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Course Concept and Overview

“Data Engineering”, “Data Analysis”, “Data Science”, “Big Data”, such catchwords have
rocketed to public prominence in the last few years. These days we witness an amazing
explosion of data processing technology and data analysis methods. It is fuelled by a
number of factors:

• an explosion of available data volumes in the first place, enabled by technological
developments in internet services, mass data storage devices and database technol-
ogy,

• a nonlinearly accelerating progress in mathematical data analysis methods which
has led to unforeseeable and almost surreal innovations, like artificial visual halluci-
nations,

• disinhibitive shifts in social behavior that make people spill out personal data,

• fast-growing societal complexity and dynamics which makes national security agen-
cies hunger for information,

• exploding complexity of manufacturing and commercial processes, itself enabled by
novel data technologies, unleashing economical forces for ever-increasing data pro-
cessing rates and data processing complexities,

• not to forget: self-reinforcing hype-cycle mechanics.

OK., understood, data there is plenty. But nobody wants just data — everybody wants
information1 instead. It’s like ore and gold: the raw material is rough and ragged and
bulky, most of it useless waste, containing the precious substance but in traces, requiring
energy and ingenuity to be extracted. Similarly with data and information. Raw data is

• voluminous,

• unstructured,

• replete with irrelevant material,

• disorganized,

• faulty and fragmentary,

• partial and biased,

1I am using the term “information” in the commonsense meaning of “valuable-to-know stuff”, not the
mathematical sense of information theory. I could also have used words like “insight”, “knowledge” or
“intelligence”.
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• unrepeatable: when you collect it again from the same source, you get something
else.

Information, in contrast, you wish to be

• concentrated,

• pure,

• rendered in a homogeneous, transparent format,

• organized, accessible, searchable,

• reliable and repeatable,

• malleable, shapeable to fit your needs.

Dwelling on the mining metaphor a little longer — what in metallurgy is the mother
rock, the cinders and the slag [I looked that up in a dictionary], for information processing
corresponds to noise, randomness, irregularity, redundancies. That’s what you need to get
rid of, bringing to the fore the purified information content. In this course you will learn
to appreciate how frightfully large is the relative amount of noise and irregularity in raw
data, compared to the tiny fraction of clean information that can be extracted. Figure
1 shows an instructive example from the domain of “pattern recognition”, a subarea of
machine learning.

for a simple personal Injury the Offender ’ s punish=

For on simple personal injury the offenders punish .

Figure 1: Extracting information from data. Raw data: photographic image of a historical
handwriting (actually, the primary raw data was a photo of the entire page; part of the
information extraction was already done by isolating the text line). Extracted information:
the second printed text line. “Correct” information: the first printed text line. Extraction
was done with a state-of-the-art historical document analysis tool developed by Planet
GmbH, a data engineering company with whom I closely collaborate. Picture taken from
Sanchez et al. [2015].

Metallurgy is based on the scientific insights of mineralogy, chemistry and physics. Ex-
tracting information from data is likewise an engineering task. It is a practical, technical
enterprise that is based on scientific insight. The scientific foundation of data engineering
is probability theory. Just like metallurgists use the theoretical-scientific insights of miner-
alogy, chemistry and physics to build practically useful machines like furnaces or chemical
processing plants, data engineers use the mathematical theory of probability to design
computational procedures that actually do the information extraction. Historically there
have been two traditions of such practical data-to-information engineering, the first (and
earlier) being statistics and the second (more recent one) being machine learning. Both
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fields share the same mathematical roots in probability theory, but they pursue interest-
ingly different goals and have developed different tools and techniques. Today’s “Data
Science”, “Data Analytics”, etc., equally draws from both traditions.

In fact one could include a third engineering tradition in this picture, signal processing.
However, signal processing is a bit outside of what is meant when people talk of “Data
Science” etc. It is more connected to application domains like communication technology,
electronics or robotics, therefore we will not consider it here. Students with an interest in
signal processing may consider taking courses in the Electrical and Computer Engineering
and in the Intelligent Mobile Systems programs.

This course is the basic theory course in the Data Engineering program. It is structured
in four parts:

Part 1: Face to Face with Probability: Clear Concepts, Clean Notation. Here we
introduce you to the “way of thinking” of probability. Randomness is an amazingly
elusive thing, and it has taken philosophers and mathematicians several hundred
years to agree on a consistent way of thinking about randomness. What is now
the standard mathematical framing of “probability” has been consolidated only as
late as in the 1930’ies – much later than most other subfields of mathematics. In
Part 1 we will explain the intuitions of this standard conception of “probability”.
The mathematical formalism introduced in this part is minimal – just a few lines of
axioms will be distilled at the end – but the underlying intuitions and conceptual-
izations are far from easy to assimilate. The aim is to give you a firm grasp on the
concepts of a probability spaces, random variables, distributions and samples. Once
these foundations are set, there will be a fast-forward refresher of all the elemen-
tary and useful derived concepts and formulas that you probably have learnt before
in some introductory math course, like conditional probability, marginal probability,
density functions, the normal distribution (and some more), moments of a distri-
bution, factorization of distributions, correlation or statistical independence. What
is maybe new: you will understand the fundamental intuitions underneath these
concepts and tools — in typical introductory courses these concepts and tools are
presented “mechanically” only.

Part 2: Introduction to statistics. Here we concentrate on inferential statistics: given
an amount of observed data (a sample), what can be inferred from these about the
underlying “true” properties of the mechanisms that generated those data? And
with what degree of confidence can one make statements about “true” facts on
the basis of data ridden by randomness? Indeed, what exactly does “confidence”
mean in the first place? The methods of inferential statistics are thus the basis for
decision-making based on data.

Part 3: Introduction to machine learning. Machine learning is a heterogeneous field
with roots as diverse as artificial intelligence, cognitive science, neuroscience, signal
processing, and, in fact, statistics. In this course we focus on machine learning as a
set of techniques to find relevant structure in messy data, — to detect the regularities
that are hidden in the random data. We will introduce a number of ways of how
such “regularities” can be defined and formalized in the first place — in other words,
we’ll introduce a number of ways to distil models from data.
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Part I

Face to Face with Probability:
Clear Concepts, Clean Notation
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Chapter 1

How statistical data come into
being: the big picture in plain
English

1.1 Five basic components of understanding “probability”

Before we start formalizing “randomness” and “probability” in a serious mathematical
way, let us populate the stage by a number of simple and not-so-simple examples of
random systems, using the word “probability” naively. All examples describe scenarios
where statistical data are systematically collected. Each scenario will be described in
terms of five components:

1. a circumscribed portion of reality in which we collect data — we will call this the
reality segment of interest (RSOI);

2. within that reality segment of interest, a set of objects or events or moments in
space-time from which observation data could be collected — let us call this the set
of observation opportunities (OO);

3. an apparatus or a procedure which enables one to actually get data in the RSOI at
every observation opportunity, like a measurement device in a lab or a questionnaire
sent out by a public opinion polling team — we will call this the observation procedure
(OP);

4. from among the observation opportunities, a finite subset of those opportunities
where the observation procedure is actually set to action and data are recorded —
the observation acts (OA);

5. and finally, the set of all possible results that the observation tool could deliver —
we’ll refer to this as the data value space (DVS). Since it is in most cases not obvious
which observation values, exactly, are possible vs. impossible, the data value space
can be generously specified as a possibly larger-than-necessary set of data values –
the only important condition is that it must surely contain all possible values.

This may sound rather complex or hair-splitting. But, “probability” is one of the
most elusive and controversial concepts of mathematics, philosophy and the sciences. It
has taken mathematicians very long to convene on a reliable, useful and widely shared
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definition of “probability”, completing this job only in the late 1930’s — long after almost
all other fundamental concepts of mathematics had safely been settled.

This terminology (reality segment of interest RSOI, observation opportunity OO, ob-
servation procedure OP, observation act OA, data value space DVS) is just my private
plain-English way to name the main players in the probability game. You will find this
terminology only in these lecture notes, not in other textbooks. Standard scientific termi-
nology will be introduced as we go along.

1.2 Examples

We will now inspect a number of examples of our RSOI-OO-OP-OA-DVS setup.

1.2.1 Tossing a coin

This is the absolutely most classical example and contained in each and every textbook
on probability or statistics. A person has a coin and can throw it as often as s/he wishes.
From the outcomes of many throws — “head” (H) or “tail” (T), the person might want to
determine whether the coin is fair or biased. Here is a description of our five components
in this scenario:

Coin Tossing

RSOI A concrete person (for instance, *you*), with a concrete coin (say, the
one Euro-cent coin that you always keep in your pocket for luck); you
are sitting at your desk at home.

OO Any moment in your life while you are sitting at that desk and have that
coin at your disposal – in other words, any moment when you might toss
the coin.

OP The procedure here comprises the processes of you tossing the coin,
recognizing the face that shows up, and writing “H” or “T” on a sheet
of paper.

OA Each action event when you actually do a toss under the abovementioned
conditions, and make a note of the “H” or “T” outcome.

DVS The set of symbols S = {H,T}.

Sneak preview (to be explained in much detail later): the sequence of “H” or “T”
outcomes that eventually you have noted down on paper will be formalized as and called a
sample. The probability of the coin to come up with “H” will be understood as the fraction
of the “H” outcomes among all (“H” or “T”) outcomes, assuming that all observation
opportunities would have been realized. This probability is the “true” ratio of the coin
(thrown by you in that room of yours) turning up a head. This probability is a real,
physical property of that coin (when it is tossed by you in your room). The fraction of
“H”-s in the actually recorded data on your sheet of paper is an estimate of that probability.
The two probabilities of the “H” and “T” outcomes constitute the distribution of the H-
T-value outcomes (in that specific RSOI).

Notice that the probability of “H” turning up is a physical-real property of the entire
physical setup (you, your room, that coin). If any detail of the RSOI would be changed
– for instance, you would be throwing the coin in the garden; or you would be doing the
throwing in your room and at your desk but with another coin; or another person would
throw the same coin in your room – then the physical situation would change and with it
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the probability of the coin showing “H” might change as well. Probabilities and everything
else connected to it are defined always and only with respect to a given, specific reality
segment of interest.

1.2.2 Throwing a die

A person has a die and can throw it as often as s/he wishes. From recording the numbers
of outcomes “1”, “2”, ..., “6”. Here is the summary table:

Die Throwing

RSOI A concrete person (for instance, *you*), with a concrete specific die; you
are sitting at your desk at home.

OO Any moment in your life while you are sitting at that desk and have
that die at your disposal – in other words, any moment when you might
throw the die.

OP Analogous to the coin tossing example.
OA Whenever you actually do a throw under the abovementioned conditions,

and make a note of the facing-up number.
DVS The set of integers S = {1, 2, 3, 4, 5, 6}

1.2.3 Body weight

What can be said about the distribution of body weights of humans? To make this a
well-defined question, a specific RSOI must be fixed. In the table below I invent one.

Body Weight

RSOI The set of all citizens of the EU, in January 2017.
OO Each citizen makes for an observation opportunity. Compared to the

coin and die throwing examples, the OOs here are objects, not moments
in space-time. Another difference is that here the set of OOs is finite; in
the coin and die throwing examples it was infinite (because your sitting
time at the desk consists of a continuum of moments).

OP The process here would be that a human operator places a citizen on a
scale, reads off the indicated weight, and makes a note of the reading.

OA The observation acts would comprise a suite of weight measurements
that have actually taken place in January 2017, for instance funded
and organized by a survey of the European Commission carried out in
selected hospitals.

DVS Possible human body weights are nonnegative real numbers. Also it can
safely be assumed that no human weighs more than 500 kg. Thus one
admissible choice for the data value space would be the real interval [0,
500]. But also the entire real line R would qualify.

This example exhibits a common problem in empirical statistics. If the goal of the
European Commission is to get an overview of the distribution of body weights of European
citizens, then it may be quite misleading to infer this distribution from the observation
acts (the sample) carried out in a number of hospitals. This is because citizens that can be
found in hospitals are typically ill, and ill people often suffer from weight loss; furthermore,
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typically patients in a hospital are older on average than the population average. Thus,
one does not obtain an unbiased sample. Extrapolating from the actually carried-out
observations to the global weight distribution among Europeans is therefore problematic.
Since problems of this kind are ubiquitous, textbooks of statistics contain chapters that
deal with methods to identify such “bias” in a sample; methods to compensate againts
biased samples with computational techniques; methods to minimize the lopsidedness of
samples by a careful design of a measurement campaign. At any rate, it is important in
a scientific report which is based on statistical data to describe in some detail how the
sample was actually collected – in our terminology, how it was decided when and where
to carry out an observation act.

1.2.4 Determining the speed of light: single lab

Physicists believe that the speed of light in vacuum (customarily denoted by c) is a univer-
sal constant of nature, and they are interested in determining it with the greatest possible
precision. One way to increase precision of an estimate of a constant of nature is to repeat
a measurement procedure and use the average outcome instead of the value received from
a single measurement. The following table gives an account of how repeated measurements
in some physics lab can be modeled.

Speed-of-light I: Single Lab

RSOI A particular physics laboratory (say, Lab 1).
OO Similar to the coin/dice throwing examples, the observation opportuni-

ties are moments in the lab lifetime.
OP The observation procedure is based on a laser and mirror system and

high-precision time measurement apparatuses, which are to be used in
a way that is described in a thick handbook.

OA The measurement apparatus is “fired” ten times per second for one hour,
giving altogether 36000 observation acts. Each of these leads to the
recording of a measured speed of light value.

DVS Knowing that the true speed of light is about 300,000,000 m/sec,
a safe data value space would be, for instance, the real interval
[200, 000, 000 400, 000, 000].

1.2.5 Determining the speed of light: multiple labs

In the sciences, experiments have to reproducible across different labs: other labs must be
able to re-install the experimental set-up of Lab 1 and repeat the measurements. We face
here a twofold repetition of measurements: first, each single lab will repeat the measure-
ment in order to achieve a more precise estimate of the true speed of light; furthermore,
such entire measurement series are repeated across different labs. Such twofold measure-
ment repetitions are characteristic for the use of statistics in the sciences. When you read
a research paper from the empirical sciences, you will find in it claims that are based on
repeated measurements (a single measurement never gives a convincing support for a sci-
entific claim in the empirical sciences). But since the empirical experiments leading to the
claim should be reproducible in other labs, a statistical model of the full scientific situa-
tion must cover both the repeated measurements in a single lab, plus the reproductions of
such repeated measurements in different labs. The way how this is conceptually captured
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in statistical modeling is really not easy to digest, as you will see from the involved and
maybe a little non-intuitive RSOI-OO-OP-OA-DVS descriptions in the table below.

Speed-of-light II: Multiple Labs

RSOI Taking into account that natural science experiments should be repro-
ducible by any lab, — even labs that will only be established in the
future —, we take as the reality segment of interest the collection of all
labs that host appropriate laser-timing apparatuses, considered in the
year 2017. This collection of labs contains not only physically existing
labs but also “virtual” labs that could be actually built or that could
install the right kind of laser-timing device.

OO The observation opportunities are now the labs Lab-i.
OP The observation procedure in this multi-lab scenario comprises the exe-

cution of an entire series of measurements in a specific lab. The outcome
of runningd this procedure is thus a sequence of real numbers (as many
as the times that the apparatus has been fired in that lab).

OA An observation act occurs when in an existing lab the observation pro-
cedure is actually carried out and a sequence of measurement values is
recorded.

DVS A technical hurdle with defining an appropriate data value space lies in
the circumstance that the measurement value sequences returned from
running the OP will be of different length. We need to formalize a collec-
tion of sequences of real numbers of variable length. Assuming that each
single measurement value lies between 200,000,000 and 400,000,000, in a
clean notation we could define the DVS as S = {(x1, . . . , xTstop)|Tstop ∈
N, Tstop > 0, 200000000 ≤ xi ≤ 400000000}.

1.2.6 Credit risk modeling

Jacobs Bank (JB) is active in handing out student loans. For their business it is important
to know in advance whether a student will be able to pay back her loan. In order to predict
the risk of credit failure, JB tries to learn as much as they can about their clients. In a
questionnaire that every student customer has to fill in, they ask for items like age, gender,
profession of parents, amount of monthly income, sources of monthly income, etc., etc.
Furthermore, if the student also has her current account with JB, the daily transactions
are recorded. Finally, and importantly, if the student fails to pay back the loan, a capital
“F” is marked in a special field of the record; if the loan is payed back, this field is filled
with “B”. The bank attempts to predict and quantify loan failure risk on the basis of these
data.
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Credit Risk

RSOI The reality segment of interest here is the collection of all Jacobs student
who have a loan contract with JB — both the students that actually
did so in the past and for whom records exist, and “potential” students
that will enroll in the future. Wishing our university a long life, the
vast majority of these latter students has not been born at the time of
writing (2018).

OO The observation opportunities here are again all past, present and future
students of Jacobs University with a JB loan contract. Here we have the
(not uncommon) case that the RSOI and the OO coincide — the RSOI
is construed as a set of OOs.

OP The recording procedure is the multi-step action of JB to email the
questionnaire to a student, of the student to fill it in and send it back,
then of JB again to copy the questionnaire entries to their database.

OA The observation acts comprise all those (past and present but not future)
cases where in fact some student filled in the questionnaire and the
questionnaire data were entered into JB’s database.

DVS The observed values here are student records in JB’s database. Each
such record is a list of fields filled with words (e.g. the name of the
student), with yes/no choices, with numbers (e.g. age, parents’ in-
come), with entire text documents in pdf (the company might require
copies of legal documents), or just blanks (“missing values”). Such a
record is a complex datastructure. The records of different students
may have different fields and lengths. It is helpful to think of a stu-
dent’s record as a row in spreadsheet. S is the set of all (hypothetically)
possible such records. In mathematical formalism, such a record would
be the cross product of the possible value ranges for each field in an
Excel row. To make this more concrete, assume such a record starts
with fields FamilyName, GivenName, YearOfBirth, and ends with a field
PayBackCompleted. Then the mathematical format of a record would
be the set {A-Z,a-z}* × {A-Z,a-z}* × N × . . .× {B, F}.

1.2.7 Text translation

A “text” is a finite string of letters from an alphabet, and it is read from left to right
– there is a natural temporal ordering in a text. Statistical models of texts are used in
many modern data analysis applications, for example in automated address recognition
systems used by parcel delivery companies, or in spam filters, or reading aids for visually
impaired persons, or in machine translation systems — which is the application that we
will consider here, say from English to German. Today’s best machine translation systems
mostly operate on the basis of individual sentences (i.e., they are blind to information
carry-over from one sentence to the next in multi-sentence texts).
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Sentence Translation

RSOI Assume the goal of the statistical study is to develop a translation engine
from English to German, to be deployed in a smartphone app. A suit-
able reality segment then would be, for instance, all English-speaking
countries in the year 2018.

OO An observation opportunity in that RSOI is any situation where some
person is awake and has a smartphone ready.

OP The observation procedure is that a smartphone service provider records
an English text that was typed by a user, makes the text available to
a professional translator who translates that text to German, and saves
the translation alongside with the English source text.

OA The cases where the OP is actually carried out.
DVS The set of pairs (s, s′) where s is a sentence letter string in English and s′

a correct translation. Alternatively one could also admit all pairs (s, s′)
where s and s′ are any letter strings; correct English-German sentence
pairs would form a small subset.

1.2.8 Speech recognition

This example is a very important one in today’s machine learning world, where we are
witnessing uprecedented progress in automated speech recognition systems. Such systems
(like Apple’s Siri) transform a microphone signal into a written text output (or into other
useful formats or actions). To make such a system function, it must be trained by the
factory that produces it on examples of speech recordings. To make such a system function
well, it must indeed be trained on a truly gigantic set of speech examples — the bigger
and the more diverse the better. The recent advances in speech recognition technology
are owed to a large part to the progress in computing hardware and storage technology as
enabling factor for processing very large amounts of training data.

Speech Recognition

RSOI All English speakers of the world (including dialects and non-native
speakers), in all kinds of everyday life situations, in the decade 2011-
2020.

OO All wake moments in the lifes of English-speaking adult humans in the
years 2011-2020.

OP An engineer picks a person from the street, pays her a small honorary,
let her read a written text into a microphone, writes the recorded sound
signal to a file.

OA All events where an Apple researcher actually does that.
DVS The data value space S is the set of all pairs (x, y) where x is a digital

microphone signal and y is a text.

1.2.9 Evolutionary trees

This example is lies at the heart of an important line of research in genetics and evolu-
tionary biology, where researchers try to find out how evolution proceeded in the past, on
the basis of genetic evidence collected at the present time. A particular instance of this
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scientific quest frequently makes it into the media: what can we learn from the genetic fin-
gerprints of today’s humans and the great apes (chimps, gorillas, orangs and some more)
about the evolutionary history of the human species? is there a common ancestor? are
we closer to chimps or to orangs? etc. I follow the leads of Mau et al. [1999], a highly
cited reference that introduced a particular statistical method of analysis to reconstruct
evolutionary trees of descendence from current DNA records.

Recall that a biological species is defined through its DNA sequence (quite a simpli-
fication — two individuals of the same species won’t have exactly identical DNA, but
we ignore that here), and a DNA sequence can be seen as a very long word written in
the letters A, C, G, T. Let us consider humans, chimps, gorillas, orangs only; they are
characterized by four DNA sequences that we denote by wh, wc, wg, wo. An evolutionary
tree is a binary tree whose nodes are DNA sequences and whose links are labelled with
numbers denoting evolutionary timespans. Figure 1.1 shows two hypothetical trees for the
evolutionary history of the great apes.

wh wc wg wo wh wc wg wo

v1

v3v2

u1

u2

u3

6
4

2.5

1.9

0.1
2

1.9

2.5

2.5 2.5 2.5 2.5

Figure 1.1: Two hypothetical evolutionary trees for the great apes. Yellow: currently
existing species. Light orange: hypothetical ancestor species, now extinct. Each species is
characterized by a DNA word ui, vi or wx. Numbers at links indicate millions of years. In
the left tree, humans split from the other apes a long time ago. In the right tree, humans
are as closely related to chimps as gorillas to orangs. I made up these trees, no biological
plausibility implied.

Evolutionary biologists attempt to reconstruct the “most probable” evolutionary tree
on the basis of (i) the known DNA sequences of today (yellow in the figure) and (ii)
assumptions about the laws of evolutionary change of DNA sequences (by not entirely
random mutations).

Doing statistical analyses for historical or evolutionary processes faces a difficulty that
seems insurmountable: statistical statements are based on the repetition of observations,
but there is only ONE real world history. One cannot repeat the history of the earth
or of human society in order to supply statisticians with nice data. This problem is
solved by an audacious construction: one assumes that our universe with our earth in it
is only one of innumerable other possible worlds in which the same laws of nature rule,
but history/evolution proceeds along different random paths. Since one cannot obtain
real physical observations from other worlds than ours, one must take resort to computer
simulations of the other worlds to obtain “data”.
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Evolutionary Trees

RSOI The reality segment of interest is the (hypothetical) collection of all
possible earths which have the same laws of nature as ours, and which
in their year 2000 have evolved chimps, gorillas, orangs and humans with
the same DNA sequences wh, wc, wg, wo as “our” apes.

OO Each such hypothetical world is an observation opportunity.
OP The procedure to “observe” an evolutionary tree is to run a computer

simulation which implements the known (random) laws of evolutionary
change. The outcome of such a simulation run is a labelled tree as in
Figure 1.1.

OA Each actually executed simulation run is an observation act.
DVS S is the set of all possible binary trees with four leaves, where the four

leaves are annotated with wh, wc, wg, wo, the internal nodes are anno-
tated with any words over the alphabet {A,C, G, T} and where the links
are labelled with integers, such that the sum of integers on any path from
the root to any leaf are equal.

Evolution theorists proceed as follows in order to determine the most probable evolu-
tionary tree for the great apes. The first collect a large number of such trees, by running
their evolution simulation engine many times. Then they check whether one type of tree
(characterized by its branching topology, ignoring the duration labels) occurs in a signifi-
cantly larger number than other types of trees. If that is the case, they publish an article
claiming that humans are more closely related to chimps than to gorillas, etc., reporting
the structure of the dominant tree type.

1.2.10 Weather forecasting

This possible-worlds idea is also used in weather forecasting (and financial forecasting
and others). The physics of atmospheric dynamics are largely known and furthermore
they are deterministic. Thus, forecasting weather amounts to run a simulation of these
deterministic dynamics, starting from the current NOW state of the world’s atmosphere.
The problem: this current state is only very imperfectly known, because weather stations
and weather planes and satellites can only give exceedingly fragmentary data. How the
atmosphere between the measured grid points is conditioned must be inferred by inter-
polation, and this is not exact. Many different earth atmospheres would agree with the
currently known sparse measurements. Therefore, meteorologists run not a single, but
dozens of simulation runs from different initial conditions, all of which agree with the
currently known atmospheric measurements but use different interpolations (such a set of
runs with slightly different initial conditions is called an ensemble in meteorology).
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Weather Forecasting

RSOI The reality segment of interest is the collection of all atmospheric devel-
opments that start from a current NOW state which is compatible with
the available physical measurements.

OO Each atmospheric development that is compatible with known NOW
data is an observation opportunity.

OP The procedure is to run a (deterministic) simulation starting from one
of the possible NOW states of the atmosphere, returning a global atmo-
sphere “simulation video” up to a fixed time horizon, say ten days.

OA Each actually executed simulation run is an observation act.
DVS The data value space here is the collection of all 10-day simulation traces

that are possible from any initial starting condition.

1.3 Discussion

The examples have been chosen to illustrate the great diversity of random systems, and to
highlight some important issues. The good news up front: it is possible with the concepts
and formalism of probability theory to treat all of these diverse cases in a unified fashion.
Before we embark on the formalization, I discuss (still in plain English) some relevant
issues that can be found in the examples.

First, a note on terminology. What we called a RSOI is often referred to in textbooks
of statistics as a population. Using this word has historical reasons: the early development
of statistical methods was very much driven by psychological research (specifically, IQ
testing for military recruiting), and the the ”observation opportunities” entities were, in
fact, people. People still are important objects of statistical assessments in the modern
world of Big Data — think of customer profiling or security & surveillance. However,
many domains of statistical modeling are not populated by animate beings. Think of the
Speed-of-light examples where the data-generating entities are physics laboratories. To
convey the right idea of the abstractness and generality of statistical modeling, I used the
term “reality segment of interest” instead of “population”.

It is not easy to give a concise and general characterization of a RSOI. Here is an
attempt:

A reality segment of interest is a circumscribed portion of reality, in
which one has specified a set of opportunities for making observations.

Almost every part of this characterization is problematic and needs further comments.

“reality”: There are varying degrees of how “real” a RSOI is. While the RSOI in our
Die Throwing example is as real as you are (seize yourself by the arm and find
out how real that is), the multiple labs (among which are all the ones that might
still be built) in example Speed-of-light II is a collection where labs that actually
currently do exist are mixed with “potential” labs. Similarly, in Credit Risk the
piece of reality comprises students who might get born in the future. In Evolution-
ary Trees I lightheartedly included innumerable possible universes into the RSOI,
and “observing” them meant simulating them. The definition given in Wolfram
MathWorld (http://mathworld.wolfram.com/Population.html) for a population
underlines this wide range of abstraction levels that is spanned by RSOIs:
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“The word population has a number of distinct but closely related meanings in
statistics.

1. A finite and actually existing group of objects which, although possibly large,
can be enumerated in theory (e.g., people living in the United States).

2. A generalization from experience which is indefinitely large (e.g., the total num-
ber of throws that might conceivably by made in unlimited time with a particular
pair of dice). [...]

3. A purely hypothetical population which can be completely described mathemati-
cally.”

“a circumscribed portion of...:” In any statistical data analysis, the underlying RSOI
must be specified as precisely as possible. In the natural sciences, this typically means
that a scientific paper must describe the experimental set-up and measurement pro-
cedures in enough detail to enable a reader of the paper to reproduce the experiment.
In the social sciences, psychology, and clinical medicine, where actual human sub-
jects are the source of data, the reference population from whom the analyzed data
were obtained must be very well described in scientific publications. Readers of
such papers should be aware that the results of statistical analyses reported in the
paper only inform us about the particular “portion of humankind” that was avail-
able for the respective study. It is commonplace to complain that statistics lie, but
in most cases it is not a lie that makes statistical claims dubious but a mismatch
between the actual portion of reality where observation acts were carried out, and
the intended RSOI which is decried in the resulting scientific publication (or in the
second-hand commentaries about the original publication). For instance, scientific
results in psychology are often based on populations consisting of undergraduate
psychology students, because they can be easily recruited by the experimenters.
Medical surveys are often based on patients that have been hospitalized. Then the
reported results hold only for populations consisting of undergraduate psychology
students and hospitalized patients, respectively — and they do not hold for humans
in general. Figure 1.2 highlights what can come out of a mismatch between the RSOI
a statistical study is based on, and the RSOI to which the findings are (wrongly)
transferred.

Figure 1.2: Effects of a criminally chosen and under-documented RSOI. Taken from dil-
bert.com.

Another point worth noting: a RSOI is a piece of reality, and it usually cannot be
described in full exactness. Plain English has to be used for the specification, and
plain English always has some residual vagueness.
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“... in which one has specified a set of opportunities for making observations”:
Here the critical, difficult word is “opportunity”. It is difficult because depending on
the case at hand, such “opportunities” can take on very different formats – they can
be moments or intervals in space-time (as for example in Die Throwing), or (born
or unborn) humans (Credit Risk), real or hypothetical physics labs (Speed of
Light II), or possible states in an incompletely measured physical world (Weather
Forecasting). – The crucial property of a RSOI which is relevant for statistical
considerations is that it hosts a set of observation opportunties. For this reason, as
we will soon see, in mathematical abstraction an RSOI is modeled exactly as that,
just a set of opportunities where observations might be made.

In statistics and probability theory, an RSOI always comes with an observation pro-
cedure (OP). It is the very purpose of an RSOI to enable the recording of data. Like the
RSOI, the OP is a piece of reality, subject to the same necessity to be specified as exactly
as possible. Again, this typically means to sharpen your use of plain English, and provide
a lot of detail. In the natural sciences, empirical papers have a “methods” section where
among other things the OP is described. Often this drills down to indicate the manufac-
turer and type and version number of the measurement appartuses that were used. In
psychology and the social sciences, the OP often is embodied in a questionnaire, which
must be made accessible to the reader of the scientific study in some way for checking and
re-use. But it is not only the questionnaire that makes the OP: when the questionnaire is
distributed by (e)mail and has to be returned by (e)mail, which is a common procedure,
this very procedure may have a critical impact on the study’s validity because the recipi-
ents who return the questionnaire may be systematically different from the recipients who
don’t (the former are more collaborative, have more free time, need the honorarium more
urgently, etc.). Describing and discussing these practical circumstances of the OP is part
of a professional documentation of statistical analyses.

A given RSOI with its OOs is not tied to a specific OP. The “opportunities for making
observations” provided by a RSOI can be exploited for making many kinds of observations.
For instance, in Die Throwing, a throwing event might be observed in other ways than
by recording the number of dots of the displayed face – a physicist might measure the
impact energy of the throw, an audio scientist might record the sound of the die klicking
away on the table, a psychologist might measure the heartbeat rate of the thrower... Or,
in Credit Risk, the student could also have been asked other items besides the ones that
figured on the handed-out questionnaire.

While the RSOI and the OP are real-world fragments (as far as “real” goes) and
can only be specified with difficulties and in plain English, the data value space is a
mathematical object and can be described with complete precision in mathematical terms.
Formally the DVS is a set. This set can be finite (Coin Tossing, Die Throwing) or
infinite (all other examples), it can contain integers or real numbers or labelled graphs or
words or soundtracks or complex, heterogeneous data structures (like in Credit Risk).
Note that a “soundtrack” can be mathematically described as a function from time points
to sound amplitude values, or a “text” as a sequence of symbols from a finite alphabet.
In fact, every kind of object that mathematicians have defined can figure as data values
and be collected in a data value set.
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Chapter 2

Where the randomness sits in the
big picture: elementary events and
random variables

So far we have introduced the main players in the statistical modeling game in informal
terms: the reality segment of interest, the observation opportunities, the observation pro-
cedures, the observations acts, and the data value space. But — so far we haven’t started
talking about randomness! Hello - ?! Dear Probby (if I may call you like that) — where
are you?

Randomness appears when the observation procedure is executed repeatedly. On each
individual occasion when it is executed, one may obtain a data value that differs from the
previously obtained ones, or the ones that one might obtain in the future. Which specific
data value comes out of a particular observation act is “random”.

The point has arrived to begin formalizing the big picture. Step by step we will
develop a mathematical abstraction of the big picture, ending up with the very abstract
axioms and fundamental definitions of probability theory. Probability theory is a branch of
mathematics which affords us with a rigorous formal model of our big picture that we have
introduced in plain English only so far. This formal model is very abstract, which makes
it difficult to master on an intuitive level; on the other hand, its axioms and definitions
are surprisingly short and innocently simple-looking, which makes it easy to memorize.

The way how mathematics abstracts away from concrete RSOIs is quite dramatic: in
the formalism of probability theory, an RSOI is modeled just by a set, almost always
denoted by Ω in the literature. The elements ω ∈ Ω of this set represent the individual
events where observations could be made — the observation opportunities (OO).

The mathematical terminology is not completely standardized. In different textbooks
and papers, the set Ω is named population, statistical population, universe, statistical
universe and probably by other names too. I will use “universe”. Its elements ω are
referred to as elementary events.

Side remark: I love the standard word for Ω in the German literature, which is
“Grundgesamtheit”. This literally translates to something like “Basic Totality” which
sounds as comprehensive and abstract as it should be.

Please, never confound the elementary events ω ∈ Ω with the data value outcomes.
As explained above, it is helpful to conceive of elementary events as moments in (possibly
hypothetical) space-time where some data might be recorded — opportunities to make
some observation.

Re-iterating what I indicated earlier, an elementary event is not tied to a specific
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observation procedure. In Die Throwing, when the thrower throws a die (that is, some
ω is realized), one could record other data besides the number of facing dots. For instance,
one could also record the velocity of the die hitting the table. An elementary event
is an occasion in space-time where some, or any, measurements can be made — which
measurements are made, i.e. which particular recording procedure is carried out at the
occasion ω, is not part of ω.

We will soon learn to appreciate the immense modeling power that comes out of this
conception of elementary events being open to any kind of observation procedure. This
non-commitment to a specific data recording procedure allows a formal model of a random
system to become incrementally extended — new kinds of observations can be added to the
picture as one deems fit. For example (this stupid textbook example again!), in statistical
testing whether a die is fair, once a suspicion grows that it is not, an experimenter might
record data from the throwing acts ω in more detail, e.g. by measuring throwing speed,
impact-on-table energy, and what-not. More relevant examples: in a clinical follow-up
study on the effectiveness of a new pharmaceutical substance, one can add novel physio-
logical tests to the spectrum of medical indicator measurements that have been used in
previous studies. Or, in robotics, sensor readings from a novel sensor that has been put
on an old robot can be integrated into the statistical sensor data processing that is done
by the robot’s on-board control system (“sensor fusion” is a big topic in robotics, and the
underlying mathematical methods make use of the idea that an observation opportunity
admits many different kinds of observations, realized for instance by different sensors on
board of the robot).

The next player to consider in our big picture is the observation procedure (OP). We
have just seen that in fact one should think and speak of observation procedures (plural!)
instead, because an elementary event ω can be observed in an essentially unlimited number
of ways, that is, executing different OPs. We already established that data value spaces
are formal mathematical objects — namely, sets S which contain all the possible outcomes
of a particular recording procedure. A particular OP is always connected to a specific data
value space S. If one adds more OPs to the picture, the DVS is extended by the new DVS
of the new OP. Mathematically this is done by constructing cross-products of sets.

For instance, in Die Throwing, the initial basic OP is to just count the number of
dots, giving S = {1, 2, 3, 4, 5, 6}. Then, at a later point when the checking of the suspicious
die is done with more detail, also the speed of impact on the table is measured. Let the
speed be measured in cm/sec, then a reasonable-looking measurement range might be
the real interval [0, 100]. The DVS for the two-measurement procedure would be S =
{1, 2, 3, 4, 5, 6} × [0, 100]. Finally, also the loudness of the die hitting the table is recorded
with a microphone, giving a reading in decibels. Assuming that a die’s impact is never
louder that listening to a large orchestra from sitting inside the orchestra – which is about
90 dB – a surely wide enough dB range for the little die is again [0, 100]. Adding sound
measurement outcomes, S becomes S = {1, 2, 3, 4, 5, 6} × [0, 100]× [0, 100]. And so on.

Now let us become mathematicians. In mathematical abstraction, an OP is a function
which turns elementary events ω ∈ Ω into data values s ∈ S. Such functions are called
random variables in probability theory. They are typically denoted by capital roman
letters X, Y, . . .. So here is our first piece of the mathematical abstraction of the big
picture:

X : Ω → S (2.1)

15



I have spent about 20 pages to describe data generating environments, data recording
procedures, and data value spaces. All of this is condensed in one of the tiniest mathemat-
ical expression you have seen in your life! Such is the power of mathematical abstraction.

A number of comments and further explanations:

• In order to emphasize that a given universe Ω of elementary events admits the use
of many different recording procedures, it is maybe more revealing to write

Xi : Ω → Si (i ∈ I), (2.2)

which expresses that the same underlying universe Ω can host an entire family of
random variables that we index by indices i from an index set I. Each random
variable Xi comes with its own data value space Si.

• Terminology: the word “random variable” for the mathematical model of a OP is
universally used by everybody. The mathematical set S that contains the possible
data values returned by a random variable X is named differently by different au-
thors. In statistics textbooks it is mostly called the sample space. As we will later see
this is a somewhat unlucky naming — we will later formally define “samples” and we
will see that samples are not the elements of S. In my various legacy machine learn-
ing lecture notes (online at http://minds.jacobs-university.de/teaching/ln)
I mostly used the word “observation space” for S. However, in this lecture I bend
to tradition and call S by the name of sample space.

• Random variables are arguably the most misleadingly named mathematical objects
that we have to live with. A random variable X is neither a variable (it is a function!),
nor is it random (it is reliably and deterministically returning the result X(ω) ∈
S when applied to the argument ω). The randomness in our big picture and its
mathematical abstraction is not created or modeled by the random variables. It
resides in the universe Ω which has the property that different elementary events
ω ∈ Ω will lead to different data values when the (deterministic!) function X is
applied.

We will use the acronym “RV” for “random variable” henceforth.
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Chapter 3

Basic operations on RVs:
products, projections,
transformations

From the perspective of maths, RVs are just functions. The standard operations that can
be applied to any mathematical function can be applied to RVs, too. In the context of
probability theory, it is interesting to take a closer look at these and discuss what these
operations mean in our big picture.

3.1 Products and projections

Let us consider again Die Throwing. Assume the experimenter counts the number of
facing dots and measures the throwing velocity, for each throw. In formal abstraction this
means we have two RVs

X1 : Ω → S1

X2 : Ω → S2,

where X1 models the counting of dots OP (hence S1 = {1, . . . , 6}) and X2 models the
velocity measurement (hence we may set S2 = [0, 100], for instance, assuming that nobody
can throw a die with more than 100 m/sec). We can equivalently tie both RVs into a single
one, getting a compound RV X

X : Ω → S1 × S2, X(ω) = (X1(ω), X2(ω)) ∈ S1 × S2.

The outcomes of this compound OP are pair values whose first component is the observed
number of dots and the second component is the velocity measurement result. In mathe-
matical terms, X is the product of X1 and X2, which is written X = X1⊗X2. The sample
space S1 × S2 is the product set of the sets S1 and S2.

Pair-building operations like (X1(ω), X2(ω)) or product operations like × or ⊗ occur
frequently in probability theory. They can be defined in very general and abstract ways.
Appendix A gives the mathematical background story.

The converse of creating products from components is to pick components from a
product. We denote by πi the operation to pick the i-th element from a tuple. Thus,
taking again X : Ω → S1 × S2, X(ω) = (X1(ω), X2(ω)) ∈ S1 × S2, from S = S1 × S2 we
can recover the component sets S1 and S2 by

S1 = π1(S) and S2 = π2(S).
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We use the same notation πi also for picking component RVs Xi from a product RV
X = X1 ×X2:

X1 = π1(X) : Ω → S1 and X2 = π2(X) : Ω → S2.

This generalizes in an obvious way to more than 2 components.
In the Credit Risk example a data value was a list of info items supplied by the

student. To make this concrete, assume this list had 50 entries, with the first info item
being the student’s age (a number between 1 and 100); the second his/her gender (either
“F” or “M” or “O”); the third his/her nationality (one of 200 or so 3-letter codes like
ABK (Abkhazia), AFG (Afghanistan), ..., ZIM (Zimbabwe); then many more that we
won’t detail, and the 50th a copy of the student’s visum for Germany, given in jpeg
format (that is a binary document, formally a word of 0’s and 1’s). Formally, S here is
the set of 50-tuples of mixed type

S = {1, . . . , 100} × {F,M,O} × {ABK, . . . , ZIM} × . . .× {0, 1}∗, (3.1)

and X : Ω → S models the OP when a student is asked to supply all the 50 info items and
those become entered into the bank’s database. Conversely, for 1 ≤ i ≤ 50, πi(X) models
the OP “record the i-th item of the bank’s questionnaire”.

These two examples demonstrated finite products of RVs, leading to tuple value
spaces. It is also possible to bind together infinitely many RVs. In the Sentence
translation scenario, the pairs of sentences (s, s′) would be modeled by two fami-
lies of RVs (Xn)n∈N, (Yn)n∈N, where Xn returns the n-th letter in the English sentence
s and Yn the n-th letter in the German translation s′. Each Xn, Yn takes values in
S = {a, . . . , z, A, . . . , Z, , , ; , ., ,#}. We use the # symbol to “fill time” after the end
of a sentence, that is, Xn(ω) = # when n is greater than the length of the sentence. This
is one way to deal with variable-length timeseries data. Binding together each of the two
families Xn, Yn gives

X :=
⊗
n∈N

Xn,

Y :=
⊗
n∈N

Yn,

where

X : Ω →
∏
n∈N

S,

Y : Ω →
∏
n∈N

S.

Infinite products of RVs are denoted with the symbol
⊗

(see Appendix A for the pure
math story of such products of functions). This would yield values of X, Y of the form

X(ω) = I b u i l t a h o u s e . # # # ...
Y (ω) = I c h b a u t e e i n H a u s . # # # ...

For a slightly more involved case, consider our Speed-of-light II example. Recall
that in this scenario we declared an “experiment” to consist of a repeated execution of
speed-of-light measurement trials carried out in some lab. How many such measurements
are done is not fixed, different labs can repeat trials different numbers of times. In our first
plain-English rendering we captured this by setting S = {(x1, . . . , xTstop)|Tstop ∈ N, xi ∈
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R≥0}. The number N of how many trials are executed before the experiment is stopped
varies between experiments. The standard way of how such a situation is modeled in
probability theory is to turn Tstop itself into a RV, called a stopping time. The speed
value measured in the n-th trial of an experiment is modeled as the value returned by a
RV Xn. For a mathematically homogenous model, one does not restrict n to not exceed
the stopping time, but instead “records” the last trial’s speed value again and again for
all times n ≥ Tstop. Using stopping times is another way to deal with variable-length
serial data. Concretely, for example, if in some experiment in some lab three trials are
done with outcomes x1, x2, x3, this would be formally modeled by an infinite sequence
x1, x2, x3, x3, x3, . . . of speed values, together with the fact that the stopping time was
Tstop = 3. More abstractly one introduces a RV Tstop and an infinite sequence of RVs
X1, X2, . . . with

Tstop : Ω → N,

Xn : Ω → R≥0 for n ∈ N,

and requires that
∀ω ∈ Ω,∀n > Tstop(ω) : Xn(ω) = XT (ω)(ω).

Thus we could join all the RVs of our model of Speed-of-light II into a single product
RV E (for “experiment”) by

E := Tstop ⊗X1 ⊗X2 ⊗ . . .

= Tstop ⊗
⊗
n∈N

Xn,

where
E : Ω → N×

∏
n∈N

R≥0. (3.2)

Here
∏

n∈N R≥0 denotes the N-fold product of the set R≥0. Check Appendix A for the
mathematical definition of infinite products of sets. Intuitively,

∏
n∈N R≥0 is the set made

of all right-infinite sequences of nonnegative reals. In our example where only three trials
are made, one would concretely have

E(ω) = (3, x1, x2, x3, x3, x3, . . .),

with x1, x2, x3 the three measured speeds of light in this experiment ω.
Again, we may isolate the components of a product RV by projections. In our example

we would get π1(E) = Tstop, π2(E) = X1, π3(E) = X2, etc.
Further Comments:

• Finite and infinite products of RVs and sample spaces play a major role in proba-
bility theory and its applications in statistics and machine learning. Make sure you
establish an unshakeable friendship with them.

• Just a side remark: probability scenarios that involve stopping times occur frequently
and importantly in economics and game theory. The stopping times then model
occurances and decisions like “game over”, “bankruptcy”, “decision to quit a bidding
contest” or the like.
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3.2 Transformations of RVs

In statistical data analysis, the “raw” data that are recorded by some data recording
procedure are often too bulky, too noisy or too redundant to be useful. One therefore
often submits them to some preprocessing which compresses them, or de-noises them, or
in some other way makes the data format more easily analysable.

A very common preprocessing step is to reduce numerical accuracy of raw data. For
instance, in our Credit risk example, one of the questionnaire fields might be “regular
monthly income”. A student might fill in a value of, say, 782.45 Euro. For credit risk
estimation such a degree of precision is irrelevant, so the raw data value will be rounded
to a precision of 100 Euros, transforming the raw numerical value 782.45 into the range
value [700−799.99] =: b7. Such coarse data range segments are called bins and the process
of truncating precision to bin values is called binning.

This is expressed in formal maths as follows. Assume, in this example, that the
RV for this questionnaire field was X20 : Ω → S20, with S20 = R≥0. The raw value
X20(ω) = 782.45 is passed to a function, call it β, which returns the associated bin. For
instance, β(782.45) = b7 or β(512.12) = b5. The domain of β is S20, the codomain is
S′20 := {b0, b1, . . .}. Now consider the composite function

β ◦X20 : Ω → S′20.

This composite function β ◦X20 is again a random variable! Generally, if

X : Ω → S

is some RV and
f : S → S′

is some function, then
f ◦X : Ω → S′

is again a random variable — a transform of X.

Figure 3.1: Transforming an audiosignal (top) into a “Mel-Cepstrum coefficient” repre-
sentation (bottom) [schematic]. Upper picture taken from aile.revues.org/4533.

For a more involved case of a transformation, consider the example Speech recog-
nition. The data recording procedure presumably involved a microphone connected to
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a computer, and the data value space was made of the sound recordings obtained with
this apparatus, for instance in the format of a raw acoustic waveform recording (see upper
panel in Figure 3.1). This format is not very practical for automated speech recognition
algorithms. Instead of feeding such “raw” audiosignals into the recognizer algorithm, the
raw data are pre-processed by some filtering procedure that transforms them into another
representation format which is more suitable for further algorithmic processing. Figure
3.1 shows how this is standardly done in speech processing. The raw soundwave recording
is submitted to a certain kind of sound frequency analysis, leading to a new representation
that consists of time traces of 12 “Mel-Cepstrum coefficients”. As you can see in Figure
3.1, the transformed signal looks “simpler”, and indeed it is: storing it needs much less
computer memory than storing the original soundrecording. Such a reduction of data size
is an important function of preprocessing in many modeling applications. Another role of
preprocessing, equally useful, is to get rid of “irrelevant” aspects of the raw data, leaving
only what is maybe important for the particular modeling task (here: recognizing what
has been said).

In formal terms, the original sound recording can be modeled by a RV X : Ω → S,
where S is the space of all possible raw sound recordings. The preprocessing here is an
algorithmic procedure β, actually a quite complicated one, which transforms a raw sound
recording to the Mel-Cepstrum coefficient format.

Transformations of RVs can be iterated, always leading to further RVs. For instance, in
the Speech recognition example, the Mel-Cepstrum coefficient format, which is made
of 12 timeseries, can be further trimmed down to just a vector of 12 numbers, each of
them being the mean value of the corresponding Cepstrum coefficient timeseries averaged
over recording time.
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Chapter 4

Modeling temporal data by
stochastic processes

A stochastic process is the mathematical model of a system which evolves in time and shows
some randomness in doing so. Examples: the erratic rises and falls of stock market indices;
talking humans; electromagnetic signals picked up by an antenna; ... well, essentially
everthing under the sun that evolves in time. And since essentially everything under the
sun evolves in time, basically all real-world data are (or should be modeled as) time series.
Such data obviously are super important in the data sciences. In this section I explain
how such temporal random data are modeled by RVs.

When modeling a temporal system, the first item a modeler has to provide is a model
of time. A main distinction is between discrete time and continuous time. In discrete-time
models, time is progressing stepwise, leading to a sequence of time points. The can be
separated by real-world timespans, like in daily recordings of stock markets (1 increment
= 1 day), or like in sampling microphone signals for digital signal processing (1 increment
= 1/20000 sec in 20 kHz sampling). Or they can be separated just by unit increments
when a real-world duration is irrelevant, like when a typed text is seen as a temporal
sequence of letters. In any case, the timesteps can be mapped to the integers, and one
ends up with three kinds of sets T of time points that model discrete timelines:

• Finite discrete time: the set T of time points is a finite sequence of integers, T =
(0, 1, . . . , N).

• Open-ended discrete time: the set of time points is the right-infinite sequence
0, 1, 2, . . ., that is, T = N.

• Two-sided infinite discrete time: T = Z.

In continuous-time models, time is conceived as a continuous flow of time points, with
the analog main distinctions of finite intervals T = [tmin, tmax ] ⊂ R, right-infinite intervals
like T = [0,∞) = R≥0 or two-sided infinite time T = R.

After this modeling decision has been made, i.e. after one of the six kinds of time
point sets T just listed has been chosen, the core piece of a mathematical model of the
respective random process is an indexed family of RVs

(Xt)t∈T ,

with the interpretation of T as an (ordered) set of timepoints. Each RV Xt then delivers
the data value of the random system at time t (for discrete time one often prefers n over
t, giving (Xn)n∈T ).
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Now comes the crucial part. All the Xt from such an indexed family share the same
image set S, that is, each of them is a function Xt : Ω → S. A single elementary
event ω ∈ Ω thus gives an indexed family (Xt(ω))t∈T ∈

∏
t∈T S of observation values in

S. Intuitively, (Xt(ω))t∈T can be viewed as a timeline recording, and be visualized as a
graph where the observation values at times t are plotted against T . The value sequence
(Xt(ω))t∈T is called a path or realization or trajectory of the stochastic process.

Figure 4.1 gives a discrete-time example where T = (0, 1, . . . , 4).

T 
0 1 2 3 4 

S 
X0(!) 

X1(!) 
X2(!) X3(!) 

X4(!) 

X0(!" ) 
X1(!" ) X2(!" ) X3(!" ) 

X4(!" ) 

Figure 4.1: Two paths (Xt(ω))t∈T and (Xt(ω′))t∈T of a stochastic process defined for
discrete time points 0, 1, . . . , 4 and S = R.

Hold your breath: if one models a continuous-time system with paths like (Xt(ω))t∈R,
uncountably many RVs are needed! If you don’t like that, you can equivalently group
them all together and be left with a single RV X =

⊗
t∈R Xt whose values X(ω) then are

functions ϕ : R → S.
Advice: don’t continue reading before you feel sure you have a full grasp on these

constructions and notations. You’ll be using them heavily all over the place.
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Chapter 5

Interim summary: formalizing the
big picture

Let us assemble all the items that we have met so far in a take-home summary:

• The main real-world objects of statistical modeling are ensembles made of three
items: a data-generating environment RSOI, a data-recording procedure OP, and a
data value space DVS.

• RSOIs are systems in which data recording acts can be made. When defining a
RSOI, one therefore often has to specify potential opportunities for data recording
acts besides the data recording acts that have already materialized.

• These “opportunities for data recording acts” are not tied to a particular type of
measurement or observation. In principle, at each such occasion, further data record-
ing procedures could be carried out besides the ones that are initially included in
the picture. This enables an incremental extension of statistical models.

• The mathematical abstraction of these three items are collected in the following
table:

Real-world item Its mathematical abstraction
RSOI, a collection of opportu-
nities for data recording acts

A universe Ω made of elementary events
ω

DVS, the set of possible mea-
surement outcome values

Sample space S

OP, a (possibly compound)
procedure to record data
when an occasion materializes

A random variable X : Ω → S. It is often
useful to establish X as a product X =⊗

Xi, where each Xi : Ω → Si provides a
component of the compound values found
in S =

∏
Si.
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Chapter 6

Structure in randomness: events

So far, our mathematical model is just this, X : Ω → S. It allows us to to model that on
different recording opportunities ω we get different observation values X(ω), but that’s it.
So far we cannot model what is meant when a data scientist says, “the probability of the
die showing a 2 is larger than 1/6”, or “the probability of student Dilbert Doolittle paying
back his loan is estimated to be 0.8”, etc. We will now add probability to the picture, step
by step. The first step is to clarify what things can have a probability in the first place —
that is, when we say, “the probability of ***”, what is this “***”?

The “***” things are events, and understanding the nature of events is likely the
biggest hurdle to making friends with probability.

6.1 Events

The key concept to formalize probability is the notion of an event. Here is a first definition
of an important special type of event:

Definition 6.1.1 Let X : Ω → S be a RV X defined on the universe Ω, taking values
in S. Let A ⊆ S be a subset of S. Then the event of X taking a value in A is the set
{ω ∈ Ω | X(ω) ∈ A}.

Events are always subsets of Ω. Here we have defined a special kind of events, namely
events defined by the condition “X is taking a value in A”. This is in fact the only kind
of event that we need for statistics and machine learning. Other kinds of events (other
subsets of Ω) are considered in abstract mathematical probability theory, but we will not
have to deal with them. For all that matters to us, you can identify “event” with “set of
elementary events where X is taking value in A”.

By an abuse of terminology, we will also allow ourselves to call a set A ⊆ S an event –
although, rigorously taken, it is not an event itself but a set defining an event. Since we
will be considering only events of the kind “X takes value in A”, this does no harm.

Notation: the event {ω ∈ Ω | X(ω) ∈ A} is also written as X−1(A) or as X ∈ A.
The latter notation is “dirty” because of course X is not an element of A, but still this
notation is often used.

Let us inspect some examples.

• In Die throwing consider A1 = {1} ⊆ {1, . . . , 6} = S. Then X−1(A1) is the
set of all throws (realized or hypothetical) that yield a facing single dot. And for
A2 = {1, 2, 3}, X−1(A2) is the event consisting of all throws whose outcome is 1 or
2 or 3 dots.
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• In Speed-of-light I let us consider A = [290000000, 300000000] ⊆ S, the interval
of real numbers between 290000000 and 300000000. Then X−1(A) is the set of
all single-trial measurements in the modeled Lab where a value between these two
limits is measured. Of course this again includes “potential” measurement trials
yet to executed. (Btw., physicists have defined the length of a “meter” to be the
distance that light travels in 1/299792458 sec. Therefore the speed of light is exactly
299792458 m/s, by definition. If deviations from this value would be found by high-
precision experiments, then the length of a meter would need to be corrected, not
the speed of light! What is measured in such Labs is actually not the speed of light,
but the length of a meter! and don’t ask me how seconds are defined by physicists...
[you find an answer in en.wikipedia.org/wiki/Speed of light].)

• An observation value set A that defines an event can be quite richly structured when
the sample space is richly structured. In Speed-of-light II consider the rendering
of the sample space S = N ×

∏
n∈N R≥0 that we introduced in Equation 3.2. This

is an infinite product of sets. A subset worth considering might be the set of all
elementary events (that is, measurement experiments) where at least one of the
recorded values exceeds 300000000. That is, we would consider

A = {(n, x1, x2, . . .) | at least for one i ∈ N, xi > 300000000}.

For later use we note that this set A could also be formalized as follows. Clearly,
(n, x1, x2, . . .) ∈ A if and only if x1 > 3e8 or x2 > 3e8 or x3 > 3e8... Denote by G
the right-infinite interval (30000000,∞) ⊂ R≥0 of reals exceeding 3e8. Since logical
or translates to set union, our set A can also be written as a countably infinite union:

A =
⋃
i∈N

N×
∏

n=0,...,i−1

R≥0 ×G×
∏
n>i

R≥0

 . (6.1)

Then X−1(A) is the event of all experiments (physically executed or hypothetical)
where at least one measurement trial gives a value greater than 3e8.

• In Credit risk let us assume, for concreteness, that the bank collects data records
X(ω) consisting of the 50 items indicated in Equation 3.1. The bank’s analyst may
be interested to model clients that are not German citizens. To this end, the analyst
inspects the event

A = {(x1, x2, . . . , x50) | x3 6= ’GER’} ⊂ S.

Again for later use we note that, since the logical not is captured by set complement,
A can also be written as

A = S \ ({1, . . . , 100} × {F,M,O} × {GER} × . . .× {0, 1}∗) . (6.2)

Then X−1(A) ⊂ Ω is the event that contains all the potential query acts imposed
by the bank on a student where the student fills in another code than GER in the
nationality field.

Note that elementary events ω are not events of the type “event of X taking value in
A”. There are two reasons why not. First, a formal one: An elementary event ω is an
element of Ω, not a subset. If one wishes to consider elementary events ω as events in our
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new sense, then one would have to re-interpret them as singleton sets {ω}. The second
reason is more substantial. Even when we consider singleton subsets {ω} ⊂ Ω, and have
a RV X : Ω → S, then usually there exists no subset A ⊆ S such that {ω} = X−1(A).
This is because different elementary events ω, ω′ may yield the same outcomes under X,
i.e. X(ω) = X(ω′) is typically possible — RVs are usually not injective. But then, for any
A ⊆ S, when ω ∈ X−1(A), also ω′ ∈ X−1(A) — in other words, ω is indistinguishable
from ω′ observation-wise.

6.2 A brief look at sigma-fields

In Definition 6.1.1 I referred to “a” subset A of S. However, not any arbitrary subset A ⊆ S
is admissible in probability theory. If one would admit any subset A ⊆ S for generating an
event, probability theory would run into a host of technical difficulties that would cripple
it; most theorems of today’s probability theory would not hold or would even be ill-defined.
It has taken mathematicians centuries to work out an appropriate set of constraints on
subsets A ⊆ S such that the resulting probability theory is mathematically manageable on
the one hand, and rich enough on the other to cover all phenomena of interest. The
resulting theory of σ-fields (also called σ-algebras) rests on simple axioms (which we
will present), but these simple axioms spawn a very intricate field of mathematics called
measure theory (which we will not touch).

Technically, given a set S, a σ-field F over S is a subset of the power set of S, subject
to certain constraints. Thus F ⊆ Pot(S), where Pot(S) denotes the power set of S, i.e.
the set of all subsets of S. In words, σ-fields over S are certain collections of “admissible”
subsets of S.

In the examples given in the previous subsection I pointed out that certain relevant
sets A ⊆ S were obtained by set complement (Equation 6.2) and by countably infinite
union (Equation 6.1). This was related to the use of or and not arguments. These logical
operations occur naturally in statistical reasoning. Statistical modelers want to be able
to say things like, “there is a high probability that the human species is closely related
to chimps or gorillas”, or “I wonder what is the probability that this loan will not be
repaid”. (The logical and can be expressed in terms of or and not, so we don’t have to
consider it separately). Logical and statistical reasoning are not that far away from each
other! This intimate connection between logical reasoning and reasoning about statistical
events is directly captured in the formal definition of a σ-field:

Definition 6.2.1 A collection F ⊆ Pot(S) of subsets of a set S is a σ-field over S if it
satisfies the following conditions:

1. S ∈ F ,

2. if A ∈ F , then Ac = S \A ∈ F (closure under complement),

3. if A1, A2, . . . are all elements of F , then
⋃

i∈N Ai ∈ F (closure under countably
infinite union).

Note that closure under countably infinite union includes closure under finite union.
To see this, write A1 ∪A2 = A1 ∪A2 ∪A2 ∪A2 ∪ . . ..

Two immediate consequences: a σ-field F always contains the empty set (because
∅ = Sc), and F is also closed under countable intersection (follows from de Morgan’s
law). Note that intersection of sets corresponds to logical and. In sum, the sets occurring
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in a σ-field F admit all kinds of iterated “Boolean” re-combinations, and the sets thus
obtained are also in F .

Given a set S which contains more than one element, there exist more than one σ-field
over S. It is an easy exercise to deduce from Definition 6.2.1 that the smallest σ-field over
S is given by F = {∅, S}, and the largest is F = Pot(S). The σ-fields that are possible
for a given S are by no means unique. A statistical modeler must choose the σ-field that
is best suited for the modeling purpose at hand.

There are two special kinds of sample spaces S which occur very often and whose
σ-fields are almost always chosen in the same way:

Finite S. When the sample space is finite (as in Die Throwing where S = {1, . . . , 6}),
one typically uses the power set σ-field F = Pot(S).

Continuous S. When the sample space S is R or a part of R (like in Speed-of-light
II where it was R≥0), then one typically uses a specific σ-field known as the Borel
σ-field. We denote it by B(R). The Borel σ-field is a very richly structured thing,
and we cannot explore it here in all the detail that it deserves. For us it is enough
to know that the Borel σ-field B(R) ⊂ Pot(R) contains all intervals of the real
line, including singleton intervals and infinite intervals. Concretely, for real numbers
a < b, the following intervals are contained in B: {a} (the “point interval” consisting
only of a); [a, b], (a, b], [a, b), (a, b) (the closed, half-open, and open intervals with
limits a, b); the half-infinite intervals [a,∞), (a,∞), (−∞, a], (−∞, a) and, of course,
(−∞,∞) = R itself.

Without proof I mention the following

Theorem 6.2.1 If (Fi)i∈I is a family of σ-fields over a set S, then⋂
i∈I

Fi = {A ⊆ S | ∀i ∈ I : A ∈ Fi}

is a σ-field over S, too.

The proof is easy, do it. In math terminology, this theorem says that σ-fields are closed
under arbitrary intersections.

Theorem 6.2.1 paves the way to define interesting non-trivial σ-fields. Consider a
collection G ⊆ Pot(S) of subsets of S. Then we can define the σ-field generated by G as
the smallest σ-field over S which contains all the sets from G:

Definition 6.2.2 For G ⊆ Pot(S),

σ(G) :=
⋂

F is a σ−field over Sand G⊆F
F

is the σ-field generated by G.

The Borel-σ-field B(R) is, by one of its many possible definitions, the σ-field over
R which is generated by all the open intervals (a, b) in the real line R. Because some
familiarity with the Borel-σ-field is required for working in probability theory, we now
exercise our skills a little by investigating some sets that are in B(R):

1. R ∈ B(R) because, by the definition of a σ-field, R is contained in every σ-field over
R, hence it is in B(R) too.
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2. Every right-infinite open interval (a,∞) is in B(R) because it can be written as a
countable union of sets from G:

(a,∞) =
⋃
n∈N

(a, a + n),

hence every σ-field F containing G must also contain (a,∞) due to Definition 6.2.1,
which implies by Definition 6.2.2 that also B(R) contains (a,∞). Similarly, the
left-infinite open intervals (−∞, a) are in B(R).

3. Every closed interval [a, b] is in B(R) because each such interval can be written as

[a, b] = ((−∞, a) ∪ (b,∞))c .

Since we already know that (−∞, a), (b,∞) ∈ B(R) and σ-fields are closed under
finite unions and complements of sets, this gives us [a, b] ∈ B(R).

4. Every singleton set {a} is in B(R) because such sets can be written as {a} =
((−∞, a) ∪ (a,∞))c.

5. Every countable set {a1, a2, . . .} of points ai ∈ R is in B(R) because it is a countable
union of singleton sets, which we know are in B(R).

6. Every set A ⊆ R that is open in the standard metric topology of R is in B(R)
because, by a theorem of topology, every such set can be written as a countable
union of open intervals.

7. Likewise, every closed subset of R is in B(R) because these sets are the complements
of open sets.

We have seen that one frequently combines sets into set products. If on two sets S1, S2

there are two σ-fields F1,F2, the natural construction to define a σ-field on S1×S2 is the
product of F1 and F2:

Definition 6.2.3 Let S1, S2 be two sets equipped with σ-fields F1,F2. The product F1 ⊗
F2 of F1 and F2 is the σ-field on S1 × S2 which is generated by all sets A × B, where
A ∈ F1 and B ∈ F2.

This is not a very practically useful definition, because it is based on all sets in F1

and F2, which in infinite σ-fields are virtually unmanageably complex. The following
theorem allows us to construct product σ-fields from generating sets, which are usually
much simpler:

Theorem 6.2.2 Let S1, S2 be two sets equipped with σ-fields F1,F2. Let F1,F2 be gen-
erated by G1,G2, respectively. Furthermore, let G1 contain a countable family (An)n∈N
such that

⋃
n An = S1, and let similarly G2 contain a countable family (Bn)n∈N such that⋃

n Bn = S2. Then F1 ⊗F2 is generated by G1 × G2.

For an illustration, we make use of this theorem to get an impression on the Borel-σ-
field B(R2) on R×R. We know that B(R) is generated by the open intervals (a, b) in the
real line. This generator satisfies the conditions of Theorem 6.2.2. The Borel-σ-field B(R2)
on R × R is hence generated by all open rectangles (a, b) × (c, d) in the two-dimensional
plane, that is,

B(R2) = σ({(a, b)× (c, d) | a < b and c < d}) =: σ(H).
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For an exercise in “σ-thinking”, we demonstrate that the line L = {(x, x) ∈ R2 | x ∈ R}
is in B(R2). Denote the rectangle (x, x + a)× (x, x + a), where n ∈ N, by R(x, a). Clearly
each R(x, a) is in H. For n ≥ 0 consider the set

Tn =
⋃
j∈Z

R(j · 2−(n+1), 2−n).

Since each Tn is a countable union of sets from the generator H, Tn ∈ B(R2). But it is
easy to see (compare Figure 6.1) that

L =
⋂
n

Tn,

that is, L is a countable intersection of elements from B(R2), hence L ∈ B(R2).

1 2-2 -1

1

2

-2

-1

Figure 6.1: One way to see why the line of points (x, x) is in B(R2): the set of points (x, x)
can be written as a countable intersection of sets Tn, where each Tn is in B(R2) because
it is itself a countable union of sets R(j · 2−(n+1), 2−(n)) which are in B(R2) because they
are open squares. The graphics shows some of the rectangles R(j · 2−1, 20) contributing
to T1 (light blue) and some R(j · 2−2, 2−1) contributing to T2 (light red).

Like in the 1-dimensional case, there is a theorem that every topologically open and
every closed set A ⊆ R2 is in B(R2). Since the line L of all (x, x) points is topologically
closed, showing that L ∈ B(R2) could be done just by citing that theorem. But our
grassroot derivation is more instructive.

Figure 6.2 shows some more sets that are in B(R2). It is, in fact, difficult (and would
be beyond our means) to specify a set A ⊆ R2 that is NOT in B(R2). The powers
of generating new sets by repeated countable unions and complements is beyond our
imagination and renders the study of σ-fields a rather difficult enterprise. Usually this
material is only taught to core mathematics students. I nonetheless wanted to afford you
a glimpse, because it gives you a feeling of the wonders of probability.
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Figure 6.2: Some sets in the Borel σ-field on the unit square. From left to right: rectangles,
lines, filled shapes, fractal sets. Image in last panel taken from http://www.ijon.de/
mathe/julia/some julia sets 4 en.html.

If you want to dig a little deeper into σ-fields, I recommend the Wikepedia article
en.wikipedia.org/wiki/Sigma-algebra.

Although σ-fields are very intricate objects, the reason why they arise inevitably and
naturally in probability theory is simple:

• We want to be able to say, the probability that anything will happen is equal to 1.
This “anything” is the event that includes all possible observation outcomes, that
is, it is just S itself. This is condition 1 in Definition 6.2.1.

• We want to be able to speak of the probability that something does not happen.
Since probabilities are assigned to events, which we defined through subsets of S,
we have to deal with complements of sets - the second ingredient in the definition of
σ-fields.

• Finally, we want to be able to speak of the probability that this or that can happen.
Even more, we want to be able to speak of the probability that this or this or this
or this . . . may happen (we need countably infinite or’s because, for instance, we
want to talk about the probability that an accident happens now or within a minute
or within two minutes or ...). This leads to the third condition in the definition of
σ-fields.

6.3 Measurable spaces and measurable functions

We round off our excursion into σ-fields with a few definitions and insights that are the
“small coin” of texts on probability theory — these items are just taken for granted by
anybody seriously talking probability.

When doing statistical modeling, the sample space S that we use is always equipped
with a σ-field F . This leads to a mathematical object known as a measurable space:

Definition 6.3.1 A pair (S,F), where S is a set and F is a σ-field over S, is called a
measurable space.

Often the choice of an appropriate σ-field is natural and the same σ-field is used in
virtually all uses of a given sample space. For instance, the standard default σ-field for
finite sample spaces S is the power set of S, and the default σ-field for real-valued sample
spaces (subsets S ⊂ Rn) is the Borel σ-field B(Rn) which is generated by the open n-
dimensional intervals in S. Since real-valued observation outcomes are ubiquitous, the
Borel σ-fields B(Rn) are a constant companion for statisticians.
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When one has a measurable space (S′,F ′), a set S and a function ϕ : S → S′, this
function creates a σ-field on S (compare Definition 6.2.2):

Definition 6.3.2 Let ϕ : S → (S′,F ′) be a function from some set S to the measurable
space (S′,F ′). Let ϕ−1(F ′) = {ϕ−1(A) ⊆ S | A ∈ F ′} be the set of all pre-images of ϕ of
elements of F ′. The σ-field σ(ϕ−1(F ′)) on S is called the σ-field induced on S by ϕ.

In fact, the σ-field induced by ϕ just is the collection of all pre-images of ϕ:

Proposition 6.3.1
σ(ϕ−1(F ′)) = ϕ−1(F ′).

The proof is left as a homework exercise.
Functions between measurable spaces abound in probability theory — after all, random

variables and transformations of RVs are functions between measurable spaces. Such
functions are always required to satisfy a certain soundness condition — they must be
measurable:

Definition 6.3.3 Let (S,F), (S′,F ′) be two measurable spaces and let ϕ : S → S′ be a
function. Then ϕ is said to be F − F ′-measurable if for all A′ ∈ F ′, ϕ−1(A′) = {a ∈
A | ϕ(a) ∈ A′} is in F .

Another, equivalent way to characterize measurability of a function ϕ : (S,F) →
(S′,F ′) is to require that ϕ−1(F ′) ⊆ F .

Notice the similarity of the concept “measurable function” with the concept of a “con-
tinuous function” used in calculus and topology. By its general definition in topology, a
function ϕ from a topological space A to a topological space B is said to be continuous if
the pre-image of any open set in B is an open set in A. The elementary calculus textbook
definition of a continuous function ϕ : Rn → Rm is a special case of this general topological
definition (recall that textbook definition: ϕ : Rn → Rm is continuous in a ∈ Rn if for all
δ > 0 there exists an ε > 0 such that if ‖a− a′‖ < ε, then ‖ϕ(a)− ϕ(a′)‖ < δ).

The most common use of all of these concepts occurs with random variables. When
one has a sample space S equipped with a σ-field F , and a RV X : Ω → S, this RV
induces a σ-field X−1(F) on Ω. In intuitive terms: a RV “back-projects” the structure (=
the σ-field) of a sample space into the universe. In our initial, private terminology: the
structure we can see in a RSOI is the the structure of our observation spaces (= (S,F)),
seen “backwards” through our observation procedures.

6.4 Interim summary 2: The big picture again, enriched
with events

Let us assemble what we have got so far. Our mathematical model of a RSOI, OP, DVS
now consists of Ω (abstract model of RSOI), a family (Xi)i∈I of RVs (abstract model of
the OP), and an associated family ((Si,Fi))i∈I of measurable spaces (models of the DVS
subspaces that we use). Each set A ∈ Fi induces an event Xi(A) ⊆ Ω.

Figure 6.3 illustrates this situation. You see that by virtue of the involved RVs, the
universe Ω becomes populated by numerous events. In fact the schematic illustration in
Figure 6.3 gives a much too weak impression of the richness of events that are induced in
the universe by RVs. I invite you to unleash your powers of imagination, and contemplate
the following, virtually mind-stunning points:
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Figure 6.3: Two RVs X1, X2 defined on a universe Ω (schematic). A,B are some elements
of F1, C,D,E some elements of F2. In Ω some events induced by X1, X2 are shown. The
set highlighted by a bright green boundary is the event X−1

1 (A) ∩X−1
2 (C) – that is, the

event “X1 takes value in A and X2 takes value in C”. The event highlighted by a yellow
boundary is X−1

1 (B) ∪X−1
2 (E) – that is, “‘X1 takes value in B or X2 takes value in E”

• When some sample space Si is continuous and equipped with the Borel σ-field Bi,
this σ-field Bi contains uncountably many sets. Showing only two or three of them
the figure therefore does not give credit to the enormous number of sets that are
often admissible in a sample space. And each of these sets A ⊆ Si leads to an event
X−1

i (A) that adds to the event population in Ω.

• Many statistical models involve infinitely many RVs — even uncountably many. This
occurs, for instance, always when open-future temporal developments of a random
system are modeled by a stochastic process. Each of these RVs Xi may have an
uncountable σ-field Fi. And all of the elements A of all of these Fi lead to events in
Ω!

• Events can be defined by combining the workings of several RVs. In Figure 6.3 two
simple instances are indicated. The set X−1

1 (A) ∩ X−1
2 (C) is the event that could

be paraphrased as “all occurances ω where measurement X1 gives an outcome in
A and X2 a value in C” (set intersection corresponds to Boolean and). Similarly,
X−1

1 (B) ∪ X−1
2 (E) is an event defined by combining outcomes from X1, X2 with

logical or. Furthermore, the set complement operation includes the logical not into
the picture (not shown in the figure).

• In probability theory one generally admits countably infinite event unions (or) and
intersections (and). These arise more often than you would guess from the simple
Figure 6.3. A strong motif for including such infinite combinations is that this
enables a formal treatment of probabilistic statements which include limits, as in
“as time progresses, the probability that the bank ends in bankruptcy approaches
1”.
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In spite of this complexity, there is an intuitive way to capture the essence of all of the
events in Ω:

The grand intuition: an event is any subset of the universe that can
be characterized by combining information about observation outcomes.

“Combining information” here means to use the logical or, and, and not operations,
even (countably) infinitely often.

Finally, consider again a family of RVs (Xi)i∈I , where Xi : Ω → (Si,Fi). The set of
all events that are induced by the family of RVs (Xi)i∈I , that is the set

⋃
i∈I X−1

i (Fi),
generates a σ-field σ

(⋃
i∈I X−1

i (Fi)
)

on Ω. This σ-field is denoted by A((Xi)i∈I), or simply
by A when the RVs are clear from context. A((Xi)i∈I) is the smallest σ-field on Ω which
makes all the (Xi)i∈I measurable.

Thus we conclude this section with the following abstraction of the big picture, enrich-
ing our initial account from Equation 2.1:

Xi : (Ω,A) → (Si,Fi) (6.3)
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Chapter 7

Finally... calling probability on
stage!

Now (after about 40 pages...) we have set up the scene such that we can usher in her
majesty, PROBABILITY, and install her on her throne. This throne is A, the σ-field on
Ω which contains all the events we ever can identify through observations. We assign to
each such event E ∈ A a probability, that is a number between 0 and 1, written P (E).

7.1 Probability spaces and THE probability space

At this point I will become more general than necessary for our purposes. In mathematical
probability theory, “probability” is introduced in a very abstract way, without reference to
statistical modeling of real-world phenomena. I present that abstract definition, and will
show how it is to be applied in our modeling scenario, after giving the formal definition.

Definition 7.1.1 Let M be a non-empty set and F ⊆ Pot(M) a σ-field on M , that is,
(M,F) is a measurable space. A probability measure on (M,F) is a function P : F →
[0, 1] which assigns to each set A ∈ F a value 0 ≤ P (A) ≤ 1, subject to the following
conditions:

1. P (M) = 1.

2. For all sequences A1, A2, . . . of pairwise disjoint elements of F :

P

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

P (Ai). (7.1)

The second condition is called σ-additivity. The triple (M,F , P ) is called a probability
space.

The conditions stated in Definition 7.1.1 have some immediate consequences (easy
exercise to prove them):

P (∅) = 0
P (Ac) = 1− P (A)

A ⊆ A′ ⇒ P (A) ≤ P (A′)

35



For us and our goal of formalizing statistical models of real-world phenomena, one
specific probability space is key. Namely, we endow the universe Ω and its σ-field A —
which is the core of our grand intuition — with a probability measure, obtaining

(Ω,A, P )

as our one-and-only fundamental probability space.
An almost philosophical comment is in place. In the picture that I have presented

here, probability “lives” in the universe Ω. The universe Ω is the abstract model of a
reality segment of interest (RSOI), a piece of reality. We thus pictured probability to be a
property of the real world. According to this way of modeling random systems, probability
is a “real”, “physical” property of certain events to occur with certain probabilities. For
instance, it is a physical property of a loaded die to come up with a facing “6” with a
probability of P (X = 6) = 1/5. This is not the only way how philosophers — and engineers
and other down-to-earth people — have conceived of probability. Specifically, one can also
start from a notion of probability as a subjective degree of belief (“I believe it will rain
tomorrow with a probability of more than one half”). This is the approach of Bayesian
statistics. Chapter 15 says a little more about Bayesian statistics. The formal tools forged
by abstract mathematicians (σ-fields, measurable spaces, random variables, probability
spaces) are used by Bayesian statisticians, too — but there these formal constructs are
interpreted with different background intuitions, and are mapped to reality in a very
different way.

One could call the interpretation of probability that we embraced, an “empirical”,
“realistic”, or “objectivistic” view, in contrast to the “subjectivistic” view of Bayesians.
For the latter, probability is not a physical property of real-world objects, but a subjective
“degree of belief”.

The abstract tools for modeling probability (σ-fields, measurable spaces, random vari-
ables, probability spaces) were moulded into their present modern form by the Russian
mathematician Andrey Nikolaevich Kolmogorov in a book [Kolmogorov, 1956] first pub-
lished 1933 in German.

7.2 Notation: the basic format of probability statements

Different authors and textbooks use different notation styles for probability formulas, and
it is not easy for a student to discern the invariant core behind these variable conventions.
In turn, students often have serious difficulties to just write down formulas involving
probability in a clean and consistent way. Now I will declare the notation that I will be
using in this course. It is the rigorous and unambiguous notation used by mathematicians.
In Chapter 14 I comment on other notation styles.

First thing: when I use the symbol P , it always means the probability measure that
is declared on the fundametal probability space (Ω,A, P ), which in turn is our model of a
data-generating environment, a reality segment of interest.

P is a function with domain A and codomain [0, 1]. The fundamental way of using the
symbol P is therefore to employ it in formulas of the form

P (E) = p,

where E ∈ A is an event and p is a real number from the interval [0, 1].
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I explained earlier that the σ-field A should be thought of as being induced by the ran-
dom variables that one wants to include in a probabilistic model, that is, A = A((Xi)i∈I).
All events E ∈ A that we will practically consider are specified in terms of the outcomes
of RVs. In the simplest case, only a single RV X : Ω → (S,F) is involved in specifying
E, via E = X−1(A), where A ⊆ S is an element of a suitably chosen σ-field F on S. A
common alternative notation for X−1(A) is X ∈ A. This leads to the following notation
for such events E:

P (X−1(A)) = p or P (X ∈ A) = p, (7.2)

where the second notation is used more often than the first.
More complex events in A are induced by combining outcome information from several

RVs. Consider the case of two RVs Xi : Ω → (Si,Fi) where i = 1, 2. For A1 ∈ F1, A2 ∈ F2

we get two events X−1
1 (A1), X−1

2 (A2) ∈ A. Since the σ-field A is closed under intersection,
also X−1

1 (A1) ∩ X−1
2 (A2) ∈ A. In words, we are dealing with the event “X1 returns

an outcome in A1 and X2 returns an outcome in A2.” Therefore it is correct to write
P (X−1

1 (A1) ∩X−1
2 (A2)) = p, but this is commonly written instead as

P (X1 ∈ A1, X2 ∈ A2) = p, (7.3)

and it is called the joint probability that X1 takes value in A1 and X2 takes value in
A2. This extends in an obvious way to cases of the joint probability of a finite family
X1, . . . , XN of RVs.

A particular kind of event occurs when A = {a}, where a ∈ S, is a singleton. Then
one writes P (X = a) instead of P (X ∈ {a}).

Remark: when S is a continuous space, for example S = R, then usually P (X = a) = 0.
For example, the chance that the speed of light is exactly equal to 299792458.3141592653589793238462643383279502884197169399375105820974944592307816406286
is zero (after the decimal dot I started to list the digits of π, for best effect please continue
reading all the decimals beyond the page margin). This happens in all cases where the
probability can be described by a pdf. In contrast, in finite sample spaces one typically
has nonzero probabilities for exact-value events. For example, assuming a fair die in Die
throwing, P (X = 1) = 1/6.

7.3 Conditional probability

Assume X : Ω → (S,F), Y : Ω → (S′,F ′), A ∈ F , B ∈ F ′, P (Y ∈ B) > 0. One defines

P (X ∈ A | Y ∈ B) :=
P (X ∈ A, Y ∈ B)

P (Y ∈ B)
(7.4)

and calls P (X ∈ A | Y ∈ B) the conditional probability of the event X ∈ A given Y ∈ B.
Figure 7.1 gives a graphical illustration. The intuition behind this concept of conditional
probability is that one wishes to restrict the original data generating environment to those
elementary events that have an outcome in B when observed by Y . This new, restricted
universe is Ω′ = Y −1(B). The σ-field A′ on Ω′ is derived from the original σ-field A on Ω
by A′ = {Y −1(B) ∩ E | E ∈ A}. On this new σ-field A′ a new probability measure P ′ is
given by

P ′(Y −1(B) ∩ E) :=
P (Y −1(B) ∩ E)

P (Y ∈ B)
, (7.5)

which generalizes (7.4) to arbitrary events in the restricted σ-field A′. The probability
measure P ′ is also written as PY ∈B. The triple (Ω′,A′, P ′) = (Y −1(B),A′, PY ∈B) is again
a probability space.
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Figure 7.1: Illustrating conditional probability. Compare text.

It is allowed that X = Y . For a simple example, consider in Die throwing the RV X
which counts dots. Let us assume a fair die. Then the probability to get a “1” dot count
given that one already knows the dot count is uneven is P (X = 1 | X ∈ {1, 3, 5}) = 1/3.

Conditional probabilities arise almost everywhere in statistical analyses, but they are
always present in stochastic process investigations. In fact, conditional probabilities are
the very core of modeling random temporal systems. The eternal question, “what will
happen next?”, essentially is a conditional probability question. Consider the Sentence
translation example, where (Xn)n∈N are the RVs that yield the n-th letters in typed
sentences. In order to predict the next letter in a sentence, it is necessary to know the
beginning of the sentence up to that point. A standard way to characterize the probabilities
that rule such temporal sequences is to specify the conditional probabilities for the next
timestep observation, given the observations made up to that time. That is, a statistical
model would specify in some way or other all the transition probabilities

{P (Xn+1 = xn+1 | X0 = x0, . . . , Xn = xn) | n ∈ N, (x0, . . . , xn+1) ∈ Sn+2}.

Conditional probabilities are also the key for classification algorithms, which in turn are
one of the core objects of interest in machine learning. A classification algorithm (or just “a
classifier”) is an algorithm which gets a pattern as input and returns a class label as output.
For instance, a handwritten digit classifier would get pictures of handwritten digits as input
and would output one of the 10 possible class labels “0”, “1”, ..., “9”; or a single-word
speech recognition algorithm would receive a short sound recording as input and would
output a typed word. To be good at their task, such classifier algorithms must internally
compute conditional probabilities of the kind P (ClassLabel = c | InputPattern = u), where
ClassLabel, InputPattern are random variables. The companion lecture “Machine Learning”
treats this situation in some detail.

7.4 Bayes’ formula

From Equation 7.4 it is straightforward to derive

P (X ∈ A | Y ∈ B) =
P (Y ∈ B | X ∈ A) P (X ∈ A)

P (Y ∈ B)
, (7.6)
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which is (one version of) Bayes’ formula. Bayes’ formula allows one to reverse the direction
of conditioning. This is central in diagnostic reasoning. For an instructive example,
interpret the event “X ∈ A” as “patient ω has cancer”, and “Y ∈ B” as “blood test
of patient ω gave high leucocyte count”. Then P (X ∈ A | Y ∈ B) is the probability
that a patient has cancer, given that the blood test yielded this high leucocyte (white
blood cells) count. This is clearly a probability of great interest to the patient. However,
clinical studies of cancer patients yield the reverse kind of information, namely estimates
of probabilities P (Y ∈ B | X ∈ A) that a blood test has this-and-that outcome, given
that the patient has cancer. The probability P (X ∈ A) is the base rate probability of a
person drawn at random from the population having cancer, and P (Y ∈ B) is the base
population probability of a person having low leucocyte counts. These numbers can be
estimated from medical population screenings. Plugging these three items into (7.6) gives
the crucial diagnostic information of the probability that the patient has cancer, given the
blood test result.

The base-rate probability P (X ∈ A) is called the prior probability or simply the prior.
The conditional probability P (X ∈ A | Y ∈ B) is called the posterior probability of
X taking value in A. The prior probability measures the general knowledge about the
occurrence rate of an event X ∈ A in the population, before any symptoms Y have been
observed. The the posterior probability is an “update” of that prior probability after the
evidence Y ∈ B has been factored in.

More generally speaking, Bayes’ formula makes it possible to infer back from symptoms
to causes. Read the left-hand side of (7.6) as “the probability of this underlying cause
A, given that we have observed a symptom B”. The core term P (Y ∈ B | X ∈ A) in
the right-hand side of (7.6) is “the probability that if this cause A is present, symptom
B is observed”. Such conditional probabilities of “effects given causes” are the essence
of causal models of parts of reality. Causal models are what scientists are after, and
experimental investigations in the sciences typically lead to causal models. Diagnostic
reasoning is “causation explored backwards” from effects to causes, and Bayes’ formula is
the key to exploit available causal models for diagnostic reasoning.

A terminology confusion alert: Bayes’ formula is just a little, super-practical formula
that is used in all branches and corners of ML and statistics. In its basic form it is
not connected to “Bayesian statistics”. Bayesian statistics is a particular approach to
statistical modeling whose conceptual roots lie in subjectivist conceptions of statistics.
We will take a closer look at this approach in Section 15.

7.5 Where does probability come from, and how can we
measure it?

So far we have described only how to write down probability statements in a clean notation.
But what does “P (X ∈ A) = p” mean? What statement about reality is made with such
a formula?

This is a difficult, ultimately philosophical question and there is no generally accepted
unique answer. Philosophers, scientists and mathematicians have proposed a variety of
answers. These answers can be broadly grouped into objectivistic and subjectivistic in-
terpretations of “probability”. According to the objectivistic view, probability resides
physically in the real world — it is a phenomenon of nature, as fundamentally a property
of physical reality as for instance “time” or “energy”. According to the subjectivistic
view, probability describes an observer’s subjective opinion on something observed — a
degree of belief, of uncertainty, of plausibility of judgement, or missing information etc.
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The objectivistic view is adopted by virtually all textbooks of statistics and mathematical
probability theory, it is the way how natural scientists look at randomness, and it is the
view adopted in this tutorial too.

When probability is regarded as a phenomenon of nature, there should be ways to
measure it. The standard proposition of how one can measure probability is by relative
frequency counting. For instance, in a Die Throwing scenario, a loaded die may have
the physical property that P (X = 6) = 1/5 (as opposed to P (X = 6) = 1/6 for a fair die).
This property of the die could be experimentally measured by repeating the die-throwing
act many times. This would give a sequence of outcomes X(ω1), X(ω2), X(ω3), . . . =
x1, x2, x3, . . .. After N such throws, an estimate of the quantity P (X = 6) is calculated
by

P̂N (X = 6) =
number of outcomes xi = 6

N
, (7.7)

where N is the number of throws that the experimentalist measuring this probability has
carried out.

We generally use the angular hat symbol ·̂ on top of some variable to denote a numerical
estimate based on limited observation data. The true probability P (X = 6) = 1/5 would
then become “measurable in principle” by

(∗) P (X = 6) = lim
N→∞

P̂N (X = 6). (7.8)

Equation (7.8) embodies what is known as the frequentist interpretation of probability:

The frequentist view of probability: The probability of an event
X ∈ A is the relative frequency by which repeated measurement acts
X(ωn), where n = 1, 2, 3, . . . ,∞ lead to an outcome in A.

If one looks at this “definition” critically one will find it is loaden with difficulties.
First, it defines a “measurement” process that is not feasible in reality because one

cannot physically carry out infinitely many observation acts X(ωn). This is maybe not
really disturbing because any measurement in the sciences (say, of a voltage) is imprecise
and one gets measurements of increasing precision by repeating the measurement, just as
when one measures a probability.

Second, it does not inform us about how, exactly, the elementary events ωn are “cho-
sen”. The events ωn should be picked from Ω absolutely “at random” — but what does
that mean in terms of experimental procedures? This is a very critical issue. To appreci-
ate its impact, consider our the Credit Risk example. The bank can only use customer
data collected at elementary events ωn in the past, but wants to base creditworthyness
decisions for future customers on those data. The reality segment of interest, modeled by
Ω, thus rightfully comprised both past and future customers. Picking only past ω ∈ Ω
to base probability estimates on hardly can qualify as an “absolutely random” picking of
elementary events, and in fact the bank may grossly miscalculate credit risks when the
general customer body or their economical conditions change over time. These difficulties
have of course been recognized in practical applications of statistics, and textbooks and
courses contain instructions on how to create “random samples” or “unbiased samples” as
well as possible.

Third, if one repeats the repeated measurement, say by carrying out one measurement
sequence based on ω1, ω2, . . . and another one based on ω′1, ω

′
2, . . ., the values P̂N from

40



Equation (7.7) are bound to differ between the two series. The limit indicated in Equa-
tion (7.8) must somehow be robust against different versions of the P̂N . Mathematical
probability theory offers several ways to rigorously define limits of series of probability
quantities which we do not present here. Equation (7.8) is suggestive only and I marked
it with a (∗) to indicate that it is not technically correct and complete.

Among these three difficulties, only the second one is really problematic. The first one
is just a warning that in order to measure a probability with increasing precision we need
to invest an increasingly large effort, — but that is the same for other measurables in the
sciences. The third difficulty can be fully solved by a careful definition of suitable limit
concepts in mathematical probability theory. But the second difficulty is fundamental and
raises its ugly head whenever statistical assertions about reality are made.

In spite of these difficulties, the objectivist view on probability in general and the the
frequentist account of how to measure it in particular is widely shared among empirical
scientists.

In Chapter 15 I will comment a little more on subjectivistic views.
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Chapter 8

Samples and estimators

In statistics as well as in machine learning, one attempts to make assertions about “true”
probabilities P (X ∈ A) based on a finite collection of empirically observed data values
(X(ω1), . . . , X(ωN )) = (x1, . . . , xN ) ∈ SN . Such finite collections of observed data values
are generally called samples. But this term is mostly used in a rather loose way and there
are two non-equivalent ways to make it precise.

Unfortunately there seem to be no separate words for the two definitions of “samples”.
In a German handbook of statistics [Müller, 1983] I found the (tentatively assigned) word-
ings “simple sample” (einfache Stichprobe) and “mathematical sample” (mathematische
Stichprobe), which I will use here, but this is not a generally adopted terminology.

8.1 Simple samples

Let X : (Ω,A, P ) → (S,F) be a random variable with its underlying probability and sam-
ple spaces. A (simple) sample of size N is the vector of N data points (X(ω1), . . . , X(ωN )) =
(x1, . . . , xN ) ∈ SN obtained from N elementary events ω1, . . . , ωN . Notes:

• The notion of a (simple) sample does not specify how the elementary events ωn

are chosen. They may be chosen “at random” in which case one also speaks of a
representative sample or a random sample, but there may also be some systematic
distortion factor in the choice of the elementary events, then one speaks of a biased
sample or unrepresentative sample. If one knows the nature of the systematic dis-
tortion one may attempt in practice to “normalize” the sample in some way to make
it approximately random.

• The values xn in the data vector (x1, . . . , xN ) may be complex mathematical objects,
for instance labelled trees in our Evolutionary tree scenarios.

• I will use the word data point for any such single value xn.

• In the context of machine learning, the sample (x1, . . . , xN ) is often called training
data. The idea here is that training data are used as input for a “learning” algorithm
which distils some model of reality from these data.

• Occasionally one finds that an author also calls an individual data point X(ωn) a
“sample”.
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8.2 Mathematical samples

The other conception of “samples” is more complex but also more insightful than the no-
tion of simple samples. A good starting point for an explanation is the Speed-of-Light
II scenario. Recall that in this scenario we considered multiple labs (existing and hypo-
thetical ones) where series of repeated measurements were carried out. An elementary
event ω gave rise to such an entire series of measurements, a circumstance that we for-
mally modeled in Section 3.1 by random variables Xn, where Xn(ω) represented the n-th
measurement in a series. When such a series comprises N measurements (being stopped
after N repetitions), the obtained values (X1(ω), . . . , XN (ω)) = (x1, . . . , xN ) are again
naturally called a sample.

To cast this in a more general frame, a (mathematical) sample of size N builds on a
sequence X1, . . . , XN of RVs, all taking value in the same sample space S, such that each
elementary event ω yields a vector of data points (X1(ω), . . . , XN (ω)) ∈ SN . One usually
requires that the Xn are identically and independently distributed — for short, they are
“i.i.d.”:

Definition 8.2.1 1. Two RVs X, Y : (Ω,A, P ) → (S,F) are identically distributed if
∀A ∈ F : P (X ∈ A) = P (Y ∈ A).

2. A finite family (Xn)n=1,...,N of RVs, where Xn : (Ω,A, P ) → (Sn,Fn), is indepen-
dently distributed if for all A1 ∈ F1, . . . , AN ∈ FN , for all 1 ≤ i ≤ N :

P (Xi ∈ Ai | X1 ∈ A1, . . . , Xi−1 ∈ Ai−1, Xi+1 ∈ Ai+1, . . . , XN ∈ AN ) =
= P (Xi ∈ Ai) (8.1)

The second condition of independent distribution captures the intuition that in a series
of repeated measurements, each measurement should be completely decoupled from the
others, with no transfer of information whatsoever between the individual measurements.
Notes:

• X, Y being identically distributed does not mean ∀ω ∈ Ω : X(ω) = Y (ω).

• The standard textbook definition of (Xn)n=1,...,N being independently distributed
differs from ours, but is equivalent. It goes like this: (Xn)n=1,...,N are independently
distributed if for all A1 ∈ F1, . . . , AN ∈ FN :

P (X1 ∈ A1, . . . , XN ∈ AN ) = P (X1 ∈ A1) · . . . · P (XN ∈ AN ). (8.2)

• For independence it is not enough to require that the RVs Xn are pairwise inde-
pendent (one finds this erroneous specification sometimes in the literature). For an
illustration that one has to prohibit all interactions simultaneously consider a die
throwing scenario with a fair die with three observations X1, X2, X3 : Ω → {0, 1},
where an elementary event ω means to throw the die twice, specified by

– X1(ω) = 1 if the outcome of the first throw is uneven,

– X2(ω) = 1 if the outcome of the second throw is uneven,

– X3(ω) = 1 if the sum of outcomes of both throws is uneven.

It is easy to see (see it!) that these three RVs are pairwise independent, but not
jointly in the sense of (8.1) or (8.2). This example is taken from Bauer [1978].
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The exact usage of the word “sample” in this second meaning is not uniform in the
literature. Sometimes the (multi-)set or vector of data points (X1(ω), . . . , XN (ω)) is called
“sample”, sometimes the vector (X1, . . . , XN ) or its product X = X1 ⊗ . . .⊗XN is called
“sample”, or the elementary events ω are called “samples”.

8.3 Estimators

The great advantage of the notion of mathematical samples, as opposed to what we called
simple samples above, lies in the fact that a sample X = X1 ⊗ . . . ⊗ XN : Ω → SN is
itself a RV. This insight is the starting point for an important subfield of statistics called
estimation theory. Abstractly speaking, an estimator is a function ϕ of a (mathematical)
sample X = X1⊗ . . .⊗XN : Ω → SN . Usually an estimator is devised to yield an estimate
of a statistical characteristic of the probability space (Ω,A, P ).

One of the most frequently encountered estimators is the sample mean. It is defined
when the sample space of each Xn is S = Rn, i.e. when we are dealing with numerical
measurements. The sample mean simply computes the average of the sample data points.
When X = X1 ⊗ . . . ⊗ XN : Ω → (Rn)N is a sample of size N , the sample mean is the
function

ϕ : (Rn)N → Rn (8.3)

(x1, . . . , xN ) 7→ 1
N

(x1 + . . . + xN ).

The function ϕ◦X : Ω → Rn is a RV. Its values can be interpreted as data-based estimates
of the true expected (average) value of the measurements Xn in the universe, the average
taken over all ω ∈ Ω. These estimates depend on the outcome (values X1(ω), . . . , XN (ω))
of the elementary events ω. The function ϕ is an estimator for the true population mean.

Seen abstractly, an estimator is just a function that for its input takes the values
of a (mathematical) sample, and returns a number. Such functions also occur outside
estimation theory and in general are called statistics. Thus, in general, if X = X1 ⊗ . . .⊗
XN : Ω → (SN ,FN ) is a size-N sample, and ϕ : SN → Rn is any FN −B(Rn)-measurable
function, then

ϕ ◦X : Ω → Rn

is called a statistic. A statistic is itself a random variable; what makes it special is that it
piggybacks on another RV which describes a (mathematical) sample.

For a given characteristic θ of a population, there usually exist many estimators. They
will have different qualities. Some of them may be easier to compute than others, some of
them may lead to more accurate estimates θ̂ than others, etc. The theory of estimators has
developed systematic ways to define and compare the relative merits of different estimators
for the same population characteristic. In part II of this lecture we will take a more in-
depth look at estimator theory, since it is a core part of the field of statistics.

To round off this very preliminary excursion into the world of estimators, consider
another estimator for the population mean of a numerical measurement:

ϕ′ : (Rn)N → Rn

(x1, . . . , xN ) 7→ x1.

This “estimator” simply returns the value of the first measurement in a series. It is
obviously cheaper to compute than the sample mean estimator, and obviously not as good
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in the sense that it ignores valuable information. But on average (across all ω ∈ Ω), this
cheap estimator ϕ′ will give the same result as the sample mean.

To make another leap into abstraction: every machine learning algorithm turns sample
values (called “training data” then) into some “model”. The models in machine learning
are usually far more complex than simple average values of population measurables. But
such “models” can still be regarded as data points in formal “model spaces”, and a “learn-
ing algorithm” can abstractly be regarded as an estimator for an assumed “true” model.
This renders estimation theory a fundamental tool for the analysis of machine learning al-
gorithms, making it possible to specify and quantify the relative merits of different machine
learning algorithms that are proposed for the same learning task.
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Chapter 9

Distributions

I have remarked (emphatically) that the one-and-only fundamental source of probability
is the probability space (Ω,A((Xi)i∈I), P ). Making this formal object the anchor of every-
thing else reflects the objectivistic view on probability which places it into the real world
(of which (Ω,A, P ) is the formal model). I promised that when I write the symbol P it
always will refer to this probability measure defined on (Ω,A((Xi)i∈I)).

In practical computations however you will find that you don’t actually have a data
structure (Ω,A) available on your computer. The universe Ω is a very hypothetical set. It is
useful for mathematicians to develop their abstract mathematical probability theory. Also
(Ω,A((Xi)i∈I)) is good as a basis for intuitive or even philosophical thinking, because it
formalizes “where probability comes from” — but it is unfit for doing practical calculations
with.

A practician who wants to calculate and get concrete numbers as results needs some-
thing more effectively manageable than (Ω,A((Xi)i∈I)) and P . Such concrete objects that
can be represented in computer data structures and can be manipulated with algorithms
indeed exist: the measurable sample spaces (Si,Fi). The objects collected in a sample
space, which I called data points, are of the familiar kinds that computer scientists know:
alphanumeric symbols, integers, Booleans, reals (approximately represented on the com-
puter as floats of a certain precision), vectors, arrays, database records, trees, graphs, or
any other data structures. If we can pull probability into the sample spaces, we can start
doing calculations.

9.1 Distributions: formal definition and notation

Given a RV X : (Ω,A, P ) → (S,F) we now define a probability measure on the measurable
space (S,F). Since this probability measure comes into existence through the random
variable X we denote it by PX :

Definition 9.1.1 Let X : (Ω,A, P ) → (S,F) be a random variable. The function PX :
F → [0, 1] defined by

∀A ∈ F : PX(A) = P (X ∈ A) (9.1)

is called the distribution of X.

It is easy to verify (do it) that PX is a probability measure on (S,F) according to
Definition 7.1.1. The triple (S,F , PX) is a probability space. Notes:
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• A “distribution” is always a distribution of a random variable. Whenever a distri-
bution is mentioned, there must be a RV behind it, even when it is not explicitly
mentioned.

• Some authors express this by saying, “a RV X transports the underlying probability
measure P to the sample space.”

• By an abuse of terminology, also the elements A ∈ F are called “events”.

• In most modeling situations one uses a multitude of RVs Xi : (Ω,A, P ) → (Si,Fi),
where i ∈ I for some index set I. Each Xi comes with its own distribution PXi : Fi →
[0, 1]. However, statisticians are not really interested in these individual distributions
PXi . The main object of interest is the joint distribution of all the Xi together.
This is the distribution of the product random variable

⊗
i∈I Xi : (Ω,A, P ) →

(
∏

i∈I Si,
⊗

i∈I Fi). That is, statistical analyses revolve around PN
i∈I Xi

. (Remark:
here I wrote down a generic product of σ-fields, namely

⊗
i∈I Fi. In Section 6.2 I

briefly introduced finite products of σ-fields. Defining arbitrary products of σ-fields
is possible but beyond the scope of this tutorial.)

• Notation: instead of PN
i∈I Xi

one may also write P(Xi)i∈I
or simply PX if X =⊗

i∈I Xi is understood.

• Practical work in statistics and machine learning operates on distributions PX , not
on the original underlying probability measure P .

9.2 Distributions: concrete ways to “write them down”

Distributions PX can be very complex and large-size objects, especially when X =
⊗

i∈I Xi

is a joint distribution involving many (and possibly many different sorts of) RVs Xi.
Making a (joint) distribution manageable and amenable to algorithmic processing has led
to a large variety of formalisms for representing distributions. Such formalisms carry exotic
names like “mixtures of Gaussians”, “Gaussian processes”, “kernel machines”, “neural
networks”, and many more. In a sense, machine learning can be seen as the art of managing
complex distributions on computers. In the machine learning part of this course we will
get to know some of those methods.

There are however two elementary formalisms to represent two elementary kinds of
distributions, which are eminently useful and which appear as building blocks in many
other, more complex formalisms. I will briefly describe these two.

9.2.1 Representing discrete distributions by probability mass functions

When the sample space S = {s1, . . . , sN} is finite, or if the sample space S = {s1, s2, . . . , }
is countably infinite, one speaks of a discrete space and a distribution over a discrete space
is called a discrete distribution.

Side note: Much more generally, discrete mathematics comprises all those branches
of mathematics where one deals with at most countably infinite sets or structures made
from countable components – this includes number theory, many subfields of graph theory,
much of logic and algebra – and is opposed to calculus and linear algebra, where one deals
with “continuous” objects like curves and vector spaces, which are uncountable sets). And
again generally speaking, the formal methods and indeed the very ways of thinking are
very different in discrete versus continuous mathematics.
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For discrete sample spaces S, the σ-field that is almost always invoked is the power
set F = Pot(S). A distribution PX on Pot(S) is fully specified by the probabilities of the
singleton elements of Pot(S), that is, by the function

p : S → [0, 1], s 7→ PX({s}). (9.2)

Such functions p are called probability mass functions (pmf). They are defined by the
following condition:

Definition 9.2.1 Let S be a finite or countably infinite, nonempty set. A function p :
S → [0, 1] satisfying

p(s) ≥ 0∑
s∈S

p(s) = 1

is called a probability mass function.

In case that S is finite, the value vector (PX({s1}), . . . , PX({sN})) is called a probability
vector. Obviously, probability vectors are just the vectors that are non-negative and sum
to 1.

For simplified notation one often drops the set braces and writes (PX(s1), . . . , PX(sN )).
When A ⊆ S is any element of Pot(S), the probability of A is computed by summing its
elements’ probabilities

PX(A) =
∑
s∈A

PX(s).

When S is finite and small enough, the probability vector representing the distribution
can be explicitly represented in the computer program that one uses. Often however S
will be finite but very (veeery!!) large — this happens easily when S is a product space
obtained from combining numerous finite small factor spaces Si. Our earlier Credit risk
example was of this kind. In this situation, the (joint) distribution still is mathematically
represented by a probability vector, but it is impossible to “write it down” or store it in
computer memory because of its size. Another problem that arises from very large sizes
of S is numerical underflow: most PX(si) will necessarily be closer to zero than machine
precision can handle. The standard escape from that problem is to use log probabili-
ties log PX(si) instead of the unscaled probabilities PX(si). In fact, many theorems and
algorithms in machine learning are directly formulated in terms of log probabilities.

9.2.2 Representing continuous distributions by pdfs and cdfs

Another basic, frequently encountered type of distributions arises when the sample space
S is Rn or a subset thereof (for instance the unit hypercube). Then one can often use
probability density functions (pdf’s) to represent these distributions:

Definition 9.2.2 Let X : Ω → Rn a RV taking values in Rn, and let p : Rn → R be a
function. If the distribution of X satisfies the condition

PX([a1, b1]× . . .× [an, bn]) =
∫ bn

an

· · ·
∫ b1

a1

p(x1, . . . , xn) dx1 . . . dxn (9.3)

for all intervals
∫ bn

an
· · ·
∫ b1
a1

, then p is called a probability density function of X. It is
denoted by pX .
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Not every continuous-valued RV admits a representation of its distribution by a pdf.
We will however not meet with such RVs in this lecture.

A more compact notation for the integral (9.3) is∫
D

p(x) dx,

where D denotes the k-dimensional interval [a1, b1] × . . . × [an, bn] and x denotes vectors
in Rk.

For many frequently occurring distributions, analytical formulas for their pdf are
known. The most famous and most widely encountered distribution is the normal dis-
tribution (the “Gaussian”). In the 1-dimensional case, its classical bell-shaped pdf is
given by p(x) = (2πσ2)−1/2 exp(−(x−µ)2/2σ2), where µ is the mean and σ the standard
deviation. I am sure you have met this beauty before. Figure 9.1 shows a plot of its pdf
and depicts how the probability of an interval event corresponds to the pdf integral over
this interval.

Figure 9.1: The pdf of the 1-dimensional Gaussian distribution with mean µ = 2 and
standard deviation σ = 1. The orange area gives the probability of the event [0, 1].

When the sample space S is the 1-dimensional real line, and a distribution PX on S
is described by its pdf p, then there is another possibility to describe PX which can be
derived from the pdf, called the cumulative density function (cdf), denoted by F . It is
defined by

F (α) =
∫ α

−∞
p(x) dx. (9.4)

This generalizes to higher dimensions, though cdf’s of higher-dimensional distributions
are rarely used. I only give the definition for the 2-dimensional sample space S = R2 on
which a distribution PX,Y with a pdf p(x, y) is given:

F ((α, β)) =
∫ α

−∞

∫ β

−∞
p(x, y) dx dy. (9.5)

Some comments:

• A probability density function is defined to be a function which allows one to compute
probabilities of value intervals as in Equation (9.3). For a given continuous RV
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X : Ω → R over the reals this pdf, if it exists, is essentially unique. More precisely,
“essentially unique” means that two pdfs pX , qX for the same distribution may only
differ from each other on a null set (compare Chapter 13).

• Any pdf pX : Rn → R≥0 has the property that it integrates to 1, that is,
∫

Rn pX(x) dx =
1.

• Be aware that the values p(x) of a pdf are not probabilities! Pdf’s turn into prob-
abilities only through integration over intervals. Values p(x) can be greater than 1,
again indicating that they cannot be taken as probabilities.

For another example, consider the uniform distribution on [0, 2]. Figure 9.2 shows its
pdf and its cdf.

−1 0 1 2 3

0

0.25

0.5

0.75

1

Figure 9.2: The pdf (blue) and cdf (red) of the uniform distribution on [0, 2].

For the 1-dimensional S = R, the cdf gives an immediate answer to the question “how
probable is it that the RV X takes a value less or equal to α?”:

P (X ≤ α) = F (α).

This property of the cdf is frequently exploited in statistical decision making, as we will
see in a few weeks.

In Equation (7.4) we introduced the conditional probability P (X ∈ A | Y ∈ B). In
that definition it was essential that P (Y ∈ B) > 0. In distributions that admit pdf’s, one
can also define conditional probabilities for cases where P (Y ∈ B) = 0. For getting the
idea, consider a pdf pX,Y on R2. Then, if certain conditions concerning the continuity of
pX,Y are given which we will not discuss, one can define the conditional density function
pX|Y =y : R → R≥0 by

pX|Y =y(x) =
pX,Y (x, y)∫

R pX,Y (x, y) dx
, (9.6)

from which conditional probabilites of X given Y = y can be obtained by

PX|Y =y([a, b]) =
∫ b

a
pX|Y =y(x) dx.

The conditions necessary to make this work are warranted, for instance, when the joint
pdf pX,Y is differentiable.

Notice that for continuous distributions PX,Y one usually has P (Y = y) = 0, so we
have a true extension of generality here compared to the basic definition (7.4).
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9.3 Marginals

Computing marginal distributions from a joint distribution is one of the most frequently
used operations in theory and practice of data analysis. Since a good intuitive grasp on
this concept is a real empowerment for you, I will spend some space on explaining it
carefully.

We first consider the case of two discrete RVs. For instance, an online shop creating
customer profiles may record from their customers their age and gender (among very many
other items), giving two RVs that we will denote by Age and Gender. The marketing
optimizers of that shop are not interested in the exact age but only in age brackets, say
a1 = at most 10 years old, a2 = 11 − 20 years, a3 = 21 − 30 years, a4 = older than 30.
Gender is roughly categorized into the possibilities g1 = f, g2 = m, g3 = o. From their
customer data the marketing guys estimate the following probability table:

P (X = gi, Y = aj) a1 a2 a3 a4

g1 0.005 0.3 0.2 0.04
g2 0.005 0.15 0.15 0.04
g3 0.0 0.05 0.05 0.01

(9.7)

The cell (i, j) in this 3×4 table contains the probability that a customer with gender gi

falls into the age bracket aj . This is of course the joint probability of the two observation
values gi and aj . Notice that all the numbers in the table sum to 1.

If we are interested only in the age distribution of customers, ignoring the gender
aspects, we sum the entries in each age column and get the marginal probabilities of the
RV Age. Formally, we compute

P (Age = aj) =
∑

i=1,2,3

P (Gender = gi,Age = aj). (9.8)

Similarly, we get the marginal distribution of the gender variable by summing along
the rows. The two resulting marginal distributions are indicated in the table (9.9).

a1 a2 a3 a4

g1 0.005 0.3 0.2 0.04 0.545
g2 0.005 0.15 0.15 0.04 0.345
g3 0.0 0.05 0.05 0.01 0.110

0.01 0.5 0.4 0.09

(9.9)

Notice that the marginal probabilities of age 0.01, 0.5, 0.4, 0.09 sum to 1, as do the
gender marginal probabilities.

Marginal probabilities are also defined when there are more than two RVs. For instance,
the online shop marketing people also record how much a customer spends on average,
and formalize this by a third random variable, say Spending. The values that Spending
can take are spending brackets, say s1 = less than 5 Euros to s20 = more than 5000 Euros.
The joint probability values P (Gender = gi,Age = aj ,Spending = sk) would be arranged
in a 3-dimensional array sized 3× 4× 20, and again all values in this array together sum
to 1. Now there are different arrangements for marginal probabilities. For instance the
probabilities P (Gender = gi,Spending = sj) are the marginal probabilities obtained by
summing away the Age variable:

P (Gender = gi,Spending = sj) =
∑

k=1,2,3,4

P (Gender = gi,Age = ak,Spending = sj)
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The general formula for marginal distributions obtained from the joint distribution
PX1,...,XN

of N discrete RVs with sample spaces S1, . . . , SN goes like this. Let {i1, . . . , iK} =
J ⊂ {1, . . . , N} be the indices of the RVs whose collective marginal distribution we want
to get, and let {j1, . . . , jN−K} = {1, . . . , N} \ J be the indices of the RVs that we want to
sum away. Then

P (Xi1 = si1 , . . . , XiK = siK ) = (9.10)∑
sj1∈Sj1 ,...,sjN−K∈SjN−K

P (Xi1 = si1 , . . . , XiK = siK , Xj1 = sj1 , . . . , XjN−K = sjN−K ).

In an analog fashion, when we are dealing with real-valued RVs whose joint distribution
can be described by a pdf, the pdf’s of marginal distributions are obtained by integrating
away the RVs that one wants to omit. I give only the formula for two RVs X, Y : Ω → R,
whose joint pdf pX,Y can be integrated to obtaine the pdf pX for X in a way that is
structurally the same as we saw in (9.8):

pX(x) =
∫

R
pX,Y (x, y) dy. (9.11)

Plugging this finding into the formula (9.6) of conditional density functions, you get
the simpler-looking

pX|Y =y(x) =
pX,Y (x, y)

pY (y)
. (9.12)

9.4 Connecting joint, marginal and conditional probabilities

The basic formula of conditional probability can be rearranged in interesting ways:

P (X ∈ A |Y ∈ B) =
P (X ∈ A, Y ∈ B)

P (Y ∈ B)
, or (9.13)

P (X ∈ A, Y ∈ B) = P (X ∈ A |Y ∈ B) P (Y ∈ B), or (9.14)

P (Y ∈ B) =
P (X ∈ A, Y ∈ B)
P (X ∈ A |Y ∈ B)

, (9.15)

where the conditional, joint and marginal probabilities become expressed in terms of the
respective others. When you memorize one of these formulas (I recommend the second
one), you have memorized the very key to master probability arithmetics and you will
never get lost when manipulating probability formulas.
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Chapter 10

Expectation, variance, standard
deviation, covariance

When the sample space S of a RV X is numerical – that is, S is a subset of Nn, Zn, Rn

or Cn – , there are two quantities which characterize this RV in an elementary way, and
which are considered or computed by any statistician or machine learner almost by reflex:
the expectation and the variance.

The expectation of X is the “average” value that is measured through X. It is denoted
by E[X]. If S is discrete with pmf p, then

E[X] =
∑
s∈S

s · p(s), (10.1)

and when S is continuous with pdf p, it is

E[X] =
∫

S
s · p(s) ds, (10.2)

provided that the (possibly infinite) sum or the integral exists. When the sum or the
integral is infinite, the expectation is not defined.

It is important to keep apart the concepts of expectation from the concept of a mean.
The expectation is a property of a distribution of a (numerical) RV, and a RV has only
one unique expectation (if it is defined). In contrast, the mean is a property of a finite
sample of numerical measurements. If X1, . . . , XN : Ω → S are N numerical RVs, then
the mean of a (mathematical) sample is

mean({X1(ω), . . . , XN (ω)} =
1
N

N∑
i=1

Xi(ω).

For different elementary events ω one may get different sample means.
The variance of a scalar (that is, 1-dimensional) random variable X is the expectation

of the centered (that is, subtracting the expectation, yielding a version of the RV that has
zero expectation), squared RV:

Var[X] = E[(X − µ)2] =

{∑
s∈S(s− µ)2 · p(s) for discrete, scalar RV’s∫

R(x− µ)2 · p(x) dx for scalar RV’s with pdf p.
(10.3)

Besides Var(X), another common notation for the variance of a scalar RV is σ2(X). Like
with expectation, the variance is only defined if the sum (or integral) is finite.
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The square root of σ2(X), that is σ(X) =
√

σ2(X), is called the standard deviation of
X. A common abbreviation is “stddev”.

A (real-valued, one-dimensional) RV is transformed to a standardized version, called
the standardized RV, by centering and dividing by the standard deviation, getting a version
that is often denoted by the letter Z:

Z =
X − µ

σ
.

While the expectation is immediately defined by (10.1), (10.2) also for vector-valued
RVs, the variance of vector-valued quantities needs a separate treatment. The counterpart
of σ2 for a RV that takes values in Rn is the n× n correlation matrix Σ defined by

Σ = E[(X − µ) (X − µ)T], (10.4)

that is, Σ(i, j) = E[(Xi − µi)(Xj − µj)], where Xi, µi denote the i-the component RV of
X and its expectation (I use ·T to denote vector/matrix transpose). Somewhat counter-
intuitively, one uses the symbol Σ, not Σ2, for this matrix. One does not commonly define
or use a standard deviation for vector RVs.

Beyond the expectation E[X] and the variance E[(X−µ)2] one also considers E([(X−
µ)3], E([(X − µ)4], . . ., which are know as the third, fourth, etc moments of a (scalar)
numerical RV.

The third moment of the standardized version of X, E([((X − µ)/σ)3] is also known
as the skewness of X; it is a measure of the asymmetry of the distribution. Centered RVs
with a symmetric distribution have zero skewness.

The fourth standardized moment E([((X − µ)/σ)4] is known as the kurtosis of X.
To briefly explain the information conveyed by the kurtosis, I quote from https://en.
wikipedia.org/wiki/Kurtosis: “The kurtosis of any univariate normal distribution is
3. It is common to compare the kurtosis of a distribution to this value. Distributions
with kurtosis less than 3 are said to be platykurtic, although this does not imply the
distribution is ”flat-topped” as sometimes reported. Rather, it means the distribution
produces fewer and less extreme outliers than does the normal distribution. An example
of a platykurtic distribution is the uniform distribution, which does not produce outliers.
Distributions with kurtosis greater than 3 are said to be leptokurtic. An example of a
leptokurtic distribution is the Laplace distribution, which has tails that asymptotically
approach zero more slowly than a Gaussian, and therefore produces more outliers than
the normal distribution.”

The covariance between two numerical RVs X, Y : Ω → R is defined by

Cov[X, Y ] = E[(X − E[X]) (Y − E[Y ])]. (10.5)

This quantity measures the extent to which X and Y “co-vary”, that is, the extent to
which large values of X coincide with large values of Y (and small values with small
values). It is easy to see (see it!) that

Cov[X, Y ] = E[X Y ]− E[X]E[Y ]. (10.6)

The covariance scales with scalings of X and Y :

Cov[aX, b Y ] = abCov[X, Y ].

Normalizing the covariance by the stdevs, one obtains a measure of co-variation which is
scaling-independent. It is called the correlation of X and Y :

Corr[X, Y ] =
E[(X − E[X]) (Y − E[Y ])]

σ(X) σ(Y )
. (10.7)
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This quantity ranges between −1 and +1 and remains the same when X or Y are scaled:

Corr[aX, b Y ] = Corr[X, Y ].

The case Corr[X, Y ] = 1 is obtained when X and Y are identical up to positive scaling
and shift:

Corr[X, Y ] = 1 ⇔ X = aY + b (for a > 0).

The case Corr[X, Y ] = −1 is obtained when X and Y are identical up to negative scaling
and shift:

Corr[X, Y ] = −1 ⇔ X = −aY + b (for a > 0).

In this case one says that X and Y are anti-correlated.
The squared correlation Corr[X, Y ]2 ranges between 0 and 1 and is called the correla-

tion coefficient of X and Y .
When Cov[X, Y ] = 0, which is equivalent to Corr[X, Y ] = 0, X and Y are called

uncorrelated.
Uncorrelatedness of X and Y is easy to check (approximately) from a sample (X(ωi), Y (ωi))i=1,...,N =

(xi, yi)i=1,...,N , as follows. First subtract the sample means µ̂X = (1/N)
∑

i xi, µ̂Y =
(1/N)

∑
i yi, obtaining centered samples (x̃i, ỹi) = (xi− µ̂X , yi− µ̂Y ). Then normalize the

centered samples to unit variance, by computing the sample stddevs σ̂X̃ = (
∑

i x̃i
2)1/2

and σ̂Ỹ = (
∑

i ỹi
2)1/2, and dividing the centered samples by these, obtaining centered

normalized samples (˜̃xi, ˜̃yi) = (x̃i/σ̂X̃ , ỹi/σ̂Ỹ ). Then, if

1
N

∑
i=1,...,N

˜̃xi · ˜̃yi ≈ 0,

we have a numerical indication that X and Y are uncorrelated (compare (10.6)).
A note on terminological confusion. The terminology that I just introduced is used

by mathematicians, statisticians, machine learners, and the Matlab software. However,
in the field of signal processing and control engineering, the word “correlation” is often
used to denote just the expected product E[X Y ] of two RVs which do not have to have
zero mean. In the signal processing literature (and in the papers that I write!) the word
“correlation matrix” refers not to E[(X − µ) (X − µ)T] but to E[X XT] and is commonly
denoted by the symbol R, not by Σ. In that literature, Σ = E[(X −µ) (X −µ)T] is called
covariance matrix.

I conclude this section with a list of elementary facts concerning expectation and
variance:

•
E[aX + b Y ] = aE[X] + b E[Y ], (10.8)

that is, the expectation is a linear operator on numerical RVs.

• For a (B-B-measurable) function f : R → R, and a RV X : Ω → R with a pdf p,

E[g(X)] =
∫

R
g(x) p(x) dx, (10.9)

that is, we do not need to calculate the pdf of g(X) to obtain E[g(X)].

•
σ2(X) = E[X2]− E[X]2. (10.10)

•
σ2(aX + b Y ) = a2 σ2(X) + b2 σ2(Y ) + 2abCov[X, Y ]. (10.11)
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Chapter 11

More on the independence of RVs

In Section 8.2 I gave the definition of when some RVs are called independent. For conve-
nience I repeat Eqn. 8.2, a standard textbook version of that definition: (Xn)n=1,...,N are
independently distributed if for all A1 ∈ F1, . . . , AN ∈ FN :

P (X1 ∈ A1, . . . , XN ∈ AN ) = P (X1 ∈ A1) · . . . · P (XN ∈ AN ).

Using the terminology that we have introduced in the meantime, we can express this
condition (8.2) in words: (Xn)n=1,...,N are independently distributed if their joint distri-
bution is the product of their marginal distributions.

Consider the following two (made-up) joint distribution tables of two RVs
X : Ω → {g1, g2, g3}, Y : Ω → {a1, . . . , a4} (the first is repeated from (9.7)):

Table 1:

a1 a2 a3 a4

g1 0.005 0.3 0.2 0.04 0.545
g2 0.005 0.15 0.15 0.04 0.345
g3 0.0 0.05 0.05 0.01 0.110

0.01 0.5 0.4 0.09

Table 2:

a1 a2 a3 a4

g1 0.05 0.05 0.1 0.3 0.5
g2 0.02 0.02 0.04 0.12 0.2
g3 0.03 0.03 0.06 0.18 0.3

0.1 0.1 0.2 0.6

In these tables, the boldface columns/rows give the marginals of X and Y , respectively.
Table 1 shows the joint distribution of two dependent RVs, while the joint distribution
shown in Table 2 reveals independence of X and Y . In Table 2, each column is a copy of
the X marginal distribution, scaled by the Y -marginal of that column; and each row is a
copy of the Y marginal distribution, scaled by the X-marginal of that row.

When we are dealing with continuous-valued numerical RVs which have pdf’s, inde-
pendence reaveals itself in the fact that the pdf pX1,...,XN

of the joint distribution can be
written as a product of the pdf’s of the individual RVs:

pX1,...,XN
(x1, . . . , xN ) = pX1(x1) · . . . · pXN

(xN ).

Often one wishes to model situations when the effects of different numerical random
quantities sum up to some final effect. For instance, the effective speed of a ship may
be modeled as the sum of speed components yielded by wind, water currents, and the
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ship’s engine. If the component quantities are independent, their summed-up effect can
be computed by an operation called convolution. In the simplest case, let X, Y : Ω → R
be two independent RVs, with pdf’s pX , pY . Then the sum RV Z = X + Y has the pdf
given by

pZ(z) = pX+Y (z) =
∫

R
pX(z − y) pY (y) dy =

∫
R

pY (z − x) pX(x) dx. (11.1)

A generalization of independence which is of monumental importance for machine
learning is conditional independence. Two discrete RVs X, Y are said to be conditionally
independent given Z if for all values x, y, z of these three RVs, one has

P (X = x, Y = y | Z = z) = P (X = x | Z = z) P (Y = y | Z = z).

In the continuous-valued case, where X, Y, Z have pdfs pX , pY , pZ , this spells out to

∀z : pX,Y |Z=z = pX|Z=z pY |Z=z.

Statisticians and even more so, machine learners are extremely eager to hunt for inde-
pendently distributed RVs. There are several reasons for this. A simple reason is economy.
In order to specify the joint probability shown in Table 1, one has to specify 3 · 4− 1 = 11
parameters, namely all the entries in the table (why the −1?). In contrast, in order to
specify the joint distribution in Table 2, only (3 − 1) + (4 − 1) = 5 parameters have to
specified, namely the marginals. This saving in required storage capacity, from 11 to 5,
may not seem striking. But – consider the joint distribution of N = 100 RVs, each of
which can take values in the same minature sample space S = {0, 1}. In case that the
X1, . . . , X100 are not independent, in order to fully specify the joint distribution table (a
100-dimensional array in that case) one would have to compute and store 2100− 1 param-
eters – impossible. But if these 100 RVs would be independent, only 100 · (2 − 1) = 100
parameters would be necessary! Dealing with the joint distribution of very many RVs —
up to thousands or even millions — is commonplace in machine learning (and, by the way,
in computer vision, where each pixel turns into a RV). This becomes technically possible
(storage capacity is limited!) only if many of the concerned RVs are conditionally inde-
pendent of each other in some way or other. In the terminology of statistics and machine
learning, one says that the joint distribution can be factorized. Significant portions of the
theory of machine learning deal with methods to find ways to (approximately) factorize
complex joint distributions.

Factorizing joint distributions is desirable not just for storage capacity economy. An-
other, equally crucial reason is that if fewer parameters have to estimated from training
data, one needs fewer training data. A blunt rule of thumb says that for a halfway reliable
parameter estimation, one should have ten times as many training data points as one has
parameters to estimate. In the above example this would mean that in order to estimate
the joint distribution of 100 binary RVs, one would need 10 ·(2100−1) training data points,
whereas if their distribution would fully factorize, a training data set of size 10 ·100 would
suffice.

Independence of two RVs X, Y is a much stronger condition than uncorrelatedness of
X, Y , for two reasons:

• Independence is defined for any X, Y regardless of what their sample spaces are. In
contrast, uncorrelatedness is defined only for RVs whose sample space is R.

• For two real-valued RVs X, Y , independence implies uncorrelatedness (exercise) but
not vice versa (another exercise!).

57



I mentioned in the previous section that uncorrelatedness of X, Y is easy to check
(approximately) from a sample. In contrast, verifying independence cannot be easily
checked from samples; it requires an insight into the joint distribution of X and Y which
cannot easily be gleaned from a sample. An extensive, nontrivial literature deals with
approximate numerical checks for independence from samples.
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Chapter 12

Markov chains

Markov chains are the most simple non-trivial kind of stochastic process; according to a
core dogma of physics, the world is a Markov chain (even when described by quantum
mechanics); Markov chains are at the core of all modern sampling algorithms, and Markov
chains provide a nice demo case for the powers of statistical independence. Four good
reasons to become acquainted with them!

In its basic version, a Markov chain is a discrete-time stochastic process (Xn)n∈N
where each Xn takes values in the same set S. Recall from Chapter 4 that a sequence
X0(ω), X1(ω), X2(ω), . . . is called a realization, or path, or trajectory of the process. I
will use the word “realization”. For different ω we obtain different realizations in general
– this is what makes this a stochastic process. Here is defining criterion that qualifies a
discrete stochastic process as a Markov chain (where we use the shorthand notation P (xi)
for P (Xi = xi):

Definition 12.0.1 A discrete-time stochastic process (Xn)n∈N with values in a discrete
set S is a Markov chain (MC) if for all n ≥ 2, 0 < m < n, (x0, . . . , xn) ∈ Sn+1

P (x0, x1, . . . , xm−1, xm+1, . . . , xn | xm) = P (x0, . . . , xm−1 | xm) · P (xm+1, . . . , xn | xm).
(12.1)

In plain English: a discrete-time stochastic process is a MC if for all times m, what
happens next (xm+1, . . . , xn) is conditionally independent from what happened before
(x0, . . . , xm−1), given knowledge of what happens now (xm). An equivalent definition, the
one which one finds in most textbooks, is

Definition 12.0.2 [Alternative, equivalent definition] A discrete-time stochastic process
(Xn)n∈N with values in S is a Markov chain (MC) if for all n > 0

P (xn+1 | x0, x1, . . . , xn) = P (xn+1 | xn). (12.2)

Proving the equivalence of both definitions is a good exercise. The alternative definition
could be paraphrased as “a Markov chain is a stochastic process where the distribution
of future observations (= Xn+1(ω)) depends only on the current observation (= Xn(ω))
and not on the previous history (= Xn−1(ω), Xn−2(ω), . . . , X0(ω))”. This is why Markov
chains are also called memoryless processes.

I insert a note why physicists see the world as a Markov chain (I ignore the fact that
they use continuous time, which technically then would lead to the continuous-time twin
of Markov chains, called Markov processes). The big central unshakeable foundation of all
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physics models and formalisms is the idea that one can describe any physical system by
its states. A state x(t) of a physical system is a “snapshot” of everything in that system
at a given point in time. For instance, a state x(t) of our earth’s atmosphere would be
a full specification of the current position, orientation, velocities, angular velocities, and
oscillatory modes of each and every molecule in the atmosphere. Physicists believe that
if the state x(t) is given, then the laws of nature – deterministic in classical physics and
stochastic in quantum mechanics – take care of the future evolution of the system state
for times t′ > t. Any information from the past which is relevant for the future must be
encoded in the current state x(t). This commitment is implicit in the physicists’ way of
describing physical systems by state-based formalisms, like differential equation or partial
differential equations.

As an echo of this physicists’ view, it is customary in mathematics to call the sample
space S the state space of a Markov chain, and the elements s ∈ S its states.

For the rest of this section I will take a closer look at the case where the state space is
finite, that is S = {s1, . . . , sN}. Furthermore, I will only consider MCs that are homoge-
neous:

Definition 12.0.3 A Markov chain (Xn)n∈N is called homogeneous if for all time points
n, n′ ∈ N and for all states s, s′ ∈ S

P (Xn+1 = s′ | Xn = s) = P (Xn′+1 = s′ | Xn′ = s). (12.3)

In words: (Xn) is homogenous if the probabilities to jump from state s to state s′

are the same at all times. The probabilities P (Xn+1 = s′ | Xn = s) are also called
the transition probabilities of the MC. We will use shorthand p(s, s′) for the transition
probability P (Xn+1 = s′ | Xn = s). I will only consider homogeneous MCs in the
remainder of this section.

Any finite-valued stochastic process with discrete time T = N is fully characterized by
the probabilities of its initial realizations

P (X0 = si0 , . . . , Xn = sin),

where n ≥ 0 and si0 , . . . , sin ∈ S. The shortest initial realization is given by X0(ω) – we
just observe the initial state of a trajectory. The distribution of X0 is an N -dimensional
probability mass function, which can be written as an N -dimensional probability vector,
often denoted by π0. We write π0(si) for the i-th element P (X0 = si) of this vector.

The distribution of length-2 initial realizations, that is the distribution of X0⊗X1, i.e.
the probabilities P (X0 = si0 , X1 = si1), can be computed by

P (X0 = si0 , X1 = si1) = P (X1 = si1 | X0 = si0) P (X0 = si0) = π0(si0) p(si0 , si1), (12.4)

that is by the product of the initial probability of si0 with the probability of transiting
from si0 to si1 .

Similarly, the probability of a length-n realization is given by

P (X0 = si0 , X1 = si1 , . . . , Xn = sin) = π0(si0) p(si0 , si1) p(si1 , si2) · · · p(sin−1 , sin).
(12.5)

The transition probabilities p(si, sj) can be arranged in a N×N sized transition matrix
M = (p(si, sj))1≤i,j≤N . If you think about it you will see that each row of this matrix sums
to 1. Nonnegative matrices with unit row sums are called Markov matrices or stochastic
matrices. Such matrices occur ubiquitously in the study of stochastic systems. Be alerted
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that some authors use these terms for nonnegative matrices whose columns sum to 1 – be
careful when reading texts about Markov matrices.

The probability that a trajectory of a MC hits state si at time n = 1 is the sum of all
probabilities for possible ways how the process may find itself in state si a time 1:

P (X1 = si) =
∑

k=1,...,N

P (X0 = sk, X1 = si),

in which formula we meet our old acquaintance, the marginal. Re-writing this according
to (12.4) gives

P (X1 = si) =
∑

k

π0(sk) p(sk, si).

The entire distribution PX1 of a MC at time 1 can be written as an N -dimensional
probability vector π1 which collects all the probabilities P (X1 = si). If you think about
it (I like this phrase) you will find that

π1 = MT π0, (12.6)

and more generally, the state distribution πn at time n is given by

πn = (MT)n π0. (12.7)

This is a very convenient and powerful formula. It opens the study of stochastic
processes for tools of linear algebra.

So much for a glimpse on Markov chains. From the seeds that I could show here, an
extensive theory branches out which fills textbooks. Physicists, mathematicians, machine
learners and all other natural scientists and economists are likewise strongly interested
in this theory, albeit for different reasons. The case is clear for physicists because they
regard the timeline of reality as Markovian. Mathematicians like Markov chains and
Markov processes because they are easy to study on the one hand, and on the other
provide entry points for the study of more involved stochastic processes. Machine learners
use Markov chains as baseline models when they are asked to deliver time series prediction
algorithms. Finally, scientists at large, including economists, need Markov chains whenever
they want to solve complex optimization problems – most state of the art approaches to
find optimal values in complex cost landscapes make use of so-called Markov Chain Monte
Carlo (MCMC) methods. Check out https://en.wikipedia.org/wiki/Markov chain
Monte Carlo!
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Chapter 13

Null sets

Given a sample space S and a distribution PX on it, some subsets A ⊂ S may occur with
zero probability, that is,

P (X ∈ A) = 0.

Such sets are called null sets (with respect to a given distribution). For instance, given
the uniform distribution on [0, 2] shown in Figure 9.2, the set A = [−1, 0] is a null set.
This is not very interesting, as it seems obvious that the probability of this set is zero
because the pdf is zero over this set. But also the set A = {1} is a null set, although here
the pdf has a positive value. This can be seen by applying (9.3):

P (X = 1) = PX([1, 1]) =
∫ 1

1
p(x) dx = 0.

Of course it is possible to observe an outcome X = 1 when the distribution is the uniform
distribution on [0, 2]. Being possible, and having a nonzero probability is not the same
thing!

Considering the second condition in the definition of a probability measure (Def. 7.1.1),
we find that the union of any countable collection of null sets is again a null set. You know
that the set Z of rational numbers is countable. Let N = [0, 2]∩Z be the set of all rational
numbers between 0 and 2. Since N is a countable union of null sets, its probability is
zero! In a continuous sample space, the probability of hitting a rational-valued observation
outcome is zero.

When you read probability theory texts, you may see – quite often, actually – the
expression “almost surely”, or “P -almost-surely”, or “almost all”, or the abbreviation
“w.p.1” which spells out to “with probability 1”. They all mean the same thing: some
fact about some probability space (Ω,A, P ) holds true for all ω ∈ Ω \ N , where N is a
null set.

An example: in Definition 9.2.2 we said that some function p is a (!) pdf for PX if it
satisfies the condition (9.3). This formulation leaves open the possibility that a distribution
PX may have more than one pdf. And in fact, this is the case. The pdf’s (plural!) for PX

are defined only almost surely: for any two (!) pdf’s p, p′ : Rn → R of PX there exists a
null set N ⊂ Rn (that is, P (X ∈ N ) = 0), such that p(x) = p′(x) only for x ∈ Rn \ N .
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Chapter 14

A note on what you find in
textbooks

Warning. Don’t read this section, it will only confuse you.

Novices to probability, statistics and machine learning have a hard time to get a firm
footing in these fields for a number of reasons.

1. Different textbooks use different notations for probability formulas.

2. Authors writing textbooks for non-mathematicians (students of engineering, com-
puter science, social and natural sciences, economy) want to make it easy for their
readers. Specifically, they avoid talking about σ-fields and events, which prevents
them from explaining that random variables are functions. For instance, in a highly
respected handbook/textbook on pattern recognition and machine learning [Duda
et al., 2001], the synopsis of probability theory given in the Appendix starts like this:
“Let x be a discrete random variable that can assume any of the finite number m
of different values in the set X = {v1, v2, . . . , vm}. We denote by pi the probability
that x assumes the value vi: pi = Pr[x = vi], ...” That is all what is given by way
of explaining “probability”. Here a “random variable” really looks like what this
name suggests: a “variable” that can “assume” different values. It even gets worse.
A few lines later the text reads: “Sometimes it is more convenient to express the
set of probabilities {p1, p2, . . . , pm} in terms of the probability mass function P (x),
which must satisfy the following conditions: P (x) ≥ 0, and

∑
x∈X P (x) = 1.” This

is inconsistent/incomplete in more than one way. It is not stated what is the domain
of this P , the notation

∑
x∈X suggests that the “random variable” is identified with

the values of its value set, it is unclear why/how Pr[x = vi] is different from P (x),
etc. Such inconsistencies in notation abound in textbooks that have been designed
to make reading (too) simple. It can’t be otherwise: without the kind of full story
told in this tutorial, there is no way to explain a consistent (and understandable)
use of notation. Something by necessity must be left dangling in mid-air.

3. A non-negligible fraction of statistics tutorials and lecture notes for non-mathematicians
omits random variables altogether. Probability distributions are then directly de-
scribed as probability measures on observation value spaces, and instead of the
notation P (X ∈ A) or PX(A) you find notations like P (A) or P (a) or similar.

4. Textbooks of probability theory written by mathematicians for math students have
a consistent terminology and notation, which will be a variant of what I presented
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in this tutorial. That’s good. But these textbooks concentrate on the intricacies
of σ-fields and the theory of measures that comes along with them. It is not or
almost not explained how the mathematical structure X : (Ω,A, P ) → (S,F) can
be mapped to reality. The interpretation of Ω, X, S in terms of reality segments
of interest, observation opportunities, observation procedures, observation acts, and
data value spaces is pointed out in passing at best. Non-math students don’t read
such textbooks because of the difficulty of the mathematical theory and the lack of
contact with the real world.

The deepest-buried obstacle to understanding probability however is the scintillating
interpretation of what, exactly, is modeled by the fundamental probability space (Ω,A, P ).
Of course this obstacle only raises its head in texts and textbooks that give the full picture
X : (Ω,A, P ) → (S,F) in the first place. There are two very different interpretations. The
first is the one that I presented in this tutorial: (Ω,A, P ) as a model of reality segments of
interest. It is advocated by your two course instructors Adalbert F. Wilhelm and Herbert
Jaeger and a few other authors, for instance Keel [2004a]. In volume 3 of his (very extensive
and online) lecture notes for students of the social sciences and economy he writes (my
translation from German; I don’t translate the fundamental term Grundgesamtheit):

“Definition. The Grundgesamtheit Ω with respect to a goal of statistical analysis is
the set of possible units of investigation. Examples:

1. employees of a company

2. daily production output of a machine

3. time points of a day

4. carriers of a certain disease

5. drawings of a lottery

A complete definition of Ω must include a precise prescription that determines which units
of investigation, precisely, belong to Ω.”

This definition of Ω carries the same intuitions as in our interpretation of Ω as a model
of a reality segment of interest.

The second interpretation identifies Ω with what we called the sample space. For
instance, Bauer [1978] explains (my translation from the German original edition of this
textbook):

“The elements of Ω are called elementary events. Intuitively these are the possible
random outcomes of an experiment or an observation.”

Bauer does not spend effort on exploring the connection of Ω to reality — the above
quote appears on page 129 of a 400-page textbook which otherwise is concerned with the
pure-mathematical apparatus of σ-fields and measures. Bauer notes that this interpreta-
tion goes back to Kolmogorov [1956]. This venerable source endows this interpretation
with the greatest possible authority. Kolmogorov in his foundational work writes (footnote
also from Kolmogorov):
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“2. The Relation to Experimental Data4 We apply the theory of probability to
the actual world of experiments in the following manner:

1. There is assumed a complex of conditions, G, which allows of any number of repeti-
tions.

2. We study a definite set of events which could take place as a result of the establish-
ment of the conditions G. In individual cases where the conditions are realized, the
events occur, generally, in different ways. Let E be the set of all possible variants
ξ1, ξ2, . . . of the outcome of the given events. [...] We include in set E all the variants
which we regard a priori as possible.

...

4 The reader who is interested in the purely mathematical development of the theory only, need not read

this section, since the work following it ... makes no use of the present discussion. Here we ... disregard

the deep philosophical dissertations on the concept of probability in the experimental world. [...]”

The “complex of conditions G” Kolmogorov refers to is what we called a reality seg-
ment of interest, and his “events” corresponds to what we called elementary events. How-
ever, Kolmogorov does not give a formal model of G — this object remains in the extra-
mathematical, un-modelled realm of external reality where plain English is the only de-
scription tool. The set E of “all possible variants ξ1, ξ2, . . . of the outcome of the given
events” is what we called the sample space S. Later in his work (Chapter III) Kolmogorov
proceeds to introduce random variables as maps from E to some other set E′.

The two interpretations are sometimes confounded within the writing of a single author.
For instance, in volume II of his introduction to statistics Keel [2004b] writes, in contrast
to his description of Ω in volume III (my translation from German):

“Def. 2.1 Let a random experiment E have possible outcomes ω1, ω2, . . . , ωn. The
event space Ω is the set of all possible outcomes Ω = {ω1, ω2, . . . , ωn};ωi, i = 1, . . . , n :
elementary event.”

This is the second interpretation. Similarly, the online lecture notes of Kosuke Imai,
Dpt. of Politics, Princeton University, subscribe to the second interpretation in handout
1 (http://imai.princeton.edu/teaching/files/probability.pdf):

“Definition 1 The set of all possible outcomes of an experiment is called the sample
space of the experiment and denoted by Ω. Any subset of Ω is called an event. [...]
Definition 5 A random variable is a function X : Ω → R ...” ,

but subscribe to the first interpretation in handout 4 (http://imai.princeton.edu/
teaching/files/Convergence.pdf) of the same course:

“So far we have learned about various random variables and their distributions. These
concepts are, of course, all mathematical models rather than the real world itself. [...] Even
if there is such a thing as “the true probability model,” we can never observe it! Therefore,
we must connect what we can observe with our theoretical models. The key idea here is
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that we use the probability model (i.e., a random variable and its distribution) to describe
the data generating process. What we observe, then, is a particular realization (or a set
of realizations) of this random variable.”

I found the most striking co-habitation of both interpretations in a single author’s
writing on slide 3 of a handout for J. Utts’ statistics course at the University of California
at Irvinve (http://www.ics.uci.edu/∼jutts/8/Lecture14Compact.pdf):

“What is a Random Variable? – Random Variable: assigns a number to each
outcome of a random circumstance [= interpretation 2], or, equivalently, to each unit in
a population [= interpretation 1].”

To add to the confusion, the usage of the word “sample space” by different au-
thors reflects the existence of two different interpretations of Ω. Specifically, some au-
thors follow the first interpretation outlined above by declaring random variables as
maps from “population” elementary events ω ∈ Ω to observation value spaces, but they
call Ω the “sample space” (for instance, http://www.math.ku.edu/∼mandal/math365/
newMath365/les4.html).
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Chapter 15

A note on subjectivist approaches
to probability theory

This tutorial adopted the objectivist (empiricist, realist) conception of probability as a
real-world property of real-world systems, which can be quantified and measured by rela-
tive frequencies of outcomes of repeated experiments. This conception dominates mathe-
matical textbooks and statistics courses. However, subjectivist conceptions of probability
also have led to mathematical formalisms that can be used in statistical modeling. A
hurdle for the learner here is that a number of different formalisms exist which reflect
different modeling goals and approaches, and tutorial texts are rare.

The common starting point for subjectivist theories of probability is to cast “probabil-
ity” as a subjective degree of belief, of certainty of judgement, or plausibility of assertions,
or similar — instead of as an objective property of real-world systems. Subjectivist the-
ories of probability do not develop analytical tools to describe randomness in the world.
Instead they provide formalisms that code how rational beings (should) think about the
world, in the face of various kinds of uncertainty in their knowledge and judgements.
The formalisms developed by subjectivists can by and large be seen as generalizations of
classical logic. Classical logic only knows two truth values: true or false. In subjectivist
versions of logic formalisms, a proposition can be assigned graded degrees of “belief”,
“plausibility”, etc. For a very first impression, contrast a classical-logic syllogism like

if A is true, then B is true
A is true

therefore, B is true

with a “plausibility reasoning rule” like

if A is true, then B becomes more plausible
B is true

therefore, A becomes more plausible

This example is taken from Jaynes [2003, first partial online editions in the late 1990ies],
where a situation is described in which a policeman sees a masked man running away from
a juweler’s shop whose window was just smashed in. The plausibility rule captures the
policeman’s inference that the runner is a thief (A) because if a person is a thief, it is
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more likely that the person will run away from a smashed-in shop window (B) than when
the person isn’t a thief. From starting points like this, a number of logic formalisms
have been devised which enrich/modify classical two-valued logic in various ways. If you
want to explore these areas a little further, the Wikipedia articles probabilistic logic,
Dempster-Shafer theory, fuzzy logic, or Bayesian probability are good entry points. In
some of these formalisms the Kolmogorov axioms of “classical” probability re-appear as
part of the respective mathematical apparatus. Applications of such formalisms arise in
artificial intelligence (modeling reasoning under uncertainty), human-machine interfaces
(supporting discourse generation), game theory and elsewhere.

The discipline of statistics is almost entirely developed in an objectivist spirit, firmly
rooted in the frequentist interpretation of probability. Machine learning also in large
parts roots in this view. However, a certain subset of machine learning models and com-
putational procedures have a subjectivist component. These techniques are referred to as
Bayesian model estimation methods. Bayesian modeling is particulary effective and impor-
tant when training datasets are small. I will explain the principle of Bayesian model esti-
mation with a super-simple synthetic example. For a more realistic but still didactic exam-
ple from the domain of protein modeling see Section 3.4 in my machine lecture notes http:
//minds.jacobs-university.de/uploads/teaching/lectureNotes/LN ML Fall11.pdf.

Consider the following statistical modeling task. A measurement procedure yields
real-valued outcomes (like in the Speed-of-Light example). It is repeated N times,
a condition that is modeled by samples X(ω) = (X1(ω), . . . , XN (ω)) ∈ RN . The RVs
Xi : Ω → R which model the individual measurements are i.i.d.. We assume that their
distribution can be represented by a pdf pXi : R → R≥0. The i.i.d. property of the family
(Xi)i=1,...,N implies that the N -dimensional pdf pX : RN → R≥0 for the distribution of
the product RV

⊗
X can be written as

pN
X((x1, . . . , xN )) = pX1(x1) · . . . · pXN

(xN ). (15.1)

or in another notation (observing that all distributions PXi Are identical, so we introduce
a generic RV X with PX = PXi for all i), as

pN
X((x1, . . . , xN )) =

∏
i

pX(xi). (15.2)

For concreteness let us consider a case where N = 2, that is two observations (only
two!) have been collected, forming a sample (X1(ω), X2(ω)) = (0.9, 1.0). In machine
learning it is customary to call such a sample “training data”, or “data vector”, and refer
to it by the letter D. We thus have D = (0.9, 1.0) in our simplistic example.

The distribution PX , represented by the pdf pX , is unknown. The modeling task is to
infer from the observed data D how the distribution PX looks like, that is, how its pdf
pX is shaped. That is a hugely underdetermined problem: one cannot learn much about
a potentially complicated pdf from knowing only N = 2 data points. So one resorts to a
more modest subtask: infer from the sample what is the expectation (mean value) E[X]
of PX :

E[X] =: µ =
∫ ∞

−∞
x pX(x)dx. (15.3)

The classical frequentist answer to this question is to estimate the true expectation
µX by the sample mean, that is to compute the estimator

µ̂(ω) =
1
N

N∑
i=1

Xi(ω), (15.4)
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which in our example gives µ̂(ω) = (0.9 + 1.0)/2 = 0.95.
This is the best a classical-frequentist modeler can do. In a certain well-defined sense

which we will not investigate, the sample mean is the optimal estimator for the true
mean of a real-valued distribution. But “best” is not “good”: with only two data points,
this estimate is quite shaky. It has a high variance: if one would repeat the observation
experiment with a new elementary event ω′, very likely one would obtain a quite different
sample and thus an estimate µ̂(ω′) that is quite different from µ̂(ω).

Bayesian model estimation shows a way how to do better. It is a systematic method
to exploit prior knowledge that the modeler may have beforehand. This prior knowledge
takes the form of assumptions concerning the nature of the true distribution PXi . In our
super-simple example let us assume that the modeler knows or believes that

1. the true distribution PX is a normal distribution with unit standard deviation, that
is, the pdf has the form pX(x) = 1/

√
2π exp(−(x− µ)2/2), and

2. the true expectation µ can’t be negative and it can’t be greater than 1.

This kind of prior knowledge is often available. It includes knowledge or assumptions
concerning the functional type of the true distribution (here: it is assumed to be normal
distributed with unit standard deviation). Abstracting from our example, this kind of
knowledge means to fix a parametric family of distributions as candidate solutions to the
modeling task. In our example, the family is given by the familiy of pdfs (1/

√
2π exp(−(x−

µ)2/2))µ∈R, which happens to be parametrized by a single parameter µ only – it is a
one-dimensional family. In most real-world tasks one faces multi-parameter families,
where each candidate distribution from the family is specified by several parameters
θ1, . . . , θK which for notational convenience are lumped together in a parameter vector
θ = (θ1, . . . , θK) ∈ RK . One then writes pX(θ) to highlight the fact that the pdf pX comes
from a K-parametric family with parameters θ.

Another component of the prior knowledge is given by assumptions concerning the
parameters θ of the K-parametric family (pXi(θ))θ∈RK . In our mini-example the modeler
felt confident to restrict the possible range of the single parameter θ1 = µ to the interval
[0, 1].

To start the Bayesian model estimation machinery, available prior knowledge about
parameters θ must be cast into the form of a distribution over parameter space. For a
K-parametric pdf pX , the parameter space is RK . In our little example, K = 1 and
we need to rephrase the priorly known constraint 0 ≤ µ ≤ 1 into a distribution over R.
Not knowing anything more detailed than 0 ≤ µ ≤ 1, the natural, most non-committing
distribution is the uniform distribution over the interval [0, 1]. This distribution has the
rectangular pdf h(µ) shown in Figure 15.1. Two comments:

• The distribution for model parameters θ is not a distribution in the sense that was
explained in Chapter 9. It is not connected to a random variable and does not
model a real-world outcome of observations. Instead it captures subjective beliefs
that the modeler has about how the true distribution PXi of data points should look
like. It is here that subjectivistic aspects of “probability” intrude into an otherwise
classical-frequentist picture.

• Each parameter vector θ ∈ RK corresponds to one specific pdf pX(θ), which in turn
represents one possible candidate distribution P̂X for empirical observation values
Xi(ω). A distribution over parameter vectors θ ∈ RK is thus a distribution over
distributions. It is called a hyperdistribution.
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According to (15.2), the pdf pX(θ) gives rise to a sample distribution with pdf pN
X(θ) :

RN → R≥0 on the N -dimensional value space of data samples by simply multiplying the N
values pX(θ)(xi). We write pN

X(D | θ) to denote the pdf value pN
X(θ)((x1, . . . , xN )) =

pN
X(θ)(D) of pN

X(θ) on a particular training data sample D.
Summarizing:

• The pdf h(θ) encodes the modeler’s prior beliefs about how the parametrized dis-
tribution pX(θ) should look like. Parameters θ where h(θ) is large correspond to
data distributions that the modeler a priori finds more plausible. The distribution
represented by h(θ) is a hyperdistribution and it is often called the (Bayesian) prior.

• If θ is fixed, pN
X(D | θ) can be seen as a function of data vectors D. This function

is a pdf over the training sample data space. For each possible training sample
D = (x1, . . . , xN ) it describes how probable this particular outcome is, assuming the
true distribution of X is pX(θ).

• If, conversely, D is fixed, then pN
X(D | θ) can be seen as a function of θ. Seen as a

function of θ, pN
X(D | θ) is not something like a pdf over θ-space. Seen as a function

of θ, pN
X(D | θ) is called a likelihood function — given data D, it reveals certain

models θ as being more likely than others. A model (characterized by θ) “explains”
given data D better if pN

X(D | θ) is higher.

We thus have two sources of information about the sought-after, unknown true dis-
tribution pX(θ): the likelihood pN

X(D | θ) of θ given data, and the prior plausibility
encoded in h(θ). These two sources of information are independent of each other: the
prior plausibility is settled by the modeler before data have been observed, and should not
be informed by data. Because the two sources of information come from “independent”
sources of information (belief and data), it makes sense to combine them by multiplication
and consider the product

pX(D | θ) h(θ).

This product combines the two available sources of information about the sought-
after true distribution pX(θ). When data D are given, this product is a function of model
candidates θ. High values of this product mean that a candidate model θ is a good estimate,
low values mean it’s bad — in the light of both observed data and prior assumptions.

With fixed D, the product pN
X(D | θ) h(θ) is a non-negative function on the N -

dimensional parameter space θ ∈ RN . It will not in general integrate to unity and thus is
not a pdf. Dividing this product by its integral however gives a pdf, which we denote by
h(θ |D):

h(θ |D) =
pN

X(D | θ) h(θ)∫
RK pN

X(D | θ) h(θ) dθ
(15.5)

The distribution on model parameter space represented by the pdf h(θ|D) is called the
posterior distribution or simply the posterior. The formula (15.5) shows how Bayesians
combine the subjective prior h(θ) with empirical information pN

X(D|θ) to get a posterior
distribution over candidate models. Comments:

• The posterior distribution h(θ |D) is the final result of a Bayesian model estimation
procedure. It is a probability distribution over candidate models, which is a richer
and often a more useful thing than the single model that is the result of a classical
frequentist model estimation (like the sample mean from Equation 15.4).
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• Here I have considered real-valued distributions that can be represented by pdfs
throughout. If some of the concerned distributions are discrete or cannot be repre-
sented by pdfs for some reason, one gets different versions of (15.5).

• If one wishes to obtain a single, definite model estimate from a Bayesian modeling
exercise, a typical procedure is to compute the mean value of the posterior. The
resulting model θ̂ is called the posterior mean estimate

θ̂ =
∫

RK

θ h(θ |D) dθ.

• Compared to classical-frequentist model estimation, generally Bayesian model esti-
mation procedures are computationally more expensive and also more difficult to
design properly, because one has to invest some thinking into good priors. With
diligently chosen priors, Bayesian model estimates may give far better models than
classical-frequentist ones, especially when sample sizes are small.

• If one abbreviates the normalization term
∫

RK pN
X(D | θ) h(θ) dθ in (15.5) by P (D)

(“probability of seeing data D”), the formula (15.5) looks like a version of Bayes’
rule that we know from Equation 7.6:

h(θ |D) =
pN

X(D | θ) h(θ)
P (D)

, (15.6)

which is why the this entire approach is called “Bayesian”. Note that while (7.6) is
a theorem that can be proven from the axioms of classical probability theory, (15.6)
is a definition (of h(θ |D)).

: posterior mean 
estimate, ≈ 0.565

: sample mean,     
= 0.95

−0.5 0 0.5 1 1.5

0

1

model parameter μ

h(μ)

p  X (D | μ)

h(μ | D)

Figure 15.1: Bayesian model estimation. Compare text.

Let us conclude this section with a workout of our simple demo example. For the given
sample D = (0.9, 1.0), the likelihood function becomes

pX(D |µ) =
1√
2π

exp
(
−(0.9− µ)2

2

)
· 1√

2π
exp

(
−(1.0− µ)2

2

)
=

1
2π

exp
(
−0.905 + 1.9 µ− µ2

)
71



The green line in Figure 15.1 gives a plot of pX(D |µ), and the red broken line a plot
of the posterior distribution h(µ |D). A numerical integration of

∫
R µ h(µ |D) dµ yields a

posterior mean estimate of θ̂ ≈ 0.565. This is quite different from the sample mean 0.95,
revealing the strong influence of the prior distribution on possible models.
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Chapter 16

Some practical distributions

This section is adapted from the 2015 and 2016 PSM lecture notes written by Adalbert
Wilhelm.

In this section we describe a few distributions which arise commonly in application
scenarios. They have standard names and one should just know them, and under which
conditions they arise.

16.1 Some standard discrete distributions

16.1.1 Bernoulli distribution

The Bernoulli distribution always arises when one deals with observations that have only
two possible outcomes, like

• tail – head

• success – failure

• survival – death

• female – male

• U.S. citizen – no U.S. citizen

• retired – not retired

• correct – incorrect

• pass – fail

• 0 – 1

Formally, this leads to a two-element sample space S = {s1, s2} equipped with the power
set σ-field, on which a Bernoulli distribution is defined by its pmf:

Definition 16.1.1 The distribution of the random variable X : Ω → {s1, s2} with proba-
bility mass function

p(si) =

{
1− q for i = 1
q for i = 2

is called a Bernoulli distribution with success parameter q, where 0 ≥ q ≥ 1.
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16.1.2 Binomial distribution

The binomial distribution describes the counts of successes if a binary-outcome “Bernoulli
Experiment” is repeated N times. For a simple example, consider a gamble where you
toss a coin N times, and every time the head comes up, you earn a Dollar (not Euro;
gambling is done in Las Vegas, not Vegesack). What is the distribution of Dollar earnings
from such N -repetition games, if the coin comes up with head (= s2; outcome tail is s1)
with a success probability of q? Clearly the range of possible earnings goes from 0 to N
Dollars. These earnings are distributed according to the binomial distribution:

Definition 16.1.2 Let N be the number of trials of independent Bernoulli experiments
with success probability q in each trial. The distribution of the number of successes is
called the binomial distribution with parameters N and q and its pmf is given by

p(s) =
(

N

s

)
qs(1− q)N−s =

N !
s! (N − s)!

qs(1− q)N−s, s = 0, 1, 2, ..., N.

We write Bi(N, q) to denote the binomial distribution with parameters N and q.

The factor
(
N
s

)
is called binomial coefficient. Figure 16.1 shows the pmf of the binomial

distribution Bi(10, 0.25).
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Figure 16.1: The pmf of Bi(10, 0.25). Figure taken from A. Wilhelm’s PSM lecture notes.

A note on notation: it is customary to write

X ∼ Bi(10, 0.25)

as a shorthand for the statement “X is distributed according to Bi(10, 0.25)”.

16.1.3 Poisson distribution

This distribution is defined for S = {0, 1, 2, . . .}. PX(s) describes the probability that a
particular kind of event occurs s times within a given time interval. Examples (except the
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last one taken from https://en.wikipedia.org/wiki/Poisson distribution): PX(s)
might be the probability that

• s meteorites impact on the earth within 100 years,

• a call center receives s calls in an hour,

• a block of uranium emits s alpha particles in a second,

• s patients arrive in an emergency ward between 10 and 11 pm,

• a piece of brain tissue sends s neural spike signals within a second.

Similarly, instead of referring to a time interval, s may count spatially or otherwise cir-
cumscribed events, for instance

• the number of dust particles found in a milliliter of air,

• the number of diamonds found in a ton of ore,

• the number of adventures a human experiences in his/her lifetime.

The expected number of events E[X] is called the rate of the Poisson distribution, and is
commonly denoted by λ. The pmf of a Poisson distribution with rate λ is given by

p(s) =
λs e−s

s!
. (16.1)

Figure 16.2 depicts the pmf’s for three different rates.

Figure 16.2: The pmf of the Poisson distribution for various values of the parameter λ.
The connecting lines bewteen the dots are drawn only for better visual appearance (image
source: https://commons.wikimedia.org/wiki/File:Poisson pmf.svg).

16.2 Some standard continuous distributions

16.2.1 The uniform distribution

We don’t need to make a big fuzz about this. If I = [a1, b1]×. . .×[an, bn] is a n-dimensional
interval in Rn, the uniform distribution on I is given by the pdf

p(x) =

{
1

(b1−a1)·...·(bn−an) if x ∈ I

0 if x /∈ I.
(16.2)
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16.2.2 The exponential distribution

This distribution is defined for S = [0,∞) and could be paraphrased as “the distribution
of waiting times until the next of these things happens”. Consider any of the kinds of
temporal events listed for the Poisson distribution, for instance the event “meteorite hits
earth”. The exponential distribution characterizes how long you have to wait for the next
impact, given that one impact has just happened. Like in the Poisson distribution, such
random event processes have an average rate events / unit reference time interval. For
instance, meteorites of a certain minimum size hit the earth with a rate of 2.34 per year
(just guessing). This rate is again denoted by λ. The pdf of the exponential distribution
is given by

p(x) = λ e−λx (note that x ≥ 0). (16.3)

It is (almost) self-explaining that the expectation of an exponential distribution is the
reciprocal of the rate, E(X) = 1/λ. Figure 16.3 shows pdf’s for some rates λ.

Figure 16.3: The pdf of the exponential distribution for various values of the parameter λ
(image source: https://commons.wikimedia.org/wiki/File:Exponential pdf.svg).

16.2.3 The normal distribution

Enter the queen of distributions! Bow in reverence! I am sure you know her from the
media and facebook... For royal garments, as everybody knows, she wears the pdf

p(x) =
1√
2πσ

e−
(x−µ)2

2σ2 , (16.4)

which is fully specified by its mean µ and standard deviation (square root of variance) σ,
has the famous bell shape with µ being the location of the maximum and µ± σ being the
locations of the zeros of the second derivative (Fig. 16.4).

Make sure you are aware of the difference between the normal distribution, which is a
function from the Borel σ-field B to [0, 1] and denoted byN (µ, σ2), versus its pdf, which is a
function from the reals to the non-negative reals and denoted by p. The normal distribution
with zero mean and unit variance, N (0, 1), is called the standard normal distribution. The
normal distribution is also called Gaussian distribution or simply Gaussian.

The normal distribution has a number of nice properties that very much facilitate
calculations and theory. Specifically, the sum of normal distributed, independent RVs is
again normal distributed, and the variance of the sum is the sum of variances:
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Figure 16.4: pdf of a normal distribution with mean 2 and standard deviation 1.

Proposition 16.2.1 Let X, Y : Ω → R be two independent, normally distributed RVs with
means µ and ν and variances σ2 and τ2. Then the sum X + Y is normally distributed
with mean µ + ν and variance σ2 + τ2.

The majestic power of the normal distribution, which makes her reign almost univer-
sally over almost all natural phenomena, comes from one of the most central theorems of
probability theory, the central limit theorem. It is stated in textbooks in a variety of (not
always exactly equivalent) versions. It says, in brief, that one gets the normal distribution
whenever random effects of many independent small-sized causes sum up to large-scale
observable effects. The following definition makes this precise:

Definition 16.2.1 Let (Xi)i∈N be a sequence of independent, real-valued, square integrable
random variables with nonzero variances Var(Xi) = E[(Xi − E[Xi])2]. Then we say that
the central limit theorem holds for (Xi)i∈N if the distributions PSn of the standardized sum
variables

Sn =
∑n

i=1(Xi − E[Xi])
σ (
∑n

i=1 Xi)
(16.5)

converges weakly to N (0, 1).

Explanations:

• A real-valued random variable with pdf p is square integrable if its second moment,
that is the integral E[X2] =

∫
R x2 p(x)dx is finite.

• If (Pn)n∈N is a sequence of distributions over R, and P a distribution (all over the
same measure space (R,B)), then (Pn)n∈N is said to converge weakly to P if

lim
n→∞

∫
f(x) Pn(dx) =

∫
f(x)P (dx) (16.6)

for all continuous, bounded functions f : R → R. You will find the notation of
these integrals unfamiliar, and indeed you see here cases of Lebesgue integrals – a
far-reaching generalization of the Riemann integrals that you know. Lebesgue in-
tegrals can deal with a far greater range of functions than the Riemann integral.
Mathematical probability theory is formulated exclusively with the Lebesgue inte-
gral. We cannot give an introduction to Lebesgue integration theory in this course.
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Therefore, simply ignore the precise meaning of “weak convergence” and take home
that sequences of distributions are required to converge to a target distribution in
some subtly defined way.

A sequence (Xi)i∈N of random variables (or, equivalently, its associated sequence of
distribution (PXi)) obeys the central limit theorem under rather weak conditions – or in
other words, for many such sequences the central limit theorem holds.

A simple, important class of (Xi) for which the central limit theorem holds is obtained
when the Xi are identically distributed (and, of course, are independent, square integrable
and have nonzero variance). Notice that regardless of the shape of the distribution of each
Xi, the distribution of the normalized sums converge to N (0, 1)!

The classical demonstration of the central limit theorem is the Galton board, named
after Sir Francis Galton (1822–1911), an English multi-scientist. The idea is to let little
balls (or beans, hence this device is sometimes called “bean machine”) trickle down a grid
of obstacles which randomly deflect the ball left or right (Figure 16.5). It does not matter
how, exactly, these deflections act — in the simplest case, the ball is just kicked right or
left by one space grid unit with equal probability. The deeper the trickling grid, the closer
will the resulting distribution be to a normal distribution. A nice video can be watched
at https://www.youtube.com/watch?v=PM7z 03o kk.

Figure 16.5: The Dalton board. Compare text for explanation. Figure taken from https:
//janav.wordpress.com/2013/09/26/power-law/.

However, this simple case does not explain the far-reaching, general importance of the
central limit theorem (rather, property). In textbooks one often finds statements like, “if
the outcomes of some measurement procedure can be conceived to be the combined effect
of many independent causal effects, then the outcomes will be approximately normal
distributed”. The “many independent causal effects” that are here referred to are the
random variables (Xi); they will typically not be identically distributed at all. Still the
central limit theorem holds under mild assumptions. Intuitively, all that one has to require
is that none of the individual random variables Xi dominates all the others – the effects of
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any single Xi must asymptotically be “washed out” if an increasing number of other Xi′

is entered into the sum variable Sn. In mathematical textbooks on probability you may
find numerous mathematical conditions which amount to this “washing out”. A special
case that captures many real-life cases is the condition that the Xi are uniformly bounded,
that is, there exists some b > 0 such that |Xi(ω)| < b for all i and ω. However, there exist
much more general (nontrivial to state) conditions that likewise imply the central limit
theorem. For our purposes, a good enough take-home message is

if (Xi) is a halfway reasonably behaved sequence of numerical RV’s, then the
normalized sums converge to the standard normal distribution.

As we will see in Part 2 of this lecture, the normal distribution plays an overwhelming
role in applied statistics. One often has to actually compute integrals of the pdf (16.4):

Task: compute the numerical value of
∫ b

a

1√
2πσ

e−
(x−µ)2

2σ2 dx.

There is no closed-form solution formula for this task. Instead, the solution is found in a
two-step procedure:

1. Transform the problem from its original version N (µ, σ2) to the standard normal
distribution N (0, 1), by using∫ b

a

1√
2πσ

e−
(x−µ)2

2σ2 dx =
∫ b−µ

σ

a−µ
σ

1√
2π

e−
(x)2

2 dx. (16.7)

In terms of probability theory, this means to transform the original, N (µ, σ2)-
distributed RV X to a N (0, 1)-distributed variable Z = (X − µ)/σ. (The symbol Z
is often used in statistics for standard normal distributed RVs.).

2. Compute the numerical value of the r.h.s. in (16.7) by using the cumulative density
function of N (0, 1), which is commonly denoted by Φ:∫ b−µ

σ

a−µ
σ

1√
2π

e−
(x)2

2 dx = Φ(
b− µ

σ
)− Φ(

a− µ

σ
).

Since there is no closed-form solution for calculating Φ, in former times statisti-
cians found the solution in books where Φ was tabulated. Today, statistics software
packages call fast iterative solvers for Φ.

16.3 ... and many more

The few common, named distributions that I displayed in this section are only meant to be
illustrative picks from a much, much larger reservoir of well-known, completely analyzed,
tabulated, pre-computed, and individually named distributions. The online book “Field
Guide to Continuous Probability Distributions” by G. E. Crooks Crooks [2017] attempts
a systematic overview. You should take home the following message:

• In 100 years or so of research, statisticians have identified hundreds of basic mech-
anisms by which nature generates random observations. In this chapter we only
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looked at only two of them – (i) intermittend rare “impact events” coming from
large numbers of independent sources which hit some target system with a mean
frequency λ, giving rise to Poisson and exponential distributions; and (ii) stochastic
physical measurables that can be understood as the additive effect of a large number
of different causes, which leads to the normal distribution.

• One way of approaching a statistical modeling task for a target distribution PX is
to

1. first analyze and identify the nature of the physical (or psychological or social
or economical...) effects that give rise to this distributions,

2. then do a literature search (e.g. check out what G. E. Crooks says) or ask a
statistics expert friend which known and named distribution is available that
was tailored to capture exactly these effects, – which will likely give you a
distribution formula that is shaped by a small number of parameters θ,

3. then estimate θ from available observation data, getting a distribution estimate
θ̂, and

4. use the theory that statisticians have developed in order to calculate confidence
intervals (or similar accuracy tolerance measures) for θ̂, which

5. finally allows you to state something like, “given the observation data, with a
probability of 0.95, the true distribution θtrue differs from the estimate θ̂ by less
than 0.01 percent.”

• In summary, a typical professional statistical modeling project starts from well-
argued assumptions about the type of the true distribution, then estimates the pa-
rameters of the distribtution, then reports the estimate together with a quantification
of the error bound or confidence level (or the like) of the estimate.

• Professionally documented statistical analyses will always state not only the esti-
mated model, but also in addition quantify how accurate the model estimate is.
This can take many forms, like error bars drawn around estimated parameters or
stating “significance levels”.

• If you read a report that only reports a model estimate, without any such quan-
tification of accuracy levels, then this report has not been written by a professional
statistician. There are two kinds of such reports. Either the author was ignorant
about how to carry out a statistical analysis – then trash the report and forget it. Or
the report was written by a machine learner in a task context where accuracy levels
are not important and/or cannot be technically obtained because it is not possible
to identify the distribution kind of the data generating system.
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Chapter 17

The very big picture – what
probability theory is good for

Probability theory is what the mathematicians give us. It is a universal mathematical
modeling language for phenomena that have some aspects of randomness. This powerful
tool is used for different purposes in different user communities. As I see it, there are four
major user groups that have distinctly different modeling objectives, which in turn have
led to distinctly different branching extensions of probability theory:

Natural scientists use the formalism of probability theory “just to model” physical,
chemical or biological systems. These models are analytical models — which means
that the subformulas appearing in a probabilistic model of a real-world system should
correspond 1–1 to physical substructures / forces / quantities of the modeled system.
An analytical model should provide a truthful and revealing account of the inner
workings of the system that is modeled — just like the plan of an architect, or the
blueprint of an airplane design should give a correct mirror image of the real object.

Natural scientists love to describe their target systems with ordinary differential
equations (ODEs) or partial differential equations (PDEs). ODEs and PDEs are
deterministic. When the target system exhibits some randomness, the DEs must
be augmented by randomness too. This has led to stochastic differential equations,
whose solutions are stochastic processes.

Stochastic differential equations describe the “ground truth” of stochastic physical
systems in all detail, but they are difficult to work with and difficult to interpret
and analyze. In many cases, a more summary model of the evolution of a stochastic
system is more insightful. It is often possible to describe a stochastic system as
an evolution of probability distributions. When at time t0 the system’s state x
is known to be distributed according to a distribution PX(t0), the distributions at
future times t > t0 can often be determined as a evolution starting from PX(t0) ruled
by a deterministic evolution operator. Such deterministic evolutions of probability
distributions can be described by ODEs acting on the parameters of PX(t) if these
distributions are parametric; if they are non-parametric but admit a pdf pX(t),
the evolution of pX(t) can often be captured by a PDE. The heat equation, which
describes the propagation of temperature gradients in physical media, is an example
of this latter kind. See the Wikipedia articles on “Master equation” and “Fokker-
Planck equation” for more. The formalism of quantum mechanics follows related
ideas.
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The entire discipline of thermodynamics and its generalization and abstraction, sta-
tistical physics is concerned with properties of systems composed of very large num-
bers of interacting subsystems (like a flask of air containing zillions of gas molecules)
whose outwardly observable properties (like temperature or pressure) result from
averaging over zillions of micro-interactions. Such systems can dramatically change
their properties when some external control parameter crosses a critical value. For
example, a bottle of water freezes when the temperature falls below zero; or a sur-
face patch on a hard drive can become permanently magnetic if it is exposed to
an external magnetic field of a certain superthreshold strength. The study of such
phase transitions — which greatly shape the face of physical reality! — has spurred
a rich body of original mathematical tools developed in statistical physics.

Ever since powerful digital computers became available, natural scientists have be-
gun to simulate natural systems on computers, in order to understand and predict
emergent properties. When the system under consideration is determined by the
interaction of many small subsystems, a detailed simulation on the microlevel is in-
feasible. We owe to physics a number of Monte Carlo simulation methods which
allow one to derive approximate conclusions from partial, computationally feasible
simulations of such systems. These methods have been adopted outside the natu-
ral sciences and are particularly useful in numerically solving complex optimization
problems.

Many of my colleagues from the natural sciences at Jacobs University are particu-
larly strong in stochastic modeling. If you are interested in the sciences, you will
find ample opportunities for theses projects when you knock at their doors. In
this course we will not study natural science use-cases and methods. In my lecture
notes of the bygone graduate course “Algorithmical and Statistical Modeling” you
will find an accessible presentation of some Monte Carlo methods (http://minds.
jacobs-university.de/uploads/teaching/lectureNotes/LN AlgMod.pdf, Sections
4 and 5).

Signal processing and control engineers see randomness mostly as an enemy and
call it noise. Being engineers they wish to be the rulers of their systems, and being
mathematicians they know that the most biting laws for ruling reality are pro-
vided by linear algebra and its infinite-dimensional sister, functional analysis. For
more than a century they have been growing and securing their kingdom in a world
haunted by noise, building an eminent arsenal of linear methods to quantify, mea-
sure, and eliminiate noise. With their spectral methods they can identify and cancel
many components of noise in signals (and images, by the way) and with Kalman
filters they can gain access to a system’s clean state that is hidden under a cover of
noise. In my lecture notes of a legacy graduate course on ML you can find a section
on adaptive filtering (http://minds.jacobs-university.de/uploads/teaching/
lectureNotes/LN ML Fall11.pdf, Section 6).

Furthermore, in a quite different and thoroughly nonlinear mathematical spirit,
we owe to signal processing engineers the inception of information theory. This
mathematical theory has many links to the physical theory of thermodynamics
and statistical physics (discussion in https://en.wikipedia.org/wiki/Entropy
in thermodynamics and information theory but develops a specific perspective
on and tools for analyzing information processing dynamics. Today, information
theory paired with methods from statistical physics are used throughout all sciences.
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Machine learning in its modern form aims at modeling real-world systems, just like in
the natural sciences. But the motivation is different. Machine learners are applica-
tion oriented, they want to exploit their models. ML models of pieces of reality must
function well in their respective application context. It is not necessary that they
are veridical (from latin, “saying the truth”). The inner workings of an ML model
need not mirror the inner workings of the modeled system. Machine learning mod-
els are thus almost always blackbox models. A blackbox model of some real-world
system just captures the externally observable input-output behavior of the mod-
eled system, but it may use any internal math or algorithm tricks that its designer
can think of. The quality of a ML model is assessed with regards how precisely it
can capture the externally observable properties of the modeled system – that is,
the distribution of RVs. The quality of an (analytical) science model is assessed in
terms of how correctly it captures the internal workings of the target system. One
could summarize this by saying that a ML model aims at modeling data, whereas a
natural science model wants to model data-generating mechanisms.

This gives rise to an interesting pair of opposite findings.

Case 1: When a target system is simple and can be well isolated from its environment
(that is, from impacts of “noise” which the natural scientists call “perturbations”),
and if the analytical model indeed captures the underlying natural laws and struc-
tures, analytical models may yield close to perfect matches with reality. A superior
example of this is the Newton model of gravitational forces which can yield super
accurate predictions of planetary motion decades ahead. No blackbox ML model
that would be trained numerically on tons of stellar observation data could match
that.

Case 2: When the target system is nonlinear and complex, and cannot easily be
isolated from its environment, analytical models can turn out to be much less accu-
rate in their prediction of outwardly observable system behavior than ML models.
The reason is that analytical models will typically incorporate many simplifying as-
sumptions, which lead to a mismatch with reality that can become crippling when
the target system is very nonlinear. A point in case are language models. The (ana-
lytical) neuroscience models of the language-generating circuits of the human brain
cannot (at present) predict any serious portions of the structure of language, whereas
ML language models have recently been refined to generate entire Wikipedia texts
– at the html source code level [Graves, 2014]!

Figure 17.1 sketches how blackbox models (should) work. They are derived (“learnt”,
“estimated”) from data emitted by the source system, and they should generate
synthetic data that “fits” (has a similar distribution as) the real-world data. And
that’s it. The structure of the blackbox model need not correspond in any way with
the source system – in the figure, this is a robot, while the model is a neural network
whose structure has no correspondence whatsoever in the robot design.

Unconstrained by the veracity demands of analytical modeling, ML research has
spun off a large number of formalisms to represent probability distributions, and
learning algorithms to estimate them from data. At the present time, neural networks
dominate the public perception of ML, but there are very many others. The diversity
of formalisms makes it difficult for students to “learn ML”, and ML textbooks (of
which there are many good ones) focus on different selections of methods, according
to the preferences of the author.
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Figure 17.1: How blackbox models work. For explanation see text.

Statistics. The last group of probability theory end-users that I want to highlight are
statisticians. The general objective of statistical analyses can be stated as, find out
from empirical data how optimal decisions can be made in a world full of uncer-
tainty. Decision making scenarios occur virtually everywhere where humans act,
for instance, in economics (“buy or sell?”), human resources (“hire or fire?”), mili-
tary (“attack or run?”), spacecraft start countdown (“ignite or abort?”), medicine
(“surgery or pills?”), you name it. Besides finding out which decision to take, a
secondary – and often primary – goal is to assess the degree of certainty of whether
the suggested decision is truly the better one. Statistics thus has developed an arse-
nal of methods not only to estimate distributions, but also to estimate how reliable
is the estimate. Students of the natural sciences get a tiny glimpse of this when
they are taught to always draw confidence intervals into their diagrams. Students
of the social sciences, economics and psychology get a fuller treatment. They have
to take one or two full statistical methods courses, based on a heavyweight text-
book, where they learn about the entire workflow: from acquiring data in the first
place (how to avoid “biased” data sources or cope with biasedness in case it is un-
avoidable), to planning a data-based study (for example, how many questionnaires
have to be filed in order to secure a given minimal level of confidence in the final
recommendations for action arising from the study), to select adequate statistical
models (what assumptions can be made about the data distribution), and finally, to
the actual “mathworks”. Statisticians have become more painfully aware than other
probability end-users that there is not a unique, correct, best method for analysing
data. This community thus has been the main driving force for the development
of estimation theory, a branch in the great tree of probability which attempts to
characterize the pros and cons of different methods for statistical model estimation
– a meta-theory of probabilistic modeling if you wish.

Summarizing: natural scientists want to analyze and understand data generating sys-
tems; signal processing engineers want to cleanse information in data from noise on data;
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machine learners want to capture the structure of the data generated by data-generating
systems; and statisticians want to find the safest possible decision-making grounds in an
uncertain world. All of these communities of thinkers and makers have created specific
extensions to the core probability theory delivered by mathematicians. Several of these
extensions have grown into scientific disciplines of their own standing. There are, of course,
many mathematical crosslinks. Yet, the four communities that I listed pursue their re-
searches in an amazingly strict mutual isolation and with much less cross-fertilization than
one would expect. This is a historical and sociological fact which would deserve its own
investigation.

Pure and basic probability theory is the common point of departure for all of these
endeavours. The sweat (and swearings I might guess) that you have been shedding in this
course up to this point will pay off if you venture into any of these four domains in your
future professional life.

In the remaining two parts of this course, I will try to give you an insightful introduction
to the basic ways of thinking in two of those fields, namely statistics and machine learning.
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Chapter 18

Summary of Part I

We have arrived at the end of Part I. The purpose of this part was to give you a safe
anchoring in the basic conceptualizations of probability theory. Here is a list of what I
would consider the essential take-home messages. If you understand each of the following
items and can confidently write down the associated basic formal expressions, you will
have secured a true magic box of math keys that will open all modeling doors in the
natural sciences, engineering, the social sciences, economics and machine learning.

Here is the checklist:

• The “universe” or “population” Ω is the mathematical abstraction of a piece of
reality. Since the only aspect of reality which is relevant for empirical modeling is its
capacity to provide opportunities for making observations, the mathematical model
of a piece of reality is just a plain set of what I called “observation opportunities”
ω ∈ Ω, and what educated modelers call elementary events.

• Random variables are the mathematical abstraction of observation procedures.

• Arbitrarily many RVs can be added to a growing model when a modeler starts
modeling a piece of reality. This reflects that in real life, the same situation can be
observed and described in arbitrarily many ways.

• Each RV Xi comes with its own sample space Si.

• Any family (Xi)i∈I of RVs can be grouped into a single new RV
⊗

Xi : Ω →
∏

i Si

whose sample space is the product of the individual sample spaces Si.

• Measurement values in S delivered by a RV X : Ω → S can be further processed,
for instance by “feature extraction” operations f : S → S′, obtaining new RVs
f ◦X : Ω → S′.

• There is no escape from σ-fields if you want to understand probability in any seri-
ous way. σ-Fields arise automatically and immediately when you want to combine
information by NOT, OR and AND, like in: “the probability that it will NOT rain
is...”, or “the probability that this patient has a brain lesion AND a vitamin B12
deficit is...”. This leads to a structuring of a sample space S by declaring a σ-field F
on it. Sample spaces always come in the structured form (S,F). Pairs (S,F) where
S is any kind of non-empty set and F is a σ-field on S are called measurable spaces.
Make sure you are very familiar with the defining properties of a σ-field.

• Two special cases of measurable spaces (S,F), which cover almost all practical ap-
plications that you are likely to meet, are obtained when
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– S is discrete (that is, finite or countably infinite) — then one standardly uses
the powerset σ-field F = Pot(S),

– or when S ⊆ Rn is a continuously connected subset of the n-dimensional Eu-
clidean space Rn, typically Rn itself, or an n-dimensional interval within Rn,
or a linear subspace, or a manifold in Rn. Then one uses the Borel σ-field B

on S, which is generated by the intervals within S (make sure you understand
what it means to “generate” a σ-field).

• A RV X : Ω → (S,F) induces a σ-field X−1(F) = {X−1(A) |A ∈ F} on Ω. If a
probabilistic model includes a family (Xi)i∈I of RVs, all of them together induce the
σ-field {

⊗
X−1

i (A) |A ∈
⊗
Fi} on Ω.

• A complete probabilistic model of a piece of reality looks like this:⊗
Xi : (Ω,A, P ) → (

∏
Si,
⊗

Fi),

or, equivalently, for every used RV Xi, specify

Xi : (Ω,A, P ) → (Si,Fi).

The σ-field A must include {
⊗

X−1
i (A) |A ∈

⊗
Fi} in order to make all con-

cerned RVs measurable. For most purposes it is good enough to identify A with
{
⊗

X−1
i (A) |A ∈

⊗
Fi}.

• In the abstract mathematical theory of probability, any triple (Ω,A, P ), where (Ω,A)
is a measurable space and P is a probability measure on (Ω,A), is called a probability
space.

• The one and only and fundamental way to make probability statements is to write,
think and say

P (E) = a,

where E ∈ A and a ∈ [0, 1]. Since E will always be specified through observation
values, this fundamental form appears in practice mostly in the special format

P (X−1(A)),

or in equivalent notations, P (X ∈ A) or PX(A).

• The probability measure PX on the sample space (S,F) of X, defined by PX(A) =
P (X ∈ A), is called the distribution of X.

• Many continuous distributions PX on Rn can be represented by a pdf pX : Rn → R≥0,
which is a function satisfying PX(A) =

∫
A px(x) dx for all n-dimensional intervals

A ⊆ Rn.

• In a probability model
⊗

Xi : (Ω,A, P ) → (
∏

Si,
⊗
Fi), the distribution PN

Xi
is

the joint distribution of all used RVs Xi. This joint distribution is the major target
object in all probabilistic modeling.

• Given the joint distribution PX1⊗···⊗Xk
of k RVs Xi, marginal distributions PXi1

⊗···⊗Xil

(where J := {i1, . . . , il} ⊂ {1, . . . , k}) can be defined/calculated by “summing away”
(or “integrating away” in the case of continuous distributions) the other RVs. For
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notational convenience let us assume that J = {1, . . . , l}. Then in the case that all
RVs are discrete,

PX1⊗···⊗Xl
(A1×· · ·×Al) =

∑
sl+1∈Sl+1,...,sk∈Sk

PX1⊗···⊗Xk
(A1×· · ·×Al×{sl+1}×. . .×{sk}),

and in the case where all RVs are real-valued and the joint distribution has a pdf
pX1⊗···⊗Xk

,

PX1⊗···⊗Xl
(A1 × · · · ×Al) =

∫
x1∈A1,...,xl∈Al,xl+1∈R,...,xk∈R

pX1⊗···⊗Xk
(x) dx.

This can be extended to marginals in joint distributions of infinitely many RVs, but
we did not cover that in our lecture.

• The conditional distribution PX|Y ∈B Is defined by

PX|Y ∈B(A) =
P (X ∈ A, Y ∈ B)

P (Y ∈ B)

in case that P (Y ∈ B) > 0. The conditional probability PX|Y ∈B(A) is commonly
written as P (X ∈ A |Y ∈ B). In continuous joint distributions of X and Y with
a joint pdf pX,Y , conditional distributions can also be defined for conditions Y = y
although P (Y = y) is zero. Provided that the pdf of the conditional distribution
PX|Y =y satisfies certain minimal requirements (for instance, it suffices that it is
continuous), then the conditional distribution of X given Y = y has the pdf

pX|Y =y(x) =
pX,Y (x, y)∫
px,y(x, y) dx

.

• A discrete distribution can always be specified by its pmf. A continuous distribution
may or may not have a pdf. There are many more ways to represent distributions.
For instance, the distribution PN

Xn
of a homogeneous Markov Chain (Xn)n∈N is

represented by the starting probability vector π0 and the Markov transition matrix
M . In a sense, every machine learning formalism comes with its own format for
representing distributions (often only implicitly).

• A collection of k RVs X1, . . . , Xk with values in (Si,Fi) (where i = 1, . . . , k) is
independent if the joint distribution of the RVs is the product of their marginal
distributions, that is,

P (X1 ∈ A1, . . . , Xk ∈ Ak) = P (X1 ∈ A1) · P (X2 ∈ A2) · . . . · P (Xk ∈ Ak)

for all Ai ∈ Fi. More generally, a family (Xi)i∈I of RVs is independent if all finite
subfamilies are independent.

• A collection of k RVs X1, . . . , Xk with values in (Si,Fi) is conditionally independent
given Y1 = B1, . . . , Yl = Bl if

P (X1 ∈ A1, . . . , Xk ∈ Ak |Y1 = B1, . . . , Yl = Bl)
= P (X1 ∈ A1 |Y1 = B1, . . . , Yl = Bl) · . . . · P (Xk ∈ Ak |Y1 = B1, . . . , Yl = Bl).
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Detecting conditional independencies in complex joint distributions is a key enabling
factor for entire branches of machine learning. This is because computing proba-
bilities in multi-RV distributions in general requires summation or integration over
exponentially blowing-up sized summation or integration spaces, which is infeasible.
If concerned RVs are (conditionally) independent, these summations/integrations
reduce to simple products of easy-to-compute marginal probabilities. One also says
that joint distributions can be factorized. The branches of ML that use Markov
Chains, hidden Markov models, Bayesian networks, or other graphical networks are
practically useful only because they can exploit conditional independencies.

• Make sure you understand the differences between uncorrelatedness and indepen-
dence.

• A stochastic process is a family (Xt)t∈T of RVs, all of which take values in the same
space S, and where the set T is ordered and considered a set of time indices. A
path (or trajectory, or realization) of a stochastic process is a sequence (Xt(ω))t∈T of
values in S. A (deep) result from probability theory, which we did not cover in the
lecture, states that the distribution of a stochastic process is characterized by all the
finite marginal distributions of the process, that is, by all distributions PXt1 ,...,Xtk

where k > 0.

• The expectation of a numerical (that is, vector-valued) RV X whose distribution has
a pdf p is

E[X] =
∫

x p(x) dx.

It is often written as µ. This is very different from the sample mean

1
N

∑
i=1,...,N

Xi(ω).

The expectation is a characteristic of an entire distribution - it is a single, fixed
number (or vector). The sample mean, by contrast, is a random variable! The
sample mean gives an estimate of the expectation, which is why one may write
µ̂ = 1

N

∑
i=1,...,N Xi(ω).

• Beyond the expectation one is interested in higher-order moments of the distribution
of a real-valued RV X : Ω → R. For n > 1 the n-th moment of X is E[(X−E[X])n].
In statistics, where one often analyses distributions whose pdfs have nice analytical
properties, a distribution can often be characterized up to negligible residual errors
by giving the first few moments.

• There are two fundamentally different interpretations of the nature of randomness:

– The objectivist (or frequentist) view of probability regards randomness as a
measurable physical property of real-world systems. Probability is measured by
averaging measurement outcome counts over (infinitely) repeated observations.
The frequentist view is the most widespread one in mathematical textbooks on
probability theory, and it has been worked out to an enormous depth.

– From the beginnings of philosophical and scientific thinking about randomness,
other interpretations of “probability” than the frequentist one have been ex-
plored and worked out. These subjectivist accounts have the aim to establish
mathematically and conceptually sound systems of rational reasoning about
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uncertainty. Subjectivist accounts of probability can be considered a subfield
of mathematical logic.

– An intermediate case is found in what is called Bayesian modeling, a compu-
tational strategy of growing importance in machine learning. Bayesian model
estimation allows one to merge subjective insight about the nature of the to-
be-modeled distribution with objective information contained in samples.

• For both objectivist and subjectivists accounts of probability, the axioms of a σ-
field plus the Kolmogorov axioms, which describe how probabilities are consistently
assigned to the elements of a σ-field, yield the framework for the mathematical study
of probability.

• The basic concepts and formalism of probability theory, which we introduced in Part
I of this lecture, are extended and specialized (and, unfortunately, often written in
other notations) in different ways in the natural sciences, the social sciences and
psychology, economics, machine learning, or signal processing and control.
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Part II

A short helicopter ride over the
lands of statistics
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In this part of our lecture notes I follow the leads of two sources. The first is the
textbook Introduction to Statistical Inference by J. C. Kiefer Kiefer [1987] (I will call it
“the Kiefer book”). This book, although it first appeared 30 years ago, is still in print —
a classic reference that keeps being used as the main reference in statistics courses all over
the world. In the case that you will in your future professional life be called to carry out
statistical analyses, you will be well advised to buy a copy of the Kiefer book. The other
source is the lecture notes of my JacobscColleague Adalbert Wilhelm. He wrote them for
the 2015 and 2016 versions of this course, and he followed the Kiefer book.

The Kiefer book uses a notation that is in some places confusingly different from the
notation that I use in these lecture notes. I will continue to use “my” symbols — they
adhere to notational conventions in probability theory and machine learning. In Appendix
B I give a contrastive summary of the disconsonant notation in the Kiefer book vs. these
lecture notes.

The purpose of this short Part II is to afford you with an understanding of the statistics
way of thinking, the core terminology in this field, and how it builds upon the concepts
from the mathematical theory of probability. This condensed treatment cannot provide
you with a working-level familiarity with the methods of statistics (to rise to that level
one would have to invest an entire semester and a solid textbook), but it can help you to
decide whether you will need or want to employ statistics methods in your professional
future, and it will ease your access to that field in case you want to become seriously
engaged in it.
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Chapter 19

The mindset and basic
terminology of statistics

Statistics is a decidedly application-oriented field. The core question of statistical analyses
can be paraphrased as follows:

How can the information gleaned from empirical data be used to optimally guide
decision-making, such that the possible benefits incurred by the decision are maxi-
mized (or equivalently, such that the possible negative effects incurred by the decision
are minimized)?

Some examples of statistical analysis scenarios will put flesh on this abstract charac-
terization.

• A federal ministery of health must decide whether a new pharmaceutic drug will
be approved for distribution. Possible benefits of the decision are a better health
status of the country’s population, possible negative effects may result from risky
side-effects, ineffectiveness of the drug, or the additional financial load on public
healthcare. Data come from clinical studies.

• A physicist has secured a research grant which buys him 48 hrs use of the CERN
particle accelerator. Within this time he carries out a measurement suite that re-
sults in 500 TB of particle shattering data. He has to decide whether some effects
that appear to shine up in the data warrant the announcement of a new elementary
particle. Possible positive effects: fame and follow-up funding in case he announces
that a new particle has been detected, and other researchers can subsequently con-
firm the finding. Possible negative effects: shame and drying-out funding in case
he announces the new particle but this is later found erroneous. Or, alternatively,
lifelong frustration in case he does not announce the finding of a new particle, but
later others do find it and reap in the reputation.

• An insurance company wants to spare the expenses for human salespersons and
designs an online questionnaire for potential customers, together with an evalua-
tion algorithm which uses the customer’s questionnaire response to issue a tailored
insurance contract. The data for calibrating the questionnaire and the evaluation
algorithm come from the company’s previous customer history data. The decision
made by the company here is very complex: it consists in the specific formulation
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of the questionnaire and the design of the algorithm. Possible benefits are future
average financial gains, possible damage are future financial losses.

• No way to avoid this classical textbook example... here goes. A gambler wants to
know whether the coin she is using is fair within an error tolerance of 0.1 percent.
The decision is binary: juding the coin to be fair and therefore using it, versus
judging it to be not fair and throwing it into the trashcan. Possible negative effects
of misjudging the fairness of the coin are gambling losses (in case the gambler thinks
the coin is fair but it isn’t) or wasting the price for one coin (in case the gambler
decides the coin is unfair and trashes it though in fact it is fair). Possible positive
effects of correct decisions are earning gambling money with a fair coin, or avoiding
gambling losses with an unfair coin. Data come from throwing the coin many times.

19.1 Informal overview of the core coordinates of statistics

The statistical way of dealing with such scenarios can be abstractly summarized in the
following considerations:

• The general situation consists of a rational agent (helped by a statistician) who has
to make a decision to take one of several possible actions.

• The action has consequences which can be measured on a scalar scale that one could
interpret, depending on the specific scenario, as a scale of bad – good, punishment
– reward, loss – gain, pain – pleasure, frustration – satisfaction, failure – success or
the like. This quantification of the value of action consequences is called loss. By a
general convention this loss is scaled to start at 0 (best, most desirable), with larger
values indicating less desirable consequences. The loss might even reach positive
infinity (like death, must be avoided by all means).

• How large the effectively incurred loss becomes after a decision has been made de-
pends on how the world reacts to the decision. But, the world cannot be completely
known or perfectly predicted, and it may even be inherently stochastic. The best
one can do is to describe the relevant parts of reality by the distribution PX of a
random variable X. (Recall from Part I that this RV X can be a product of a large
number of component variables, admitting arbitrarily rich descriptions of reality).

• Unfortunately, the true distribution P true
X is unknown and unknowable. At this point,

statistical modeling introduces a fundamental assumption. One assumes that the
true distribution must be one of a predetermined collection of candidate distributions.
Statistical modeling always starts from declaring which set of candidate distributions
is taken into consideration for all subsequent arguments. Following Adi’s lecture
notes, I will use the symbol P for this candidate set. One hopes or believes or
assumes that P true

X ∈ P.

• The loss that will become reality after a decision has been made therefore depends
on the unknown true distribution P true

X . For making a good decision (which will
minimize somehow the expected loss) it is vital to get as much information about
P true

X as one can. This information is extracted from a sample X(ω).

• The final outcome of a statistical analysis is to derive a decision on the basis of a sam-
ple. This “derivation” takes the form of an algorithm which computes the decision
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from the sample. Once the algorithm is chosen, the decision follows mechanically
from the available data. The art and science of statistics is to choose that algorithm
(from a possibly wide range of candidate algorithms) which minimizes the expected
loss.

• Thus, one can summarize the essence of statistical thinking like this: be aware that
many decision-making algorithms are potential candidates in a given decision situ-
ation, thus try to understand the consequences of each candidate algorithm for the
ultimate loss, and pick the best one.

• Statistical research has revealed that this programme is not as straightforward as it
might at first seem. Among other, the following difficulties arise:

– How can one procure something like a “collection of candidate decision-making
algorithms” (needed to pick the best?) It turns out that the options to design
such algorithms are as unbounded and ill-defined as the options that a music
composer has to compose a symphony. As a consequence, the field of statistics
has produced a large “zoo” of decision-making algorithms, together with at-
tempts to get a systematic overview of fundamental types and subtypes of such
algorithms – really, quite similar to the attempts of zoologist to order animals
in a system of classes, tribes, and species. Textbooks of statistics thus will often
have a number of main chapters each of which is devoted to a special class of
decision making algorithms.

– It is not clear what it means to “pick the best” decision algorithm from a collec-
tion of candidates. While “the best” algorithm should clearly be the one that
minimizes the loss, it is unclear in what way the loss should be “minimized”.
Should it be minimal on average? or should decisions that lead to an especially
high loss (like death) be prevented by all means, at the cost of maybe a worse
average loss outcome? Are we allowed to factor in subjective beliefs about the
true distribution, or should one strictly adhere to using only the information
that is contained in the data? These questions are connected to the problem
mentioned above of establishing an overview of possible candidate decision al-
gorithms, because specific kinds of such algorithms will be most suitable for
specific ways of how “minimizing loss” is understood.

– It is clear that the quality of the final decision hinges on the quality of the sample
data. Statistics is distinguished from other fields of applied probability in that
it devotes a serious study to the quality of samples. Statistical research has
developed techniques for assessing the quality of a sample, and for experimental
data-generating designs that generate useful samples in the first place. This is
different from, for example, machine learning where a sample is just “given”. In
statistics, samples can be made. Students of psychology, for instance, have to
take a statistical methods course (or two) where they are trained to design an
empirical experiment in a way that the sample information coming out of the
experiment will (hopefully) be good enough to enable a decision which satisfies
predefined quality criteria.

19.2 Core terminology and formalism

In this section I supply the essential formalism that is used in statistics to substantiate
the grand picture outlined in the previous section. The basic formalism will look simple
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to you, but be aware that it reflects 100 years of struggling of great minds, and that it
sets the the foundations as well as the limiting fencing walls for a mathematical discipline
that has an enormous impact on decision-making in the sciences, economy, medicine and
politics.

A cautionary note. Statisticians use words like “decision”, “loss” and “risk” in ways
that are related, but not identical, to the way how these words are used in machine learning
and how I introduced them in the Machine Learning lecture (the recommended companion
lecture to this PSM course). The machine learners have imported these words from the
much more ancient fields of statistics, but placed them in the new context of (supervised)
machine learning and this changed their formal definitions. I recommend that you forget
(for the next few sections) how “decision”, “loss” and “risk” were introduced in the ML
lecture, and digest the following definitions with a blank mind. In my comments after
Definition 19.3.2 below I explain the differences in terminology usage between ML and
statistics.

19.2.1 Data and samples

We start with the data. It is formalized as a finite sample X(ω) = (X1(ω), . . . , XN (ω)),
also written as (x1, . . . , xN ) for convenience. All data points xi come from the same
sample space S0, so the sample space for X =

⊗
i=1,...,N Xi is S := SN

0 . In other words,
we are dealing with what we called a mathematical sample in Chapter 8. Again I want to
emphasize that each Xi can itself be a richly structured source of information (for instance,
embodied by a questionnaire or a company’s customer profile), with S0 being a complex
product space.

The question of how to design an experiment such that the data generated by the
experiment are useful for the decision task is an important issue in the professional practice
of a statistician. However, I will not touch upon this issue in these lecture notes and
instead, like the Kiefer book, simply assume X and S are given. If you are interested
in getting a first impression of how this questions is approached, I can recommend the
Wikipedia article https://en.wikipedia.org/wiki/Design of experiments.

19.2.2 Decision spaces

The next component we consider are the decisions. One assumes that a pre-defined col-
lection of possible decisions is given to the statistician. We denote decisions by d and
the collection of all possible decisions by D. This decision space D can be finite or in-
finite. How the elements d ∈ D concretely look like depends on the specific situation –
anything is admissible. From the mathematical and algorithmic perspective, D is just any
set (equipped with a σ-field, but we skip that). Here are some examples for illustration:

1. For a coin-throwing gambler investigating her coin, relevant decision spaces might be
D = {fair, unfair} or D = {fair with an error tolerance of 0.01%, fair with an error
tolerance of 0.05%, unknown } or D = {will use this coin for at least 100 throws
then see further, will not use this coin }.

2. A physicist measuring the speed of light might want to use decision spaces like
D = R or D = {[c−0.1, c+0.1] | 290, 000, 000 ≤ c ≤ 310, 000, 000} or D = {true SoL
deviates from 299,792,458 by at least 0.00000001%, true SoL is equal to 299,792,458
with a precision of 0.00000001%}.

3. An insurance salesman might be faced with D = {sell contract to customer, don’t
sell}.
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It becomes clear from these examples that the word “decision” is understood in a wide
sense – it may mean decisions-to-act (example 3) or decisions-to-judge (example 2) or
decision-to-postpone-decision (last case in example 1) or, in fact, anything else.

19.2.3 The distribution space

One does not know what the true data distribution P true
X is, but one knows that the

potential good or bad effects of a decision depend on what the true distribution is. A
statistician thus has to acknowledge that the world might offer different true distributions,
and s/he must explore the consequences implied by different true distributions. But, one
cannot scientifically explore something like “all possible true distributions” because this is
an ill-defined concept. Therefore, statistical analysis begin by defining a mathematically
circumscribed set of candidate distributions. We denote this set by P.

Ideally the candidate set P should contain P true
X . However, reality is more cunning than

mathematics will ever be, thus in effect the assumption P true
X ∈ P will almost certainly be

wrong. The art of specifying P is thus to find a candidate set that has members which
come very close to P true

X . On the other hand, the mathematical format of P should be as
simple as one can afford, in order to facilitate the derivation of subsequent formulas and
algorithms. This is a delicate tradeoff situation. For example, one frequently follows the
temptation of simplicity and establishes P as a set of normal distributions. This can be
entirely appropriate, or it can be the road to hell (“statistics lie”).

At this point it is interesting to comment on a difference in the ways of thinking in
statistics vs. machine learning. In ML, modelers take pride in coming close to reality,
which leads them to using very complex sets of candidate distributions – for instance, P
in ML might be represented by a collection of neural networks with hundreds of thousands
of parameters. Using such ultra-complex models of distributions bars the way to math-
ematical analysis and to understanding the nature and ultimate effects of what may go
wrong (see, for instance, the vivid discussions on fooling trained neural networks [Nguyen
et al., 2014], — google “attack neural network”). In statistics, the emphasis is laid on
a formal analysis of the consequences of decisions, which leads to a preference for ana-
lytically tractable distribution models assembled in P. — Another instructive example:
classical control theory vs. neural network models of controllers. Classical control theory
is obsessed with the goal of mathematically proving the dynamical stability of a controller
design. For instance, it should be mathematically proven that the autopilot controller of
an aircraft will not “go berserk” and make the aircraft unexpectedly dive into a deadly
spin. This has led control engineers to very much prefer linear models over nonlinear ones,
because the mathematics of linear controllers is very well understood, while the maths of
nonlinear controllers is a hairy business. However, controllers implemented in the format
of trained neural networks typically perform more accurately, and may be easier to obtain,
than linear controllers. Still, in many industrial applications (robotics, aircraft) linear con-
trollers continue to be used because of the mathematical stability assurances, which can
hardly be derived for neural network based controllers. This is one of the reasons why
methods of “deep learning” are only hesitantly becoming accepted in engineering.

Back to statistics. There are many ways how one can formally specify a set P of
candidate distributions. The easiest is to establish P as a set of parametrized distributions:

Definition 19.2.1 A collection P is a parametrized family of distributions, if there is
a mathematical formula ϕ with real-valued parameters θ1, . . . , θk such that every element
PX ∈ P can be represented by ϕ(θ1, . . . , θk), where the parameter vector (θ1, . . . , θk)′ =: θ
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is chosen from a set Θ ⊆ Rk of admissible parameters. For a distribution PX represented
by ϕ(θ) one also writes Pθ.

Four examples of parametrized families of distributions:

1. Consider the Bernoulli distributions given by the pmf’s PX(s1) = 1 − q, PX(s2) =
q. This is a one-parametric family with parameter θ = θ1 = q and admissible
parameters Θ = [0, 1].

2. The family of one-dimensional normal distributions is a 2-parametric family whose
members are usually characterized by the parameter vectors θ = (µ, σ2)′, where µ
is the mean and σ2 the variance of the distribution. The set of admissible θ can
be further constrained depending on the modeling situation, for instance one may
choose Θ = {(µ, σ2) | µ ≥ 0, σ2 ≤ 5}.

3. Our physicist measuring the speed of light probably believes that the true speed of
light is a single real number, because according to a dogma of physics, reality does
not “use” randomly distributed speeds of light. Therefore, the only natural kind of
distribution for the speed of light is a point measure. Such a point measure over
the measurable space (R,B) assigns a probability of 1 to every interval containing a
specific point c ∈ R, and assigns a zero probability to every interval that does not
contain c (note: by this requirement, one uniquely specifies a probability measure
on (R,B) according to Definition 7.1.1). The point measure in point c is standardly
denoted by δc. Intuitively, this measure states that the specific value c must be
observed with probability 1. Since the physicist does not know the exact value
c of the speed of light, but safely may assume that it lies between 290,000,000
and 310,000,000, he might reasonably use Θ = [290, 000, 000, 310, 000, 000], where a
parameter θ ∈ Θ stands for the point measure δθ.

4. One can fix a neural network structure with m real-valued inputs and one output
such that the output is always nonnegative. Such a neural network is parametrized
by a (large) number k of so-called synaptic weights, which are lumped together in
a weight matrix W . Different choices of W lead to networks whose structure is
the same but whose computational properties vary. Assume that the inputs are
constrained to a finite hypercube H ⊂ Rm. A network NW parametrized by weights
W implements a functionNW : H → R≥0. From this function one can mathematicall
define a pdf pW over H by setting

pW (x) =
NW (x)∫

H NW (x) dx
. (19.1)

In this way one obtains a k-parametric family of distributions on H with param-
eter vectors θ = (w1, . . . , wk)′. Five notes are in place here. First, such neural
network models of distributions are the bread and butter of today’s machine learn-
ing. Second, the parameters W are here “trained” from training data. Third, k
is typically large and can easily reach many thousands or even hundreds of thou-
sands. Fourth, the denominator in (19.1) – called the partition function by theorists
– cannot be computed analytically, and numerical estimates are very expensive to
calculate. Therefore, in ML one does not make use of (19.1) directly, but one trains
and uses the un-normalized variant eW (x) = NW (x). While this stripped-down ver-
sion does not allow one to make proper probability statements, it can still be used
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to compare two probabilities by calculating probability ratios

pW (x1)
pW (x2)

=
NW (x1)
NW (x2)

,

which is good enough for most tasks, in particular, classification tasks. Fifth, because
of these intractability issues, neural network based models of distributions are only
reluctantly becoming used in statistics (as far as I know; see Paliwal and Kumar
[2009] for a very enlightening comparison and survey of the performance of neural
network versus “classical” statistical methods).

In these lecture notes I will only consider parametrized families of distributions. In
such cases one can identify P with the set Θ of admissible parameter vectors θ.

19.2.4 The loss function

The loss is a penalty measure (higher = worse) which is inflicted on the decision maker as
a consequence of his/her decision. Since reality acts its game through P true

X , the true loss
will depend both on P true

X and the decision d. But the true distribution is unknown. In
order to get an overview of what may happen, the statistician has to take all candidate
distributions P i

X ∈ into consideration (or equivalently, all parametrizations θ ∈ Θ in the
case of a parametrized family of candidate distributions), and s/he also has to account for
what may happen after any of the possible decisions d ∈ D. This makes it necessary to
define a loss function W from arguments in P ×D:

W : P ×D → R≥0 (or W : Θ×D → R≥0)

This loss function needs to be established by the statistician before a statistical analysis
of a decision-making scenario can be started. I illustrate this concept with some simple
demo examples:

• Our coin-throwing gambler, having opted for D = {fair, unfair} and Θ = [0, 1] (where
q ∈ Θ is the probability for the coin to come up with heads), might give herself a
loss function

W (q, fair) = (4 (q − 1/2))10

W (q, unfair) =
{

1 if |q − 1/2| ≤ 0.01,
0 if |q − 1/2| > 0.01.

This loss function strongly penalizes unfair coins in the case of a (mistaken) “fair”
decision; and in the case of an “unfair” decision, it softly penalizes the cases where
the coin is fair up to a tolerance of 0.01.

• The speed-of-light measuring physicist with decision space D = R and parameter
space Θ = [290, 000, 000, 310, 000, 000] for point distributions δθ may employ the
quadratic loss

W (θ, d) = (θ − d)2.

• A federal safety engineer has to decide whether a design for a planned nuclear pow-
erplant can be approved. Depending on numerous design elements, the engineer’s
model estimates the average time λ (in years) to a catastrophic reactor containment
rupture and core meltdown, using for P the set of exponential distributions with
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parameter λ. By law, a nuclear reactor must be designed such that catastrophic
failure events are expected to occur at a rate of less than once in 10 Mio years (I
made this up, don’t know about the laws and rules in reality). The decision space
is D = {approve, reject}. Here is a halfway reasonably looking loss function:

W (λ, accept) =
{
∞ if λ ≤ 10Mio,

1
λ−10Mio if λ > 10Mio.

W (λ, reject) =
{

0 if λ ≤ 10Mio,
10 if λ > 10Mio.

This loss should balance economic considerations against nuclear accident conse-
quences. You may question whether the loss that I suggested is well thought out.
This is a good example to demonstrate that designing loss functions is a hairy busi-
ness.

19.2.5 The statistical problem

The specification of

• the format of available data, given by the sample space S,

• the choice D of possible decisions,

• a commitment to a set P of candidate distributions describing “reality”,

• and a quantification of the possible consequences of decisions in the form of a loss
function W : P ×D → R≥0,

the stage is prepared for carrying out a statistical analysis aiming at finding a good deci-
sion. The four elements S,D,P,W taken together constitute what is known as a statistical
problem.

19.2.6 Some basic types of statistical problems

In principle, any kind of decisions are amenable to a statistical analysis. However, very
often one faces a kind of decision that has already a long research history, an established
name, and a compendium of specialized analysis techniques and algorithms. Here I give
a brief listing of such standard decision scenarios. This is essentially a brief summary of
Chapter 3 in the Kiefer book.

Point estimation. In point estimation problems, the objective is to estimate the values
of some characteristics of the true distribution P true

X . For instance, when the distri-
bution space P is the set of one-dimensional normal distributions N (µ, σ2), one may
be interested in obtaining an estimate µ̂ of the true expectation µ. In such cases,
when one uses a parametric distribution space P ≡ Θ, the decision space is a subset
D = ΘD ⊆ Θ. But other characteristics besides the original parameters may also
serve as the decision target. For example, when P is the set of exponential distribu-
tions with Θ = {λ}, one may be interested to estimate the variance σ2 of the true
distribution, a parameter that is not typically used to characterize an exponential
distribution.

In more generality, when ϕ : Θ → Rn is some real-valued function of candidate
distributions — that is, a quantitative property of the distributions — the decision
space consists of all points (vectors) in D = ϕ(Θ).
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For a nontrivial real-life example, consider the following statistical problem that
might arise in an bank company setting. Data are obtained by a sample-generating
RV X that returns filled-in online customer questionnaires. The sample used by the
company’s chief statistician is X(ω) = (X1(ω), . . . , XN (ω)) = (x1, . . . , xN ). What
kind of thing is PX? PX is a model of the distribution of X. Since X is a product of
i.i.d. RVs Xi, a distribution PX of X is fully specified by the individual distribution
PXi of any of the Xi. So, what kind of object is PXi? Each Xi yields the answer
vector of a questionnaire. If the questionnaire has m items, which take values in item-
specific sample spaces S1, . . . , Sm, an answer vector xi is an element of S1× . . .×Sm.
The distribution PXi of Xi is thus a distribution over the product space S1× . . .×Sm

(we leave out the specification of the corresponding σ-fields for simplicity). Thus,
the company statistician must design a computationally tractable representation that
can describe such distributions PXi . She might, for instance, employ neural network
formalisms or a formalism called a Bayesian network to achieve this goal. We don’t
bother here to make this more specific but assume that the statistician has found
a way to represent PXi by a parametric model, where each candidate distribution
PXi is specified by a parameter vector θ (neural networks and Bayesian networks are
parametric models). The set P of candidate distributions thus can be identified with
a parameter space Θ. — However, the company is very likely not primarily interested
in modeling the joint distribution of questionnaire item answers. Instead, they will
be interested in specific questions like, “what is the probability Q that a customer
whose age is between 40 and 45 and who is married and who has a regular income
between 2300 and 2500 Euros will pay back a loan of 10,000 Euros within 2 years?”.
This interesting probability Q will not be directly expressed in the distribution PXi .
The company statistician, if she is worth her high salary, will however be able to
mathematically infer Q from PXi , that is, from θ. This mathematical inference
procedure is a function ϕ : Θ → [0, 1]. The decision space becomes ϕ(Θ) = [0, 1],
and the whole affair is revealed as a point estimation problem.

It is interesting to notice that machine learning problems can often be regarded as
point estimation problems. For example, when one trains a neural network, one first
fixes the “architecture” of the neural network, that is the number and connectivity
topology of the neurons. If the outputs of the neural network are interpreted as a
probability vector (“hypothesis vector” in networks trained for classification tasks,
the most common usage of neural networks), such a neural network architecture
can be seen as a parametric model of the conditional distribution of outputs given
the inputs to the network. The parameter space Θ is the space of all possible
synaptic weights inside the network, which are usually collected in a weight matrix
Θ = W. Neural network training algorithms are designed to estimate from a sample
(called training data in ML) a weight matrix Ŵ which should in some way come
close toWtrue, the neural network describing the true conditional output-given-input
distribution. Training a neural network thus would be considered, from a statistics
perspective, as a statistical point estimation problem where D = P = Θ.

Interval and region estimation. It may be wise for a decision maker to make cautious
decisions. A point estimate decision is a bold statement. It amounts to saying, “I
declare the correct value ϕ(θtrue) to be exactly this number y”. Very likely such a
statement is wrong. In many situations it is more advisable to acknowledge one’s
limits in assessing reality and instead decide to make a statement like, “I declare
that the true speed of light to lie in the interval 299792458±2”, or “The meteor will
hit earth in the ocean, at a distance at least 100 miles from the closest landmass”.
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The decision space is then a set of intervals or non-rectangular regions in ϕ(Θ).

A special case of interval/region estimation is obtained when the decision statements
are augmented by a probability that the statement is correct, as in “I declare that
the true speed of light to lie in the interval 299792458 ± 2, with a confidence of
95%”. When all decision regions D ∈ D are qualified with the same confidence level,
one speaks of confidence interval / region estimation. This is in widespread use in
reporting experimental findings throughout the sciences. In fact this can be regarded
the de facto minimal standard for good scientific practice. You can recognize it when
result graphs show plot points that are braced by error bars, which come in various
graphical appearances (Figure 19.1).

https://www.originlab.com/Doc/en/UserGuide/images/Y_Error_Bar_Graph/Image064.png

https://s3.amazonaws.com/cdn.graphpad.com/faq/804/images/804b.jpg

https://peltiertech.com/images/2008-12/err2003selectboth.png

http://www.adeptscience.co.uk/wp-content/uploads/2014/03/Error_Bars_with_Fill_Area.png

Figure 19.1: Some random webpicks showing result plots with error bars
(from www.originlab.com, s3.amazonaws.com/cdn.graphpad.com, peltiertech.com,
www.adeptscience.co.uk)

Hypothesis testing. This is the most classical kind of statistical decisions. The treat-
ment of hypothesis testing fills half or more of standard textbooks for statistics in
applied fields. It concerns situations where a scientific yes/no hypothesis is con-
fronted with empirical data.

The archetypical example is to demonstrate that a newly found pharmaceutical sub-
stance C has a curing effect, using data from a clinical survey where some patients
have been treated with the new substance C and others with a placebo. The hy-
pothesis for which evidential support is sought is “substance C has a positive effect”.
This target hypothesis is often called (somewhat counter-intuitively) the alternative
hypothesis, abbreviated H1. It is contrasted with the opposite hypothesis, “sub-
stance C has no positive effect”, called the null hypothesis, abbreviated H0. A level
of significance (typically α = 1% or α = 5%) is fixed, and the decision set contains
two judgments D = {C has a positive effect at the level α of significance, C has no
positive effect at the level α of significance}.

Students in the natural sciences, and students in psychology and medicine in partic-
ular, will (or should) take a “statistical methods” course in their first year of studies.
The main course contents is to give them an intense training in formulating scientific
hypotheses in H1 vs. H0 pairs, and selecting and carrying out statistical procedures
to decide between them.

Since this type of decision is so fundamental and so extensively covered in “textbooks
and cookbooks on statistics” (quote from the Kiefer book), we defer a more in-depth
treatment to a separate section.

The Kiefer book describes a few more standard types of statistical problems, like for
instance regression or ranking problems, which we skip here.
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19.3 Statistical procedures

A statistical procedure is an algorithm to determine a decision d ∈ D on the basis of a
data sample x = (x1, . . . , xN ). It is a data-based decision-making algorithm. From a
mathematical perspective, such an algorithm implements a function t : S → D. We will
use the symbol t to denote statistical procedures. Formally, any such function qualifies as
a statistical procedure:

Definition 19.3.1 A (any!) function t : S → D is called a statistical procedure.

Notice that t◦X : Ω → D is a random variable. For mathematical analyses, one has to
equip the decision space D with a σ-field FD. Often the choice of FD is straightforward:
when D is a finite set, one uses the power set σ-field; when D is a continuous space (some
subset of Rn) one uses the Borel σ-field. We will not further deal with this subject and
take decision spaces D just as plain sets, without thinking about a σ-field structuring of
it.

All the art and science of statistics revolves around finding “good” statistical proce-
dures. This necessitates, in the first place, to formalize what “good” means. We will
quickly find that this is not an easy question.

19.3.1 Comparing statistical procedures

I begin with a basic example, taken from the Kiefer book and extended by Adi Wilhelm.
We consider the following elementary statistical problem:

• The data come from tossing a coin 10 times. This can be formalized by ten identically
distributed, independent RVs X1, . . . , X10, each Xi with sample space Si = {0, 1}.
Combining these ten items into a single RV X = X1

⊗
. . .
⊗

X10 with sample space
S = {0, 1}10 yields our problem’s sample space S. The samples X(ω) are 10-tuples
of zeros and ones, written for convenience asX(ω) = (x1, . . . , x10).

• The targetted decision is to claim an estimate µ̂ of the expectation E[X1] (which is
the same for all Xi because the Xi are identically distributed). The coin is perfectly
fair if E[X1] =: µ = 1/2. The decision space is D = [0, 1].

• The distribution of each Xi is an Bernoulli distribution. A Bernoulli distribution is
specified (recall Section 16.1.1) by a single parameter θ (called q in Section 16.1.1)
which is defined by θ = PXi(1). The natural choice for the set of candidate distri-
butions P for X is thus given by the family of all pmf’s pθ defined by

pθ(x1, . . . , x10) = θ
P

i xi (1− θ)10−
P

i xi ,

where θ ∈ [0, 1].

• For a loss function, we opt for the quadratic loss,

W (θ, µ̂) = (θ − µ̂)2.

Let us now inspect and compare a choice of four statistical procedures tj : S →
[0, 1]. Recall that, roughly speaking (we will refine that idea very soon), the purpose of a
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statistical procedure is to give a “good” decision, which in this simple statistical problem
means to produce from a sample (x1, . . . , x10) a “good” estimate µ̂ of θ. Here is the list:

t1(x1, . . . , x10) =
1
10

10∑
i=1

xi

t2(x1, . . . , x10) =


π
5 if

10∑
i=1

xi is odd

0 if
10∑
i=1

xi is even

t3(x1, . . . , x10) =
1
2

t4(x1, . . . , x10) =
1
6

6∑
i=1

xi

As you can see, not all procedures are appear to be equally “good”. The first one is the
sample mean which appears quite reasonable. The second procedure appears to be plain
crazy. The third procedure completely ignores the experimental results and firmly beliefs
that the coin is fair. The fourth one only considers the first six tosses of the coin, ignoring
the results of the last four ones.

The clear winner seems to be t1. Or, ... is it not?
In order to make it precise what is a “good” statistical procedure t, we recall that

we quantified that the “goodness” of a decision by the loss function W . The loss func-
tion assigns a penalty value W (PX , d) to every assumed data distribution PX ∈ P and
decision candidate d ∈ D. A decision is actually made on the basis of a sample X(ω) =
(x1, . . . , x10). But, the sample data (x1, . . . , x10) are the outcome of a random obser-
vation. If we would repeat the decision-making again on the basis of another sample
X ′(ω) = (x′1, . . . , x

′
10), using the same procedure t, we may be led to another decision d′.

The crucial quality measure is thus not the loss W (PX , d) which we compute for a specific
decision d, but the expected loss that we would earn on average if we could repeat the
decision-making on the basis of freshly drawn samples. This leads to the notion of the risk
of a statistical procedure t:

Definition 19.3.2 Let W : Θ×D → R+ be a loss function, X the sample-generating RV,
and t : S → D a statistical procedure. Then the function

Rt : P → R+, Rt(PX) = EPX
[W (PX , t(X))],

providing an a-priori measure of the performance of the statistical procedure t, is called
the risk function of the procedure t.

Here EPX
denotes the expectation taken over the sample distribution PX . When the

family P of distributions PX is a parametric family, we can identify a distribution PX

with a parameter vector θ and P with a set Θ of such parameter vectors, and we can also
write

Rt : Θ → R+, Rt(θ) = Eθ[W (θ, t(X))].

A note on terminology: different uses of the words “loss” and “risk”. In the machine
learning literature, even in the mathematical-theoretical branches of that literature, the
words loss and risk are used for concepts that are somewhat simplified and restricted
versions of how we just defined them, following the Kiefer book. Namely, in that literature,
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these notions arise solely in the supervised learning contexts, where the typical objective is
to learn a regression function D which upon pattern inputs X(ω) = x returns a regression
output D(x) which can be compared to a “correct” output Y (ω) = y. The quality of that
output is quantified by a “loss” function which compares the result of applying D on x
with the correct output y given by reality. Formally, if outputs D(x) and true results y
reside in a set SY , a loss function in that literature is a function LD : SY × SY → R+ and
is designed in a way that a small loss L(D(x), y) means that D(x) is in some way good
and a high loss is bad. A much-used loss is the quadratic loss which can be defined when
SY = Rk and is given by L(D(x), y) = ‖(D(x) − y‖2. In the machine learning literature,
the “risk” R(D) is defined to be a characteristic of D, namely, it is the expected loss
D(E) = E[L(D(X), Y )], where the expectation is taken over the joint distribution of X
and Y . I wrote “the expectation” because in machine learning one starts from “the”
distribution of real-world data, period — different from how statisticians think who start
their theories from the notion of a set P of possible candidate distributions that the real
world data might embody. In summary, in machine learning the risk is construed as a
characteristic of a fixed regression function (or classification function as a special case)
D, whereas in the statistical way of thinking, the risk is a characteristic of a statistical
procedure. Furthermore, while in machine learning the risk of a regression function D is
a single number from R+, in Kiefer’s world the risk of a statistical procedure is a function
from a space of candidate distributions to R+. Confusing!
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For the coin tossing example with Θ = [0, 1], the quadratic loss and the above defined
four statistical procedures we obtain the following risk functions:

Rt1(θ) = Eθ[(t1(X)− θ)2]

= Eθ

( 1
10

10∑
i=1

Xi − θ

)2


=
(

1
10

)2

Eθ

(( 10∑
i=1

Xi

)
− 10 θ

)2


=
(

1
10

)2

Var

(
10∑
i=1

Xi

)

=
(

1
10

)2

10 · θ(1− θ)

=
1
10

θ(1− θ)

Rt2(θ) = Eθ[(t2(X)− θ)2]

=
1
2
(
π

5
− θ)2 +

1
2
(0− θ)2

=
π2

50
− π

5
θ + θ2

Rt3(θ) = Eθ[(t3(X)− θ)2]

= Eθ

[
(
1
2
− θ)2

]
= (

1
2
− θ)2

Rt4(θ) = Eθ[(t4(X)− θ)2]

= Eθ

(1
6

6∑
i=1

Xi − θ

)2


=
1
6
θ(1− θ)

The risk functions of procedures 1, 2, 3 and 4 are visualised in Fig. 19.2.
If you think about what you see in Figure 19.2 you will find that procedure t1 is not

necessarily the “best”. If one would have some previous knowledge that the coin is at most
only a little unfair — say, one believes that the true value of θ deviates from 1/2 by no
more than 0.1 in either direction, so one would use Θ = [0.4, 0.6] — then the procedure
t3 would always give a lower expected loss than the natural-looking procedure t1, because
the risk curve of t3 is always below the curve for t1 in the intervale [0.4, 0.6].

If a statistician searches for a low-risk procedure, he/she must carry out this search
in a set of candidate procedures (in mathematics, when one searches for some “optimal”
item, one must always first define the “search space” in which one carries out the search
— a search without a specified candidate space is ill-defined). We will use the symbol T
for the collection of candidate procedures ti that a statistician considers and compares.
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Figure 19.2: Some risk functions for the coin tossing example. The risk functions of
procedure t1 is given in blue, the one of t2 in green, t3 in red, and t4 in purple.

In principle, one would love to find a statistical procedure that is best in the sense that
its risk is always smaller than the risk for any competing procedure, across all candidate
distributions θ ∈ Θ, and across all competing procedures t ∈ T . If such a globally optimal
procedure exists, it is called the uniformly best procedure in T .

The sad truth is that typically such uniformly best procedures do not exist (unless
Θ and T are very peculiar). However, one can always exclude from considerations all
statistical procedures in T which are everywhere outperformed by a competing procedure.
If t is a decision procedure such that Rt(θ) ≤ Rt′(θ) ∀θ ∈ Θ, and for some θ0 we have
Rt(θ0) < Rt′(θ0), we say that t dominates the procedure t′. Procedures t′ which are
dominated by some other t can be excluded from further consideration. Such certainly
non-optimal procedures are called inadmissible. All procedures which are not dominated
by some other one are called admissible. Weeding out from T all inadmissible procedures
leaves the statistician with a search space wherein each candidate procedure is better
(lower risk) than another one for some but not all candidate distributions θ.

In our coin-tossing example (see Figure 19.2) we find that procedures t2 and t4 are
dominated by t1. Thus t2 and t4 are inadmissible and can be ignored. Neither t1 nor t3
dominate the respective other. After purging our original collection T0 = {t1, t2, t3, t4}
from t2 and t4 we are left with T = {t1, t3}. We need additional tools and ideas to decide
which of these two admissible procedures we should use.

19.4 Criteria for choosing a statistical procedure

The question of how to pick a “best” procedure from a collection T of admissible pro-
cedures has no simple universal answer. Large textbook sections (and important sub-
traditions within statistics) are devoted to specific approaches to characterize “best” pro-
cedures in an admissible candidate set. Depending on what approach (or tradition) one
subscribes to, one will ultimately opt for different candidate procedures as the “best” one.
We proceed to take a look at some of the major strategies.
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19.4.1 Minimax criterion

Definition 19.4.1 A statistical procedure t∗ : S → D is said to be minimax, if

t∗ = argmin
t∈T

max{Rt(θ) | θ ∈ Θ}.

The minimax strategy selects the one statistical procedure that minimizes the worst-
case error. In very simple cases, we might be able to directly compute the minimax
procedure by comparing the risk functions for all statistical procedures under considera-
tion. This typically only works for small parameter spaces and limited classes of statistical
procedures. For any reasonable statistical problem, the minimax procedure needs to be
computed indirectly. There are various approaches for computing minimax procedures.
One of them is closely related to the next approach.

19.4.2 Bayes criterion

The Bayesian approach assumes that the parameter space Θ can be turned into a prob-
ability space. We specify some distribution P̃ on the parameter space Θ (using some
appropriate σ-field on it). Since our parameter space is mostly taken to be a subset of Rn,
the default choice is to use the corresponding Borel σ-field over this subset. In the classical
Bayesian context, the probability distribution on the parameter space selected is supposed
to quantify the knowledge we have about the likelihood of the different parameters prior
to observing data.

As a measure of risk the Bayes criterion now asks to choose a statistical procedure t
that minimizes the expected error according to our prior beliefs about θ. This quantity is
called Bayes risk of t and is defined by

r(t) = EP̃ [Rt(θ)] = EP̃ [Eθ[W (θ, t(X))]] =
∫

Θ

(∫
S

W (θ, t(x)) pθ(x) dx

)
p̃(θ) dθ.

Here, p̃ is the probability density function for the prior distribution P̃ over Θ and
pθ(x) is the pdf on S for the distribution PX = θ (we assume for simplicity that both
distributions have pdf’s).

19.4.3 Unbiasedness and statistical efficiency

The criterion of unbiasedness is widely used when the statistical problem is of the point
estimation kind. Let us assume that we want to estimate some characteristic ϕ(PX) =
ϕ(θ) of the (parametrized) sample distribution PX . The decision space then is equal to
D = ϕ(Θ).

Definition 19.4.2 A statistical procedure t : S → D is called an unbiased estimator of
ϕ(θ) if

EPX
[t(X)] = ϕ(PX), ∀PX ∈ P,

or more specifically, when we are dealing with parametric models θ of PX , if

Eθ[t(X)] = ϕ(θ), ∀θ ∈ Θ.

An unbiased estimator for ϕ(θ) thus will yield estimates ϕ̂(θ) that on average across
different samples X(ω) returns the correct ϕ(θ), for any of the candidate distributions
θ ∈ Θ. Since unbiasedness is so often desired, we take a closer look at this concept and
investigate what it means for an estimator to be not unbiased.
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Definition 19.4.3 For any estimator t whose expectation exists for all PX (or for all θ),
the function

bt : P → D, bt(PX) = EPX
[t(X)]− ϕ(PX)

or
bt : Θ → ϕ(Θ), bt(θ) = Eθ[t(X)]− ϕ(θ)

is called the bias function of t for estimating ϕ(θ).

Thus, a statistical procedure t is unbiased if and only if the bias function bt(PX) equals
zero for all candidate distributions PX ∈ P.

Assume furthermore that our loss function is the quadratic loss. Then our risk function
turns into

Rt(PX) = EPX
[‖t(X)− ϕ(PX)‖2]

and is called the mean squared error, denoted by MSE[t(X)].
When we are considering a scalar ϕ(θ) ∈ R, a straightforward calculation shows that

the MSE results from the added effects of the variance of the statistical procedure and the
bias of our statistical procedure:

Proposition 19.4.1
MSE[t(X)] = bt(PX)2 + Var[t(X)].

Some comments that help to appreciate the practical importance of this proposition:

• Point estimation problems where a squared error loss is employed are encountered
very often. For instance, many machine learning problems are of this kind.

• Proposition 19.4.1 is intimately connected to a fundamental difficulty encountered in
machine learning, the overfitting problem. This difficulty arises in scenarios where
ϕ is the identity function, that is, one wants to directly estimate the parameters θ of
the distribution PX — in simple words, one wants to estimate a good model of the
data distribution from a sample. In such scenarios an estimator (that is, a machine
learning algorithm) is prone to have high variance when its model estimates θ̂ are
strongly influenced by variations across different training samples. This happens
when the estimator is capable of fitting the particular, random detail of a training
sample X(ω). While this leads to small training error, the obtained model θ̂ will
poorly generalize. Conversely, when the estimator is very inflexible and its output
θ̂ is only weakly shaped by information in the training sample X(ω), its variance
will be small but its bias will usually be large — underfitting happens. The close
connection between underfitting and bias on the one hand, overfitting and variance
on the other have led to the terminology to refer to the overfitting difficulty as the
bias-variance dilemma.

• It is often quite feasible to design a candidate set T of estimators that are all unbi-
ased. The MSE loss then is determined solely by the variance Var[t(X)]. This leads
to a clear selection criterion: choose an estimator t ∈ T whose variance is minimal
(if possible, for all PX ∈ P). The variance of an estimator is also referred to as
the statistical efficiency of an estimator (usage of this terminology: lower variance
= higher statistical efficiency). Investing effort to trim down the variance of an
estimator is often key for designing useful machine learning algorithms.
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19.4.4 Maximum likelihood

The last approach to determining a “good” statistical procedure which we will inspect is
the method of maximum likelihood model estimation. The acronym ML is commonly used
for “maximum likelihood”. The set-up goes like this:

• The candidate distributions P are a paremetrized family, so we can identify candidate
distributions with their parameter vectors θ.

• The task is to obtain an estimate θ̂ of the true distribution θtrue. That is, we are
facing a point estimation problem with ϕ = id, the identity function.

For ease of discussion, we only consider the case where the distributions PX ∈ P are
discrete and are described by a pmf pθ, which is a function pθ : S → [0, 1]; this function
is parametrized by θ.

The ML approach starts from the concept of the likelihood of a model θ:

Definition 19.4.4 Let θ ∈ Θ be a model of a distribution, and x = X(ω) a sample. Then
the likelihood of θ is the value pθ(x) of the model pmf at the sample point x.

Notice that for discrete distributions (only which we consider), pθ(x) = Pθ(X = x). The
likelihood of the model θ at x is thus the same as the probability of the sample data x under
the model θ. While “Likelihood of model θ” and “probability of data under distribution
θ” refer to the same quantity, namely Pθ(X = x), well-educated statisticians cleanly
distinguish between the two concepts: likelihood is a property of a model; probability is a
property of a sample.

The maximum-likelihood estimator tML ∈ T is the estimator which is distinguished
among all candidate estimators by the condition

tML = argmax
t∈T

pt(x)(x). (19.2)

In plain English, the ML estimator tML is the one whose outcome, the distribution model
tML(x) = θ̂, assigns the highest probability to the observed data x. The “ML principle”
in a nutshell: find a model that best explains the data.

ML (maximum likelihood) model estimation is the bread and butter in ML (machine
learning)! Specifically, the currently popular neural network models (“deep learning”) are
trained by learning algorithms which attempt to maximise the probability of the training
data x under the network model θ. But ML approaches for finding “good” model estimates
are also popular in statistics proper. There are two reasons for their popularity:

• The ML principle appears intuitively plausible.

• Actually finding tML by solving the optimization problem (19.2) can be done by
well-established computational procedures. Specifically, gradient-descent methods
can be directly used to solve (19.2), as well as likewise well-established algorithms
known as Expectation-Maximization (EM-) algorithms. For both types of compu-
tational procedures, a long tradition, a rich literature, and comprehensive software
tool support exists.

However, directly heading for ML model estimates is a slippery road which directly
leads to overfitting. Consult my machine learning lecture notes to learn more about all of
this.
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Appendix A

Elementary mathematical
structure-forming operations

A.1 Pairs, tuples and indexed families

If two mathematical objects O1,O2 are given, they can be grouped together in a single
new mathematical structure called the ordered pair (or just pair) of O1,O2. It is written
as

(O1,O2).

In many cases, O1,O2 will be of the same kind, for instance both are integers. But the
two objects need not be of the same kind. For instance, it is perfectly possible to group
integer O1 = 3 together with a random variable (a function!) O2 = X7 in a pair, getting
(3, X7).

The crucial property of a pair (O1,O2) which distinguishes it from the set {O1,O2} is
that the two members of a pair are ordered, that is, it makes sense to speak of the “first”
and the “second” member of a pair. In contrast, it makes not sense to speak of the “first”
or “second” element of the set {O1,O2}. Related to this is the fact that the two members
of a pair can be the same, for instance (2, 2) is a valid pair. In contrast, {2, 2} makes no
sense.

A generalization of pairs is N -tuples. For an integer N > 0, an N -tuple of N objects
O1,O2, . . . ,ON is written as

(O1,O2, . . . ,ON ).

1-tuples are just individual objects; 2-tuples are pairs, and for N > 2, N -tuples are also
called lists (by computer scientists that is; mathematicians rather don’t use that term).
Again, the crucial property of N -tuples is that one can identify its i-th member by its
position in the tuple, or in more technical terminology, by its index. That is, in an N -
tuple, every index 1 ≤ i ≤ N “picks” one member from the tuple.

The infinite generalization of N -tuples is provided by indexed families. For any
nonempty set I, called an index set in this context,

(Oi)i∈I

denotes a compound object assembled from as many mathematical objects as there are
index elements i ∈ I, and within this compound object, every individual member Oi can
be “addressed” by its index i. One simply writes

Oi
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to denote the ith “component” of (Oi)i∈I . Writing Oi is a shorthand for applying the ith
projection function on (Oi)i∈I , that is, Oi = πi((Oi)i∈I).

A.2 Products of sets

We first treat the case of products of a finite number of sets. Let S1, . . . , SN be (any)
sets. Then the product S1 × . . . × SN is the set of all N -tuples of elements from the
corresponding sets, that is,

S1 × . . .× SN = {(s1, . . . , sN ) | si ∈ Si}.

This generalizes to infinite products as follows. Let I be any set — we call it an index
set in this context. For every i ∈ I, let Si be some set. Then the product set indexed by I
is the set of functions ∏

i∈I

Si = {ϕ : I →
⋃
i∈I

Si | ∀i ∈ I : ϕ(i) ∈ Si}.

Using the notation of indexed families, this could equivalently be written as∏
i∈I

Si = {(si)i∈I | ∀i ∈ I : si ∈ Si}.

If all the sets Si are the same, say S, then the product
∏

i∈I Si =
∏

i∈I S is also
written as SI .

An important special case of infinite products is obtained when I = N. This situation
occurs universally in modeling stochastic processes with discrete time. The elements n ∈ N
are the points in time when the amplitude of some signal is measured. The amplitude is
a real number, so at any time n ∈ N, one records an amplitude value an ∈ Sn = R. The
product set ∏

n∈N
Sn = {ϕ : N →

⋃
n∈N

Sn | ∀n ∈ I : ϕ(n) ∈ Sn} = {ϕ : N → R}

is the set of all right-infinite real-valued timeseries (with discrete time points starting at
time n = 0).

A.3 Products of functions

First, again, the case of finite products: let f1, . . . , fN be functions, all sharing the same
domain D, with image sets Si. Then the product f1 ⊗ . . . ⊗ fN of these functions is the
function with domain D and image set S1 × . . .× SN given by

f1 ⊗ . . .⊗ fN : D → S1 × . . .× SN

d 7→ (f1(d), . . . , fN (d)).

Again this generalizes to arbitrary products. Let (fi : D → Si)i∈I be an indexed family
of functions, all of them sharing the same domain D, and where the image set of fi is Si.
The product

⊗
i∈I fi of this set of functions is defined by⊗

i∈I

fi : D →
∏
i∈I

Si

d 7→ ϕ : I →
⋃
i∈I

Si given by ϕ(i) = fi(d).
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Appendix B

Kiefer book notation

Symbol Meaning in Kiefer Meaning in these LN
Ω Set of candidate distributions universe
W Loss function. The standard

symbol for loss functions that is
used almost universally in the lit-
erature other than Kiefer’s book
is L.

Weight matrix (in linear regres-
sion or neural networks); I follow
however Kiefer in the Statistics
part and use W for the loss func-
tion there

Mathematical object Notation in Kiefer Notation in these LN
probability of an event
A

PF0{A}, where F0 is one
of the candidate distribu-
tions; or Pθ0{A}, where θ0

is a parametrization of a
candidate distribution F0

P (X ∈ A) or PX(A),
where X is the RV gener-
ating the (single!) distribu-
tion

distribution F PX
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