into an additional

external “metalearning” loop. They work reasonably well for choosing the param-

eters of a selected model and a learning algorithm. The sketch of such an approach

is depicted as Algorithm 1.

Algorithm 1 Machine learning with meta-parameter optimization

Manually select a computational model and a learning algorithm;
Manually select the (meta-)parameters of the above to optimize, their ranges,
and an optimization strategy;
repeat

Take a new set of parameters according to the strategy;
Generate and train a model using these parameters;
Validate the performance of the model with data left-out from the training;

until Parameters exhausted or sufficient performance achieved;
return The model trained that had the best performance.

This approach, however, still has serious limitations. It is typically computa-

tionally very expensive: the already-expensive learning step is put in the external

loop, where it usually goes through many iterations. There are typically no good

meta-parameter optimization strategies that would effectively reduce the number

of iterations: often simple grid search or genetic strategies are utilized.

As a result, only a limited number of meta-parameters can effectively be op-

timized this way. In a simple exhaustive grid search strategy, the runtime grows

exponentially with the number of the meta-parameters. Also, ranges and step

sizes of the parameters have to be selected carefully to ensure computational re-

6
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sources are used efficiently. This also means that the affordable model complexity

and (related) training time are limited: for a fixed computational time the meta-

parameter optimization is done at an expense of training a single much more

powerful model.

Still, the manual supervision and choices required are substantial, if not equal.

The choices of the model and learning algorithm an ML practitioner has to make

can land them in very different subfields of ML with very different processes of

learning, and things to take care of. These choices, thus, are often subjective, based

on practitioner’s background and experience. Also, the above-mentioned task-

specific improvements, that are crucial in practice, remain a human expert pre-

rogative. Attempts to automate these aspects usually just lead to over-complicated

systems “wondering in the dark” while wasting computational resources. This can

be seen as a non-tractable optimization problem.

The vision of “autonomous machine learning” is far from being achieved. Even

if the above-mentioned aspects would be solved, it would not automatically mean,

that such “autonomous” ML methods (or “the method”) would scale up any higher

toward human-level broader intelligence than the current highly human-powered

state of art.

This difficulty is natural when looking back at the bigger picture. Learning

is clearly not the only component of intelligence. As important, or even more,

is the predisposed (manually configured) model structure and initial values of

the parameters. How much of it can in principle be learned from the data is

an interesting open question. This is related to the question of how much of

behavior is determined by the genetically predisposed traits and how much by

adaptation/learning in animals1, or the “nature versus nurture” take on human

psychology. For example, there is an ongoing debate in the scientific community

on how much humans learn language – one of the main attributes of intelligence –

purely from “data” and how much of it is pre-wired in the brain genetically (see,

e.g., [Pullum and Scholz, 2002]).

ML methods also require a lot of specially prepared data. They need to learn

from many instances of solved tasks, where both the input and the solved output

are available. The required amount of data – and thus learning times – grow very

fast with the difficulty of the task, unless some task-specific tricks/structure are

employed that exploit the hidden structure and invariances in data. For example,

1Even though evolution in an abstract sense can also be seen as learning.
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the amount of data needed to reasonably cover all cases grows exponentially with

the number of input variables, which quite soon becomes infeasible – the so-called

“curse of dimensionality”. This excludes ML applications from areas where data

is not abundant compared to the difficulty of task, unless the space of possible

solutions is severely restricted by incorporating prior expert knowledge.

1.5 Learning with less supervision

To overcome these seemingly overwhelming limitations, researchers are looking

for more fundamental universal principles in ML, following which the artificial

systems could self-organize without so much manual intervention. Examples in

natural intelligence apparently do not suffer from many of the same limitations,

showing that they in principle can be overcome.

The vast majority of applied ML, depicted in Section 1.4, is supervised. This

means, that we know exactly how the solution for the training examples should

look like, and thus can rather directly adapt the parameters of the model to min-

imize the deviations of the obtained solution from the required one. This setup of

supervised ML, put more formally in Section 2.2.1, is very powerful and techni-

cally transparent: it is a well-formulated optimization problem, where learning is

by construction directly improving the goal performance. However, this setup is

already part of the limitations.

For one, as mentioned, it needs a lot of already solved examples to learn from.

If they are feasible to produce, then the ML technique can only offer the benefit

of solving the problem in a more economical way, and if the solution examples are

scarce it is often not applicable at all. This paradigm is also not easily applicable

if there are several viable solutions.

A more general setup, still classified as supervised, is reinforcement learning,

where good solutions are “rewarded” (or bad “punished”), but there is no a priori

predefined unique “correct” solution. It can lead to unexpected creative solutions

and allow for exploration. However, from a technical perspective it is a much

harder learning problem. The parameters are optimized based on a much less

informative (and possibly delayed) feedback signal, which tells how good a solution

is, but not how to improve it.

Reinforcement learning paradigm is much closer to the learning which is hap-

pening in nature where the learning agent receives rewards or punishments from
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the environment on which it learns to act. Learning from the environment with

which the agent can interact, as opposed to from static data, is another very in-

teresting aspect with a lot of potential for ML. It is pursued more in ML with

relation to robotics and embodied cognition, and will not be the main topic of this

thesis.

Unsupervised learning is an even less restricted setup, where the learning agent

is only provided with the input data and has to “make sense” of it on its own.

No other guidance is given. The benefit is that the agent can often be provided

with abundant amounts of data by just “observing the world”. Also, learning can

be done locally, in every component that is receiving and processing information,

as input is all what it needs. This type of local unsupervised adaptation is also

known to be happening a lot in biological brains. In big learning architectures

applying supervised learning is difficult, as the scarce feedback signal has to be

shared among all the many components, including those that contribute to the

final output in a complex and indirect way.

This setup, however, raises two important questions. The first is: (i) what the

agent should learn from the data? In other words, what should be the purpose

and goal of unsupervised learning? And, looking at this from the other end: (ii)

is what the agent learns in some sense useful? Or, in which sense it is useful?

Other principles than minimizing error or maximizing reward in ML are pro-

posed to answer the first (i) question. They include: data compression, cluster-

ing, reducing dimensionality while preserving the topology, learning the statistical

distribution of the input, minimizing free energy, learning to predict the input,

looking for slowly varying (close to invariant) components of the data, sparse rep-

resentation, maximal information transmission while using minimal energy, etc.

These ideas are often subject to trends in machine learning community. We will

touch on most of them in the thesis.

Many of these principles have nice analytical properties and can explain (some-

times surprisingly) a lot of learning in nature, but none of them gives the full

picture. They are also often difficult to reconcile with each other. If there is one

meta-principle governing all learning in nature, it is likely to be evolution. And

evolution tends to produce solutions of type “whatever works”. Thus, it is likely

that there is no single clean and simple analytical principle according to which

all learning (or reasoning) happens. If there is some kind of helpful “shortcut”

trick outside such a hypothetical principle, evolution was likely to employ it in the
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brain. If this is the case, systems tending toward general human-level AI might

need to be heterogeneous, not conceptually elegant, and, as a consequence, hard

to analyze, not unlike the human brain. This is unless in the future a system much

computationally superior to the brain will be feasible to build, which in addition

to being as universally intelligent could also afford to be analytically transpar-

ent; and/or possibly posses a quite different type of intelligence; which are just

speculations at this point in time.

There is no good general answer to the second (ii) question of whether the

supervised learning benefits some concrete task. For the same input different

tasks (in the form of required output) can be formulated. Different unsupervisedly

learned representations of the input data can be useful for different tasks. There

is often difficult to make a connection between what is learned unsupervisedly and

what is needed for the task, mostly because the task is defined only through the

empirical data. Thus the evaluation can often only be done empirically.

In fact, formal evaluation of how “good” the unsupervised learning is for some

concrete task puts the system back into the supervised framework. In this case it is

also rational to use at least some supervised training even if the system was mostly

trained unsupervisedly. In this context the question (ii) can be reformulated as:

does the unsupervised learning help the supervised learning?

As mentioned above, supervised training of big RNN models is often difficult:

it converges slowly and usually gets stuck in a local minimum that depends on

parameter initialization. Reservoir computing, as elaborated in Section 2.1, has

demonstrated that sometimes less learning in RNNs can be beneficial. In par-

ticular, a much more powerful computational model can be used if not all of its

parameters are supervisedly trained, leading to superior results. In classical reser-

voir computing most of the parameters remain randomly generated according to

certain rules. This points out the limitations of the purely supervised learning,

but a relevant question is whether these random structures can be improved upon

in some other, potentially unsupervised, way.

These are the main questions addressed in this thesis.

1.6 Contributions of the thesis

The main contribution of this thesis is to systematically overview existing and

investigate new alternatives to the classical supervised training of RNNs. These
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alternatives roughly fall under the umbrella-name of Reservoir Computing. This

includes generic RNN structures that can effectively do with only partial training.

It also includes investigations in how other principles of learning, in particular

unsupervised, can help in effectively building or improving such structures and

complement the supervised learning. These alternative methods aim at circum-

venting the limitations of classical purely supervised training of RNNs and scaling

RNNs up for more intelligent tasks. Some initial attempts of doing that, in par-

ticular training hierarchies of RNNs, are also presented.

Technically, the contribution of this thesis is two-fold: if offers a comprehensive

survey of Reservoir Computing and investigates a novel type of network used as a

reservoir, as well as its unsupervised training and layered hierarchies.

The thesis is organized in the following way. First, in Chapter 2 we introduce

the concepts of Reservoir Computing and survey all the more important differ-

ent RNN training and adaptation techniques under this umbrella-name. This

review offers a natural conceptual classification of the techniques transcending the

boundaries of the “brandnames” of reservoir computing methods, and thus aims

to help in unifying the field and providing the reader with a detailed “map” of it.

This chapter is a substantially updated version of a review which we previously

published in [Lukoševičius and Jaeger, 2009].

In the connecting Chapter 3 we further motivate the importance of unsuper-

vised learning and hierarchies.

In Chapter 4 we investigate the use of two different neural network models

for the reservoir together with several unsupervised adaptation techniques and

unsupervisedly layer-wise trained hierarchies of such models. We rigorously em-

pirically test the proposed methods on two temporal pattern recognition datasets,

comparing it to classical reservoir computing state of art. Some initial results of

this research were published in [Lukoševičius, 2010].

We offer the final remarks and discussion in Chapter 5.

The longer Chapters 2 and 4 have the internal structure explained in their

corresponding introducing Sections 2.1 and 4.1.
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Chapter 2

Overview of Reservoir Computing

2.1 Introduction

Artificial recurrent neural networks (RNNs) represent a large and varied class of

computational models that are designed by more or less detailed analogy with bi-

ological brain modules. In an RNN numerous abstract neurons (also called units

or processing elements) are interconnected by likewise abstracted synaptic connec-

tions (or links), which enable activations to propagate through the network. The

characteristic feature of RNNs that distinguishes them from the more widely used

feedforward neural networks (FFNNs) is that the connection topology possesses

cycles. The existence of cycles has a profound impact:

• An RNN may develop a self-sustained temporal activation dynamics along

its recurrent connection pathways, even in the absence of input. Mathe-

matically, this renders an RNN to be a dynamical system, while feedforward

networks are functions.

• If driven by an input signal, an RNN preserves in its internal state a nonlinear

transformation of the input history – in other words, it has a dynamical

memory, and is able to process temporal context information.

This review concerns a particular subset of RNN-based research in two aspects:

• RNNs are used for a variety of scientific purposes, and at least two major

classes of RNN models exist: they can be used for purposes of modeling

biological brains, or as engineering tools for technical applications. The first

usage belongs to the field of computational neuroscience, while the second
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frames RNNs in the realms of machine learning, the theory of computation,

and nonlinear signal processing and control. While there are interesting

connections between the two attitudes, this survey focuses on the latter,

with occasional borrowings from the first.

• From a dynamical systems perspective, there are two main classes of RNNs.

Models from the first class are characterized by an energy-minimizing stochas-

tic dynamics and symmetric connections. The best known instantiations are

Hopfield networks [Hopfield, 2007, 1982], Boltzmann machines [Hinton, 2007;

Ackley et al., 1985], and the recently emerging Deep Belief Networks [Hinton

and Salakhutdinov, 2006]. These networks are mostly trained in some un-

supervised learning scheme. Typical targeted network functionalities in this

field are associative memories, data compression, the unsupervised modeling

of data distributions, and static pattern classification, where the model is

run for multiple time steps per single input instance to reach some type of

convergence or equilibrium (but see e.g., [Taylor et al., 2007] for extension

to temporal data). The mathematical background is rooted in statistical

physics. In contrast, the second big class of RNN models typically features

a deterministic update dynamics and directed connections. Systems from

this class implement nonlinear filters, which transform an input time series

into an output time series. The mathematical background here is nonlinear

dynamical systems. The standard training mode is supervised. This survey

is concerned only with RNNs of this second type, and when we speak of

RNNs later on, we will exclusively refer to such systems.1

RNNs (of the second type) appear as highly promising and fascinating tools for

nonlinear time series processing applications, mainly for two reasons. First, it can

be shown that under fairly mild and general assumptions, such RNNs are universal

approximators of dynamical systems [Funahashi and Nakamura, 1993]. Second,

biological brain modules almost universally exhibit recurrent connection pathways

too. Both observations indicate that RNNs should potentially be powerful tools

for engineering applications.

Despite this widely acknowledged potential, and despite a number of successful

academic and practical applications, the impact of RNNs in nonlinear modeling

has remained limited for a long time. The main reason for this lies in the fact

1However, they can also be used in a converging mode, as shown at the end of Section 2.8.6.
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that RNNs are difficult to train by gradient-descent-based methods, which aim

at iteratively reducing the training error. While a number of training algorithms

have been proposed (a brief overview in Section 2.2.5), these all suffer from the

following shortcomings:

• The gradual change of network parameters during learning drives the net-

work dynamics through bifurcations [Doya, 1992]. At such points, the gradi-

ent information degenerates and may become ill-defined. As a consequence,

convergence cannot be guaranteed.

• A single parameter update can be computationally expensive, and many

update cycles may be necessary. This results in long training times, and

renders RNN training feasible only for relatively small networks (in the order

of tens of units).

• It is intrinsically hard to learn dependences requiring long-range memory,

because the necessary gradient information exponentially dissolves over time

[Bengio et al., 1994] (but see the Long Short-Term Memory networks [Gers

et al., 2000] for a possible escape).

• Advanced training algorithms are mathematically involved and need to be

parameterized by a number of global control parameters, which are not easily

optimized. As a result, such algorithms need substantial skill and experience

to be successfully applied.

In this situation of slow and difficult progress, in 2001 a fundamentally new

approach to RNN design and training was proposed independently by Wolfgang

Maass under the name of Liquid State Machines [Maass et al., 2002] and by Her-

bert Jaeger under the name of Echo State Networks [Jaeger, 2001]. This approach,

which had predecessors in computational neuroscience [Dominey, 1995] and sub-

sequent ramifications in machine learning as the Backpropagation-Decorrelation

[Steil, 2004] learning rule, is now increasingly often collectively referred to as

Reservoir Computing (RC) [Verstraeten et al., 2007a]. The RC paradigm avoids

the shortcomings of gradient-descent RNN training listed above, by setting up

RNNs in the following way:

• A recurrent neural network is randomly created and remains unchanged

during training. This RNN is called the reservoir. It is passively excited by
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the input signal and maintains in its state a nonlinear transformation of the

input history.

• The desired output signal is generated as a linear combination of the neuron’s

signals from the input-excited reservoir. This linear combination is obtained

by linear regression, using the teacher signal as a target.

Figure 2.1 graphically contrasts previous methods of RNN training with the

RC approach.
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Figure 2.1: A. Traditional gradient-descent-based RNN training methods adapt
all connection weights (bold arrows), including input-to-RNN, RNN-internal, and
RNN-to-output weights. B. In Reservoir Computing, only the RNN-to-output
weights are adapted.

Reservoir Computing methods have quickly become popular, as witnessed for

instance by a theme issue of Neural Networks [Jaeger et al., 2007b], and today

constitute one of the basic paradigms of RNN modeling [Jaeger, 2007b]. The main

reasons for this development are the following:

Modeling accuracy. RC has starkly outperformed previous methods of non-

linear system identification, prediction and classification, for instance in

predicting chaotic dynamics (three orders of magnitude improved accuracy

[Jaeger and Haas, 2004]), nonlinear wireless channel equalization (two or-

ders of magnitude improvement [Jaeger and Haas, 2004]), the Japanese

Vowel benchmark (zero test error rate, previous best: 1.8% [Jaeger et al.,

2007a]), financial forecasting (winner of the international forecasting com-

petition NN32 ), and in isolated spoken digits recognition (improvement of

word error rate on benchmark from 0.6% of previous best system to 0.2%

2http://www.neural-forecasting-competition.com/NN3/index.htm
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[Verstraeten et al., 2006], and further to 0% test error in recent unpublished

work).

Modeling capacity. RC is computationally universal for continuous-time, continuous-

value real-time systems modeled with bounded resources (including time and

value resolution) [Maass et al., 2003, 2006].

Biological plausibility. Numerous connections of RC principles to architectural

and dynamical properties of mammalian brains have been established. RC

(or closely related models) provides explanations of why biological brains

can carry out accurate computations with an “inaccurate” and noisy physi-

cal substrate [Buonomano and Merzenich, 1995; Haeusler and Maass, 2007],

especially accurate timing [Karmarkar and Buonomano, 2007]; of the way in

which visual information is superimposed and processed in primary visual

cortex [Stanley et al., 1999; Nikolić et al., 2007]; of how cortico-basal path-

ways support the representation of sequential information; and RC offers a

functional interpretation of the cerebellar circuitry [Kistler and Zeeuw, 2002;

Yamazaki and Tanaka, 2007]. A central role is assigned to an RC circuit in a

series of models explaining sequential information processing in human and

primate brains, most importantly of speech signals [Dominey, 1995; Dominey

et al., 2003; Blanc and Dominey, 2003; Dominey et al., 2006].

Extensibility and parsimony. A notorious conundrum of neural network re-

search is how to extend previously learned models by new items without

impairing or destroying previously learned representations (catastrophic in-

terference [French, 2003]). RC offers a simple and principled solution: new

items are represented by new output units, which are appended to the previ-

ously established output units of a given reservoir. Since the output weights

of different output units are independent of each other, catastrophic inter-

ference is a non-issue.

These encouraging observations should not mask the fact that RC is still in

its infancy, and significant further improvements and extensions are desirable.

Specifically, just simply creating a reservoir at random is unsatisfactory. It seems

obvious that when addressing a specific modeling task, a specific reservoir design

that is adapted to the task will lead to better results than a naive random creation.

Thus, the main stream of research in the field is today directed at understanding
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the effects of reservoir characteristics on task performance, and at developing

suitable reservoir design and adaptation methods. Also, new ways of reading out

from the reservoirs, including combining them into larger structures, are devised

and investigated. While shifting from the initial idea of having a fixed randomly

created reservoir and training only the readout, the current paradigm of reservoir

computing remains (and differentiates itself from other RNN training approaches)

as producing/training the reservoir and the readout separately and differently.

This review offers a conceptual classification and a comprehensive survey of

this research.

As is true for many areas of machine learning, methods in reservoir computing

converge from different fields and come with different names. We would like to

make a distinction here between these differently named “tradition lines”, which we

like to call brands, and the actual finer-grained ideas on producing good reservoirs,

which we will call recipes. Since recipes can be useful and mixed across different

brands, this review focuses on classifying and surveying them. To be fair, it has to

be said that we associate themselves mostly with the Echo State Networks brand,

and thus, willingly or not, are influenced by its mindset.

Overview of the chapter. We start by introducing a generic notational

framework in Section 2.2. More specifically, we define what we mean by problem

or task in the context of machine learning in Section 2.2.1. Then we define a

general notation for expansion (or kernel) methods for both non-temporal (Sec-

tion 2.2.2) and temporal (Section 2.2.3) tasks, introduce our notation for recur-

rent neural networks in Section 2.2.4, and outline classical training methods in

Section 2.2.5. In Section 2.3 we detail the foundations of Reservoir Computing

and proceed by naming the most prominent brands. In Section 2.4 we introduce

our classification of the reservoir generation/adaptation recipes, which transcends

the boundaries between the brands. Following this classification we then review

universal (Section 2.5), unsupervised (Section 2.6), and supervised (Section 2.7)

reservoir generation/adaptation recipes. In Section 2.8 we provide a classification

and review the techniques for reading the outputs from the reservoirs reported in

literature, together with discussing various practical issues of readout training. A

final discussion (Section 2.10) wraps up the entire picture.
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2.2 Formalism

2.2.1 Formulation of the problem

Let a problem or a task in our context of machine learning (ML) be defined as

a problem of learning a functional relation between a given input u(n) ∈ RNu

and a desired output ytarget(n) ∈ RNy , where n = 1, . . . , T , and T is the number

of data points in the training dataset {(u(n),ytarget(n))}. This setup where exact

required outputs ytarget(n) are known for the training data is called supervised ML.

A non-temporal task is where the data points are independent of each other and

the goal is to learn a function y(n) = y(u(n)) such that E(y,ytarget) is minimized,

where E is an error measure, for instance, the normalized root-mean-square error

(NRMSE)

E(y,ytarget) =

√ 〈
‖y(n)− ytarget(n)‖2〉〈

‖ytarget(n)− 〈ytarget(n)〉‖2〉 , (2.1)

where ‖·‖ stands for the Euclidean distance (or norm) and 〈·〉 for mean.

A temporal task is where u and ytarget are signals in a discrete time domain

n = 1, . . . , T , and the goal is to learn a function y(n) = y(. . . ,u(n − 1),u(n))

such that E(y,ytarget) is minimized. Thus the difference between the temporal

and non-temporal task is that the function y(·) we are trying to learn has memory

in the first case and is memoryless in the second. In both cases the underlying

assumption is, of course, that the functional dependence we are trying to learn

actually exists in the data. For the temporal case this spells out as data adhering

to an additive noise model of the form ytarget(n) = ytarget(. . . ,u(n−1),u(n))+θ(n),

where ytarget(·) is the relation to be learned by y(·) and θ(n) ∈ RNy is a noise term,

limiting the learning precision, i.e., the precision of matching the learned y(n) to

ytarget(n).

Whenever we say that the task or the problem is learned well, or with good

accuracy or precision, we mean that E(y,ytarget) is small. Normally one part of the

T data points is used for training the model and another part (unseen during the

training) for testing it. When speaking about output errors and performance or

precision we will have testing errors in mind (if not explicitly specified otherwise).

Also n, denoting the discrete time, will often be used omitting its range 1, . . . , T .
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2.2.2 Expansions and kernels in non-temporal tasks

Many tasks cannot be accurately solved by a simple linear relation between the

u and ytarget, i.e., a linear model y(n) = Wu(n) (where W ∈ RNy×Nu) gives

big errors E(y,ytarget) regardless of W. In such situations one has to resort to

nonlinear models. A number of generic and widely used approaches to nonlin-

ear modeling are based on the idea of nonlinearly expanding the input u(n) into

a high-dimensional feature vector x(n) ∈ RNx , and then utilizing those features

using linear methods, for instance by linear regression or computing for a lin-

ear separation hyperplane, to get a reasonable y. Solutions of this kind can be

expressed in the form

y(n) = Woutx(n) = Woutx (u(n)), (2.2)

where Wout ∈ RNy×Nx are the trained output weights. Typically Nx � Nu, and

we will often consider u(n) as included in x(n). There is also typically a constant

bias value added to (2.2), which is omitted here and in other equations for brevity.

The bias can be easily implemented, having one of the features in x(n) constant

(e.g., = 1) and a corresponding column in Wout. Some models extend (2.2) to

y(n) = fout

(
Woutx [u(n)]

)
, (2.3)

where fout(·) is some nonlinear function (e.g., a sigmoid applied element-wise). For

the sake of simplicity we will consider this definition as equivalent to (2.2), since

fout(·) can be eliminated from y by redefining the target as y′target = fout
−1(ytarget)

(and the error function E(y,y′target), if desired). Note that (2.2) is a special case

of (2.3), with fout(·) being the identity.

Functions x (u(n)) that transform an input u(n) into a (higher-dimensional)

vector x(n) are often called kernels (and traditionally denoted φ(u(n))) in this

context. Methods using kernels often employ the kernel trick, which refers to

the option afforded by many kernels of computing inner products in the (high-

dimensional, hence expensive) feature space of x more cheaply in the original space

populated by u. The term kernel function has acquired a close association with

the kernel trick. Since here we will not exploit the kernel trick, in order to avoid

confusion we will use the more neutral term of an expansion function for x (u(n)),

and refer to methods using such functions as expansion methods. These methods
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then include Support Vector Machines (which standardly do use the kernel trick),

Feedforward Neural Networks, Radial Basis Function approximators, Slow Feature

Analysis, and various Probability Mixture models, among many others. Feedfor-

ward neural networks are also often referred to as (multilayer) perceptrons in the

literature.

While training the output Wout is a well defined and understood problem,

producing a good expansion function x (·) generally involves more creativity. In

many expansion methods, e.g., Support Vector Machines, the function is chosen

“by hand” (most often through trial-and-error) and is fixed.

2.2.3 Expansions in temporal tasks

Many temporal methods are based on the same principle. The difference is that

in a temporal task the function to be learned depends also on the history of the

input, as discussed in Section 2.2.1. Thus, the expansion function has memory:

x(n) = x (. . . ,u(n − 1),u(n)), i.e., it is an expansion of the current input and

its (potentially infinite) history. Since this function has an unbounded number of

parameters, practical implementations often take an alternative, recursive, defini-

tion:

x(n) = x (x(n− 1),u(n)). (2.4)

The output y(n) is typically produced in the same way as for non-temporal

methods by (2.2) or (2.3).

In addition to the nonlinear expansion, as in the non-temporal tasks, such

x(n) could be seen as a type of a spatial embedding of the temporal information

of . . . ,u(n − 1),u(n). This, for example, enables capturing higher-dimensional

dynamical attractors y(n) = ytarget(. . . ,u(n − 1),u(n)) = u(n + 1) of the system

being modeled by y(·) from a series of lower-dimensional observations u(n) the

system is emitting, which is shown to be possible by Takens’s theorem [Takens,

1981].

2.2.4 Recurrent neural networks

The type of recurrent neural networks that we will consider most of the time in

this review is a straightforward implementation of (2.4). The nonlinear expansion
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with memory here leads to a state vector of the form

x(n) = f
(
Winu(n) + Wx(n− 1)

)
, n = 1, . . . , T, (2.5)

where x(n) ∈ RNx is a vector of reservoir neuron activations at a time step n, f(·)
is the neuron activation function, usually the symmetric tanh(·), or the positive

logistic (or Fermi) sigmoid, applied element-wise, Win ∈ RNx×Nu is the input

weight matrix and W ∈ RNx×Nx is a weight matrix of internal network connections.

The network is usually started with the initial state x(0) = 0. Bias values are

again omitted in (2.5) in the same way as in (2.2). The readout y(n) of the network

is implemented as in (2.3).

Some models of RNNs extend (2.5) as

x(n) = f
(
Winu(n) + Wx(n− 1) + Wofby(n− 1)

)
,

n = 1, . . . , T, (2.6)

where Wofb ∈ RNx×Ny is an optional output feedback weight matrix.

2.2.5 Classical training of RNNs

The classical approach to supervised training of RNNs, known as gradient descent,

is by iteratively adapting all weights Wout, W, Win, and possibly Wofb (which as

a whole we denote Wall for brevity in this section) according to their estimated

gradients ∂E/∂Wall, in order to minimize the output error E = E(y,ytarget).

A classical example of such methods is Real-Time Recurrent Learning (RTRL)

[Williams and Zipser, 1989], where the estimation of ∂E/∂Wall is done recurrently,

forward in time. Conversely, error BackPropagation (BP) methods for training

RNNs, which are derived as extensions of the BP method for feedforward neural

networks [Rumelhart et al., 1988], estimate ∂E/∂Wall by propagating E(y,ytarget)

backwards through network connections and time. The BP group of methods is

arguably the most prominent in classical RNN training, with the classical example

in this group being BackPropagation Through Time (BPTT) [Werbos, 1990]. It

has a runtime complexity of O(Nx
2) per weight update per time step for a single

output Ny = 1, compared to O(Nx
4) for RTRL. An even simpler version of BP

RNN training where error backpropagation is limited to a single time step was

successfully used in [Elman, 1990].
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A systematic unifying overview of many classical gradient descent RNN train-

ing methods is presented in [Atiya and Parlos, 2000]. The same contribution also

proposes a new approach, often referred to by others as Atiya-Parlos Recurrent

Learning (APRL). It estimates gradients with respect to neuron activations ∂E/∂x

(instead of weights directly) and gradually adapts the weights Wall to move the

activations x into the desired directions. The method is shown to converge faster

than previous ones. See Section 2.3.4 for more implications of APRL and bridg-

ing the gap between the classical gradient descent and the reservoir computing

methods.

There are also other versions of supervised RNN training, formulating the train-

ing problem differently, such as using Extended Kalman Filters [Puškorius and

Feldkamp, 1994] or the Expectation-Maximization algorithm [Ma and Ji, 1998],

as well as dealing with special types of RNNs, such as Long Short-Term Memory

[Hochreiter and Schmidhuber, 1997] modular networks capable of learning long-

term dependences.

There are many more, arguably less prominent, methods and their modifica-

tions for RNN training that are not mentioned here, as this would lead us beyond

the scope of this review. The very fact of their multiplicity suggests that there

is no clear winner in all aspects. Despite many advances that the methods cited

above have introduced, they still have multiple common shortcomings as pointed

out in Section 2.1.

2.3 Reservoir methods

Reservoir computing methods differ from the “traditional” designs and learning

techniques listed above in that they make a conceptual and computational sepa-

ration between a dynamic reservoir – an RNN as a nonlinear temporal expansion

function – and a recurrence-free (usually linear) readout that produces the desired

output from the expansion.

This separation is based on the understanding (common with kernel meth-

ods) that x (·) and y(·) serve different purposes: x (·) expands the input history

u(n),u(n− 1), . . . into a rich enough reservoir state space x(n) ∈ RNx , while y(·)
combines the neuron signals x(n) into the desired output signal ytarget(n). In

the linear readout case (2.2), for each dimension yi of y an output weight vector
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(Wout)i in the same space RNx is found such that

(Wout)ix(n) = yi(n) ≈ ytargeti(n), (2.7)

while the “purpose” of x(n) is to contain a rich enough representation to make

this possible.

Since the expansion and the readout serve different purposes, training / gen-

erating them separately and even with different goal functions makes sense. The

readout y(n) = y(x(n)) is essentially a non-temporal function, learning which is

relatively simple. On the other hand, setting up the reservoir such that a “good”

state expansion x(n) emerges is an ill-understood challenge in many respects. The

“traditional” RNN training methods do not make the conceptual separation of a

reservoir vs. a readout, and train both reservoir-internal and output weights in

technically the same fashion. Nonetheless, even in traditional methods the ways

of defining the error gradients for the output y(n) and the internal units x(n) are

inevitably different, reflecting that an explicit target ytarget(n) is available only

for the output units. Analyses of traditional training algorithms have further-

more revealed that the learning dynamics of internal vs. output weights exhibit

systematic and striking differences. This theme will be expanded in Section 2.3.4.

Currently, reservoir computing is a vivid fresh RNN research stream, which

has recently gained wide attention due to the reasons pointed out in Section 2.1.

We proceed to review the most prominent “named” reservoir methods, which

we call here brands. Each of them has its own history, a specific mindset, specific

types of reservoirs, and specific insights.

2.3.1 Echo State Networks

Echo State Networks (ESNs) [Jaeger, 2007b] represent one of the two pioneering

reservoir computing methods. The approach is based on the observation that

if a random RNN possesses certain algebraic properties, training only a linear

readout from it is often sufficient to achieve excellent performance in practical

applications. The untrained RNN part of an ESN is called a dynamical reservoir,

and the resulting states x(n) are termed echoes of its input history [Jaeger, 2001]

– this is where reservoir computing draws its name from.

ESNs standardly use simple sigmoid neurons, i.e., reservoir states are com-

puted by (2.5) or (2.6), where the nonlinear function f(·) is a sigmoid, usually
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the tanh(·) function. Leaky integrator neuron models represent another frequent

option for ESNs, which is discussed in depth in Section 2.5.5. Classical recipes

of producing the ESN reservoir (which is in essence Win and W) are outlined in

Section 2.5.1, together with input-independent properties of the reservoir. Input-

dependent measures of the quality of the activations x(n) in the reservoir are

presented in Section 2.6.1.

The readout from the reservoir is usually linear (2.3), where u(n) is included

as part of x(n), which can also be spelled out in (2.3) explicitly as

y(n) = fout

(
Wout[u(n); x(n)]

)
, (2.8)

where Wout ∈ RNy×(Nu+Nx) is the learned output weight matrix, fout(·) is the

output neuron activation function (usually the identity) applied component-wise,

and [·; ·] stands for a vertical concatenation of vectors. The original and most

popular batch training method to compute Wout is linear regression, discussed in

Section 2.8.1.1, or a computationally cheap online training discussed in Section

2.8.1.2.

The initial ESN publications [Jaeger, 2001, 2002a,b, 2003; Jaeger and Haas,

2004] were framed in settings of machine learning and nonlinear signal process-

ing applications. The original theoretical contributions of early ESN research

concerned algebraic properties of the reservoir that make this approach work in

the first place (the echo state property [Jaeger, 2001] discussed in Section 2.5.1)

and analytical results characterizing the dynamical short-term memory capacity

of reservoirs [Jaeger, 2002a] discussed in Section 2.6.1.

2.3.2 Liquid State Machines

Liquid State Machines (LSMs) [Maass et al., 2002] are the other pioneering reser-

voir method, developed independently from and simultaneously with ESNs. LSMs

were developed from a computational neuroscience background, aiming at eluci-

dating the principal computational properties of neural microcircuits [Maass et al.,

2002, 2003; Natschläger et al., 2002; Maass et al., 2004]. Thus LSMs use more so-

phisticated and biologically realistic models of spiking integrate-and-fire neurons

and dynamic synaptic connection models in the reservoir. The connectivity among

the neurons often follows topological and metric constraints that are biologically

motivated. In the LSM literature, the reservoir is often referred to as the liquid,
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following an intuitive metaphor of the excited states as ripples on the surface of a

pool of water. Inputs to LSMs also usually consist of spike trains. In their readouts

LSMs originally used multilayer feedforward neural networks (of either spiking or

sigmoid neurons), or linear readouts similar to ESNs [Maass et al., 2002]. Addi-

tional mechanisms for averaging spike trains to get real-valued outputs are often

employed.

RNNs of the LSM-type with spiking neurons and more sophisticated synaptic

models are usually more difficult to implement, to correctly set up and tune,

and typically more expensive to emulate on digital computers3 than simple ESN-

type “weighted sum and nonlinearity” RNNs. Thus they are less widespread for

engineering applications of RNNs than the latter. However, while the ESN-type

neurons only emulate mean firing rates of biological neurons, spiking neurons are

able to perform more complicated information processing, due to the time coding of

the information in their signals (i.e., the exact timing of each firing also matters).

Also findings on various mechanisms in natural neural circuits are more easily

transferable to these more biologically-realistic models (there is more on this in

Section 2.6.2).

The main theoretical contributions of the LSM brand to Reservoir Computing

consist in analytical characterizations of the computational power of such systems

[Maass et al., 2002, 2006] discussed in Sections 2.6.1 and 2.7.4.

2.3.3 Evolino

Evolino [Schmidhuber et al., 2007] transfers the idea of ESNs from an RNN of

simple sigmoidal units to a Long Short-Term Memory (LSTM) type of RNNs

[Hochreiter and Schmidhuber, 1997] constructed from units capable of preserving

memory for long periods of time. In Evolino the weights of the reservoir are

trained using evolutionary methods, as is also done in some extensions of ESNs,

both discussed in Section 2.7.2.

2.3.4 Backpropagation-Decorrelation

The idea of separation between a reservoir and a readout function has also been ar-

rived at from the point of view of optimizing the performance of the RNN training

3With a possible exception of event-driven spiking NN simulations, where the computational
load varies depending on the amount of activity in the NN.
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algorithms that use error backpropagation, as already indicated in Section 2.2.5.

In an analysis of the weight dynamics of an RNN trained using the APRL learning

algorithm [Schiller and Steil, 2005], it was revealed that the output weights Win

of the network being trained change quickly, while the hidden weights W change

slowly and in the case of a single output Ny = 1 the changes are column-wise cou-

pled. Thus in effect APRL decouples the RNN into a quickly adapting output and

a slowly adapting reservoir. Inspired by these findings a new iterative/online RNN

training method, called BackPropagation-DeCorrelation (BPDC), was introduced

[Steil, 2004]. It approximates and significantly simplifies the APRL method, and

applies it only to the output weights Wout, turning it into an online RC method.

BPDC uses the reservoir update equation defined in (2.6), where output feedbacks

Wofb are essential, with the same type of units as ESNs. BPDC learning is claimed

to be insensitive to the parameters of fixed reservoir weights W. BPDC boasts

fast learning times and thus is capable of tracking quickly changing signals. As a

downside of this feature, the trained network quickly forgets the previously seen

data and is highly biased by the recent data. Some remedies for reducing this

effect are reported in [Steil, 2005b]. Most of applications of BPDC in the litera-

ture are for tasks having one-dimensional outputs Ny = 1; however BPDC is also

successfully applied to Ny > 1, as recently demonstrated in [Reinhart and Steil,

2008].

From a conceptual perspective we can define a range of RNN training methods

that gradually bridge the gap between the classical BP and reservoir methods:

1. Classical BP methods, such as Backpropagation Through Time (BPTT)

[Werbos, 1990];

2. Atiya-Parlos recurrent learning (APRL) [Atiya and Parlos, 2000];

3. BackPropagation-DeCorrelation (BPDC) [Steil, 2004];

4. Echo State Networks (ESNs) [Jaeger, 2007b].

In each method of this list the focus of training gradually moves from the entire

network towards the output, and convergence of the training is faster in terms of

iterations, with only a single “iteration” in case 4. At the same time the potential

expressiveness of the RNN, as per the same number of units in the NN, becomes

weaker. All methods in the list primarily use the same type of simple sigmoid

neuron model.
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2.3.5 FORCE Learning

A slightly similar recent addition to the reservoir computing methods called First-

Order Reduced and Controlled Error (or FORCE) learning was introduced in [Sus-

sillo and Abbott, 2009]. Just like BPTT, it is an iterative method designed to

train RNN of sigmoid units with output feedbacks Wofb. It uses a powerful Least

Mean Squares online training algorithm (mentioned in Section 2.8.1.2) to virtually

instantaneously suppress the output errors by intensively adapting Wout during

training. Thus, in contrast to most of the other iterative training methods, the

output errors are small from the beginning, but instead the changes to the output

weights Wout are gradually decreased until they settle in a final state. This solves

the output feedback problem during the training which is discussed in Section

2.8.2. The close-to-target output y(n) which is fed-back through Wofb is shown

to effectively suppress autonomous chaotic activity in the reservoir during the

FORCE learning and after.

2.3.6 Temporal Recurrent Networks

This summary of RC brands would be incomplete without a spotlight directed at

Peter F. Dominey’s decade-long research suite on cortico-striatal circuits in the

human brain (e.g., [Dominey, 1995; Dominey et al., 2003, 2006], and many more).

Although this research is rooted in empirical cognitive neuroscience and functional

neuroanatomy and aims at elucidating complex neural structures rather than the-

oretical computational principles, it is probably Dominey who first clearly spelled

out the RC principle: “(. . . ) there is no learning in the recurrent connections

[within a subnetwork corresponding to a reservoir], only between the State [i.e.,

reservoir] units and the Output units. Second, adaptation is based on a simple

associative learning mechanism (. . . )” [Dominey and Ramus, 2000]. It is also

in this article where Dominey brands the neural reservoir module as a Temporal

Recurrent Network. The learning algorithm, to which Dominey alludes, can be

seen as a version of the Least Mean Squares discussed in Section 2.8.1.2. At other

places, Dominey emphasizes the randomness of the connectivity in the reservoir:

“It is worth noting that the simulated recurrent prefrontal network relies on fixed

randomized recurrent connections, (. . . )” [Dominey, 2005]. Only in early 2008

did Dominey and “computational” RC researchers become aware of each other.
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2.3.7 Other (exotic) types of reservoirs

As is clear from the discussion of the different reservoir methods so far, a variety

of neuron models can be used for the reservoirs. Using different activation func-

tions inside a single reservoir might also improve the richness of the echo states,

as is illustrated, for example, by inserting some neurons with wavelet-shaped ac-

tivation functions into the reservoir of ESNs [Wang et al., 2006]. A hardware-

implementation-friendly version of reservoirs composed of stochastic bitstream

neurons was proposed in [Verstraeten et al., 2005a]. A use of another hardware

and parallelization friendly type of locally connected neural latices called Cellular

Neural Networks [Chua and Yang, 1988] as reservoirs was investigated in [Ver-

straeten, 2009]. In Chapter 4 of this thesis, and in [Lukoševičius, 2010], an RNN

of radial basis function units is proposed and investigated as a reservoir.

In fact the reservoirs do not necessarily need to be neural networks, governed

by dynamics similar to (2.5). Other types of high-dimensional dynamical systems

that can take an input u(n) and have an observable state x(n) (which does not

necessarily fully describe the state of the system) can be used as well. In particular

this makes the reservoir paradigm suitable for harnessing the computational power

of unconventional hardware, such as analog electronics [Schürmann et al., 2005;

Schrauwen et al., 2008a], biological neural tissue [Nikolić et al., 2007], optical

[Vandoorne et al., 2008], quantum, or physical “computers”. The last of these was

demonstrated (taking the “reservoir” and “liquid” idea quite literally) by feeding

the input via mechanical actuators into a reservoir full of water, recording the state

of its surface optically, and successfully training a readout multilayer perceptron

on several classification tasks [Fernando and Sojakka, 2003]. An idea of treating

a computer-simulated gene regulation network of Escherichia Coli bacteria as the

reservoir, a sequence of chemical stimuli as an input, and measures of protein levels

and mRNAs as an output is explored in [Jones et al., 2007].

2.3.8 Other overviews of reservoir methods

The first experimental comparison of LSM, ESN, and BPDC reservoir methods

with different neuron models, even beyond the standard ones used for the respec-

tive methods, and different parameter settings is presented in [Verstraeten et al.,

2007a]. It is this article where the name “Reservoir Computing” was first proposed.

A brief and broad overview of reservoir computing is presented in [Schrauwen et al.,
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2007b], with an emphasis on applications and hardware implementations of reser-

voir methods. The editorial in the “Neural Networks” journal special issue on

ESNs and LSMs [Jaeger et al., 2007b] offers a short introduction to the topic and

an overview of the articles in the issue (most of which are also surveyed here).

An older and much shorter part of this overview, covering only reservoir adapta-

tion techniques, is available as a technical report [Lukoševičius and Jaeger, 2007].

Many different aspects of RC are discussed in David Verstraeten’s PhD thesis on

this subject [Verstraeten, 2009]. A recent brief summary of the LSM side of the

RC research can by found in [Maass, 2011].

2.4 Our classification of reservoir recipes

The successes of applying RC methods to benchmarks (see the listing in Section

2.1) outperforming classical fully trained RNNs do not imply that randomly gen-

erated reservoirs are optimal and cannot be improved. In fact, “random” is almost

by definition an antonym to “optimal”. The results rather indicate the need for

some novel methods of training/generating the reservoirs that are very probably

not a direct extension of the way the output is trained (as in BP). Thus besides ap-

plication studies (which are not surveyed here), the bulk of current RC research on

reservoir methods is devoted to optimal reservoir design, or reservoir optimization

algorithms.

It is worth mentioning at this point that the general “no free lunch” principle in

supervised machine learning [Wolpert, 2001] states that there can exist no bias of a

model which would universally improve the accuracy of the model for all possible

problems. In our context this can be translated into a claim that no single type

of reservoir can be optimal for all types of problems.

In this review we will try to survey all currently investigated ideas that help

producing “good” reservoirs. We will classify those ideas into three major groups

based on their universality:

• Generic guidelines/methods of producing good reservoirs irrespective of the

task (both the input u(n) and the desired output ytarget(n));

• Unsupervised pre-training of the reservoir with respect to the given input

u(n), but not the target ytarget(n);
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• Supervised pre-training of the reservoir with respect to both the given input

u(n) and the desired output ytarget(n).

These three classes of methods are discussed in the following three sections. Note

that many of the methods to some extend transcend the boundaries of these three

classes, but will be classified according to their main principle.

2.5 Generic reservoir recipes

The most classical methods of producing reservoirs all fall into this category. All

of them generate reservoirs randomly, with topology and weight characteristics

depending on some preset parameters. Even though they are not optimized for

a particular input u(n) or target ytarget(n), a good manual selection of the pa-

rameters is to some extent task-dependent, complying with the “no free lunch”

principle just mentioned.

These methods are outlined in Section 2.3, and include many different com-

putational models of RNNs (and beyond), especially in Section 2.3.7. Here we

will elaborate on the more concrete and specific approaches for manually building

good reservoirs in the literature, that mostly focus on the conventional NNs with

analog units and discrete time of type (2.5).

2.5.1 Classical ESN approach

Some of the most generic guidelines of producing good reservoirs were presented in

the papers that introduced ESNs [Jaeger, 2001, 2002b]. Motivated by an intuitive

goal of producing a “rich” set of dynamics, the recipe is to generate a (i) big, (ii)

sparsely and (iii) randomly connected, reservoir. This means that (i) Nx is suffi-

ciently large, with order ranging from tens to thousands, (ii) the weight matrix W

is sparse, with several to 20 per cent of possible connections, and (iii) the weights

of the connections are usually generated randomly from a uniform distribution

symmetric around the zero value. This design rationale aims at obtaining many,

due to (i), reservoir activation signals, which are only loosely coupled, due to (ii),

and different, due to (iii).

The input weights Win and the optional output feedback weights Wofb are

usually dense (they can also be sparse like W) and generated randomly from a

uniform distribution. The exact scaling of both matrices and an optional shift
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of the input (a constant value added to u(n)) are the few other free parameters

that one has to choose when “baking” an ESN. The rules of thumb for them

are the following. The scaling of Win and shifting of the input depends on how

much nonlinearity of the processing unit the task needs: if the inputs are close

to 0, the tanh neurons tend to operate with activations close to 0, where they

are essentially linear, while inputs far from 0 tend to drive them more towards

saturation where they exhibit more nonlinearity. The shift of the input may help

to overcome undesired consequences of the symmetry around 0 of the tanh neurons

with respect to the sign of the signals. Similar effects are produced by scaling the

bias inputs to the neurons (i.e., the column of Win corresponding to constant

input, which often has a different scaling factor than the rest of Win). The scaling

of Wofb is in practice limited by a threshold at which the ESN starts to exhibit

an unstable behavior, i.e., the output feedback loop starts to amplify (the errors

of) the output and thus enters a diverging generative mode. In [Jaeger, 2002b],

these and related pieces of advice are given without a formal justification.

An important element for ESNs to work is that the reservoir should have the

echo state property [Jaeger, 2001]. This condition in essence states that the effect

of a previous state x(n) and a previous input u(n) on a future state x(n + k)

should vanish gradually as time passes (i.e., k → ∞), and not persist or even

get amplified. For most practical purposes, the echo state property is assured if

the reservoir weight matrix W is scaled so that its spectral radius ρ(W) (i.e.,

the largest absolute eigenvalue) satisfies ρ(W) < 1 [Jaeger, 2001]. The fact that

ρ(W) < 1 almost always ensures the echo state property has led to an unfortunate

misconception which is expressed in many RC publications, namely, that ρ(W) <

1 amounts to a necessary and sufficient condition for the echo state property. This

is wrong. The mathematically correct connection between the spectral radius and

the echo state property is that the latter is violated if ρ(W) > 1 in reservoirs

using the tanh function as neuron nonlinearity, and for zero input. Contrary

to widespread misconceptions, the echo state property can be obtained even if

ρ(W) > 1 for non-zero input (including bias inputs to neurons), e.g., [Ozturk and

Pŕıncipe, 2005], or output feedback [Sussillo and Abbott, 2009], and it may be

lost even if ρ(W) < 1, although it is hard to construct systems where this occurs

(unless f ′(0) > 1 for the nonlinearity f), and in practice this does not happen.

The optimal value of ρ(W) should be set depending on the profile of memory

and nonlinearity that the given task requires. A rule of thumb, likewise discussed
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in [Jaeger, 2001], is that ρ(W) should be close to 1 for tasks that require long

memory and accordingly smaller for the tasks where a too long memory might in

fact be harmful. Larger ρ(W) also have the effect of driving signals x(n) into more

nonlinear regions of tanh units (further from 0) similarly to Win. Thus scalings of

both Win and W have a similar effect on nonlinearity of the ESN, with a difference

that scaling up W makes reservoir unstable, while their difference determines the

effect of current versus past inputs on the current state. An empirical study on

how the reservoir parameters affect its stability and nonlinearity is presented in

[Verstraeten et al., 2010].

A rather conservative rigorous sufficient condition of the echo state property for

any kind of inputs u(n) (including zero) and states x(n) (with tanh nonlinearity)

being σmax(W) < 1, where σmax(W) is the largest singular value of W, was

proved in [Jaeger, 2001]. Recently, a less restrictive sufficient condition, namely,

infD∈D σmax(DWD−1) < 1, where D is an arbitrary matrix, minimizing the so-

called D-norm σmax(DWD−1), from a set D ⊂ RNx×Nx of diagonal matrices, has

been derived in [Buehner and Young, 2006]. This sufficient condition approaches

the necessary infD∈D σmax(DWD−1) → ρ(W)−, ρ(W) < 1, e.g., when W is a

normal or a triangular (permuted) matrix. A rigorous sufficient condition for the

echo state property is rarely ensured in practice, with a possible exception being

critical control tasks, where provable stability under any conditions is required.

2.5.2 Different topologies of the reservoir

There have been attempts to find topologies of the ESN reservoir different from

sparsely randomly connected ones. Specifically, small-world [Watts and Strogatz,

1998], scale-free [Barabasi and Albert, 1999], and biologically inspired connection

topologies generated by spatial growth [Kaiser and Hilgetag, 2004] were tested

for this purpose in a careful study [Liebald, 2004], which we point out here due

to its relevance although it was obtained only as a BSc thesis. The NRMS error

(2.1) of y(n) as well as the eigenvalue spread of the cross-correlation matrix of the

activations x(n) (necessary for a fast online learning described in Section 2.8.1.2;

see Section 2.6.1 for details) were used as the performance measures of the topolo-

gies. This work also explored an exhaustive brute-force search of topologies of tiny

networks (motifs) of four units, and then combining successful motives (in terms

of the eigenvalue spread) into larger networks. The investigation, unfortunately,
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concludes that “(. . . ) none of the investigated network topologies was able to per-

form significantly better than simple random networks, both in terms of eigenvalue

spread as well as testing error” [Liebald, 2004]. This, however, does not serve as

a proof that similar approaches are futile. An indication of this is the substantial

variation in ESN performance observed among randomly created reservoirs, which

is, naturally, more pronounced in smaller reservoirs (e.g., [Jiang et al., 2008b]).

In contrast, LSMs often use a biologically plausible connectivity structure and

weight settings. In the original form they model a single cortical microcolumn

[Maass et al., 2002]. Since the model of both the connections and the neurons

themselves is quite sophisticated, it has a large number of free parameters to be set,

which is done manually, guided by biologically observed parameter ranges, e.g., as

found in the rat somatosensory cortex [Maass et al., 2004]. This type of model also

delivers good performance for practical applications of speech recognition [Maass

et al., 2004], [Verstraeten et al., 2005b] (and many similar publications by the latter

authors). Since LSMs aim at accuracy of modeling natural neural structures, less

biologically plausible connectivity patterns are usually not explored.

It has been demonstrated that much more detailed biological neural circuit

models, which use anatomical and neurophysiological data-based laminar (i.e.,

cortical layer) connectivity structures and Hodgkin-Huxley model neurons, im-

prove the information-processing capabilities of the models [Haeusler and Maass,

2007]. Such highly realistic (for present-day standards) models “perform signifi-

cantly better than control circuits (which are lacking the laminar structures but are

otherwise identical with regard to their components and overall connection statis-

tics) for a wide variety of fundamental information-processing tasks” [Haeusler

and Maass, 2007].

Different from this direction of research, there are also explorations of using

even simpler topologies of the reservoir than the classical ESN. It has been demon-

strated that the reservoir can even be an unstructured feed-forward network with

time-delayed connections if the finite limited memory window that it offers is suffi-

cient for the task at hand [Čerňanský and Makula, 2005]. This, or an even simpler

chain of neurons connected effectively into a delay line, gives results somewhat

comparable to normal ESNs in several tasks, especially for online-trained outputs

[Čerňanský and Tiňo, 2008]. The delay line, a bi-directionally connected line, or a

ring topology, with weights deterministically selected from much more restricted

distributions were shown to be comparable to regular ESNs in many respects,
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having an additional benefit of being easier to analyze [Rodan and Tiňo, 2011]. A

degenerate case of a “reservoir” composed of linear units and a diagonalized W

(only self recurrence) and unitary inputs Win was considered in [Fette and Eggert,

2005]. A one-dimensional lattice (ring) topology was used for a reservoir, together

with an adaptation of the reservoir discussed in Section 2.6.2, in [Verstraeten

et al., 2007b]. A special kind of excitatory and inhibitory neurons connected in

a one-dimensional spatial arrangement was shown to produce interesting chaotic

behavior in [Lourenço, 2006].

A tendency that higher ranks of the connectivity matrix Wmask (where wmask
i,j =

1 if wi,j 6= 0, and = 0 otherwise, for i, j = 1, . . . , Nx) correlate with lower ESN

output errors was observed in [Bush and Tsendjav, 2005]. Connectivity patterns

of W such that W∞ ≡ limk→∞Wk (Wk standing for “W to the power k” and

approximating weights of the cumulative indirect connections by paths of length

k among the reservoir units) is neither fully connected, nor all-zero, are claimed to

give a broader distribution of ESN prediction performances, thus including best

performing reservoirs, than random sparse connectivities in [Hajnal and Lőrincz,

2006]. A permutation matrix with a medium number and different lengths of con-

nected cycles, or a general orthogonal matrix, are suggested as candidates for such

Ws.

Reservoirs with orthogonal W were also shown to posses a better memory

capacity measure in [White et al., 2004; Hermans and Schrauwen, 2010a], but all

normal W a bad different measure in [Ganguli et al., 2008], details in Section

2.6.1.1.

2.5.3 Modular reservoirs

One of the shortcomings of conventional ESN reservoirs is that even though they

are sparse, the activations are still coupled so strongly that the ESN is poor in

dealing with different time scales simultaneously, e.g., predicting several superim-

posed generators. This problem was successfully tackled by dividing the reservoir

into decoupled sub-reservoirs and introducing inhibitory connections among all the

sub-reservoirs [Xue et al., 2007]. For the approach to be effective, the inhibitory

connections must predict the activations of the sub-reservoirs one time step ahead.

To achieve this the inhibitory connections are heuristically computed from (the

rest of) W and Wofb, or the sub-reservoirs are updated in a sequence and the real
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activations of the already updated sub-reservoirs are used.

The Evolino approach introduced in Section 2.3.3 can also be classified as

belonging to this group, as the LSTM RNN used for its reservoir consists of specific

small memory-holding modules (which could alternatively be regarded as more

complicated units of the network).

Approaches relying on combining outputs from several separate reservoirs will

be discussed in Section 2.9.

2.5.4 Time-delayed vs. instantaneous connections

Another time-related limitation of the classical ESNs pointed out in [Lukoševičius,

2007] is that no matter how many neurons are contained in the reservoir, it (like

any other fully recurrent network with all connections having a time delay) has

only a single layer of neurons (Figure 2.2). This makes it intrinsically unsuitable

for some types of problems. Consider a problem where the mapping from u(n)

to ytarget(n) is a very complex, nonlinear one, and the data in neighboring time

steps are almost independent (i.e., little memory is required), as e.g., the “meta-

learning” task in [Prokhorov et al., 2002] 4. Consider a single time step n: signals

from the input u(n) propagate only through one untrained layer of weights Win,

through the nonlinearity f influence the activations x(n), and reach the output

y(n) through the trained weights Wout (Figure 2.2). Thus ESNs are not capable

of producing a very complex instantaneous mapping from u(n) to y(n) using a

realistic number of neurons, which could (only) be effectively done by a multilayer

FFNN (not counting some non-NN-based methods). Delaying the target ytarget

by k time steps would in fact make the signals coming from u(n) “cross” the non-

linearities k + 1 times before reaching y(n + k), but would mix the information

from different time steps in x(n), . . . ,x(n+ k), breaking the required virtually in-

dependent mapping u(n)→ ytarget(n+k), if no special structure of W is imposed.

As a possible remedy Layered ESNs were introduced in [Lukoševičius, 2007],

where a part (up to almost half) of the reservoir connections can be instantaneous

and the rest take one time step for the signals to propagate as in normal ESNs.

Randomly generated Layered ESNs, however, do not offer a consistent improve-

4ESNs have been shown to perform well in a (significantly) simpler version of the “meta-
learning” in [Oubbati et al., 2005].
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Figure 2.2: Signal flow diagram of the standard ESN.

ment for large classes of tasks, and pre-training methods of such reservoirs have

not yet been investigated.

The issue of standard ESNs not having enough trained layers is also discussed

and addressed in a broader context in Section 2.9.

2.5.5 Leaky integrator neurons and speed of dynamics

In addition to the basic sigmoid units, leaky integrator (LI) neurons were sug-

gested to be used in ESNs from the point of their introduction [Jaeger, 2001].

This type of neuron performs a leaky integration of its activation from previous

time steps. Today a number of versions of leaky integrator neurons are often used

in ESNs, which we will call here leaky integrator ESNs (LI-ESNs) where the dis-

tinction is needed. The main two groups are those using leaky integration before

application of the activation function f(·), and after. One example of the latter

(in the discretized time case) has reservoir dynamics governed by

x(n) = (1− a∆t)x(n− 1) + ∆tf(Winu(n) + Wx(n− 1)), (2.9)

where ∆t is a compound time gap between two consecutive time steps divided by

the time constant of the system and a is the decay (or leakage) rate [Lukoševičius

et al., 2006]. Another popular (and we believe, preferable) design can be seen

as setting a = 1 and redefining ∆t in (2.9) as the leaking rate a to control the

“speed” of the dynamics,

x(n) = (1− a)x(n− 1) + af(Winu(n) + Wx(n− 1)), (2.10)

which in effect is an exponential moving average, has only one additional param-

eter and the desirable property that neuron activations x(n) never go outside the

boundaries defined by f(·). Note that the simple ESN (2.5) is a special case of

LI-ESNs (2.9) or (2.10) with a = 1 and ∆t = 1. As a corollary, an LI-ESN with
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a good choice of the parameters can always perform at least as well as a corre-

sponding simple ESN. With the introduction of the new parameter a (and ∆t),

the condition for the echo state property is redefined [Jaeger, 2001]. A natural

constraint on the two new parameters is a∆t ∈ [0, 1] in (2.9), and a ∈ [0, 1] in

(2.10) – a neuron should neither retain, nor leak, more activation than it had. An

investigation of stability of LI-ESNs, their applications, and a scheme to optimize

their global parameters through gradient descent was presented in [Jaeger et al.,

2007a]. Applying the leaky integration in different places of the model or resam-

pling the signals as an alternative and their effects on a speech recognition task

was investigated in [Schrauwen et al., 2007a]. The speed of dynamics of a reser-

voir can be adapted online, for example to deal with time-warping of the input

[Lukoševičius et al., 2006; Jaeger et al., 2007a].

The additional parameters of the LI-ESN control the “speed” of the reservoir

dynamics. Small values of a and ∆t result in reservoirs that react slowly to the

input. By changing these parameters it is possible to shift the effective interval

of frequencies in which the reservoir is working. See Section 2.6.4 for a method of

dealing with time-warping in input implemented along these lines.

From a signal processing point of view, the exponential moving average on the

neuron activation (2.10) does a simple low-pass filtering of its activations with the

cutoff frequency

fc =
a

2π(1− a)∆t
, (2.11)

where ∆t is the discretization time step. This makes the neurons average out the

frequencies above fc and enables tuning the reservoirs for particular frequencies.

Elaborating further on this idea, high-pass neurons, that produce their activations

by subtracting from the unfiltered activation (2.5) the low-pass filtered one (2.10),

and band-pass neurons, that combine the low-pass and high-pass ones, were intro-

duced [Siewert and Wustlich, 2007]. The authors also suggested mixing neurons

with different pass-bands inside a single ESN reservoir, and reported that a sin-

gle reservoir of such kind is able to predict/generate signals having structure on

different timescales. A variational Bayesian method for training it is presented in

[Zechner and Shutin, 2010].

Following this line of thought, Infinite Impulse Response (IIR) band-pass filters

having sharper cutoff characteristics were tried on neuron activations in ESNs

with success in several types of signals [Holzmann and Hauser, 2010]. Since the
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filters often introduce an undesired phase shift to the signals, a time delay for the

activation of each neuron was learned and applied before the linear readout from

the reservoir. A successful application of Butterworth band-pass filters in ESNs is

reported in [wyffels et al., 2008b].

Connections between neurons that have different time delays (more than one

time step) can actually also be used inside the recurrent part, which enables the

network to operate on different timescales simultaneously and learn longer-term

dependences [Hihi and Bengio, 1996]. Similarly, neurons proposed in [Sutskever

and Hinton, 2010] have exponentially decaying connections to previous states of

input and reservoir activations. They in effect act as leaky integration of the

neuron activation before applying the nonlinearity f(·). These two ideas have

been tried for RNNs trained by error backpropagation, but could also be useful

for multi-timescale reservoirs. Long-term dependences can also be learned using

the reservoirs mentioned in Section 2.3.3.

2.6 Unsupervised reservoir adaptation

In this section we describe reservoir training/generation methods that try to op-

timize some measure defined on the activations x(n) of the reservoir, for a given

input u(n), but regardless of the desired output ytarget(n). We see this as a very

important research direction, which will will further motivate in Chapter 3 of this

thesis and introduce some new contributions in Chapter 4. This section is orga-

nized in the following way. In Section 2.6.1 we survey measures that are used

to estimate the quality of the reservoir, irrespective of the methods optimizing

them. Then local, Section 2.6.2, and global, Section 2.6.3, unsupervised reservoir

training methods are surveyed.

2.6.1 “Goodness” measures of the reservoir activations

The classical feature that reservoirs should possess is the echo state property,

defined in Section 2.5.1. Even though this property depends on the concrete input

u(n), usually in practice its existence is not measured explicitly, and only the

spectral radius ρ(W) is selected to be < 1 irrespective of u(n), or just tuned for

the final performance.

The two necessary and sufficient conditions for LSMs to work were introduced
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in [Maass et al., 2002]. A separation property measures the distance between

different states x caused by different input sequences u. The measure is refined

for binary ESN-type reservoirs in [Bertschinger and Natschläger, 2004] with a

generalization in [Schrauwen et al., 2009]. An approximation property measures

the capability of the readout to produce a desired output ytarget from x, and thus

is not an unsupervised measure, but is included here for completeness.

Methods for estimating the computational power and generalization capability

of neural reservoirs were presented in [Maass et al., 2005]. The proposed measure

for computational power, or kernel quality, is obtained in the following way. Take k

different input sequences (or segments of the same signal) ui(n), where i = 1, . . . , k,

and n = 1, . . . , Tk. For each input i take the resulting reservoir state xi(n0),

and collect them into a matrix M ∈ Rk×Nx , where n0 is some fixed time after

the appearance of ui(n) in the input. Then the rank r of the matrix M is the

measure. If r = k, this means that all the presented inputs can be separated by

a linear readout from the reservoir, and thus the reservoir is said to have a linear

separation property. For estimating the generalization capability of the reservoir,

the same procedure can be performed with s (s � k) inputs uj(n), j = 1, . . . , s,

that represent the set of all possible inputs. If the resultant rank r is substantially

smaller than the size s of the training set, the reservoir generalizes well. These

two measures are more targeted to tasks of time series classification, but can also

be revealing in predicting the performance of regression [Legenstein and Maass,

2007b].

A much-desired measure to minimize is the eigenvalue spread (EVS, the ratio

of the maximal eigenvalue to the minimal eigenvalue) of the cross-correlation ma-

trix of the activations x(n). A small EVS is necessary for an online training of

the ESN output by a computationally cheap and stable stochastic gradient descent

algorithm outlined in Section 2.8.1.2 (see, e.g., [Farhang-Boroujeny, 1998], chapter

5.3, for the mathematical reasons that render this mandatory). In classical ESNs

the EVS sometimes reaches 1012 or even higher [Jaeger, 2005], which makes the

use of stochastic gradient descent training unfeasible. Other commonly desirable

features of the reservoir are small pairwise correlation of the reservoir activations

xi(n), or a large entropy of the x(n) distribution (e.g., [Jaeger, 2005]). The lat-

ter is a rather popular measure, as discussed later in this review. A criterion

for maximizing the local information transmission of each individual neuron was

investigated in [Triesch, 2005b] (more in Section 2.6.2).
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2.6.1.1 Memory capacity

One of the most important functions of the reservoir is to keep the memory of

the previous inputs. A correlation-based measure of short-term memory capacity,

evaluating how well u(n) can be reconstructed by the reservoir as y(n + k) after

various delays k, was introduced in [Jaeger, 2002a]. It was shown that the total

memory capacity, i.e., a sum over different k, does not exceed the number of

reservoir units Nx and is maximal for linear reservoir.

The maximum was shown to be easier achievable and more robust to noise in

linear RNNs where W is a scaled orthogonal matrix in [White et al., 2004].

An alternative memory capacity measure based on Fisher information for net-

works with added Gaussian noise to the activations was proposed in [Ganguli et al.,

2008]. It was shown that the maximal total such memory capacity, also of size Nx,

for linear units can only be achieved when the Nx units are connected in a single

feedforward string. For units that have restricted activation range, like those with

sigmoid activation function, the maximal capacity is only proportional to
√
Nx,

and can be achieved by a feedforward branching-out tree-like network topology.

Recurrent topologies, and in particular random ones, compare unfavorably under

this setup. Contrary to the previous memory measure in [White et al., 2004], lin-

ear RNNs with normal W can only achieve maximal total Fisher memory capacity

of 1.

A similar to [Jaeger, 2002a] correlation-based memory capacity measure was

investigated for continuous-time linear RNNs in [Hermans and Schrauwen, 2010a].

It was concluded that continuous-time counterparts of the reservoirs constructed

according to [Ozturk et al., 2007] (discussed in more detail in Section 2.6.3) tend

to have a higher total memory capacity, and those of orthogonal reservoirs [White

et al., 2004] also in addition more robustness to noise, compared to random reser-

voirs.

All the memory measures above considered only one-dimensional Nu = 1 in-

put u(n). Memory of a multidimensional input in the reservoir was investigated

in [Hermans and Schrauwen, 2010b]. Results show that the shape of the memory

curve depends on the spectral radius ρ(W): reservoirs with small ρ(W) have pre-

cise memory of the recent input which drops sharply with delay k, while those with

big ρ(W) have a more extended memory at the expense of precision. The same

limit Nx of the correlation-based memory capacity applies, which input dimensions

have to share. The individual principal components of the input have memory ca-

40



2. OVERVIEW OF RESERVOIR COMPUTING
2.6. Unsupervised reservoir adaptation

pacity roughly proportional to the square root of their variance, indicating that a

lot of memory is spent for non-principal components.

The memory capacity measure for ESNs with discrete quantized activations

was investigated in [Büsing et al., 2010] and found to be proportional to logNx.

2.6.1.2 Edge of stability and chaos

For the real-valued reservoirs of sigmoid units the edge of chaos should not be con-

fused with the edge of stability. They are both related to the echo state property

(Section 2.5.1). The real-valued sigmoid networks tend to first exhibit multiple

fixed-point and periodic attractors, when increasing the spectral radius of W be-

yond the stable regime, and only for bigger values of the spectral radius chaotic

attractors appear [Ozturk and Pŕıncipe, 2005; Verstraeten et al., 2010]. Thus, the

stability (and echo state property) is often lost well before the chaos begins. The

latter happens only when the sufficient amount of nonlinearity for chaos is reached.

In spiking networks and some other highly nonlinear systems, however, these two

boundaries tend to coincide: the unstable dynamics are often immediately chaotic.

Even though stronger inputs u(n) can push the dynamics of the reservoirs

out of the chaotic regime and thus make them useful for computation, no reliable

benefit of such a mode of operation was found in the last contribution.

In contrast to ESN-type reservoirs of real-valued units, simple binary threshold

units exhibit a more immediate transition from damped to chaotic behavior with-

out intermediate periodic oscillations [Bertschinger and Natschläger, 2004]. This

difference between the two types of activation functions, including intermediate

quantized ones, in ESN-type reservoirs was investigated more closely in [Schrauwen

et al., 2009; Büsing et al., 2010]. The investigation showed that reservoirs of binary

units are more sensitive to the topology and the connection weight parameters of

the network in their transition between damped and chaotic behavior, and compu-

tational performance, than the real-valued ones. This difference can be related to

the similar apparent difference in sensitivity of the ESNs and LSM-type reservoirs

of firing units, discussed in Section 2.5.2.

The so-called edge of chaos is a region of parameters of a dynamical system at

which it operates at the boundary between the chaotic and non-chaotic behavior.

It is often claimed (but not undisputed; see, e.g., [Mitchell et al., 1994]) that at

the edge of chaos many types of dynamical systems, including binary systems

and reservoirs, possess high computational power [Bertschinger and Natschläger,
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2004; Legenstein and Maass, 2007a]. It is intuitively clear that the edge of chaos

in reservoirs can only arise when the effect of inputs on the reservoir state does not

die out quickly; thus such reservoirs can potentially have high memory capacity,

which is also demonstrated in [Legenstein and Maass, 2007a]. However, this does

not universally imply that such reservoirs are optimal [Legenstein and Maass,

2007b].

The edge of chaos can be empirically detected (even for biological networks) by

measuring Lyapunov exponents [Legenstein and Maass, 2007a], even though such

measurements are not trivial (and often involve a degree of expert judgment) for

high-dimensional noisy systems. For reservoirs of simple binary threshold units

this can be done more simply by computing the Hamming distances between

trajectories of the states [Bertschinger and Natschläger, 2004].

Lyapunov exponents for reservoirs of real-valued sigmoid units can be com-

puted more efficiently by making use of their Jacobian matrices [Verstraeten,

2009]. There is also an empirical observation that, while changing different param-

eter settings of a reservoir, the best performance in a given task correlates with

a maximal Lyapunov exponent specific to that task [Verstraeten et al., 2007a].

The optimal exponent is related to the amount of memory needed for the task

as discussed in Section 2.5.1. A later more close investigation suggests that this

optimum coincides with the situation when the minimal Lyapunov exponent is

largest [Verstraeten, 2009].

2.6.2 Unsupervised local methods

A natural strategy for improving reservoirs is to mimic biology (at a high level

of abstraction) and count on local adaptation rules. “Local” here means that

parameters pertaining to some neuron i are adapted on the basis of no other

information than the activations of neurons directly connected with neuron i. In

fact all local methods are almost exclusively unsupervised, since the information

on the performance E at the output is unreachable in the reservoir.

First attempts to decrease the eigenvalue spread in ESNs by classical Hebbian

[Hebb, 1949] (inspired by synaptic plasticity in biological brains) or Anti-Hebbian

learning gave no success [Jaeger, 2005]. A modification of Anti-Hebbian learn-

ing, called Anti-Oja learning is reported to improve the performance of ESNs in

[Babinec and Posṕıchal, 2007].
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On the more biologically realistic side of the RC research with spiking neurons,

local unsupervised adaptations are very natural to use. In fact, LSMs had used

synaptic connections with realistic short-term dynamic adaptation, as proposed

by [Markram et al., 1998], in their reservoirs from the very beginning [Maass et al.,

2002].

The Hebbian learning principle is usually implemented in spiking NNs as spike-

time-dependent plasticity (STDP) of synapses. STDP is shown to improve the

separation property of LSMs for real-world speech data, but not for random inputs

u, in [Norton and Ventura, 2006]. The authors however were uncertain whether

manually optimizing the parameters of the STDP adaptation (which they did) or

the ones for generating the reservoir would result in a larger performance gain for

the same effort spent. STDP is shown to work well with time-coded readouts from

the reservoir in [Paugam-Moisy et al., 2008].

Biological neurons are widely observed to adapt their intrinsic excitability,

which often results in exponential distributions of firing rates, as observed in vi-

sual cortex (e.g., [Baddeley et al., 1997]). This homeostatic adaptation mecha-

nism, called intrinsic plasticity (IP) has recently attracted a wide attention in

the reservoir computing community. Mathematically, the exponential distribution

maximizes the entropy of a non-negative random variable with a fixed mean; thus

it enables the neurons to transmit maximal information for a fixed metabolic cost

of firing. An IP learning rule for spiking model neurons aimed at this goal was

first presented in [Stemmler and Koch, 1999].

For a more abstract model of the neuron, having a continuous Fermi sigmoid

activation function f : R → (0, 1), the IP rule was derived as a proportional

control that changes the steepness and offset of the sigmoid to get an exponential-

like output distribution in [Triesch, 2005a]. A more elegant gradient IP learning

rule for the same purpose was presented in [Triesch, 2005b], which is similar to the

information maximization approach in [Bell and Sejnowski, 1995]. Applying IP

with Fermi neurons in reservoir computing significantly improves the performance

of BPDC-trained networks [Steil, 2007b; Wardermann and Steil, 2007], and is

shown to have a positive effect on offline trained ESNs, but can cause stability

problems for larger reservoirs [Steil, 2007b]. An ESN reservoir with IP-adapted

Fermi neurons is also shown to enable predicting several superimposed oscillators

[Steil, 2007a].

An adaptation of the IP rule to tanh neurons (f : R → (−1, 1)) that re-
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sults in a zero-mean Gaussian-like distribution of activations was first presented

in [Verstraeten et al., 2007b] and investigated more in [Schrauwen et al., 2008b].

The IP-adapted ESNs were compared with classical ones, both having Fermi and

tanh neurons, in the latter contribution. IP was shown to (modestly) improve

the performance in all cases. It was also revealed that ESNs with Fermi neurons

have significantly smaller short-term memory capacity (as in Section 2.6.1) and

worse performance in a synthetic NARMA prediction task, while having a slightly

better performance in a speech recognition task, compared to tanh neurons. The

same type of tanh neurons adapted by IP aimed at Laplacian distributions are

investigated in [Boedecker et al., 2009]. In general, IP gives more control on the

working points of the reservoir nonlinearity sigmoids. The slope (first derivative)

and the curvature (second derivative) of the sigmoid at the point around which

the activations are centered by the IP rule affect the effective spectral radius and

the nonlinearity of the reservoir, respectively. Thus, for example, centering tanh

activations around points other than 0 is a good idea if no quasi-linear behavior

is desired. IP has recently become employed in reservoirs as a standard practice

by several research groups.

Overall, an information-theoretic view on adaptation of spiking neurons has

a long history in computational neuroscience. Even better than maximizing just

any information in the output of a neuron is maximizing relevant information.

In other words, in its output the neuron should encode the inputs in such a way

as to preserve maximal information about some (local) target signal. This is

addressed in a general information-theoretical setting by the Information Bottle-

neck (IB) method [Tishby et al., 1999]. A learning rule for a spiking neuron that

maximizes mutual information between its inputs and its output is presented in

[Toyoizumi et al., 2005]. A more general IB learning rule, transferring the general

ideas of IB method to spiking neurons is introduced in [Klampfl et al., 2007] and

[Klampfl et al., 2008]. Two semi-local training scenarios are presented in these

two contributions. In the first, a neuron optimizes the mutual information of its

output with outputs of some neighboring neurons, while minimizing the mutual

information with its inputs. In the second, two neurons reading from the same

signals maximize their information throughput, while keeping their inputs statis-

tically independent, in effect performing Independent Component Analysis (ICA).

A simplified online version of the IB training rule with a variation capable of per-

forming Principle Component Analysis (PCA) was recently introduced in [Buesing

44



2. OVERVIEW OF RESERVOIR COMPUTING
2.6. Unsupervised reservoir adaptation

and Maass, 2008]. In addition, it assumes slow semi-local target signals, which is

more biologically plausible. The approaches described in this paragraph are still

waiting to be tested in the reservoir computing setting.

It is also of great interest to understand how different types of plasticity ob-

served in biological brains interact when applied together and what effect this

has on the quality of reservoirs. The interaction of the IP with Hebbian synaptic

plasticity in a single Fermi neuron is investigated in [Triesch, 2005a] and further

in [Triesch, 2007]. The synergy of the two plasticities is shown to result in a bet-

ter specialization of the neuron that finds heavy-tail directions in the input. An

interaction of IP with a neighborhood-based Hebbian learning in a layer of such

neurons was also shown to maximize information transmission, perform nonlinear

ICA, and result in an emergence of orientational Gabor-like receptive fields in

[Butko and Triesch, 2007].

The interaction of STDP with IP in an LSM-like reservoir with a fixed num-

ber of units that spike at each time step5 was investigated in [Lazar et al., 2007].

The interaction turned out to be a non-trivial one, resulting in networks more

robust to perturbations of the state x(n) and having a better short-time memory

and time series prediction performance. An RNN model with discrete-time spik-

ing excitatory and inhibitory units with STDP, IP, and synaptic scaling plasticity

mechanisms simultaneously acting on subsets of the different connections was in-

vestigated in [Lazar et al., 2010; Lazar, 2010] under a name of self-organizing

recurrent neural network. Such reservoirs were shown to be better on synthetic

counting and occlusion tasks with symbol sequences by learning to have a longer

task-specific memory compared to random reservoirs. All three types of plasticity

were shown to be essential for the model to work. Recently, a connection of such

learning with Bayesian priors was discussed in [Lazar et al., 2011].

An RNN of radial basis function units adapted by generalized self-organizing

maps or neural gas learning methods is proposed and investigated as a reservoir

in the Chapter 4 of this thesis, with an earlier version published in [Lukoševičius,

2010]. The learning mechanisms also make the approach a not purely local one,

because global information is needed for organizing the learning.

A recent approach of combining STDP with a biologically plausible reinforce-

ment signal is discussed in Section 2.7.5, as it is not unsupervised.

5This makes the method a not purely local, because global information is needed to determine
which units fire.
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2.6.3 Unsupervised global methods

Here we review unsupervised methods that optimize reservoirs based on global

information of the reservoir activations induced by the given input u(x), but irre-

spective of the target ytarget(n), like for example the measures discussed in Section

2.6.1. The intuitive goal of such methods is to produce good representations of

(the history of) u(n) in x(n) for any (and possibly several) ytarget(n).

A biologically inspired unsupervised approach with a reservoir trying to predict

itself is proposed in [Mayer and Browne, 2004]. An additional output z(n) ∈ RNx ,

z(n) = Wzx(n) from the reservoir is trained on the target ztarget(n) = x′(n + 1),

where x′(n) are the activations of the reservoir before applying the neuron transfer

function tanh(·), i.e., x(n) = tanh(x′(n)). Then, in the application phase of the

trained networks, the original activations x′(n), which result from u(n), Win, and

W, are mixed with the self-predictions z(n−1) obtained from Wz, with a certain

mixing ratio (1 − α) : α. The coefficient α determines how much the reservoir is

relying on the external input u(n) and how much on the internal self-prediction

z(n). With α = 0 we have the classical ESN and with α = 1 we have an “autistic”

reservoir that does not react to the input. Intermediate values of α close to 1 were

shown to enable reservoirs to generate slow, highly nonlinear signals that are hard

to get otherwise.

An algebraic unsupervised way of generating ESN reservoirs was proposed in

[Ozturk et al., 2007]. The idea is to linearize the ESN update equation (2.5) locally

around its current state x(n) at every time step n to get a linear approximation

of (2.5) as x(n + 1) = Ax(n) + Bu(n), where A and B are time (n)-dependent

matrices corresponding to W and Win respectively. The approach aims at dis-

tributing the predefined complex eigenvalues of A uniformly within the unit circle

on the C plane. The reservoir matrix W is obtained analytically from the set of

these predefined eigenvalues and a given input u(n). The motivation for this is,

as for Kautz filters [Kautz, 1954] in linear systems, that if the target ytarget(n)

is unknown, it is best to have something like an orthogonal basis in x(n), from

which any ytarget(n) could, on average, be constructed well. The spectral radius

of the reservoir is suggested to be set by hand (according to the correlation time

of u(n), which is an indication of a memory span needed for the task), or by

adapting the bias value of the reservoir units to minimize the output error (which

actually renders this method supervised, as in Section 2.7). Reservoirs generated

this way are shown to yield higher average entropy of x(n) distribution, higher
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short-term memory capacity (both measures mentioned in Section 2.6.1), and a

smaller output error on a number of synthetic problems, using relatively small

reservoirs (Nx = 20, 30). However, a more extensive empirical comparison of this

type of reservoir with the classical ESN one is still lacking.

It has been recently demonstrated that reservoir activations x(n) obtained by

running a regular ESN with random weights can be successfully reimplemented

by learning new Win and W from x(n) using the same type of linear or ridge

regression which is used to learn Wout (see Section 2.8.1.1) [Reinhart and Steil,

2011b]. Even though the obtained activations x(n) are virtually the same, W are

very different and on average much smaller, subject to the regularization parameter

in the ridge regularization. As a benefit, regularizing W in such a way was shown

to improve stability of ESNs with output feedbacks [Reinhart and Steil, 2011a], a

problem discussed in Section 2.8.2.

2.6.4 Online reservoir control

In contrast to the universal “goodness” measures of the reservoirs discussed in

Section 2.6.1, for some applications the desired properties of the reservoir are

quite specific. Similar to the local homeostatic self-regulation of neurons discussed

in Section 2.6.2 we might want the reservoir to posses some global invariances.

There are several approaches in the literature that use simple unsupervised control

mechanisms for the reservoirs to achieve the desired invariances.

A common distortion in speech or handwriting signals is the so-called time-

warping, which is a varying speed of signal changes along the time domain. These

temporal distortions have a negative effect on most neural-dynamics-based speech

or handwriting recognition methods, thus it would be desirable to make them

time-warping invariant. As a potential solution, a simple mechanism dynamically

adapting the leaking rates of an ESN reservoir depending on the rate of change

was presented in [Lukoševičius et al., 2006; Jaeger et al., 2007a]. This architecture

varies ∆t on-the-fly in (2.9), directly depending on the speed at which the input

u(n) is changing. It in effect dynamically adapts the time of the reservoir such

that the reservoir “sees” the input as changing at a uniform rate, and effectively

deals with even a high degree of time-warping. As a drawback, such method would

probably be sensitive to high frequency noise in the input. Also the constant-rate-

of-change interpretation of, especially low-dimensional, inputs might discard some
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important information.

Other distortions need to be addressed in different ways. A possible way to deal

with widely but slowly varying input modulation is presented in [Jaeger, 2010].

It uses the relative slowness of the distortion as its distinguishing characteristic,

similar to Slow Feature Analysis (SFA) [Wiskott et al., 2011], by controlling the

ESN reservoir to suppress the slowest components in its activations. This way the

reservoirs can be trained to compensate for slow input distortions that can be quite

big. After training, controller can even be integrated into the reservoir weights

W eliminating any computational overhead. A related method for controlling

features of an ESN-based pattern generator is presented in [Li and Jaeger, 2010].

A similar approach for extracting any predefined distortion invariant features from

an ESN reservoir is presented in [Šakėnas, 2010].

An additional binary input to the reservoir is able to switch between two

learned behaviors in the output, as, e.g., demonstrated in [Antonelo et al., 2008].

2.7 Supervised reservoir pre-training

In this section we discuss methods for training reservoirs to perform a specific

given task, i.e., not only the concrete input u(n), but also the desired output

ytarget(n) is taken into account. Since a linear readout from a reservoir is quickly

trained, the suitability of a candidate reservoir for a particular task (e.g., in terms

of NRMSE (2.1)) is inexpensive to check. Notice that even for most methods of

this class the explicit target signal ytarget(n) is not technically required for training

the reservoir itself, but only for evaluating it in an outer loop of the adaptation

process.

2.7.1 Optimization of global reservoir parameters

In Section 2.5.1 we discussed guidelines for the manual choice of global parameters

for reservoirs of ESNs. This approach works well only with experience and a good

intuitive grasp on nonlinear dynamics. A systematic gradient descent method

of optimizing the global parameters of LI-ESNs (recalled from Section 2.5.5) to

fit them to a given task is presented in [Jaeger et al., 2007a]. The investigation

shows that the error surfaces in the combined global parameter and Wout spaces

may have very high curvature and multiple local minima. Thus, gradient descent
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methods are not always practical.

2.7.2 Evolutionary methods

As one can see from the previous sections of this review, optimizing reservoirs

is generally challenging, and breakthrough methods remain to be found. On the

other hand checking the performance of a resulting ESN is relatively inexpensive,

as said. This brings in evolutionary methods for the reservoir pre-training as a

natural strategy.

Recall that the classical method generates a reservoir randomly; thus the per-

formance of the resulting ESN varies slightly (and for small reservoirs not so

slightly) from one instance to another. Then indeed, an “evolutionary” method as

naive as “generate k reservoirs, pick the best” will outperform the classical method

(“generate a reservoir”) with probability (k− 1)/k, even though the improvement

might be not striking.

Several evolutionary approaches on optimizing reservoirs of ESNs are presented

in [Ishii et al., 2004]. The first approach was to carry out an evolutionary search

on the parameters for generating W: Nx, ρ(W), and the connection density of

W. Then an evolutionary algorithm [Holland, 1992] was used on individuals

consisting of all the weight matrices (Win,W,Wofb) of small (Nx = 5) reservoirs.

A variant with a reduced search space was also tried where the weights, but not the

topology, of W were explored, i.e., elements of W that were zero initially always

stayed zero. The empirical results of modeling the motion of an underwater robot

showed superiority of the methods over other state-of-art methods, and that the

topology-restricted adaptation of W is almost as effective as the full one.

Another approach of optimizing the reservoir W by a greedy evolutionary

search is presented in [Bush and Tsendjav, 2005]. Here the same idea of separating

the topology and weight sizes of W to reduce the search space was independently

used, but the search was, conversely, restricted to the connection topology. This

approach also was demonstrated to yield on average 50% smaller (and much more

stable) error in predicting the behavior of a mass–spring–damper system with

small (Nx = 20) reservoirs than without the genetic optimization.

Yet another way of reducing the search space of the reservoir parameters is

constructing a big reservoir weight matrix W in a fractal fashion by repeatedly

applying Kronecker self-multiplication to an initial small matrix, called the Kro-
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necker kernel [Rad et al., 2008]. This contribution showed that among Ws con-

structed in this way some yield ESN performance similar to the best unconstrained

Ws; thus only the good weights of the small Kronecker kernel need to be found

by evolutionary search for producing a well-performing reservoir.

Evolino [Schmidhuber et al., 2007], introduced in Section 2.3.3, is another

example of adapting a reservoir (in this case an LSTM network) using a genetic

search.

It has been recently demonstrated that by adapting only the slopes of the

reservoir unit activation functions f(·) by a state-of-art evolutionary algorithm,

and having Wout random and fixed, a prediction performance of an ESN can be

achieved close to the best of classical ESNs [Jiang et al., 2008b].

In addition to (or instead of) adapting the reservoirs, an evolutionary search

can also be applied in training the readouts, such as readouts with no explicit

ytarget(n) as discussed in Section 2.8.4.

2.7.3 Other types of supervised reservoir tuning

A greedy pruning of neurons from a big reservoir has been shown in a recent initial

attempt [Dutoit et al., 2007] to often give a (bit) better classification performance

for the same final Nx than just a randomly created reservoir of the same size.

The effect of neuron removal to the reservoir dynamics, however, has not been

addressed yet.

Combining RC approach and error backpropagation methods for RNN train-

ing briefly discussed in Section 2.2.5 is also a naturally interesting approach in-

vestigated in RC literature. Fine-tuning a trained small (Nx = 10) ESN with a

computationally expensive RTRL [Williams and Zipser, 1989] algorithm substan-

tially increases its performance in simple tasks, resulting in compact reasonably

well performing RNNs [Erhan, 2004]. ESNs, however, allow for and usually work

best with much larger reservoir sizes, for which RTRL algorithm would have a

prohibitively long runtime.

A simple one time step BPTT [Werbos, 1990] like in Elman [Elman, 1990]

networks was applied to train a RNN of ESN type in [Hermans and Schrauwen,

2010c]. This training was performed on either only Wout, which is a classical online

ESN training (Section 2.8.1.2), on Wout and Win, or on all weights including W.

Training more weights improved performance on spoken digit recognition, with
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training just Wout and Win, and leaving W fixed being a good compromise.

Batch learning of Wout via linear regression (Section 2.8.1.1) is, however, often

much more accurate than the investigated online learning.

2.7.4 Trained auxiliary feedbacks

While reservoirs have a natural capability of performing complex real-time analog

computations with fading memory [Maass et al., 2002], an analytical investigation

has shown that they can approximate any k-order differential equation (with per-

sistent memory) if extended with k trained feedbacks [Maass et al., 2006, 2007].

This is equivalent to simulating any Turing machine, and thus also means univer-

sal digital computing. In the presence of noise (or finite precision) the memory

becomes limited in such models, but they still can simulate Turing machines with

finite tapes.

This theory has direct implications for reservoir computing; thus different ideas

on how the power of ESNs could be improved along its lines are explored in

[Lukoševičius, 2007]. It is done by defining auxiliary targets, training additional

outputs of ESNs on these targets, and feeding the outputs back to the reservoir.

Note that this can be implemented in the usual model with feedback connections

(2.6) by extending the original output y(n) with additional dimensions that are

trained before training the original (final) output. The auxiliary targets are con-

structed from ytarget(n) and/or u(n) or some additional knowledge of the modeled

process. The intuition is that the feedbacks could shift the internal dynamics

of x(n) in the directions that would make them better linearly combinable into

ytarget(n). The investigation showed that for some types of tasks there are natural

candidates for such auxiliary targets, which improve the performance significantly.

Unfortunately, no universally applicable methods for producing auxiliary targets

are known such that the targets would be both easy to learn and improve the accu-

racy of the final output y(n). In addition, training multiple outputs with feedback

connections Wofb makes the whole procedure more complicated, as cyclical depen-

dences between the trained outputs (one must take care of the order in which the

outputs are trained) as well as stability issues discussed in Section 2.8.2 arise.

Despite these obstacles, we perceive this line of research as having a big potential.
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2.7.5 Reinforcement learning

In the line of biologically inspired local unsupervised adaptation methods dis-

cussed in Section 2.6.2, an STDP modulated by a reinforcement signal has re-

cently emerged as a powerful learning mechanism, capable of explaining some

famous findings in neuroscience (biofeedback in monkeys), as demonstrated in

[Legenstein et al., 2008a,b] and references thereof. The learning mechanism is also

well biologically motivated as it uses a local unsupervised STDP rule and a rein-

forcement (i.e., reward) feedback, which is present in biological brains in a form

of chemical signaling, e.g., by the level of dopamine. A similar rule has also been

recently devised for analog neurons [Legenstein et al., 2010]. In the RC framework

these learning rules have been successfully applied for training readouts from the

reservoirs so far in [Legenstein et al., 2008b, 2010; Hoerzer, 2010] (see Section

2.8.4), but could in principle be applied inside the reservoir too.

Overall we believe that reinforcement learning methods are natural candidates

for reservoir adaptation, as they can immediately exploit the knowledge of how

well the output is learned inside the reservoir without the problems of error back-

propagation. They can also be used in settings where no explicit target ytarget(n) is

available. We expect to see more applications of reinforcement learning in reservoir

computing in the future.

2.8 Readouts from the reservoirs

Conceptually, training a readout from a reservoir is a common supervised non-

temporal task of mapping x(n) to ytarget(n). This is a well investigated domain in

machine learning, much more so than learning temporal mappings with memory. A

large choice of methods is available, and in principle any of them can be applied.

Thus we will only briefly go through the ones reported to be successful in the

literature.

2.8.1 Single-layer readout

By far the most popular readout method from the ESN reservoirs is the originally

proposed [Jaeger, 2001] simple linear readout, as in (2.3) (we will consider it as

equivalent to (2.8), i.e., u(n) being part of x(n)). It is shown to be often sufficient,

as reservoirs provide a rich enough pool of signals for solving many application-
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relevant and benchmark tasks, and is very efficient to train, since optimal solutions

can be found analytically.

2.8.1.1 Linear regression

In batch mode, learning of the output weights Wout (2.2) can be phrased as solving

a system of linear equations

WoutX = Ytarget (2.12)

with respect to Wout, where X ∈ RN×T are all x(n) produced by presenting the

reservoir with u(n), and Ytarget ∈ RNy×T are all ytarget(n), both collected into

respective matrices over the training period n = 1, . . . , T . Usually x(n) data from

the beginning of the training run are discarded (they come before n = 1), since

they are contaminated by initial transients.

Since typically the goal is minimizing a quadratic error E(Ytarget,W
outX) as

in (2.1) and T > N, to solve (2.12) one usually employs methods for finding

least square solutions of overdetermined systems of linear equations (e.g., [Björck,

1996]), the problem also known as linear regression. One direct method is calcu-

lating the Moore-Penrose pseudoinverse X+ of X, and Wout as

Wout = YtargetX
+. (2.13)

Direct pseudoinverse calculations exhibit high numerical stability, but are expen-

sive memory-wise for large state-collecting matrices X ∈ RN×T , thereby limiting

the size of the reservoir N and/or the number of training samples T .

This issue is resolved in the normal equations formulation of the problem:6

WoutXX
T

= YtargetX
T

. (2.14)

A naive solution of it would be

Wout = YtargetX
T

(XX
T

)−1. (2.15)

Note that in this case YtargetX
T ∈ RNy×N and XX

T ∈ RN×N do not depend on the

length T of the training sequence in their sizes, and can be calculated incrementally

6Note that our matrices are transposed compared to the conventional notation.
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while the training data are passed through the reservoir. Thus, having these two

matrices collected, the solution complexity of (2.15) does not depend on T either

in time or in space. Also, intermediate values of Wout can be calculated in the

middle of running through the training data, e.g., for an early assessment of the

performance, making this a “semi-online” training method.

The method (2.15) has lower numerical stability, compared to (2.13), but the

problem can be mitigated by using the pseudoinverse (XX
T
)+ instead of the real

inverse (XX
T
)−1 (which usually also works faster). In addition, this method en-

ables one to introduce ridge, or Tikhonov, regularization elegantly:

Wout = YtargetX
T

(XX
T

+ α2I)−1, (2.16)

where I ∈ RN×N is the identity matrix and α is a regularization factor. In addi-

tion to improving the numerical stability, the regularization in effect reduces the

magnitudes of entries in Wout, thus mitigating sensitivity to noise and overfitting;

see Section 2.8.2 for more details. All this makes (2.16) a highly recommendable

choice for learning outputs from the reservoirs.

Another alternative for solving (2.14) is decomposing the matrix XX
T

into a

product of two triangular matrices via Cholesky or LU decomposition, and solving

(2.14) by two steps of substitution, avoiding (pseudo-)inverses completely. The

Cholesky decomposition is the more numerically stable of the two.

Weighted regression can be used for training linear readouts by multiplying

both x(n) and the corresponding ytarget(n) by different weights over time, thus

emphasizing some time steps n over others. Multiplying certain recorded x(n)

and corresponding ytarget(n) by
√
k has the same emphasizing effect as if they

appeared in the training sequence k times.

When the reservoir is made from spiking neurons and thus x(n) becomes a

collection of spike trains, smoothing by low-pass filtering may be applied to it

before doing the linear regression, or it can be done directly on x(n) [Maass et al.,

2002]. For more on linear regression based on spike train data, see [Carnell and

Richardson, 2005].

Evolutionary search for training linear readouts can also be employed. State-

of-art evolutionary methods are demonstrated to be able to achieve the same

record levels of precision for supervised tasks as with the best applications of linear

regression in ESN training [Jiang et al., 2008b]. Their much higher computational
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cost is justifiable in settings where no explicit ytarget(n) is available, discussed in

Section 2.8.4.

2.8.1.2 Online adaptive output weight training

Some applications require online model adaptation, e.g., in online adaptive chan-

nel equalization [Jaeger and Haas, 2004]. In such cases one typically minimizes

an error that is exponentially discounted going back in time. Wout here acts as

an adaptive linear combiner. The simplest way to train Wout is to use stochas-

tic gradient descent. The method is familiar as the Least Mean Squares (LMS)

algorithm in linear signal processing [Farhang-Boroujeny, 1998], and has many ex-

tensions and modifications. Its convergence performance is unfortunately severely

impaired by large eigenvalue spreads of XX
T
, as mentioned in Section 2.6.1.

An alternative to LMS, known in linear signal processing as the Recursive Least

Squares (RLS) algorithm, is insensitive to the detrimental effects of eigenvalue

spread and boasts a much faster convergence because it is a second-order method.

The downside is that RLS is computationally more expensive (order O(N2) per

time step instead of O(N) for LMS, for Ny = 1) and notorious for numerical

stability issues. Demonstrations of RLS are presented in [Jaeger and Haas, 2004;

Jaeger, 2003]. A careful and comprehensive comparison of variants of RLS is

carried out in a Master’s thesis [Küçükemre, 2006], which we mention here because

it will be helpful for practitioners.

The BackPropagation-DeCorrelation (BPDC) and FORCE learning algorithms

discussed in Sections 2.3.4 and 2.3.5 respectively are two other powerful methods

for online training of single-layer readouts with feedback connections from the

reservoirs.

Simple forms of adaptive online learning, such as LMS, are also more biologi-

cally plausible than batch-mode training. From spiking neurons a firing time-coded

(instead of a more common firing rate-coded) output for classification can also be

trained by only adapting the delays of the output connections [Paugam-Moisy

et al., 2008]. And firing rate-coded readouts can be trained by a biologically-

realistic reward-modulated STDP [Legenstein et al., 2008b], mentioned in Section

2.6.2.
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2.8.1.3 SVM-style readout

Continuing the analogy between the temporal and non-temporal expansion meth-

ods, discussed in Section 2.2, the reservoir can be considered a temporal kernel,

and the standard linear readout Wout from it can be trained using the same loss

functions and regularizations as in Support Vector Machines (SVMs) or Support

Vector Regression (SVR). Different versions of this approach are proposed and

investigated in [Shi and Han, 2007].

A standard SVM (having its own kernel) can also be used as a readout from

a continuous-value reservoir [Schmidhuber et al., 2006]. Similarly, special ker-

nel types could be applied in reading out from spiking (LSM-type) reservoirs

[Schrauwen and Campenhout, 2006] (and references therein).

2.8.2 Feedbacks and stability issues

Stability issues (with reservoirs having the echo state property) usually only occur

in generative setups where a model trained on (one step) signal prediction is later

run in a generative mode, looping its output y(n) back into the input as u(n+ 1).

Note that this is equivalent to a model with output feedbacks Wofb (2.6) and no

input at all (Nu = 0), which is usually trained using teacher forcing (i.e., feeding

ytarget(n) as y(n) for the feedbacks during the training run) and later is run freely

to generate signals as y(n). Win in the first case is equivalent to Wofb in the

second one. Models having feedbacks Wofb may also suffer from instability while

driven with external input u(n), i.e., not in a purely generative mode.

The reason for these instabilities is that even if the model can predict the

signal quite accurately, going through the feedback loop of connections Wout and

Wofb (or Win) small errors get amplified, making y(n) diverge from the intended

ytarget(n).

One way to look at this for trained linear outputs is to consider the feedback

loop connections Wout and Wofb as part of the reservoir W. Putting (2.6) and

(2.2) together we get

x(n) = f(Winu(n) + [W + WofbWout]x(n− 1)), (2.17)

where W + WofbWout forms the “extended reservoir” connections, which we will

call W∗ for brevity (as in [Lukoševičius, 2007] Section 3.2). If the spectral radius
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of the extended reservoir ρ(W∗) is very large we can expect unstable behavior. A

more detailed analysis using Laplace transformations and a sufficient condition for

stability is presented in [Steil, 2005a]. On the other hand, for purely generative

tasks, ρ(W∗) < 1 would mean that the generated signal would die out, which is

not desirable in most cases. Thus producing a generator with stable dynamics is

often not trivial.

Quite generally, models trained with clean (noise-free) data for the best one-

time-step prediction diverge fast in the generative mode, as they are too “sharp”

and not noise-robust. A classical remedy is adding some noise to reservoir states

x(n) [Jaeger, 2001] during the training. This way the generator forms a stable

attractor by learning how to come to the desired next output ytarget(n) from a

neighborhood of the current state x(n), having seen it perturbed by noise during

training. Setting the right amount of noise is a delicate balance between the

sharpness (of the prediction) and the stability of the generator. Alternatively,

adding noise to x(n) can be seen as a form of regularization in training, as it in

effect also emphasizes the diagonal of matrix XX
T

in (2.16). A similar effect can

be achieved using ridge regression (2.16) [wyffels et al., 2008a], or to some extent

even pruning of Wout [Dutoit et al., 2008]. Ridge regression (2.16) is the least

computationally expensive to do of the three, since the reservoir does not need to

be rerun with the data to test different values of the regularization factor α.

Using different modifications of signals for teacher forcing, like mixing ytarget(n)

with noise, or in some cases using pure strong noise, during the training also has

an effect on the final performance and stability, as discussed in Section 5.4 of

[Lukoševičius, 2007].

2.8.3 Readouts for classification/recognition

The time series classification or temporal pattern detection tasks that need a

category indicator (as opposed to real values) as an output can be implemented in

two main ways. The most common and straightforward way is having a real-valued

output for each class (or a single output and a threshold for the two-class classifier),

and interpreting the strengths of the outputs as votes for the corresponding classes,

or even class probabilities (several options are discussed in [Jaeger et al., 2007a]).

Often the most probable class is taken as the decision. A simple target ytarget for

this approach is a constant ytargeti(n) = 1 signal for the right class i and 0 for the

57



2. OVERVIEW OF RESERVOIR COMPUTING
2.8. Readouts from the reservoirs

others in the range of n where the indicating output is expected. More elaborate

shapes of ytarget(n) can improve classification performance, depending on the task

(e.g., [Lukoševičius et al., 2006]). With spiking neurons the direct classification

based on time coding can be learned and done, e.g., the class is assigned depending

on which output fires first [Paugam-Moisy et al., 2008].

The main alternative to direct class indications is to use predictive classifiers,

i.e., train different predictors to predict different classes and assign a class to

a new example corresponding to the predictor that predicts it best. Here the

quality of each predictor serves as the output strength for the corresponding class.

The method is quite popular in automated speech recognition (e.g., Section 6 in

[Tebelskis, 1995] for an overview). However, in Section 6.5 of [Tebelskis, 1995] the

author argues against this approach, at least in its straightforward form, pointing

out some weaknesses, like the lack of specificity, and negative practical experience.

For both approaches a weighting scheme can be used for both training (like in

weighted regression) and integrating the class votes, e.g., putting more emphasis

on the end of the pattern when sufficient information has reached the classifier to

make the decision.

An advanced version of ESN-based predictive classifier, where for each class

there is a set of competitively trained predictors and dynamic programming is used

to find the optimal sequence of them, is reported to be much more noise robust

than a standard Hidden Markov Model in spoken word recognition [Skowronski

and Harris, 2007].

A phoneme recognizer accommodating a bigram phoneme language model and

doing a Viterbi search for the most likely phonemic sequence as a readout from a

large ESN reservoir was demonstrated to achieve state of art recognition perfor-

mance in [Triefenbach et al., 2011].

See [Graves, 2008] for additional advanced options on recognition readouts

from RNNs.

2.8.4 Readouts trained without target

Even though most of the readout types from reservoirs reported in the literature

are trained in a purely supervised manner, i.e., making y(n) match an explicitly

given ytarget(n), the reservoir computing paradigm lends itself to settings where

no ytarget(n) is available. A typical such setting is reinforcement learning where
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only a feedback on the model’s performance is available. Note that an explicit

ytarget(n) is not required for the reservoir adaptation methods discussed in Sections

2.5 and 2.6 of this survey by definition. Even most of the adaptation methods

classified as supervised in Section 2.7 do not need an explicit ytarget(n), as long

as one can evaluate the performance of the reservoir. Thus they can be used

without modification, provided that unsupervised training and evaluation of the

output is not prohibitively expensive or can be done simultaneously with reservoir

adaptation. In this section we will give some pointers on training readouts using

reinforcement learning.

A biologically inspired learning rule of Spike-Time-Dependent Plasticity (STDP)

modulated by a reinforcement signal has been successfully applied for training a

readout of firing neurons from the reservoirs of the same LSM-type in [Legenstein

et al., 2008b].

A similar reinforcement-modulated Hebbian learning rule has recently been

devised for analog neurons in [Legenstein et al., 2010] and shown to work as a

learning mechanism for an ESN readout with feedbacks, a setup similar to FORCE

learning (Section 2.3.5), in [Hoerzer, 2010].

Evolutionary algorithms are a natural candidate for training outputs in a non-

fully-supervised manner. Using a genetic search with crossover and mutation to

find optimal output weights Wout of an ESN is reported in [Xu et al., 2005]. Such

an ESN is successfully applied for a hard reinforcement learning task of direct

adaptive control, replacing a classical indirect controller.

ESNs trained with a simple “(1+1)” evolution strategy for an unsupervised

artificial embryogeny (the, so-called, “flag”) problem are shown to perform very

well in [Devert et al., 2008].

An ESN trained with a state-of-art evolutionary continuous parameter opti-

mization method (CMA-ES) shows comparable performance in a benchmark dou-

ble pole balancing problem to the best RNN topology-learning methods in [Jiang

et al., 2008b,a]. For this problem the best results are obtained when the spectral

radius ρ(W) is adapted together with Wout. The same contributions also validate

the CMA-ES readout training method on a standard supervised prediction task,

achieving the same excellent precision (MSE of the order 10−15) as the state-of-art

with linear regression. Conversely, the best results for this task were achieved with

ρ(W) fixed and training only Wout. An even more curious finding is that almost

as good results were achieved by only adapting slopes of the reservoir activation
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functions f(·) and having Wout fixed, as mentioned in Section 2.7.2.

A way of extracting features from an ESN reservoir invariant to specific dis-

tortions of input is presented in [Šakėnas, 2010].

A Slow Feature Analysis SFA and sparse coding layers stacked on top of an

ESN reservoir fed with robot data sensors as input is shown to unsupervisedly

learn the behavior of place cells: each neuron is only activated when the robot is

in a particular place in its environment [Antonelo and Schrauwen, 2011].

2.8.5 Multilayer readouts

Multilayer perceptrons (MLPs) as readouts, trained by error backpropagation,

were used from the very beginnings of LSMs [Maass et al., 2002] and ESNs (un-

published). They are theoretically more powerful and expressive in their instan-

taneous mappings from x(n) to y(n) than linear readouts, and are thus suitable

for particularly nonlinear outputs, e.g., in [Bush and Anderson, 2005; Babinec and

Posṕıchal, 2006]. In both cases the MLP readouts are trained by error backprop-

agation. On the other hand they are significantly harder to train than an optimal

single-layer linear regression, thus often giving inferior results compared to the

latter in practice.

Some experience in training MLPs as ESN readouts, including network initial-

ization, using stochastic, batch, and semi-batch gradients, adapting learning rates,

and combining with regression-training of the last layer of the MLP, is presented

in Section 5.3 of [Lukoševičius, 2007].

An approach of combining ESN reservoirs with random feed-forward layers of

neurons is proposed in [Butcher et al., 2010].

2.8.6 Readouts with delays

While the readouts from reservoirs are usually recurrence-free, it does not mean

that they may not have memory. In some approaches they do, or rather some

memory is inserted between the reservoir and the readout.

Learning a delay for each neuron in an ESN reservoir x(n) in addition to

the output weight from it is investigated in [Holzmann and Hauser, 2010]. One

way of learning such readout is using a cross-correlation (simple or generalized)

to optimally align activations of each neuron in x(n) with ytarget(n), and then

activations with the delays xdelayed(n) are used to find Wout using linear regression.
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Another proposed way is using a kind of Expectation-Maximization to iteratively

correlate each dimension xi(n) of x(n) with the target residue ytarget(n)− y(n) to

find its optimal delay and then its wout
i. The process is repeated until the delays

converge and then the whole Wout is recomputed the usual way. This type of

readout potentially enables utilizing the computational power of the reservoir more

efficiently. In a time-coded output from a spiking reservoir the output connection

delays can actually be the only thing that is learned [Paugam-Moisy et al., 2008].

For time series classification tasks the decision can be based on a readout from

a joined reservoir state xjoined = [x(n1),x(n2), . . . ,x(nk)] that is a concatenation of

the reservoir states from different moments n1, n2, . . . , nk in time during the time

series [Jaeger et al., 2007a]. This approach, compared to only using the last state

of the given time series, moves the emphasis away from the ending of the series,

depending on how the support times ni are spread. It is also more expressive, since

it has k times more trainable parameters in Wout for the same size of the reservoir

N. As a consequence, it is also more prone to overfitting. It is also possible to

integrate intervals of states in some way, e.g., use x∗(n1) = 1
n1−n0+1

∑n1

m=n0
x(m)

instead of using a single snapshot of the states x(n1).

An approach of treating a finite history of reservoir activations x(n) (similar to

X in (2.12)) as a two-dimensional image, and training a minimum average corre-

lations energy filter as the readout for dynamical pattern recognition is presented

in [Ozturk and Pŕıncipe, 2007].

2.8.7 Reservoir computing with non-temporal data

Even though in Section 2.1 we stated that the RNNs considered in this survey are

used as nonlinear filters, which transform an input time series into an output time

series, ESNs can also be utilized for non-temporal (defined in Section 2.2.1) tasks

{(u(n),ytarget(n))} by presenting an ESN with the same input u(n) for many time

steps letting the ESN converge to a fixed-point attractor state xu(n)(∞) (which it

does if it possesses echo state property) and reading the output from the attractor

state y(n) = y(xu(n)(∞)) [Embrechts et al., 2009; Reinhart and Steil, 2009].

An interesting approach of applying ESNs on tree-structured data is proposed

in [Gallicchio and Micheli, 2010b]. For a binary tree (as a simple example) the

states of the Tree-ESN are updated traversing the tree from the leaves to the

root in every vertex v with information u(v) stored on it, the activation x(v) is

61



2. OVERVIEW OF RESERVOIR COMPUTING
2.8. Readouts from the reservoirs

computed as x(v) = x (x(vl),x(vr),u(v)), compared to (2.4), where vl and vr are

the left and right children of v. Thus the current state is computed from two

previous states with two “recurrent” connection matrices, traversing the edges of

graph simultaneously toward the rood, instead of the time steps. The readout is

done from the activation of the root node. Regular ESN can be seen as a special

case of Tree-ESN where the input time series is considered as a directed tree where

every node has just one child. The Tree-ESN approach can be extended to general

graphs [Gallicchio and Micheli, 2010a].

2.8.8 Combining several readouts

Segmenting of the spatially embedded trajectory of x(n) by k-means clustering and

assigning a separate “responsible” linear readout for each cluster is investigated in

[Bush and Anderson, 2006]. This approach increases the expressiveness of the ESN

by having k linear readouts trained and an online switching mechanism among

them. Bigger values of k are shown to compensate for smaller sizes Nx of the

reservoirs to get the same level of performance.

A benchmark-record-breaking approach of taking an average of outputs from

many (1000) different instances of tiny (N = 4) trained ESNs is presented in

Section 5.2.2 of [Jaeger et al., 2007a]. The approach is also combined with reading

from different support times as discussed in Section 2.8.6 of this survey. Averaging

outputs over 20 instances of ESNs was also shown to refine the prediction of chaotic

time series in supporting online material of [Jaeger and Haas, 2004].

Using dynamic programing to find sequences in multiple sets of predicting

readouts for classification [Skowronski and Harris, 2007] was already mentioned at

the end of Section 2.8.3.

2.8.9 Reservoir as a kernel trick

Recently reservoir-inspired SVM-style Recurrent Kernel Machines (RKM) were

proposed in [Hermans and Schrauwen, 2012]. They in effect work as infinite-

dimensional RNNs, because an integral over all possible weight Win and W values

is computed. As in SVMs, this is not done explicitly, but using the kernel trick :

a dot product is computed between the input sequence u(n) and stored support

sequences in the infinite-dimensional expansion space by means of the recurrent

kernel function. Standard SVM output training techniques can be used with
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recurrent kernels, such as maximum-margin classification or regression. Output

weights correspond to the dot products with the support sequences, instead of the

dimensions of the reservoir (which would be infinitely many in this case). Standard

for SVMs Gaussian radial basis function as well as arcsine kernels were considered.

The first corresponds to an infinite-dimensional RNN of Gaussian radial basis

function neurons, and the second is very similar to an infinite-dimensional RNN

of standard tanh sigmoid neurons, extending the idea of integrating over infinite-

dimensional FFNNs in [Cho and Saul, 2010].

Despite the different readout mechanism, the authors of [Hermans and Schrauwen,

2012] consider ESN as a Monte Carlo approximation of an infinite-dimensional

RNN represented by the arcsine RKM. Their empirical experiments show that

the performance of ESN quickly approaches that of an RKM when increasing the

number of units Nx. This indicates that ESN is still a more practical thing to

use as even with big Nx it requires much smaller computational costs compared

to RKMs. Nonetheless, we consider RKM a very interesting and important new

development in machine learning.

2.9 Hierarchies

Following the analogy between the ESNs and non-temporal kernel methods, ESNs

would be called “type-1 shallow architectures” according to the classification pro-

posed in [Bengio and LeCun, 2007]. The reservoir adaptation techniques reviewed

in our article would make ESNs “type-3 shallow architectures”, which are more

expressive. However, the authors in [Bengio and LeCun, 2007] and [Bengio, 2009]

argue that any type of shallow (i.e., non-hierarchical) architectures is incapable of

learning really complex intelligent tasks. Also in practice best performing systems

on demanding tasks tend to be hierarchical, e.g., [LeCun et al., 1998; Hinton and

Salakhutdinov, 2006; Graves and Schmidhuber, 2009; Cireşan et al., 2010]. This

suggests that for demandingly complex tasks the adaptation of a single reservoir

might not be enough and a hierarchical architecture within or of reservoirs might

be needed. This is elaborated more in Chapter 3.

An example of such is presented in [Jaeger, 2007a]. Here the outputs of a

higher level in the hierarchy serve as coefficients of mixing (or voting on) outputs

from a lower one. The structure can have an arbitrary number of layers. Only the

outputs from the reservoirs of each layer are trained simultaneously, using stochas-
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tic gradient descent and error backpropagation through the layers. The structure

is demonstrated to discover features on different timescales in an unsupervised

way when being trained for predicting a synthetic time series of interchanging

generators. On the downside, such hierarchies require many epochs to train, and

suffer from a similar problem of vanishing gradients, as deep feedforward neural

networks or gradient-descent methods for fully trained RNNs, because of the deep

multilayered structure and recurrent bottom-up and top-down dependences. At

the present form they do not scale-up yet to real-world demanding problems.

A bottom-up connected hierarchy of layer-wise greedily unsupervisedly trained

radial basis function RNNs is proposed and investigated in Section 4.6 of this

thesis, and was earlier in [Lukoševičius, 2010]. This hierarchy is also so far only

shown to work good on a synthetic task.

A similarly bottom-up connected and greedily supervisedly trained hierarchy

of large ESN reservoirs was shown to significantly improve phoneme recognition

rates and achieve state-of-art performance in [Triefenbach et al., 2011]. Each layer

was trained on the same target ytarget(n). Upper layers learned to correct errors

of previous layers by receiving just their imprecise output.

2.10 Discussion

The striking success of the original RC methods in outperforming fully trained

RNNs in many (though not all) tasks, established an important milestone, or

even a turning point, in the research of RNN training. The fact that a randomly

generated fixed RNN with only a linear readout trained consistently outperforms

state-of-art RNN training methods had several consequences:

• First of all it revealed that we do not really know how to train RNNs well,

and something new is needed. The error backpropagation methods, which

had caused a breakthrough in feedforward neural network training (up to a

certain depth), and had also become the most popular training methods for

RNNs, are hardly unleashing their full potential.

• Neither are the classical RC methods yet exploiting the full potential of

RNNs, since they use a random RNN, which is unlikely to be optimal, and

a linear readout, which is quite limited by the quality of the signals it is
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combining. But they give a quite tough performance reference for more

sophisticated methods.

• The separation between the RNN reservoir and the readout provides a good

platform to try out all kinds of RNN adaptation methods in the reservoir

and see how much they can actually improve the performance over randomly

created RNNs. This is particularly well suited for testing various biology-

inspired RNN adaptation mechanisms, which are almost exclusively local

and unsupervised, in how they can improve learning of a supervised task.

• In parallel, it enables all types of powerful non-temporal methods to be

applied for reading out of the reservoir.

This platform is the current paradigm of RC : using different methods for (i)

producing/adapting the reservoir, and (ii) training different types of readouts.

It enables looking for good (i) and (ii) methods independently, and combining

the best practices from both research directions. The platform has been actively

used by many researchers, ever since the first ESNs and LSMs appeared. This

research in both (i) and (ii) directions, together with theoretical insights, like

what characterizes a “good” reservoir, constitutes the modern field of RC.

In this review, together with motivating the new paradigm, we have provided

a comprehensive survey of all this RC research. We introduced a natural taxon-

omy of the reservoir generation/adaptation techniques (i) with three big classes

of methods (generic, unsupervised, and supervised), depending on their universal-

ity with respect to the input and desired output of the task. Inside each class,

methods are also grouped into major directions of approaches, taking different

inspirations. We have also surveyed all types of readouts from the reservoirs (ii)

reported in the literature, including the ones containing several layers of nonlin-

earities, combining several time steps, or several reservoirs, among others. We

also briefly discussed some practical issues of training the most popular types of

readouts in a tutorial-like fashion.

The survey is transcending the boundaries among several traditional methods

that fall under the umbrella of RC, generalizing the results to the whole RC field

and pointing out relations, where applicable.

Even though this review is quite extensive, we tried to keep it concise, out-

lining only the basic ideas of each contribution. We did not try to include every

contribution relating to RC in this survey, but only the ones highlighting the main
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research directions. Publications only reporting applications of reservoir methods,

but not proposing any interesting modifications of them, were left out. Since this

review is aimed at a (fast) moving target, which RC is, some (especially very new)

contributions might have been missed unintentionally.

In general, the RC field is still very young, but very active and quickly expand-

ing. While the original first RC methods made an impact that could be called

a small revolution, current RC research is more in a phase of a (rapid) evolu-

tion. The multiple new modifications of the original idea are gradually increasing

the performance of the methods. While with no striking breakthroughs lately,

the progress is steady, establishing some of the extensions as common practices

to build on further. There are still many promising directions to be explored,

hopefully leading to breakthroughs in the near future.

While the tasks for which RNNs are applied nowadays often are quite com-

plex, hardly any of them could yet be called truly intelligent, as compared to the

human level of intelligence. The fact that RC methods perform well in many of

these simple tasks by no means indicates that there is little space left for their

improvement. More complex tasks and adequate solutions are still to meet each

other in RC. We further provide some of our (subjective, or even speculative)

outlooks on the future of RC.

The elegant simplicity of the classical ESNs gives many benefits in these simple

applications, but it also has some intrinsic limitations (as, for example, discussed

in Section 2.5.4) that must be overcome in some way or other. Since the RNN

model is by itself biologically inspired, looking at real brains is a natural (literally)

source of inspiration on how to do that. RC models may reasonably explain some

aspects of how small portions of the brain work, but if we look at the bigger

picture, the brain is far from being just a big blob of randomly connected neurons.

It has a complex structure that is largely predefined before even starting to learn.

In addition, there are many learning mechanisms observed in the real brain, as

briefly outlined in Section 2.6.2. It is very probable that there is no single easily

implementable underlying rule which can explain all learning.

The required complexity in the context of RC can be achieved in two basic

ways: either (i) by giving the reservoir a more complex internal structure, like

that discussed in Section 2.5.3 or (ii) externally building structures combining

several reservoirs and readouts, like those discussed in Section 2.9. Note that

the two ways correspond to the above-mentioned dichotomy of the RC research
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and are not mutually exclusive. An “externally” (ii) built structure can also be

regarded as a single complex reservoir (i) and a readout from it all can be trained.

An internal auto-structuring of the reservoir (i) through an (unsupervised)

training would be conceptually appealing and nature-like, but not yet quite feasible

at the current state of knowledge. A robust realization of such a learning algorithm

would signify a breakthrough in the generation/training of artificial NNs. Most

probably such an approach would combine several competing learning mechanisms

and goals, and require a careful parameter selection to balance them, and thus

would not be easy to successfully apply. In addition, changing the structure of

the RNN during the adaptive training would lead to bifurcations in the training

process, as in [Doya, 1992], which makes learning very difficult.

Constructing external architectures of several reservoirs can be approached as

more of an engineering task. The structures can be hand-crafted, based on the

specifics of the application, and, in some cases, trained entirely supervised, each

reservoir having a predefined function and a target signal for its readout. While

such approaches are successfully being applied in practice, they are very case-

specific, and not quite in the scope of the research reviewed here, since in essence

they are just applications of (several instances of) the classical RC methods in

bigger settings.

However, generic structures of multiple reservoirs (ii) that can be trained with

no additional information, such as discussed in Section 2.9, are of high interest.

Despite their current state being still an “embryo”, and the difficulties pointed

out earlier, we see this direction as highly promising. We propose a contribution

towards this direction in Chapter 4 of this thesis.

Biological inspiration and progress of neuroscience in understanding how real

brains work are beneficial for both (i) and (ii) approaches. Well understood natu-

ral principles of local neural adaptation and development can be relatively easily

transfered to artificial reservoirs (i), and reservoirs internally structured to more

closely resemble cortical microcolumns in the brain have been shown to perform

better [Haeusler and Maass, 2007]. Understanding how different brain areas inter-

act could also help in building external structures of reservoirs (ii) better suited

for nature-like tasks.

In addition to processing and “understanding” multiple scales of time and

abstraction in the data, which hierarchical models aim to solve, other features

still lacking in the current RC (and overall RNN) methods include robustness and
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stability of pattern generation. A possible solution to this could be a homeostasis-

like self-regulation in the RNNs. Other intelligence-tending features as selective

longer-term memory or active attention are also not yet well incorporated.

In short, RC is not the end, but an important stepping-stone in the big journey

of developing RNNs, ultimately leading towards building artificial and compre-

hending natural intelligence.
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Chapter 3

Reservoirs, Hierarchies, and

Learning

As noted in Chapter 1, the current state in ML is nowhere close in its capabilities

to human level intelligence. We see two important related reasons for that:

• The current artificial ML systems are just too simple.

• Purely supervised learning is an inadequate paradigm.

We are not claiming that these two reasons are the only one. In fact, we have

pointed out more in Chapter 1.

Let us elaborate on these two points in the following two sections.

3.1 Toward more complex ML architectures

The current “AI” systems are just too simple to approach real intelligence. Look-

ing at the scale and complexity of brains of higher animals and of the current ML

systems, the gap is obvious.

Realizing this, a current trend in state of art ML is from simple monolithic

architectures to more complex ones having more layers and/or components. The

trend brings machine learning closer to the field of cognitive architectures.

There is a growing consensus that the old type “shallow” architectures are in-

sufficient for more demanding tasks in machine learning that tend toward artificial

intelligence and multilayer “deep” architectures are needed [Bengio and LeCun,

2007; Bengio, 2009].
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From a computational perspective, the deep models are much more expres-

sive and capable of learning less trivial (non-local) generalizations, or features,

concepts, from the data [Bengio, 2009]. This multilayer “deep” approach also

matches our basic knowledge about natural brains, for example the visual pro-

cessing stream in higher animals. There is also an abstract correspondence to the

way humans think in hierarchies of concepts.

Also empirically, almost all the best performing neural image processing meth-

ods are deep [LeCun et al., 1998; Hinton and Salakhutdinov, 2006; Graves and

Schmidhuber, 2009; Cireşan et al., 2010].

One of the main reasons why large complex ML architectures have not been

successfully applied in the past is that they are a big challenge for learning algo-

rithms. Classical supervised learning algorithms based on following error gradients

are often inefficient, because the error gradients are only easy to estimate close to

the output points of an architecture where the desired “target” signals is available

(the error is just the difference between the actual and the desired output signals).

The further from these points the error gradients are back-propagated the more

they get “diluted” and the less effective the learning becomes in these areas, as

already hinted at in Section 1.5.

It has been recently shown that deep FFNNs can successfully be trained by

first training them unsupervisedly in a greedy layer-by-layer fashion from bottom,

where the input comes, up and then fine-tuning with a classical supervised er-

ror backpropagation (BP) method from top, where the output is produced, down

[Hinton and Salakhutdinov, 2006]. Such approach is more efficient and gives bet-

ter final results than training only with the supervised BP [Erhan et al., 2010].

A few examples of successfully fully supervisedly trained deep networks usually

employ other tricks, like severe restriction of the number of trainable parameters

by the convolutional application of the network [LeCun et al., 1998; Graves and

Schmidhuber, 2009].

Recurrence is another type of complexity which has to be present for truly

intelligent behavior, because intelligent agents, mathematically speaking, are not

memoryless input-output mapping functions, but rather dynamical systems em-

bedded and acting in time.

It is worth mentioning at this point that the state of art deep neural learn-

ing architectures are largely still non-recurrent [LeCun et al., 1998; Hinton and

Salakhutdinov, 2006; Cireşan et al., 2010]. In particular, few of them are ade-
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quately dealing with temporal signals.

Quite some of the mentioned learning challenges are common between the deep

FFNNs and the recurrent systems. In fact, a recurrent NN “unfolded” in time can

be seen as an infinitely deep FFNN. Despite the commonalities, the combined

complexity of the two makes deep recurrent neural architectures particularly chal-

lenging.

A few temporal hierarchical systems are mentioned in Section 2.9. A successful

example of fully supervisedly trained one was recently presented in [Graves and

Schmidhuber, 2009]. In Chapter 4 we will propose another, unsupervisedly trained

one.

3.2 Why unsupervised learning is important

Let us summarize the reasons why unsupervised learning is important for training

intelligent ML systems:

• Such systems will be too big and complex to be efficiently trained by purely

supervised methods, as we explained in Section 3.1.

• Current large RNNs and deep FFNNs are already trained sub-optimally by

purely supervised methods as demonstrated by RC (Chapter 2) and e.g.

[Erhan et al., 2010].

• Labeled data is too scarce to only learn from it in most domains tending to

general-purpose AI, as pointed out in Section 1.5.

• There are hardly any purely supervised tasks in nature. Intelligent agent

has to “learn about the world” to be able to perform many different tasks

on demand. It would be impossible to train a general-purpose AI in a purely

supervised way.

• Purely supervised learning does not give rise to any “creative” original so-

lutions. It is also not generative: it does not help to create the structure of

the model, only to fine-tune its parameters towards correct output.

• Natural neural systems are well known for their unsupervised adaptivity.

They are self-regulating by many mechanisms, on many timescales and for

71



3. RESERVOIRS, HIERARCHIES, AND LEARNING
3.2. Why unsupervised learning is important

several purposes: optimizing performance, dynamical stabilization, home-

ostasis, etc. Even neurons scattered on a dish are known to organize them-

selves into living networks. Many of these mechanisms remain largely un-

known.

This list is, again, not exhaustive. In particular, for now, in this thesis, we

are interested in unsupervised learning as means of training more complex RNN

architectures.

We have reviewed many alternative approaches for training RNNs in Chapter

2, including unsupervised ones in Section 2.6, but they are not powerful enough

for this purpose (or at least not reported to be). In particular, we do not know

any unsupervisedly fully trained deep recurrent neural architectures reported in

the literature, probably the closest of such being [Jaeger, 2007a].

We will propose and investigate a use of a new type of network together with

powerful unsupervised learning algorithms to train RNN reservoirs as building

blocks for deep recurrent architectures in Chapter 4
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Chapter 4

Self-organized Reservoirs and

their Hierarchies

4.1 Introduction

Despite the biological plausibility and theoretical computational universality of

artificial Recurrent Neural Networks (RNNs), their practical applications are still

scarce. This should arguably be attributed to their training being far from trivial.

While many algorithms for training RNNs exist, they usually require a high level

of expertise and do not scale up well to large networks. There are likely even the-

oretical limitations to using gradient descent training techniques in such networks

[Doya, 1992; Bengio et al., 1994]. One fresh strain of RNN training approaches

has even abandoned training the recurrent part of the network at all. The strain

was pioneered by Echo State Networks (ESNs) [Jaeger, 2001] in machine learning

and Liquid State Machines [Maass et al., 2002] in computational neuroscience and

is increasingly referred to as Reservoir Computing (RC), as reviewed in Chapter

2. The fact that a simple ESN having a randomly generated recurrent part (called

reservoir) and only a readout from it trained is outperforming sophisticated RNN

training algorithms in many tasks [Jaeger and Haas, 2004; Jaeger et al., 2007a;

Verstraeten et al., 2006] is in a way odd if not embarrassing. Intuitively, there

should be something better than a random network. It is also not well understood

what makes a reservoir good for a particular task. Dissatisfied with this situa-

tion many researchers are looking for such qualities and for novel RNN (reservoir)

adaptation algorithms (see Chapter 2 for an overview).
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A part of our contribution in this chapter is along the lines of these efforts

reviewed in Section 2.6. We focus our attention on an unsupervised pre-training

of the reservoir followed by a supervised training of the readout. These are the

middle grounds between a fixed reservoir and a fully in a supervised way trained

RNN, hopefully mitigating the shortcomings of both. Among the benefits of the

unsupervised pre-training are the ability to utilize unlabeled data (input signals

with no corresponding target outputs) that are abundant in many applications and

the ability to use such reservoirs as building blocks for more complex hierarchical

architectures since they do not require an external error signal back-propagated

through other complex components and diluted in the process (See Section 3.2 for

more).

The latter is the main original motivation to this research and is further ex-

plored in this chapter. We investigate architectures of multiple layers of such

reservoirs that are greedily trained in an unsupervised way. It has been recently

argued [Bengio, 2009] and widely believed in the machine learning community that

such deep architectures are necessary for more challenging tasks.

The chapter is organized as follows. We specify our self-organizing reservoir in

Section 4.2, together with a short discussion on the properties of the neuron model

used in Section 4.2.2, and the training algorithms used in Section 4.3, both the

unsupervised training in Section 4.3.1 and the readout mechanism in Section 4.3.2.

We compare the self-organizing reservoirs with random networks of the same type

and simple ESNs in Section 4.4 and show that they are consistently better in the

investigated two tasks. More concretely, we specify the baseline ESN in Section

4.4.1, the two tasks used in Sections 4.4.2 and 4.4.3, and the technical details of

the simulations in Section 4.4.4. We then analyze the results of the comparison in

Section 4.4.5. We further investigate the scalability of our computational model

with random weights in Section 4.4.6, and point out a possible limitation. Then

in Section 4.5 we propose an alternative generalized model that we call weighted

difference network, that alleviates these limitations, discuss a few alternatives for a

better unsupervised training for the model in Section 4.5.2, and demonstrate that

the model offers superior performance in Section 4.5.3. Utilizing the benefits of the

self-organizing reservoirs we build multi-layered hierarchies of them in Section 4.6,

giving the technical details in Section 4.6.1 and analyzing the success in Section

4.6.2.
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4.2 Computational model

4.2.1 Self-organizing reservoir

There are quite some unsupervised adaptation techniques for the “weighted sum

and nonlinearity” (WSN) type of neurons suggested and recently investigated

in the RC context, however often the improvements they offer are minute and

the adaptation is only partial, not modifying all the free parameters (see Section

2.6 for an overview). Instead, we focused our attention to the tradition of Self-

Organizing (also called Kohonen) Maps (SOMs) [Kohonen, 1982], probably the

most classic unsupervised neural network training method, and their recurrent

extensions. While there are many extensions of SOMs to temporal data suggested

(see [Hammer et al., 2004] for a systematic overview), the one truly fully recurrent

model, as in normal WSN fully recurrent networks, was introduced as Recursive

Self-Organizing Maps (RSOMs) in [Voegtlin, 2002]. In this work we use a similar

model for our Self-Organizing Reservoir (SOR) with the state update equations

x̃i(n) = exp
(
−α
∥∥vin

i − u(n)
∥∥2 − β‖vi − x(n− 1)‖2

)
, i = 1, . . . , Nx, (4.1)

x(n) = (1− γ)x(n− 1) + γx̃(n), (4.2)

where u(n) ∈ RNu is the input signal, x(n) ∈ RNx is a vector of reservoir neuron

activations and x̃(n) = [x̃1(n), . . . , x̃Nx(n)]
T ∈ RNx is its update, all at time step n,

‖·‖ stands for the Euclidean norm, vin
i ∈ RNu is the ith column of the input weight

matrix Vin ∈ RNu×Nx , vi ∈ RNx is the ith column of the recurrent weight matrix

V ∈ RNx×Nx , γ ∈ (0, 1] is the leaking rate, and α and β are scaling parameters for

the input and the recurrent distances respectively.

Our SORs are different from RSOMs of [Voegtlin, 2002], in that we use leaky

integration (4.2), which makes our model also resemble the earlier temporal Ko-

honen networks [Chappell and Taylor, 1993] and recurrent self-organizing maps

[Varsta et al., 1997] that use leaky integration as the only type of recurrence. The

unit activation function (4.1) is a Gaussian and in fact can be seen as a Radial

Basis Function (RBF). However, to the best of our knowledge, this type of fully

recurrent systems has not been investigated in the RBF literature, the closest of

such being the recurrent RBF network [Mak, 1995] which is similar to the tempo-

ral Hebbian SOM [Koutńık, 2007]. There seem to not be any citations between
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the two communities.

A recent biologically-motivated contribution with similar objectives was intro-

duced in [Lazar et al., 2010; Lazar, 2010]. Also, RSOMs are used as a pre-processor

in the context of reservoir computing in [Farkaš and Crocker, 2007].

4.2.2 Properties of the neuron

The difference between this model and a more conventional RNN as, for example,

in ESNs is the model of neuron: the WSN type x = f(wu) versus the RBF type

x = f(‖v − u‖), where f(·) stands for a nonlinearity, typically a tanh(·) sigmoid

in the first case and a Gaussian in the second. Even more specifically it is how

the inputs to the neurons are combined. As a result RBF neurons have some very

different properties from the WSN neurons:

• Locality. By the virtue of calculating Euclidean distance ‖v − u‖ between

the vectors of its inputs u and the input weights v (as opposed to dot

product wu in WSN units), responses of RBF units are intrinsically local.

The response is centered around v as the “prototype” input pattern that

excites the unit most. The excitation drops sharply when u moves away

from v.

• Prototype input pattern. The prototype input pattern u = v is bounded for

RBF units as opposed to WSN units where it is asymptotic: the bigger the

scalar projection of u on v, the bigger the output.

• Quasi-sparse coding. A group of RBF units receiving the same input u and

having different weights v produces a sparse spatial coding of u in a sense

that only a few units, v of which are closest to u, have higher activation.

This however is not sparse coding in the strict sense of the term [Foldiak

and Endres, 2008] but something in between a sparse coding and a local

coding. On one hand, units are excited by their local prototype patterns, on

the other hand they have continuous activations and in general any input

can be reconstructed from their activations as long as the number of units in

the population is greater than the dimensionality of the input and the units

are not on a lower-dimensional hyperplane in the input space.

• Greater nonlinearity. The response of a RBF unit is more nonlinear than
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that of the sigmoidal activation function of WSN units, which is monotonic

and changes only along one direction of the input space.

• Signal value invariance. Prototype inputs of RBF units can be placed any-

where in the input space, treating any value on the axis of real numbers

like any other. For example, an RBF unit can have its maximal response to

the input with all values 0 (if v = 0), while an WSN unit will have a zero

activation independent of its w. This gives more flexibility and requires less

care when encoding the inputs.

• No signal energy metaphor. A closely related issue is that with RBF units

the notion of signal energy is lost. Higher energy, or amplitude, input signals

u do not automatically result in higher energy, or amplitude, output signals

x and vice versa. In particular, because the zero input signal has no special

meaning, there is no “dying-out” of the signals due to zero input.

Some of these features are desirable in a reservoir while others are daunting.

In particular, recurrent networks of such units are hard to analyze analytically,

because many insights on the WSN type of reservoirs, such as the role of the

spectral radius of the recurrent connection matrix [Jaeger, 2001], are based on their

local linearization, which is hard to apply here. The derived stability conditions

for RSOMs [Tiňo et al., 2006] are not as elegant as for reservoirs of WSN units

and depend on particular inputs u(n): RSOM produces a contractive mapping if

β <
e

2
Nx∑
i=1

exp
(
−2α‖vin

i − u(n)‖2) . (4.3)

Since this condition is for RSOM, it does not take leaking rate γ (4.2) into account

(is only valid for γ = 1).

In a way, the RBF units in a recurrent network work as detectors of the state

of the dynamical system while at the same time constituting the next state by

representing the dimensions of it. Each of them “detects” a certain situation in

the combined space of the input and its history. This makes such a reservoir a

natural candidate for temporal pattern detection or classification tasks.

To test whether and by how much this different computational model affects

the reservoir computations compared to standard ESNs, we will include random

networks of both kinds in our empirical simulations.
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The specific properties of the RBF units allow them to be trained by some

state-of-art unsupervised methods.

4.3 Training

The training of our model consists of the unsupervised pre-training of the reser-

voir (4.1) and a supervised training of a readout from it to assess the effects of

unsupervised adaptation.

4.3.1 Unsupervised training of the reservoir

Based on the fact that input weights of the RBF units “dwell” in the same space

as their inputs, there is a large range of unsupervised training methods available

for them. Most of them combine competitive and collaborative aspects of learning

to make the units nicely span the input space. Virtually all such methods for

static data are also applicable to our recurrent model (4.1). One natural option

for training (4.1) is the classical SOM learning algorithm [Kohonen and Honkela,

2007]:

vin
i(n+ 1) = vin

i(n) + η(n)h(i, n)
(
u(n)− vin

i(n)
)
, (4.4)

vi(n+ 1) = vi(n) + η(n)h(i, n) (x(n)− vi(n)) ,

with η(n) being the learning rate and the learning gradient distribution function

h(i, n) = exp

(
−dh(i, bmu(n))2

bh(n)2

)
, (4.5)

where bmu(n) = arg max
i

(xi(n)) is the index of the “best matching unit” (BMU),

dh(i, j) is the distance between units with indices i and j in the additionally defined

topology for reservoir units, and bh(n) is the neighborhood width of the gradient

distribution. In our experiments we use a 2D rectangular lattice where dh(i, j) is

the Manhattan distance between nodes i and j on it. Intuitively, h(i, n) distributes

the error gradient in (4.4) so that the BMU is updated with the biggest individual

learning rate (since h(bmu(n), n) ≡ 1) and this rate drops as a smooth Gaussian

going further away from the BMU in the defined topology of units. Note, that

we are using x(n) for finding bmu(n) as in recurrent SOMs [Varsta et al., 1997]
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as opposed to using x̃(n) as in temporal Kohonen networks [Chappell and Taylor,

1993]. η(n) and bh(n) control the schedule of the training process by varying the

overall learning rate and amount of learning done outside the BMU at each time

step respectively.

Neural gas (NG) [Martinetz and Schulten, 1991] is another closely related al-

ternative learning method to SOMs that we tried. It differs only in the gradient

distribution function, which instead of (4.5) is

hng(i, n) = exp

(
−dng(i, n)

bh(n)

)
, (4.6)

where dng(i, n) is the zero-based index of the node i in the descending order-

ing of nodes by their xi(n). As in the case of SOM, dng(bmu(n), n) ≡ 0 and

h(bmu(n), n) ≡ 1. In our experiments that are reported later we got similar

results with both SOM and NG training.

4.3.2 Supervised training of the readouts

After unsupervised adaptation of such a reservoir to the given input u(n) a readout

y(n) ∈ RNy from the reservoir can be trained in a supervised way to match a

desired output ytarget(n) ∈ RNy . A natural and straightforward option is to use a

linear readout

y(n) = Wout[1; x(n)], (4.7)

where [·; ·] stands for a vertical vector concatenation. The output weight matrix

Wout ∈ RNy×(Nx+1) is learned using linear regression, a standard technique in

reservoir computing [Jaeger, 2007b]. The input u(n) can also be concatenated to

[1; x(n)] in (4.7), making Wout ∈ RNy×(Nu+Nx+1).

In this work we will not put much emphasis on designing elaborate output

schemes for particular applications (which would be important for tasks like clas-

sification or detection), but rather use simple linear outputs trained on simple

targets to estimate the quality of the unsupervised adaptation in x(n).

4.4 Empirical comparison of SORs and ESNs

We made a systematic comparison between self-organizing reservoirs, both ran-

domly and unsupervisedly pre-trained, and classical random echo state networks.
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We will first specify the ESNs used here for the sake of completeness in Section

4.4.1, describe the data on which all the experiments are run in Section 4.4.2, give

the technical details of the numerical simulations in Section 4.4.4, and analyze the

results in Section 4.4.5.

4.4.1 Baseline ESN architecture

We compare our self-organizing reservoirs presented in Section 4.2.1 to reservoirs

of classical echo state networks [Jaeger, 2001, 2007b] with the update equation

x̃(n) = f
(
Win[1; u(n)] + Wx(n− 1)

)
, (4.8)

where f(·) = tanh(·) is the neuron activation function applied element-wise, in-

stead of (4.1). Here the input weight matrix Win ∈ RNx×(Nu+1) is a randomly-

generated matrix with elements uniformly distributed in a range set by the input

scaling parameter. We denote input scaling “in.s.” for brevity: elements of Win

are uniformly distributed in the interval [−in.s.,+in.s.]. The recurrent weight ma-

trix W ∈ RNx×Nx is a random sparse matrix with 20% connectivity and scaled to

have a predefined spectral radius ρ(W). The rest of the model, including leaky

integration (4.2) and readout (4.7), is the same.

4.4.2 Synthetic smooth temporal pattern dataset

To investigate the effects of unsupervised pre-training in more controlled condi-

tions we use a synthetically generated smooth temporal pattern dataset (Figure

4.1) in our simulations, the same as in some of our previous work [Lukoševičius

et al., 2006; Jaeger et al., 2007a]. It is essentially a multidimensional red noise

background signal with smoothly embedded short temporal patterns. Both the

background signal and the patterns are generated in the same way by low-pass

filtering white noise. Both the background signal and the patterns have the same

amplitude and frequency makeup. The patterns are embedded into the back-

ground signal by applying smooth envelopes that also have the same frequency

makeup. At the places where the patterns are embedded the background signal is

suppressed by the envelope and the pattern is accordingly multiplied by it, pro-

ducing smooth cross-fades between the background and the pattern. The pattern

signals have the same dimensionality as the background and appear in all dimen-
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sions of the background simultaneously. All the dimensions in the background and

inside the patterns are generated as independent signals. The patterns are chosen

randomly with equal probabilities and embedded at randomly varying intervals in

the background. The patterns do not overlap. Almost half on the final signal is

constituted by the patterns, the rest is the background. Thus, the more different

patterns there are, the rarer they appear in the signal. The average length of the

pattern in the final signal is about 20 time steps. The whole signal in addition is

moderately time-warped: the original time step of size 1 can obtain values from

the interval [0.5, 1.5] during the transformation. See section 6.3 in [Lukoševičius

et al., 2006] for more technical details on how the data were produced.
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Figure 4.1: A sample of a three-dimensional smooth pattern dataset with five
different patterns highlighted in colors and their corresponding envelopes.

The dataset was originally designed having handwriting in mind. The back-

ground can be seen as the unknown handwriting characters and the patterns as

frequently reappearing letters to be recognized in it. Everything can be seen as en-

coded in, for example, pen movement data, or features extracted from sequentially

scanning the handwriting and treating it as a time series.

In our experiments for unsupervised training we only use the data for input

u(n) with no targets. The general idea is to test how well the unsupervised

models learn the structure of the data. To evaluate this we estimate how well

the patterns are separable form the rest of the signal in the reservoir activation
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space x(n). More concretely, we test how well the envelopes of the patterns can

be recovered from it. For this we train a supervised output (4.7) using a signal

containing the envelopes with which the Ny patterns were inserted as the training

target ytarget(n) ∈ RNy .

This data is difficult in several aspects:

• The background can literally become very similar to the pattern. This makes

perfect learning impossible. The lower the dimensionality of the signal the

higher the probability of this happening.

• Because the background signal and the patterns (including transitions) have

the same amplitude and frequency makeup there are no “cheap tricks” to

spot them without looking at the exact shape of the signals. In fact the

patterns are not easy to see in the signal by the naked eye if they are not

highlighted.

• The background signal is very information-rich because it is not repeating

itself. This can be a problem for some unsupervised models.

• Time warping and relative slowness of the signal can be problematic for some

models.

4.4.3 Concatenated USPS digits dataset

To investigate the effects of the unsupervised pre-training on a more real-life-

like data, we generate long strings of handwritten digits. The individual digits

were taken from the well-known USPS dataset1 [LeCun et al., 1989]. The dataset

consists of digits “0” through “9” with 1100 examples of each class. They are

in fact originally cut out from longer scanned handwritten digit sequences and

preprocessed. Each image consists of 16 × 16 8-bit gray-scale pixels that were

scaled to the [0, 1] interval.

The input strings are generated by concatenating the digit images horizontally,

selecting each digit class and image instance randomly with equal probability.

Every digit image is placed after the preceding image with an up to ±3 pixels

random uniformly distributed displacement, such that the images can overlap or

leave a gap of up to three pixels. The gaps are filled with zero-valued background

1Downloaded from Sam Roweis’ homepage http://www.cs.nyu.edu/~roweis/data.html.
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and overlapping images are merged by taking maxima of the pixel values. The

vertical size of the images corresponds to the Nu = 16 dimensions of the input

u(n), and the x-axis is treated as time n, pixels corresponding to time steps,

scanning the images from left to right.
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Figure 4.2: A sample of USPS concatenated dataset.

To test how the unsupervised pre-training aids digit recognition task, we also

generate targets corresponding to the input signals. The target signals ytarget(n)

have Ny = 10 dimensions, one for every digit class “1”,. . . ,“9”,“0”. The target

signal ytarget(n) is raised to the value one in one of the ten channels whenever a digit

of the corresponding class appears in the input and is equal to zero everywhere

else. Each such class indicator lasts three time steps, corresponding to the 12th

to 14th step out of the 16 columns of the digit image. These values were found to

work well with all the investigated models through some experimentation.

A sample of the generated input data together with a corresponding target

signal is presented in Figure 4.2.

4.4.4 Simulation details

We will first describe the simulation details that are common for the both datasets

introduced in Sections 4.4.2 and 4.4.3, and then delve into specifics in the respec-

tive Subsections 4.4.4.1 and 4.4.4.2.

Since both datasets are generated randomly and the difficulty of the task de-

pends on the concrete instance, we generate ten samples of each data and run all

the experiments on these ten different instances of the data to get the statistics of

the performance.

We use long enough data sequences so that overfitting was found not to be an
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issue. Thus, selection of the best parameters is done based on the performance on

the training sets, averaged over the ten data instances.

To keep things fast and manageable we use reservoirs of size Nx = 50 for

both the proposed SOR model and the regular ESN. Since the readout part of

the model is always (4.7) with the concatenated input, the models in every task

have the same number of parameters – namely Wout ∈ RNy×(Nx+Nu+1) – that are

trained in the same supervised way.

Parameters trained in a supervised way can not by directly compared with

the ones trained in an unsupervised way, because information about the desired

output is not available in unsupervised training. In fact, it is not self-evident

that unsupervised training helps the supervised one at all—this is that we want

to investigate. Thus, we only compare the models with equal number of super-

visedly trained parameters despite some of them having more parameters trained

unsupervisedly.

To investigate how much the performance is influenced by the different compu-

tational model of SOR (4.1), compared to (4.8), and how much by the unsupervised

training (4.4), we tested this model with both randomly generated weights and

unsupervisedly pre-trained. For the random model, which we refer to as “random

SOR”, the input Vint and recurrent V weights were all drawn from a uniform [0, 1]

distribution.

Both SOR and ESN computational models have a number of parameters that

need to be set that influence their performance. To have a fair comparison where

none of the models is disadvantaged by parameter misconfiguration, we have run

grid searches over the three parameters that affect the performance most in both

of the models. This is a common technique in machine learning, as sketched in

Section 1.4. For the SOR these three parameters are: input and recurrent distance

scalings α and β in (4.1), and the leaking rate γ in (4.2). For the regular ESNs

the three similar parameters are: the scaling of the input matrix Win which we

denote “in.s.” for brevity (such that the elements of Win are uniformly distributed

in [−in.s.,+in.s.]), the spectral radius of the recurrent connection matrix ρ(W)

(4.8), and the same leaking rate γ in (4.2).

The Nx = 50 units of the self-organizing reservoirs are conceptually arranged

into a 2D rectangular lattice topology of 10 × 5 units for the SOM type (4.5) of

unsupervised training. The training schedule parameters for the self-organizing

reservoirs are set to the values that were found to be reasonable through some
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manual experimentation.

The input weight matrix Vin of the self-organizing reservoir (4.1) is initialized

so that the two dimensions of the 10 × 5 unit lattice are aligned with the two

principal components of the input u(n) within the input space, with input vectors

vin
i of the units equally spaced along these dimensions, spreading five times the

standard deviation of the input along the corresponding principal component, in

both positive and negative directions from the mean. This is a classical SOM ini-

tialization method that makes the network capture the two principal components

of the input before the training. We use the same initialization also when training

with NG algorithm, even though the concept of the 2D lattice is not used in NG

training itself. The recurrent connections V were simply initialized as the iden-

tity matrix V(0) = INx in both cases, biasing the network for slower activation

dynamics.

The specifics of the simulations for the two datasets follow.

4.4.4.1 Smooth synthetic patterns

In addition to the ten data instances we also run the experiments with a different

number of patterns (corresponding to the dimensionality of the target Ny) in the

data, ranging from one to five. The input dimension of the data is always Nu = 3.

The training data of 50 000 time steps is used, of which the first 500 are dis-

carded from training and used to “wash out” the initialization transient in the

reservoirs. The best parameters were chosen the ones that give the smallest train-

ing error. Testing was also performed on continuations of the datasets of length

10 000. Testing errors match very closely the training errors (both presented in

the thesis) proving that overfitting is not happening. The exact same setup was

used for both the proposed and the standard ESN models.

All the three dimensions of input data are normalized to have 0.01 variance

and zero mean. For self-organizing reservoirs the input data is then shifted to have

a 0.5 mean, such that it lies almost entirely inside the [0, 1] interval. This is done

for convenience since activations x(n) and inputs u(n), and thus subsequently the

weights V and Vin stay roughly in the same [0, 1] interval. For ESNs the data was

left at zero mean, as this was found to give slightly better results.

As the performance criterion for all the models we use the normalized root

mean square error (NRMSE) (2.1) of the pattern envelopes reconstructed from

x(n) and u(n) using linear regression (4.7), as mentioned in Section 4.4.2. This
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way both models have the same number Nx + Nu + 1 = 54 of parameters per

pattern that are trained in a supervised way. The pattern envelopes on which the

outputs are trained (and performance evaluated) are delayed by one time step, as

such shift was found to give the best performance.

The unsupervised training is done for either SOM or NG by passing through the

training data once, that is in 49 500 time steps. The learning rate η(n) (4.4) follows

a geometric progression from 0.04 to 0.01. The neighborhood width bh(n) for the

SOM training algorithm (4.5) follows a geometric progression from 2 to 0.001 and

for the NG (4.6) algorithm from 10 to 0.002. NG usually requires broader gradient

distribution neighborhoods bh(n) than SOM, because the NG neighborhood dng is

in effect one-dimensional, while dh of SOM is two-dimensional.

The readouts are trained by passing through the training data once (again) for

all the models: the random ESN reservoirs or the unsupervisedly trained ones.

4.4.4.2 Concatenated USPS digits

We generate ten training and ten testing sequences of 64 000 time steps in a way

described in Section 4.4.3. Each sequence on average contains 4 000 digit images.

First 160 time steps in all models are used to “wash out” the initialization transient

in the reservoirs.

The unsupervised training is done for either SOM or NG by passing through

the training data once, that is in 63 840 time steps. The learning rate η(n) (4.4)

follows a geometric progression from 0.05 to 0.001. The neighborhood width bh(n)

for the SOM training algorithm (4.5) again follows a geometric progression from

2 to 0.001 and for the NG (4.6) algorithm from 10 to 0.002.

The same type of readouts (4.7) from all the models are used again, each having

Ny × (Nx + Nu + 1) = 5170 parameters that are trained supervisedly by linear

regression, running through the same training data.

We use two different performance criteria for all the models with this data. The

first one is the same NRMSE (2.1) between the model output y(n) and the target

ytarget(n) containing the class indicators. This criterion is explicitly minimized by

the supervised readout training.

We use an additional classification rate criterion to better evaluate how well

the output signal y(n) is suited for making the discrete classification decisions.

More specifically, extracting the actual sequence of digits s(m) ∈ {1, . . . , 10},
where m = 1, ..., Ts is the position of the symbol in the sequence from y(n), where
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n = 1, ..., Ty. Note, that m is a much slower time scale than n, in our case

Ty ≈ 16Ts. We employ a simple heuristic to produce the symbol sequence s(m)

from y(n) and compute the classification rate by comparing this sequence with

the correct one starget(m) produced from ytarget(n).

Since the digit image placement is nondeterministic, neither the exact position

of the image, nor its class are known to the classification mechanism. Both have to

be determined from y(n). For this purpose we implement a heuristic which exploits

the fact that the variation of the distance ∆n between two consecutive patterns

(and their indicators in ytarget(n)) is limited. It assumes the ranges ∆nmin = 11

and ∆nmax = 21 and proceeds as specified in Algorithm 2.

Algorithm 2 Calculate s(m) from y(n), ∆nmin, ∆nmax

n← 1
m← 1
∆n′min ← 0
while (n ≤ Ty −∆nmax) do
ĉ, ∆n̂← arg max

c̃∈[1,10], ∆ñ∈[∆n′
min,∆nmax]

yc̃(n+ ∆ñ)

s(m)← ĉ
m← m+ 1
n← n+ ∆n̂
∆n′min ← ∆nmin

end while
return s(m)

In short, the Algorithm 2 in each iteration finds the maximal value of the

output in the allowed interval from the current position n, records the symbol by

the channel in which the maximum was found and advances the current position

to the time step where the maximum was found. Note that such approach only

works well if ∆nmax < 2∆nmin, otherwise two class indicators could fall inside the

interval and a weaker one could be missed.

This simple classification heuristic serves good enough for our purpose of com-

paring different reservoir models, but for building a state-of-art sequence classifier

much more sophisticated techniques can be employed, see, e.g., [Graves, 2008].

The classification rate (CR) is computed by

CR(s, starget) = 1− dL(s, starget)

Tstarget

, (4.9)
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where dL(s, starget) stands for Levenshtein edit distance, i.e., the minimal number

of remove, add, or replace symbol operations needed to transform the sequence

s(m) into starget(m) (or vice versa, dL is symmetric). starget(m) is produced from

ytarget(n) by the same Algorithm 2. Note, that the lengths of the two sequences are

not necessary equal: Tstarget 6= Ts. The classification rate indicates the proportion

of symbols that are wrongly recognized (or missed) and is equal to 1.0 for a perfect

recognition.

4.4.5 Simulation results

To answer the question whether and by how much the use of the self-organizing

reservoir and its unsupervised pre-training benefits the pattern detection task, we

compare it with the regular type of reservoirs (4.8). We use the same number of

neurons Nx = 50 in both types of reservoirs, so that the reservoir signal space

x(n) has the same dimensionality.

As explained in Section 4.4.4, the main three parameters of ESNs: leaking rate

γ, Win scaling “in.s.”, and spectral radius ρ(W); and of SOR: leaking rate γ,

input α and recurrent β distance scalings, are selected through grid search. We

take eight values of each parameter over a reasonable interval. It took multiple

trials to get the parameter ranges right. The ranges, step sizes, and the best found

values of the parameters are presented in Tables 4.1 and 4.2 for the two datasets

in the corresponding Subsections 4.4.5.1 and 4.4.5.2.

4.4.5.1 Smooth synthetic patterns

The details and results of parameter grid search with synthetic pattern data (Sec-

tion 4.4.2) are presented in Table 4.1.

We found that good α and β values in (4.1) for this data should account for

the normalization over the dimensionality of the input Nu and the reservoir Nx.

This is logical, because the two ‖·‖2 terms in (4.1) are summations over Nu and

Nx dimensions respectively, and a bigger dimensionality gives a bigger sum. As a

result the intervals of α and β look very different in Table 4.1 because they are

normalized. If we denormalize them, we see that αNu and βNx have the exact

same intervals of [25, 200]. Best parameters for both SOM and NG trained SORs

are very similar in all cases.
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Table 4.1: Grid search parameters and best values found with the synthetic data.

Model
ESN

Self-organizing reservoir
Algorithm Random SOM NG
Parameter γ in.s. ρ(W) γ α β γ α β γ α β

Min. value 0.125 2.5 0.125 0.1 10/3 0.1 0.125 25/3 0.5 0.125 25/3 0.5
Step size 0.125 2.5 0.125 0.1 10/3 0.1 0.125 25/3 0.5 0.125 25/3 0.5
Max. value 1 20 1 0.8 80/3 0.8 1 200/3 4 1 200/3 4

Best values
1 pattern 0.25 10 0.75 0.25 20/3 0.2 0.75 100/3 2.5 0.75 100/3 2.5
2 patterns 0.25 10 0.125 0.25 10/3 0.1 0.75 75/3 2 0.875 75/3 3
3 patterns 0.125 10 0.125 0.125 40/3 0.5 0.75 75/3 2.5 0.75 75/3 3
4 patterns 0.125 15 0.125 0.125 50/3 0.2 0.5 150/3 2 0.5 125/3 1.5
5 patterns 0.125 20 0.125 0.125 60/3 0.1 0.5 100/3 1.5 0.5 100/3 1.5

For random SORs these two values had to be considerably smaller. Since

vectors in Vin and V are distributed randomly and are not centered on the typical

respective u(n) and x(n) values by unsupervised training, the distances in (4.1)

are greater. Thus, they have to be scaled with smaller coefficients for the neurons

to reach reasonable working activation levels.

A trend for both of the random models can be observed in Table 4.1, that with

a bigger number of different patterns, the influence of immediate input should

be bigger. This could be explained by the effect, that while few patterns can be

distinguished by subtitle changes in the reservoir activation space x(n), with more

patterns these changes should be stronger and more immediate. Self-organized

reservoirs, apparently, learn to react to different patterns more sensitively.

ESNs gave the best performance with quite surprisingly big input scalings,

together with small leaking rates and spectral radii.

Training and testing of a self-organizing network took about 7.6 seconds on an

average modern computer, so it is quite fast. Training and testing an ESN or a

random SOR took about 3.0 seconds. Thus self-organizing reservoirs received more

pure computational time. On the other hand we have selected not only the best

parameters from the grid search for the random models (ESNs and random SORs),

but took the same ten randomly generated reservoirs with these parameters, that

gave the best average performance, for testing. Thus, the performance fluctuations

caused by randomness of the reservoirs were used to the advantage of the random

models.
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(a) Self-organizing reservoir (SOM)
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Figure 4.3: Mean training error surfaces for data with three different patterns.

Figure 4.3 illustrates in more details how the mean training error (averaged

over the ten runs) depends on the three parameters set by the grid search for the

SOM-trained SOR and for the ESN. The case with three patterns is shown here.

The surfaces for ESNs are a bit more rough because the use of random reservoirs

introduces some additional variance in performance. But the ranges of the ESN

performance are smaller. The self-organizing reservoirs are a bit more sensitive

to the set parameters, at least in these ranges. We can see that the mean error

surfaces are rather smooth, not abrupt, indicating that the right parameters do

not need to be picked very accurately to get reasonably good performance.

The pattern separation errors for the two models and different numbers of

patterns in the data are presented in Figure 4.4. The best parameters found using

the grid search (Table 4.1) were used for every number of patterns in both models.
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Figure 4.4: Training (left) and testing (right) separation errors with best param-
eter values of regular ESNs (black) self-organizing reservoirs random (dark red),
trained with SOM (blue) and NG (green) for different number of patterns in the
data. The values of the ten data instances are represented by dots (slightly hori-
zontally displaced for visual clarity) and mean values by lines.

The bigger spread of the ESN errors can be explained by the the use of randomly

generated reservoirs.

The performance of the random SOR model is similar, albeit slightly worse, to

the classical ESN, showing it as a viable alternative.

Figure 4.4 shows clearly that unsupervised training benefits the patterns sepa-

ration in the reservoir space. This improvement is statistically significant, present

with different numbers of patterns in the data, and, because of the grid search, is

not caused by parameter settings favoring one of the methods. The performance

of both SOM and NG training are virtually indistinguishable, showing that ex-

act details of the training do not matter in this case. We also see that training

and testing errors are almost identical in all the cases, justifying choosing the

parameters based on the training error.

Looking at Figure 4.4, we see that the benefit of the self-organizing reservoirs

is bigger in the cases where there are fewer different patterns in the data. The

reason for this is that given the limited capacity of the self-organizing reservoir it

can learn to better represent fewer different patterns than more, while the random

reservoirs of ESN or SOR are universal and the readouts for the different patterns

are virtually independent. The drop in performance with the number of different

patterns is only due to the fact that each pattern appears more rarely in the input
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and thus is harder to learn.

To visualize how different number of patterns are represented in the signal

space x(n) of the self-organizing reservoir, in Figure 4.5 we plot the two principal

components of x(n) with activations corresponding to the patterns highlighted in

colors.
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Figure 4.5: 1 pattern and 5 patterns highlighted in the two principal components
of u(n), and in x(n) of both ESN and SOM-trained SOR.

We can see that a single pattern gets a special representation in x(n) of the

self-organizing reservoir which is already clearly visible in the two principal com-

ponents. With more patterns we can see that they are spread more than in the

ESN or in u(n) but are in no way easily separable.

4.4.5.2 Concatenated USPS digits

The details and results of parameter grid search with concatinated USPS data

(Section 4.4.4.2) are presented in Table 4.2. They were selected according to two

distinct performance criteria: the NRMSE of the output signal and the classifi-

cation rate of the final recognized symbol sequence (4.9), as explained in Section

4.4.4.2.
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Table 4.2: Grid search parameters and best values found with the USPS data.

Model
ESN

Self-organizing reservoir
Algorithm Random SOM NG
Parameter γ in.s. ρ(W) γ α β γ α β γ α β

Min. value 0.125 0.1 0.2 0.125 0.0125 0.025 0.125 0.1 0.1 0.125 0.1 0.1
Step size 0.125 0.1 0.2 0.125 0.0125 0.025 0.125 0.1 0.1 0.125 0.1 0.1
Max. value 0.5 0.8 1.6 0.5 0.1 0.2 0.5 0.8 0.8 0.5 0.8 0.8

Best values
NRMSE 0.25 0.3 0.8 0.25 0.1 0.1 0.25 0.3 0.2 0.25 0.4 0.3
Class. rate 0.25 0.2 0.8 0.25 0.025 0.15 0.125 0.1 0.3 0.125 0.1 0.1

Contrary to the previous case with the synthetic data in Table 4.1, normaliza-

tion of good α and β by Nu and Nx respectively was not needed. Possibly, because

the difference between Nu = 16 and Nx = 50 is not as big in this case.
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Figure 4.6: Output errors and classification rates with best parameter values of
regular ESNs, self-organizing reservoirs with random weights, and trained with
SOM and NG on the concatenated USPS data. The values of the ten data instances
are represented by dots (slightly horizontally displaced for visual clarity) and mean
values by lines.

The NRMSE and classification rate (CR) performance criteria for the two mod-

els are presented in Figure 4.6. We can see, that self-organizing reservoirs per-

form better than simple ESNs in both respects, with NG pre-training performing

marginally better than SOM. A possible explanation for this is that the enforced

2D structure of the SOM lattice becomes a slight hindrance with this more com-

plex data. It is also noticeable that compared to the performance dispersions the

superiority of SORs is a bit more pronounced for the NRMSE criterion. While

testing results are naturally slightly worse than training, they are consistent across

the both datasets, overfitting was only observed in some degenerate cases.
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Interestingly, the performance of random SOR is consistently better than that

of ESN, showing that this computational model alone is beneficial in this particular

setting, and is even more enhanced by the unsupervised training.
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Figure 4.7: Average input histories for every reservoir and output neuron in a
SOM-trained SOR, that excite the neuron most.

One way to look at what the unsupervised pre-training does is presented in

Figure 4.7. It shows input history (up to u(n − 15)) averages weighted by the

activation to the 7th power x7
i (n) of each neuron i in a fully SOM-trained SOR.

Similar to simple SOMs, each neuron in the reservoir learns to respond to a specific

common situation in the input. The difference here is that each neuron reacts to

a particular history of the input. Due to SOM training, the neighboring units

tend to be excited most by similar temporal patterns. The output neurons (that

are supervisedly trained linear combinations of the reservoir units) show clear

“prototypical” digit patterns that excite them most.

A curious thing to notice in Table 4.2 is that the parameters of SORs are

different for the best NRMSE and CR, while the ones of ESNs are almost the

same. To illustrate this better, average training CRs vs. NRMSEs are plotted
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for the NG-trained SORs and ESNs with different parameter settings in Figure

4.8. In general, lower NRMSEs correspond to higher CRs, which is expected, but

this is not always the case, especially for SORs. While there are quite some SORs

better than ESNs according to the both criteria, best in each are different. Results

with testing data and with SOM pre-training are very similar to those with NG,

and the general shape of the ESN point cloud very similar to the Random SOR.
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Figure 4.8: Training classification rates vs. training NRMSE, for different param-
eter settings, averaged over ten runs. SOR trained by NG is in green and ESN is
in black.

This illustrates that different parameters bias the model to learning different

unsupervised representations of the input data. Which of the representations is

favored depends on the ultimate goal of the supervised task. We see here that

even a slight change in the final performance measure favors quite different un-

supervised representations. The “no free lunch” principle of supervised learning

[Wolpert, 2001] is also applicable to unsupervised: there are no unsupervisedly

learned representations of data that are universally best for any supervisedly mea-

sured performance criterion.

Having said that, we do believe that there are unsupervised representations

that are good for many “naturally” arising tasks. Models that learn statistical

structure of the data should be good with tasks that correlate well with this

structure. We still observe in Figure 4.8, that the correlation between the two

criteria is strong.

These differences between the two criteria are also partially due to the powerful
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readout training algorithm and a rather special ad-hoc symbol sequence extraction

Algorithm 2 that we use. A closer look at the SOR models trained with the best

parameters for the CR reveals that these are quite degenerate cases (also hinted by

the extreme parameter settings), where typically only few neurons in the reservoir

are reasonably active, and the output is produced by big Wout values, exploiting

tiny differences in these minute activations. This performance would be destroyed

with regularization of Wout (2.16), but nonetheless, in this setting it gives the best

training and testing classification rates.

4.4.6 Scaling up the reservoirs

To explore the limits of the proposed methods and have a better grasp on them,

we conducted a number of additional investigations.

RNNs of Nx = 50 units are big by most standards in ML, but not in RC. To

investigate the scalability of our methods, we also ran the same experiments on

the concatenated USPS data as in Section 4.4.5.2 with reservoirs of size Nx = 100.

We had to adapt the model parameter ranges and some training parameters

for that. Reflecting the twofold increase in reservoir size, the initial values of the

neighborhood widths bh(1) for the SOM (4.5) and the NG (4.6) training algorithms

were increased twice to the values of 4 and 20, respectively. For the sake of

completeness the grid search parameters and results are presented in Table 4.3.

Table 4.3: Grid search parameters and best values found with the USPS data and
Nx = 100.

Model
ESN

Self-organizing reservoir
Algorithm Random SOM NG
Parameter γ in.s. ρ(W) γ α β γ α β γ α β

Min. value 0.125 0.1 0.2 0.125 0.005 0.0125 0.125 0.05 0.05 0.125 0.05 0.05
Step size 0.125 0.1 0.2 0.125 0.005 0.0125 0.125 0.05 0.05 0.125 0.05 0.05
Max. value 0.5 0.8 1.6 0.5 0.04 0.1 0.5 0.4 0.4 0.5 0.4 0.4

Best values
NRMSE 0.25 0.5 1 0.25 0.04 0.075 0.25 0.3 0.1 0.25 0.3 0.1
Class. rate 0.125 0.6 1 0.25 0.005 0.0875 0.125 0.05 0.15 0.125 0.05 0.15

Best values with Nx = 50 from Table 4.2
NRMSE 0.25 0.3 0.8 0.25 0.1 0.1 0.25 0.3 0.2 0.25 0.4 0.3
Class. rate 0.25 0.2 0.8 0.25 0.025 0.15 0.125 0.1 0.3 0.125 0.1 0.1

Due to the increased dimensionality, good β values of SORs are smaller. Good
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parameters of ESN remain similar, as this model, in particular with a fixed average

number of connections to a reservoir unit, is not sensitive to these changes.
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Figure 4.9: Output errors and classification rates with best parameter values and
Nx = 100 of regular ESNs, self-organizing reservoirs with random weights, and
trained with SOM and NG on the concatenated USPS data. The values of the ten
data instances are represented by dots (slightly horizontally displaced for visual
clarity) and mean values by lines.

NRMSE errors and classification rates with the best parameters and Nx = 100

are presented in Figure 4.9. The first thing to observe is that the performances

are much better with bigger reservoirs. Dimensionality of the reservoir, and thus

the number of supervisedly trained parameters, is essential for performance, this

is why we keep them the same for the different models.

Differences between training and testing performances are also more pronounced,

as more powerful models get a bit closer to overfitting (but still far from it).

We also see that the SOM-trained SORs fall a bit further behind the NG ones.

A plausible explanation is that the imposed 2D structure (10 × 10) of the SOM

lattice becomes an even bigger hindrance when trying to cover the 100D space of

x(n).

We also observe in Figure 4.9 that random SORs (at least by the NRMSE

criterion) are falling behind the ESNs. This might be an indication that the RBF

model of SORs does not scale as well as that of an ESN. To further investigate

this hypothesis, we ran experiments with increasing sizes of the reservoirs for both

ESNs and random SORs. The parameters were taken from the experiments for

the best NRMSE with Nx = 50 (Table 4.2) and kept the same, except that β was

corrected for Nx. The results are presented in Figure 4.10.

We can again see that performance increases a lot with Nx, and indeed the
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Figure 4.10: Output testing errors and classification rates of ESNs (black) and
random SORs (dark red) with different network sizes Nx. The parameters are
selected with Nx = 50 (Table 4.2). Averages are shown by thick and instances by
thin lines.

random SORs scale worse than ESNs. Part of this relative drop in performance can

be attributed to the fact that random SORs have quite different best parameters

for different sizes (as seen in Table 4.3), but even with selected best parameters

their NRMSE is worse with Nx = 100 (Figure 4.9).

We did not run the same simulations with SOM or NG trained bigger reservoirs,

as they would computationally expensive and we suspect that they would suffer

from the same limitations of the model.

4.5 Weighted distance networks

4.5.1 Computational model

We have seen so far that the SOR-type RNN (4.1) reservoirs perform better than

ESN (4.8) for up to certain sizes (Figure 4.10), but do not scale well beyond. We

believe, that there is a fundamental limitation at work here. With every added

new unit the reservoir signal x(n) space increases by an additional dimension.

Since RNN has to model the input u(n) as well as its previous state x(n−1) in its

activation x(n), the total input dimension Nu +Nx to the current state x(n) also

increases. But there is only one extra unit in the reservoir to model this bigger

space. This is not a problem for the WSN type of units (4.8), because every unit

“reacts” to a direction in its input space defined by the weight vector and adding
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one more (random) direction covers the added dimension in the space. For RBF

units, however, this creates a problem. Such unit reacts to a particular area of

its input space locally centered around the weight vector. The number of such

local units required to cover the input space with the same density in fact grows

exponentially with the number of input dimensions. Adding only one unit to cover

an additional dimension is inadequate and enriches the signal space x(n) less in

the RBF case. In a way it could be said that the SOR reservoir starts to suffer

from its own “curse of dimensionality”.

Another, related, limitation of the SOR model is that each neuron in it tries to

model the complete state and input space and is invariant to none of its dimensions.

In addition, the activation of the neuron is dominated by the biggest distances in

(4.1), in other words the things that the neuron fails to model. This makes any

independent dynamics in the reservoir impossible and prevents the reservoir state

x(n) from a more efficient information coding of distributed representations and

a richer signal space.

We can alleviated both of these limitations if we make the RBF RNN model

sparse. In particular, we generalize the model (4.1) into

x̃i(n) = exp
(
−win

T

i

(
vin

i − u(n)
)2 −w

T

i (vi − x(n− 1))2
)
, i = 1, . . . , Nx,

(4.10)

where the dimensions in the distances are weighted with the additional weight

parameters Win ∈ RNu×Nx and W ∈ RNx×Nx (win
i ∈ RNu stands for the ith

column of Win and wi ∈ RNx of W), and (·)2 is applied element-wise. We will

call this computational model Weighted Distance Network (WDN or WeiDiNet).

In this model each connection (i, j) is parametrized by two types of weights:

vij and wij. It can be seen as a combination of RBF (4.1) and WSN (4.8) type of

RNNs. Note that if all the elements of Win are equal to α and W to β, we fall

back to (4.1).

Equation (4.10) can be rewritten in a more compact form

x̃i(n) = exp
(
−wall

T

i

(
vall

i − [u(n); x(n− 1)]
)2
)
, i = 1, . . . , Nx, (4.11)

where Vall = [Vin; V] and Wall = [Win; W].

In fact the WDN model could be even further generalized by using a Mahalanobis-
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like distance:

x̃i(n) = exp
(
−
(
vall

i − [u(n); x(n− 1)]
)T

Wall
i

(
vall

i − [u(n); x(n− 1)]
))
,

i = 1, . . . , Nx, (4.12)

where Wall
i ∈ R(Nu+Nx)×(Nu+Nx) would be a matrix of weights for every unit i in

the reservoir. This would be an even more powerful model, but would require

much more computations, more memory, and also much more parameters to train

if the structure of Wall
i is unrestricted. One obvious option would be to make all

Wall
i approximate the inverse of covariance matrix of [u(n); x(n− 1)] to have the

true Mahalanobis distance in (4.12). We leave this most general model (4.12) only

as a theoretical possibility at this point.
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Figure 4.11: Output testing errors and classification rates of ESNs (black) and
random SORs (dark red) and sparse random WDNs (magenta) with different
network sizes Nx. The parameters are selected with Nx = 50 (Table 4.2). Averages
are shown by thick and instances by thin lines.

To test whether sparseness of network helps it scale better, we run the same

experiments as in Figure 4.10 with a sparse random WDN, where parameters are

copied from the random SOR: γ = 0.25, all the elements of Win are equal to

α = 0.1, but W has on average only 5Nx nonzero elements (5 incoming reservoir

connections per unit), that are all equal to 50β/5 = 1 to preserve the same average

activation. No scaling of W for different Nx is required in this case. The results

are presented in Figure 4.11.

We can see here that the sparse WDN gives an immediate boost in performance

compared to RSOM, even with no special parameter selection, and scales similarly
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to ESNs at least up to size 300.

4.5.2 WDN training options

Figure 4.11 illustrates that the WDN model has a potential when used with ran-

dom weights Vall and sparse W, similarly to ESNs. This is one option.

But can we train it in an unsupervised way, instead of just using random

weights?

We have in fact tried multiple unsupervised approaches of training Vall and

Wall weights simultaneously. For example, Vall were trained with the same SOM or

NG algorithm, and Wall were trained with a combination of SOM or NG, Hebbian

learning, and intrinsic plasticity (IP). It has not produced fully satisfactory results

at this stage.

There are a couple of problems with this approach:

• Wall learned by Hebbian learning make neurons prefer inputs that are easy

to predict and weaken connections from those that carry more information.

• When neurons have different inputs (different wall
i values), the competitive-

collaborative learning algorithms such as SOM or NG have no clear meaning.

Comparison and competition of the units, like for the best matching one

(4.5), are no longer on equal grounds.

• We have observed that sparse Wall matrices are usually better than just

random. But learning sparseness is problematic for most algorithms. A

training algorithm with an L1-norm regularization might be an option.

These are interesting open unsupervised ML questions that have to be ad-

dressed to produce a good training algorithm for the WDN model.

One possible simple option would be to just set rows of Win and W inversely

proportional to the standard deviations of the corresponding dimensions of u(n)

and x(n), respectively, and have the normalized Euclidean distances in (4.10).

To further explore the potential of the WDN model, and having no satisfactory

more sophisticated training algorithm at this point, we just ignored the problems

mentioned above and ran the unmodified SOM and NG algorithms on sparse

WDNs with adaptable Vall and fixed (sparse) Wall. The results are presented in

the next section.
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4.5.3 Simulation results

We did experiments in the same setup and same reservoir sizes Nx = 50 as in

Section 4.4.5.2 with the following modifications.

All elements of Win were set to a parameter α found by grid search. Only

10% of random elements in W were nonzero (on average 5 incoming reservoir

connections per unit) and were all equal to parameter β found by grid search.

The grid search of the leaking rate γ was restricted to just two values 0.125 and

0.25 that gave best results with SOR models, to save the computational time.

The grid search parameters and results are presented in Table 4.4.

Table 4.4: Grid search parameters and best values found with the USPS data for
the WDN model.

Model Sparse WDN
Algorithm Random SOM NG
Parameter γ α β γ α β γ α β

Min. value 0.125 0.02 0.25 0.125 0.05 0.25 0.125 0.05 0.25
Step size 0.125 0.02 0.25 0.125 0.05 0.25 0.125 0.05 0.25
Max. value 0.25 0.16 2 0.25 0.4 2 0.25 0.4 2

Best values
NRMSE 0.25 0.12 0.75 0.25 0.05 0.5 0.25 0.15 0.5
Class. rate 0.25 0.06 1.25 0.25 0.05 1.75 0.25 0.05 1.5

The NRMSE and classification rate performances with the sparse WDN model

and best parameters are presented in Figure 4.12. ESN results are reused from

Section 4.4.5.2.

Comparing the results in Figures 4.6 and 4.12 (they are also summarized in

a numerical form in Table 4.5), it is clear that the sparse topology of the WDN

network significantly improves the performance across all the WDN models.

The results also show that the simple-minded unsupervised approach of train-

ing sparse WDNs disregarding their sparseness and training only Vall weights,

albeit not conceptually clean, as explained in Section 4.5.2, does work: the unsu-

pervisedly trained reservoirs are much better than random. Note that in this case

the number of unsupervisedly adapted parameters remains the same.
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Figure 4.12: Output errors and classification rates with best parameter values of
regular ESNs, and sparse WDNs: random and trained with SOM and NG on the
concatenated USPS data. The values of the ten data instances are represented by
dots (slightly horizontally displaced for visual clarity) and mean values by lines.

4.6 Hierarchies of self-organizing reservoirs

As mentioned in Chapter 3, one of the main benefits of unsupervised learning

is that components trained this way can be easier assembled into more complex

architectures. Here we investigate a simple layered hierarchy of such reservoirs

where the bottom reservoir receives the external input u(n) and every reservoir

above receives the activations x(n) of the reservoir directly below it as the input.

Such an architecture features only bottom-up interactions and can be trained

in a greedy layer-by-layer way starting from the bottom. Since every layer is

trained independently from the rest, this hierarchical structure in essence does

not introduce additional difficulties in training, except more of it needs to be

done, because there are more layers.

When comparing a hierarchy to a single reservoir, a natural question to ask is

whether it is better to invest the additional effort in training many layers of the

hierarchy or in better training of the single reservoir. More concretely, we take

the training time measured in epochs as the “effort”. As a generalization of this

question, we investigate how the performance depends on the number of layers in

the hierarchy for a given fixed training effort. By this we mean that if a hierarchy

has k layers and the fixed training effort is l epochs, then each layer receives l/k

epochs of training.
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4.6.1 Simulation details

For the experiments with the hierarchies we used the same synthetic data described

in Section 4.4.2. The same ten data instances with Ny = 5 temporal patterns in it

were reused as in Section 4.4.4 with the same normalization and splitting into the

initialization, training, and testing sequences. In these experiments, however, we

have gone through the 49 500 time steps of training data multiple times (epochs),

each time first initializing the model with the initialization sequence of 500 time

steps during which the training was not happening.

We again used reservoirs of Nx = 50 units and all the other parameters: γ =

0.75, α = 100/Nu, and β = 50/Nx = 1, the same in every layer. Note, however,

that Nu = 3 for the bottom layer and Nu = Nx = 50 for the others, which affects

α accordingly.

For training all of our reservoirs we used the same SOM algorithm (4.4)(4.5)

with the reservoir units again organized into a 10×5 lattice, the a bit faster weight

initialization, and the same but slightly more subtle training schedule, where η(n)

followed a geometric progression from 0.01 to 0.001 and the neighborhood width

bh(n) again from 2 to 0.001. The same training schedule was used independently

of the length of the training: if the training is taking more epochs, the learning

parameters are simply changing slower, but the end-points remain the same.

The same performance criterion is also used: a linear readout (4.7) is trained on

the pattern envelopes as the teacher and the error (NRMSE) of the reconstruction

computed. In this case the input u(n) was not included as part of x(n) in (4.7).

For every architecture the readout was trained only from the activations of the top-

most layer. This way the signal space from which the pattern separation is learned

always have the same dimensionality Nx = 50 and every model has the same

amount of parameters trained in a supervised way, namely Wout ∈ RNy×(Nx+1) (or

Nx + 1 = 51 parameters per pattern). The target signal ytarget(n) for each layer

was delayed by the number of time steps equal to the number of layer (1 for the

bottom layer, 2 for the second, and so on) as this was found to be optimal at least

for a couple of first layers.

4.6.2 Simulation results

The results showing how different numbers of layers and different numbers of

training epochs per layer affect the testing performance are presented in Figure
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4.13. The performance is plotted against the total number of epochs spent in

training. Each curve here represents a hierarchy trained with the same amount

of epochs per layer. The points on the curves represent the mean test separation

errors in different layers. Every tenth layer is annotated. The hierarchies are

trained with 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60, or 120 epochs per

layer. They are colored from blue (the top-most curve, 120 layers, each trained

with 1 epoch) to red (a single point in the middle right, a single layer trained with

120 epochs) as the two extreme cases.
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Figure 4.13: Mean testing separation errors in layers of differently trained hierar-
chies plotted against the total epochs of training. See text for the details.

We can see that if the layers are not trained well, stacking them in a hierarchy

is not going to improve the result. The extreme case with each layer only trained in

one epoch is the top-most blue curve. We can see that in this case the performance

decreases with every additional layer and is approaching the worst NRMSE of

1. If a layer is not able to learn a good representation of its input, this bad

representation is passed to the upper layers, information from the input is lost

and the performance only decreases. Because we use quite small learning rates

here the training time of one epoch per layer might simply be not enough.

However, when we give each layer enough time to learn a good representation

of the input, we observe that adding additional layers improves the performance.

The better the individual layers are trained, the better the improvement in the
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upper layers.
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Figure 4.14: Errors in the first six layers across differently trained hierarchies
plotted against the total epochs of training. See text for the details.

We can visualize the data of Figure 4.13 from a slightly different perspective.

In Figure 4.14 we connect the dots representing layers of the same level across

differently trained hierarchies. Here the six curves represent the errors in the first

six layers across the architectures. This way we can see that putting more effort

in training a single layer (the top-most blue curve) does improve the performance

but only to a point where additional effort does not help anymore. The additional

layers are able to break this performance ceiling achieving much smaller separation

errors than a single layer could reach. We observe that when going up into the

higher layers there is a significant drop in the error till about the fourth layer. This

shows that with the same total number of training epochs hierarchical architectures

clearly outperform a single reservoir.

The fact that the additional effort in training yields better results is not at all

trivial in this case, because we train our reservoirs in an unsupervised way and

test them on a supervised task. This proves that in this case the unsupervised

pre-training does indeed improve the performance of a supervised task and there

is a positive correlation between the quality of the unsupervised pre-training and

the performance on the supervised task.

To have a more detailed view, we single out one case from the Figure 4.13

where every layer is trained using eight epochs of learning and present it in Figure
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Separation errors in layers with 8 training epochs per layer

Figure 4.15: Errors in the layers each trained with eight epochs. Training errors
are shown in thin and testing errors in bold lines. The mean values are shown in
black and the ten separate instances are shown in light colors.

4.15. Here both the training and testing errors are shown in all the fifteen layers.

The mean values are presented as well as the ten individual cases with the data

instances to indicate the variability among them.

We see, that while the difference between the training and testing errors in-

creases going up in the layers, it still remains quite small, and there is no real

overfitting, because both errors reach minimal values at the same layer (6 in this

case). One reason for this could be that we use long enough training data with

small enough models. Another reason could be that most of the training we do is

unsupervised, thus the model could overfit the input data but there is no training

target to overfit. It might well be that the input data is too rich and without the

target too open for interpretations to overfit.

The representation of five patterns in the two principal components of the

activations x(n) of the first six layers in a hierarchy is presented in Figure 4.16. We

can see that the special representation of the patterns in data gets more expressed

in the principal components of x(n) when going up in the hierarchy.
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Figure 4.16: Patterns highlighted in the two principal components of x(n) in the
first six layers of a hierarchy.

4.7 Discussion

We have demonstrated that the type of self-organized recurrent neural network

investigated here can learn in an unsupervised way the representations of the tem-

poral input data that enable better results in a supervised task such as separat-

ing repeated slow patterns or recognizing handwritten digits in the input signal.

The self-organized networks were rigorously compared to structurally identical

networks and classical echo state networks that produces random rich representa-

tions of the same dimensionality and found to be better. Parameter sweeps and

averaging of results over different instances of data were performed for all models

to exclude the possibility of an unfair comparison. The results are summarized in

Table 4.5.

We also showed that longer unsupervised training results in better supervised

performance, establishing a positive correlation between the two (see, e.g., Figure

4.14).

We do not have a rigorous explanation or analytical proof of this correlation,

but can offer some intuitions. The competitive nature of the self-organizing learn-
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Table 4.5: Summary of the test performances with the synthetic and USPS
datasets and single reservoirs: mean ±standard deviation.

Model
ESN

Self-organizing reservoir
Algorithm Random SOM NG

Synthetic data, NRMSE, Nx = 50
1 pattern 0.42265 ±0.038441 0.45275 ±0.052971 0.25169 ±0.030817 0.25091 ±0.022701
2 patterns 0.49752 ±0.031056 0.52169 ±0.040179 0.33299 ±0.040864 0.31917 ±0.034875
3 patterns 0.55517 ±0.032841 0.57009 ±0.046305 0.43235 ±0.028593 0.42731 ±0.021406
4 patterns 0.59328 ±0.037655 0.61567 ±0.043534 0.51625 ±0.026512 0.51144 ±0.028712
5 patterns 0.62290 ±0.015118 0.64801 ±0.035877 0.56950 ±0.020516 0.56726 ±0.019220

Concatenated USPS data, Nx = 50
NRMSE 0.93751 ±0.0021096 0.93464 ±0.0011451 0.92386 ±0.0012337 0.92333 ±0.0012275
Class. rate 0.68436 ±0.021519 0.71072 ±0.016717 0.72089 ±0.020555 0.72473 ±0.013017

(the same) Sparse weighted distance network
NRMSE 0.93751 ±0.0021096 0.93240 ±0.0021419 0.91961 ±0.0008993 0.91872 ±0.0012659
Class. rate 0.68436 ±0.021519 0.71778 ±0.019281 0.74327 ±0.016493 0.75764 ±0.017270

Concatenated USPS data, Nx = 100
NRMSE 0.91565 ±0.0016558 0.91812 ±0.0012217 0.90208 ±0.0020162 0.89884 ±0.0015389
Class. rate 0.75097 ±0.014010 0.75112 ±0.011407 0.76808 ±0.013785 0.78175 ±0.013120

ing diversifies the responses of the units in such a reservoir. Each unit during

the training is “looking for” its “niche” input pattern to which it produces a high

response, as shown in Figure 4.7. The reservoir tries to “inhabit” the input dy-

namics and intrinsically looks for patterns in it. The parts of the data that are

more predictable get a more expressed representation in the reservoir space, as

shown in Figure 4.5. The reservoir also can be seen as trying to predict the in-

puts, as the unit that is trained to best match (predict) the reservoir state at each

moment in time is also trained to best match (predict) the input.

To summarize the paragraph above, there are at least three intuitive interpre-

tations of what the self-organized reservoir is doing:

• Detecting common temporal patterns in input (e.g., Figure 4.7);

• “Amplifying” the power of predictable dynamics of input in its activation

signal space (e.g. Figure 4.5);

• Learning to intrinsically predict the input.

The unsupervised training algorithms SOM and NG used here to train RNNs

are not prone to bifurcations in training. These are indicated by the events dur-

ing training where the average activation level of a group of neurons becomes

much higher in a relatively short period of time and that of an another group si-

multaneously becomes low (Figure 4.17). However, these bifurcations are usually
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“squashed” by the training schedule and have no big negative impact. The success

of training depends a lot on the setting of the model parameters α, β, and γ, as

well as the training schedule. Overall, this unsupervised training is relatively fast

(compared to other RNN training techniques), in our case capable of training the

reasonably big models in a single pass through the data.
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Figure 4.17: An example of bifurcations in an RBF reservoir trained by SOM
algorithm with a static train schedule and bad model parameters.

Along the way, we have also introduced too alternative RNN models to the

classical ESNs and demonstrated them to work better even with random weights

for moderate network sizes: the SOR model (4.1) and a more general WDN model

(4.10). Yet both of these models were demonstrated to work even better when

trained in an unsupervised way.

We have exposed potential limitations of the computational model of SOR

when dimensionality increases and the potential for better unsupervised training

algorithms for the WDN model.

Sparseness of the models, realized by the WDN, was found to be an important

aspect for both performance with moderately sized networks (see the sparse WDN

results in Table 4.5) and scalability to bigger sizes.

Last, but not least, we have also demonstrated that hierarchies of our unsu-

pervised reservoirs improve the performance by a large margin. The exact reasons

for this need further investigation. Figure 4.16 gives an insight that the patterns

in the data get more expressed in the principal components of the reservoir acti-

vations when going up in the layers. One reason for this could be that with more

layers we simply get more powerful models having more unsupervisedly trained

parameters. As a future work, it would be interesting to check if a single reservoir

with a comparable number of parameters could achieve comparable performance.

We have only compared the training effort so far. It could also be that the deep

structure produces a more compact representation of the input which can not
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easily be achieved with a single layer (examples of such are presented in [Bengio,

2009]). On one hand there is no really deep structure in our data, but on the

other hand the fact that we get better representations in the reservoirs of the

same dimension when going up the hierarchy is still spectacular.

Successful training of the same type of unsupervised hierarchies with the con-

catenated USPS data was not easily achievable at least with the small Nx = 50

reservoirs. Due to a richer nature of the data, such bottom reservoirs are most

probably inadequate to learn a good representation, and thus classification from

the upper reservoirs deteriorates similarly to the inadequately trained hierarchies

represented by blue curves in Figure 4.13.

There are still many other improvements that could be done to the introduced

models, both to the structure and learning, as well as understanding it better. For

example, an interesting and biologically motivated modification would be to also

have top-down interactions in the hierarchies. It would also be interesting to see

how the model scales up to even more challenging real-world data.
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Chapter 5

Conclusions and open questions

In this thesis we have motivated, surveyed, and proposed a wide variety of ways for

generating, training, and adapting recurrent neural networks that are alternatives

to fully supervised training.

Most of the reviewed and proposed approaches are along the lines of reser-

voir computing paradigm. We have extensively and systematically reviewed this

paradigm in Chapter 2.

This research direction is important, because less supervision in training is

a prerequisite much needed both conceptually and technically for significant ad-

vancements in the field of machine learning. In particular, the lack of such al-

gorithms hinders development and training of more complex, including deep and

recurrent, ML architectures that could approach intelligence.

While these are big challenges, we try to contribute a few small steps toward

training unsupervised recurrent hierarchical architectures capable of naturally pro-

cessing temporal data, a challenge which is still largely untackled.

The self-organized reservoirs and their hierarchies, that we propose in Section

4, while mostly successful in the investigated settings, are still in the “proof of

concept” stage. Their scalability to real world problems still remains an issue. In

fact we have pointed out some of their limitations.

We believe that the key to scaling up the unsupervised RNN models and mak-

ing them more powerful is reducing the dependences among its all components.

This was successfully demonstrated with the sparse WDN example in Section

4.5. A possible future approach could be to further systematically disentangle

big networks into interacting locally coherent sub-networks that could be trained

mostly independently of each other. Unsupervised, or in fact any, training of such
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networks is still largely unsolved.

Global unsupervised learning methods intrinsically do not scale very well to

really big networks. They are also not biologically realistic, as they require com-

plete global knowledge of the system. Physical learning systems are limited by

their structure in what information is available where. This also becomes an

issue in artificial ML systems when scaling them up and running on vastly paral-

lel computers. For efficient implementations in such cases there should be some

correspondence between the conceptual models and their physical computational

materialization.

On the other hand, neurons in the network can not learn completely indepen-

dently of each other, because no specialization can effectively be achieved without

coordination. Striking the balance here is important. The natural biological mech-

anisms of how real neurons do this are still mostly unknown.

Our proposed unsupervised recurrent hierarchies in Section 4.6 are also at this

stage just toy examples. One important feature needed in a powerful deep hier-

archy is recurrence between the layers, i.e., connections going both up and down.

There is a strong both conceptual and biological motivation to have them: they

enable crucial phenomena such as attention or active perception. Bidirectional

connections between layers, however, complicate the training a lot. Such hierar-

chy has to be trained simultaneously which usually leads to bifurcations during

the learning that disrupt the training and functioning of the whole system. How

natural systems overcome such limitations is, again, largely unknown.

One more fundamental question still not well answered is the relation between

unsupervised and supervised training. While on one hand, universally good unsu-

pervised representations seem plausible in the intuitive form of “understanding”

the data, it is also clear that for the same input data very different output tasks can

be formulated, and that not all the representations of the input data will be equally

well suited for the tasks at hand. We have witnessed this in the Section 4.4.5.2,

where a slight change in the formulation of the final task and performance, favors

quite different unsupervised representations. A general more systematic mathe-

matical account for the relation between the unsupervised and supervised goals in

training is not available, as these goals are purely defined by the empirical data.

There is still a long road ahead but we hope to have contributed a step or two

in understanding the issues and possible directions to tackle them in this thesis.
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Vytenis Šakėnas. Distortion invariant feature extraction with echo state networks.

Technical Report No. 24, Jacobs University Bremen, 2010.

Ulf D. Schiller and Jochen J. Steil. Analyzing the weight dynamics of recurrent

learning algorithms. Neurocomputing, 63C:5–23, 2005.

Jürgen Schmidhuber, Matteo Gagliolo, Daan Wierstra, and Faustino J. Gomez.

Evolino for recurrent support vector machines. In Proceedings of the 14th Euro-

pean Symposium on Artificial Neural Networks (ESANN 2006), pages 593–598,

2006.

Jürgen Schmidhuber, Daan Wierstra, Matteo Gagliolo, and Faustino J. Gomez.

Training recurrent networks by Evolino. Neural Computation, 19(3):757–779,

2007.

Benjamin Schrauwen and Jan Van Campenhout. Linking non-binned spike train

kernels to several existing spike train metrics. In M. Verleysen, editor, Proceed-

ings of the 14th European Symposium on Artificial Neural Networks (ESANN

2006), pages 41–46, Evere, 2006. d-side publications.

Benjamin Schrauwen, Jeroen Defour, David Verstraeten, and Jan M. Van Campen-

hout. The introduction of time-scales in reservoir computing, applied to isolated

digits recognition. In Proceedings of the 17th International Conference on Ar-

tificial Neural Networks (ICANN 2007), volume 4668 of LNCS, pages 471–479.

Springer, 2007a.

Benjamin Schrauwen, David Verstraeten, and Jan Van Campenhout. An overview

of reservoir computing: theory, applications and implementations. In Proceed-

ings of the 15th European Symposium on Artificial Neural Networks (ESANN

2007), pages 471–482, 2007b.

Benjamin Schrauwen, Michiel D‘Haene, Davfid Verstraeten, and Dirk Stroobandt.

Compact hardware liquid state machines on FPGA for real-time speech recog-

nition. Neural Networks, 21(2-3):511–523, 2008a.

130



BIBLIOGRAPHY

Benjamin Schrauwen, Marion Wardermann, David Verstraeten, Jochen J. Steil,

and Dirk Stroobandt. Improving reservoirs using intrinsic plasticity. Neurocom-

puting, 71(7-9):1159–1171, 2008b.

Benjamin Schrauwen, Lars Büsing, and Robert Legenstein. On computational

power and the order-chaos phase transition in reservoir computing. In Advances

in Neural Information Processing Systems 21 (NIPS 2008), pages 1425–1432.

MIT Press, Cambridge, MA, 2009.
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