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A note on mathematical background that is required. Machine learning
programs process “training data”, and these data often come in the format of Excel
files (yes! down-to-earth engineers and financial admins indeed very often save
their valuable “raw data” often in MS Excel!), which are just matrices when seen
with the mathematical eye of a machine learner. Furthermore, neural networks are
shaped by connecting neurons with weighted “synaptic links”, and these weights
are again naturally sorted in matrices. And the main operation that a neural
network actually does is formalized by a matrix-vector multiplication. Besides
neural networks, many other (if not most) machine learning systems operate on
vector-formatted data. So it’s matrices and vectors all over the place, no escape
possible. You will need a robust understanding of basic linear algebra to survive
or even enjoy this course. We will arrange a linear algebra crash refresher early
in the course. A good free online resource is the book “Mathematics for Machine
Learning” (Deisenroth, Faisal, and Ong 2019).

Furthermore, though to a lesser degree, also some familiarity with statistics and
probability is needed. You find a summary of the must-knows in the appendix of
these lecture notes, and again a tutorial exposition in Deisenroth, Faisal, and Ong
2019.

Finally, a little (not much) calculus is needed to top it off. If you are familiar
with the notion of partial derivatives, that should do it. In case of doubt - again
it’s all (and more) in Deisenroth, Faisal, and Ong 2019.
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1 Introduction

1.1 Human Versus Machine Learning

Humans learn. Animals learn. Societies learn. Machines learn. It looks like
“learning” were a universal phenomenon and all we had to do is to develop a solid
scientific theory of “learning”, turn that into algorithms and then let “learning”
happen on computers. Wrong wrong wrong. Human learning is very different
from animal learning (and amoebas learn different things in different ways than
chimpanzees), societal learning is quite another thing as human or animal learning,
and machine learning (ML) is as different from any of the former, just as cars are
different from horses.

Human learning is as impossible to understand as you are yourself — look into
a mirror and think of all the things you can do, all of your body motions from tying
your shoes to playing the guitar; all the thoughts you can think from “aaagrhhh!”
to “I think therefore I am”; achievements personal, social, academic; all the things
you can remember including your first kiss and what you did 20 seconds ago (you
started reading this paragraph, in case you forgot); your plans for tomorrow and
the next 40 years; well, just everything about you — almost everything of that wild
collection is the result of a fabulous mixing of some kind of learning with other
miracles and wonders of life. To fully understand human learning, a scientist
would have to integrate at least the following fields and phenomena:

body, brain, sensor & motor architecture · physiology and neurophysiol-
ogy · body growth · brain development · motion control from eye gaze
stabilization to dance choreography · exploration, curiosity, play · creativ-
ity · social interaction · drill and exercise and rote learning · reward and
punishment, pleasure and pain · the universe, the earth, the atmosphere,
water, food, caves · evolution · dreaming · remembering · forgetting ·
aging · other people, living · other people, long dead · machines, tools,
buildings, toys · words and sentences · concepts and meanings · letters
and books and schools · traditions . . .

Recent spectacular advances in machine learning may have nurtured the im-
pression that machines come already somewhat close. Specifically, neural net-
works with many cascaded internal processing stages (so-called deep networks)
have been trained to solve problems that were considered close to impossible
only a few years back. A showcase example (one that got me hooked) is auto-
mated image caption (technical report: Kiros, Salakhutdinov, and Zemel 2014).
At http://www.cs.toronto.edu/~nitish/nips2014demo you can find stunning
examples of caption phrases that have been automatically generated by a neural
network based system which was given photographic images as input. Well, while
most examples are amazing, some other examples are also stunningly wrong. Fig-
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ure 1 shows some screenshots. This is a demo from 2014. Since deep learning
is evolving incredibly fast, it’s already quite outdated today and current image
caption generators come much closer to perfection. But back in 2014 this was
a revelation. Other fascinating examples of deep learning are face recognition
(Parkhi, Vedaldi, and Zisserman 2015), online text translation (Bahdanau, Cho,
and Bengio 2015), inferring a Turing machine (almost) from input-output exam-
ples (Graves et al. 2016), or playing the game of Go at and beyond the level of
human grand-masters (Silver et al. 2016). I listed these examples when I wrote
the first edition of these lecture notes and I am too lazy to update this list every
year, — I guess almost all of you have had direct contact with one of these large
language models or fabulous image classification / generation tools that are now
everywhere.

So, apparently machine learning algorithms come close to human performance
in several tasks or even surpass humans, and these performance achievements have
been learnt by the algorithms, — thus, machines today can learn like humans??!?
The answer is NO. ML researchers (that is, the really good ones, not the average
TensorFlow user) are highly aware of this. Outside ML however, naive specta-
tors (from the popular press, politics, or other sciences) often conclude that since
learning machines can achieve similar feats as humans, they also learn like hu-
mans. It takes some effort to argue why this is not so (read Edelman 2015 for
a refutation from the perspective of cognitive psychology). I cannot embark on
this fascinating discussion here. Very roughly speaking, it’s the same story again
as with chess-playing algorithms: the best chess programs win against the best
human chess players, but not by fair means — chess programs are based on larger
amounts of data (recorded chess matches) than humans can memorize, and chess
programs can do vastly more computational operations per second than a human
can do. Brute force wins over human brains at some point when there is enough
data and processing bandwidth. Progress has accelerated in the last years be-
cause increasingly large training datasets have become available and fast enough
computing systems have become cheap enough.

This is not to say that powerful “deep learning” just means large datasets and
fast machines. These conditions are necessary but not sufficient. In addition,
also numerous algorithmical refinements and theoretical insights in the area of
statistical modeling had to be developed. Some of these algorithmical/theoretical
concepts will be presented in this course.

Take-home message: The astonishing learning achievements of today’s ML
are based on statistical modeling insight, very cleverly refined algorithms, raw
processing power, brutally sized training datasets, and a lot of personal experience
and trial-and-error optimization. It’s technology and maths, not neurobiology or
psychology. Dismiss any romantic ideas about ML that you may have had. ML
is data technology stuff for sober engineers. But you are allowed to become very
excited about that stuff, and that stuff can move mountains.
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Figure 1: Three screenshots from the image caption demo at http://www.cs.

toronto.edu/~nitish/nips2014demo — a demo from the ’early’ years of deep
learning where it dawned upon the machine learning community that there was
a revolution going on. A ’deep learning’ system was trained on some tens of
thousands of photos showing everyday scenes. Each photo in the training set
came with a few short captions provided by humans. From these training data,
the system learnt to generate tags and captions for new photos. The tags and
captions on the left were produced by the trained system upon input of the photos
at the right.
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1.2 The two super challenges of ML - from an eagle’s eye

In this section I want to explain, on an introductory, pre-mathematical level,
that large parts of ML can be understood as the art of estimating probability
distributions from data. And that this art faces a double super challenge: the
unimaginably complex geometry of real-world data distributions, and the extreme
scarcity of information provided by real-world data. I hope that after reading this
section you will believe that machine learning is impossible. Since however GPT-4
exists, where is the trick? ... A cliff hanger, sorry — I want to make you read on
(detailed secrets of the solution in Section 6).

1.2.1 The superchallenge of complex geometry

In order to highlight the data geometry challenge, I will use the demo task high-
lighted in Figure 1 as an example — an image caption generating system developed
in Toronto. Let us follow the sacred tradition of ML and introduce an acronym
that is not understandable to outsiders: TICS = the Toronto Image Caption Sys-
tem.

The TICS dataset and learning task and demo implementation come from one
of the three labs that have pioneered the field that is now known as Deep Learning
(DL, our next acronym), namely Geoffrey Hinton’s lab at the University of Toronto
(the other two widely acclaimed DL pioneers are Yoshua Bengio, Université de
Montréal, and Yann LeCun, Courant Institute of Mathematics, New York; Hinton,
Bengio and LeCun received the 2018 Turing award – the Nobel prize in computer
science). The TICS demo is a beautiful case to illustrate some fundamentals of
machine learning.

After training, TICS, at first sight, implements a function: test image in,
caption (and tags) out. If one looks closer, the output however is not just a single
caption phrase, but a list of several captions (“generated captions” in Figure 1)
rank-ordered by probability: captions that TICS thinks are more probable are
placed higher in the list. Indeed TICS computes a relative probability value for
each suggested caption. This probability value is not shown in the screenshots.

Let us look at this in a little more detail.
TICS captions are based on a finite vocabulary of English words. For simplicity

let us assume that the length of captions that TICS generates is always 10 words.
The neural networks that purr under the hood of TICS cannot process “words”
– the only data type that they can handle is real-valued vectors. One of the
innovations which boosted DL is a method to represent words by vectors such
that semantic similarity of words is captured by metric closeness of vectors: the
vector representing the word “house” lies close to the vector for “building” but far
away from the vector for “mouse”. A landmark paper where you can learn more
about this technique is Mikolov et al. 2013, an accessible tutorial is Minnaar 2015,
and the current standard algorithm for computing these word embedding vectors,
the BERT algorithm, is documented in Devlin et al. 2018. A typical size for such
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semantic word vectors is a dimension of a few 100’s – let’s say, TICS uses 300-
dimensional word vectors (I am too lazy to check out the exact dimension that was
used). Thus, a caption can be represented by a sequence of ten 300-dimensional
vectors, which boils down to a single 3000-dimensional vector, that is, a point
c ∈ R3000.

Similarly, an input picture sized 600 × 800 pixels with 3 color channels is
represented to TICS as a vector u of dimension 3 × 600 × 800 = 1,440,000.

Now TICS generates, upon a presentation of an input picture vector u, a list
of what it believes to be the five most probable captions for this input. That is,
TICS must have an idea of the probability ratios of different caption candidates.
Formally, if C denotes the random variable (RV) that returns captions c, and if U
denotes the RV that produces sample input pictures u, TICS must compute ratios
of conditional probabilities of the form P (C = ci|U = u)/P (C = cj|U = u). In the
semantic word vector space, these ratios become ratios of the values of probability
density functions (pdf) over the caption vector space R3000. For every input image
u, TICS must have some representation of the 3000-dimensional pdf describing
the probabilities of caption candidates for image u.

Now follow me on a little excursion into geometric imagination.
Consider some specific vector c ∈ R3000 which represents a plausible 10-word

caption for image u, that is, the pdf value p(c) is relatively large. What happens
to the pdf value if we move away from c by taking a little step δ ∈ R3000 of
length, say, ‖δ‖ = 0.1, that is, how does p(c + δ) compare to p(c)? This depends
on the direction in which δ points. In a few directions, p(c + δ) will be about
as large as p(c). This happens when δ points toward another caption vector c′

which has one word replaced by another word that is semantically close. For
example, consider the caption “A group of people on a bridge beside a boat”. The
last 300 elements in the 3000-dimensional vector c coding this caption stand for
the word boat. Replacing this caption by “a group of people on a bridge beside a
ship” gives another codevector c′ ∈ R3000 which is the same as c except in the last
300 components, which have been replaced by the semantic word vector for ship.
Then, if δ points from c toward c′ (that is, δ is a fraction of c′ − c), p(c + δ) will
not differ from p(c) in a major way.

If you think a little about it, you will come to the conclusion that such δ which
leave p(c+ δ) roughly at the same level are always connected with replacing words
by semantically related words. Other change directions δ∗ will make no semantical
sense and/or destroy the grammatical structure of the caption phrase encoded by
c, as for instance in these two one-word-replacement examples “A group of people
garlic a bridge beside a boat” and “A group of of on a bridge beside a boat”. The pdf
value p(c+ δ∗) will drop dramatically compared to p(c) in those cases. Obviously,
there are vastly more sense/grammar destructive word replacements than there
are sense-and-grammar maintaining ones.

Now, in a 10-word caption, how many replacements of some word with a related
one exist? Some words will be grammatical function words (“a”, “‘of” etc.) which
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admit only a small number of replacements, or none at all. The words that carry
semantic meaning (“‘group”, “people” etc.) typically allow for a few sense-making
replacements. Let us be generous and assume that a word in a 10-word caption, on
average, can be replaced by 5 alternative words such that after the replacement,
the new caption still is a reasonable description of the input image.

This means that around c there will be 5 · 10 = 50 directions in which the
relatively large value of p(c) stays large. Assuming these 50 directions are given
by linearly independent δ vectors, we find that around c there is a 50-dimensional
affine linear subspace S of R3000 in which we can find high p values in the vicinity
of c, while in the 2950 directions orthogonal to S, the value of p will drop fast if
one moves away from c.

Ok., this was a long journey to a single geometric finding: locally around
some point c where the pdf is relatively large, the pdf will stay relatively large
only a small fraction of the directions - these directions span a low-dimensional
linear subspace around c. If you move a little further away from c on this low-
dimensional “sheets”, following the lead of high pdf values, you will find that this
high-probability surface will take you on a curved path - these high-probability
sheets in R3000 are not flat but curved.

The mathematical abstraction of such relatively high-probability, low-dimensional,
curved sheets embedded in R3000 is the concept of a manifold. Machine learning
professionals often speak of the “data manifold” in a general way, in order to in-
dicate that the geometry of high-probability areas of real-world pdfs consists of
“thin” (low-dimensional), curved sheet-like domains curled into the embedding
data space. It is good for ML students to know the clean mathematical definition
of a manifold. Although the geometry of real-world pdfs will be less clean than
this mathematical concept, it provides useful intuitions, and advanced research in
DL algorithms frequently starts off from considering manifold models.

So, here is a brief intro to the mathematical concept of a manifold. Consider
an n-dimensional real vector space Rn (for the TICS output space of caption
encodings this would be n = 3000). Let m ≤ n be a positive integer not larger
than n. An m-dimensional manifold M is a subset of Rn which locally can be
smoothly mapped to Rm, that is, at each point of M one can smoothly map a
neighborhood of that point to a neighborhood of the origin in the m-dimensional
Euclidean coordinate system (Figure 2A).

1-dimensional manifolds are just lines embedded in some higher-dimensional Rn

(Figure 2B), 2-dimensional manifolds are surfaces, etc. Manifolds can be wildly
curved, knotted (as in Figure 2C), or fragmented (as in Figure 2B). Humans
cannot visually imagine manifolds of dimension greater than 2.

The “data manifold” of a real-world data source is not a uniquely or even
well-defined thing. For instance, returning to the TICS example, the dimension
of the manifold around a caption c would depend on an arbitrary threshold fixed
by the researcher – a direction δ would / would not lead out of the manifold if
the pdf decreases in that direction faster than this threshold. Also (again using
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C B 

Figure 2: A An m-dimensional manifold can be locally “charted” by a bijective
mapping to a neighborhood of the origin in Rm. Example shows a curved manifold
of dimension m = 2 embedded in R3. B Some examples of 1-dimensional manifolds
embedded in R2 (each color corresponds to one manifold — manifolds need not be
connected). C A more wildly curved 2-dimensional manifold in R3 (the manifold
is the surface of this strange body).

the caption scenario) around some good captions c the number of “good” local
change directions will differ from the number around another, equally good, but
differently structured caption c′. For these and other reasons, claiming that data
distributions are shaped like manifolds is a strongly simplifying abstraction.

Despite the fact that this abstraction does not completely capture the geomet-
ric complexity of how real-world data points are distributed in their data spaces,
the geometric intuitions behind the manifold concept have led to substantial in-
sight into the (mal-)functioning of machine learning methods. Adversarial attacks
on deep networks is a good example of the usefulness of the data manifold con-
cept. Take a look at Figure 3 – taken from a much-cited paper (I. J. Goodfellow,
Shlens, and Szegedy 2014, 13500 cites on Google Scholar 2022) which explores the
phenomenon of adversarial attacks. The left panel shows a photo of a panda (one
would think). It is given as input to a deep network that had been trained to clas-
sify images. The network correctly classifies it as “panda”, with a “confidence” of
58%. The middle panel shows a pattern that looks like random noise. If a very
small multiple (factor 0.007) of this pattern is added to the panda picture, one gets
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the picture shown in the right panel. For the human eye there is no change. How-
ever, the neural network now classifies it as “gibbon” with a dead-sure confidence
level of 99%.

“panda”
58% confidence

“gibbon”
99% confidence

Figure 3: Manifold magic: Turning a panda into a gibbon. For explanation see
text. Picture taken from I. J. Goodfellow, Shlens, and Szegedy 2014

What has happened here? Well, this is a manifold story. Let’s say that the
panda image is sized 600 × 600 pixels (I didn’t check) with three color channels.
Thus, mathematically, such images are points in R1080000. When the neural net-
work was trained, it was presented with a large number of example images, that
is, a point cloud in R1080000. The outcome of the learning algorithm is an estimate
(up to an undetermined scaling factor) of a pdf in R1080000. Geometrically speak-
ing, this pdf is highly concentrated along a low-dimensional manifold, call it M.
The dimension of this manifold is given by the number of neurons in the most
narrow layer of the neural network, say m = 1000 (this would be a standard order
of magnitude in such deep networks; I didn’t check). Thus, the original panda pic-
ture corresponds to a point u on a 1000-dimensional manifold which is curled into
a 1,080,000-dimensional embedding space. In terms of dimensions, the manifold
uses only about one out of thousand dimensions! Now, add that noise-like image
(call it δ) to u, getting the rightmost panel picture as u+ δ. If δ is prepared in a
way that it points in a direction orthogonal toM, the value of the pdf will shrink
dramatically. The trained network, when presented with input u+ δ, will “think”
that it has never seen anything like this u + δ image, and will return a random
classification – “gibbon” in this case. In fact, the “noise” pattern in Figure 3 isn’t
random noise at all; it had been cleverly computed to lead the neural network
state away from the trained manifold M.

Adversarial examples are today widely used in a number of different ways to
improve the quality of deep learning applications. Check out Section 7.13 in the
bible of deep learning (I. Goodfellow, Bengio, and Courville 2016) for a primer if
you are interested.

Back to our TICS example. At the first stage in their neural processing
pipeline, the designers of this learning system set up a layered neural network
whose input layer (the “retina” of the network) had 1,440,000 neurons (one neu-
ron per color pixel), and whose output layer had 4096 neurons. This means that
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the 1,440,000 dimensional raw input image vectors were projected on a manifold
that had at most 4096 dimensions (or less, if another layer in this network had
fewer neurons, like the 1000 that we assumed above). The right “folding” of this
manifold was effected by the neural network training.

Takehome summary: real-world data distributions are typically concentrated
in very thin (low-dimensional, compared to the dimension of the embedding space),
badly curled-up sheets in the embedding (high-dimensional) data space Rn. Ma-
chine learning models, such as the TICS system, must contain some kind of model
of this distribution. Such models will feature a concentration of probability mass in
very thin, curled sheets. A universal challenge for all but the most elementary ma-
chine learning methods is to develop modeling techniques that can represent such
complex, manifold-like distribution geometries, and “learn” to align the model dis-
tribution with the data distribution. A frequently found keyword that points to
this bundle of ideas and challenges is “data manifold”. One of the reasons for the
breakthrough powers of deep learning methods is that the “deep” neural networks
used there are able to model extremely curled-up data manifolds.

1.2.2 The superchallenge of lack of information

I continue to use the TICS system to illustrate this second challenge. What follows
will again require an effort in geometrical thinking, but that’s the nature of vector
data and the information contained in them.

The data used for training TICS contained about 30,000 photos taken from
Flickr, each of which was annotated by humans with 5 captions. Figure 4 shows
two training examples. Each photo was sized 600 × 800 pixels, with three color
channels, making a total of 1,440,000 numbers as we have already stated. We
will consider the intensity values as normalized to the range [0, 1], which makes
each photo a vector in the unit hypercube [0, 1]1,440,000. Assuming as before that
captions can be coded as 3000-dimensional vectors, which we will also take as
normalized to a numeric range of [0, 1], a photo-caption pair makes a vector in
[0, 1]1,440,000+3,000 = [0, 1]1,443,000. In order to simplify our discussion we assume
that each training image came with a single caption only. Thus, the training data
consisted of 30,000 points in the 1,443,000-dimensional unit hypercube.

It is impossible for humans to visualize, imagine or even hallucinate the wild
ways of how points can be spatially distributed in a 1,443,000-dimensional vec-
tor space. In Figure 5 I attempt a visualization of the TICS data scenario in a
3-dimensional projection of this 1,443,000-dimensional space – 3 being the largest
spatial dimension that our brains can handle. The rendering in Figure 5 corre-
sponds to a dataset where each “photo” is made of merely two grayscale pixels.
Each such “photo” is thus a point in the square [0, 1]2 (light blue area in the fig-
ure, spanned by the two pixel intensities x1, x2). Each caption is coded by a single
number y ∈ [0, 1]. We furthermore simplify the situation by assuming that the
training dataset contains only two photos u1, u2. The caption coding vector of a
photo is here reduced to a single number, plotted above the photo’s coordinates
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Figure 4: Two images and their annotations from the training dataset. Taken
from Young et al. 2014.

on the y-axis (blue crosses). The two blue crosses in the figure thus represent the
information contained in the training data.

Now consider a new test image u∗ (orange diamond in the figure). The TICS
system must determine a suitable caption for u∗, that is, an appropriate value y∗

– a point somewhere on the orange broken ??-line in the figure.
But all that TICS knows about captions is contained in the two training data

points (blue crosses). If you think about it, there seems to be no way for TICS to
infer from these two points where y∗ should lie. Any placement along the ??-line
is logically possible!

In order to determine a caption position along the ??-line, TICS must add
some optimization criterion to the scenario. For instance, one could require one
of the following conditions:

1. Make y∗ that point on the ??-line which has the smallest total distance to
all the training points.

2. One might wish to grant closer-by training images a bigger impact on the
caption determination than further-away training images. Thus, if d(ui, u

∗)
denotes the distance between training image ui and test image u∗, set y∗

to the weighted mean of the training captions yi, where the weights are
inversely proportional to the distance of the respective images:

y∗ =
1∑

i d(ui, u∗)−a

∑
i

d(ui, u
∗)−ayi.

The parameter a modulates how the impact of further-away images decays
with distance.

3. Place a spherical 3-dimensional Gaussian with variance σ2 around every blue
cross. Determine p(y∗) to be that point on the ??-line where the sum of these
Gaussians is maximal.

4. Consider all smoothly curved line segments L in the 3-dimensional data
cube in Figure 5 which connect the blue crosses and cut through the ??-line.
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Figure 5: Training data for TICS (highly simplified). The photo dataspace (light
blue square spanned by pixel intensities x1, x2) is here reduced to 2 dimensions,
and the caption dataspace to a single one only (y-axis). The training dataset is
assumed to contain two photos only (blue diamonds u1, u2), each with one caption
(blue crosses with y-values y1, y2). A test image u∗ (orange diamond) must be
associated by TICS, after it has been trained, with suitable caption which lies
somewhere in the y-direction above u∗ (dashed orange ??-line).

For any such L, consider the integral γ(L) of absolute curvature along L.
Find that curved line segment Lopt which minimizes γ(L). Then declare the
crossing of this Lopt with the ??-line to be y∗. – Like in the second proposal
above, one would also want to emphasize the impact of close-by images,
which would lead to a weighted curvature integral.

I collect some observations from this list:

• All of these optimization criteria make some intuitive sense, but they would
lead to different results. The generated captions will differ depending on
which criterion is chosen.

• The criteria rest on quite different intuitions. It is unclear which one would
be better than another one, and on what grounds one would compare their
relative merits. A note in passing: finding comparison criteria to assess
relative merits of different statistical estimation procedures is a task that
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constitutes an entire, important branch of statistics. For an introduction you
might take a look at my lecture notes on “Principles of statistical modeling”,
Section 19.3.1 “Comparing statistical procedures” (https://www.ai.rug.
nl/minds/uploads/LN_PSM.pdf).

• Criteria 2 and 3 require the choice of design parameters (a, σ2). The other
criteria could be upgraded to include reasonable design parameters too. It
is absolutely typical for machine learning algorithms to have such hyper-
parameters which must be set by the experimenter. The effects of these
hyperparameters can be very strong, determining whether the final solution
is brilliant or useless.

• Turning a mathematical optimization criterion into a working algorithm may
be challenging. For criteria 1, 2 and 3 in the list, this would be relatively
easy. Turning criterion 4 into an algorithm looks fearsome.

• Each of the criteria leads to implicit constraints on the geometric shape of
learnable data manifolds.

Some methods in ML are cleanly derived from optimization criteria, with math-
ematical theory backing up the design of algorithms. An example of such well-
understood methods are decision trees, which will be presented first in our course.
Other branches employ learning algorithms that are so complex that one loses
control over what is actually optimized, and one has only little insight in the
geometrical and statistical properties of the models that are delivered by these
methods. This is sadly true for deep learning methods.

There is something like an irreducible arbitrariness of choosing an optimiza-
tion condition, or, if one gives up on fully understanding what is happening, an
arbitrariness in the design of complex learning algorithms. This turns machine
learning into a personal intuition thing, even into an art.

To put this all in a nutshell: the available training data do not include the
information of how the information contained in them should be “optimally” ex-
tracted, or what kind of information should be extracted. This could be called a
lack of epistemic information (my private terminology; epistemology is the branch
of philosophy that is concerned with the question by which methods of reasoning
humans acquire knowledge, and with the question what “knowledge” is in the
first place - check out https://en.wikipedia.org/wiki/Epistemology if you
are interested in these deep, ancient, unsolved questions).

The discussion of lacking epistemic information is hardly pursued in today’s
ML, although there have been periods in the last decades when fierce debates on
such issues have been led.

But there is also another lack of information which is a standard theme in
today’s ML textbooks. This issue is called the curse of dimensionality. I will
highlight this curse with our TICS demo again.
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In mathematical terminology, our super-simplified 3-dimensional TICS system
from Figure 5 is able (after training) to compute a function f : [0, 1]2 → [0, 1]
which computes a caption f(u∗) for every input test image u∗ ∈ [0, 1]2. The only
information TICS has at learning time is contained in the training data points
(blue crosses in our figure).

Looking at Figure 5, estimating a function f : [0, 1]2 → [0, 1] from just the
information contained in the two blue crosses is clearly a dramatically underde-
termined task. You may argue that the version of the TICS learning task which I
gave in Figure 5 has been simplified to an unfair degree, and that the real TICS
system had not just 2, but 30,000 training images to learn on.

But, in fact, for the full-size TICS the situation is even much, much worse than
what appears in Figure 5:

• In our caricature demo there were 2 training images scattered in a 2-dimensional
(pixel intensity) space. That is, as many data points as dimensions. In con-
trast, in TICS there are 30,000 images scattered in a 1,440,000-dimensional
pixel intensity space: that is, about 50 times more dimensions than data
points! How should it be possible at all to estimate a function from [0, 1]1440000

to [0, 1]3000 when one has far, far fewer training points than dimensions!?

• There is another fact about high-dimensional spaces which aggravates the
situation. In the n-dimensional unit hypercube, the greatest possible dis-
tance between two points is equal to the longest diagonal in this hypercube,√
n, which amounts to 1200 in the TICS image space. This growth of length

of the main diagonal with dimension n carries over to a growth of average
distances between random points in n-dimensional hypercubes. In simple
terms, the higher the dimension, the wider will training data points lie away
from each other.

The two conditions together – fewer data points than dimensions, and large
distances between the points – make it appear impossible to estimate a function
on [0, 1]1440000 from just those 30,000 points.

This is the dreaded “curse of dimensionality”.
In plain English, the curse of dimensionality says that in high-dimensional data

spaces, the available training data points will be spread exceedingly thinly in the
embedding data space, and they will lie far away from each other. Metaphorically
speaking, training data points are a few flickering stars in a vast and awfully
empty universe. But, most learning tasks require one to fill the empty spaces with
information — a pdf.

1.3 Looking at Human Intelligence, Again

An adult human has encoded in his/her brain a very useful, amazingly accurate
and detailed model of that human’s outer world, which allows the human to almost

18



immediately create a “situation model” of his/her current physical and social
environment, based on the current, ever-new sensor input. This situation model is
a condensed, meaningful representation of the current environment. This is analog
to the TICS scenario (after training), where the new input is a test image and the
situation model corresponds to a distribution over captions.

After what we have seen above, how is it possible for a human brain to learn
a meaningful and reliable representation of the world (that is, a manifold in brain
state space) at all?

In fact, we do not know. But neuroscientists, psychologists and cognitive
scientists have come up with a number of ideas.

An adult human has had a childhood and youth’s time to learn most of his/her
world model. The “training data” are the sensory impressions collected in, say,
the first 25 years of the human’s life. Thinking of a sensory impression as a vector,
it is hard to say what is the dimension of this vector. A lower bound could be
found in the number of sensory neural fibers reaching the brain. The optical
nerve has about 1,000,000 fibres. Having two of them, plus all sorts of other
sensory fibers reaching the brain (from the nose, ears, body), let us boldly declare
that the dimension of sensor inputs to the brain is 3 million. Now, the learning
process for a human differs from TICS learning in that sensory input arrives in
a continuous stream, not in isolated training images. In order to make the two
scenarios comparable, assume furthermore that a human organizes the continuous
input stream into “snapshots” at a rate of 1 snapshot “picture” of the current
sensory input per second (cognitive psychologists will tell us that the rate is likely
less). In the course of 25 years, with 12 wake hours per day, this makes about 25
× 360 × 12 × 3600 ≈ 390 million “training snapshot images”. This gives a ratio
of number of training points over data dimension of 390 million / 3 million = 130,
which looks so much better than the ratio of 30,000 / 1,443,000 ≈ 0.02 in TICS’s
case.

But even the ratio of 130 data points per dimension is still hopeless, and the
curse of dimensionality strikes just as well. Why?

For simplicity we again assume that the 3-million dimensional sensor image
vectors are normalized to a range of [0, 1], making a sensor impression a point in
[0, 1]3000000. Statisticians, machine learners, and many cognitive scientists would
tell us that the “world model” of a human can be considered to be a probabil-
ity distribution over the sensory image space [0, 1]3000000. This is a hypercube
with 23000000 corners. In order to estimate a probability distribution over an n-
dimensional hypercube, a statistician would demand to have many more data-
points than the cube has corners (to see why, think about estimating a probability
distribution over the one-dimensional unit hypercube [0, 1] from data points on
that interval, then extrapolate to higher dimensions). That is, a brain equipped
with ordinary statistical methods would demand to have many more than 23000000

training data points to distil a world model from that collection of experiences.
But there are only 390 million such datapoints collected in 25 years. The ratio

19



390 million / 23000000 is about 2−2999972. That is, a human would have to have a
youth lifetime of about 25 × 22999972 ≈ 22999977 years in order to learn a reliable
world model – if we ask statisticians.

Still, the human brain (and the human around it, with the world around the
human around that brain) somehow can do it in 25 years. Cognitive scientists
believe that the key to this magic lies in the evolutionary history of man. Through
millions of years of incremental, evolutionary brain structure optimization, starting
from worm brains or earlier, the human brain is pre-structured in exactly such
ways that it comes with a built-in-by-birth data manifold geometry which reduces
the 3 million-dimensional raw sensor data format to a much lower-dimensional
manifold surface. Then, 390 million data points may be enough to cover this
manifold densely enough for meaningful distribution estimates.

The question which built-in experience pre-shapings a human brings to the
table at birth time has a long tradition in philosophy and psychology. A recent
line of work that brings this tradition to bear on machine learning is in the research
of Joshua Tenenbaum – check out, for instance, Tenenbaum, Griffiths, and Kemp
2006 if you are interested.

In recent years, besides evolutionary predisposition, another line of thinking
has started to be discussed as a solution to the question why humans (and maybe
machines) can learn from embarrassingly small training samples. This is the ap-
proach of causal modeling. It has its origins not in biology or psychology, but in
statistics, more specifically in the technique to model complex probability distri-
butions with graphical models. We will treat them later in this course (Section
10). For now, I can only give an explanation in vague intuitive terms. The core
idea of causal modeling is that in our real world, any phenomenon or experience is
causally influencing only a very small portion of other pheonomena or experiences.
When I walk and my foot hits a stone, the stone will be kicked away and my foot
will hurt and I will make an extra step. That’s it. The rest of the universe remains
unaffected, and all of the other zillions of experiences that form my personal life
training dataset simply have nothing to do with this stone hitting event. When
walking through our lives, the huge collection of sensory experiences that we accu-
mulate does not form an unorganized point cloud in some high-dimensional space
of sensory experiences. We know, from bodily experience, which of these data
points are causally connected to which others. To stay in the abstract geometrical
picture: The data points are connected with causal impact lines. Each data point
is causally connected only to a small number of others. These connecting lines
span low-dimensional neighborhoods around each data point: a guide for guessing
a local manifold geometry. — We will be able to formalize this after we have
learnt about graphical models. If you already know a little about them and want
to study ahead: a beautiful introduction to causal modeling is given by Schölkopf,
Locatello, et al. 2021.
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1.4 A Remark on “Modeling”

Machine learning in its modern form aims at modeling real-world systems, just
like what the natural sciences aim for. But the motivation is different.

Physicists, chemists, biologists et al. want to understand reality through their
models. Their models should tell the truth – in suitable abstraction – about re-
ality; the models should be veridical (from Latin, “saying the truth”). The inner
workings of a model should reflect the inner workings of reality. For instance, a de-
tailed chemical model of a reaction, which changes a substance A into a substance
B, should give an account of the kinetic and quantum-mechanical substeps that
actually take place in this reaction. Newton’s laws of motion explain the dance
of planets by formulas made of variables which should correspond to physically
real quantities – like gravitational forces, masses or velocities. Models whose inner
mechanisms or mathematical variables are intended to capture real mechanisms
and real quantities are called analytical models.

Machine learners, in contrast, are application oriented. They want useful mod-
els. ML models of pieces of reality must function well in their respective appli-
cation context. The inner workings of an ML model need not mirror the inner
workings of the modeled system. Machine learning models are thus almost always
blackbox models (a possible exception being Bayesian networks, will be treated
in Session 9 of this course). A blackbox model of some real-world system just
captures the externally observable input-output behavior of the modeled system,
but it may use any internal mathematical or algorithmical tricks that its designer
can think of. Neural networks are a striking example. A neural network trained
for predicting the next day’s stock index will be made of hundreds or even mil-
lions of interacting variables (“neuron activations”) which have no corresponding
counterpart in the reality of stock markets.

Figure 6 sketches how blackbox models work. They are derived (“learnt”,
“estimated”) from data emitted by the source system, and they should generate
synthetic data that “fit” (have a similar distribution as) the real-world data. And
that’s it. The structure of the blackbox model need not agree in any way with the
structure of the source system – in Figure 6, this is a robot, while the model is
a neural network whose structure has no correspondence whatsoever in the robot
design.

Analytical and blackbox models have complementary merits:

• Setting up the structure of an analytical model requires from the modeler
to have insight into the concerned laws of nature – an expert’s business. A
blackbox model can be successfully created by a village idiot with access to
TensorFlow.

• A blackbox model requires training data. There are cases where such data
are not available in sufficient quantity. Then analytical modeling is the only
way to go.
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Figure 6: How blackbox models work. For explanation see text.

• As a rule, analytical models are much more compact than blackbox models.
Compare E = mc2 with the TICS system, which consists of several modules,
some of which are neural networks with hundreds of thousands of variables.

• When the target system that one wants to model is very complex, there is
typically no chance for an analytical model. Example: an analytical model
of how humans describe images in captions would have to include accounts
of the human brain and the cultural conditions of language use. No way.
Only blackbox models can be used here.

• The great – really very great – advantage of analytical models is that they
generalize to all situations within their scope. The laws of gravitation can be
applied to falling apples as well as to the majestic whirling of galaxies. If a
blackbox model would have been trained by Newton on data collected from
the sun and planets motions, this model would be exclusively applicable to
our planetary system, not to apples and not to galaxies.

An interesting and very relevant modeling task is to model the earth’s atmo-
sphere for weather forecasting. This modeling problem has been intensely worked
on for many decades, and an interesting mix of analytical and blackbox methods
marks the state of the art. If there is time and interest I will expand on this in
the tutorial session.

I conclude this section with a tale from my professional life, which nicely illus-
trates the difference between analytical and blackbox modeling. I was once called
to consult a company in the chemical industry. They wanted a machine learning
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solution for the following problem. In one of their factories they had built a pro-
duction line whose output was a certain artificial resin. Imagine a large hall full
of vessels, heaters, pumps and valves and tubes. The production process of that
resin was prone to a particularly nasty possible failure: if the process would not
be controlled correctly, some intermediate products might solidify. The concerned
vessels, tubes and valves would be blocked and could not be cleared – necessitating
to disassemble the facility and replace the congested parts with new ones. Very
expensive! The chemical engineers had heard of the magic of neural networks
and wanted one of these, which should give them early warnings if the production
process was in danger of drifting into the danger zone. I told them that this was
(maybe) possible if they could provide training data. What training data, please?
Well, in order to predict failure, a neural network needs examples of this failure.
So, could the engineers please run the facility through a reasonably large number
of solidification accidents, a few hundreds maybe for good statistics? Obviously,
that was that. Only analytical modeling would do here. A good analytical model
would be able to predict any kind of imminent solidification situations. But that
wasn’t an option either because the entire production process was too complex for
an accurate enough analytical model. Now put yourself into the skin of the respon-
sible chief engineer. What should he/she do to prevent the dreaded solidification
to happen, ever? Another nice discussion item for our tutorial session.

1.5 The Machine Learning Landscape

ML as a field, which perceives itself as a field under this name, is relatively young,
say, about 40 years (related research was called “pattern recognition” earlier).
It is interdisciplinary and has historical and methodological connections to neuro-
science, cognitive science, linguistics, mathematical statistics, AI, signal processing
and control; it uses mathematical methods from statistics (of course), information
theory, signal processing and control, dynamical systems theory, mathematical
logic and numerical mathematics; and it has a very wide span of application types.
This diversity in traditions, methods and applications makes it difficult to study
“Machine Learning”. Any given textbook, even if it is very thick, will reflect the
author’s individual view and knowledge of the field and will be partially blind to
other perspectives. This is quite different from other areas in computer science,
say for example formal languages / theory of computation / computational com-
plexity where a widely shared repertoire of standard themes and methods cleanly
define the field.

I have a brother, Manfred Jaeger, who is a machine learning professor at Aal-
borg university (http://people.cs.aau.dk/~jaeger/). We naturally often talk
with each other, but never about ML because I wouldn’t understand what he is
doing and vice versa. We have never met at scientific conferences because we
attend different ones, and we publish in different journals.

The leading metaphors of ML have changed over the few decades of the field’s
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existence. The main shift, as I see it, was from “cognitive modeling” to “statistical
modeling”. In the 1970-1980s, a main research motive/metaphor in ML (which was
hardly named like that then) was to mimic human learning on computers, which
connected ML to AI, cognitive science and neuroscience. While these connections
persist to the day, the mainstream self-perception of the field today is to view
it very soberly as the craft of estimating complex probability distributions with
efficient algorithms and powerful computers.

My personal map of the ML landscapte divides it into four main segments with
distinct academic communities, research goals and methods:

Segment 1: Theoretical ML. Here one asks what are the fundamental possi-
bilities and limitations of inferring knowledge from observation data. This
is the most abstract and “pure maths” strand of ML. There are cross-
connections to the theory of computational complexity. Practical applicabil-
ity of results and efficient algorithms are secondary. Check out https://en.
wikipedia.org/wiki/Computational_learning_theory and https://en.

wikipedia.org/wiki/Statistical_learning_theory for an impression of
this line of research.

Segment 2: Symbolic-logic learning, data mining. Here the goal is to infer
symbolic knowledge from data, to extract logical rules from data, to infer
facts about the real world expressed in fragments of first-order logic or other
logic formalisms, often enriched with probabilistic information. Neural net-
works are rarely used. A main motive is that these resulting models be
human-understandable and directly useful for human end-users. Key terms
are “knowledge discovery”, “data mining”, or “automated knowledge base
construction”. This is the area of my brother’s research. Check out https:
//en.wikipedia.org/wiki/Data_mining or https://en.wikipedia.org/
wiki/Inductive_logic_programming or Suchanek et al. 2013 for getting
the flavor. This is an application-driven field, with applications e.g. in bioin-
formatics, drug discovery, web mining, document analysis, decision support
systems.

A beautiful example is the PaleoDeepDive project described in Peters et al.
2014. This large-scale project aimed at making paleontological knowledge
easily searchable and more realiable. Paleontology is the science of extinct
animal species (also of extinct plant species, but we skip that part here).
Its raw data are fossil bones. It is obviously difficult to reliably classify a
handful of freshly excavated bones, which are typically poorly preserved, as
belonging to a particular species – first, because one usually doesn’t dig out
a complete skeleton, and second because extinct species are not known in
the first place. The field is plagued by misclassifications and terminological
uncertainties – often a newly found set of bones is believed to belong to a
newly discovered species, for which a new name is created, although in reality
other fossil findings, already named differently by other researchers in other
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publications, belong to the same species. In the PaleoDeepDive project, the
web was crawled to retrieve virtually all scientific pdf documents relating to
paleontology – including documents that had been published in pre-digital
times and were just image scans. Using optical character recognition and
image analysis methods at the front end, these documents were made ma-
chine readable, including information contained in tables and images. Then,
unsupervised, logic-based methods were used to identify suspects for double
naming of the same species, and also the opposite: single names for distinct
species – an important contribution to purge the evolutionary tree of the
animal kingdom.

Segment 3: Signal and pattern modeling. This is the most diverse sector in
my private partition of ML and it is difficult to characterize it globally. The
basic attitude here is one of quantitative-numerical blackbox modeling. Our
TICS demo would go here. The raw data are mostly numerical (like physical
measurement timeseries, audio signals, images and video). When they are
symbolic (texts in particular), one of the first processing steps typically en-
codes symbols to some numerical vector format. Neural networks are widely
used and there are some connections to computational neuroscience. The
general goal is to distil from raw data a numerical representation (often
implicit) of the data distribution which lends itself to efficient application
purposes, like pattern classification, time series prediction, or motor control,
to name a few. Human-user interpretability of the distribution representa-
tion is not easy to attain, but has lately become an important subject of
research. Like Segment 2, this field is decidedly application-driven. Under
the catchword “deep learning” a subfield of this area has recently received a
lot of attention.

Segment 4: Agent modeling and reinforcement learning. The overarching
goal here is to model entire intelligent agents — humans, animals, robots,
software agents — that behave purposefully in complex dynamical envi-
ronments. Besides learning, themes like motor control, sensor processing,
decision making, motivation, knowledge representation, communication are
investigated. An important kind of learning that is relevant for agents is
reinforcement learning — that is, an agent is optimizing its action-decision-
making in a lifetime history based on reward and penalty signals. The out-
come of research often is agent architectures : complex, multi-module “box-
and-arrow diagrams” for autonomous intelligent systems. This is likely the
most interdisciplinary corner of ML, with strong connections to cognitive
science, the cognitive neurosciences, AI, robotics, artificial life, ethology and
philosophy.

It is hard to judge how “big” these four segments are in mutual comparison.
Surely Segment 1 receives much less funding and is pursued by substantially fewer
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researchers than segments 2 and 3. In this material sense, segments 2 and 3 are
both “big”. Segment 4 is bigger than Segment 1 but smaller than 2 or 3. My own
research lies in 3 and 4. In this course I focus on the third segment — you should
be aware that you only get a partial glimpse of ML.

Another very common textbook subdivision of ML, partly orthogonal to my
private 4-section partition, is based on three fundamental kinds of learning tasks:

Supervised learning. Training data are “labelled pairs” (xn, yn), where x is
some kind of “input” and y is some kind of “target output” or “desired /
correct output”. TICS is a typical example, where the xn are images and
the yn are captions. The learning objective is to obtain a mechanism which,
when fed with new test inputs xtest, returns outputs ytest that generalize in
a meaningful way from the training sample. The underlying mathematical
task is to estimate the conditional distributions PY |X from the training sam-
ple (check the end of Appendix B for a brief explanation of this notation).
The learnt input-output mechanism is “good” to the extent that upon input
xtest it generates outputs that are distributed according to the true condi-
tional distribution P (Y = y | X = xtest), just as we have seen in the TICS
demo. Typical and important special cases of supervised learning are pat-
tern classification (the y are correct class labels for the input patterns x)
or timeseries prediction (the y are correct continuations of initial timeseries
x). Segment 3 from my private segmentation of ML is the typical stage for
supervised learning.

Unsupervised learning. Training data are just data points xn. The task is to
discover some kind of “structure” (clusters, regularities, symmetries, redun-
dancies...) in the data distribution which can be used to create a compressed
representation of the data. Unsupervised learning can become very challeng-
ing when data points are high-dimensional and/or when the distribution has
a complex shape. Unsupervised learning is often used for dimension reduc-
tion. The result of an unsupervised learning process is a dimension-reducing,
encoding function e which takes high-dimensional data points x as inputs
and returns low-dimensional encodings e(x). This encoding should preserve
most of the information contained in the original inputs x. That is, there
should also exist a decoding function d which takes encodings e(x) as inputs
and transforms them back to the high-dimensional format of x. The overall
information loss in the encoding-decoding process should be small, that is,
one wishes to obtain x ≈ d(e(x)). A discovery of underlying rules and regu-
larities is the typical goal for data mining applications, hence unsupervised
learning is the main mode for Segment 2 from my private dissection of ML.
Unsupervised methods are often used for data preprocessing in other ML
scenarios, because most ML techniques suffer from curse of dimensionality
effects and work better with dimension-reduced input data.
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Reinforcement learning. The set-up for reinforcement learning (RL) is quite
distinct from the above two. It is always related to an agent that can choose
between different actions which in turn change the state of the environment
the agent is in, and furthermore the agent may or may not receive rewards
in certain environment states. RL thus involves at least the following three
types of random variables:

• action random variables A,

• world state random variables S,

• reward random variables R.

In most cases the agent is modeled as a stochastic process: a temporal
sequence of actions A1, A2, . . . leads to a sequence of world states S1, S2, . . .,
which are associated with rewards R1, R2, . . .. The objective of RL is to
learn a strategy (called policy in RL) for choosing actions that maximize
the reward accumulated over time. Mathematically, a policy is a conditional
distribution of the kind

P (An = an |S1 = s1, . . . , Sn−1 = sn−1;A1 = a1, . . . , An−1 = an−1),

that is, the next action is chosen on the basis of the “lifetime experience” of
previous actions and the resulting world states. RL is naturally connected to
my Segment 4. Furthermore there are strong ties to neuroscience, because
neuroscientists have reason to believe that individual neurons in a brain can
adapt their functioning on the basis of neural or hormonal reward signals.
Last but not least, RL has intimate mathematical connections to a classical
subfield of control engineering called optimal control, where the (engineer-
ing) objective is to steer some system in a way that some long-term objective
is optimized. An advanced textbook example is to steer an interplanetary
missile from earth to some other planet such that fuel consumption is min-
imized. Actions here are navigation maneuvres, the (negative) reward is
fuel consumption, the world state is the missile’s position and velocity in
interplanetary space.

The distinction between supervised and unsupervised learning is not clear-
cut. Training tasks that are globally supervised (like TICS) may benefit from, or
plainly require, unsupervised learning subroutines for transforming raw data into
meaningfully compressed formats (like we saw in TICS). Conversely, globally un-
supervised training mechanisms may contain supervised subroutines where inter-
mediate “targets” y are introduced by the learning system. Furthermore, today’s
advanced ML applications often make use of semi-supervised training schemes. In
such approaches, the original task is supervised: learn some input-output model
from labelled data (xn, yn). This learning task may strongly benefit from including
additional unlabelled input training points x̃m, helping to distil a more detailed
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model of the input distribution PX than would be possible on the basis of only
the labelled xn data. Again, TICS is an example: the data engineers who trained
TICS used 70K un-captioned images in addition to the 30K captioned images to
identify that 4096-dimensional manifold more accurately.

Also, reinforcement learning is not independent of supervised and unsuper-
vised learning. A good RL scheme often involves supervised or unsupervised
learning subroutines. For instance, an agent trying to find a good policy will
benefit from data compression (= unsupervised learning) when the world states
are high-dimensional; and an agent will be more capable of choosing good actions
if it possesses an input-output model (= supervised learning) of the environment
— inputs are actions, outputs are next states. Deep reinforcement learning is a
flourishing branch of deep learning where learning agents encode some of their
knowledge in deep neural networks.

Today machine learning is often identified with deep learning — at least, in the
general public perception. Deep learning is (almost) exclusively based on neural
networks as “learning machines”. In our course we will treat neural networks only
in one of thirteen sections, and only on a very basic level. I hope that the other
sections reveal ML as a field that is much broader than deep learning. I also want
to bring to the front a number of general insights and challenges that are the same
in deep learning and other branches of ML. If you are particularly interested in
deep learning, I must refer you to the specialization course on deep learning in
our Master program, or to textbooks. There are two deep learning textbooks,
both open-access and online, which I want to recommend. The first is the original
deep learning “bible” which was written by some of the very pioneers of the field
in 2016, when the basic methods of deep learning had been established, had ma-
tured, and had become famous and widely used. It’s the book Deep Learning by
I. Goodfellow, Bengio, and Courville 2016. The second is the book Dive into Deep
Learning by Zhang et al. 2021, which, like the 2016 bible, gives a comprehensive
introduction to the basics of deep learning, but furthermore an extensive overview
of the current state-of-the-art architectures and algorithms, with detailed instruc-
tions concerning their efficient implementation. Since the field is developing very
fast, the 2021 book has grown to 1000+ pages, 220 pages more than the 2016
book. Both books include extended introductions to the mathematical methods
that underpin deep learning.
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2 Decision trees and random forests

This section describes a class of machine learning models that is classical and
simple and intuitive and useful. Decision trees and random forests are not super
fashionable in these deep learning times, but practicians in data analysis use them
on a daily basis. The main inventions in this field have been made around 1980-
2000. In this chapter I rely heavily on the decision tree chapters in the classical
ML textbooks of Mitchell 1997 and Duda, P. E. Hart, and Stork 2001, and for
the random forest part my source is the landmark paper by Breiman 2001 which,
as per Nov 15, 2021, has been cited 81000 times (Google Scholar). Good stuff to
know, apparently.

Note: In this chapter of the lecture notes I will largely adhere to the notation
used by Breiman 2001 in order to make it easier for you to read that key paper
if you want to dig deeper. If in your professional future you want to use decision
tree methods, you will invariably use them in random forests, and in order to
understand what you are actually doing, you will have to read Breiman 2001 (like
hundreds of thousands before you). Unfortunately, the notation used by Breiman is
inconsistent, which makes the mathematical part of that paper hard to understand.
My hunch is that most readers skipped the two mathy sections and read only the
experimental sections with the concrete helpful hints for algorithm design, and
with gorgeous demo results. Inconsistent or even plainly incorrect mathematical
notation (and mathematical thinking) happens a lot in “engineering applied math”
papers and makes it difficult to really understand what the author wants to say (see
my ramblings in my lecture notes on “Principles of Statistical Modeling”, Chapter
14, “A note on what you find in textbooks”, online at https://www.ai.rug.nl/
minds/uploads/LN_PSM.pdf). Therefore I will not use Breiman’s notation one-
to-one, but modify it a little to make it mathematically more consistent.

2.1 A toy decision tree

Figure 7 shows a simple decision tree. It can be used to classify fruit. If you have
a fruit in your hands that you don’t know by name, then you can use this decision
tree to find out what fruit you have there, in an obvious way:

• Start at the root node of the tree. The root node is labeled with a property
that fruit have (color? is the root property used in the figure).

• Underneath the root node you find child nodes, one for each of the three
possible color attributes green, yellow, red. Decide which color your fruit has
and proceed to that child node. Let us assume that your fruit was yellow.
Then you are now at the child node labelled shape?.

• Continue this game of moving downwards in the tree according to the direc-
tion decisions taken at each node according to the attributes of the fruit in
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your hand. If you reach a leaf node of this tree, it will be labeled with the
type of your fruit. If your fruit is yellow, round and small, it’s a lemon!

Color?

Size? Size?Shape?

round

Size?

yellow redgreen

thin mediumsmall smallbig

Grapefruit

big small

Watermelon Banana AppleApple

Lemon

Grape Taste?

sweet sour

Cherry Grape

m
edium

level 0

level 1

level 2

level 3

root

FIGURE 8.1. Classification in a basic decision tree proceeds from top to bottom. The questions asked at
each node concern a particular property of the pattern, and the downward links correspond to the possible
values. Successive nodes are visited until a terminal or leaf node is reached, where the category label is read.
Note that the same question, Size?, appears in different places in the tree and that different questions can
have different numbers of branches. Moreover, different leaf nodes, shown in pink, can be labeled by the
same category (e.g., Apple). From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification.
Copyright c⃝ 2001 by John Wiley & Sons, Inc.

Figure 7: A simple decision tree. Taken from Duda, P. E. Hart, and Stork 2001.

For a given classification task, there are many different decision trees that give
identical results. A decision tree is not unique. You could, for instance, create
another tree whose root node queries the size? property, and which would lead
to exactly the same ultimate decisions as the tree shown in the figure (exercise!).

If each internal (= non-leaf) node in a decision tree has exactly two child nodes,
one speaks of a binary decision tree. These are particularly pleasant for math-
ematical analysis and algorithm design. Every decision tree can be transformed
into an equivalent binary decision tree with an obvious procedure. Figure 8 shows
the binary tree obtained from the fruit tree of Figure 7.

This is obviously a toy example. But decision trees can become really large
and useful. A classical example are the botanic field guide books used by biologists
to classify plants (Figure 9). I am a hobby botanist and own three such decision
trees in book format. Together they weigh about 1.5 kg and I have been using
them ever since I was eighteen or so.

In the basic versions of decision tree learning, they are learnt from data which
are given as class-labeled attribute vectors. For instance, training data for our
fruit classification tree might look like this:

nr. Color Size Taste Weight Shape Class

1 green big sweet heavy round Watermelon

2 green ? ? heavy oval Watermelon

3 red small sweet light round Cherry

4 red small sweet light round Apple

. . . . . . . . . . . . . . . . . . . . .

3000 red big ? medium round Apple
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Grapefruit

Banana Apple

Lemon Cherry Grape

GrapeApple

Watermelon

yes no

no

no

no

no

no

no

no

yesyes

yes yes yes

yes yes

color = Green?

size = big?

size = medium?

color = yellow?

size = small?shape = round?

size = big? taste = sweet?

FIGURE 8.2. A tree with arbitrary branching factor at different nodes can always be rep-
resented by a functionally equivalent binary tree—that is, one having branching factor
B = 2 throughout, as shown here. By convention the “yes” branch is on the left, the “no”
branch on the right. This binary tree contains the same information and implements the
same classification as that in Fig. 8.1. From: Richard O. Duda, Peter E. Hart, and David
G. Stork, Pattern Classification. Copyright c⃝ 2001 by John Wiley & Sons, Inc.

Figure 8: A binary version of the decision tree shown in Figure 7. Taken from
Duda, P. E. Hart, and Stork 2001.

Here we get a first inkling that decision tree learning might not be as trivial as
the final result in Figure 7 makes it appear. The above fruit training data table has
missing values (marked by “?”); not all properties from the training data are used
in the decision tree (property “Weight” is ignored); some examples of the same
class have different attribute vectors (first two rows give different characterizations
of watermelons); some identical attribute vectors have different classes (rows 3
and 4). In summary: real-world training data will be partly redundant, partly
inconsistent and will contain errors and gaps. All of this points in the same
direction: statistical analyses will be needed to learn decision trees.

2.2 Formalizing “training data”

Before we describe decision tree learning, I want to squeeze in a little rehearsal of
mathematical concepts and their notation.

In my notation in this chapter I will be leaning on Breiman’s notation as far as
possible. Breiman’s notation is unfortunately incomplete and inconsistent. Here
I use a complete, correct notation, adhering to the standards of mathematical
probability theory. I am aware that many participants of this course will be
unfamiliar with probability theory and its formal notation standards. Because
machine learning ultimately rests on probability theory, I strongly recommend
that, if you want to pursue a professional career in machine learning, at some
point you learn to master the basics of probability theory (for instance, from my
lecture notes for the legacy course “Principles of Statistical Modeling”, online:
https://www.ai.rug.nl/minds/uploads/LN_PSM.pdf). Only if you understand
probability you can get a full grasp on machine learning. But it is clear that many
students will not have the time or inclination to learn about probability theory.
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Figure 9: Another decision tree. The right image shows a page from this botany
field guide. What you see on this page is, in fact, a small section of a large binary
classification tree. Image source: iberlibro.com, booklooker.de.

Therefore I will try to introduce notation and concepts in two ways throughout
this course: in a rigorous “true math” version, and in an intuitive “makes some
sense” version.

I called the fruit attribute data table above a sample. Samples are mathemat-
ical objects of key importance in statistics and machine learning (where they are
also called “training data”). Samples are always connected with random variables
(RVs). Here is how.

First, the intuitive version. As an empirical fruit scientist, you would obtain a
“random draw” to get the training data table in a very concrete way: you would
go to the fruit market, collect 3000 fruit “at random”, observe and note down their
color, size, taste, weight and shape attributes in an Excel table, and for each of the
3000 fruit you also ask the vendor for the name of the fruit to get an almost but
not quite surely correct class label which you also note down in the last column
of the table.
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The mathematical representation of observing and noting down the attributes
of the i-th fruit that you have picked (where i = 1, . . . , 3000) is Xi(ω). Xi is
the random variable which is the mathematical model of carrying out the i-th
observation that you do on a fruit market. This Xi could be described as the
procedure “pick a random fruit and observe and report the attribute vector”. The
ω in Xi(ω) is the occasion when you actually executed the procedure Xi – say,
ω stands for the concrete data collection trip when you went to the Vismarkt
in Groningen last Tuesday and visited the fruit stands. Xi+1(ω) would be the
attribute vector of the next fruit that you pick up on that data collection trip. If
the entire procedure of collecting 3000 fruit specimen were executed on another
occasion – for instance, a week earlier, or by your friend on the same day – this
would be mathematically represented by another ω′. For instance, Xi(ω) might
be the attribute vector that you observed for the i-th fruit last Tuesday, Xi(ω

′)
would be the attribute vector that you observed for the i-th fruit one week earlier,
Xi(ω

′′) would be the attribute vector that your friend observed for the i-th last
Tuesday when he did the whole thing in parallel with you, etc. In mathematical
terminology, these “observation occasions” ω are called elementary events.

Similarly, Yi(ω) is the fruit class name that you were told by the vendor when
you did the data sampling last Tuesday; Yi(ω

′) would be the ith fruit name you
were told when you did the whole exercise a week earlier already, etc.

The three thousand pairs (Xi(ω), Yi(ω)) correspond to the rows in the data
table. I will call each of these data (row) vectors (Xi(ω), Yi(ω)) a data point.
Database people and practical field workers call these vectors records. To get the
entire table as a single mathematical object – namely, the sample – one combines
these single fruit data points by a product operation, obtaining (X(ω),Y(ω)),
where X =

⊗
i=1,...,N Xi and Y =

⊗
i=1,...,N Yi. Products of random variables are

used abundantly in probability — you find them explained in a little more detail
in Appendix A.

And here is the rigorous probability theory account of the (X(ω),Y(ω)) no-
tation. (This material is not mandatory and will not be asked in exercises or
exams — it is just a glimpse of the raw beauty of mathematics, for the ones who
are interested. The sketch I can give here is super condensed. I tell the same
story, with many detailed examples and explanations, in my ’Statistical Modeling’
lecture notes on 100 pages.) As always in probability theory and statistics, we
have an underlying probability space (Ω,A, P ). In this structure, Ω is the set of all
possible elementary events ω ∈ Ω. A is a subset structure imposed on the set Ω
called a σ-field, and P is a probability measure on (Ω,A). The random variable X
is a function which returns samples, that is collections of N training data points.
The expression X(ω) is a function call: the argument ω is (intuitively speaking)
an observation event, and the result X(ω) of this function call is a sample. We
assume that all samples ω that could be drawn have N data points; this assump-
tion is a matter of convenience and simplifies notation and mathematical analysis
a lot.
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It is a good exercise to formalize the structure of a sample in more detail.
A single data point consists of an attribute vector x and a class label y. In
formal notation, we have m properties Q1, . . . , Qm (like ’color’ or ’size’), and each
property Qj (where j ∈ {1, . . . ,m}) has a set Aj of possible attribute values (like
’red’, ’green’ as attributes of ’color’ etc.). Thus, x ∈ A1× . . .×Am. We denote the
set of possible class labels by C. A data point (Xi(ω), Yi(ω)) is thus an element of
the set (A1× . . .×Am×C). See Appendix A for the mathematical notation used
in creating product data structures. With SZ we denote the sample space of any
random variable Z. The sample space for Xi is thus SXi = A1 × . . .×Am and for
Yi it is SYi = C. Because SXi = SXj , SYi = SYj for all 1 ≤ i, j ≤ N , for simplicity
we also write SX for A1 × . . .× Am and SY for C.

The entire training data table is an element of the sample space SX⊗Y of the
product RV X⊗Y = (

⊗
i=1,...,N Xi)⊗(

⊗
i=1,...,N Yi). Just to exercise formalization

skills: do you see that

SX × SY = (A1 × . . .× Am)N × CN = (A1 × . . .× Am × C)N = SX⊗Y?

To round off our rehearsal of elementary concepts and notation, I repeat the
basic connections between random variables, probability spaces and sample spaces:
a random variable Z always comes with an underlying probability space (Ω,A, P )
and a sample space SZ . The RV is a function Z : Ω→ SZ , and induces a probability
distribution on SZ . This distribution is denoted by PZ .

I torture you with these exercises in notation like a Russian piano teacher will
torture his students with technical finger-exercising études. It is technical and
mechanical and the suffering student may not happily appreciate the necessity of
it all, – and yet this torture is a precondition for becoming a virtuoso. The music
of machine learning is played on the keyboard of probability, no escape.

I am aware that, if you did not know these probability concepts before, this
condensed rehearsal is hardly understandable. Probability theory is one of the
most difficult-to-grasp sectors of mathematics and it takes weeks of digesting and
exercising to embrace the concepts of probability spaces, random variables and
sample spaces (not to speak of σ-fields). I want to recommend again my lec-
ture notes “Principles of Statistical Modeling”, which I mentioned before. They
come from a graduate course whose sole purpose was to give a slow, detailed,
understandable, yet mathematically rigorous introduction to the basic concepts of
probability theory and statistics — for non-math students from computer science
and engineering.

2.3 Learning decision trees: setting the stage

After this excursion into the rough terrain of probability notation we can start to
discuss decision tree learning.

Despite the innocent looks of decision trees, no universally “optimal” method
is known how to learn them from training data. But it is known what are the basic
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design options for decision tree learning algorithms. There are a few key decisions
the algorithm designer has to make in order to assemble a learning algorithm for
decision trees, and standard algorithmic building blocks for each of the design
decisions are known. We will now inspect these design options in turn.

Two things must be given before a learning algorithm can be assembled and
learning can start: (A) the training data, and (B) an optimization criterion. While
(A) is obvious, (B) deserves a few words of explanation.

We observe that decision tree learning is a case of supervised learning. The
training data is a collection of labeled samples (xi, yi)i=1,...,N = (Xi(ω), Yi(ω))i=1,...,N ,
where xi ∈ A1 × . . . Am = SX is an attribute vector and yi ∈ C = SY is a class
label. A decision tree represents a function h : SX → SY in an obvious way: using
the sequential decision procedure outlined in Section 2.1, a vector of observed at-
tributes leads you from the root node to some leaf, and that leaf gives a class label.
In statistics, such functions h : SX → SY are generally called decision functions
(also in other supervised learning settings that do not involve decision trees), a
term that I will also sometimes use.

Decision tree learning is an instance of the general case of supervised learning:
the training data are labeled pairs (xi, yi)i=1,...,N , with xi ∈ SX , yi ∈ SY , and the
learning aims at finding a decision function h : SX → SY which is “optimal” in
some sense.

In what sense can such a function h : SX → SY (in this section: such a decision
tree) be “optimal”? How can one quantify the “goodness” of functions of the type
h : SX → SY ?

This is a very non-trivial question, as we will learn to appreciate as the course
goes on. For supervised learning tasks, the key to optimizing a learning procedure
is to declare a loss function at the very outset of a learning project. A loss function
is a function

L : SY × SY → R≥0, (1)

which assigns a nonnegative real number to a pair of class labels. The loss function
is used to compare the classification h(x), returned by a decision function h on
input x, with the correct value y. After having learnt a decision function h from
a training sample SX × SY, one can quantify the performance of h averaged over
the training data, obtaining a quantity Remp that is called the empirical risk :

Remp(h) =
1

N

∑
i=1,...,N

L(h(xi), yi). (2)

Most supervised machine learning procedures are built around some optimiza-
tion algorithm that searches for decision functions which minimize the empirical
risk, that is, which try to give a small average loss on the training data.

I emphasize that minimizing the empirical loss (or in another common wording,
minimizing the “training error”) by a clever learning algorithm will usually not
lead to a very useful decision function. This is due to the problem of overfitting.
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“Overfitting” means, intuitively speaking, that if the learning algorithm tries ev-
erything to be good on the training data (= small empirical risk), it will attempt
to minimize the loss individually for each training data point. This means, in
some way, to learn the training data “by heart” – encode an exact memory of the
training data points in the learnt decision function h. This is not a good idea
because later test input data points will be different, and the decision function ob-
tained by “rote learning” will not know how to generalize to the new data points.
The ultimate goal of supervised machine learning is not to minimize the empirical
loss (that is, to have small loss on the training data), but to minimize the loss
on future test data which were not available at training time. Thus, the central
optimization criterion for supervised learning methods is to find decision functions
h that have a small risk

R(h) = E[L(h(X), Y )], (3)

where E is the statistical expectation operator (see Appendix D). That is, a good
decision function h should incur a small expected loss – it should have small “testing
error”. At a later point in this course we will analyse the problem of avoiding
overfitting in more detail. For now it is enough to be aware that overfitting is a
very serious threat, and that in order to avoid it one should not allow the models
h to dress themselves too closely around the training data points.

For a classification task with a finite number of class labels, like in our fruit
example, a natural loss function is one that simply counts misclassifications:

Lcount(h(x), y) =

{
0, if h(x) = y
1, if h(x) 6= y

(4)

This counting loss is often a natural choice, but in many situations it is not
appropriate. Consider, for instance, medical diagnostic decision making. Assume
you visit a doctor with some vague complaints. Now compare two scenarios.

• Scenario 1: after doing his diagnostics the doctor says, “sorry to tell you but
you have cancer and you should think about making your will” – and this is
a wrong diagnosis; in fact you are quite healthy.

• Scenario 2: after doing his diagnostics the doctor says, “good news, old boy:
there’s nothing wrong with you except you ate too much yesterday” – and
this is a wrong diagnosis; in fact you have intestinal cancer.

These two errors are called the “false positive” and the “false negative” deci-
sions. A simple counting loss would optimize medical decision making such that
the average number of any sort of error is minimized, regardless whether it is a false
negative or a false positive. But in medicine, false negatives should be avoided as
much as possible because their consequences can be lethal, whereas false positives
will only cause a passing anxiety and inconvenience. Accordingly, a loss function
used to optimize medical decision making should put a higher penality (= larger
L values) on false negatives than on false positives.
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Generally, and specifically so in operations research and decision support sys-
tems, loss functions can become quite involved, including a careful balancing of
ethical, financial or other factors. However, we will not consider complex loss func-
tions here and stick to the simple counting loss. This loss is the one that guided
the design of the classical decision tree learning algorithms. I am not aware of any
work where another loss function was used to optimize or evaluate decision trees.
Decision trees can be regarded as ’counting-loss minimization machines’.

And now, finally, we have set the stage for actually discussing learning algo-
rithms for decision trees.

2.4 Learning decision trees: the core algorithm

Ok., let us get concrete. We are given training data (xi, yi)i=1,...,N (in real life
often an Excel table), and – opting for the counting loss – we want to find an
optimal (more realistically: a rather good) decision tree hopt which will minimize
the expected misclassification ratio on new “test” data.

In order to distil this hopt from the training data, we need to set up a learning
algorithm which, on input of a training sample (xi, yi)i=1,...,N , outputs the ready-
to-use decision tree hopt.

All known learning algorithms for decision trees build hopt incrementally from
the root node downwards. The first thing a decision tree learning algorithm
(DTLA) must do is therefore to decide which property is queried first, making
it the root node.

To understand the following procedures, notice that a decision tree iteratively
splits the training dataset in increasingly smaller, disjoint subsets. The root node
can be associated with the entire training dataset – call it D. If the root node νroot
queries the property Qj and this property has kj attributes aj1, . . . , a

j
kj

, there will
be kj child nodes ν1, . . . , νkj where node νl will be covering all training datapoints

that have attribute ajl ; and so forth down the tree. In detail: if νl1l2···lr is a tree
node at level r (counting from the root), and this node is associated with the
subset Dl1l2···lr of the training data, and this node queries property Qu which has
attributes au1 , . . . , a

u
ku

, then the child node νl1l2···lrls will be that subset of Dl1l2···lr
which contains those training data points that have attribute aus of property Qu.

The classical solution to the problem of selecting a property Q for the root
node is to choose that property which leads to a “maximally informative” split of
the training dataset in the first child node level. Intuitively, the data point subsets
associated with the child nodes should be as “pure” as possible with respect to
the classes c ∈ C.

In the best of all cases, if there are q different classes (that is, |C| = q), there
would be a property Qsupermagic with q attributes which already uniquely identify
classes, such that each first-level child node is already associated with a “pure”
set of training examples all from the same class – say, the first child node covers
only apples, the second only bananas, etc.
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This will usually not be possible, among other reasons because normally there
is no property with exactly as many attributes as there are classes. Thus, “purity”
of data point sets associated with child nodes needs to be measured in a way that
tolerates class mixtures in each node. The measure that is traditionally invoked
in this situation comes from information theory. It is the entropy of the class
distribution within a child node. If Dl is the set of training points associated with
a child node νl, and nli is the number of data points in Dl that are from class i
(where i = 1, . . . , q), and the total size of Dl is nl, then the entropy Sl of the “class
mixture” in Dl is given by

Sl = −
∑

i=1,...,q

nli
nl

log2

(
nli
nl

)
. (5)

If in this sum a term
nli
nl

happens to be zero, by convention the product
nli
nl

log2

(
nli
nl

)
is set to zero, too. I quickly rehearse two properties of entropy which

are relevant here:

• Entropies are always nonnegative.

• The more “mixed” the set Dl, the higher the entropy Sl. In one extreme case,
Dl is 100% clean, that is, it contains only data points of a single class. Then
Sl = 0. The other extreme is the greatest possible degree of mixing, which
occurs when there is an equal number of data points from each class in Dl.
Then Sl attains its maximal possible value of −q (1/q) log2(1/q) = log2 q.

When Sl is zero, the set Dl is “pure” — it contains examples of only one class.
The larger Sl, the less pure Dl. The entropy measure Sl is often called an impurity
measure.

The entropy of the root node is

Sroot = −
∑

i=1,...,q

nroot
i

N
log2

(
nroot
i

N

)
,

where nroot
i is the number of examples of class i in the total training data set D

and N is the number of training data points. Following the terminology of Duda,
P. E. Hart, and Stork 2001, I will denote the impurity measure of the root by
ientropy(νroot) := Sroot.

Generally, if ν is some node in the tree, and this node is associated with the
training data point set Dν , and |Dν | = n, and the q classes are represented in Dν

by subsets of size n1, . . . , nq, the entropy impurity of ν is given by

ientropy(ν) = −
∑

i=1,...,q

ni
n

log2

(ni
n

)
. (6)
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If the root node νroot queries the property Qj and this property has k attributes,
then the impurity mixing of classes averaged over all child nodes ν1, . . . , νk is given
by ∑

l=1,...,k

|Dl|
N

ientropy(νl),

where Dl is the point set associated with νl.
Subtracting this average class mixing found in the child nodes from the class

mixing in the root, one obtains the information gain achieved by opting for prop-
erty Qj for the root node:

∆ientropy(νroot, Qj) = ientropy(νroot)−
∑

l=1,...,k

|Dl|
N

ientropy(νl). (7)

It can be shown that this quantity is always nonnegative. It is maximal when
all child nodes have pure data point sets associated with them.

Similarly, for any other node ν labeled with property Q, where Q has k at-
tributes, and the size of the set associated with ν is n and the sizes of the sets
associated with the k child nodes ν1, . . . , νk are n1, . . . , nk, the information gain
for node ν is

∆ientropy(ν,Q) = ientropy(ν)−
∑

l=1,...,k

nl
n
ientropy(νl). (8)

The procedure to choose a property for the root node is to compute the infor-
mation gain for all properties and select the one which maximizes the information
gain.

This procedure of choosing that query property which leads to the greatest
information gain is repeated tree-downwards as the tree is grown by the DTLA. A
node is not further expanded and thus becomes a leaf node if (i) either the training
dataset associated with this node is 100% pure (contains only examples from a
single class), or if (ii) one has reached the level at which all available properties
have been queried on the path from the root to that node. In case (i) the leaf
is labeled with the unique class of its associated data point set. In case (ii) it
is labeled with the class that has the largest number of representatives in the
associated data point set.

Information gain is the most popular and historically first criterion used for
determining the query property of a node. But other criteria are used too. I
mention three.

The first is a normalized version of the information gain. The motivation is
that the information gain criterion (8) favours properties that have more attributes
over properties with fewer attributes. This requires a little explanation. Generally
speaking, properties with many attributes statistically tend to lead to purer data
point sets in the children nodes than properties with only few attributes. To see
this, compare the extreme cases of a property with only a single attribute, which
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will lead to a zero information gain, with the extreme case of a property that has
many more attributes than there are data points in the training dataset, which
will (statistically) lead to many children node data point sets which contain only
a single example, that is, they are 100% pure. A split of the data point set Dν

into a large number of very small subsets is undesirable because it is a door-
opener for overfitting. This preference for properties with more attributes can be
compensated if the information gain is normalized by the entropy of the data set
splitting, leading to the information gain ratio criterion, which here is given for
the root node:

∆ratio ientropy(νroot, Qj) =
∆ientropy(νroot, Qj)

−
∑

l=1,...,k
|Dl|
N

log2
|Dl|
N

. (9)

The second alternative that I mention measures the impurity of a node by its
Gini impurity, which for a node ν associated with set Dν , where |Dν | = n and the
subsets of points in Dν of classes 1, . . . , q have sizes n1, . . . , nq, is

iGini(ν) =
∑

1≤i,j≤q;i 6=j

ni
n

nj
n

= 1−
∑

1≤i≤q

(ni
n

)2

,

which is the error rate when a category decision for any example point in Dν is
made randomly according to the class distribution within Dν .

The third alternative is called the misclassification impurity in Duda, P. E.
Hart, and Stork 2001 and is given by

imisclass(ν) = 1−max{nl
n
| l = 1, . . . , q}.

This impurity measure is the minimum (taken over all classes c) probability
that a point from Dν which is of class c is misclassified if the classification is
randomly done according to the class distribution in Dν .

Like the entropy impurity, the Gini and misclassification impurities are non-
negative and equal to zero if and only if the set Dν is 100% pure. Like it was done
with the entropy impurity, these other impurity measures can be used to choose
a property for a node ν through the gain formula (8), plugging in the respective
impurity measure for ientropy.

This concludes the presentation of the core DTLA. It is a greedy procedure
which incrementally constructs the tree, starting from its root, by always choos-
ing that property for the node currently being constructed which maximizes the
information gain (7) or one of the alternative impurity measures.

You will notice some unfortunate facts:

• An optimization scheme which works by iteratively applying local greedy
optimization steps will generally not yield a globally optimal solution.
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• We started from claiming that our goal is to learn a tree which minimizes
the count loss (or any other loss we might opt for). However, none of the
impurity measures and the associated local gain optimization is connected
in a mathematically transparent way with that loss. In fact, no computa-
tionally tractable method for learning an empirical-loss-minimal tree exists:
the problem is NP-complete (Hyafil and Rivest 1976).

• It is not clear which of the impurity measures is best for the goal of mini-
mizing the empirical loss.

In summary, we have here a heuristic learning algorithm (actually, a family
of algorithms, depending on the choice of impurity measure) which is based on
intuition and the factual experience that it works reasonably well in practice. Only
heuristic algorithms are possible due to the NP-completeness of the underlying
optimization problem.

2.5 Dealing with overfitting

If a decision tree is learnt according to the core algorithm, there is the danger
that it overfits. This means that it performs well on the training data – it has
small empirical loss – which boils down to a condition where all leaf nodes are
rather pure. A zero empirical loss is easily attained if the number of properties
and attributes is large. Then it will be the case that every training example has
a unique combination of attributes, which leads to 100% pure leaf nodes, and
every leaf having only a small set of training examples associated with it, maybe
singleton sets. Then one has zero misclassifications of the training examples. But,
intuitively speaking, the tree has just memorized the training set. If there is some
“noise” in the attributes of data points, new examples (not in the training set)
will likely have attribute combinations that lead the learnt decision tree on wrong
tracks.

We will learn how to analyze and systematically fight overfitting later in the
course. At this moment I only point out that when a learnt tree T overfits, one
can typically obtain from it another tree T ′ which overfits less, by pruning T .
Pruning a tree means to select some internal nodes and delete all of their children.
This makes intuitive sense: the deeper one goes down in a tree learnt by the core
algorithm, the more does the branch reflect “individual” attribute combinations
found in the training data.

To make this point particularly clear, consider a case where there are many
properties, but only one of them carries information relevant for classification,
while all others are purely random. For instance, for a classification of patients into
the two classes “healthy” and “has cancer”, the binary property “has increased
leukocyte count” carries classification relevant information, while the binary prop-
erty “given name starts with A” is entirely unconnected to the clinical status. If
there are enough such irrelevant properties to uniquely identify each patient in
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the training sample, the core algorithm will (i) most likely find that the relevant
property “has increased leukocyte count” leads to the greatest information gain
at the root and thus use it for the root decision, and (ii) subsequently generate
tree branches that lead to 100% pure leaf nodes. Zero training error and poor
generalization to new patients results. The best tree here would be the one that
only expands the root node once, exploiting the only relevant property.

With this insight in mind, there are two strategies to end up with trees that
are not too deep.

The first strategy is early stopping. One does not carry the core algorithm
to its end but at each node that one has created, one decides whether a further
expansion would lead to overfitting. A number of statistical criteria are known to
decide when it is time to stop expanding the tree; or one can use cross-validation
(explained in later chapters in these lecture notes). We do not discuss this further
here – the textbook by Duda explains a few of these statistical criteria. A problem
with early stopping is that it suffers from the horizon effect : if one stops early at
some node, a more fully expanded tree might exploit further properties that are,
in fact, relevant for classification refinement underneath the stopped node.

The second strategy is pruning. The tree is first fully built with the core
algorithm, then it is incrementally shortened by cutting away end sections of
branches. An advantage of pruning over early stopping is that it avoids the horizon
effect. Duda says (I am not a decision tree expert and can’t judge) that pruning
should be preferred over early stopping “in small problems” (whatever “small”
means).

2.6 Variants and refinements

The landscape of decision tree learning is much richer than what we can explore
in a single lecture. Two important topics that I omit (treated briefly in Duda’s
book):

Missing values. Real-world datasets typically have missing values, that is, not
all training or test examples will have attribute values filled in for all proper-
ties. Missing values require adjustments both in training (an adapted version
of impurity measures which accounts for missing values) and in testing (if a
test example leads to a node with property Q and the example misses the
required attribute for Q, the normal classification procedure would abort).
The Duda book dedicates a subsection to recovery algorithms.

Numerical properties. Many real-world properties, like for instance “velocity”
or “weight”, have a continuous numerical range for attribute values. This re-
quires a split of the continuous value range into a finite number (often two) of
discrete bins which then serve as discrete attributes. For instance, the range
of a “body weight” property might be split into two ranges “<50kg” and
“≥50kg”, leading to a new property with only two attributes. These ranges
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can be further split into finer-grained subproperties which would be queried
downstream in the tree, for instance querying for “<45kg” vs. “45kg≤50kg
underneath the “<50kg” node. Heuristics must be used to determine split-
ting boundaries which lead to well-performing (correct and cheap = not too
many nodes) trees. Again – consult Duda.

All in all, there is a large number of design decisions to be made when setting
up a decision tree learning algorithm, and a whole universe of design criteria and
algorithmic sub-procedures is available in the literature. Some combinations of
such design decisions have led to final algorithms which have become branded with
names and are widely used. Two algorithms which are invariably cited (and which
are available in statistical and ML programming toolboxes) are the ID3 algorithm
and its more complex and higher-performant successor, the C4.5 algorithm. They
had been introduced by decision tree pioneer Ross Quinlan in 1986 and 1993,
respectively. The Duda book gives brief descriptions of these classical algorithms.

2.7 Random forests

Decision tree learning is a subtle affair. If one designs a DTLA by choosing
a specific combination of the many design options, the tree that one gets from
a training dataset D will be influenced by that choice of options. It will not
be “the optimal” tree which one might obtain by some other choice of options.
Furthermore, if one uses pruning or early stopping to fight overfitting, one might
well end up with trees that, while not overfitting, are underfitting – that is, they do
not exploit all the information that is in the training data. In summary, whatever
one does, one is likely to obtain a decision tree that is significantly sub-optimal.

This is a common situation in machine learning. There are only very few
machine learning techniques where one has full mathematical control over getting
the best possible model from a given training dataset, and decision tree learning
is not among them. Fortunately, there is also a common escape strategy for
minimizing the quality deficit inherent in most learning designs: ensemble methods.
The idea is to train a whole collection (called “ensemble”) of models (here: trees),
each of which is likely suboptimal (jargon: each model is obtained from a “weak
learner”), but if their results on a test example are diligently combined, the merged
result is much better than what one gets from each of the models in the ensemble.
It’s the idea of crowd intelligence.

“Ensemble methods” is an umbrella term for a wide range of techniques. They
differ, obviously, in the kind of the individual models, like for instance decision
trees or neural networks. Second, they vary in the methods of how one generates
diversity in the ensemble. Ensemble methods work well only to the extent that the
individual models in the ensemble probe different aspects in the training data –
they should look at the data from different angles, so to speak. Thirdly, ensemble
methods differ in the way how the results of the individual models are combined.
The most common way is majority voting — the final classification decision is the
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one made most often by the individual models. A general theory for setting up an
ensemble learning scheme is not available – we are again thrown back to heuristics.
The Wikipedia articles on “Ensemble learning” and “Ensemble averaging (machine
learning)” give a condensed overview.

Obviously, ensemble methods can only be used when the computational cost
of training a single model is rather low. This is the case for decision tree learning.
Because training an individual tree will likely not give a competitive result but
is cheap, it is common practice to train not a single decision tree but an entire
ensemble – which in the case of tree learning is called a random forest. In fact,
random forests can yield competitive results (for instance, compared to neural
networks) at moderate cost, and are therefore often used in practical applications.

The definite reference for random forests is Breiman 2001. The paper has two
parts. In the first part, Breiman gives a mathematical analysis of why combining
decision trees does not lead to overfitting, and derives an instructive upper bound
on the expected generalization error (= risk, see Section 2.3). These results were
in synchrony with mainstream work in other areas of machine learning theory at
the time and made this paper the theory anchor for random forests. However, I
personally find the math notation used by Breiman opaque and hard to penetrate,
and I am not sure how many readers could understand it. The second, larger part
of this paper describes several variants and extensions of random forest algorithms,
discusses their properties and benchmarks some of them against the leading clas-
sification learning algorithms of the time, with favourable outcomes. This part
is an easy read and the presented algorithms are not difficult to implement. My
hunch is that it is the second rather than the first part which led to the immense
impact of this paper.

Here I give a summary of the paper, in reverse order, starting with the practical
algorithm recommended by Breiman. After that I give an account of the most
conspicuous theoretic results in transparent standard probability notation.

In ensemble learning one must construct many different models in an auto-
mated fashion. One way to achieve this is to employ a stochastic learning algo-
rithm. A stochastic learning algorithm can be seen as a learning algorithm which
takes two arguments. The first argument is the training data D, the same as in
ordinary, non-stochastic learning algorithms. The second argument is a random
vector, denoted by Θ in Breiman’s paper, which is set to different random values
in each run of the algorithm. Θ can be seen as a vector of control parameters
in the algorithm; different random settings of these control parameters lead to
different outcomes of the learning algorithm although the training data are always
the same, namely D.

Breiman proposes two ways in order to make tree learning stochastic:

Bagging. In each run of the learning algorithm, the training dataset is resampled
with replacement. That is, from D one creates a new training dataset D′

of the same size as D by randomly copying elements from D into D′. This
is a general approach for ensemble learning, called bagging. The Wikipedia

44



article on “Bootstrap aggregating” gives an easy introduction if you are
interested.

Random feature selection is the term used by Breiman for a randomization
technique where, at each node whose query property has to be chosen dur-
ing tree growing, a small subset of all still unqueried properties is randomly
drawn as candidates for the query property of this node. The winning prop-
erty among them is determined by the information gain criterion.

Combining these two randomness-producing mechanisms with a number of
other design decisions not mentioned here, Breiman obtains a stochastic learning
algorithm which, with ensembles of size 100 and majority voting, outperformed
other ML methods that were state-of-the-art at that time.

The random vector Θ, which is needed for a concise specification and a mathe-
matical analysis of the resulting stochastic tree learning algorithm, is an essentially
arbitrary encoding of the random choices made for bagging and random feature
selection.

The main theoretical result in Breiman’s paper is his Theorem 2.3:

PE∗ ≤ %̄ (1− s2)/s2.

This theorem certainly added much to the impact of the paper, because it gives
an intuitive guidance for the proper design of random forests, and also because it
connected random decision tree forests to other machine learning methods which
were being mathematically explored at the time when the paper appeared. I will
now try to give a purely intuitive explanation, and then conclude this section with
a clean-math explanation of this theorem.

• The quantity PE∗, called generalization error by Breiman, is the probability
that a random forest (in the limit of its size going to infinity) makes wrong
decisions. Obviously one wants this probability to be as small as possible.

• The quantity %̄ is a certain statistical correlation measure which measures
how often, on average across the tree population in a forest, the various
trees will arrive at similar classifications on test data points. This measure
is maximal if all trees always yield the same classification results, and it
is minimal if, roughly speaking, their classification results are statistically
independent.

• The quantity s, which satisfies 0 ≤ s ≤ 1, called by Breiman the strength
of the stochastic tree learning algorithm, measures a certain “discerning
power” of the average tree in a forest, that is, how large is the probability
gap between an average tree making the right decision and the probability
for the tree to make a wrong decision. s ranges in [0, 1] and if the strength
is equal to the maximal value of 1, then all trees in the forest always make
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correct decisions on all test data points. If it is zero, then the trees make
more incorrect decisions than correct ones on average across the forest and
test data points.

Note that the factor (1−s2)/s2 ranges between zero and infinity and is monotonously
increasing with decreasing s. It is zero with maximal strength s = 1, and it is
infinite if the strength is zero.

The theorem gives an upper bound on the generalization error observed in
(asymptotically infinitely large) random forests. The main message is that this
bound is a product of a factor %̄ which is smaller when the different trees in a
forest vary more in their response to test inputs, with a factor (1− s2)/s2 which is
smaller when the trees in the forest place a larger probability gap between correct
and the second most common decision across the forest. The suggestive message
of all of this is that in designing a stochastic decision tree learning algorithm one
should

• aim at maximizing the response variability across the forest, while

• attempting to ensure that trees mostly come out with correct decisions.

If one succeeds to generate trees that always give correct decisions, one has
maximal strength s = 1 and the generalization error is obviously zero. This will
usually be impossible. Instead, the stochastic tree learning algorithm will produce
trees that have a residual error probability, that is, s < 1. Then the first factor
implies that one should aim at a stochastic tree generation mechanism which (while
fixing the strength) show great variability in their response behavior.

The remainder of this section is only for those of you who are familiar with
probability theory, and this material will not be required in the final exam. I will
give a mathematically transparent account of Breiman’s Theorem 2.3. This boils
down to an exercise in clean mathematical formalism. We start by formulating the
ensemble learning scenario in rigorous probability terms. There are two probability
spaces involved, one for generating data points, and the other for generating the
random vectors Θ. I will denote these two spaces by (Ω,A, P ) and (Ω∗,A∗, P ∗)
respectively, with the second one used for generating Θ. The elements of Ω,Ω∗

will be denoted by ω, ω∗, respectively.
Let X be the RV which generates attribute vectors,

X : Ω→ A1 × . . .× Am,

and Y the RV which generates class labels,

Y : Ω→ C.

The random parameter vectors Θ can be vectors of any type, numerical or
categorical, depending on the way that one chooses to parametrize the learning
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algorithm. Let T denote the space from which Θ’s can be picked. For a forest of
K trees one needs K random vectors Θj, where j = 1, . . . , K. Let

Zj : Ω∗ → T

be the RV which generates the j-th parameter vector, that is, Zj(ω
∗) = Θj. The

RVs Zj (j = 1, . . . , K) are independent and identically distributed (iid).
In the remainder of this section, we fix some training dataset D. Let h(·,Θ)

denote the tree that is obtained by running the tree learning algorithm with pa-
rameter vector Θ. This tree is a function which outputs a class decision if the
input is an attribute vector, that is,

h(x,Θ) ∈ C.

When Θ is fixed, we can view h as a function of the RV X, thus

h(X,Θ) : Ω→ C

is a random variable.
Now the stage is prepared to re-state Breiman’s central result (Theorem 2.3)

in a transparent notation.
Breiman starts by introducing a function mr, called margin function for a

random forest,

mr : (A1 × . . .× Am)× C → R
(x, y) 7→ P ∗(h(x, Z) = y)−max

ỹ 6=y
{P ∗(h(x, Z) = ỹ)},

where Z is a random variable distributed like the Zj. Note that P ∗(h(x, Z) = y)
is the probability that a randomly picked tree from the ensemble will classify x
correctly; and that max

ỹ 6=y
{P ∗(h(x, Z) = ỹ) is the probability that a randomly picked

tree from the ensemble will wrongly classify x as ỹ, where ỹ is the most frequent
misclassification across the ensemble.

If you think about it you will see that mr(x, y) > 0 if and only if a very large
forest (in the limit of its size going to infinity) will classify the data point (x, y)
correctly, and mr(x, y) < 0 if the forest will come to a wrong collective decision.

On the basis of this margin function, Breiman defines the generalization error
PE∗ by

PE∗ = P (mr(X, Y ) < 0).

The expectation of mr over data examples is

s = E[mr(X, Y )].

s is a measure to what extent, averaged over data point examples, the correct
answer probability (over all possible decision trees) is larger than the highest
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probability of deciding for any other answer. Breiman calls s the strength of the
parametrized stochastic learning algorithm. The stronger the stochastic learning
algorithm, the greater the probability margin between correct and wrong classifi-
cations on average over data point examples.

Breiman furthermore introduces a raw margin function rmgΘ, which is a func-
tion of X and Y parametrized by Θ, through

rmgΘ(ω) =


1, if h(X(ω),Θ) = Y (ω),
−1, if h(X(ω),Θ) gives the maximally probable among the

wrong answers in an asymptotically infinitely large forest,
0, else.

(10)
Define %(Θ,Θ′) to be the correlation (= covariance normalized by division with

standard deviations) between rmgΘ and rmgΘ′ . For given Θ,Θ′, this is a number
in [−1, 1]. Seen as a function of Θ,Θ′, %(Θ,Θ′) maps each pair Θ,Θ′ into [−1, 1],
which gives a RV which we denote with the same symbol % for convenience,

%(Z,Z ′) : Ω∗ → [−1, 1],

where Z,Z ′ are two independent RVs with the same distribution as the Zj.
Let

%̄ = E[%(Z,Z ′)]

be the expected value of %(Z,Z ′). It measures to what extent, in average across
random choices for Θ,Θ′, the resulting two trees h(·,Θ) and h(·,Θ′) have both the
same correct or wrong decision averaged over data examples.

And here is, finally, Breiman’s Theorem 2.3:

PE∗ ≤ %̄ (1− s2)/s2, (11)

whose intuitive message I discussed earlier.
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3 Elementary supervised temporal learning

In this section I give an introduction to an elementary temporal data learning
method. It combines simplicity with a very broad practical usefulness: using
linear regression to learn a map which transforms temporal input signals to output
signals. In many scenarios, this simple technique is all one needs. It can be
programmed and executed in a few minutes (really!) and you should run this
technique as a first baseline whenever you start a serious learning task that involves
time series data.

This section deals with numerical timeseries where the data format for each
time point is a real-valued scalar or vector. This includes the majority of all
learning tasks that arise in the natural sciences, in engineering, robotics, speech
and in video processing.

Methods for dealing with symbolic timeseries (in particular texts, but also dis-
crete action sequences of intelligent agents / robots, DNA sequences and more)
can be obtained by encoding symbols into numerical vectors and then apply nu-
merical methods. This is the way taken by deep learning with neural networks,
in particular large language models. However, there exist also methods that op-
erate on symbol sequences directly: all kinds of discrete-state dynamical systems,
deterministic or stochastic, like finite automata, Markov chains, hidden Markov
models, dynamical Bayesian networks, and more. I will not consider such methods
in this section.

My secret educational agenda in this section is that this will let you rehearse
linear regression - which is such a basic, simple, yet widely useful method that
everybody should have a totally 100% absolutely unshakeable secure solid firm
hold on it.

3.1 Recap: linear regression

A remark on notation: throughout these lecture notes, vectors are column vectors
unless otherwise noted (some widely used special vectors are traditionally noted
as row vectors – this holds specifically for the linear regression weight vector w
which we will be meeting in a minute). I use the prime ′ to denote vector or matrix
transpose.

I start with a generic rehearsal of linear regression, independent of temporal
learning tasks. The linear regression task is specified as follows:

Given: a collection (xi, yi)i=1,...,N of N training data points, where xi ∈ Rn and
yi ∈ R.

Wanted: a linear map from Rn to R, represented by a regression weight vector
w (a row vector of size n), which solves the minimization problem

w = argmin
w∗

N∑
i=1

(w∗ xi − yi)2. (12)
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In machine learning terminology, this is a supervised learning task, because the
training data points include teacher outputs yi. Note that the abstract data format
(xi, yi)i=1,...,N is the same as for decision trees, but here the data are numerical
while for decision trees they are most often symbolic.

By a small modification one can make linear regression much more versatile.
Note that any weight vector w∗ in (12) will map the zero vector 0 ∈ Rn on zero.
This is often not what one wants to happen. If one enriches (12) by also training
a bias b ∈ R, via

(w, b) = argmin
w∗, b∗

N∑
i=1

(w∗ xi + b∗ − yi)2,

one obtains an affine linear function (linear plus constant offset). The common
way to set up linear regression such that affine linear solutions become possible
is to pad the original input vectors xi with a last component of constant size 1,
that is, in (12) one uses n + 1-dimensional vectors [x; 1] (using Matlab notation
for the vertical concatentation of vectors). Then a solution of (12) on the basis
of the padded input vectors will be a regression weight vector [w, b] ∈ Rn+1, with
the last component b giving the offset.

We now derive a solution formula for the minimization problem (12). Most
textbooks start from the observation that the objective function

∑N
i=1 (wxi − yi)2

is a quadratic function in the weights w, and then use calculus to find the min-
imum of this quadratic function by setting its partial derivatives to zero. I will
present another derivation which does not need calculus and reveals the underlying
geometry of the problem more clearly.

Let xi = (x1
i , . . . , x

n
i )′ be the ith input vector. The key to understand linear

regression is to realize that the N values xj1, . . . , x
j
N of the j-the component (j =

1, . . . , n), collected across all input vectors, make for an N -dimensional vector ϕj =
(xj1, . . . , x

j
N)′ ∈ RN . Similarly, the N target values y1, . . . , yN can be combined into

an N -dimensional vector y. Figure 10 Top shows a case with N = 10 input vectors
of dimension n = 4.

Using these N -dimensional vectors as a point of departure, geometric insight
gives us a nice clue how w should be computed. To admit a visualization, we
consider a case where we have only N = 3 input vectors that each have n = 2
components. This gives two 3-dimensional vectors ϕ1, ϕ2 (Figure 10 Bottom).
The target values y1, y2, y3 are combined in a 3-dimensional vector y.

Notice that in machine learning, one should best have more input vectors than
the input vectors have components, that is, N > n. In fact, a very coarse but not
very stupid rule of thumb – with many exceptions – says that one should aim at
N > 10n (if this is not warranted, use unsupervised dimension reduction methods
to reduce n). We will thus assume that we have fewer vectors ϕj than training
data points. The vectors ϕj thus span an n-dimensional subspace in RN (greenish
shaded area in Figure 10 Bottom).

Notice (easy exercise, do it!) that the minimization problem (12) is equivalent
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Figure 10: Two visualizations of linear regression. Top. This visualization shows
a case where there are N = 10 input vectors xi, each one having n = 4 vector
components x1

i , . . . , x
4
i (green circles). The fourth component is a constant-1 bias

input. The ten values xj1, . . . , x
j
10 of the j-th component (where j = 1, . . . , 4) form

a 10-dimensional (row) vector ϕj, indicated by a green connecting line. Similarly,
the ten target values yi give a 10-dimensional vector y (shown in red). The linear
combination yopt = w[ϕ1;ϕ2;ϕ3;ϕ4], which gives the best approximation to y in
the least mean square error sense, is shown in orange. Bottom. The diagram
shows a case where the input vector dimension is n = 2 and there are N = 3
input vectors x1,x2,x3 in the training set. The three values x1

1, x
1
2, x

1
3 of the first

component give a three dimensional vector ϕ1, and the three values of the second
component give ϕ2 (green). These two vectors span a 2-dimensional subspace F
in RN = R3, shown in green shading. The three target values y1, y2, y3 similarly
make for a vector y (red). The linear combination yopt = w1 ϕ1 +w2 ϕ2 which has
the smallest distance to y is given by the projection of y on this plane F (orange).
The vectors u1, u2 shown in blue is a pair of orthonormal basis vectors which span
the same subspace F .
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to

w = argmin
w∗

‖(
n∑
j=1

w∗j ϕj)− y‖2, (13)

where w∗ = (w∗1, . . . , w
∗
n). We take another look at Figure 10 Bottom. Equation

13 tells us that we have to find the linear combination
∑n

j=1 wj ϕj which comes
closest to y. Any linear combination

∑n
j=1 w

∗
j ϕj is a vector which lies in the

linear subspace F spanned by ϕ1, . . . , ϕn (shaded area in the figure). The linear
combination that is closest to y apparently is the projection of y on that subspace.
This is the essence of linear regression!

All that remains is to compute which linear combination of ϕ1, . . . , ϕn is equal
to the projection of y on F . Let us call this projection yopt. We may assume
that the vectors ϕ1, . . . , ϕn are linearly independent. If they would be linearly
dependent, we could drop as many from them as is needed to reach a linearly
independent set.

The rest is mechanical linear algebra.
Let X = (ϕ1, . . . , ϕn)′ be the n×N sized matrix whose rows are formed by the

ϕ′j (and whose colums are the xi). Then X ′X is a positive semi-definite matrix
of size N ×N with a singular value decomposition X ′X = UN ΣN U

′
N . Since the

rank of X is n < N , only the first n singular values in ΣN are nonzero. Let
U = (u1, . . . , un) be the N × n matrix made from the first n columns in UN , and
let Σ be the n×n diagonal matrix containing the n nonzero singular values of ΣN

on its diagonal. Then
X ′X = U ΣU ′. (14)

This is sometimes called the compact SVD. Notice that the columns uj of U form
an orthonormal basis of F (blue arrows in Figure 10 Bottom).

Using the coordinate system given by u1, . . . , un, we can rewrite each ϕj as

ϕj =
n∑
l=1

(u′l ϕj) ul = UU ′ϕj. (15)

Similarly, the projection yopt of y on F is

yopt =
n∑
l=1

(u′l y) ul = UU ′y, (16)

But also yopt = X ′w′. From (15) we get X ′ = UU ′X ′, which in combination
with (16) turns yopt = X ′w′ into

UU ′ y = UU ′X ′w′.

A weight vector w solves this equation if it solves

U ′ y = U ′X ′w′. (17)
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It remains to find a weight vector w which satisfies (17). I claim that w′ =
(X X ′)−1X y does the trick, that is, U ′ y = U ′X ′ (X X ′)−1X y holds.

To see this, first observe that XX ′ is nonsingular, thus (XX ′)−1 is defined.
Furthermore, observe that U ′y and U ′X ′ (XX ′)−1X y are n-dimensional vectors,
and that the N × n matrix UΣ has rank n. Therefore,

U ′ y = U ′X ′ (XX ′)−1X y ⇐⇒ UΣU ′ y = UΣU ′X ′ (XX ′)−1X y. (18)

Replacing UΣU ′ by X ′X (compare Equation 14) turns the right equation in
(18) into X ′X y = X ′X X ′ (XX ′)−1X y, which is obviously true. Therefore,
w′ = (XX ′)−1X y solves our optimization problem (13).

We summarize our findings:

Data. A set (xi, yi)i=1,...,N of n-dimensional input vectors xi and scalar
targets yi.

Wanted. An n-dimensional row weight vector w which solves the linear
regression objective from Equation 12.

Step 1. Sort the input vectors as columns into an n×N matrix X and the
targets into an N -dimensional vector y.

Step 2. Compute the (transpose of the) result by

w′ = (XX ′)−1X y. (19)

Some further remarks:

• What we have derived here generalizes easily to cases where the data are of
the form (xi,yi)i=1,...,N where xi ∈ Rn,yi ∈ Rk. That is, the output data
are vectors, not scalars. The objective is to find a k × n regression weight
matrix W which solves

W = argmin
W ∗

N∑
i=1

‖W ∗ xi − yi‖2. (20)

The solution is given by

W ′ = (XX ′)−1X Y,

where Y is the N × k matrix that contains the y′i in its rows.

• For an a×b sized matrix A, where a ≥ b and A has rank b, the matrix A+ :=
(A′A)−1 A′ is called the (left) pseudo-inverse of A. It satisfies A+A = Ib×b.
It is often also written as A†.
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• Computing the inversion (XX ′)−1 may suffer from numerical instability
when XX ′ is close to singular. Remark: this happens more often than
you would think - in fact, XX ′ matrices obtained from real-world, high-
dimensional data are often ill-conditioned (= close to singular). You should
always feel uneasy when your program code contains a matrix inverse! A
quick fix is to add a small multiple of the n × n identity matrix before
inverting, that is, replace (19) by

w′opt = (XX ′ + α2 In×n)−1X y. (21)

This is called ridge regression. We will see later in this course that ridge
regression not only helps to circumvent numerical issues, but also offers a
solution to the problem of overfitting.

• A note on terminology. Here we have described linear regression. The word
“regression” is used in much more general scenarios. The general setting
goes like this:

Given: Training data (xi,yi)i=1,...,N , where xi ∈ Rn,yi ∈ Rk.

Also given: a search space H containing candidate functions h : Rn → Rk.

Also given: a loss function L : Rk × Rk → R≥0.

Wanted: A solution to the optimization problem

hopt = argmin
h∈H

N∑
i=1

L(h(xi),yi)

In the case of linear regression, the search space H consists of all linear
functions from Rn to Rk, that is, it consists of all k × n matrices. The loss
function is the quadratic loss which you see in (20). When one speaks of
linear regression, the use of the quadratic loss is implied.

Search spaces H can be arbitrarily large and rich in modeling options –
for instance, H might be the space of all deep neural networks of a given
structure and size.

Classification tasks look similar to regression tasks at first sight: training
data there have the format (xi, ci)i=1,...,N . The difference is that that the
target values ci are not numerical but symbolic — they are class labels.

3.2 Temporal learning tasks

There are a number of standard learning tasks which are defined on the basis of
numerical timeseries data. Those tasks involve training data consisting of

an input signal (u(t))t∈T , where T is an ordered set of time points and for every
t ∈ T , u(t) ∈ Rk;
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a “teacher” output signal (y(t))t∈T , where y(t) ∈ Rm.

The two most common ’timeline’ sets are R (the real line for measuring con-
tinuous physical time) and Z (integer timesteps, called ’discrete time’, appropri-
ate when data come in in regular intervals, which is the common situation for
digitally sampled data), and intervals within these timeline sets. For instance,
T = {0, 1, . . . , T} is a discrete-time, finite timeline set.

The learning task consists in training a system which operates in time and, if
it is fed with the input signal u(t), produces an output signal ŷ(t) which approx-
imates the teacher signal y(t) (in the sense of minimizing a loss L(ŷ(t)− y(t)) in
time average over the training data). A few examples for illustration:

• Input signal: an ECG (electro cardiogram) signal; desired output: a signal
which is constant zero as long as the ECG is normal, and jumps to 1 if there
are irregularities in the ECG.

• Input signal: room temperature measurements from a thermometer. Out-
put: value 0 as long as room temperature input signal is above certain
threshold, value 1 if it is below the threshold (this is the switching behavior
of a thermostat, albeit a badly designed one - what is missing to make this
thermostat work nicely?).

• Input signal: weather data (condensed to very large vectors u(t)) obtained
from weather monitoring stations, airplane and ship sensors, satellite obser-
vations of the atmosphere. Desired output signal: a vector y(t+ 24h) char-
acterizing the atmosphere 24 hours in the future (that is, perform weather
forecasting).

• Input signal: a noisy radio signal with lots of statics and echos. Desired
output signal: the input signal in a version which has been de-noised and
where echos have been cancelled.

• Input signal: a speech signal in English. Desired output: a speech signal in
Dutch.

These are quite different sorts of tasks. The ECG monitoring task would be
called a temporal classification or fault monitoring task; the 0-1 switching of the
badly designed thermostat is too simplistic to have a respectable name; radio
engineers would speak of de-noising and equalizing, the weather forecasting is a
timeseries prediction task, and speech translation is too royally complex to have a
name besides “online speech translation”. Interesting and important input-output
signal transformation tasks there are as many as there are wonders under the sun.

In many cases, one may assume that the current output data point y(t0) only
depends on inputs up to that time point, that is, on the input history (u(t))t≤t0 .
Specifically, y(t) does not depend on future inputs. Input-output systems where
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the output does not depend on future inputs are called causal systems in the signal
processing world.

A causal system can be said to have memory if the current output y(t) is not
fully determined by the current input u(t), but is influenced by earlier inputs as
well. I must leave the meaning of “influenced by” vague at this point; we will make
it precise in a later section when we investigate stochastic processes in more detail.
All examples except the (poorly designed) thermostat example have memory.

Often, the output y(t) is influenced by long-ago input only to a negligeable
extent, and it can be explained very well from only the input history extending
back to a certain limited duration. All examples in the list above except the
English translation task have such limited relevant memory spans. In causal,
discrete-time systems with bounded memory span, the current output y(t) thus
depends on an input window u(t− d+ 1),u(t− d+ 2), . . . ,u(t− 1),u(t) of d steps
duration. Figure 11 (top) gives an impression.

In this situation, learning an input-output system is a regression learning task.
One has to find a regression function f of the kind

f : (Rk)d → Rm (22)

which minimizes a chosen loss function on average over the training data time
points.

The most convenient option is to go for the quadratic loss, which turns the
input-output timeseries learning task into a case of linear regression.

Note that while in Section 3.1 I assumed that the input data points for linear
regression were vectors, in (22) they are k × d-dimensional matrices. This is not
a problem; all one has to do is to flatten the collection of d k-dimensional input
vectors which lie in a window into a single d ·k dimensional vector, and then apply
(20) as before.

Linear regression is often surprisingly accurate, especially when one uses large
windows and a careful regularization (to be discussed later in this course) through
ridge regression. When confronted with a new supervised temporal learning task,
the first thing a seasoned pro does, is to run it through the machinery of window-
based linear regression. This takes a few minutes of writing code and some seconds
of computing time and gives, at the very least, a baseline for comparing more
sophisticated methods against — and often it gives even already a very good
soluation already without more effort.

Fun fact: All the signal processing in your smartphones, which transforms the
noisy, echo-replete antenna signal into a series of clean 0’s and 1’s, is done with lin-
ear regression algorithms — highly speed-optimized ones on specialized hardware
for that matter, because the input window of the raw antenna signal easily has a
dimension of tens of thousands of timesteps (you get such large vectors from digi-
tally sampling the raw analog signal at Gigahertz frequency for a few milliseconds)
and the updates y(t)→ y(t+1) must be done at Gigahertz frequency too at early
processing stages close to the antenna. These algorithms approximately recompute
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Figure 11: The principle of temporal system learning by window-based regression.
The case of scalar input and output signals is shown. Top: an input signal u(t)
(blue crosses) is transformed to an output signal y(t) (orange). y(t) here depends
only on the current and the four preceding inputs. Bottom: The special case
of timeseries prediction (single step prediction, y(t) = u(t + 1)). The memory
window size in both diagrams is d = 5.

the weight vector wopt every few milliseconds (!) because when the smartphone is
moving (as you walk or drive), the characteristics of the signal noise and echoes
changes, and the de-noising and equilibration filtering must be recalibrated quickly
all the time. Designing such very fast (approximate) algorithms to solve (21) is
the core challenge for an entire branch of signal processing, called adaptive online
signal processing, and fills textbooks like that of Farhang-Boroujeny 1998.

But, linear regression only can give linear regression functions. This is not good
enough if the dynamical input-output system behavior has significant nonlinear
components. Then one must find a nonlinear regression function f .

If that occurs, one can take resort to a simple method which yields nonlinear
regression functions while not renouncing the conveniences of the basic linear re-
gression learning formula (19). I discuss this for the case of scalar inputs u(t) ∈ R.
The trick is to add fixed nonlinear transforms to the collection of input arguments

57



u(t−d+1), u(t−d+2), . . . , u(t). A common choice is to add polynomials. To make
notation easier, let us rename u(t− d+ 1), u(t− d+ 2), . . . , u(t) to u1, u2, . . . , ud.
If one adds all polynomials of degree 2, one obtains a collection of d+ d(d+ 1)/2
input components for the regression, namely

{u1, u2, . . . , ud} ∪ {uiuj | 1 ≤ i ≤ j ≤ d}.

If one wants even more nonlinearity, one can add further, higher-order polynomi-
als. The idea to approximate nonlinear regression functions by linear combinations
of polynomial terms is a classical technique in signal processing, where it is treated
under the name of Volterra expansion or Volterra series. Very general classes of
nonlinear regression functions can be approximated to arbitrary degrees of preci-
sion with Volterra expansions.

Adding increasingly higher-order terms to a Volterra expansion obviously leads
to a combinatorial explosion. Thus one will have to use some pruning scheme to
keep only those polynomial terms which lead to an increase of accuracy. There
is a substantial literature in signal processing dealing with pruning strategies for
Volterra series (google “Volterra pruning”). I personally would never try to use
polynomials of degree higher than 2. If that doesn’t give satisfactory results, I
would switch to other modeling techniques, using neural networks for instance.

3.3 Time series prediction tasks

Looking into the future can make you rich, or powerful, or satisfy your curiosity
– these motivations are deeply rooted in human nature and thus it is no wonder
that time series prediction is an important task for machine learning.

Time series prediction tasks come in many variants and I will not attempt
to draw the large picture but restrict this treatment to timeseries with integer
timesteps and vector-valued observations, as in the previous subsections.

Re-using terminology and notation, the input signal in the training data is, as
before, (u(t))t∈T . If one wants to predict this sequence of observations h timesteps
ahead (h is called prediction horizon), the desired output y(t) is just the input,
shifted by h timesteps:

(y(t))t∈T = (u(t+ h))t∈T .

A little technical glitch is that due to the timeshift h, the last h data points
in the input signal (u(t))t∈T cannot be used as training data because their h-step
future would lie beyond the maximal time T .

Framed as an u(t)–to–y(t) input-output signal transformation task, all meth-
ods that can be applied for the latter can be used for timeseries prediction too.
Specifically, simple window-based linear regression (as in Figure 11 bottom) is
again a highly recommendable first choice for getting a baseline predictor when-
ever you face a new timeseries prediction problem with numerical timeseries.
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3.4 Signal-based vs. state-based timeseries modeling

In windows-based methods one tries to find some function that directly transforms
the input signal (and parts of its recent history) to the desired output signal. If
one starts thinking about it, it seems that in some cases this should be all but
impossible.

Many temporal learning tasks concern the input-output modeling of a physical
dynamical system. The input signal is not (somehow magically) directly trans-
formed into the output signal, but there sits a complex intermediary system be-
tween the input and output signals which “transduces” the input signal and while
it does so, heavily transforms it and may add information that comes from within
the intermediary system. Just two examples:

• A radio reporter commenting a soccer game. Output of this reporter system:
the reporter’s speech signal. Input: what the reporter sees on the soccer field.
Dynamical system in the middel: the reporter, especially his/her brain. –
Two different reporters would comment the game differently, even if they see
it from the same reporters’ stand. Much of the specific information in the
reporter’s radio speech is not explainable by the raw soccer visual input, but
arises from the reporter’s specific knowledge and emotional condition. – Fun
fact: attempting to developing machine learning methods for the automated
commenting of soccer matches had been, for a decade or so around 1985, one
of the leading research challenges in Germany’s then still young AI research
landscape. This received very heavy public funding, but the outcome was
disappointing: the task was too difficult for the modeling methods available
at that time. It still is... as of the time of writing this (November 2023)
... though considering the explosive progress in deep learning, maybe in a
month (December 2023) it’s solved. Or maybe not.

• Input signal: the radiowaves emitted from a transmitting antenna. Output
signal: the radiowaves picked up by a receiving antenna. Physical system
“in the middle”: the physical world between the two antennas, inducing
all kinds of static noise, echos, distortions, such that the received radio
signal is a highly corrupted version of the cleanly transmitted one. Signal
processing engineers call this part of the world-in-the-middle the channel.
Does it not seem hopeless to model the input-output transformation of such
super-complex physical channels? – There can hardly be a more classical
problem than this one; analysing signal transmission channels gave rise to
Shannon’s information theory (Shannon 1948).

Abstracting from these examples, consider how natural scientists and mathe-
maticians describe dynamical systems with input and output. Here let us consider
only discrete-time models with a time index set is T = N or T = Z. Three time-
series need to be taken care of simultaneously:

• an input signal u(t), where u(t) ∈ Rk (as before),
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• an output signal y(t), where y(t) ∈ Rm (as before),

• a dynamical system state sequence x(t), where x(t) ∈ Rn (this is new).

In soccer reporting example, x(t) would refer to some kind of brain state —
for instance, the vector of activations of all the reporter’s brain’s neurons. In the
signal transmission example, x(t) would be the state vector of some model of the
physical world stretched out between the sending and receiving antenna.

A note in passing: variable naming conventions are a little confusing. In the
machine learning literature, x’s and y’s in (x,y) pairs usually mean the arguments
and values (or inputs and outputs) of classification/regression functions. Both x
and y are observed data. In the dynamical systems and signal processing literature
(mathematics, physics and engineering), the variable name x typically is reserved
for the state of a physical system that generates or “channels” (= “transduces”,
“filters”) signals. The internal physical state of these systems is normally not
fully observable and not part of training data. Only the input and output signals
u(t),y(t) are observable data which are available for training models.

In a discrete-time setting, the temporal evolution of u(t),x(t),y(t) is governed
by two functions, the state update map

x(t+ 1) = f(x(t),u(t+ 1)), (23)

which describes how the internal states x(t) develop over time under the influence
of input, and the observation function

y(t) = g(x(t)), (24)

which describes which outputs y(t) can be observed when the physical system is
in state x(t).

The input signal u(t) is not specified by any equation, it is “just given”.
Figure 12 visualizes the structural difference between the signal-based and the

state-based input-output transformation models.
There are many other types of state update maps and observation functions,

for instance ODEs and PDEs for continuous-time systems, automata models for
discrete-state systems, or a host of probabilistic formalisms for random dynamical
systems. For our present discussion, considering only discrete-time state update
maps is good enough.

A core difference between signal-based and state-based timeseries transfor-
mations is the achievable memory timespans. In windowed signal transformations
through regression functions, the memory depth is bounded by the window length.
In contrast, the dynamical system state x(t) of the intermediary system is poten-
tially co-determined by input that was fed to the dynamical system in an arbitrary
deep past – the memory span can be unbounded! This may seem counterintuitive
if one looks at Figure 12 because at each time point t, only the input data point
u(t) from that same timepoint is fed to the dynamical system. But u(t) leaves
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f f

Figure 12: Contrasting signal-based with state-based timeseries transformations.
Top: Window-based determination of output signal through a regression function
h (here the window size is 3). Bottom: Output signal generation by driving in
intermediary dynamical system with an input signal. The state x(t) is updated
by f .

some trace on the state x(t), and this effect is forwarded to the next timestep
through f , thus x(t+1) is affected by u(t), too; and so forth. Thus, if one expects
long-range or even unbounded memory effects, using state-based transformation
models is often the best way to go.

Machine learning offers a variety of state-based models for timeseries transfor-
mations, together with learning algorithms. The most powerful ones are hidden
Markov models (which we’ll get to know in this course) and other dynamical
graphical models (which we will not touch), and recurrent neural networks (which
we’ll briefly meet I hope).

In some applications it is important that the input-output transformation can
be learnt in an online adaptive fashion. The input-output transformation is not
trained just once, on the basis on a given, fixed training dataset. Instead, train-
ing never ends; while the system is being used, it continues to adapt to changing
input-output relationships in the data that it processes. My favourite example is
the online adaptive filtering (denoising, echo cancellation) of the radio signal re-
ceived by a mobile phone. As I already mentioned, the denoising, echo-cancelling
filter has to be re-learnt every few milliseconds. This is done with a window-based
linear regression (window size several tens of thousands) and ingeniously simpli-
fied/accelerated algorithms. Because this is powerful stuff, we machine learners
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should not leave these admirable methods only to the electrical engineers (who
invented them) but learn to use them ourselves. I will devote a session later in
this course to these online adaptive signal processing methods.

3.5 Takens’ theorem

From what I just explained it may seem that signal-based and state-based input-
output transformations are two quite different things. However, surprising con-
nections exist. In certain ways and for certain systems, the two even coincide.
This was discovered by the Dutch mathematician Floris Takens (1940-2010). His
celebrated theorem (Takens 1981), now universally called Takens Theorem, is deep
and beautiful, and enabled novel data analysis methods which triggered a flood of
work in the study of complex system dynamics (in all fields biological, physical,
metereological, economical, social, engineering). Also, Takens was a professor in
Groningen, and founded a tradition of dynamical systems theory research in our
mathematics department. Plus, finally, Takens-like theorems have recently been
used to analyse why/how certain recurrent neural networks of the “reservoir com-
puting” brand function so surprisingly well in machine learning (A. Hart, Hook,
and Dawes 2020). These are all good enough causes for me to end this section
with an intuitive explanation of Takens theorem, although this is not normally a
part of a machine learning course.

Since the following contains allusions to mathematical concepts which I cannot
assume are known by all course participants, the material in this section will not
be tested in exams.

Floris Takens’ original theorem was formulated in a context of continuous-time
dynamics governed by differential equations. Many variants and extensions of
Takens theorem are known today. To stay in tune with earlier parts of this section
I present a discrete-time version. Consider the input-free dynamical system

x(t+ 1) = f(x(t)), (25)

y(t) = g(x(t)),

where x(t) ∈ Rn and y(t) ∈ R (a one-dimensional output). The background
intuition behind this set-up is that x models some physical dynamical system —
possibly quite high-dimensional, for instance x being a brain state vector — while
y is a physical quantity that is “measured”, or “observed”, from x via an output
function g.

If the state update dynamics (25) is run for a long time, in many systems
the state vector sequence x(t) will ultimately become confined to an attracting
subset A ⊂ Rn of the embedding space Rn. In some cases, this subset will be a
low-dimensional manifold of dimension m; in other cases (“chaotic attractors”) it
will have a fractal geometry which is characterized by a fractal dimension, a real
number which I will likewise call m and which typically is also small compared to
the embedding space dimension n.
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Now let us look at the observation sequence y(t) recorded when the system
has “relaxed” to the attracting subset. It is a scalar timeseries. For any k > 1,
this scalar timeseries can be turned into a k-dimensional timeseries y(t) by delay
embedding, as follows. Choose a delay of δ timesteps. Then set y(t) = (y(t), y(t−
δ), y(t−2δ), . . . , y(t− (k−1)δ)′. That is, just stack a few consecutive observations
(spaced in time by δ) on top of each other. This gives a sequence of k-dimensional
vectors y(t). You will recognize them as what we called “observation windows”
earlier in this section.

Takens-type theorems now state that, under conditions specific to the partic-
ular version of the theorem, the geometry of the dynamics of the delay-embedded
vectors is the same as the geometry of the dynamics of the original system, up to
a smooth bijective transformation between the two geometries. I think a picture
is really helpful here! Figure 13 gives a visual demo of Takens theorem at work.

Figure 13: Takens theorem visualized. Left plot shows the Lorenz attractor, a
chaotic attractor with a state sequence x(t) defined in an n = 3 dimensional
state space. The center plot shows a 1-dimensional observation y(t) thereof. The
right plot (orange) shows the state sequence y(t) obtained from y(t) by three-
dimensional delay embedding (I forget which delay δ I used to generate this plot).

When I just said, “the geometry ... is the same ... up to smooth bijective
transformation”, I mean the following. Imagine that in Figure 13 (left) the blue
trajectory lines were spun into a transparent 3-dimensional substrate which has
rubber-like qualities. Then, by pushing and pulling and shearing this substrate
(without rupturing it), the blue lines would take on new positions in 3D space —
until they would exactly coincide with the orange ones in the right panel.

When two state trajectory plots can be transformed into each other by such
a “rubber-sheet transformation” (a term used in dynamical systems textbooks),
some geometric characteristics are identically preserved between the two plots
(as in the the left and the right panel in the figure). Specifically, the so-called
Lyapunov exponents, which are indicators for the stability (noise robustness) of
the dynamics, and the (possibly fractal) dimension of the attracting set A are
identical in the original dynamics and its delay-embedded reconstruction.
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The deep, nontrivial message behind Takens-like theorems is that one can trade
time for space in certain dynamical systems. If by “space” one means dimensions
of state vectors, and by “time” lengths of observation windows of a scalar ob-
servable, Takens-like theorems state that if the spatial dimension of the original
attractor set (manifold or fractal) is m, then using a delay embedding of temporal
window length larger than 2m will always recuperate the original geometry. Just
for completeness: the fractal dimension of the Lorenz attractor is about m = 2.06,
thus any delay embedding dimension exceeding 2m+ 1 = 5.12 would certainly be
sufficient for reconstruction from a scalar observation; it turns out in Figure 13
that an embedding dimension of 3 is already working.

In timeseries prediction tasks in machine learning, Takens theorem gives a
justification why in deterministic dynamical systems without input it should be
possible to predict the future of a scalar timeseries y(t) from its past. If the
timeseries in question has been observed from a system like (25), Takens theorem
establishes that the information contained in the last 2m+ 1 timesteps before the
prediction point t comprises the full information about the state of the system
that generated y(t) and thus knowledge of the last 2m+ 1 timesteps is enough to
predict y(t+ 1) with absolute accuracy.

Figure 14: Getting nice graphics from delay embeddings. Left: a timeseries
recorded from the “Mackey-Glass” chaotic attractor. Right: plotting the tra-
jectory of a delay-embedded version of the left signal.

Even if you forget about the Takens theory background, it is good to be fa-
miliar with delay-embeddings of scalar timeseries, because they help creating in-
structive graphics. If you transform a one-dimensional scalar timeseries y(t) into
a 2-dimensional one by a 2-element delay embedding, plotting this 2-dimensional
trajectory y(t) = y(t− δ), y(t))′ in its delay coordinates (y(t− δ), y(t)) will often
give revealing insight into the structure of the timeseries – our visual system is
optimized for seeing patterns in 2-D images, not in 1-dimensional timeseries plots.
See Figure 14 for a demo.
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4 Basic methods for dimension reduction

One way to take up the fight with the “curse of dimensionality”, which I high-
lighted in Section 1.2.2, is to reduce the dimensionality of the raw input data
before they are fed to subsequent learning algorithms. The dimension reduction
ratio can be enormous.

In this Section I will introduce two standard, elementary methods for dimension
reduction: K-means clustering and principal component analysis (PCA); and a
method which is not often used in practice except sometimes for data visualization,
but which is very possibly used by our brains: self-organizing feature maps. All
three methods reduce the dimension of vector data, which come in the form of
points x ∈ Rn, that is, this section is only about dimension reduction methods
for numerical data. Dimension reduction is the archetypical unsupervised learning
task.

4.1 Set-up, terminology, general remarks

We are given a family (xi)i=1,...,N of “raw” data points, where xi ∈ Rn. The goal of
dimension reduction methods is to compute from each (high-dimensional) “raw”
data vecor xi a (low-dimensional) vector f(xi) ∈ Rm, such that

• m < n, that is, we reduce the number of dimensions — maybe even dramat-
ically;

• the low-dimensional vectors f(xi) should preserve from xi the specific in-
formation that is needed to solve the learning task that comes after this
dimension-reducing data “preprocessing”.

Terminology: The m component functions which constitute f(x) are called
features. A feature is just a (any) function f : Rn → R which computes a scalar
characteristic of input vectors x ∈ Rn. If one bundles together m such features
f1, . . . , fm one obtains a feature map (f1, . . . , fm)′ =: f : Rn → Rm which maps
input vectors to feature vectors.

It is very typical, almost universal, for ML systems to include an initial data
processing stage where raw, high-dimensional input patterns are first projected
from their original pattern space Rn to a lower-dimensional feature space. In
TICS, for example, a neural network was trained in a clever way to reduce the
1,440,000-dimensional raw input patterns to a 4,096-dimensional feature vector.

The ultimate quality of the learning system clearly depends on a good choice
of features. Unfortunately there does not exist a unique or universal method to
identify “good” features. Depending on the learning task and the nature of the
data, different kinds of features work best. Accordingly, ML research has come up
with a rich repertoire of feature extraction methods.

On an intuitive level, a “good” set of features {f1, . . . , fm} should satisfy some
natural conditions:
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• The number m of features should be small — after all, one of the reasons
for using features is dimension reduction.

• Each feature fi should be relevant for the task at hand. For example, when
the task is to distinguish helicopter images from winged aircraft photos (a
2-class classification task), the brightness of the background sky would be
an irrelevant feature; but the binary feature “has wings” would be extremely
relevant.

• There should be little redundancy — each used feature should contribute
some information that the others don’t.

• A general intuition about features is that they should be rather cheap and
easy to compute at the front end where the ML system meets the raw data.
The “has wings” feature for helicopter vs. winged aircraft classification more
or less amounts to actually solving the classification task and presumably
is neither cheap nor easy to compute. Such highly informative, complex
features are sometimes called high-level features ; they are usually computed
on the basis of more elementary, low-level features.

• Often features are computed stage-wise, low-level features first (directly from
data), then stage by stage more complex, more directly task-solving, more
“high-level cognition” features are built by combining the lower-level ones.
Feature hierarchies are often found in ML systems. Example: in face recog-
nition from photos, low-level features might extract coordinates of isolated
black dots from the photo (candidates for the pupils of the person’s eyes); in-
termediate features might give distance ratios between eyes, nose-tip, center-
of-mouth; high-level features might indicate gender or age. Such feature hier-
archies are implicit in feedforward neural networks. Each neuron in the first
hidden layer can be seen as computing a feature from the input patterns;
each neuron in the next hidden layer computes next-higher-level features
that are computed from the first-level features, etc.

To sharpen our intuitions about features, let us hand-design some features
for use in a simple image classification task. Consider a training dataset which
consists of grayscale, low-resolution pictures of handwritten digits (Figure 15).
Here and further in this section I will illustrate dimension reduction techniques
with this simple “Digits” benchmark dataset which was first described in Duin
and Tax 2000. It is also available at the UCI machine learning repository at
https://archive.ics.uci.edu/dataset/72/multiple+features. This dataset
contains 2000 grayscale images of handwritten digits, 200 from each class. The
images are 15 × 16 sized, making for n = 240 dimensional image vectors x. We
assume they have been normalized to a real-valued pixel value range in [0, 1] with
0 = white and 1 = black. The Digits benchmark task is to train a classifier which
classifies such images into the ten digit classes.
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Figure 15: Some examples from the Digits dataset.

Here are some candidates for features that might be useful for this task.

Mean brightness. f1(x) = 1′n x / n (1n is the vector of n ones). This is just the
mean brightness of all pixels. Might be useful e.g. for distinguishing “1”
images from “8” images because we might suspect that for drawing an “8”
one needs more black ink than for drawing a “1”. Cheap to compute but
not very informative by itself for the task of digit classification.

Radiality. An image x is assigned a value f2(x) = 1 if and only if two conditions
are met: (i) the center horizontal pixel line crossing the image from left to
right has a sequence of pixels that changes from black to white to black; (ii)
same for the center vertical pixel line. If this double condition is not met, the
image is assigned a feature value of f2(x) = 0. f2 thus has only two possible
values; it is called a binary feature. We might suspect that only the “0”
images have this property. This would be a slightly less cheap-to-compute
feature compared to f1, but likely more informative about classes.

Prototype matching. For each of the 10 classes cj (j = 1, . . . , 10) define a
prototype vector πj as the mean image vector of all examples of that class
contained in the training dataset: πj = 1/Nj

∑
x is training image of class j x.

Then define 10 features f j3 by match with these prototype vectors: f j3 (x) =
π′j x. We might hope that f j3 has a high value for patterns of class j and low
values for other patterns.
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Hand-designing features can be quite effective. Human insight on the side
of the data engineer is a success factor for ML systems that can hardly be over-
rated. In fact, the classical ML approach to speech recognition was for two decades
relying on low-level acoustic features that had been hand-designed by insightful
phonologists. The MP3 sound coding format is based on features that reflect char-
acteristics of the human auditory system. Many of the first functional computer
vision and optical character recognition systems relied heavily on visual feature
hierarchies which grew from the joint efforts of signal processing engineers and
cognitive neuroscience experts.

However, since hand-designing good features means good insight on the side of
the engineer, and good engineers are rare and have little time, the practice of ML
today relies much more on features that are obtained from learning algorithms.
Numerous methods exist. In the following subsections we will inspect three such
methods.

4.2 K-means clustering

K-means clustering is an algorithm which allows one to split a collection of training
data points (xi)i=1,...,N ∈ Rn into K clusters C1, . . . , CK , such that points from the
same cluster lie close to each other while being further away from points in other
clusters. Each cluster Cj is represented by its codebook vector cj, which is the
vector pointing to the mean of all vectors in the cluster — that is, to the cluster’s
center of gravity.

The codebook vectors can be used in various ways to compress n-dimensional
test data points xtest into lower-dimensional formats. The classical method, which
also explains the naming of the cj as “codebook” vectors, is to represent xtest

simply by the index j of the codebook vector cj which lies closest to xtest, that is,
which has the minimal distance αj = ‖xtest−cj‖. The high-dimensional point xtest

becomes represented by a single number, thus here we would have m = 1. This
method is clearly very economical. But it is also clear that relevant information
contained in vectors xtest may be lost — maybe too much information for many
ML applications. In digital communication technologies, however, this simple
codebook coding is widely used.

Another, less lossy, way to make use of the codebook vectors for dimension
reduction is to compute the distances αj between xtest and the codebook vectors,
and reduce xtest to theK-dimensional distance vector (α1, . . . , αK)′. WhenK � n,
the dimension reduction is substantial. The vector (α1, . . . , αK)′ can be considered
a feature vector.

We can be brief when explaining the K-means clustering algorithm, because it
is almost self-explaining. The rationale for defining clusters is that points within a
cluster should have small metric distance to each other, points in different clusters
should have large distance from each other. The procedure runs like this:
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Figure 16: Clusters obtained from K-means clustering (schematic): For a training
set of data points (light blue dots), a spatial grouping into clusters Cj is determined
by the K-means algorithm. Each cluster becomes represented by a codebook vector
(dark blue crosses). The figure shows three clusters. The light blue straight lines
mark the cluster boundaries. A test data point xtest (red cross) may then become
coded in terms of the distances αj of that point to the codebook vectors. Since
this xtest falls into the second cluster C2, it could also be compressed into the
codebook index “2” of this cluster.

Given: a training data set (xi)i=1,...,N ∈ Rn, and a number K of clusters that one
maximally wishes to obtain.
Initialization: randomly assign the training points to K sets Sj (j = 1, . . . , K).
Repeat: For each set Sj, compute the mean µj = |Sj|−1

∑
x∈Sj x. This mean

vector µj is the “center of gravity” of the vector cluster Sj. Create new sets S ′j by
putting each data point xi into that set S ′j where ‖xi − µj‖ is minimal. If some
S ′j remains empty, dismiss it and reduce K to K ′ by subtractring the number of
dismissed empty sets (this happens rarely). Put Sj = S ′j (for the nonempty sets)
and K = K ′.
Termination: Stop when in one iteration the sets remain unchanged.

It can be shown that at each iteration, the error quantity

J =
K∑
j=1

∑
x∈Sj

‖x− µj‖2 (26)

will not increase. The algorithm typically converges quickly and works well in
practice. It finds a local minimum or saddle point of J . The final clusters Sj
may depend on the random initialization. The clusters are bounded by planar
boundary facets; each cluster forms a Voronoi cell. K-means cannot find clusters
defined by curved boundaries. Figure 17 shows an example of a clustering run
using K-means.
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Figure 17: Running K-means with K = 3 on two-dimensional training points.
Thick dots mark cluster means µj, lines mark cluster boundaries. The algorithm
terminates after three iterations, whose boundaries are shown in light gray, dark
gray, red. (Picture taken from Chapter 10 of the textbook Duda, P. E. Hart, and
Stork 2001).

K-means clustering and other clustering methods have many uses besides di-
mension reduction. Clustering can also be seen as a stand-alone technique of
unsupervised learning. The detected clusters and their corresponding codebook
vectors are of interest in their own right. They reveal a basic structuring of a set
of patterns {xi} into subsets of mutually similar patterns. These clusters may
be further analyzed individually, given meaningful names and helping a human
data analyst to make useful sense of the original unstructured data cloud. For
instance, when the patterns {xi} are customer profiles, finding a good grouping
into subgroups may help to design targetted marketing strategies.

4.3 Principal component analysis

Like clustering, principal component analysis (PCA) is a basic data analysis tech-
nique that has many uses besides dimension reduction. But here we will focus on
that use.

Generally speaking, a good dimension reduction method, that is, a good feature
map f : Rn → Rm, should preserve much information contained in the high-
dimensional patterns x ∈ Rn and encode it robustly in the feature vectors y = f(x).
But, what does it mean to “preserve information”? A clever answer is this: a
feature representation f(x) preserves information about x to the extent that x
can be reconstructed from f(x). That is, we wish to have a decoding function
d : Rm → Rn which leads back from the feature vector encoding f(x) to x, that is
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we wish to achieve
x ≈ d ◦ f(x)

And here comes a fact of empowerment: when f and d are confined to lin-
ear functions and when the similarity x ≈ d ◦ f(x) is measured by mean square
error, the optimal solution for f and d can be easily and cheaply computed by
a method that is known since the early days of statistics, principal component
analysis (PCA). It was first found, in 1901, by Karl Pearson, one of the fathers
of modern mathematical statistics. The same idea has been independently re-
discovered under many other names in other fields and for a variety of purposes
(check out https://en.wikipedia.org/wiki/Principal_component_analysis

for the history). Because of its simplicity, analytical transparency, modest compu-
tational cost, and numerical robustness PCA is widely used — it is the first-choice
default method for dimension reduction that is tried almost by reflex, before more
elaborate methods are maybe considered.

PCA is best explained alongside with a visualization (Figure 18). Assume the
patterns are 3-dimensional vectors, and assume we are given a sample of N = 200
raw patterns x1, . . . ,x200. We will go through the steps of computing a PCA for
this demo dataset.

The first step in PCA is to center the training patterns xi, that is, subtract their
mean µ = 1/N

∑
i xi from each pattern, obtaining centered patterns x̄i = xi− µ.

The centered patterns form a point cloud in Rn whose center of gravity is the
origin (see Figure 18A).

This point cloud will usually not be perfectly spherically shaped, but instead
extend in some directions more than in others. “Directions” in Rn are character-
ized by unit-norm “direction” vectors u ∈ Rn. The distance of a point x̄i from the
origin in the direction of u is given by the projection of x̄i on u, that is, the inner
product u′ x̄i (see Figure 19).

The “extension” of a centered point cloud {x̄i} in a direction u is defined to be
the mean squared distance to the origin of the points x̄i in the direction of u. The
direction of the largest extension of the point cloud is hence the direction vector
given by

u1 = argmax
u, ‖u‖=1

1/N
∑
i

(u′ x̄i)
2. (27)

Notice that since the cloud x̄i is centered, the mean of all u′ x̄i is zero, and
hence the number 1/N

∑
i(u
′ x̄i)

2 is the variance of the numbers u′ x̄i.
Inspecting Figure 18A, one sees how u1 points in the “longest” direction of the

pattern cloud. The vector u1 is called the first principal component (PC) of the
centered point cloud.

Next step: project patterns on the (n − 1)-dimensional linear subspace of Rn

that is orthogonal to u1 (Figure 18B). That is, map pattern points x̄ to x̄∗ =
x̄ − (u′1 x̄) · u1. Within this “flattened” pattern cloud, again find the direction
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Figure 18: Visualization of PCA. A. Centered data points and the first principal
component vector u1 (blue). The origin of R3 is marked by a red cross. B. Pro-
jecting all points to the orthogonal subspace of u1 and computing the second PC
u2 (green). C. Situation after all three PCs have been determined. D. Summary
visualization: the original data cloud with the three PCs and an ellipsoid aligned
with the PCs whose main axes are scaled to the standard deviations of the data
points in the respective axis direction. E. A new dimension-reduced coordinate
system obtained by the projection of data on the subspace Um spanned by the m
first PCs (here: the first two).

vector of greatest variance

u2 = argmax
u,‖u‖=1

1/N
∑
i

(u′ x̄∗i )
2

and call it the second PC of the centered pattern sample. From this procedure it
is clear that u1 and u2 are orthogonal, because u2 lies in the orthogonal subspace
of u1.

Now repeat this procedure: In iteration k, the k-th PC uk is constructed by
projecting pattern points to the linear subspace that is orthogonal to the already
computed PCs u1, . . . , uk−1, and uk is obtained as the unit-length vector pointing
in the “longest” direction of the current (n − k + 1)-dimensional pattern point
distribution. This can be repeated until n PCs u1, . . . , un have been determined.
They form an orthonormal coordinate system of Rn. Figure 18C shows this situ-
ation, and Figure 18D visualizes the PCs plotted into the original data cloud.
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Figure 19: Projecting a point x̄i on a direction vector u: the inner product u′ x̄i
(length of the green vector) is the distance of x̄i from the origin along the direction
given by u.

Now define features fk (where 1 ≤ k ≤ n) by

fk : Rn → R, x 7→ u′k x̄, (28)

that is, fk(x̄) is the projection component of x̄ on uk. Since the n PCs form an
orthonormal coordinate system, any point x ∈ Rn can be perfectly reconstructed
from its feature values by

x = µ+
∑

k=1,...,n

fk(x)uk. (29)

The PCs and the corresponding features fk can be used for dimension reduction
as follows. We select the first few (“leading”) PCs u1, . . . , um up to some index
m. Then we obtain a feature map

f : Rn → Rm, x 7→ (f1(x), . . . , fm(x))′. (30)

At the beginning of this section I spoke of a decoding function d : Rm → Rn

which should recover the original patterns x from their feature vectors f(x). In
our PCA story, this decoding function is given by

d : (f1(x), . . . , fm(x))′ 7→ µ+
m∑
k=1

fk(x)uk. (31)

How “good” is this dimension reduction, that is, how similar are the original
patterns xi to their reconstructions d ◦ f(xi)? When dissimilarity of two patterns
x1,x2 ∈ Rn is measured in the square error sense by

δ(x1,x2) := ‖x1 − x2‖2,
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a full answer can be given. Let

σ2
k = 1/N

∑
i

fk(xi)
2

denote the variance of the feature values fk(xi) (notice that the mean of the fk(xi),
taken over all patterns, is zero, so σ2

k is indeed their variance). Then the mean
square distance between patterns and their reconstructions is

1/N
∑
i

‖xi − d ◦ f(xi)‖2 =
n∑

k=m+1

σ2
k. (32)

A derivation of this result is given in Appendix E.
Equation (32) gives an absolute value for dissimilarity. For applications, how-

ever, the relative amount of dissimilarity compared to the mean variance of pat-
terns is more instructive. It is given by

1/N
∑

i ‖xi − d ◦ f(xi)‖2

1/N
∑

i ‖x̄i‖2
=

∑n
k=m+1 σ

2
k∑n

k=1 σ
2
k

. (33)

Real-world sets of patterns often exhibit a rapid (roughly exponential) decay
of the feature variances as their index k grows. The ratio (33) then is very small
compared to the mean size E[‖X̄‖2] of patterns, that is, only very little information
is lost by reducing the dimension from n to m via PCA. Our visualization from
Figure 18 is not doing justice to the amount of compression savings that is often
possible. Typical real-world, high-dimensional, centered data clouds in Rn are
often very “flat” in the vast majority of directions in Rn and these directions can
all be zeroed without much damage by the PCA projection.

Note. Using the word “variance” above is not mathematically correct. Variance
is the expected squared deviation from a population mean, a statistical property
which is different from the averaged squared deviation from a sample mean. It
would have been more proper to speak of an “empirical variance” above, or an
“estimated variance”. Check out Appendix D!

4.4 Mathematical properties of PCA and an algorithm to
compute PCs

The key to analysing and computing PCA is the (n × n)-dimensional covariance
matrix C = 1/N

∑
i x̄i x̄

′
i, which can be easily obtained from the centered training

data matrix X̄ = [x̄1, . . . , x̄N ] by C = 1/N X̄ X̄ ′. C is very directly related to
PCA by the following facts:

1. The PCs u1, . . . , un form a set of orthonormal, real eigenvectors of C.

2. The feature variances σ2
1, . . . , σ

2
n are the eigenvalues of these eigenvectors.

74



A derivation of these facts can be found in my legacy ML lecture notes, Section
4.4.1 (https://www.ai.rug.nl/minds/uploads/LN_ML_Fall11.pdf). Thus, the
principal component vectors uk and their associated data variances σ2

k can be
directly gleaned from C.

Computing a set of unit-norm eigenvectors and eigenvalues from C can be
most conveniently done by computing the singular value decomposition (SVD) of
C. Algorithms for computing SVDs of arbitrary matrices are shipped with all
numerical or statistical mathematics software packages, like Matlab, R, or Python
with numpy. At this point suffice it to say that every covariance matrix C is a
so-called positive semi-definite matrix. These matrices have many nice properties.
Specifically, their eigenvectors are orthogonal and real, and their eigenvalues are
real and nonnegative.

In general, when an SVD algorithm is run on an n-dimensional positive semi-
definite matrix C, it returns a factorization

C = U ΣU ′,

where U is an n×n matrix whose columns are the normed orthogonal eigenvectors
u1, . . . , un of C and where Σ is an n×n diagonal matrix which has the eigenvalues
λ1, . . . , λn on its diagonal. They are usually arranged in descending order. Thus,
computing the SVD of C = U ΣU ′ directly gives us the desired PC vectors uk,
lined up in the columns of U , and the variances σ2

k, which appear as the eigenvalues
of C, collected in Σ.

This enables a convenient control of the goodness of similarity that one wants
to ensure. For example, if one wishes to preserve 98% of the variance information
from the original patterns, one can use the r.h.s. of (33) to determine the “cutoff”
m such that the ratio in this equation is about 0.02.
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4.5 Summary of PCA based dimension reduction proce-
dure

Data. A set (xi)i=1,...,N of n-dimensional pattern vectors.

Result. An n dimensional mean pattern vector µ and m principal component
vectors arranged column-wise in an n×m sized matrix Um.

Procedure.

Step 1. Compute the pattern mean µ and center the patterns to obtain
a centered pattern matrix X̄ = [x̄1, . . . , x̄N ].

Step 2. Compute the SVD U ΣU ′ of C = 1/N X̄X̄ ′ and keep from U
only the first m columns, making for a n×m sized matrix Um.

Usage for compression. In order to compress a new n-dimensional pattern
x to a m-dimensional feature vector f(x), compute f(x) = U ′m x̄.

Usage for uncompression (decoding). In order to approximately restore
x from its feature vector f(x), compute xrestored = µ+ Um f(x).

4.6 Eigendigits

For a demonstration of dimension reduction by PCA, consider the “3” digit images.
After reshaping the images into 240-dimensional grayscale vectors and centering
and computing the PCA on the basis of N = 100 training examples, we obtain
240 PCs uk associated with variances σ2

k. Only the first 99 of these variances are
nonzero (because the 100 image vectors xi span a 100-dimensional subspace in
R240; after centering the x̄i however span only a 99-dimensional subspace – why?
homework exercise! – thus the matrix C = 1/N X̄ X̄ ′ has rank at most the rank
of X̄, which is 99), thus only the first 99 PCs are useable. Figure 20 A shows
some of these eigenvectors ui rendered as 15×16 grayscale images. It is customary
to call such PC re-visualizations eigenimages, in our case “eigendigits”. (If you
have some spare time, do a Google image search for “eigenfaces” and you will find
weird-looking visualizations of PC vectors obtained from PCA carried out on face
pictures.)

Figure 20 B shows the log variances log10 σ
2
i of the first 99 PCs. You can see

the rapid (roughly exponential) decay. Aiming for a dissimilarity ratio (Equation
33) of 0.1 gives a value of m = 32. Figure 20 C shows the reconstructions of some
“3” patterns from the first m PC features using (31).
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Figure 20: A. Visualization of a PCA computed from the “3” training images.
Top left panel shows the mean µ, the next 7 panels (row-wise) show the first 7
PCs. Third row shows PCs 20–23, last row PCs 96-99. Grayscale values have
been automatically scaled per panel such that they spread from pure white to
pure black; they do not indicate absolute values of the components of PC vectors.
B. The (log10 of) variances of the PC features on the “3” training examples. C.
Reconstructions of digit “3” images from the first m = 32 features, corresponding
to a re-constitution of 90% of the original image dataset variance. First row: 4
original images from the training set. Second row: their reconstructions. Third
row: 4 original images from the test set. Last row: their reconstruction.
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4.7 Self-organizing maps

Nature herself has been facing the problem of dimension reduction when She was
using evolution as a learning algorithm to obtain well-performing brains. Specifi-
cally, in human visual processing the input dimension n is in the order of a million
(judging from the number of axons in the optical nerve), but the “space” where the
incoming n-dimensional raw visual signal is processed has only m = 2 dimensions:
it is the walnut-kernel-curly surface of the brain, the cortical sheet. Now this is
certainly an over-simplified view of biological neural information processing, but
at least in some brain areas and for some kinds of input projecting into those ar-
eas, it seems fairly established in neuroscience that an incoming high-dimensional
signal becomes mapped on an m = 2 dimensional representation on the cortical
sheet.

In the 1980 decade, Teuvo Kohonen developed an artificial neural network
model which (i) could explain how this neural dimension reduction could be learnt
in biological brains; and which (ii) could be used as a practical machine learning
algorithm for dimension reduction. His model is today known as Kohonen Network
or Self-Organizing Map (SOM). The SOM model is one the very few and precious
instances of a neural information processing model which is anchored in, and can
bridge between, both neuroscience and machine learning. It made a strong impact
in both communities. In the machine learning / data analysis world SOMs have
been superseded in later years by other methods, and in my perception they are
only rarely used today. But this may again change when non-digital neuromor-
phic microchip technologies will mature (my own research field!). In neuroscience
research, SOM-inspired models continue to be explored. Furthermore, the SOM
model is simple and intuitive. I think all of this is reason enough to include it in
this lecture.

The learning task for SOMs is defined as follows (for the case of m = 2):

Given: a pattern collection P = (xi)i=1,...,N of points in Rn.

Also given: a 2-dimensional grid of “neurons” V = (vkl)1≤k≤K, 1≤l≤L, where k, l
are the grid coordinates of neuron vkl (you might think of this as a rectan-
gular segment in the cortical surface sheet).

Learning objective: find a map κ : P → V which

1. preserves input space topology (the metric topology of Rn), that is,
points xj in the neighborhood of a point xi should be mapped to κ(xi)
or to grid neighbors of κ(xi), and which

2. distributes the patterns from the collection P evenly over the grid cells,
that is, all grid neurons vkl should have approximately the same number
of κ-preimages.

Four comments: (i) In classical SOM models, input patterns x are always as-
sumed to have unit norm. (ii) Here I use a grid with a rectangular neighborhood
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structure. Classical SOM papers and many applications of SOMs use a hexagonal
neighborhood structure instead, where each neuron has 6 neighbors, all at the
same distance. (iii) The “learning objective” sounds vague. It is. At the time
when Kohonen introduced SOMs, tailoring learning algorithms along well-defined
loss functions was not standard. Kohonen’s modeling attitude was oriented toward
biology and a mathematical analysis of the SOM algorithm was not part of his
agenda. In fact, the problem to find a loss function which is minimized by the orig-
inal SOM algorithm was still unsolved in the year 2008 (Yin 2008). I don’t know
what the current state of research in this respect is — I would guess not much has
happened since. (iv) The learning task is impossible to solve. One cannot map the
n-dimensional pattern space Rn to the lower-dimensional (even just 2-dimensional)
space Rm while preserving neighborhood relations. For a graphical illustration of
this impossibility, consider the case where the patterns are 3-dimensional and are
uniformly spread in the unit cube [0, 1]× [0, 1]× [0, 1]. Then, in order to let every
grid neuron have about the same number of pattern points which are mapped on it
(condition 2), the SOM learning task would require that the 2-dimensional neuron
grid — think of it as a large square sheet of paper with the gridlines printed on
— becomes “wrinkled up” in the 3-dimensional cube such that in every place in
the cube the surrounding “neural sheet density” is about the same (Figure 21).
When this condition 2 is met (as in the figure), condition 1 is necessarily violated:
there will be points in the high-dimensional space which are close to each other
but which will become mapped to grid neurons that are far from each other on
the grid. Thus, SOM training always means finding a compromise.

In a trained SOM, each grid neuron vkl is associated with a weight vector
w(vkl) ∈ Rn. This weight vector represents a point in the space Rn from which
the training patterns xi came. One could say that w(vkl) ∈ Rn “locates” the grid
neuron vkl in the input pattern space (in Figure 21, think of every gridline crossing
point as a location of a grid neuron vkl; the 3-dimensional position of this crossing
point in the cube volume gives the weight vector w(vkl)).

The weight vectors associated with the grid neurons are the basis for defining
the function κ : P → V which assigns a grid neuron to every pattern x ∈ P , and
also to any new test pattern. If some pattern x ∈ Rn is presented to the trained
SOM, its κ-image is computed by

κ(x) = argmax
vkl∈V

w′(vkl)x. (34)

In words, the neuron v whose weight vector w(v) best matches the input
pattern x is chosen. “Best matching” here means: maximal inner product w′ x.
In other variants of an SOM, one uses minimal metric distance as “best matching”
criteriom, i.e. instead of w′(vkl)x one would write ‖w′(vkl)− x‖ in Equation (34).
Kohonen used the “best matching” criterion (34) in his classical papers. In the
SOM literature the neuron determined by (34) is called the best matching unit
(BMU) for pattern x. Clearly the map κ is determined by the weight vectors
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Figure 21: Trying to uniformly fill a cube volume with a 2-dimensional grid sheet
will invariably lead to some points in the cube which are close to two (or more)
“folds” of the sheet. That is, points that are far away from each other in the
2-dimensional sheet (here for instance: points on the red gridline vs. points on the
blue gridline segment) will be close to each other in the 3-dimensional cube space;
or stated the other way round: some points that are close in the 3D cube will
become separated to distant spots on the neuron grid. “Crumpled grid” graphic
taken from Obermayer, Ritter, and Schulten 1990.

w(v). In order to train them on the basis of the training data set P , the basic
SOM learning algorithm works as follows:

Initialization: The weights w(vkl) are set to small random values.

Iterate until convergence: 1. Randomly select a training pattern x ∈ P .

2. Determine the BMU vBMU for this pattern, based on the current weight
vectors w(v).

3. Update all the grid’s weight vectors w(vkl) according to the formula

w(vkl)← w(vkl) + λ fr(d(vkl, vBMU)) (x−w(vkl)). (35)

4. Make r a little smaller before entering the next iteration.

In this sketch of an algorithm, λ is a learning rate — a small number, for
instance λ = 0.01, plugged in for numerical stability. The function d is the Eu-
clidean distance (between two neurons positions on the grid). fr : R≥0 → R≥0

is a non-negative, monotonously decreasing function defined on the nonnegative
reals which satisfies fr(0) = 1 and which goes to zero as its argument grows. The
function is parametrized by a radius parameter r > 0, where greater values of r
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Figure 22: Three Gaussian-like distance-depending weighting functions fr(x) =
exp(−x2/r2) with values r = 0.5, 1, 2 (red, green, blue).

spread out the range of fr. A common choice is to use a Gaussian-like function
fr(x) = exp(−x2/r2) (see Figure 22).

Here is an intuitive explanation of this learning algorithm. When a new train-
ing pattern x has been presented and the BMU has been determined, each weight
vector w(vkl) is adapted a little bit. The weight update formula (35) adds to
w(vkl) a small multiple of x − w(vkl). This pulls w(vkl) into the direction of x.
How strong this pull is depends on how close vkl is to vBMU — the closer, the
stronger. This is regulated by the distance-dependent factor fr(d(vkl, vBMU)). Ob-
viously the adaptation is strongest for the BMU. When (in the early phases of the
algorithm) r is large, neurons in the wider vicinity of the BMU will likewise receive
rather strong weight adjustments, while only far-away neurons remain more or less
unaffected.

This mechanics has the effect that after convergence, the training dataset P
will be covered by grid neurons rather evenly (see objective nr. 2 stated above).
To get an intuition why this is so, let us consider a specific scenario. Assume that
the pattern set P contains a dense cluster of mutually quite similar patterns x,
besides a number of other, dissimilar patterns. Furthermore assume that we are in
an early stage of the learning process, where the radius r is still rather large, and
also assume that at this early stadium of learning, each pattern from the cluster
yields the same BMU v0. Due to the large number of members in the cluster,
patterns from that cluster will be drawn for the learning algorithm rather often.
With r large, this will have the effect that neurons in the wider neighborhood of
the BMU v0 will grow their weight vectors toward w(v0). After some time, v0

will be surrounded by grid neurons whose weight vectors are all similar to w(v0),
and w(v0) will roughly be the mean of all patterns x in the cluster. Now, some
patterns x′ in the cluster will start to have as their BMU not v0 any longer, but
some of its surrounding neighbors (why?). As a consequence, increasingly many
patterns in the cluster will best-match the weight vectors of an increasing number
of neighbors of v0: the subpopulation of grid neurons which respond to cluster
patterns has grown from the singleton population {v0} to a larger one. This
growth will continue until the population of grid neurons responding to cluster
patterns has become so large that each member’s BMU-response-rate has become
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too low to further drive this population’s expansion.
The radius r is set to large values initially in order to let all (or most) patterns in

P compete with each other, leading to a coarse global organization of the emerging
map κ. In later iterations, increasingly smaller r leads to a fine-balancing of the
BMU responses of patterns that are similar to each other.

SOM learning algorithms come in many variations. I sketched an arbitrary
exemplar. The core idea is always the same. Setting up a SOM learning algorithm
and tuning it is not always easy – the weight initialization, the decrease schedule
for r, the learning rate, the random sampling strategy of training patterns from
P , the grid dimension (2 or 3 or even more... 2 is the most common choice),
or the pattern preprocessing (for instance, normalizing all patterns to the same
norm) are all design decisions that can have a strong impact on the convergence
properties and final result quality of the learning process.

Yin 2008 includes a brief survey of SOM algorithm variants. I mention in
passing an algorithm which has its roots in SOMs but is significantly different: The
Neural Gas algorithm (good brief intro in https://en.wikipedia.org/wiki/

Neural_gas), like SOMs, leads to a collection of neurons which respond to patterns
from a training set through trainable weight vectors. The main difference is that
the neurons are not spatially arranged on a grid but are spatially uncoupled from
each other (hence, neural “gas”). The spatially defined distance d appearing in
the adaptation efficacy term fr(d(vkl, vBMU)) is replaced by a rank ordering: the
neuron with the best response to training pattern x (i.e., the BMU) is adapted
most, the unit v with the second best response (i.e., second largest value of w(v) x)
is adapted second most strongly, etc.

For a quick SOM demo I used a version of a legacy Matlab toolbox published
by Kohonen’s own research group (I downloaded it 20 years ago). As a pattern
dataset P I used the Digits dataset that I also used before in this section. I used
100 examples from each digit class. Figure 23 shows the result of training an 8 × 8
neuron grid on this dataset. As expected, the ten digit classes become represented
each by approximately the same number of grid neurons, reflecting the fact that
the classes were represented in P in equal shares.

I also generated an unbalanced pattern set that had 180 examples of class “5”
and 20 examples of every other class. The result is shown in Figure 24. As it should
be, roughly half of the SOM neurons are covering the “5” class examples, while the
other SOM neurons reach out their weight vectors into the remaining classes. This
is a desirable effect: SOM training on the basis of unbalanced datasets will lead
to a higher resolution for the pattern sorts that occur more often in the dataset
(more grid neurons covering the more often found sorts of data points).

Practical uses of SOMs appear to have been mostly 2-dimensional visualiza-
tions for exploring (labelled) high-dimensional datasets in two-dimensional graph-
ics. Specifically, such SOM visualizations can give insight into metric similiarities
between pattern classes. For instance, inspecting the bottom right 3 × 3 panels in
Figure 23, one finds “morphable” similarities between certain versions of “5” and
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0 0 4 4 4 1 2 2

8 6 6 6 6 8 8

2 8 5 6 6 8 8 8

2 7 3 1 3 5 8

7 7 3 1 5 5 9

7 1 1 1 1 5 5 9

1 3 3 4 4 5 5 9

4 3 3 3 3 5 9 9

Figure 23: An 8 × 8 SOM representation of the Digits training dataset. The
grayscale images show the weight vectors w(vkl), reshaped back to the rectangular
pixel image format. The numbers in the small green insets give the most frequent
class label of all training patterns which had the respective grid neuron as BMU.
If this number is missing, the grid neuron never fired as BMU for any training
pattern.

“9” patterns. For the fun of it, in Figure 25 you find how a 1-dimensional SOM
curls up in a 2-dimensional pattern space.

What I find more relevant and interesting about SOMs is their use in neuro-
science. Learning mechanisms similar to the SOM learning algorithm have been
(and are being) invoked to explain the 2-dimensional spatial organization of cor-
tical maps. They can explain how neurons on a surface patch of the cortical sheet
align their specific responsiveness to high-dimensional input (from sensors or other
brain areas) with their local 2-dimensional metric neighborhood. Pictures which
put synthetic SOM grids side to side with images recorded from small patches of
cortical surface have variously been published. Figure 26 gives an example from
a study by Swindale and Bauer 1998.

If you are interested in such themes, I can recommend the recent review of
Bednar and Wilson 2016 on cortical maps as a starting point.
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Figure 24: Similar to previous figure, but with an unbalanced pattern set where
the number of “5” examples was the same as the total number of all other classes.

4.8 Summary discussion. Model reduction, data compres-
sion, dimension reduction

Reducing the dimensionality of patterns which are represented by vectors is im-
portant not only in machine learning but everywhere in science and engineering,
where you find it explored under different headline names and for different pur-
poses:

Dimension reduction is a term used in machine learning and statistics. The
core motivation is first, that statistical and machine learning models typi-
cally depend on a estimate of a probability distribution over some “pattern”
space (this distribution estimate may remain implicit); second, that the curse
of dimensionality makes it intrinsically hard to estimate distributions from
training data points in high-dimensional vector spaces, such that third, a key
to success is to reduce the dimension of the original “raw” patterns. Typi-
cally, the low-dimensional target format is again real-valued vectors (“feature
vectors”).

Data compression is a term used in signal processing and communication tech-
nology. The practical and economical importance of being able to compress
and uncompress bulky data is obvious. The compressed data may have a
different type than the raw data. For instance, in vector quantization com-
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Figure 25: A 1-dim SOM trying to be a true representation of a 2-dim image.
Figure taken from https://eintrittverboten.wordpress.com/2012/10/04/kohonen-
art/.

pression, a real-valued vector will become encoded in a natural number, the
index of its associated codebook vector. Again there is a close connection
with probability, established through Shannon information theory.

Model reduction is a term used when it comes to trim down not just the di-
mension of static data points but the dimension of entire dynamical system
models. All branches of science and engineering today deal with models
of complex physical dynamical systems which are instantiated as systems
of coupled differential equations — often millions, sometimes billions ... or
more ... of them. One obtains such gargantuan systems of coupled ODEs
almost immediately when one discretizes system models expressed in partial
differential equations (PDEs) or so-called finite-element models (used by en-
gineers to model complex mechanical systems, like skyscrapers or airplane
mainframes). Such sytems cannot be numerically solved on today’s comput-
ing hardware and need to be dramatically shrunk before a simulation can
be attempted. That is, one must replace a system model made from (say)
millions of ODE’s by another sytem model made only of a few hundred
ODE’s. The reduced-size system, when simulated on a computer, should
still give very much the same dynamical responses to external stimulation as
the full-scale system. I once had an office across the corridor from the office
of Anastasios Antoulas. He is a model reduction expert whose expertise was
sought by actual skyscraper building companies who needed mathematical
simulations of their planned supertowers, in particular to assess how they
would respond to earthquake and storm (obviously, they should be demon-
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Figure 26: The SOM algorithm reproducing biological cortical response patterns.
The scenario: an anaesthesized but eye-open ferret is shown moving images of a
bar with varying orientation and direction of movement, while response activity
from neurons on a patch (about 10 square mm) of visual cortex is recorded. A.
A color-coded recording of neural response activity depending on the orientation
of the visually presented bar. For instance, if the bar was shown in horizontal
orientation, the neurons who responded to this orientation with maximal activity
are rendered in red. B. Like in panel A., but for the motion direction of the bar
(same cortical patch). C., D. Artificial similies of A., B. generated with a SOM
algorithm. Figures taken from Swindale and Bauer 1998, who in turn took the
panels A. and B from Weliky, Bosking, and Fitzpatrick 1996.
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strated not to break, and that in turn boils down to show that they will
not start swinging / oscillating / vibrating when externally “perturbed”). I
am not familiar with the mathematics of this field, but what I understood
from Anastasios’ explanations is that these model reductions ultimately boil
down to a linear algebra exercise whose core is again the hero of practical
linear algebra, the singular value decomposition (SVD). I mention this field
for completeness and because the name “model reduction” invites analogies
with dimension reduction, although the latter is for static data points and
model reduction is for entire dynamical models. But there is a common
mathematical core. Antoulas and Sorensen 2001 give a tutorial overview
with instructive examples.

In this section we took a look at three methods for dimension reduction of high-
dimensional “raw” data vectors, namely K-means clustering, PCA, and SOMs.
While at first sight these methods appear quite different from each other, there is
a unifying view which connects them. In all three of them, the reduction was done
by introducing a comparatively simple kind of geometric object in the original
high-dimensional pattern space Rn, which was then used to re-express raw data
points in a lightweight encoding:

1. In K-means-clustering, this object is the set of codebook vectors, which can
be used to compress a test data point to the mere natural number index
of its associated codebook vector; or which can be used to give a reduced
K-dimensional vector comprised of the distances αj to the codebook vectors.

2. In PCA, this object is the m-dimensional (affine) linear subspace spanned
by the first m eigenvectors of the data covariance matrix. An n-dimensional
test point is represented by its m coordinates in this subspace.

3. In SOMs, this object is the “crumpled-up” grid of SOM neurons v, including
their associated weight vectors w(v). A new test data point can be com-
pressed to the natural number index of its BMU. This is entirely analog
to how the codebook vectors in K-means clustering can be used. Further-
more, if an m-dimensional neuron grid is used (we considered only m = 2
above), the grid plane is nonlinearly “folded” into the original dataspace Rn,
in that every grid point v becomes projected to w(v). It thus becomes an m-
dimensional manifold embedded in Rn, which is characterized by codebook
vectors. This can be seen as a nonlinear generalization of the m-dimensional
linear affine hyperplanes embedded in Rn in PCA.

Thus, the SOM shares properties with both K-means clustering and PCA. In
fact, one can systematically explore a whole spectrum of dimension reduction /
data compression algorithms which are located between K-means clustering and
PCA, in the sense that they describe m-dimensional manifolds of different degrees
of nonlinearity through codebook vectors. K-means clustering is the extreme case

87



that uses only codebook vectors and no manifolds; PCA is the other extreme with
only manifolds and no codebook vectors; and SOMs are somewhere in between.
The extensive preface to the collection volume Principal Manifolds for Data Vi-
sualization and Dimension Reduction (Gorban et al. 2008) gives a readable intro
to this interesting field.

In today’s deep learning practice one often ignores the traditional methods
treated in this section. Instead one immediately fires the big cannon, training a
deep neural network wired up in an auto-encoder architecture. An autoencoder
network is a multilayer feedforward network whose ouput layer has the same large
dimension n as the input layer. It is trained in a supervised way, using training
data (xi,yi) to approximate the identity function: the training output data yi are
identical to the input patterns xi (possibly up to some noise added to the inputs).
The trick is to insert a “bottleneck” layer with only m � n neurons into the
layer sequence of the network. In order to achieve a good approximation of the
n-dimensional identity map on the training data, the network has to discover an
n→ m-dimensional compression mapping which preserves most of the information
that is needed to describe the training data points. I will not give an introduction
to autoencoder networks in this course (it’s a topic for the “Deep Learning” course
given by Mathia Sabatelli). The Deep Learning standard reference (now already
a classic) of I. Goodfellow, Bengio, and Courville 2016 has an entire section on
autoencoders.
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5 Discrete symbolic versus continuous real-valued

I hope this section will be as useful as it will be short and simple. Underneath
it, however, lurks a mysterious riddle of mathematics, philosophy and the neuro-
sciences.

Some data are given in symbolic form, for instance

• texts of all sorts,

• yes/no or rating scale questionnaire items,

• DNA and protein sequence data,

• records of chess or Go matches,

• large parts in public administration databases.

Others are real-valued (scalar, vector, matrix or array formatted) in principle,
notwithstanding the circumstance that on digital machines real numbers must be
approximated by finite-length bitstrings. Examples of data that are best under-
stood as “continuous” are

• images, video, speech,

• measurement data from technical systems, e.g. in production process control
or engine monitoring,

• financial data,

• environmental and weather data,

• signals used in robot motion control.

Many mathematical formalisms can be sorted in two categories: “discrete”
and “continuous”. Mathematicians, in fact, come in two kinds – ask one, and
he/she will be able to tell you whether he/she feels more like a discrete or contin-
uous mathematician. Discrete sorts of mathematics and discrete mathematicians
typically operate in areas of number theory, set theory, logic, algebra, graph the-
ory, automata theory. Continuous maths / mathematicians use linear algebra,
functional analysis and calculus.

Computer scientists are almost always discrete-math-minded: 0 and 1 and
algorithms and Boolean circuits and AI knowledge representation formalisms are
eminently discrete.

Physicists are almost always continuous-math minded, because their world is
made of continuous space, time, matter, forces and fields.

There are some mathematical domains that are neither, or open to both, espe-
cially topology and probability. Some of the most advanced and ingenious modern
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fields of mathematics arise from crossover formalisms between the Discrete and
the Continuous. The fundamental difference between the two is not dissolved in
these theories, but the tension between the Discrete and the Continuous sets free
new forms of mathematical energy. Sadly, these lines of research are beyond what
I understand and what I can explain (or even name), and certainly beyond what
is currently used in machine learning.

The hiatus (an educated word of latin origin, meaning “dividing gap”) between
the Discrete and the Continuous is also the source of one of the great unresolved
riddles in the neurosciences, cognitive science and AI: how can symbolic reasoning
(utterly discrete) emerge from the continuous matter and signal processing in
our material brains (very physical, very continuous)? This question has kept AI
researchers and philosophers busy (and sometimes aggressively angry with one
another) for 5 decades now and is not resolved; if you are interested, you can get
a first flavor in the Wikipedia article on “Physical symbol system” or by reading
up on the overview articles listed in http://www.neural-symbolic.org/.

Back to our down-to-earth business. Machine learning formalisms and al-
gorithms likewise are often either discrete-flavored or continuous-flavored. The
former feed on symbolic data and create symbolic results, using tools like de-
cision trees, Bayesian networks and graphical models (including hidden Markov
models), inductive logic, and certain sorts of neural networks where neurons have
0-1-valued activations (Hopfield networks, Boltzmann machines). The latter di-
gest vector data and generate vector output, like neural networks, support vector
machines and various sorts of regression learning “machines”.

The great built-in advantage of discrete formalisms is that they often lend
themselves well to explainable, human-understandable solutions. Their typical
disadvantage is that learning or inference algorithms are often based on combina-
torial search, which quickly lets computing times explode. In contrast, continuous
formalisms typically lead to results that cannot be intuitively interpreted – vec-
tors don’t talk – but lend themselves to nicely, smoothly converging optimization
algorithms.

When one speaks of “machine learning” today, one mostly has vector processing
methods in mind. Also this RUG course is focussing on vector data. The discrete
strands of machine learning are more associated with what one often calls “data
mining”. This terminology is however not clearly defined (see Section 1.5).

Sometimes one has vector data but wants to exploit benefits that come with
discrete methods, or conversely, one has symbolic data and wants to use a neural
network (because everybody else seems to be using them, or because one doesn’t
want to fight with combinatorial explosions). Furthermore, many an interesting
dataset comes as a mix of symbolic-discrete and numerical-continuous data – for
instance, data originating from questionnaires or financial/business/admin data
often are mixed-sort.

Then, one way to go is to convert discrete data to vectors or vice versa. It is a
highly empowering professional skill to know about basic methods of discrete ↔
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continuous conversions.
Here are some discrete-to-continuous transformations:

One-hot encodings. Given: data points aν that are symbols from a finite “al-
phabet” A = {a1, . . . , ak}. Examples: yes/no answers in a questionnaire;
words from a vocabulary; nucleic acids A, C, G, T occuring in DNA. Turn
each aν into the k-dimensional binary vector vν ∈ {0, 1}k which is zero
everywhere except at position ν. This is a very common way to present
symbolic input to neural networks. On the output side of a neural network
(or any other regression learning machine), one-hot encodings are almost
always used to give vector teacher data in classification tasks: if (xi, ci) is
a classification-task training dataset, where ci is a symbolic class label from
a class set C = {c1 . . . , ck}, transform each ci to its k-dimensional one-hot
vector vi and get a purely vector-type training dataset (xi, vi).

Binary pattern encodings. If the symbol alphabet A is of a large size k, one
might shy away from one-hot encoding because it gives large vectors. In-
stead, encode each aν into a binary vector of length dlog2 ke, where dlog2 ke
is the smallest integer larger or equal to log2 k. For example, the alphabet
{a, b, c, d} would be encoded in the vectors {[0, 0]′, [0, 1]′, [1, 0]′, [1, 1]′} Advan-
tage: small vectors. Disadvantage: subsequent vector-processing algorithms
must invest substantial nonlinear effort into decoding this essentially arbi-
trary encoding. This will often be crippling, and binary pattern encodings
should only be considered if there is some intuitive logic in the encoding.

Linear scale encoding. If there is some natural ordering in the symbols aν ∈ A,
encode every aν by the index number ν. Makes sense, for instance, when the
aν come from a Likert-scale questionnaire item, as in

A = {certainly not, rather not, don’t know, rather yes, certainly yes},

which could be turned into a sequence of real numbers like {−1.0,−0.5, 0, 0.5, 1.0}
in a way that allows neural networks to ’feel’ the semantics of the ordering
in the questionnaire answer options.

Semantic word vectors. This is a technique which enabled breakthroughs in
deep learning for text processing (I mentioned it in the Introduction; it
is used in the TICS demo). By a nontrivial machine learning algorithm
pioneered by Mikolov et al. 2013, convert words aν from a (large) vocabulary
A into vectors of some reasonably large size, say 300-dimensional, such that
semantically related words become mapped to vectors that are metrically
close to each other.

For instance, code vectors v, v′ for words w = airplane and w′ = aircraft
should have small distance, wheras the code vector v′′ for w′′ = rose should
lie at a great distance to both v and v′. So the goal is to find vectors v, v′, v′′
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in this example that have small distance ‖v−v′‖ and large distances ‖v−v′′‖,
‖v′−v′′‖. This is achieved by measuring the semantic similarity of two words
w,w′ through counting how often they occur in similar locations in training
texts. A large collection of English texts is processed, collecting statistics
about similar sub-phrases in those texts that differed only in the two words
whose similarity one wished to assess (plus, there was another trick: can
you think of an important improvement of this basic idea?). The current
de-facto standard algorithm for learning a vector embedding for words is
documented in Devlin et al. 2018.

And here are some continuous-to-discrete transformations:

One-dimensional discretization, also known as binning. Given: a real num-
ber dataset {xi} where xi ∈ R. Divide the real line into k segments

A1, A2, . . . , Ak−1, Ak = (−∞, a1], (a1, a2], . . . , (ak−2, ak−1], (ak−1,∞).

Then transform each xi to that symbol Aν for which xi ∈ Aν . Comments:

• The segments (aν , aν+1] are called bins.

• In the simplest case, the range [min{xi},max{xi}] of the data points is
split into k bins of equal length.

• Alternatively, another way of splitting the range [min{xi},max{xi}] is
to define the bins such that each bin will contain an approximately
equal number of data points from the set {xi}.
• Often the best way of splitting the data range into bins depends on

the task. This can turn out to be a delicate optimization problem.
For instance, there is a sizeable literature in deep learning which is
concerned with the question of how one can reduce the numerical pre-
cision of weight parameters in neural networks. One first trains the
neural network using standard high-precision learning algorithms, ob-
taining weight matrices in floating-point precision. In order to speed
up computing, or to use small, limited-precision microchips on hand-
held devices, or to reduce energy consumption, one wishes to reduce
the bit precision of the weight matrices. In extreme cases, one wants
to end up with only three weight values {−1, 0, 1}, which would lead to
very cheap neural network computations at use-time. This amounts to
the splitting the range of floating-point precision weights obtained after
training into just three bins. The goal is to ensure that the reduced-
precision network performs approximately as well as the high-precision
original. This is a nontrivial problem. Check out the (randomly chosen)
reference Indiveri 2015 if you want to get a taste.

• Discretizing a continuous value range into bins with adaptive bin bound-
aries is the key for using decision trees (which are discrete models) for
continuous attribute ranges.
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Multi-dimensional discretization by hierarchical refinement. If one wants
to discretize a set {xi} of n-dimensional vectors, one has to split the n-
dimensional volume which contains the points {xi} into a finite set of dis-
crete regionsRν . A common approach is to let these regions be n-dimensional
hypercubes. By a process of hierarchical refinement one constructs these re-
gions Rν such that in areas where there is a higher point density, or in areas
where there is much fine-grained information encoded in the local point dis-
tribution, one uses smaller hypercubes to increase resolution. This leads to
a tree structure, which in the case n = 2 is called a quadtree (because every
non-leaf node has four children) and in the case n = 3 an octree of hierar-
chically nested hypercubes. This tree structure enables a computationally
efficient indexing of the hypercubes. The left panel in Figure 27 shows an
example. The Wikipedia article on quadtrees is quite instructive. One may
also opt for regions Rν of other polygonal shape (see right panel in Figure
27). There are many such mesh refinement methods, with task-specific opti-
mization criteria. They are not typically used in machine learning but rather
in methods for simulating spatiotemporal (fluid) dynamics by numerically
solving PDEs. Still, it is good to know that such methods exist.

Vector quantization. Using K-means or other clustering algorithms, the vector
set {xi} is partitioned into k cells whose center of gravity vectors are indexed
and the indices are used as symbolic encodings of the {xi}. We have seen this
in Section 4.2. This is a typical machine learning method for discretization.

Turning neural dynamics into symbol sequences. When we (I really mean
“we”, = us humans!) speak or write, the continuous-time, continuous-valued
neural brain dynamics leads to a discrete sequence of words. Somehow, this
symbolic sequence is encoded in the “subsymbolic”, continuous brain dy-
namics. It is unknown how, exactly, this encoding is realized. Numerous
proposals based on nonlinear dynamical systems theory have been made.
This is an area of research in which I am personally engaged. If you are in-
terested: some approaches are listed in Durstewitz, Seamans, and Sejnowski
2000, Pascanu and Jaeger 2011, Fusi and Wang 2016. In machine learning,
the problem of transforming continuous-valued neural state sequences to se-
quences of words (or letters) arises in applications like speech recognition
(“speech-to-text”) or gesture recognition. Here the most common solution
(which is not necessarily biologically plausible) is to use the core neural net-
work to generate a sequence of continuous-valued hypothesis output vectors
with as many components as there are possible target symbols. At each
point in time, the numerical value of each vector component reflects a cur-
rent “degree of belief” about which symbol should be generated. With some
postprocessing mechanism (not easy to set up), this hypothesis stream is
denoised and turned into a symbol sequence, for instance by selecting at
each point in time the symbol that has the largest degree of belief.
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Figure 27: Left: A hierarchical hypercube mesh for a 2-dimensional dataset
consisting of points homogeneously distributed inside a circle. Right: adaptive
non-orthogonal meshing, here used in an airflow simulation. Sources: left panel:
http://www.questinygroup.com/tag/quad-tree/; right panel: Luchinsky and
al. 2012.

6 The bias-variance dilemma and how to cope

with it

Reality is rich in detail and surprise. Measuring reality gives a finite number
of data points – and the reality between and beyond these data points remains
unmeasured, a source of unforseeable surprises. Furthermore, measuring is almost
always “noisy” – imprecise or prone to errors. And finally, each space-time event
point of reality can be measured in innumerable ways, of which only a small
choice is actually measured. For instance, the textbook measurement of “tossing
a coin” events is just to record “heads” or “tail”. But one could also measure the
weight and color of coin, the wind speed, the falling altitude, the surface structure
of the ground where the coin falls, and ... everything else. In summary, any
dataset will capture only a supremely scarce coverage of space-time events whose
unfathomable qualitative richness has been reduced to a ridiculously small number
of “observables”. From this empoverished, punctuated information basis, called
“training data”, a machine learning algorithm will generate a “model” of a part
of reality. This model will then be used to predict properties of new space-time
events, called “test inputs”. How should it be ever possible for a model to “know”
anything about those parts of reality that lie between the pinpoints hit by the
training data?

This would be a good point to give up.
But ... quoting Einstein: “Subtle is the Lord, but malicious He is not” (https:

//en.wikiquote.org/wiki/Albert_Einstein). Reality is co-operative. Between
measurement points, reality changes not arbitrarily but in a lawful manner. The
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Figure 28: He gave the reason why machine learning works (from https:

//commons.wikimedia.org/wiki/File:Albert_Einstein_-_Colorized.jpg)

question is, which law. In machine learning, this question is known as the problem
of overfitting, or in more educated terms, the bias-variance dilemma. Welcome to
this chapter which is all about this question. For all your practical exploits of
machine learning in your professional future, this is the most empowering chapter
in this course.

6.1 Training and testing errors

Let us take a closer look at the archetypical machine learning task of classifying
handwritten digits. We use the simple Digits benchmark data that you know from
Section 4.1. The task is specified as follows:

Training data. (xtrain
i , ctraini )i=1,...,1000 where the xtrain

i ∈ [0, 1]240 are 240-dimensional
image vectors, whose components correspond to the 15 × 16 pixels which
have normalized grayscale values ranging in [0, 1]; and where the ctraini are
class labels from the set {0, 1, . . . , 9}. There are 100 examples from each
class in the training data set.

Test data. Another set (xtest
i , ctesti )i=1,...,1000, also having 100 exemplars of each

digit.

Task specification. This is a benchmark dataset with a standardized task spec-
ification: train a classifier using (only) the training data, then test it on the
test data and report the rate of misclassifications. The loss function is thus
the count loss given in Equation 4.

An elementary yet professionally structured learning pipeline, which uses meth-
ods that we have already described in this course, goes as follows (it may be a
welcome rehearsal to give a step-by-step instruction):

95

https://commons.wikimedia.org/wiki/File:Albert_Einstein_-_Colorized.jpg
https://commons.wikimedia.org/wiki/File:Albert_Einstein_-_Colorized.jpg


First stage: dimension reduction by PCA: 1. Center the set of image vec-
tors (xtrain

i )i=1,...,1000 by subtracting the mean vector µ, obtaining (x̄train
i )i=1,...,1000.

2. Assemble the centered image vectors column-wise in a 240 × 1000 ma-
trix X̄. Compute the correlation matrix C = 1/1000 X X ′ and factorize
C into its SVD C = UΣU ′. The columns of U are the 240 principal
component vectors of C.

3. Decide how strongly you want to reduce the dimension, shrinking it
from n = 240 to m < n. Let Um be the matrix made from the first m
columns from U .

4. Project the centered patterns x̄train
i on the m first principal components,

obtaining m-dimensional feature vectors f traini = U ′m x̄train
i .

Vectorize the class labels by one-hot encoding: Each ctraini is re-written as
a binary 10-dimensional vector vtraini which has a 1 entry in the corresponding
class ci. Assemble these vectors column-wise in a 10 × 1000 matrix V .

Compute a linear regression classifier: Assemble the 1000m-dimensional fea-
ture vectors f traini into a m×1000 dimensional matrix F and obtain a 10×m
dimensional regression weight matrix W by

W ′ = (F F ′)−1 F V ′.

Compute the training MSE and training error rate: The training mean square
error (MSE) is given by

MSEtrain = 1/1000
1000∑
i=1

‖vtrain
i −W (f train

i )‖2.

The training misclassification rate is

%train = 1/1000 |{i | maxInd (W f train
i )− 1 6= ctrain

i }|,

where maxInd picks the index of the maximal element in a vector. (Note:
the “−1” is owed to the fact that the vector indices range from 1 to 10, while
the class labels go from 0 to 9).

Similarly, compute the test MSE and error rates by

MSEtest = 1/1000
1000∑
i=1

‖vtest
i −W (f test

i )‖2

and
%test = 1/1000 |{i | maxInd (W f test

i )− 1 6= ctest
i }|,

where f test
i = U ′m (xtest

i − µ). Note: for centering the test data, use the mean
µ obtained from the training data!
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This is a procedure made from basic linear operations that you should mas-
ter even when sleepwalking; with some practice the entire thing should not take
you more than 30 minutes for programming and running. Altogether a handy
quick-and-not-very-dirty routine that you should consider carrying out in every
classification task, in order to get a baseline before you start exploring more so-
phisticated methods.

And now - let us draw what is probably the most helpful graphics in these
lecture notes, worth to be burnt into your subconscious. Figure 29 shows these
diagnostics for all possible choices of the number m = 1, . . . , 240 of PC features
used.

Figure 29: Dashed: Train (blue) and test (red) MSE obtained for m = 1, . . . , 240
PCs. Solid: Train (blue) and test (red) misclassification rates. The y-axis is
logarithmic base 10.

This plot visualizes one of the most important issues in (supervised) machine
learning and deserves a number of comments.

• As m increases (the x-axis in the plot), the number of parameters in the
corresponding linear regression weight matrices W grows by 10 · m. More
model parameters means more degree of freedoms, more “flexible” models.
With greater m, models can increasingly better solve the linear regression
learning equation (20). This is evident from the monontonous decrease of
the train MSE curve. The training misclassification rate also decreases per-
sistently except for a jitter that is due to the fact that we optimized models
only indirectly for low misclassification.

97



• The analog performance curves for the testing MSE and misclassification
first exhibit a decrease, followed by an increasing tail. The testing misclas-
sification rate is minimal for m = 34.

• This “first decrease, then increase” behavior of testing MSE (or classifica-
tion rate) is always observed in supervised learning tasks when models are
compared which have growing degrees of data fitting flexibility. In our digit
example, this increase in flexibility was afforded by growing numbers of PC
features, which in turn gave the final linear regression a richer repertoire of
feature values to combine into the hypothesis vectors.

• The increasing tail of testing MSE (or classification rate) is the hallmark
of overfitting. When the learning algorithm admits too much flexibility, the
resulting model can fit itself not only to what is “lawful” in the training data,
but also to the random fluctuations in the training data. Intuitively and
geometrically speaking, a learning algorithm that can shape many degrees
of freedom in its learnt models allows the models to fold in curls and wiggles
to accomodate the random whims of the training data. But then, the random
curls and wiggles of the learnt model will be at odds with fresh testing data.

6.2 The menace of overfitting – it’s real, it’s everywhere

ML research has invented a great variety of model types for an even larger vari-
ety of supervised and unsupervised learning tasks. How exactly overfitting (mal-
)functions in each of these model types will need a separate geometrical analysis in
each case. Because overfitting is such a fundamental challenge in machine learning,
I illustrate its geometrical manifestations with four examples.

6.2.1 Example 1: polynomial curve-fitting

This example is the standard textbook example for demonstrating overfitting. Let
us consider a one-dimensional input, one-dimensional output regression task of the
kind where the training data are of form (xi, yi) ∈ R × R. Assume that there is
some systematic relationship y = h(x) that we want to recover from the training
data. We consider a simple artificial case where the xi range in [0, 1] and the
to-be-discovered true functional relationship is y = sin(2π x). The training data,
however, contain a noise component, that is, yi = sin(2π xi)+νi, where νi is drawn
from a normal distribution with zero mean and standard deviation σ. Figure 30
shows a training sample (xi, yi)i=1,...,11, where N = 11 training points xi are chosen
equidistantly.

We now want to solve the task of learning a good approximation for h from the
training data (xi, yi) by applying polynomial curve fitting, an elementary technique
you might be surprised to meet here as a case of machine learning. Consider an
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Figure 30: An example of training data (red squares) obtained from a noisy ob-
servation of an underlying “correct” function sin(2 π x) (dashed blue line).

m-th order polynomial

p(x) = w0 + w1x+ · · ·+ wmx
m. (36)

We want to approximate the function given to us via the training sample by
a polynomial, that is, we want to find (“learn”) a polynomial p(x) such that
p(xi) ≈ yi. More precisely, we want to minimize the mean square error on the
training data

MSEtrain =
1

N

N∑
i=1

(p(xi)− yi)2.

Here we don’t bother how this task is solved computationally. We simply rely on
the Matlab function polyfit which does exactly this job for us: given data points
(xi, yi) and polynomial order m, find the coefficients wj which minimize this MSE.
Figure 31 shows the polynomials found in this way for m = 1, 3, 10.

!

Figure 31: Fitting polynomials (green lines) for polynomial orders 1, 3, 10 (from
left to right).

If we compute the MSE’s for the three orders m = 1, 3, 10, we get MSEtrain =
0.4852, 0.0703, 0.0000 respectively. Some observations:
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• If we increase the order m, we get increasingly lower MSEtrain.

• For m = 1, we get a linear polynomial, which apparently does not represent
our original sine function well (underfitting).

• For m = 3, we get a polynomial that hits our target sine apparently quite
well.

• For m = 10, we get a polynomial that perfectly matches the training data,
but apparently misses the target sine function (overfitting).

The modelling flexibility is here defined through the polynomial order m. If it
is too small, the models are too inflexible and underfit; if it is too large, we see
overfitting.

However, please switch now into your most critical thinking mode and recon-
sider what I have just said. Why, indeed, should we judge the linear fit “under-
fitting”, the order-3 fit “seems ok”, and the order-10 fit “overfitting”? There is
no other ground for justifying these judgements than our visual intuition and our
secret mastermind knowledge that the underlying pure function was this sinewave!
In fact, the order-10 fit might be the right one if the data contain no noise! the
order-1 fit might be the best one if the data contain a lot of noise! If we didn’t
know beforehand that the true noiseless function was the sinewave, then we could
not know which of the three cases from Figure 31 gives us the best model!

6.2.2 Example 2: pdf estimation

Let us consider the task of estimating a 2-dimensional pdf over the unit square
from 6 given training data points {xi}i=1,...,6, where each xi is in [0, 1]× [0, 1]. This
is an elementary unsupervised learning task, the likes of which frequently occur as
a subtask in more involved learning tasks, but which is of interest in its own right
too. Figure 32 shows three pdfs which were obtained from three different learning
runs with models of increasing flexibility (I don’t explain the modeling method
here — for the ones who know about it: simple Gaussian Parzen-window models
where the degree of admitted flexibility was tuned by kernel width — will be
explained in Section 7). Again we encounter the fingerprints of under/overfitting:
the low-flexibility model seems too “unbending” to resolve any structure in the
training point cloud (underfitting), the high-flexibility model is so volatile that it
can accomodate each individual training point (presumably overfitting).

But again, we don’t really know...

6.2.3 Example 3: learning a decision boundary

Figure 33 shows a schematic of a classification learning task where the training
patterns are points in R2 and come in two classes. When the trained model is
too inflexible (left panel), the decision boundary is confined to be a straight line,
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Figure 32: Estimating a pdf from 6 data points. Model flexibility grows from left
to right. Note the different scalings of the z-axis: the integral of the pdf is 1 in
each of the three cases.

presumably underfitting. When the flexibility is too large, each individual training
point can be “lasso-ed” by a sling of the decision boundary, presumably overfitting.

Do I need to repeat that while these graphics seem to indicate under- or over-
fitting, we do not actually know?

!

Figure 33: Learning a decision boundary for a 2-class classification task of 2-
dimensional patterns (marked by black “x” and red “o”).

6.2.4 Example 4: furniture design

Overfitting can also hit you in your sleep, see Figure 34.
Again, while this looks like drastic overfitting, it would be just right if all

humans sleep in the same folded way as the person whose sleep shape was used
for training the matrass model.

6.2.5 Interim summary

The four examples stem from different learning tasks (function approximation, pdf
learning, classification learning, furniture optimization), and correspondingly the
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Figure 34: A nightmare case of overfitting. Picture spotted by Yasin Cibuk (2018
ML course participant) on http://dominicwilcox.com/portfolio/bed/ – now
no longer accessible –, designed and crafted by artist Dominic Wilcox, 1999. Quote
from the artist’s description of this object: “I used my own body as a template
for the mattress”. From a ML point of view, this means a size N = 1 training
data set.

overfitting problem manifests itself in different geometrical ways. But the flavor is
the same in all cases. The model flexibility determines how “wiggly” the geometry
of the learnt model can become. Very large flexibility ultimately admits to fold
the model snugly around each individual training point. This leads to small, even
zero, training error; but it is likely disastrous for generalization to new test data
points. Very low flexibility can hardly adapt to the structure of the training data
at all, likewise leading to poor test performance (and poor training performance
too). Some intermediate flexibility will strike the best balance.

Properly speaking, flexibility is not a characteristic of the final model that
one obtains after learning, but of the learning algorithm. If one uses the term
precisely, one should speak, for example, of “the flexibility of the procedure to
train a third-order polynomial function”, or of “the flexibility of the PCA-based
linear regression learning scheme which uses m PCA features”.

I introduced this way of speaking about “flexibility” ad hoc. In statistics
and machine learning textbooks you will hardly find this term. Instead, specific
methods to measure and tune the flexibility of a learning algorithm have their
specific names, and it is these names that you will find in the literature. The
most famous among them is model capacity. This concept has been developed in a
field now called statistical learning theory, and (not only) I consider it a highlight
of modern ML theory. We will however not treat the concept of model capacity
in this course, since it is not an easy concept, and it needs to be spelled out in
different versions for different types of learning tasks and algorithms. Check out
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en.wikipedia.org/wiki/Vapnik-Chervonenkis_theory if you want to get an
impression. Instead, in Sections 6.4.1 and 6.4.2 I will present two simpler methods
for handling modeling flexibility which, while they lack the analytical beauty and
depth of the model capacity concept, are immensely useful in practice.

I emphasize that finding the right flexibility for a learning algorithm is ab-so-lu-
te-ly crucial for good performance of ML algorithms. Our little visual examples do
not do justice to the dismal effects that overfitting may have in real-life learning
tasks where a high dimension of patterns is combined with a small number of
training examples — which is a situation faced very often by ML engineers in
practical applications.

6.3 An abstract view on supervised learning

Before I continue with the discussion of modeling flexibility, it is helpful to in-
troduce some standard theoretical concepts and terminology. Before you start
reading this section, make sure that you understand the difference between the
expectation of a random variable and the sample mean (explained in Appendix
D).

In supervised learning scenarios, one starts from a training sample of the form
(xi, yi)i=1,...,N , which is drawn from a joint distribution PX,Y of two random vari-
ables X and Y . So far, we have focussed on tasks where the xi were vectors and
the yi were class labels or numbers or vectors, but supervised learning tasks can
be defined for any kind of variables. In this subsection we will take an abstract
view and just consider any kind of supervised learning based on a training sam-
ple (xi, yi)i=1,...,N . We then call the xi the arguments and the yi the targets of
the learning task. The target RV Y is also sometimes referred to as the teacher
variable.

The argument and target variables each come with their specific data value
space – a set of possible values that the RVs X and Y may take. For instance,
in our digit classification example, the data value space for X was R240 (or more
constrained, [0, 1]240) and the data value space for Y was the set of class labels
{0, 1, . . . , 9}. After the extraction of m features and turning the class labels to
class indicator vectors, the original picture–label pairs (xi, yi) turned into pairs
(fi, vi) with data value spaces Rm, {0, 1}k respectively. In English-French sentence
translation tasks, the data value spaces of the random variables X and Y would
be a (mathematical representation of a) set of English and French sentences. We
now abstract away from such concrete data value spaces and write EX , EY for the
data value spaces of X and Y .

Generally speaking, the aim of a supervised learning task is to derive from
the training sample a function h : EX → EY . We called this function a decision
function earlier in these lecture notes, and indeed that is the term that is used in
statistical learning theory.

Some of the following I already explained before (Section 2.3) but it will be

103

en.wikipedia.org/wiki/Vapnik-Chervonenkis_theory


helpful if I repeat this here with more detail.
The decision function h obtained by a learning algorithm should be optimized

toward some objective. One introduces the concept of a loss function. A loss
function is a function

L : EY × EY → R≥0. (37)

The idea is that a loss function measures the “cost” of a mismatch between
the target values y and the values h(x) returned by a decision function. Higher
cost means lower quality of h. We have met two concrete loss functions so far:

• A loss that counts misclassifications in pattern classification: when the de-
cision function returns a class label, define

L(h(x), y) =

{
0, if h(x) = y
1, if h(x) 6= y

(38)

• A loss that penalizes quadratic errors of vector-valued targets:

L(h(x), y) = ‖h(x)− y‖2. (39)

This loss is often just called “quadratic loss”. We used it as a basis for
deriving the algorithm for linear regression in Section 3.1.

The decision function h is the outcome of a learning algorithm, which in turn
is informed by a sample (xi, yi)i=1,...,N . Learning algorithms should minimize the
expected loss, that is, a good learning algorithm should yield a decision function
h whose risk

R(h) = E[L(h(X), Y )] (40)

is small. The expectation here is taken with respect to the true underlying joint
distribution PX,Y . For example, in a case where X and Y are numerical RVs and
their joint distribution is described by a pdf f , the risk of a decision function h
would be given by

R(h) =

∫
EX×EY

L(h(x), y) f(x, y) d(x, y).

However, the true distribution f is unknown. The mission to find a decision
function h which minimizes (40) is, in fact, hopeless. The only access to PX,Y that
the learning algorithm affords is the scattered reflection of PX,Y in the training
sample (xi, yi)i=1,...,N .

A natural escape from this impasse is to set up a learning algorithm such that
instead of attempting to minimize the risk (40) it tries to minimize the empirical
risk

Remp(h) = 1/N
N∑
i=1

L(h(xi), yi), (41)
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which is just the mean loss calculated over the training examples. Minimizing this
empirical risk is an achievable goal, and a host of optimization algorithms for all
kinds of supervised learning tasks exist which do exactly this, that is, they find

hopt = argmin
h∈H

1/N
N∑
i=1

L(h(xi), yi). (42)

The set H is the hypothesis space – the search space within which a learning
algorithm may look for an optimal h.

It is important to realize that every learning algorithm comes with a specific
hypothesis space. For instance, in decision tree learning H is the set of all decision
trees that use a given set of properties and attributes. Or, in linear regression, H
is the set of all affine linear functions from Rn to Rk. Or, if one sets up a neural
network learning algorithm, H is typically the set of all neural networks that have
a specific connection structure (number of neuron layers, number of neurons per
layer); the networks in H then differ from each other by the weights associated
with the synaptic connections.

The empirical risk is often – especially in numerical function approximation
tasks – also referred to as training error.

While minimizing the empirical loss is a natural way of coping with the im-
possibility of minimizing the risk, it may lead to decision functions that combine
a low empirical risk with a high risk. This is the ugly face of overfitting which I
highlighted in the previous subsection. In extreme cases, one may learn a decision
function which has zero empirical risk and yet has a extremely large expected
testing error, which makes it absolutely useless.

There is no easy or general solution for this conundrum. It has spurred statis-
ticians and mathematicians to develop a rich body of theories which analyze the
relationships between risk and empirical risk, and suggest insightful strategies
to manage as well as one can in order to keep the risk within provable bounds.
These mathematical theories, sometimes referred to as statistical learning theory
(or better, theories), are beyond the scope of this lecture.

If you are in a hardcore mood and if you have some background in probability
theory, you can inspect Section 19 of lecture notes of my legacy “Principles of Sta-
tistical Modeling” course (online at https://www.ai.rug.nl/minds/uploads/

LN_PSM.pdf). You will find that the definitions of loss and risk given there in the
spirit of mathematical statistics are a bit more involved than what I presented
above, but the definitions of loss and risk that I gave here are used in textbooks
on machine learning.

6.4 Tuning model flexibility

In order to deal with the overfitting problem, one must have ways to tune the
flexibility of the learning algorithm and set it to the “right” value.
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Let us briefly return to the overfitting diagram in Figure 29. In that demo, the
flexibility regulation (moving left or right on the horizontal axis) was effected by
moving in a model class inclusion hierarchy — more flexible learning algorithms
were more flexible because they searched larger hypothesis spaces H. But similar
diagrams would be obtained in any other ML exercise where other methods for
navigating on the flexibility axis might be used. Because the essential message of
Figure 29 is universal across all machine learning tasks, I redraw that figure and
annotate it generically (Figure 35).

model flexibility m

Empirical risk, 
“training error”

risk, 
“testing error”

optimal 
flexibility

risk / 
empirical 
risk

Figure 35: The generic, universal, core challenge of machine learning: finding the
right model flexibility which gives the minimal risk.

Let us use the arbitrary symbol m for the degree of flexibility — we used m
before in the special cases in the Digits example (Figure 29), where m meant the
number of extracted principal components; and and the polynomial fit example
(Equation 36), where m meant the highest used polynomial order. Abstracting
from these special cases, we use m as a general modeling flexibility indicator - the
larger m, the more flexibly is a learning algorithm wired up to nestle its models
around training data points.

Summarizing and emphasizing the main messages of this figure:

• Increasing the model flexibility leads to monotonous decrease of the empirical
risk - because training data can be fitted better and better.

• Increasing the model flexibility from very low to very high will lead to a risk
that first decreases (less and less underfitting) and then rises again (more
and more overfitting).

• The best model flexibility is where the risk curve reaches its minimum. The
problem is that one does not know this precious risk curve - it is defined on
the distribution of all future “test” data, which one does not have at training
time.

There are many, quite different, ways of tuning flexibility of a learning algo-
rithm. Note that the word “flexibility” is only intuitive; how this is concretely
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formalized, implemented and measured differs between the methods of adjusting
this “flexibility”. I proceed to outline the most common ones.

6.4.1 Tuning learning flexibility through model class size

In the Digits classification demo from Section 6.1, we tuned flexibility by changing
the dimension of the PCA features. In the polynomial curve fitting demo in Section
6.2.1 we changed the order of polynomials. Let us re-consider these two examples
to get a clearer picture:

• In the Digits example (Figure 29) we found that the number m of principal
component features that were extracted from the raw image vectors was de-
cisive for the testing error. When m was too small, the resulting models were
too simple to distinguish properly between different digit image classes (un-
derfitting). When m was too large, overfitting resulted. Fixing a particular
m determines the class H of candidate decision functions within which the
empirical risk (42) is minimized. Specifically, using a fixed m meant that the
optimal decision function hopt was selected from the set Hm which contains
all decision functions which first extract m principal component features be-
fore carrying out the linear regression. It is clear that Hm−1 is contained
in Hm, because decision functions that only combine the first m− 1 princi-
pal component features into the hypothesis vector can be regarded as special
cases of decision functions that combine m principal component features into
the hypothesis vector, namely those whose linear combination weight for the
m-th feature is zero.

• In the polynomial curve fitting example from Section 6.2.1, the model pa-
rameters were the monomial coefficients w0, . . . , wm (compare Equation 36).
After fixing the polynomial order m, the optimal decision function p(x) was
selected from the set Hm = {p : R → R | p(x) =

∑m
j=0wj x

j}. Again it is
clear that Hm−1 is contained in Hm.

A note on terminology: I use the words “decision function” and “model” as
synonyms, meaning the (classification) algorithm h which results from a learn-
ing procedure. The word “decision function” is standard in statistics, the word
“model” is more common in machine learning.

Generalizing from these two examples, we are now in a position to draw a
precise picture of what it may mean to consider learning algorithms of “increasing
flexibility”. A model class inclusion sequence is a sequence H1 ⊂ H2 ⊂ . . . ⊂ HL

of sets of candidate models. Since there are more candidate models in classes that
appear later in the sequence, “higher” model classes have more possibilities to
fit the training data, thus the optimal model within class Hm+1 can achieve an
empirical risk that is at least as low as the optimal model in class Hm, — but may
put you closer to overfitting.

107



There are many ways how one can set up a sequence of learning algorithms that
pick their respective optimal models from such a model class inclusion sequence.
In most cases – such as in our two examples – this will just mean to admit larger
models with more tuneable parameters.

6.4.2 Using regularization for tuning modeling flexibility

The flexibility tuning mechanism explained in this subsection is simple, practical,
and almost always used. It is called model regularization.

When one uses regularization to vary the modeling flexibility, one does not
vary the model class H at all. Instead, one varies the optimization objective (42)
for minimizing the training error.

The basic geometric intuition behind modeling flexibility is that low-flexibility
models should be “smooth”, “more linear”, “flatter”, admitting only “soft curva-
tures” in fitting data; whereas high-flexibility models can yield “peaky”, “rugged”,
“sharply twisted” curves (see again Figures 31, 32, 33).

When one uses model regularization, one fixes a single model structure and size
with a fixed number of trainable parameters, that is, one fixes H. Structure and
size of the considered model should be rich and large enough to be able to overfit
(!) the available training data. Thus one can be sure that the “right” model is
contained in the search space H. For instance, in our evergreen digit classification
task one would altogether dismiss the dimension reduction through PCA (which
has the same effect as using the maximum number m = 240 of PC components)
and directly use the raw picture vectors (padded by a constant 1 component to
enable affine linear maps) as argument vectors for a training a linear regression
decision function. Or, in polynomial curve-fitting, one would fix a polynomial
order that clearly is too large for the expected kind of true curve.

The models in H are typically characterized by a set of trainable parameters.
In our example of digit classification through linear regression from raw images,
these trainable parameters are the elements of the regression weight matrix; in
polynomial curve fitting these parameters are the monomial coefficients. Following
the traditional notation in the machine learning literature we denote this collection
of trainable parameters by θ. This is a vector that has as many components as
there are trainable parameters in the chosen kind of model. We assume that we
have M tuneable parameters, that is θ ∈ RM .

Such a high-flexibility model type would inevitably lead to overfitting when an
“optimal” model would be learnt using the basic learning equation (42) which I
repeat here for convenience:

hopt = argmin
h∈H

1/N
N∑
i=1

L(h(xi), yi).

In order to dampen the exaggerated flexibility of this baseline learning al-
gorithm, one adds a regularization term (also known as penalty term, or sim-
ply regularizer) to the loss function. A regularization term is a cost function
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R : RM → R≥0 which penalizes model parameters θ that code models with a high
degree of geometrical “wiggliness”.

The learning algorithm then is constructed such that it solves, instead of (42),
the regularized optimization problem

hopt = argmin
h∈H

1/N
N∑
i=1

L(h(xi), yi) + α2 R(θh). (43)

where θh is the collection of parameter values in the candidate models h ∈ H. The
nonnegative number α2 determines how strongly we want to let the regularizer
affect the final model — the larger α2, the more strongly we prefer “soft” models.

The design of a useful penalty term is up to your ingenuity. A good penalty
term should, of course, assign high penalty values to parameter vectors θ which
represent “wiggly” models; but furthermore it should be easy to compute and
blend well with the algorithm used for empirical risk minimization.

Two examples of such regularizers:

1. In the polynomial fit task from Section 6.2.1 one might consider forH all 10th
order polynomials, but penalize the “oscillations” seen in the right panel of
Figure 31, that is, penalize such 10th order polynomials that exhibit strong
oscillations. The degree of “oscillativity” can be measured, for instance, by
the integral over the (square of the) second derivative of the polynomial p,

R(θ) = R((w0, . . . , w10)) =

∫ 1

0

(
d2 p(x)

dx2

)2

dx.

Investing a little calculus (good exercise! not too difficult), it can be seen
that this integral resolves to a quadratic form R(θ) = θ′C θ where C is an
11× 11 sized positive semi-definite matrix. That format is more convenient
to use than the original integral version.

2. A popular regularizer that often works well is just the squared sum of all
model parameters,

R(θ) =
∑
w∈θ

w2.

This regularizer favors models with small absolute parameters, which often
amounts to “geometrically soft” models. This regularizer is popular among
other reasons because it supports simple algorithmic solutions for minimizing
risk functions that contain it. It is called the L2-norm regularizer because
it measures the (squared) L2-norm of the parameter vector θ.

Computing a solution to the minimization task (43) means to find a set of
parameters which simultaneously minimizes the original risk and the penalty
term. The factor α2 in (43) controls how strongly one wishes the regularization
to “soften” the solution. Increasing α means downregulating the model flexibility.
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For α2 = 0 one returns to the original un-regularized empirical risk (which would
likely mean overfitting). For α2 → ∞ the regularization term entirely dominates
the model optimization and one gets a model which does not care anymore about
the training data but instead only is tuned to have minimal regularization penalty.
In case of the L2 norm regularizer this means that all model parameters are zero
– the ultimate wiggle-free model; one should indeed say the model is dead.

When regularization is used to steer the degree of model flexibility, the x-axis
in Figure 35 would be labelled by α2 (highest α2 on the left, lowest at the right
end of the x-axis).

Using regularizers to vary model flexibility is often computationally more con-
venient than using different model sizes, because one does not have to tamper
with differently structured models. One selects a model type with a very large
(unregularized) flexibility, which typically means to select a big model with many
parameters (maybe hundreds of thousands). Then all one has to do (and one
must do it – it is a most crucial part of any professionally done machine learning
project) is to find the optimal degree of flexibility which minimizes the risk. At
this moment we don’t know how to do that – the secret will be revealed later in
this section.

I introduced the word ”regularization” here for the specific flexibility-tuning
method of adding a penalty term to the loss function. The same word is however
often used in a generalized fashion to denote any method used for steering model
flexibility.

6.4.3 Ridge regression

Let us briefly take a fresh look at linear regression, now in the light of general
supervised learning and regularization. Linear regression should always be used
in conjunction with regularization. Because this is such a helpful thing to know,
I devote this separate subsection to this trick. Recall from Section 3.1 that the
learning task solved by linear regression is to find

wopt = argmin
w∈Rn

N∑
i=1

(w xi − yi)2, (44)

where (xi, yi)i=1,...,N is a set of training data with xi ∈ Rn, yi ∈ R. Like any other
supervised learning algorithm, linear regression may lead to overfitting solutions
wopt. It is always advisable to control the flexibility of linear regression with an
L2 norm regularizer, that is, instead of solving (44) go for

wopt = argmin
w∈Rn

1

N

N∑
i=1

(w xi − yi)2 + α2 ‖w‖2 (45)

and find the best regularization coefficient α2. The optimization problem (45)
admits a closed-form solution, namely the ridge regression formula that we have
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already met in Equation 21. Rewriting it a little to make it match with the current
general scenario, here it is again:

w′opt = (
1

N
X X ′ + α2 In×n)−1 1

N
X Y = (X X ′ + α2 In×n)−1X Y, (46)

where X = [x1, . . . , xN ] and Y = (y1, . . . , yN)′.
In Section 3.1 I motivated to use the ridge regression formula because it war-

rants numerical stability. Now we see that a more fundamental reason to prefer
ridge regression over the basic kind of regression (44) is that it implements L2 norm
regularization. The usefulness of ridge regression as an allround simple baseline
tool for supervised learning tasks can hardly be overrated.

6.4.4 Tuning model flexibility through adding noise

Another way to tune model flexibility is to add noise. Noise can be added at
different places. Here I discuss three scenarios.

Adding noise to the training input data. If we have a supervised training
dataset (xi, yi)i=1,...,N with vector patterns xi, one can enlarge the train-
ing dataset by adding more patterns obtained from the original patterns
(xi, yi)i=1,...,N by adding some noise vectors to each input pattern xi: for
each xi, add l variants xi + νi1, . . . ,xi + νil of this pattern to the train-
ing data, where the νij are i.i.d. random vectors (for instance, uniform or
Gaussian noise). This increases the number of training patterns from N to
(l+1)N . The more such noisy variants are added and the stronger the noise,
the more difficult will it be for the learning algorithm to fit all data points,
and the smoother the optimal solution becomes – that is, the more one steers
to the left (underfitting) side of Figure 35. Adding noisy (or otherwise arti-
ficially varied) examples to the training dataset is a very common strategy,
called data augmentation.

Adding noise while the optimization algorithm runs. If the optimization
algorithm used for minimizing the empirical risk is iterative, one can “nois-
ify” it by jittering the intermediate results with additive noise. We have not
seen an iterative algorithm in this course so far, therefore I cannot demon-
strate this by example here. The “dropout regularization” trick, which is
widely used in deep learning, is of this kind. The effect is that the stronger
the algorithm is noisified, the stronger the regularization, that is the further
one steers to the left end of Figure 35.

Use stochastic ensemble learning. We have seen this strategy in the presen-
tation of random forests. A stochastic learning algorithm is repeatedly ex-
ecuted with different random seeds (called Θ in Section 2.7). The stronger
the randomness of the stochastic learning algorithm, and the more members
are included in the ensemble, the stronger the regularization effect.
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6.4.5 Interim summary: what we have when we can tune model flexi-
bility

We have seen that there are many ways to set up a learning algorithm such that it
has a specific degree of ’flexibility’ m. Once a particular such degree of flexibility
m is set (for instance by fixing model class size, regularization coefficient α2,
or inserting a specific amount of noise in the data or algorithm), the learning
algorithm is run on the training data and it finds the mini (or should find) the
minimal-training-error model

hopt m = argmin
h∈Hm

1/N
N∑
i=1

L(h(xi), yi). (47)

But for every setting of m, we get a different hopt m. Which one is the best,
that is, which one has the smallest expected test error (risk) R(hopt m)? We have
to solve the overarching optimization problem

mopt = argmin
m

R(hopt m)? (48)

The visual intuition that you should have is the one from Figure 35 - you have
to find the sweet spot on the m-axis where the test error curve has its minimum.
The next subsection explains how this spot is practically determined by cross-
validation. Here I want to spell out the big take-home for this entire section in
yet another wording:

A (supervised) machine learning project typically involves two nested opti-
mization procedures:

1. the inner loop of minimizing the empirical risk / training error for a given
degree of flexibility m,

2. the outer loop of optimizing for best (estimated) risk / testing error
across a search range of degrees m of flexibility.

I mention that in professional modeling one usually applies several flexibility-
changing mechanisms at the same time. For instance, in deep learning one typically
combines L2-norm regularization (called ’weight decay’ in that field) with several
sorts of adding noise (the most famous among them known as the dropout trick,
but also setting minibatch sizes and learning rates, as well as data augmentation
can be regarded as setting different noiselevels). If one has several flexibility-
shaping control knobs, the single-line m-axis in our Figure 35 because a multi-
dimensional search space for modeling hyperparameters. While in the single-line,
one-dimensional flexibility tuning case, one often can do a comprehensive sweep
through the relevant range of m, this quickly becomes infeasible when there are
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many tuneable hyperparameters m. The outer search loop then becomes a steep
computational and algorithmical challenge in itself. This amounts to develop
search methods for minima in few-dimensional search spaces (as many dimensions
as one has hyperparameters) that need only very few trials (evaluation of the
objective function at candidate solutions, here: at certain combinations of hyper-
parameter values) to come close to a minimum — very few, because each such trial
means a very expensive training of a model in the inner loop. The current best
practice appears to use for this outer loop a search method called Bayesian opti-
mization with Gaussian processes. This lies beyond the scope of our course. If you
are interested, check out https://en.wikipedia.org/wiki/Bayesian optimization.

6.5 Finding the right modeling flexibility by cross-validation

Statistical learning theory has come up with a few analytical methods to approxi-
mately solve (48). But these methods are based on additional assumptions, which
are neither easy to verify nor always granted. By far the most widely used method
to determine an (almost) optimal model flexibility (that is, determine the position
of the green line in Figure 35) is a rather simple scheme called cross-validation.
Cross-validation is a generic method which does not need analytical insight into
the particulars of the learning task at hand. Its main disadvantage is that it may
be computationally expensive.

Here is the basic idea of cross-validation.
In order to determine whether a given model is under- or overfitting, one would

need to run it on test data that are “new” and not contained in the training data.
This would allow one to get a hold on the red curve in Figure 35.

However, at training time only the training data are available.
The idea of cross-validation is to artificially split the training data set D =

(xi, yi)i=1,...,N into two subsets T = (xi, yi)i∈I and V = (x′i, y
′
i)i∈I′ . These two

subsets are then pretended to be a ”training” and a ”testing” dataset. In the
context of cross-validation, the second set is called a validation set.

A bit more formally, let the flexibility axis in Figure 35 be parametrized by m,
where small m means “strong regularization”, that is, “go left” on the flexibility
axis. Let the range of m be m = 1, . . . ,M .

For each setting of regularization strength m, the data in T is used to train an
optimal model hopt m. The test generalization performance on “new” data is then
tested on the validation set, for each m = 1, . . . ,M . It is determined which model
hopt m performs best on the validation data. Its regularization strength m is then
taken to be the sought solution mopt to (48). After this screening of regularization
strengths for the best test performance, a final model is then trained, with that
optimal regularization strength, on the original complete training data set D.

This whole procedure is called cross-validation. Notice that nothing has been
said so far about how to split D into T and V . This is not a trivial question: how
should D be best partitioned?
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A clever way to answer this question is to split D into K subsets Dj of equal size
(j = 1, ..., K). Then, for every regularization strength m, run K model learning
procedures, where in the j-th run the subset Dj is withheld as a validation set, and
the remaining K − 1 sets joined together make for a training set. After these K
runs, average the validation errors in order to find a good estimate for the expected
test error at this regularization strength m. After this K-fold cross-validation has
been done for all regularization strengths m = 1, . . . ,M , pick that mopt which
had the lowest validation error. Here is the procedure in detail (where I use class
inclusion as the method for navigating through the flexibilities m):
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Given: A set (xi, yi)i=1,...,N of training data, and a loss function L.
Also given: Some method which allows one to steer the model flexibility

along a regularization strength parameter m = 1, . . . ,M. The weakest
regularization should be weak enough to allow overfitting.

Step 1. Split the training data into K disjoint subsets Dj = (xi, yi)i∈Ij of
roughly equal size N ′ = N/K.

Step 2. Repeat for m = 1, . . . ,M :

Step 2.1 Repeat for j = 1, . . . , K:

Step 2.2.1 Designate Dj as validation set Vj and the union of the
other Dj′ as training set Tj.

Step 2.2.1 Compute the model with minimal training error on Tj

hoptmj = argmin
h∈Hm

1/|Tj|
∑

(xi,yi)∈Tj

L(h(xi), yi),

where Hm is the model search space for the regularization
strength m.

Step 2.2.2 Test hoptmj on the current validation set Vj by com-
puting the validation risk

Rval
mj = 1/|Vj|

∑
(xi,yi)∈Vj

L(hoptmj(xi), yi).

Step 2.2 Average the K validation risks Rval
mj obtained from the “folds”

carried out for this m, obtaining

Rval
m = 1/K

∑
j=1,...,K

Rval
mj.

Step 3. Find the optimal class by looking for that m which minimizes the
averaged validation risk:

mopt = argmin
m

Rval
m .

Step 4. Compute hmopt using the complete original training data set:

hmopt = argmin
h∈Hmopt

1/N
∑

i=1,...,N

L(h(xi), yi).

This procedure contains two nested loops and looks expensive. For economy,
one starts with the low-end m and increases it stepwise, assessing the generaliza-
tion quality through cross-validation for each regularization strength m, until the
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validation risk starts to rise. The strength mopt reached at that point is likely to
be about the right one.

The best assessment of the optimal class is achieved when the original training
data set is split into singleton subsets – that is, each Dj contains just a single
training example. This is called leave-one-out cross-validation. It looks like a
horribly expensive procedure, but yet it may be advisable when one has only a
small training data set, which incurs a particularly large danger of ending up with
poorly generalizing models when a wrong model flexibility was used.

K-fold cross validation is widely used – it is a factual standard procedure
in supervised learning tasks when the computational cost of learning a model is
affordable.

6.6 Why it is called the bias-variance dilemma

We have seen that a careful adjustment of the flexibility of a supervised learning
algorithm is needed to find the sweet spot between underfitting and overfitting.
A more educated way to express this condition is to speak of the bias-variance
tradeoff, also known as bias-variance dilemma. In this subsection I want to unravel
the root cause of the under/overfitting phenomenon in a little more mathematical
detail. We will find that it can be explained in terms of a bias and a variance term
in the expected error of estimated models.

Again I start from a training data set (xi, yi)i=1,...,N drawn from a joint distri-
bution PX,Y , with xi ∈ Rn, yi ∈ R. Based on these training data I consider the
learning task to find a decision function h : Rn → R which has a low quadratic
risk

R(h) = EX,Y [(h(X)− Y )2], (49)

where the notation EX,Y indicates that the expectation is taken with respect to the
joint distribution of X and Y . We assume that we are using some fixed learning
algorithm A which, if it is given a training sample (xi, yi)i=1,...,N , estimates a model

ĥ. The learning algorithm A can be anything, good or bad, clever or stupid,
overfitting or underfitting; it may be close to perfect or just be always returning
the same model without taking the training sample into account – we don’t make
any assumptions about it.

The next consideration leads us to the heart of the matter, but it is not trivial.
In mathematical terms, the learning algorithm A is just a function which takes
a training sample (xi, yi)i=1,...,N as input and returns a model ĥ. Importantly, if
we would run A repeatedly, but using freshly sampled training data (xi, yi)i=1,...,N

in each run, then the returned models ĥ would be varying from trial to trial –
because the input samples (xi, yi)i=1,...,N are different in different trials. Applying

these varying ĥ to some fixed pattern x ∈ Rn, the resulting values ĥ(x) would
show a random behavior too. The distribution of these variable values ĥ(x) is a
distribution over R. This distribution is determined by the distribution PX,Y and
the chosen learning algorithm A and the training sample size. A good statistician
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could give us a formal derivation of the distribution of ĥ(x) from PX,Y and knowl-
edge of A, but we don’t need that for our purposes here. The only insight that
we need to take home at this point is that for a fixed x, ĥ(x) is a random variable
whose value is determined by the drawn training sample (xi, yi)i=1,...,N , and which

has an expectation which we write as Eretrain[ĥ(x)] to indicate that the expectation
is taken over all possible training runs with freshly drawn training data.

Understanding this point is the key to understanding the inner nature of un-
der/overfitting.

If you feel that you have made friends with this Eretrain[ĥ(x)] object, we can
proceed. The rest is easy compared to this first conceptual clarification.

Without proof I note the following, intuitively plausible fact. Among all deci-
sion functions (from any candidate space H), the quadratic risk (49) is minimized
by the function

∆(x) = EY |X=x[Y ], (50)

that is, by the expectation of Y given x. This function ∆ : Rn → R, x 7→ E[Y |X =
x] is the gold standard for minimizing the quadratic risk; no learning algorithm
can give a better result than this. Unfortunately, of course, ∆ remains unknown
because the underlying true distribution PX,Y cannot be exactly known.

Now fix some x and ask by how much ĥ(x) deviates, on average and in the
squared error sense, from the optimal value ∆(x). This expected squared error is

Eretrain[(ĥ(x)−∆(x))2].

We can learn more about this error if we re-write (ĥ(x)−∆(x))2 as follows:

(ĥ(x)−∆(x))2 = (ĥ(x)− Eretrain[ĥ(x)] + Eretrain[ĥ(x)]−∆(x))2

= (ĥ(x)− Eretrain[ĥ(x)])2 + (Eretrain[ĥ(x)]−∆(x))2

+2 (ĥ(x)− Eretrain[ĥ(x)]) (Eretrain[ĥ(x)]−∆(x)). (51)

Now observe that

Eretrain

[
(ĥ(x)− Eretrain[ĥ(x)]) (Eretrain[ĥ(x)]−∆(x))

]
= 0, (52)

because the second factor (Eretrain[ĥ(x)]−∆(x)) is a constant, hence

Eretrain

[
(ĥ(x)− Eretrain[ĥ(x)]) (Eretrain[ĥ(x)]−∆(x))

]
=

= E
[
ĥ(x)− Eretrain[ĥ(x)]

]
(Eretrain[ĥ(x)]−∆(x)),

and

Eretrain

[
ĥ(x)− Eretrain[ĥ(x)]

]
= Eretrain[ĥ(x)]− Eretrain[Eretrain[ĥ(x)]]

= Eretrain[ĥ(x)]− Eretrain[ĥ(x)]

= 0.
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Inserting (52) into (51) and taking the expectation on both sides of (51) of
finally gives us

Eretrain[(ĥ(x)−∆(x))2] =

=
(
Eretrain[ĥ(x)]−∆(x)

)2

︸ ︷︷ ︸
(squared) bias

+Eretrain

[(
ĥ(x)− Eretrain[ĥ(x)]

)2
]

︸ ︷︷ ︸
variance

. (53)

The two components of this error are conventionally named the bias and the
variance contribution to the expected squared mismatch Eretrain[(ĥ(x)−∆(x))2] be-
tween the learnt-model decision values ĥ(x) and the optimal decision value ∆(x).
The bias measures how strongly the average learning result deviates from the
optimal value; thus it indicates a systematic error component. The variance mea-
sures how strongly the learning results ĥ(x) vary around their expected value
Eretrain[ĥ(x)]; this is an indication of how strongly the particular training data sets
induce variations on the learning result.

y1

y2

Figure 36: Illustrating the bias and variance contributions to expected modeling
error. Some x from the input space is fixed, and the model outputs here are two-
dimensional vectors ĥ(x) = (y1, y2)′. The black dot gives ∆(x). Each color group
of dots shows outputs of models trained with the same learning algorithm but
with freshly sampled training sets. The green dots show model outputs ĥ(x) of
models trained with an algorithm Agreen that has high variance but zero bias (that
is, the expected average value of the green dots would be centered on the black
dot). The red dots show outcomes obtained from a learning algorithm Ared with
smaller variance and again, zero bias. The blue dots show how outcomes from a
learning algorithm with very small variance but a nonzero bias would spread.

When the modeling flexibility is too low (underfitting), the bias term dominates
the expected modeling error. In the most extreme case, the modeling flexibility
is zero – the learning algorithm always returns models that ’compute’ the same
value for ĥ(x), independent of the training set: zero variance, but likely a high bias
(unless the designer of this ’learning’ algorithm knew the right model beforehand).
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When the modeling flexibility is too high (overfitting), the variance term is the
main source of mismatch, because the learnt models essentially just replicate the
training data — which means, it replicates the variance across different training
samples. This is why the underfitting versus overfitting challenge is also called
the bias-variance tradeoff (or dilemma). Figure 36 illustrates the look-and-feel of
different combinations of bias and variance.
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7 Representing and learning distributions

Almost all machine learning tasks are based on training data that have some
random component. Having completely noise-free data from deterministic sources
observed with high-precision measurements is a rare exception. Thus, machine
learning algorithms are almost all designed to cope with stochastic data. Their
ultimate functionality (classification, prediction, control, ...) will be served well
or poorly to the extent that the probability distribution of the training data has
been properly accounted for. We have seen this in the previous section. If one
(wrongly) believes that there is little randomness in the training data, one will
take the given training points as almost correct – and end up with an overfitted
model. Conversely, if one (wrongly) thinks the training data are almost completely
“white noise randomness”, the learnt model will under-exploit the information in
the training data and underfit. Altogether it is fair to say that machine learning
is the art of probability distribution modeling (plus the subsequent use of that
learnt distribution for classification etc.)

In many machine learning algorithms, the distribution model remains implicit
– there is no place or data structure within the learnt model which explicitly
models the data distribution. In some algorithms however, and for some tasks,
the probability distribution of the training data is explicitly modeled. We will
encounter some of these algorithms later in this course (hidden Markov models,
Bayesian networks, Boltzmann machines are of that kind). It is part of the stan-
dard knowledge of a machine learning professional to know some ways to represent
probability distributions and to estimate these representations from data.

7.1 Optimal classification

The grand role which is played by modeling a data distribution accurately can
be demonstrated very nicely in classification learning. We have met this basic
task several times now – and in your professional future you will meet it again,
dozens of times if you will seriously work in machine learning. We consider again a
scenario where the input patterns are vectors x ∈ P ⊆ Rn, which belong to one of
k classes which we represent by their class labels C = {c1, . . . , ck}. The set P is the
“possible pattern space”, usually a bounded subset of Rn (for instance, when the
patterns x are photographic pixel vectors and the pixel color values are normalized
to a range between 0 and 1, P would be the n-dimensional unit hypercube). We
furthermore introduce a random variable (RV) X for the patterns and a RV Y for
the class labels.

Many different decision functions h : P→ C exist, some of which can be learnt
from training data using some known learning algorithm. We will not deal with
the learning problem in this subsection, but ask (and answer!) the fundamental
question:

Among all possible decision functions h : P → C, which one has the lowest
risk in the sense of giving the lowest possible rate of misclassifications on test
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data? Or, expressing the same question in terms of a loss function, which decision
function minimizes the risk connected to the counting loss

L(y, c) =

{
1 if y 6= c,

0 if y = c?

It turns out that the minimal-risk decision function is in fact well-defined and
unique, and it can (and must) be expressed in terms of the distribution of our
data-generating RVs X and Y .

Our starting point is the true joint distribution PX,Y of patterns and labels.
This joint distribution is given by all the probabilities of the kind

P (X ∈ A, Y = c), (54)

where A is some subvolume of P and c ∈ C. The subvolumes A can be n-
dimensional hypercubes within P, but they also can be arbitrarily shaped “volume
bodies”, for instance balls or donuts or whatever. Note that the probabilities
P (X ∈ A, Y = c) are numbers between 0 and 1, while the distribution PX,Y is
the function which assigns to every choice of A ⊆ P, c ∈ C the number P (X ∈
A, Y = c) (probability theory gives us a rigorous formal way to define and handle
this strange object, PX,Y — it is explained with loving care in my lecture notes
for “Principles of Statistical Modeling”).

The joint distribution PX,Y is the “ground truth” – it is the real-world statis-
tical distribution of pattern-label pairs of the kind we are interested in. In our
Digits example, it would be the distribution of pairs made of (i) a handwritten
digit and (ii) a human-expert provided class label. Test digit images and their
class labels would be randomly “drawn” from this distribution.

A decision function h : P→ {c1, . . . , ck} partitions the pattern space P into k
disjoint decision regions R1, . . . , Rk by

Ri = {x ∈ P |h(x) = ci}. (55)

A test pattern xtest is classified by h as class i if and only if it falls into the decision
region Ri.

Now we are prepared to analyze and answer our ambitious question, namely
which decision functions yield the lowest possible rate of misclassifications. Since
two decision functions yield identical classifications if and only if their decision
regions are the same, we will focus our attention on these regions and reformulate
our question: which decision regions yield the lowest rate of misclassifications, or
expressed in its mirror version, which decision regions give the highest probability
of correct classifications?

Let fi be the pdf for the conditional distribution PX |Y=ci . It is called the
class-conditional distribution.

The probability to obtain a correct classification for a random test pattern,
when the decision regions are Ri, is equal to

∑k
i=1 P (X ∈ Ri, Y = ci). Rewriting

this expression using the pdfs of the class conditional distributions gives
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k∑
i=1

P (X ∈ Ri, Y = ci) =

=
k∑
i=1

P (X ∈ Ri |Y = ci)P (Y = ci)

=
k∑
i=1

P (Y = ci)

∫
Ri

fi(x) dx

=
k∑
i=1

∫
Ri

P (Y = ci) fi(x) dx. (56)

Note that the integral is taken over a region that possibly has curved boundaries,
and the integration variable x is a vector. The boundaries between the decision
regions are called decision boundaries. For patterns x that lie exactly on such
boundaries, two or more classifications are equally probable. For instance, the
digit pattern shown in the last but third column in the second row in Figure 15
would likely be classified by humans as a “1” or “4” class pattern with roughly
the same probability; this pattern would lie close to a decision boundary.

The expression (56) obviously becomes maximal if the decision regions are
given by

Ri = {x ∈ P | i = argmax
j

P (Y = cj) fj(x)}. (57)

Thus we have found the decision function which is optimal in the sense that it
maximizes the probability of correct classifications: namely

hopt : P→ C, x 7→ cargmax
j

P (Y=cj) fj(x). (58)

A learning algorithm that finds the optimal decision function (or some function
approximating it) must learn (implicitly or explicitly) estimates of the the class-
conditional distributions PX |Y=ci and the class probabilities P (Y = ci).

The class probabilities are also called the class priors. Figure 37 visualizes
optimal decision regions and decision boundaries. In higher dimensions, the ge-
ometric shapes of decision regions can become exceedingly complex, fragmented
and “folded into one another” — disentangling them during a learning process is
one of the eternal challenges of ML.

7.2 Representing and learning distributions

The optimal classifier described in the previous subsection is optimal because it
is shaped along the true distribution of pattern and class label random variables.
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Figure 37: Optimal decision regions Ri. A case with a one-dimensional pattern
space P and k = 3 classes is shown. Broken lines indicate decision boundaries.
Decision regions need not be connected!

Quite generally, any machine learning task can be solved “optimally” (in terms
of minimizing some risk) only if the solution takes the true distribution of all
task-relevant RVs into account. As I mentioned before, many learning algorithms
estimate a model of the underlying data distribution only implicitly. But some
ML algorithms generate explicit models of probability distributions, and in the
wider fields of statistical modeling, explicit models of probability distributions are
often the final modeling target.

Representing a probability distribution in mathematical formalism or by an
algorithm is not always easy. Real-world probability distributions can be utterly
complex and high-dimensional objects which one cannot just “write down” in
a formula. Over the last 60 or so years, ML and statistics research has devel-
oped a wide range of formalisms and algorithms for representing and estimating
(“learning”) probability distributions. A machine learning professional should
know about some basic kinds of such formalisms and algorithms. In this section I
present a choice, ranging from elementary to supremely complex, powerful — and
computationally costly.

7.2.1 Some classical probability distributions

In this section we describe a few distributions which arise commonly in application
scenarios. They have standard names and one should just know them, and under
which conditions they arise. Most of you will know then already anyway from an
introductory course in statistics.

We start with distributions that are defined over discrete sample spaces S =
{s1, . . . , sk} (finite sample space) or S = {s1, s2, s3 . . .} (countably infinite sam-
ple space). These distributions can all be represented by their probability mass
function (pmf):
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Definition 7.1 Given a discrete sample space S (finite or countably infinite), a
probability mass function on S is a function p : S → [0, 1] whose total mass is 1,
that is, which satisfies

∑
s∈S p(s) = 1.

Bernoulli distribution. The Bernoulli distribution arises when one deals with
observations that have only two possible outcomes, like tail – head, female –
male, pass – fail, 0 – 1. We have a two-element sample space S = {s1, s2}, on
which a Bernoulli distribution is defined by its pmf, which has its own standard
terminology:

Definition 7.2 The distribution of a random variable which takes values in a
binary value space S = {s1, s2} with probability mass function

p(si) =

{
1− q for i = 1

q for i = 2

is called a Bernoulli distribution with success parameter q, where 0 ≤ q ≤ 1.

A Bernoulli distribution is thus specified by a single parameter, q.
Learning / estimation: Given a set of training data {x1, . . . , xN} where xi ∈ {s1, s2},
the parameter q can be estimated by q̂ = (1/N) |{i |xi = s2}|.

Binomial distribution. The binomial distribution describes the counts of suc-
cesses if a binary-outcome “Bernoulli experiment” is repeated N times. For a
simple example, consider a gamble where you toss a coin N times, and every time
the head comes up, you earn a Dollar (not Euro; gambling is done in Las Vegas).
What is the distribution of Dollar earnings from such N -repetition games, if the
coin comes up with head (= s2; outcome tail is s1) with a success probability of q?
Clearly the range of possible earnings goes from 0 to N Dollars. These earnings
are distributed according to the binomial distribution:

Definition 7.3 Let N be the number of trials of independent Bernoulli experi-
ments with success probability q in each trial. The distribution of the number of
successes is called the binomial distribution with parameters N and q and its pmf
is given by

p(s) =

(
N

s

)
qs(1− q)N−s =

N !

s! (N − s)!
qs(1− q)N−s, s = 0, 1, 2, ..., N.

We write Bi(N, q) to denote the binomial distribution with parameters N and q.

The factor
(
N
s

)
is called binomial coefficient. Figure 38 shows some binomial pmf’s.

A note on notation: it is customary to write

X ∼ Bi(10, 0.25)
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X

p

Figure 38: The pmf’s of Bi(20, 0.1) (blue), Bi(20, 0.5) (red), and Bi(20, 0.9)
(green). Figure taken from www.boost.org.

as a shorthand for the statement “X is distributed according to Bi(10, 0.25)”.
Learning / estimation: Depends on the format of available training data. In
most cases the data will be of the same form as in the Bernoulli distribution, which
gives rise to an estimate q̂ of the success parameter. The number N of repetitions
will usually be given by the context in which the modeling task arises and need
not be estimated.

Poisson distribution. This distribution is defined for S = {0, 1, 2, . . .}. p(s) is
the probability that a particular kind of event occurs k times within a given time
interval. Examples (except the last one taken from https://en.wikipedia.org/

wiki/Poisson_distribution): p(k) might be the probability that

• k meteorites impact on the earth within 100 years,

• a call center receives k calls in an hour,

• a block of uranium emits k alpha particles in a second,

• k patients arrive in an emergency ward between 10 and 11 pm,

• a piece of brain tissue emits k neural spikes within a second.

Similarly, instead of referring to a time interval, k may count spatially or otherwise
circumscribed events, for instance

• the number of dust particles found in a milliliter of air,

• the number of diamonds found in a ton of ore.
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The Poisson distribution is also called the “distribution of rare events”, which I
find somewhat a misnomer, because many of the examples above describe anything
but rare events — for instance the number of spikes emitted from a blob of brain
tissue within a second could be in the order of millions. The important two
conditions that let a piece of reality create Poisson-distributed events are (i) that
the individual events are created in total independence from each other — when
in a block of uranium one atom decays and a little later another atom, these two
events have no causal influence on each other whatsover; and (ii) that there is a
very large “reservoir” of event-creating objects or mechanisms. For instance, in
the meteroite bombardment example, the event-generating resource would be the
entire universe; in the call center example it would be the population of people in
a country served by the call center. In mathematical rigor, the “event reservoir”
should be infinitely sized, but in the real world of course no infinite sources of
events exist, thus the Poisson distribution is an approximate model of such “rare
event” generating systems.

The expected number of events E[X] is called the rate of the Poisson distribu-
tion, and is commonly denoted by λ. The pmf of a Poisson distribution with rate
λ is given by

p(k) =
λk e−λ

k!
. (59)

Figure 39 depicts the pmf’s for three different rates.

Figure 39: The pmf of the Poisson distribution for various values of the parameter
λ. The connecting lines bewteen the dots are drawn only for better visual appear-
ance. Note that the k-axis is infinite to the right but here capped at 20 because
all shown curves will be so close to zero beyond k = 20 that plotting them will
not show the difference (image source: https://commons.wikimedia.org/wiki/
File:Poisson_pmf.svg).

Learning / estimation: For concreteness consider the call center example.
Training data would be N 1-hour protocols of incoming calls, where ni (i =
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1, . . . , N) is the number of calls received in the respective hour. Then λ is es-
timated by λ̂ = (1/N)

∑
i ni.

We continue with a few distributions on continuous sample spaces (Rn or sub-
sets thereof). These distributions are most often characterized by their probability
density functions (pdf’s).

Definition 7.4 Let X be a RV which takes values in S ⊆ Rn. A pdf for the
distribution of X is a function f : S → R≥0 which satisfies the following condition:
For every subvolume A ⊆ S of S, the probability P (X ∈ A) that X gives a value
in A is equal to

P (X ∈ A) =

∫
A

f(x)dx. (60)

Point distributions. There exist continuous-valued distributions for which a
description through a pdf is impossible. One kind of such “non-pdf-able” contin-
uous distributions occurs quite often: point distributions. Here, the probability
mass is concentrated in a few (finitely many or countably infinite many) points in
Rn. The simplest point distribution is defined on the real line S = R and has the
defining property that for any subset A ⊆ R it holds that

P (X ∈ A) =

{
1 if 0 ∈ A
0 if 0 /∈ A.

This is the formal way to express the fact that “X always returns an observation
value 0”.

There are several ways to write down such a point distribution in mathe-
matical formalism. In the machine learning literature (and throughout the nat-
ural sciences, especially physics), the above point distribution would be repre-
sented by a weird kind of pdf-like function, called the Dirac delta function δ (the
Wikipedia article https://en.wikipedia.org/wiki/Dirac_delta_function is
recommendable if you want to understand this function better). The Dirac delta
function is used inside an integral just like a normal pdf is used in (60). Thus, for
a subset A ⊆ R one has

P (X ∈ A) =

∫
A

δ(x) dx.

The Dirac delta is also used in Rn, where likewise it is a “pdf” which describes a
probability distribution concentrated in a single point, the origin.

If one wants to have a multi-point distribution one can combine Dirac deltas.
For example, if you want to create a probability measure on the real line that
places a probability of 1/2 on the point 1.0, and probabilities 1/4 each on the
points 2.0 and 3.0, you can do this by a linear combination of shifted Dirac deltas:

P (X ∈ A) =

∫
A

1/2 δ(x− 1) + 1/4 δ(x− 2) + 1/4 δ(x− 3) dx.
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Point distributions occur all over the place in Bayesian machine learning, where
they are needed to express and compute certain “hyperdistributions”. We will
meet them later in this course.

We now take a look at a choice of common continuous distributions that can
be characterized by pdfs.

The uniform distribution. We don’t need to make a big fuzz about this. If
I = [a1, b1]×. . .×[an, bn] is a n-dimensional interval in Rn, the uniform distribution
on I is given by the pdf

p(x) =

{
1

(b1−a1)·...·(bn−an)
if x ∈ I

0 if x /∈ I.
(61)

Learning / estimation: This distribution is not normally “learnt”. There is also
nothing about it that could be learnt: the uniform distribution has no “shape”
that would be specified by learnable parameters.

The exponential distribution. This distribution is defined for S = [0,∞)
and could be paraphrased as “the distribution of waiting times until the next
of these rare things happens”. Consider any of the kinds of temporal events
listed for the Poisson distribution, for instance the event “meteorite hits earth”.
The exponential distribution characterizes how long you have to wait for the next
impact, given that one impact has just happened. Like in the Poisson distribution,
such random event processes have an average rate events / unit reference time
interval. For instance, meteorites of a certain minimum size hit the earth with a
rate of 2.34 per year (just guessing). This rate is again denoted by λ. The pdf of
the exponential distribution is given by

p(x) = λ e−λx (note that x ≥ 0). (62)

The expectation of an exponential distribution is the reciprocal of the rate, E[X] =
1/λ. Figure 40 shows pdf’s for some rates λ.

Modeling waiting times by the exponential distribution is based on the same as-
sumptions as the Poisson distribution: the event-generating real-world sector must
have an essentially infinite ’reservoir’ of independent event-generating sources.

The exponential distribution plays a big role in modeling spiking neural net-
works (SNNs). Biological neurons communicate with each other by sending short
“point-like” electrical pulses, called spikes. Many people believe that Nature in-
vented communication by spikes to let the brain save energy – your head shouldn’t
heat up (like your PC does) when you do a hefty thinking job! For the same rea-
son, microchip engineers have teamed up with deep learning researchers to design
novel kinds of microchips for deep learning applications. These microchips con-
tain neuron-like processing elements which communicate with each other by spikes.
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Figure 40: The pdf of the exponential distribution for various values of
the parameter λ (image source: https://commons.wikimedia.org/wiki/File:

Exponential_pdf.svg).

IBM and Intel have actually built such chips (check out “Tianjic chip” or “Intel
Loihi” or “IBM NorthPole” if you want to learn more). Research about artificial
SNNs for machine learning applications goes hand in hand with research in neu-
roscience. In both domains, one often uses models based on the assumption that
the temporal pattern in a spike sequence sent by a neuron is a stochastic process
called a Poisson process. In a Poisson process, the waiting times between two
consecutive spikes are exponentially distributed. Recordings from real biological
neurons often show a temporal randomness of spikes that can be almost perfectly
modeled by a Poisson process.
Learning / estimation: The rate λ is the only parameter characterizing an
exponential distribution. Training data: a sequence t1, t2, . . . , tN of time points
where the event in question was observed. Then the rate can be estimated by
λ̂ = 1/(N − 1)

∑
i=1,...,N−1 ti+1 − ti.

The one-dimensional normal distribution. Fanfare! Enter the queen of
distributions! Bow in reverence! I am sure you know her from the tabloid press...
For royal garments, she wears the pdf

p(x) =
1√
2πσ

e−
(x−µ)2

2σ2 , (63)

which is fully specified by its mean µ and standard deviation (square root of
variance) σ. It has the famous bell shape with µ being the location of the maximum
and µ± σ being the locations of the zeros of the second derivative (Fig. 41).

The normal distribution with mean µ and variance σ2 is denoted by N (µ, σ2).
The normal distribution with zero mean and unit variance, N (0, 1), is called the
standard normal distribution. The normal distribution is also called Gaussian
distribution or simply Gaussian.
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Figure 41: pdf of a normal distribution with mean 2 and standard deviation 1.

The normal distribution has a number of nice properties that very much fa-
cilitate calculations and theory. Specifically, linear combinations of normal dis-
tributed, independent normal RVs are again normal distributed:

Proposition 7.1 Let X, Y : Ω→ R be two independent, normally distributed RVs
with means µ and ν and variances σ2 and τ 2. Then the weighted sum aX + b Y
is normally distributed with mean a µ+ b ν and variance a2 σ2 + b2 τ 2.

The majestic power of the normal distribution, which makes her reign almost
universally over almost all natural phenomena, comes from one of the most central
theorems of probability theory, the central limit theorem. It is stated in textbooks
in a variety of (not always exactly equivalent) versions. It says, in brief, that one
gets the normal distribution whenever random effects of many independent small-
sized causes sum up to large-scale observable effects. The following definition
makes this precise (you do not have to understand it — that would need a full
course in mathematical probability theory — but you should at least have seen
this definition):

Definition 7.5 Let (Xi)i∈N be a sequence of independent, real-valued, square in-
tegrable random variables with nonzero variances Var(Xi) = E[(Xi − E[Xi])

2].
Then we say that the central limit theorem holds for (Xi)i∈N if the distributions
PSn of the standardized sum variables

Sn =

∑n
i=1(Xi − E[Xi])

σ (
∑n

i=1Xi)
(64)

converge weakly to N (0, 1).

Explanations (if you wish to give it a try — these concepts will not be queried in
homeworks or exams):
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• A real-valued random variable with pdf p is square integrable if its [un-
centered] second moment, that is the integral E[X2] =

∫
R x

2 p(x)dx, is finite.

• If (Pn)n∈N is a sequence of distributions over R, and P a distribution (all
over the same measure space (R,B)), then (Pn)n∈N is said to converge weakly
to P if

lim
n→∞

∫
f(x)Pn(dx) =

∫
f(x)P (dx) (65)

for all continuous, bounded functions f : R → R. You will find the nota-
tion of these integrals unfamiliar, and indeed you see here cases of Lebesgue
integrals – a far-reaching generalization of the Riemann integrals that you
know. Lebesgue integrals can deal with a far greater range of functions
than the Riemann integral. Mathematical probability theory is formulated
exclusively with the Lebesgue integral. We cannot give an introduction to
Lebesgue integration theory in this course. Therefore, simply ignore the
precise meaning of “weak convergence” and take home that sequences of
distributions are required to converge to a target distribution in some subtly
defined way.

Note that the central limit theorem is actually not a theorem — it is a property
that a sequence of distributions may or may not have. There are many accom-
panying actual theorems of the kind, “A sequence (Xi)i∈N of random variables
(or, equivalently, its associated sequence of distribution (PXi)i∈N) obeys the central
limit theorem under these and those specific conditions”.

The conditions under which the central limit theorem holds can be very general
and weak. It is rather the common case, not the exception, that some sequence
of RV’s (or their distributions) has the central limit theorem property. A simple,
important class of (Xi) for which the central limit theorem holds is obtained
when the Xi are identically distributed (and, of course, are independent, square
integrable and have nonzero variance). Notice that regardless of the shape of
the distribution of each Xi, the distribution of the normalized sums converges to
N (0, 1)!

The classical demonstration of the central limit theorem is the Galton board,
named after Sir Francis Galton (1822–1911), an English multi-scientist. The idea is
to let little balls (or beans, hence this device is sometimes called “bean machine”)
trickle down a grid of obstacles which randomly deflect the ball left or right (Figure
42). It does not matter how, exactly, these deflections act — in the simplest case,
the ball is just kicked right or left by one space grid unit with equal probability.
The deeper the trickling grid, the closer will the resulting distribution be to a
normal distribution. A nice video can be watched at https://www.youtube.com/
watch?v=PM7z_03o_kk.

However, this simple case does not explain the far-reaching, general importance
of the central limit theorem (rather, property). In textbooks one often finds state-
ments like, “if the outcomes of some measurement procedure can be conceived to
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Figure 42: The Dalton board. Compare text for explanation. Figure taken from
https://janav.wordpress.com/2013/09/26/power-law/.

be the combined effect of many independent causal effects, then the outcomes will
be approximately normal distributed”. The “many independent causal effects”
that are here referred to are the random variables (Xi); they will typically not
be identically distributed at all. Still the central limit theorem holds under mild
assumptions. Intuitively, all that one has to require is that none of the individual
random variables Xi dominates all the others – the effects of any single Xi must
asymptotically be “washed out” if an increasing number of other Xi′ is entered
into the sum variable Sn. In mathematical textbooks on probability you may find
numerous mathematical conditions which amount to this “washing out”. A special
case that captures many real-life cases is the condition that the Xi are uniformly
bounded, that is, there exists some b > 0 such that all possible values that Xi

can take are in the interval [−b, b]. However, there exist much more general (non-
trivial to state) conditions that likewise imply the central limit theorem. For our
purposes, a good enough take-home message is

if (Xi) is a halfway reasonably behaved sequence of numerical RV’s, then
the normalized sums converge to the standard normal distribution.

The normal distribution plays an overwhelming role in applied statistics. One
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often has to actually compute integrals of the pdf (63):

Task: compute the numerical value of

∫ b

a

1√
2πσ

e−
(x−µ)2

2σ2 dx.

There is no closed-form solution formula for this task. Instead, the solution is
found in a two-step procedure:

1. Transform the problem from its original version N (µ, σ2) to the standard
normal distribution N (0, 1), by using∫ b

a

1√
2πσ

e−
(x−µ)2

2σ2 dx =

∫ b−µ
σ

a−µ
σ

1√
2π
e−

(x)2

2 dx. (66)

In terms of probability theory, this means to transform the original,N (µ, σ2)-
distributed RV X to a N (0, 1)-distributed variable Z = (X − µ)/σ. (The
symbol Z is often used in statistics for standard normal distributed RVs.).

2. Compute the numerical value of the r.h.s. in (66) by using the cumulative
density function of N (0, 1), which is commonly denoted by Φ:∫ b−µ

σ

a−µ
σ

1√
2π
e−

(x)2

2 dx = Φ(
b− µ
σ

)− Φ(
a− µ
σ

).

Since there is no closed-form solution for calculating Φ, in former times
statisticians found the solution in books where Φ was tabulated. Today,
statistics software packages run fast iterative solvers for Φ.

Learning / estimation: The one-dimensional normal distribution is character-
ized by two parameters, µ and σ2. Given a dataset (xi)i=1,...,N of points in R, the
estimation formulas for these two parameters are

µ̂ =
1

N

∑
i

xi,

σ̂2 =
1

N − 1

∑
i

(xi − µ̂)2.

The n–dimensional normal distribution. If data points are not just real
numbers but vectors x = (x1, . . . , xn)′ ∈ Rn, whose component RVs Xi fulfill
the central limit theorem, the joint distribution of the RVs X1, . . . , Xn is the
multidimensional normal distribution. It has the pdf

p(x) =
1

(2π)n/2 det(Σ)1/2
exp

(
−1

2
(x− µ)′Σ−1(x− µ)

)
. (67)
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Here µ is the expectation E[(X1, . . . , Xn)′] and Σ is the covariance matrix of the
n component variables, that is Σ(i, j) = E[(Xi − E[Xi])(Xj − E[Xj])]. Figure
43 shows the pdf of a 2-dimensional normal distribution. In geometrical terms, a
multidimensional normal distribution is shaped as an ellipsoid, whose main axes
coincide with the eigenvectors ui of the covariance matrix Σ. Like in PCA one
can obtain them from the SVD: if UDU ′ = Σ is the singular value decomposition
of Σ, the eigenvectors ui are the columns of U .

x1

x2

u1u2

Figure 43: A pdf (indicated by contour lines) of a 2-dimensional normal distribu-
tion with expectation µ. The vectors u1,u2 are the principal axes of the ellipses
which characterize the geometry of this pdf.

Multidimensional normal distributions (or simply, “Gaussians”) are major
players in machine learning. On the elementary end, one can use weighted com-
binations of Gaussians to approximate complex distributions - we will see this
later in today’s lecture. At the advanced end, there is an entire modern branch
of ML, Gaussian processes, where complex distributions (and hyperdistributions)
are modeled by infinitely many, interacting Gaussians. This is beyond the scope
of our course.
Learning / estimation: Given a set of n-dimensional training data points
(xi)i=1,...,N , the expectation µ and the covariance matrix Σ can be estimated from
the training data in the obvious way:

µ̂ = 1/N
∑
i

xi and Σ̂ = 1/(N − 1)
∑
i

(xi − µ̂)(xi − µ̂)′

.

... and many more! The few common, named distributions that I displayed
in this section are only meant to be illustrative picks from a much, much larger
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reservoir of well-known, completely analyzed, tabulated, pre-computed, and in-
dividually named distributions. The online book “Field Guide to Continuous
Probability Distributions” (Crooks 2017) attempts a systematic overview. You
should take home the following message:

• In 100 years or so of research, statisticians have identified hundreds of basic
mechanisms by which nature generates random observations. In this subsec-
tion we looked at only two of them – (i) intermittent rare “impact events”
coming from large numbers of independent sources which hit some target
system with a mean frequency λ, giving rise to Poisson and exponential dis-
tributions; and (ii) stochastic physical measurables that can be understood
as the additive effect of a large number of different causes, which leads to
the normal distribution.

• One way of approaching a statistical modeling task for a target distribution
PX is to

1. first analyze and identify the nature of the physical (or psychological
or social or economical...) effects that give rise to this distributions,

2. then do a literature search (e.g. check out what G. E. Crooks says) or
ask a statistics expert friend which known and named distribution is
available that was tailored to capture exactly these effects, – this will
likely give you a distribution formula that is shaped by a small number
of parameters θ,

3. then estimate θ from available observation data, getting a distribution
estimate θ̂, and

4. use the theory that statisticians have developed in order to calcu-
late confidence intervals (or similar accuracy tolerance measures) for
θ̂, which

5. finally allows you to state something like, “given the observation data,
with a probability of 0.95, the true distribution θtrue differs from the
estimate θ̂ by less than 0.01 percent.”

• In summary, a typical classical statistical modeling project starts from well-
argued assumptions about the type of the true distribution, then estimates
the parameters of the distribution, then reports the estimate together with
a quantification of the error bound or confidence level (or the like) of the
estimate.

• Professionally documented statistical analyses will always state not only the
estimated model, but also in addition quantify how accurate the model esti-
mate is. This can take many forms, like error bars drawn around estimated
parameters or stating “significance levels”.
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7.3 Mixture of Gaussians; maximum-likelihood estimates
by EM algorithms

Approximating a distribution of points x ∈ Rn by a single n-dimensional Gaussian
will often be a too coarse approximation which wipes out most of the interesting
structure in the data. Consider, for a demonstration, the probability distribu-
tion of points in a rectangular subset of R2 visualized in Figure 44. The true
distribution shown in panel A could not be adequately approximated by a sin-
gle 2-dimensional Gaussian, but if one invests a mixture of twenty of them, the
resulting model distribution (panel D) starts to look useful.

Figure 44: A. A richly structured 2-dimensional pdf (darker: larger values of pdf;
white: zero value of pdf). B. Same, discretized to a pmf. C. A MoG coverage of
the pmf with 20 Gaussians, showing the ellipsoids coresponding to standard devi-
ations. D. Contour plot of the pdf represented by the mixture of Gaussians. (The
picture I used here is an iconic photograph from the history of aviation, July 1909.
It shows Latham departing from Calais, attempting to cross the Channel in an
aeroplane for the first time in history. The motor of his Antoinette IV monoplane
gave up shortly before he reached England and he had to water. A few days later
his rival Blériot succeeded. https://en.wikipedia.org/wiki/Hubert Latham

Approximating a complex probability distribution by such mixtures of Gaus-
sians (MoG’s) is a widely used technique. It comes with a transparent and robust
optimization algorithm which locates, scales and rotates the various Gaussians
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such that all together they give an optimal approximation. This optimization al-
gorithm is an expectation-maximization (EM) algorithm. EM algorithms appear
in many variants in machine learning, but all of them are designed according to
the same basic principle, which every machine learning professional should know.
I will use this occasion of optimizing MoGs to introduce you to the world of EM
algorithms as a side-effect.

Let us first fix notation for MoGs. We consider probability distributions in Rn

— like the 2-dimensional distributions shown in Figure 44. A Gaussian (multi-
dimensional normal distribution) in Rn is characterized by its mean µ and its
n-dimensional covariance matrix Σ. We lump all the parameters inside µ and Σ
together and denote the resulting parameter vector by θ. We denote the pdf of
the Gaussian with parameters θ by p(·|θ). Now we can write down the pdf p of a
MoG that is assembled from m different Gaussians as

p : Rn → R≥0, x 7→
m∑
j=1

p(x|θj) P (j), (68)

where θj = (µj,Σj) are the parameters of the jth Gaussian, and where the mixture
coefficients P (j) satisfy

0 ≤ P (j) and
m∑
j=1

P (j) = 1.

For notational simplification we will mostly write
∑m

j=1 p(x|j) P (j) instead of∑m
j=1 p(x|θj) P (j).
MoG’s are used in unsupervised learning situations: given a data set (xi)i=1,...,N

of points in Rn, one wants to find a “good” MoG approximation of the distribution
from which the xi have been sampled. But... what does “good” mean?

This is the point to introduce the loss function which is invariably used when
the task is to find a “good” distribution model for a set of training data points.
Because this kind of loss function and this way of thinking about optimizing distri-
bution models is not limited to MoG models but is the universal way of handling
distribution modeling throughout machine learning, I devote a separate subsection
to it and discuss it in general terms.

7.3.1 Maximum likelihood estimation of distributions

We consider the following general modeling problem: Given a datasetD = (xi)i=1,...,N

of points in Rn and a hypothesis set H of pdf’s p over Rn, where each pdf p ∈ H
is parametrized by θp, we want to select that popt ∈ H which “best” models the
distribution from which the data points xi were sampled.

In supervised learning scenarios, we formalized this modeling task around a
loss function which compared model outputs with teacher outputs. But now we
find ourselves in an unsupervised learning situation. How can a pdf p be a “good”
or “bad” model for a given set of training points?
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In order to answer this question, one turns the question around: assuming the
true distribution is given by a pdf p, how “likely” is it to get the training dataset
D = (xi)i=1,...,N? That is, how well can the training datapoints be “explained” by
p?

To make this precise, one considers the probability that the dataset D was
drawn given that the true distribution has the pdf p (which is characterized by
parameters θ).

That exactly this sample D was drawn from p is obviously a random event —
if one would repeat the entire data sampling procedure, one would have obtained
another sample D′. It thus makes sense to ask, “what is the probability to draw
just exactly this sample D?” The probability of drawing D is described by a pdf
f(D|θ) over (Rn)N (don’t read on before you fully understand this). At this point
one assumes that the datapoints in D have been drawn independently (each of
them from a distribution with pdf p), which leads to

f(D|θ) =
N∏
i=1

p(xi | θ). (69)

This pdf f(D|θ) value gives the probability density of getting the sample D
if the underlying distribution is the one modeled by θ. Conversely, one says that
this value f(D|θ) is the likelihood of the distribution θ given the data D, and
writes L(θ |D). The words “probability” and “likelihood” are two different words
which refer to the same mathematical object, namely f(D|θ), but this object is
read from left to right when speaking of “probability”:

• “the probability to get data D given the distribution is modeled by θ”,
written f(D|θ),

and it is read from right to left when speaking of “likelihood”:

• “the likelihood of the model θ given a dataset D”, written L(θ |D).

If you meet someone who is able to correctly use the words “probability” vs.
“likelihood”, you can trust that person — s/he has received a good education in
machine learning.

The likelihood pdf (69) is not suitable for doing numerical computations, be-
cause a product of very many small numbers (the p(xi | θ)) will lead to numerical
underflow and become squenched to zero on digital computers. To avoid this, one
always works with the log likelihood

L(θ|D) = log
N∏
i=1

p(xi | θ) =
N∑
i=1

log p(xi | θ) (70)

instead. A model θ is “good” if it has a high (log)likelihood. Machine learning
algorithms for finding the best distribution model p in a hypothesis set H are
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designed to find the maximum likelihood model

θML = argmax
θ∈H

L(θ |D). (71)

Machine learners like to think of their learning procedures as minimizing some
cost or loss. Thus one also finds in the literature the sign-inverted version of (71)

θML = argmin
θ∈H

− L(θ |D), (72)

which obviously is equivalent. If one writes out the L(θ |D) one sees the structural
similarity of this unsupervised learning task with the supervised loss-minimization
task which we met earlier in this course (e.g. (42)):

θML = argmin
θ∈H

−
N∑
i=1

log p(xi | θ).

7.3.2 Maximum-likelihood estimation of MoG models by an EM algo-
rithm

Back to our concrete business of modeling a distribution represented by a dataset
D = (xi)i=1,...,N by a MoG. In order to to find a maximum-likelihood solution for
this MoG modeling task, one has to answer two questions:

1. What is the appropriate number m of mixture components? Setting m de-
termines the class of candidate solutions in which an optimization algorithm
can search for the maximum-likelihood solution. The set Hm contains all
mixtures of m Gaussians. We have here a case of a model class inclusion
sequence as discussed in Section 6.4. For determining an appropriate model
flexibility m the routine way would be to carry out a cross-validation.

2. If an appropriate m has been determined, how should the parameters θj
(where j = 1, . . . ,m) of the participating Gaussians be set in order to solve
the optimization problem

θML = argmax
θ∈Hm

L(θ |D)? (73)

The second question is answered by employing an expectation-maximization
(EM) algorithm. EM algorithms can often be designed for maximizing the (log)
likelihoods of parametrized distributions. There is a general scheme for designing
such algorithms, and general theorems concerning their convergence properties.
The EM principle had been introduced by Dempster, Laird, and Rubin 1977 —
one of these classical landmark papers that will forever continue to be continuously
cited (as of 2021, 65K Google cites).
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EM algorithms are called to help in computational statistics when it comes to
estimating model parameters θ from incomplete or partially observable data. The
principle of designing EM algorithms is a cornerstone of many important machine
learning algorithms that are using “incomplete” training data. What ”incomplete”
means depends on the specific case. For instance, it might mean missing data
points in time series measurements, or measurements of physical systems where
the available sensors give only a partial account of the system state. The general
idea is that the observed data have been caused or influenced by some “hidden”
mechanism which by itself could not be observed. A solid and reliable model of
the distribution of the observed measurable data should somehow include a model
of these unobserved hidden mechanisms. This is mathematically done by creating
models with two sorts of random variables: the observables (lumped together in a
random variable X) and the hiddens (collectively written as Y ). If one manages
to estimate a good model of the joint distribution of both X and Y , one can use
this “complete” model for many purposes, for instance

• for filling in “best guesses” for missing values in time series data where
observations are unavailable for certain time points (like handwritten texts
with unreadable words in them);

• for estimating hidden Markov models (HMMs) of stochastic timeseries; HMMs
are the most widely used models for stochastic processes with memory;

• for estimating models of complex systems that are described by many inter-
acting random variables, some of which are not observable — an example
from human-machine interfacing: modeling the decisions expected from a
user assuming that these decisions are influenced by emotional states that
are not directly observable; such models are called Bayesian networks or
more generally, graphical models ;

• for a host of other practical modeling tasks, like our MoG optimization task.

Because of the widespread usefulness of EM algorithms I will now carry you
through a general, abstract explanation of the underlying principle. This is not
easy stuff but worth the effort. I follow the exposition given in Roweis and Ghahra-
mani 1999, which also covers other versions of EM for other machine learning
problems. I use however another notation than these authors and I supply more
detail. In blue font I will insert how the abstract picture translates to our specific
MoG case. The following treatment will involve a lot of probability formalism
— I consider it a super exercise in becoming friends with random variables and
products of random variables! try not to give up on the way! I suggest that in a
first reading you skip the blue parts and concentrate on the abstract picture alone.

The general situation is the following. Let X be an observable random variable
and let Y be a hidden random variable, which take values in value sets (“sample
spaces”) SX and SY , respectively. X produces the visible training data D and
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Y produces the hidden data which have a causal impact on D but cannot be
observed.

In the MoG case, X would be the random variable which generates the en-
tire training sample (xi)i=1,...,N , thus here SX = (Rn)N . Y would be a random
variable that decides which of the m Gaussians is used to generate xi, thus
SY = {1, . . . ,m}N . The RV Y is a product Y =

⊗
Yi of i.i.d. RVs Yi, where

Yi takes values j ∈ {1, . . . ,m}. Concretely, Yi selects one of the m Gaussians by
a random choice weighted by the probability vector (P (1), . . . , P (m)). Thus the
value of Yi is ji, an element of {1, . . . ,m}.

The RV X is a product X =
⊗

Xi of i.i.d. RVs Xi, where Xi generates the i-th
training data point xi by a random draw from the ji-th Gaussian, that is from the
normal distribution N (µji ,Σji). Figure 45 illustrates what it means not to know
the values of the hidden variable Y .

Figure 45: A point set sampled from a mixture of Gaussians. Left: what we
(don’t) know if we don’t know from which Gaussian a point was drawn. Right:
the “hidden” variable made visible. (Figure copied from an online presentation of
Christopher M. Bishop, no longer accessible)

Let θ be a vector of parameters describing the joint distribution PX,Y of hidden
and visible RVs.

In our MoG case, θ = (µ1, . . . , µm,Σ1, . . . ,Σm, P (1), . . . , P (m))′.
Let D be the observed sample, that is, the result from a random draw with X.
In the MoG scenario, D = (xi)i=1,...,N .
The objective of an EM algorithm is to determine θ such that the likelihood

L(θ) = P (X = D | θ) becomes maximal, or equivalently, such that the log likeli-
hood

L(θ |D) = log P (X = D | θ)

becomes maximal.
At this point we would have to start using different notations (pmf’s versus

pdf’s) depending whether X and Y are discrete or continuous RVs. I will carry
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out the formal description only for the case that both X and Y are continuous,
which means that their joint distribution can be described by a pdf pX,Y defined on
SX × SY . The marginal distributions of X and Y are then given by parametrized
pdf’s pX(x|θ) =

∫
Y
pX,Y (x, y|θ)dy and pY (y|θ) =

∫
X
pX,Y (x, y|θ)dx. We can then

switch to a description of distributions using only pdfs, that is, the distribution of
samples D is described by the pdf pX(D|θ).

In the case of all-continuous distributions, the log likelihood of θ becomes

L(θ |D) = log pX(D|θ). (74)

The MoG case has a mix of types: X gives values in the continuous space (Rn)N

and Y gives values in the discrete space {1, . . . ,m}N . This makes it necessary to
use a mix of pdf’s and pmf’s when working out the MoG case in detail.

The difficulty we are facing is that the pdf value pX(D|θ) depends on the values
that the hidden variables take, that is,

L(θ |D) = log pX(D|θ) = log

∫
SY

pX,Y (D, y | θ) dy.

In the MoG case, the integral over SY becomes a sum over SY :

pX(D|θ) =
∑

(j1,...,jN )∈{1,...,m}N
P (Y = (j1, . . . , jN)) pX|Y=(j1,...,jN )(D)

=
∑

(j1,...,jN )∈{1,...,m}N

∏
i=1,...,N

P (Yi = ji) pXi|Yi=ji(xi),

where pX|Y=(j1,...,jN ) is the pdf of the conditional distribution of X given that
the hidden variables take the value (j1, . . . , jN) and pXi|Yi=ji is the pdf of the
conditional distribution of Xi given that the hidden variable Yi takes the value ji.

Now let q be any pdf for the hidden variables Y . Then we can obtain a lower
bound on log pX(D|θ) by

L(θ |D) = log

∫
SY

pX,Y (D, y | θ) dy =

= log

∫
SY

q(y)
pX,Y (D, y | θ)

q(y)
dy

≥
∫
SY

q(y) log
pX,Y (D, y | θ)

q(y)
dy

=

∫
SY

q(y) log pX,Y (D, y | θ) dy −
∫
SY

q(y) log q(y) dy (75)

=: F(q, θ),

(76)
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where the inequality follows from a version of Jensen’s inequality which states
that

E[f ◦ Y ] ≤ f(E[Y ])

for any concave function f (the log is concave).
EM algorithms maximize the lower bound F(q, θ) by alternatingly and itera-

tively maximizing F(q, θ) first with respect to q, then with respect to θ, starting
from an initial guess q(0), θ(0) which is then updated by:

Expectation step: q(k+1) = argmax
q
F(q, θ(k)), (77)

Maximization step: θ(k+1) = argmax
θ
F(q(k+1), θ). (78)

The maximum in the E-step is obtained when q is the conditional pdf of Y
given the data D,

q(k+1) = pY |X=D,θ(k) , (79)

because then F(q(k+1), θ(k)) = L(θ(k) |D):

F(pY |X=D,θ(k) , θ
(k)) =

=

∫
SY

pY |X=D,θ(k)(y) log pX,Y (D, y | θ(k)) dy −
∫
SY

pY |X=D,θ(k)(y) log pY |X=D,θ(k)(y) dy

=

∫
SY

pY |X=D,θ(k)(y) log
pX,Y (D, y | θ(k))

pY |X=D,θ(k)(y)
dy

=

∫
SY

pY |X=D,θ(k)(y) log pX(D | θ(k)) dy

=

∫
SY

pX,Y (D, y|θ(k))

pX(D | θ(k))
log pX(D | θ(k)) dy

=
log pX(D | θ(k))

pX(D | θ(k))

∫
SY

pX,Y (D, y|θ(k)) dy

= log pX(D | θ(k))

= L(θ(k) |D).

In concrete algorithms, in order to compute the conditional distribution pY |X=D,θ(k) ,
one makes assumptions about the class of distributions from which pY |X=D,θ(k)

comes (e.g. in our MoG example it would come from the class of pmf distribu-
tions over SY = {1, . . . ,m}N), and compute a set of parameters which together
fully characterize pY |X=D,θ(k) . Such parameters are called a sufficient statistic for
a distribution — for instance, the mean and variance are a sufficient statistic for a
normal distribution (In our MoG example, a sufficient statistic for the distribution
of pY |X=D,θ(k) is the set of all probabilities P (Yi = j |Xi = xi, θ

(k)), see Equation
(82) below). Such parameters can typically be expressed as expectations (e.g. the
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mean and variance of a distribution are the expected numerical value and the
expected squared distance from the mean), which gave this step its name, the
Expectation step.

The maximum in the M-step is obtained when the first term in (75) is maxi-
mized, because the second term does not depend on θ(k):

θ(k+1) = argmax
θ

∫
SY

q(k+1)(y) log pX,Y (D, y | θ) dy

= argmax
θ

∫
SY

pY |X=D,θ(k)(y) log pX,Y (D, y | θ) dy (80)

How the M-step is concretely computed (i.e. how the argmax problem (80)
is solved) depends on the particular kind of model. Can be tricky and worth a
publication to find an M-step algorithm for your new kind of model.

Because we have F = L(θ(k) |D) before each M-step, and the E-step does
not change θ(k), and F cannot decrease in an EM-double-step, the sequence
L(θ(0) |D),L(θ(1) |D), . . . monotonously grows toward a supremum. The itera-
tions are stopped when L(θ(k) |D) = L(θ(k+1) |D), or more realistically, when a
predefined number of iterations is reached or when the growth rate falls below a
predetermined threshold. The last parameter set θ(k) that was computed is taken
as the outcome of the EM algorithm.

It must be emphasized that EM algorithms steer toward a local maximum of
the likelihood. If started from another initial guess, another final parameter set
may be found. Here is a summary of the EM principle:

E-step: Estimate the distribution pY |X=D,θ(k)(y) of the hidden variables, given

data D and the parameters θ(k) of a preliminary model. This can be intu-
itively understood as inferring knowledge about the hidden variables, thereby
completing the data.

M-step: Use the (preliminary) “knowledge” of the complete data (given by D
for the visibles and by pY |X=D,θ(k)(y) for the hidden variables) to compute a

maximum likelihood model θ(k+1).

There are other ways to compute maximum likelihood solutions in tasks that
involve visible and hidden variables. Specifically, one can often invoke a gradient
descent optimization. A big advantage of EM over gradient descent is that EM
does not need a careful tuning of algorithm control parameters (like learning rates,
an eternal bummer in gradient descent methods), simply because there are no
tuning parameters. Furthermore, EM algorithms are typically numerically robust,
which cannot be said about gradient descent algorithms.

Now let us put EM to practice for the MoG estimation. For better didactic
transparency, I will restrict my treatment to a special case where we require all
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Gaussians to be spheric, that is, their covariance matrices are of the form Σ =
σ2 In where σ2 is the variance of the Gaussian in every direction and In is the n-
dimensional identity matrix. The general case of mixtures of Gaussians composed
of member Gaussians with arbitrary Σ is described in textbooks, for instance Duda,
P. E. Hart, and Stork 2001. And anyway, you would probably use a ready-made
online tool for MoG estimation... Here we go.

A MoG pdf with m spherical components is given by the vector of parameters
θ = (µ1, . . . , µm, σ

2
1, . . . , σ

2
m, P (1), . . . , P (m))′. This gives the following concrete

optimization problem:

θML = argmax
θ∈Hm

L(θ |D)

= argmax
θ∈Hm

N∑
i=1

log

(
m∑
j=1

1

(2πσ2
j )
n/2

exp

(
−‖xi − µj‖2

2σ2
j

)
P (j)

)
(81)

Assume that we are after iteration k and want to estimate θ(k+1). In the E-step
we have to compute the conditional distribution of the hidden variable Y , given
data D and the preliminary model

θ(k) = (µ
(k)
1 , . . . , µ(k)

m , σ
2 (k)
1 , . . . , σ2 (k)

m , P (k)(1), . . . , P (k)(m))′.

Unlike in the treatment that I gave for the general case, where we assumed Y
to be continuous, now Y is discrete. Its conditional distribution is given by the
probabilities P (Yi = j |Xi = xi, θ

(k)), where i = 1, . . . , N and j = 1, . . . ,m. These
probabilities are

P (Yi = j |Xi = xi, θ
(k)) =

p(k)(xi |Yi = j) P (k)(j)

p
(k)
X (xi)

, (82)

where p(k)(xi |Yi = j) is the pdf of the j-th Gaussian with parameters µ
(k)
j , σ

2 (k)
j

and

p
(k)
X (xi) =

m∑
j=1

P (k)(j) p(k)(xi |Yi = j).

In the M-step we have to find maximum likelihood estimates for all parameters
in θ. I do not give a derivation here but just report the results, which are intuitive
enough:

µ
(k+1)
j =

∑N
i=1 P (Yi = j |Xi = xi, θ

(k)) xi∑N
i=1 P (Yi = j |Xi = xi, θ(k))

,

σ
2 (k+1)
j =

1

n

∑N
i=1 P (Yi = j |Xi = xi, θ

(k))‖µ(k+1)
j − xi‖2∑N

i=1 P (Yi = j |Xi = xi, θ(k))
, and

P (k+1)(j) =
1

N

N∑
i=1

P (Yi = j |Xi = xi, θ
(k)).
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I conclude this sudorific (look this up in a dictionary) subsection with a lit-
tle EM-for-MoG demo that I copied from an online presentation of Christopher
Bishop (now apparently no longer online). The sample data xi ∈ R2 come from
observations of the Old Faithful geysir in the Yellowstone National Park (Figure
46).

Figure 46: A two-dimensional dataset.

Figure 47 shows 20 EM iterations with m = 2 Gaussian components. The
first panel shows the initial guess. Color codes are the estimated probabilities
P (Yi = j |Xi = xi, θ

(k)). The MoG modeling of the aeroplane image in Figure
44 was also done with the EM algorithm, in a version that allowed for arbitrary
covariance matrices Σj. I did it myself, programming it from scratch, just to prove
to myself that all of this really works. It does!

7.4 Parzen windows

After the heavy-duty work of coming to grips with the EM algorithm, let us finish
this section with something easy, for chilling out. Parzen windows!

Parzen windows are a simple representative of the larger class of kernel-based
representations, providing an alternative to mixture models for representing pdf’s.
These representations are non-parametric — there is no parameter vector θ for
specifying a Parzen window approximation to a pdf. To introduce Parzen windows,
consider a sample of 5 real-valued points shown in Figure 48. Centered at each
sample point we place a unit square area on the x-axis. Weighing them each by
1/5 and summing them gives an intuitively plausible representation of a pdf.

To make this example more formal and general, consider n-dimensional data
points xi. Instead of a unit-length square, we wish to make these points the
centers of n-dimensional hypercubes of side length d. We need a function H that
indicates which points around xi fall into the hypercube centered at xi. To this
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Figure 47: The EM algorithm at work on the Old Faithful dataset.

end we introduce a kernel function, in this case also known as Parzen window,

H : Rn → R≥0, (x1, . . . , xn)′ 7→

{
1, if |xj| < 1/2 for j = 1, . . . , n

0, else
(83)

which makes H the indicator function of a unit hypercube centered at the origin.
Using H, we get the n-dimensional analog of the staircase pdf in Figure 48 for a
sample D = (xi)i=1,...,N by

p(D)(x) =
1

N

N∑
i=1

1

dn
H

(
x− xi
d

)
, (84)

observing that the volume of such a cube is dn. The superscript (D) in p(D) is
meant to indicate that the pdf depends on the sample D.

Clearly, given some sample (xi)i=1,...,N , we do not believe that such a rugged
staircase reflects the true probability distribution the sample was drawn from. We
would rather prefer a smoother version. This can be easily done if we use smoother
kernel functions. A standard choice is to use multivariate Gaussians with diagonal
covariance matrix and uniform standard deviations σ =: d for H. This turns (84)
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Figure 48: Rectangular Parzen window representation of a distribution given by a
sample of 5 real numbers. The sample points are marked by colored circles. Each
data point lies in the middle of a square ”Parzen window”, that is, a rectangular
pdf centered on the point. Weighted by 1/5 (colored rectangles) and summed
(solid black staircase line) they give a pdf.

into

p(D)(x) =
1

N

N∑
i=1

1

(2πd2)n/2
exp

(
−‖x− xi‖2

2d2

)

=
1

N

N∑
i=1

1

dn
1

(2π)n/2
exp

(
−1

2
‖x− xi

d
‖2

)
(85)

where the second line brings the expression to a format that is analog to (84).
It is clear that any nonnegative kernel function H which integrates to unity

can be used in an equation of this sort such that the resulting p(D) will be a pdf.
The scaling factor d determines the width of the Parzen window and thereby the
amount of smoothing. Figure 49 illustrates the effect of varying d.
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FIGURE 4.4. Three Parzen-window density estimates based on the same set of five samples, using the window
functions in Fig. 4.3. As before, the vertical axes have been scaled to show the structure of each distribution.
From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c⃝ 2001 by John
Wiley & Sons, Inc.

d = 1 d = 0.5 d = 0.2

Figure 49: The effect of choosing different widths d in representing a 5-point, 2-
dimensional sample by Gaussian windows. (Taken from the online set of figures
of the book by Duda, Hart & Stork, ftp://ftp.wiley.com/public/sci_tech_
med/pattern/)

Comments:
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• Parzen window representations of pdfs are ”non-parametric” in the sense
that the shape of such a pdf is determined by a sample (plus, of course, by
the shape of the kernel function, which however mainly serves a smoothing
purpose). This can render Parzen window representations computationally
expensive, because if the sample size is large, a large number of data points
have to be stored (and accessed if the pdf is going to be used).

• The basic Parzen windowing scheme, as introduced here, can be refined in
many ways. A natural way to improve on it is to use different widths d
for different sample points xi. One then makes d narrow in regions of the
sample set which are densely populated, and wide in regions that are only
thinly covered by sample points. One way of doing that (which I invented
while I was writing this — there are many ways to go) would be to (i) choose
a reasonably small integer K; (ii) for each sample point xi determine its K
nearest neighbors xi1, ...,xiK ; (iii) compute the mean squared distance δ of
xi from these neighbors, (iv) set d proportional to this δ for this sample
point xi.

• As Figure 49 demonstrates, the width d has a strong effect on the Parzen
pdf. If d is too large, the smoothing becomes too strong, and information
contained in the sample is smoothed away — underfitting! In contrast, when
d is too small, all that we see in the resulting Parzen pdf is the individual
data points — the pdf then models not a distribution, but just the sample.
Overfitting! Here one should employ a cross-validation scheme to optimize
d, minimizing the validation loss defined by −

∑
v∈V log p(T )(v | d), where

V is the validation set, T the training set, and p(T )(v | d) the Parzen pdf
obtained from the training set using width d.

• The Parzen-window based distribution (85) will easily lead to numerical
underflow problems for arguments x which are not positioned close to a
sample point, especially if d is set to small values. A partial solution is to
use log probabilities instead, i.e. use

log p(D)(x) = log

(
1

N

N∑
i=1

1

(2πd2)n/2
exp

(
−‖x− xi‖2

2d2

))
. (86)

Still this will not usually solve all underflow problems, because the sum-exp
terms within the log still may underflow. Here is a trick to circumvent this
problem, known as the ”log-sum-exp” trick. Exploit the following:

log(exp(−A) + exp(−B)) =

= log (exp(−A+ C) exp(−C) + exp(−B + C) exp(−C))

= −C + log (exp(−A+ C) + exp(−B + C)) ,

where you use C = max(A,B).
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8 Bayesian model estimation

Machine learning is based on probability, and probability is ... what? — We
don’t know what probability is! After centuries of thinking, philosophers and
mathematicians have not arrived at a general consensus of how to best understand
randomness. The proposals that are on the table can be broadly grouped into
objectivist and subjectivist interpretations of “probability”.

According to the objectivist view, probability resides physically in the real
world — it is a phenomenon of nature, as fundamentally a property of physical
reality as for instance “time” or “energy”.

According to the subjectivist view, probability describes an observer’s sub-
jective opinion on something observed — a degree of belief, of uncertainty, of
plausibility of judgement, or missing information etc.

Calling the two views “objectivist” versus “subjectivist” is the philosophers’
terminology. Statisticians and machine learners rather call it frequentist statistics
versus Bayesian statistics.

This duality of understandings of “probability” has left a strong mark on ma-
chine learning. The two ways of thinking about probability lead to two different
ways of designing learning algorithms. Both are important and both are in daily
use. A machine learning professional should be aware of the fundamental intuitions
behind the two sorts of algorithms, and know when to use which. In this section I
explain the fundamental ideas behind the two understandings of probability, out-
line the general principles of Bayesian learning algorithms, and demonstrate them
in a case study of great importance in bioinformatics, namely the classification of
proteins.

8.1 The ideas behind frequentist statistics

When probability is regarded as a phenomenon of nature, there should be ways
to measure it. The standard proposition of how one can measure probability is
by relative frequency counting. For instance, in the textbook example of a loaded
(unfair) die, the die may have the physical property that P (X = 6) = 1/5 (as
opposed to P (X = 6) = 1/6 for a fair die), where X is the RV which gives
the outcomes of throwing-the-die experiments. This property of the die could
be experimentally measured by repeating the die-throwing act many times. This
would give a sequence of outcomes x1, x2, x3, . . . where xi ∈ {1, . . . , 6}. After N
such throws, an estimate of the quantity P (X = 6) is calculated by

P̂N(X = 6) =
number of outcomes xi = 6

N
, (87)

where N is the number of throws that the experimentalist measuring this proba-
bility has carried out.

We generally use the hat symbol ·̂ on top of some variable to denote a numerical
estimate based on a finite amount of observation data. The true probability P (X =
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6) = 1/5 would then become “measurable in principle” by

(∗) P (X = 6) = lim
N→∞

P̂N(X = 6). (88)

A fundamental mathematical theorem in frequentist probability theory — ac-
tually, the fundamental law which justifies frequentist probability theory in the
first place — is the law of large numbers. It states that if one carries out an
infinite sequence of independent repetitions of the same numerical measurement
experiment, obtaining a sequence of measurement values x1, x2, . . ., where xi ∈ R,
then the mean value µN = (1/N)

∑N
i=1 xi of initial sequences up to N will “al-

most always” converge to the same number µ = E[X], called the expectation of
X. Stating and proving this theorem in formal rigor has taken mathematicians a
long time and was achieved by Kolmogorov no earlier than in the early 1930’s. A
precise formulation needs the full apparatus of measure-theoretic probability the-
ory (which is introduced to some useful extent in my lecture notes on Principles
of Statistical Modeling).

More generally, considering some random variable X which takes values in a
sample space S, one considers subsets A ⊆ S (called events) and then defines

The frequentist view of probability: The probability P (X ∈ A)
that the outcome of sampling a datapoint with procedure X gives an
outcome in the value range A is the relative frequency (in the limit of
carrying out infinitely many independent and unbiased trials of carrying
out a measurement procedure X) of obtaining a measurement value in
A.

If one looks at this “definition” with a critical mind one will find that it is
loaden with difficulties.

First, it defines a “measurement” process that is not feasible in reality because
one cannot physically carry out infinitely many measurement trials. This is
maybe not really disturbing because any measurement in the sciences (say,
of a voltage) is imprecise and one gets measurements of increasing precision
by repeating the measurement, just as when one measures a probability.

Second, it does not inform us about how, exactly, the “repeated trials” of exe-
cuting X should be done in order to be “unbiased”. What does that mean
in terms of experimental procedures? This is a very critical issue. To appre-
ciate its impact, consider the example of a bank who wishes to estimate the
probability that a customer will fail to pay back a loan. In order to get an
estimate of this probability, the bank can only use customer data collected in
the past, but wants to base creditworthyness decisions for future customers
on those data. Picking only past data points to base probability estimates on
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hardly can qualify as an “absolutely unbiased” sampling of data, and in fact
the bank may grossly miscalculate credit risks when the general customer
body or their economical conditions change over time. These difficulties
have of course been recognized in practical applications of statistics. Text-
books and statistics courses for psychologists and economists contain entire
chapters with instructions on how to collect “unbiased samples”.

Third, if one repeats the repeated measurement, say by carrying out one mea-
surement sequence giving x1, x2, . . . and then another one giving x′1, x

′
2, . . .,

the values P̂N from Equation (88) are bound to differ between the two se-
ries. The limit indicated in Equation (88) must somehow be robust against
different versions of the P̂N . Mathematical probability theory offers several
ways to rigorously define limits of series of probability quantities which we
do not present here. Equation (88) is suggestive only and I marked it with
a (∗) to indicate that it is not technically complete.

Among these three difficulties, only the second one is really problematic. The
first one is just a warning that in order to measure a probability with increasing
precision we need to invest an increasingly large effort — but that is the same for
other measurables in the sciences. The third difficulty can be fully solved by a
careful definition of suitable limit concepts in probability theory. But the second
difficulty is fundamental and raises its ugly head whenever statistical assertions
about reality are made. It is the reason for the grain of truth in the ugly saying,
“all statistics lie”.

In spite of these difficulties, the objectivist view on probability in general, and
the frequentist account of how to measure it in particular, is widely shared among
empirical scientists. It is also the view of probability which is commonly taught
in courses of statistics for mathematicians. A student of mathematics may not
even have heard of Bayesian statistics at the end of his/her studies. In machine
learning, the frequentist view often leads to learning algorithms which are based
on the principle of maximum likelihood estimation of distributions — as we have
seen in Section 7.3.1. In fact, all what I wrote in these lecture notes up to now
was implicitly based on a frequentist understanding of probability.

8.2 The ideas behind Bayesian statistics

Subjectivist conceptions of probability also have led to mathematical formalisms
that can be used in statistical modeling. A hurdle for the student here is that
a number of different formalisms exist which reflect different modeling goals and
approaches, and tutorial texts are rare.

The common starting point for subjectivist theories of probability is to cast
“probability” as a subjective degree of belief, of certainty of judgement, or plausi-
bility of assertions, or similar — instead of as an objective property of real-world
systems. Subjectivist theories of probability do not develop analytical tools to
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describe randomness in the world. Instead they provide formalisms that code how
rational agents (you, I, and AI systems) should think about the world, in the face of
various kinds of uncertainty in their knowledge and judgements. The formalisms
developed by subjectivists can by and large be seen as generalizations of classical
logic. Classical logic only knows two truth values: true or false. In subjectivist
versions of logic formalisms, a proposition can be assigned graded degrees of “be-
lief”, “plausibility”, etc. For a first impression, contrast a classical-logic syllogism
like

(i) We know: if A is true, then B is true
(ii) We know: A is true

(iii) We conclude: B is true

with a “plausibility reasoning rule” like

(i) We know: if A is true, then B becomes more plausible
(ii) We know: B is true

(iii) We conclude: A becomes more plausible

This example is taken from Jaynes 2003, where a situation is described in which
a policeman sees a masked man running away from a juweler’s shop whose window
was just smashed in. The plausibility rule captures the policeman’s inference that
the runner is likely, as follows. Set for A: “the person is a thief”, and for B: “the
person runs away from a smashed-in shop window”. Using the above reasoning
rule, the policeman will argue: (i) I saw this person running away from the smashed
window; and (ii) I know that when a person runs away from a smashed shop
window, it’s some evidence that he’s the thief; hence (iii) there’s some evidence
that this person is the thief. From reasoning rules like this taken as starting points,
a number of logic formalisms have been devised which enrich/modify classical two-
valued logic in various ways. If you want to explore these areas a little further,
the Wikipedia articles probabilistic logic, Dempster-Shafer theory, fuzzy logic,
or Bayesian probability are good entry points. In some of these formalisms the
Kolmogorov axioms of frequentist probability re-appear as part of the respective
mathematical apparatus. Applications of such formalisms arise in classical, logic-
oriented AI (modeling reasoning under uncertainty), human-machine interfaces
(supporting discourse generation), game theory and elsewhere.

The discipline of statistics has almost entirely been developed in an objectivist
spirit, firmly rooted in the frequentist interpretation of probability. Machine learn-
ing also in large parts roots in this view. However, a certain subset of machine
learning models and computational procedures have a subjectivist component.
These techniques are referred to as Bayesian model estimation methods. Bayesian
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modeling is particulary effective and important when training datasets are small.
I will explain the principle of Bayesian model estimation with a super-simple syn-
thetic example. A more realistic example — of great practical importance — will
be detailed in Section 8.3.

Consider the general statistical modeling task, here discussed for real-valued
random variables. A measurement which yields real-valued outcomes (like mea-
suring the speed of a diving falcon) is repeated N times, giving a measurement
sequence x1, . . . , xN . The ith measurement value is obtained from a RV Xi. These
RVs Xi, which model the individual measurements, are i.i.d. We assume that the
distribution of each Xi can be represented by a pdf pXi : R → R≥0. The i.i.d.
property of the family (Xi)i=1,...,N implies that all these pXi are the same, and we
call that pdf pX . We furthermore assume that pX is a parametric pdf, that is, it
is a function which is parametrized by a parameter vector θ, for which we often
write pX(θ). Then, the statistical modeling / machine learning task is to estimate
θ from the sample data x1, . . . , xN . We have seen that this set-up naturally leads
to maximum-likelihood estimation algorithms which need to be balanced with
regards to bias-variance using some regularization and cross-validation scheme.

For concreteness let us consider a case where N = 2, that is two observa-
tions (only two!) have been collected, forming a training sample D = (x1, x2) =
(0.9, 1.0). We assume that the pdf pX is a normal distribution with unit standard
deviation, that is, the pdf has the form pX(x) = 1/

√
2π exp(−(x − µ)2/2). This

leaves the expectation µ as the only parameter that has to be estimated, thus
θ = µ. The learning task is to estimate µ from D = (x1, x2) = (0.9, 1.0).

The classical frequentist answer to this question is to estimate µ by the sample
mean (which, by the way, is the maximum-likelihood estimator for the expectation
µ). That is, one computes

µ̂ =
1

N

N∑
i=1

xi, (89)

which in our example gives µ̂ = (0.9 + 1.0)/2 = 0.95.
This is the best a classical-frequentist modeler can do. In a certain well-defined

sense which we will not investigate, the sample mean is the optimal estimator for
the true mean of a real-valued distribution. But “best” is not “good”: with only
two data points, this estimate is quite shaky. It has a high variance: if one would
repeat the observation experiment, getting a new sample x′1, x

′
2, chances are very

high that one would obtain a quite different sample and thus an estimate µ̂′ that
is quite different from µ̂.

Bayesian model estimation shows a way how to do better. It is a systematic
method to make use of prior knowledge that the modeler may have beforehand.
This prior knowledge takes the form of “beliefs” about which parameter vectors θ
are more or less plausible. This belief is cast in the form of a probability distribu-
tion over the space Θ of possible parameter vectors θ. In our super-simple example
let us assume that the modeler knows or believes that the true expectation µ can’t
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be negative and it can’t be greater than 1. Furthermore, let us assume that the
modeler is lacking any more specific insight — all values of θ (here: θ = µ) are
equally plausible to the modeler. Thus he/she will encode his/her prior belief
as the uniform distribution h over [0, 1]. This distribution is called the Bayesian
prior distribution.

This kind of prior knowledge is often available, and it can be quite weak (as in
our example). Abstracting from our example, this kind of knowledge means to fix
a “belief profile” (in the mathematical format of a probability distribution) over
the space Θ of possible parameters θ for a model family. In our mini-example the
modeler felt confident to restrict the possible range of the single parameter θ1 = µ
to the interval [0, 1], with a uniform (= non-committing) distribution of “belief”
over this interval.

Before I finish the treatment of our baby example, I present the general schema
of Bayesian model estimation.

To start the Bayesian model estimation machinery, available prior knowledge
about parameters θ is cast into the form of a distribution over parameter space.
For a K-parametric pdf pX , the parameter space is RK . Two comments:

• The distribution for model parameters θ is not a distribution in the classical
sense. It is not connected to a random variable and does not model a real-
world outcome of observations. Instead it captures subjective beliefs that
the modeler has about how the true distribution PXi of data points should
look like. It is here that subjectivist aspects of “probability” intrude into an
otherwise classical-frequentist picture.

• Each parameter vector θ ∈ RK corresponds to one specific pdf pX(θ) — one
of the many candidate distributions in Θ. A distribution over parameter
vectors θ ∈ Θ ⊆ RK is thus a distribution over distributions. It is called a
hyperdistribution. We will use the symbol h to denote this hyperdistribution.

In order to proceed with our discussion of general principles, we need to lift our
view from the pdf’s pXi(θ), which model the distribution of single data points, to
the the N -dimensional pdf p⊗Xi : RN → R≥0 for the distribution of the product
RV

⊗
iXi (where as usual N is the number of observed data points). Assuming

independence of the Xi, it can be written as

p⊗Xi((x1, . . . , xN)) = pX1(x1) · . . . · pXN (xN). (90)

or in another notation (observing that all pdfs pXi are identical, so we can use the
generic RV X with pX = pXi for all i), as

p⊗
iX

((x1, . . . , xN)) =
∏
i

pX(xi). (91)

We write p⊗
iX

(D | θ) to denote the pdf value p⊗
iX

(θ)((x1, . . . , xN)) = p⊗
iX

(θ)(D)
of p⊗

iX
(θ) on a particular training data sample D = (x1, . . . , xN).

Summarizing:
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• The pdf h(θ) encodes the modeler’s prior beliefs about how the parametrized
distribution pX(θ) should look like. Parameters θ where h(θ) is large corre-
spond to data distributions that the modeler a priori finds more plausible.
The distribution represented by h(θ) is a hyperdistribution; it is often called
the (Bayesian) prior.

• If θ is fixed, p⊗
iX

(D | θ) can be seen as a function of data vectors D. This
function is a pdf over the training sample data space. For each possible
training sample D = (x1, . . . , xN) it describes how probable this particular
outcome is, assuming the true distribution of X is pX(θ).

A note on notation: normally the vertical bar denotes conditional probabil-
ities, as in P (X = a | Y = b). When however a parameter vector θ appears
right to the bar, such expressions like p⊗

iX
(D | θ) do not denote conditional

probabilities. It is just the customary (and admittedly confusing) notation
to state that the probability measure in question (here: the pdf p⊗

iX
) is

parametrized by θ. We could also equivalently write p⊗
iX

(θ)(D) as I did
earlier, but the notation p⊗

iX
(D | θ) is more common.

• If, conversely, D is fixed, then p⊗
iX

(D | θ) can be seen as a function of θ.
Seen as a function of θ, p⊗

iX
(D | θ) is not something like a pdf over θ-

space. Its integral over θ will not usually be one. Seen as a function of θ,
p⊗

iX
(D | θ) is called a likelihood function — given data D, it reveals certain

models θ as being more likely than others. A model (characterized by θ)
“explains” given data D better if p⊗

iX
(D | θ) is higher. We have met the

concept of a likelihood function before in Section 7.3.1.

We thus have two sources of information about the sought-after, unknown true
distribution pX(θ): the likelihood p⊗

iX
(D | θ) of θ given data D, and the prior

plausibility encoded in h(θ). These two sources of information are independent
of each other: the prior plausibility is settled by the modeler before data have
been observed, and should not be informed by data. Because the two sources of
information come from “independent” sources of information (belief and data), it
makes sense to combine them by multiplication and consider the product

p⊗
iX

(D | θ) h(θ).

This product combines the two available sources of information about the
sought-after true distribution pX(θ). When data D are given, this product is a
function of model candidates θ. High values of this product mean that a candidate
model θ is a good estimate, low values mean it’s bad — in the combined light of
both observed data and prior beliefs.

With fixed D, the product p⊗
iX

(D | θ) h(θ) is a non-negative function on the
K-dimensional parameter space θ ∈ RK . It will not in general integrate to unity
and thus is not a pdf. Dividing this product by its integral however gives a pdf,
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which we denote by h(θ |D):

h(θ |D) =
p⊗

iX
(D | θ) h(θ)∫

RK p
⊗
iX

(D | θ) h(θ) dθ
(92)

The distribution on model parameter space represented by the pdf h(θ|D)
is called the posterior distribution or simply the posterior. The formula (92)
shows how Bayesians combine the subjective prior h(θ) with empirical information
p⊗

iX
(D|θ) to get a posterior distribution over candidate models. Comments:

• The posterior distribution h(θ |D) is the final result of a Bayesian model
estimation procedure. It is a probability distribution over candidate models,
which is a richer and often a more useful thing than the single model that is
the result of a classical frequentist model estimation (like the sample mean
from Equation 89).

• Here I have considered real-valued distributions that can be represented
by pdfs throughout. If some of the concerned distributions are discrete or
cannot be represented by pdfs for some reason, one gets different versions of
(92).

• If one wishes to obtain a single, definite model estimate from a Bayesian
modeling exercise, a typical procedure is to compute the mean value of the
posterior. The resulting model θ̂ is called the posterior mean estimate

θ̂ = θPME =

∫
RK

θ h(θ |D) dθ.

• Compared to classical-frequentist model estimation, generally Bayesian model
estimation procedures are computationally more expensive and also more dif-
ficult to design properly, because one has to invest some thinking into good
priors. With diligently chosen priors, Bayesian model estimates may give far
better models than classical-frequentist ones, especially when sample sizes
are small (really: far!! better models, as we will see in the worked-out
protein modeling example later).

• If one abbreviates the normalization term
∫
RK p

⊗
iX

(D | θ) h(θ) dθ in (92) as
p(D) (“probability density of seeing data D, averaged over candidate model
parameters θ”), the formula (92) looks like a version of Bayes’ rule:

h(θ |D) =
p⊗

iX
(D | θ) h(θ)

p(D)
, (93)

which is why the this entire approach is called “Bayesian”. Note that while
the classical textbook Bayes’ rule is a theorem that can be proven from the
axioms of classical probability theory, (93) is a definition (of h(θ |D)).
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• A note on terminology. There exists a family of models in machine learn-
ing named Bayesian networks. This name does not imply that Bayesian
networks are estimated from data using “subjectivist” Bayesian statistics.
Bayesian networks are parametrized models and their parameter vectors can
be estimated with classical frequentist or with Bayesian methods.

: posterior mean 
estimate, ≈ 0.565

: sample mean,     
= 0.95
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Figure 50: Bayesian model estimation. Compare text.

Let us conclude this section with a workout of our simple demo example. For
the given sample D = (0.9, 1.0), the likelihood function becomes

p⊗
iX

(D |µ) =
1√
2π

exp

(
−(0.9− µ)2

2

)
· 1√

2π
exp

(
−(1.0− µ)2

2

)
=

1

2π
exp

(
−0.905 + 1.9µ− µ2

)
The green line in Figure 50 gives a plot of p⊗

iX
(D |µ), and the red bro-

ken line a plot of the posterior distribution h(µ |D). A numerical integration of∫
R µ h(µ |D) dµ yields a posterior mean estimate of θ̂ ≈ 0.565. This is quite

different from the sample mean 0.95, revealing the strong influence of the prior
distribution on possible models.

8.3 Case study: modeling proteins

I will now discuss in some detail an elementary modeling task that is easily stated
and met in practical applications all over the place — yet it needs a surprisingly
subtle treatment if training data are scarce.

In a general formulation, the task is to estimate a probability mass function
for a finite, discrete distribution, given a histogram from a sample.
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For example, one might want to estimate the probabilities that a coin comes
up with head or tail after tossing (formally modeled by a RV X with possible
outcome values H and T). Tossing the coin 100 times gives a histogram over the
two outcomes H and T, say, (55, 45). Based on these training data, one wants
to estimate the probabilities P (X = H) and P (X = T). A maximum likelihood
estimate is the pmf p̂ = (P (X = H), P (X = T))′ = (0.55, 0.45)′. Easy and obvious.

But things become not-so-easy and non-obvious when the number of symbolic
categories is large and the number of available observations is small. I will highlight
this with an example taken from a textbook of bioinformatics (Durbin et al. 2000).

Proteins are sequences of amino acids, of which 20 different ones can occur
in proteins. They are standardly tagged by 20 symbols S = {A, C, D, ..., Y}, an
alphabet that is intimately familiar to biologists. Proteins come in classes. Some
protein in one animal or plant species has typically close relatives in other species.
Related proteins differ in detail but generally can be aligned, that is, corresponding
sites in the amino acid string can be detected, put side by side, and compared.
For instance, consider the following short section of an alignment of 7 amino acids,
all from the class of “globuline” proteins:

...GHGK...

...AHGK...

...KHGV...

...THAN...

...WHAE...

...AHAG...

...ALGA...

A basic task in bioinformatics is to estimate the probability distribution of the
amino acids in each column in a protein class. These 20-dimensional pmf’s (one
for each site in the protein) are needed for deciding whether some newly found
protein belongs into the class — that is, for carrying out protein classifications,
which is a fundamental and bulk-volume task in bioinformatics.

This task is rendered difficult by the fact that the sample of aligned proteins
used to estimate these pmf’s is typically rather small — here we have only 7
individuals in the sample. As can be seen in the segment of the alignment shown
above, some columns have widely varying entries (e.g. the last column has K K V

N E G A). In such a small sample, chances are high that an amino acid, which is
generally rare at a given site in the animal/plant kingdom, will not appear in the
training data set. The column K K V N E G A only features 6 out of 20 possible
amino acids; 14 amino acids are missing at this site in the training data.

But the class of related proteins is huge: in every animal species one would
expect at least one class member and typically many more — millions of members
in the family of globulines! This implies that at every site, it is very likely that
every amino acid will occur in some species, though maybe with low probability. A
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low-probability-in-a-specific-site amino acid, call it X, will often not be represented
in that site’s training data. Consequences:

1. a maximum-likelihood estimate of the pmf for that site will assign zero prob-
ability to X which in turn implies that,

2. when this model is used for protein classification and a new test protein does
have X in that site, it will turn out that the test protein cannot possibly be
a globuline because it has X at that site and in globulines the probability for
this has been determined to be zero.

This wrong decision will be made for all test proteins which are globulines but
happen to host one of the 14 amino acids not in the training set on that site.
Since there are many sites in a protein (dozens to hundreds), chances are high for
any test sequence to have a zero-probability amino-acid in some site. Most test
sequences which are, in fact, globulines, would be mathematically proven to not
be globulines.

Thus, maximum likelihood estimates of pmf’s for sites of proteins cannot be
used. A Bayesian approach is mandatory for this seemingly simple task!

The following lengthy derivations show how the general formula (93) for Bayesian
model estimation is worked out in the case of amino acid distribution estimation.

The 20-dimensional pmf for the amino acid distribution at a given site is char-
acterized by a 20-dimensional parameter vector

θ = (θ1, . . . , θ20)′ = (P (X = A), . . . , P (X = Y)′

(actually 19 parameters would be enough — why?).
We start with the probability of observed data, given that the true distribution

is θ. This corresponds to the pdf factor p⊗
iX

(D | θ) in (93), but here we have
discrete counting data, and hence we use a pmf instead of a pdf. The observation
data D consist in counts n1, . . . , n20 of the different amino acids found at a given
site in the training population. In our column data example K K V N E G A this
count vector would have one element with a count value of 2 (the K item), five
elements with a value of 1 (for the observations V N E G A in the sample), and
the remaining 14 count entries would be zero.

If one considers how such 7-datapoint samples are distributed across different
repeated observation experiments (each retrieving 7 observations), these count
vectors are distributed according to the multinomial distribution

P (D | θ) =
N !

n1! · · ·n20!

20∏
j=1

θ
nj
j , (94)

where N = n1 + . . . + n20 is the total number of observations (in our example
N = 7).
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Next we turn to the Bayesian prior h(θ) in (93). The “subjective” knowledge
which is inserted into the picture is the general belief held by biologists that every
amino acid can appear in any site in a protein of a given class, though maybe with
small probability.

The Bayesian prior which reflects the biologists’ insight that zero probabilities
should not occur in θ is expressed in a hyperdistribution over the hypothesis space
H of possible θ vectors. H is the subset of R20 which contains strictly positive
vectors whose components sum to one:

H = {(θ1, . . . , θ20)′ ∈ R20 | 0 < θj < 1 and
∑
j

θj = 1}.

This is a 19-dimensional hypervolume in R20 (try to imagine its shape — impossible
for R20, but you can do it for R2 and R3).
H is a continuous space, thus a Bayesian prior distribution on H can be rep-

resented by a pdf. But which distribution makes a reasonable prior? For reasons
that will become clear later, one uses the Dirichlet distribution. The Dirichlet
distribution is parametrized itself, with (in our case) a 20-dimensional parameter
vector α = (α1, . . . , α20)′ (where all αi are positive reals). The Bayesian prior pdf
h(θ|α) of the Dirichlet distribution with parameters α is defined as

h(θ|α) =
1

Z(α)

20∏
j=1

θ
αj−1
j , (95)

where Z(α) =
∫
H
∏20

j=1 θ
αj−1
j dθ is the normalization constant which ensures that

the integral of h over H is one.
Fortunately the normalization denominator p(D) in (93) need not be analyzed

in more detail because it will later cancel out.
Now we have everything together to calculate the Bayesian posterior distribu-

tion on H:

p(θ |D,α) =
P (D | θ) h(θ|α)

p(D)

=
1

p(D)

N !

n1! · · ·n20!

20∏
j=1

θ
nj
j

1

Z(α)

20∏
j=1

θ
αj−1
j

=
1

p(D)

N !

n1! · · ·n20!

1

Z(α)

20∏
j=1

θ
nj+αj−1
j

=
1

p(D)

N !

n1! · · ·n20!

Z(D + α)

Z(α)
h(θ |D + α), (96)

where D+α = (n1 +α1, . . . , n20 +α20)′. Because both p(θ |D,α) and h(θ |D+α)
are pdfs, the product of the three first factors in (96) must be one, hence the
posterior distribution of models θ is

p(θ |D,α) = h(θ |D + α). (97)
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In order to get the posterior mean estimate, we integrate over the model can-
didates θ with the posterior distribution. I omit the derivation (can be found in
Durbin et al. 2000) and only report the result:

θPME
j =

∫
H
θj h(θ |D + α) dθ =

nj + αj
N + A

, (98)

where N = n1 + · · ·n20 and A = α1 + · · · + α20. If one compares this to the
maximum-likelihood estimates

θML
j =

nj
N
, (99)

we can see that the αj parameters of the Dirichlet distribution can be understood
as “pseudo-counts” that are added to the actually observed counts. These pseudo-
counts reflect the subjective intuitions of the biologist, and there is no (and can be
no) formal rule of how to set them correctly. They are set by the biologist based
on professional experience and insight, and the more of such wisdom the biologist
has, the better will be the final model.

Adding the αj pseudocounts in (98) can also be considered just as a regular-
ization tool in a frequentist setting. One would skip the Bayesian computations
that give rise to the Bayesian posterior (97) and directly use (98), optimizing α
to navigate on the model flexibility scale in a cross-validation scheme. With α set
to all zero, one gets the maximum-likelihood estimate (99) which will usually be
overfitting; with large values for α one smoothes out the information contained in
the data — underfitting.

You may ask, why go through all this complex Bayesian thinking and calcu-
lating, and not just do a regularized maximum-likelihood estimation with a solid
cross-validation scheme to get the regularizers αj’s right? The reason is that the
two methods will not give the same results, although both ultimately use the same
formula θ̂j =

nj+αj
N+A

. In the frequentist, regularized, maximum-likelihood approach,
the only information that is made use of is the data D, which is scarce and the
careful cross-validation will merely make sure that the estimated model θ̂ = θML

will be the best (with regards to not over- or underfitting) among the ones that
can be estimated from D. In contrast, a Bayesian modeler inserts additional in-
formation by fixing the αj’s beforehand. If the Bayesian modeler has the right

intuitions about these αj’s, the found model θ̂ = θPME will generalize better than
θML, possibly much better.

The textbook of Durbin et al, from which this example is taken, shares some
thoughts on to how a biosequence modeler should select the pseudo-counts. The
proper investment of such soft knowledge makes all the difference in real-life ma-
chine learning problems when data are not abundant.

8.4 A brief summary

The objectivist view sees probabilities as measurable properties of physical
systems. This frequentist view is the classical view represented in math-
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ematics textbooks. “Frequentist” and “objectivist” are more or less syn-
onymous. Its deep-rooting anchor is the Law of Large Numbers. There is
one commonly accepted set of axioms for frequentist probability theory, the
Kolmogorov axioms.

Subjectivist views cast probability as degrees of belief or confidence held by a
rational reasoning agent when he/she/it makes statements. Rigorous for-
malizations take the shape of logic-like formalisms, of which there are sev-
eral. Probability is thus a property of statements — generalizations of the
True and False properties in classical logic —, not a property of the real-
ity described by statements. Such logic system are not usually taught to
mathematics students and also not to psychology students in their dreaded
statistics courses. Students of philosphy will hear about them (at least
they should), and students of AI and linguistics are likely to learn a little
about them. The Kolmogorov axioms can be derived in most subjectivist-
probabilistic logic systems, sometimes in somewhat weaker versions. When it
comes to calculation rules, there is thus much agreement between objectivist
and subjectivist accounts of probability.

Bayesian statistics (or Bayesian modeling) can be seen as a very special
case of subjectivist probability. Bayesian modeling does not appear in the
format of a logic-like calculus. It has developed into an bundle of very useful
algorithmic techniques in machine learning. The subjectivist-philosophical
heritage has been more or less been lost from sight. The link to the subjec-
tivist philosophical attitude is the way how the modeler’s private beliefs are
inserted into the model estimation via hyperdistributions — the “Bayesian
priors”. Furthermore, prominent modern approaches in the cognitive and
neurosciences posit that human cognitive processing (Clark 2013; Tenen-
baum, Griffiths, and Kemp 2006) and even the brain “hardware” (Friston
2003) are organized in functional hierarchies whose processing is informed
by Bayesian priors.
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9 Sampling algorithms

Many tasks that arise in machine learning (and in mathematical modeling of com-
plex systems in general) require one to “draw” random samples from a probability
distribution. Algorithms which compute “random” samples from a distribution
are needed, for instance (very incomplete listing),

• when noise is needed, e.g. for regularization of learning algorithms,

• when ensembles of models are computed for better accuracy and generaliza-
tion (as in random forests),

• generally, when natural or social or economical systems are simulated,

• when certain stochastic neural network models are trained and exploited
(Hopfield networks, Boltzmann machines),

• when training and evaluating many sorts of graphical models, like Bayesian
networks (next chapter in these LNs).

Sampling algorithms are an essential “fuel” which powers many modern com-
putational techniques. Entire branches of physics, chemistry, biology (and meteo-
rology and economics and ...) could only grow after efficient sampling algorithms
became available.

Designing algorithms which produce (pseudo-)random numbers from a given
distribution are not easy to design. Even something that looks as elementary as
sampling from the uniform distribution — with pseudo-random number generating
algorithms — becomes mathematically and algorithmically involved if one wants
to do it well.

In this section I describe a number of design principles for sampling algorithms
that you should know about.

9.1 What is “sampling”?

“Sampling” means to artificially simulate the process of randomly taking mea-
surements from a distribution given by a pmf or pdf. Figure 51 gives a visual
impression.

A “sampler” is an algorithm for doing this — an algorithm that can be run
indefinitely long and generates a potentially endless sequence of examples “drawn”
from the intended distribution. Samplers there are many, and I am not aware of a
universally agreed definition. Here is my own definition (only for the ones of you
with probability theory background; will not be asked in exams):

164



xn
xn+1

xn

xn+1

! → ∞ ! → ∞A B

C

Figure 51: Given: a distribution PX of a RV X with sample space SX . In our
graphics: SX is a sector of the real line, and the distribution on SX is represented
by a pdf (blue line). During a sampling process, a potentially infinite sequence
of examples x1, x2, . . . , xn, xn+1, . . . from SX is generated. The sampling process
must re-generate the “profile” of the pdf in the long run (when n→∞, see panel
C). In the short run, the sampling process can, but need not, generate examples
by independent “draws” from the distribution. In A, it looks like the sampling
created the first examples independently, while in B, it looks like the sampling
first put new examples close to already created ones. Both is perfectly ok for a
sampling process. The only condition that must be fulfilled is that in the limit of
n→∞, the sampled examples pile up in perfect proportion to the pdf.

Definition 9.1 Let PX be a distribution on a measure space (E,B). A sequence
X1, X2, . . . of random variables is a sampler for PX , if for all A ∈ B

PX(A) = lim
N→∞

1

N

N∑
i=1

1A ◦Xi P -almost surely,

where 1A is the indicator function for A.

The notion of a sample must be clearly distinguished from the notion of a
sampler. A “sample” is more often than not implied to be an “i.i.d. sample”,
that is, it results from independent random variables X1, . . . , XN that all have the
same distribution as X, the random variable whose distribution PX the sample
is drawn from. This i.i.d. assumption is standardly made for real-world training
data used in machine learning.
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In contrast, the random variables X1, X2, . . . of a “sampler” for PX need not
individually have the same distribution as X, and they need not be independent
(like in Figure 51B). For instance, let PX be the uniform distribution on E = [0, 1].
Here are some samplers:

• All Xi are i.i.d. with each of them being uniformly distributed on [0, 1]. This
is a dream of a sampler. But nobody knows how to build such a sampler
without using quantum computers.

• The subset X2i of RVs with even indices are identically and uniformly dis-
tributed on [0, 1]. The RVs X2i+1 repeat the value of X2i. Here the RVs Xi

are identically but not independently distributed.

• The subset X2i of RVs with even indices are identically and uniformly dis-
tributed on [0, 1/2] and the subset of X2i+1 are identically and uniformly
distributed on [1/2, 1]. Here the RVs Xi are independently but not identi-
cally distributed.

• X1 is always evaluating to 0, and the other Xi are inductively and deter-
ministically defined to give the value xi = xi−1 +

√
2 ( mod 1). This is a

deterministic sequence that in the long run whill cover the interval [0, 1] uni-
formly. Here the RVs Xi are neither independent nor identically distributed.

• Let Yi be an i.i.d. sequence where each Yi draws a value yi from N (0, 1),
and let ε be a small positive real number. X1 is always evaluating to 0, and
following Xi are inductively and stochastically defined by xi = xi−1 + ε yi (
mod 1). This gives a random walk (more specifically, a Brownian motion
process) whose paths are slowly and randomly migrating across [0, 1]. This
kind of samplers will turn out to be the most important type when it comes
to sampling from complex distributions — this is a Markov chain Monte
Carlo (MCMC) sampler.

9.2 Sampling by transformation from the uniform distri-
bution

There is one sampler that you know very well and have often used: the function
that creates pseudorandom numbers from the uniform distribution on the unit in-
verval [0, 1]. It comes by different names in different programming languages (and
is internally implemented in many different ways). In Matlab it is called rand, and
it creates double-precision numbers in [0, 1]. At any rate, a pseudo-random number
generator of (almost) uniformly distributed numbers over [0, 1] is offered by every
programming language that I know, including Microsoft Word. And that’s about
it; the only sampler you can directly call in most programming environments is
just that, a uniform sampler. (Note that the function that is called rand in C
generates pseudorandom integers from the discrete uniform distribution between
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0 and some maximal value. This function can easily be used as a subroutine in a
little program which creates pseudorandom numbers in [0, 1]).

It is by no means easy to program a good pseudo-random number generator –
in fact, designing such generators is an active field of research. If you are interested
– the practical guide to using pseudorandom number generators by Jones 2010 is
fun to read and very illuminating.

Assume you have a sampler Ui for the uniform distribution on [0, 1], but you
want to sample from another distribution PX on the measure space E = R, which
has a pdf f(x). Then you can use the sampler Ui indirectly to sample from PX by
a coordinate transformation, as follows.

First, compute the cumulative density function ϕ : R→ [0, 1], which is defined
by ϕ(x) =

∫ x
−∞ f(u) du, and its inverse ϕ−1. The latter may be tricky or impossible

to do analytically – then numerical approximations must be used. Now obtain a
sampler Xi for PX from the uniform sampler Ui by

Xi = ϕ−1 ◦ Ui.

Figure 52 illustrates visually why this works.

Ui(w)

x

j(x)

f(x)

Xi(w) = j -1(Ui(w))

f(x)

a b

A

A

Figure 52: Sampling by transformation from the uniform distribution: Let [a, b]
be an interval on the sample space R, and A the area under the pdf f in this
interval. A sampler for the distribution given by the pdf f must visit [a, b] with
a probability A. But A is also the increment that the cumulative density ϕ(x)
builds up from a to b. The uniform sampler Ui for [0, 1] visits the segment A (right
end in the graphic) with probability A. When Ui picks a value from the segment
A, Xi = ϕ−1 ◦ Ui will give a value in the interval [a, b].

The remainder of this subsection is optional reading and will not be tested in
exams (but may turn up in the exercise sheet).

Out of curiosity, I explored a little bit how one can sample from the standard
normal distribution N (0, 1). Computing it by transformation from the uniform
distribution, as outlined above, appears not to be done because the inverse cumula-
tive density function ϕ−1 forN (0, 1) can only be represented through a power series
which converges slowly (my source, I must confess, is Wikipedia). Instead, special
algorithms have been invented for sampling fromN (0, 1), which exploit mathemat-
ical properties of this distribution. One algorithm (see http://en.wikipedia.
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org/wiki/Normal_distribution#Generating_values_for_normal_random_variables

) which I found very elegant is the Box-Muller algorithm, which produces a N (0, 1)
distributed RV C from two independent uniform-[0,1]-distributed RVs A and B:

C =
√
−2 lnA cos(2π B).

The computational cost is dominated by computing the logarithm and the
cosine. An even (much) faster, but more involved (and very tricky) method is
the Ziggurat algorithm (check Wikipedia for “Ziggurat algorithm” for an article
written with tender care). There exist wonderful things under the sun.

Sampling by coordinate transformation can be generalized to higher-dimensional
distributions. Here is the case of a 2-dimensional pdf f(x1, x2), from which the
general pattern should become clear. First define the cumulative density function
in the first dimension as the cumulative density function of the marginal distribu-
tion of the first coordinate x1

ϕ1(x1) =

∫ x1

−∞

(∫ ∞
−∞

f(u, v) dv

)
du

and the conditional cumulative density function on x2 given x1

ϕ2(x2 |x1) =

∫ x2
−∞ f(x1, v) dv∫∞
−∞ f(x1, v) dv

.

Then, for sampling one value (x1, x2), sample two values u1, u2 from the uniform
sampler U , and transform

x1 = ϕ−1
1 (u1), x2 = ϕ−1

2 (u2 |x1).

A widely used method for drawing a random vector x from the n-dimensional
multivariate normal distribution with mean vector µ and covariance matrix Σ
works as follows:

1. Compute the Cholesky decomposition (matrix square root) of Σ, that is,
find the unique lower triangular matrix A such that AA′ = Σ.

2. Sample n numbers z1, . . . , zn from the standard normal distribution.

3. Output x = µ+ A(z1, . . . , zn)′.

9.3 Rejection sampling

Sampling by transformation from the uniform distribution can be difficult or im-
possible if the pdf f one wishes to sample from has no cumulative density function
with a simple-to-compute inverse. If this happens, it is sometimes possible to sam-
ple from a simpler distribution with pdf g that is loosely related to the target pdf f
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and for which sampling by transformation works, and with a simple trick get from
that a sampler for the pdf of interest, f . To understand this rejection sampling
(also known as importance sampling) we first need to generalize the notion of a
pdf:

Definition 9.2 A proto-pdf on Rn is any nonnegative function g0 : Rn → R with
a finite integral

∫
Rn g0(x) dx.

If one divides a proto-pdf g0 by its integral, one obtains a pdf g. Now consider
a pdf f on Rn that you want to sample from, but sampling by transformation
doesn’t work. However, you find a proto-pdf g0 ≥ f for whose associated pdf g
you know how to sample from, that is, you have a sampler for g. With that in
your hands you can construct a sampler Xi for f as follows. In order to generate
a random value x for Xi, carry out the following procedure:

Initialize: set found x = 0

While found x == 0 do

1. sample a candidate x̃ from g.

2. with probability f(x̃)/g0(x̃), accept x̃; otherwise, reject x̃.

If x̃ is accepted

(a) set found x = 1

(b) return x̃

Rejection sampling becomes immediately clear if you re-conceptualize “sam-
pling from a pdf f” as “piling up the pdf by many grains of sand that you let
fall at the various positions x of Rn with a frequency proportional to f(x)”. Look
at Figure 53 where g0 and f are plotted. Think of the g0 curve as a sand dune
that you get when sampling for g in this sand metaphor. Now, when you drop a
grain of sand for modelling the g0 “sand curve”, imagine you paint it orange with
a probability of f(x̃)/g0(x̃) before you let it fall down. I think this saves you a
mathematical proof.

x

g0(x)

f(x)

x~

Figure 53: The principle of rejection sampling. Candidates x̃ are first sampled
from g, then accepted (“painted orange”) with probability f(x̃)/g0(x̃).
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The computational efficiency of rejection sampling clearly depends on how close
g0 is to f . If the ratio f/g0 is on average small, there will be many rejections which
slow down the algorithm. In high-dimensional spaces it is often quite difficult to
avoid this.

9.4 Proto-distributions

The pdf’s of parametrized continuous distributions over Rk are typically repre-
sented by a formula of the kind

p(x | θ) =
1∫

Rk p0(x | θ) dx
p0(x | θ), (100)

where p0 : Rk → R≥0 defines the shape of the pdf and the factor 1/(
∫
Rk p0(x | θ) dx)

normalizes p0 to integrate to 1. For example, in the pdf

p(x |µ,Σ) =
1

(2π)k/2 det(Σ)1/2
exp

(
−1

2
(x− µ)′Σ−1(x− µ)

)
for the multidimensional normal distribution, the shape is given by p0(x|µ,Σ) =
exp

(
−1

2
(x− µ)′Σ−1(x− µ)

)
and the normalization prefactor 1/((2π)k/2 det(Σ)1/2)

is equal to 1/
∫
Rk p0(x |µ,Σ) dx.

It is a quite general situation in machine learning that a complex model of a
distribution is only known up to an undetermined scaling factor — that is, one has
a proto-distribution but not a distribution proper. This is often good enough. For
instance, in our initial TICS demo (Section 1.2.1), we saw that the TICS system
generated a list of captions, ordered by plausibility. In order to produce this list,
the TICS system did not need to compute a proper probability distribution on the
space of possible captions — a proto-distribution is good enough to determine the
best, second-best, etc. caption.

Proto-distributions are not confined to continuous distributions on Rk, where
they appear as proto-pdf’s. In discrete sample spaces S = {s1, . . . , sN} or S =
{s1, s2, . . . , } where the distribution is given by a parametrized pmf p(θ), the nor-
malization factor becomes a sum over S:

p(x | θ) =
1∑

s∈S p0(s)
p0(x),

where again p0 : S → R≥0 is a shape-giving function which must have a finite
sum. When S is large and p0 is analytically intractable, the normalization factor
1/
∑

s∈S p0(s) cannot be computed and one is limited to work with the proto-pmf p0

only. Very large sample spaces S appear standardly in systems which are modeled
by many interacting random variables. We will meet with such proto-pmf’s in the
next section on graphical models.
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This is also a good moment to mention the softmax function. This is a ubiqui-
tously used machine learning trick to transform any vector y = (y1, . . . , yn)′ ∈ Rn

into an n-dimensional probability vector p by

p =
1∑

i=1,...,n exp(α yi)
(exp(α y1), . . . , exp(α yn))′.

The softmax is standardly used, for instance, to transform the output vector
of a neural network into a probability vector, which is needed when one wants to
interpret the network output probabilistically.

The factor α ≥ 0 determines the entropy of the resulting probability vector.
If α = 0, p is the uniform distribution on {1, . . . , n}, and in the limit α → ∞, p
becomes the binary vector which is zero everywhere except at the position i where
y is maximal.

Notes:

1. The word “proto-distribution” is not in general use and can be found in the
literature only rarely.

2. Proto-distributions occur always in Bayesian modeling (compare Section 8.3,
Equation 96). The Bayesian posterior distribution p(θ |D) is shaped by the
product P (D | θ)h(θ), whose integral will not usually be one. The functions
P (D | θ)h(θ) are proto-distributions on θ-space.

3. Many algorithms exist that allow sampling from proto-distributions, without
the need of normalizing them. Rejection sampling is a point in case, but also
the Gibbs and Metropolis sampler presented below work with proto-pdfs.
The case study in Section 9.6 crucially relies on sampling from a proto-pdf.

4. There exists a large and important class of probability distributions on arbi-
trary sample spaces S, which are defined by an energy function E : S → R≥0,
or more generally, by a cost function C : S → R. In energy-based models
of probability distributions, such an energy or cost function is turned into a
probability distribution on S by defining the Boltzmann distribution which
has the pdf

p(s |T ) =
1∫

S
exp(−C(s)/T ) ds

exp(−C(s)/T ), (101)

where T is a temperature parameter. In this context, the normalization
factor 1∫

S exp(−C(s)/T ) ds
is often written as 1/Z(T ), and Z(T ) is called the

partition function of the distribution. The notation 1/Z(θ) and the name
“partition function” are sometimes also used in a generalized fashion for
other distributions given by a shape-defining proto-pdf. Boltzmann distri-
butions are imported from statistical physics and thermodynamics, where
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they play a leading role. In machine learning, Boltzmann distributions oc-
cur, for instance, in Markov random fields. The are the spatial analogue
to the temporal Markov chains; besides many applications in theoretical
physics, in computer science they are used in image analysis. Boltzmann
distributions are a core ingredient for Boltzmann machines (Ackley, Hin-
ton, and Sejnowski 1985), a type of neural network which I consider one of
the most elegant and fundamental models for general learning systems (see
Section 7 in my lecture notes for ’Neural Networks’). A structurally and
computationally streamlined version called restricted Boltzmann machines
(RBMs), became a starting point for the deep learning revolution (Hinton
and Salakuthdinov 2006). Furthermore, Boltzmann distributions also are
instrumental for free-energy models of intelligent agents, a class of models
of brain dynamics popularized by Karl Friston (for example, Friston 2005)
which explain the emergence of adaptive, hierarchical information repre-
sentations in biological brains and artificial intelligent “agents”, and which
today are a mainstream approach in the cognitive neurosciences and cog-
nitive science to understanding adaptive cognition. And last but not least,
the Boltzmann distribution is the root mechanism in simulated annealing
(Kirkpatrick, Gelatt, and Vecchi 1983), a major general-purpose strategy
for finding minimal-cost solutions in complex search spaces.

Sadly in this course there is no time for treating energy-based models of
information processing. I present this material in my course on neural net-
works in the Summer semester.

9.5 MCMC sampling

We now turn to Markov Chain Monte Carlo (MCMC) sampling techniques. These
samplers are the only choice when one wants to sample from complex distributions
of which one only knows a proto-pdf g0. Inventing MCMC sampling techniques
was a breakthrough in theoretical physics because it made it possible to simulate
stochastic physical systems on computers. The original article Equation of state
calculations by fast computing machines (Metropolis et al. 1953) marks a turning
point in physics (Wikipedia has an article devoted to this algorithm, check out un-
der Metropolis-Hastings algorithm). This work was carried out within a large-scale
effort in the U.S. to develop the nuclear fission bomb... makes you think. In later
decades, MCMC techniques were adopted in machine learning, where today they
are used in several places, in particular for working with graphical models, which
constitute the high-end modeling approach for complex real-world systems that
are described by a multitude of interacting RVs. We will get a glimpse of graph-
ical models in the next session of this course. A long tutorial paper (essentially,
the PhD thesis) of Radford Neal 1993 was instrumental for establishing MCMC
methods for statistical inference applications. This tutorial paper established not
only MCMC methods in machine learning, but also established the professional
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reputation of Radford Neal (http://www.cs.utoronto.ca/~radford/). If you
ever want to implement MCMC samplers in a serious way, this tutorial is manda-
tory reading. And if you want to inform yourself about the use of MCMC in deep
learning (advanced stuff), a talk of Radford Neal that he recently delivered in
honor of Geoffrey Hinton (Neal 2019) gives you an orientation. And if you think
of entering a spectacular academic career, it is not a bad idea to write a PhD
thesis which “only” gives the first readable, coherent, comprehensive tutorial in-
troduction to some already existing kind of mathematical modeling method which,
until you write that tutorial, has been documented only in scattered technical pa-
pers written from different perspectives and using different notations, making that
knowledge inaccessible to a wider audience.

9.5.1 Markov chains

Before we can start with MCMC we need to refresh the basics of Markov chains.

Definition 9.3 A Markov chain is a sequence of random variables X1, X2, . . ., all
taking values in the same sample space S, such that Xn+1 depends only on Xn,
i.e. it is conditionally independent on all earlier values:

P (Xn+1 = xn+1 |X1 = x1, . . . , Xn = xn) = P (Xn+1 = xn+1 |Xn = xn). (102)

Intuitively, a Markov chain is a discrete-time stochastic process which gen-
erates sequences of measurements/observations, where the next observation only
depends on the current one; earlier observations are “forgotten”. Markov chains
are “stochastic processes without memory”.

Do not confound the notion of a Markov chain with the notion of a path (or
realization or trajectory) of a Markov chain. The Markov chain is the generative
mechanism — in mathematical terminology: the process — which can be “exe-
cuted” or “run” as often as one wishes, and in every run one will obtain a different
concrete sequence x1, x2, . . . of observations. The possible values x ∈ S are called
the states of a Markov chain.

The times n for which a Markov process is defined can be

• from a finite interval [0, 1, . . . , nmax], typically started at n = 0 — we then
speak of a finite Markov chain,

• right-infinite: n = 0, 1, 2, . . ., or

• left-right infinite: n ∈ Z.

For defining samplers, on has to use n ∈ N: a sampler must, by definition, be able
to be run for arbitrarily long times.

A Markov chain on S is fully characterized by the initial distribution PX0

(needed for starting finite and right-infinite chains but not needed for left-right
infinite chains which have no start) and the conditional transition probabilities
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Pn(Xn+1 = x |Xn = y) for all x, y ∈ S, (103)

which taken all together (for all combinations of x, y values) specify the conditional
transition distribution - a mathematical object for which we also write (following
Neal’s notation)

Tn(x | y). (104)

A common name for Tn(x | y) is transition kernel. Tn is a function of two
arguments x, y and returns Tn(x | y) = Pn(Xn+1 = x |Xn = y). The transition
kernel Tn(x | y) thus informs us by which probability we will observe x at the next
time step n+ 1 given that at the current time n we observed y.

If Tn(x | y) = Tn′(x | y) for all n, n′, the Markov chain’s transition law does
not itself change with time; we then call the Markov chain homogeneous. With
homogeneous Markov chains, the index n can be dropped from Tn(x|y) and we
write T (x | y).

In order to generate a path from a homogeneous Markov chain with initial dis-
tribution PX0 and transition kernel T (x | y), one carries out the following iterative
procedure:

1. Generate the first value x0 by a random draw from PX0 .

2. If xn has been generated, generate xn+1 by a random draw from the distri-
bution PXn+1|Xn=xn which is specified by the transition kernel T (x |xn).

A note on notation: a mathematically correct and general definition and no-
tation for transition kernels on arbitrary observation spaces S requires tools from
measure theory which we haven’t introduced. Consider the notation T (x | y) as a
somewhat sloppy shorthand. When dealing with discrete distributions where S is
finite, say, S = {s1, . . . , sk}, then consider T (x | y) as a k × k Markov transition
matrix M where M(i, j) = P (Xn+1 = sj |Xn = si). The i-th row of M has the
vector of the probabilities by which the process will transit from state sj to the
states s1, . . . , sk indexing the columns.

An example: consider the two-state observation space S = {a, b}. Then the
initial distribution PX0 is given by a 2-dimensional probability vector. For instance,
(0.3, 0.7)′ would mean that the process starts with an outcome X0 = a with
probability 0.3. A transition matrix might be

M =

(
0.1 0.9
0.4 0.6

)
,

whose first row means that if at time n the process has generated state a, at time
n+ 1 one will observe a again with probability 0.1 and b with probability 0.9.

When dealing with continuous distributions of next states x (given y) which
have a pdf, regard T (x | y) as denoting the conditional pdf pX|Y=y of x. Note that
when we write T (x | y), we refer not to a single pdf but to a family of pdf’s; for
every y we have another conditional pdf T (x | y).
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When a homogeneous Markov chain with finite state set S = {s1, . . . , sk} and
Markov transition matrix M is executed m times, the probabilities to transit from
state si to state sj after m steps can be found in the m-step transition matrix
Mm:

P (Xn+m = sj |Xn = si) = Mm(i, j), (105)

where Mm = M ·M · . . . ·M (m times).
We now consider the sample space S = Rk — this is the state space needed for

most practical uses of MCMC sampling — and we assume that all distributions
of interest are specified by pdf’s. We consider a homogeneous Markov chain. Its
transition kernel T (x|y) can be identified with the pdf pXn+1|Xn=y, and in the
remainder of this section, we will write T (x|y) for this pdf. Such a Markov chain
with continuous sample space Rk is specified by an initial distribution on Rk which
we denote by its pdf g(0). The pdf’s g(n+1) of distributions of subsequent RVs Xn+1

can be calculated from the pdf’s g(n) of the preceding RV Xn by

g(n+1)(x) =

∫
Rk
T (x |y) g(n)(y) dy. (106)

g(n) is the distribution over the process’s state space S that we get if we would
run the entire sequence-generating process over and over again and at time n look
at the which states have been visited how often on average. Please make sure you
understand this equation. It is the key to everything which follows.

For the theory of MCMC sampling, a core concept is an invariant distribution
of a homogenous Markov chain.

Definition 9.4 Let g be the pdf of some distribution on Rk, and let T (x |y) be
the (pdf of the) transition kernel of a homogeneous Markov chain with values in
Rk. Then g is the pdf of an invariant distribution of T (x |y) if

g(x) =

∫
Rk
T (x |y) g(y) dy. (107)

Except for certain pathological cases, a transition kernel will have at least one
invariant distribution.

Furthermore, it is often the case that there exists exactly one invariant distri-
bution g of T (x |y), and the sequence of distributions g(n) converges to g from any
initial distribution. We will call the transition kernel T (x |y) ergodic if it has this
property. The (unique) invariant distribution g of an ergodic Markov chain is also
called its asymptotic distribution or its stationary distribution or its equilibrium
distribution.

9.5.2 Constructing MCMC samplers through detailed balance

Let g be the pdf of some (usually very complex) distribution on Rk. The goal is
to design an MCMC sampler for g. The core idea is to find a transition kernel
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T (x |y) for a homogenous, ergodic Markov chain which has g as its invariant
distribution. Then, by certain deep mathematical ergodic theorems, which we will
not endeavour to understand, the Markov chain will be a sampler for g.

There are many ways to design such transition kernels. However, they will
differ from each other with regards to computational cost. Quoting from Neal’s
survey,

“The amount of computational effort required to produce a good Monte Carlo
estimate using the states generated by a Markov chain will depend on three factors:
first, the amount of computation required to simulate each transition; second, the
time for the chain to converge to the equilibrium distribution, which gives the
number of states that must be discarded from the beginning of the chain; third, the
number of transitions needed to move from one state drawn from the equilibrium
distribution to another state that is almost independent, which determines the
number of states taken from the chain at equilibrium that are needed to produce
an estimate of a given accuracy. The latter two factors are related...”

A brief explanation: The best possible sampler for g would be one where each
new sampled value is independent from the previous ones — in other words, one
would like to have an i.i.d. sampler (Figure 54 a.) This is usually impossible to get.
If, more realistically, observations xn obtained from a sampler depend on previous
observations xn−1,xn−2, . . ., there is redundant information in the sample path.
Typically paths (xn)n=0,1,2,... obtained from running an MCMC sampler will have
more or less strong dependencies between values observed at nearby times. The
first values x1,x2, . . . values will depend, to a decreasing degree, on the arbitrary
initial value x0 and should be discarded. After this initial “washout” phase, one
usually keeps only those values xn,xn+d,xn+2d, . . . whose distance d from each
other is large enough to warrant that the dependency of xn+d on xn has washed
out to a negligible amount, that is, P (Xn+d = x |Xn = y) ≈ P (Xn+d = x). Figure
54 b. illustrates the ’look and feel’ of a typcial MCMC sampler.

A standard way to construct an MCMC transition kernel T (x |y) which leads
to a Markov chain that has the target distribution g as its invariant distribution is
to ensure that the Markov chain (Xn)n=0,1,... has the property of detailed balance
with respect to g. Detailed balance connects X0, X1, X2, . . . to g in a strong way.
It says that if we pick some state x ∈ Rk with the probability given by g and
multiply its probability g(x) with the transition probability density T (y|x) —
that is, we consider the probability density of transiting from x to y weighted
with the probability density of x — then this is the same as the reverse weighted
transiting probability density from y to x:

Definition 9.5 Let g be a pdf on Rk and let T (y|x) be a transition kernel of a
homogeneous Markov chain on Rk. Then T (y|x) has the detailed balance property
with respect to g if

∀x,y ∈ Rk : T (y|x) g(x) = T (x|y) g(y). (108)
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Figure 54: Sampling from a 2-dimensional normal distribution (contour lines show
pdf) with two different samplers. The red dot shows the first state that was gen-
erated. a. 200 sample points were obtained with i.i.d. sampling directly from the
target distribution. This is possible for Gaussians (but i.i.d. samplers are not gen-
erally obtainable for other distributions). b. An MCMC sampler generating the
first 200 points of a potentially much longer sampling sequence. It becomes appar-
ent that the respective next sample points here are usually close to the previous
one, leading to a ’slow crawl’ behavior that covers the entire target distribution
only after long runtimes.

If T (x|y) has detailed balance with respect to g, then g is an invariant distri-
bution of the Markov chain given by T (x|y) because∫

Rk
T (x|y) g(y) dy =

∫
Rk
T (y|x) g(x) dy = g(x)

∫
Rk
T (y|x) dy = g(x).

Detailed balance is sufficient but not necessary for a Markov chain to be a
sampler for g. However, there are convenient recipies to design MCMC’s based on
detailed balance. I present the two most famous and most widely used: the Gibbs
sampler and the Metropolis algorithm.

9.5.3 The Gibbs sampler

Let g be a pdf on Rk, from which we want to sample. For i = 1, . . . , k and x ∈ Rk,
where x = (x1, . . . , xk)

′, let

gi(· |x) : R→ R≥0

gi(y |x) =
g((x1, . . . , xi−1, y, xi+1, . . . , xk)

′)∫
R g((x1, . . . , xi−1, z, xi+1, . . . , xk)′) dz

be the conditional density function of the coordinate i given the values of x on
the other coordinates. Let g(0) be the pdf of an initial distribution on Rk, and
let an initial value x(0) = (x

(0)
1 , . . . , x

(0)
k )′ be drawn from g(0) (this corresponds to
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drawing an example with X0). We define a Markov chain X1, X2, . . . through
transition kernels as follows. The idea is to cycle through the k coordinates and
at some time νk + i (0 ≤ ν, 1 ≤ i ≤ k) change the previous state x(νk+i−1) =

(x
(νk+i−1)
1 , . . . , x

(νk+i−1)
k )′ only in the i-th coordinate, by sampling from gi. That

is, at time νk + i we set

x(νk+i) = (x
(νk+i−1)
1 , . . . , x

(νk+i−1)
i−1 , y, x

(νk+i−1)
i+1 , . . . , x

(νk+i−1)
k )′

equal to the previous state except in coordinate i where the value y which is freshly
sampled from gi.

This method is known as the Gibbs sampler. It uses k different transition
kernels T1, . . . , Tk, where Ti is employed at times νk+ i and updates only the i-th
coordinate. Of course, constructing such a Gibbs sampler requires one to have
i.i.d. samplers for the 1-dimensional coordinate distributions gi in the first place.
This is, however, a simpler problem than the original multi-dimensional one.

This Markov chain is not homogeneous because we cycle through different
transition kernels. However, we can condense a sequence of k successive updates
into a single update that affects all coordinates by putting T = Tk ◦ · · · ◦T1, which
yields a homogeneous Markov chain (Yn)n=1,2,... with transition kernel T whose
path is derived from a path (xn)n=1,2,... of the “cycling” Markov chain by

y(1) = x(1),

y(2) = x(k+1),

y(3) = x(2k+1), . . . .

It should be clear that g is an invariant distribution of this homogeneous
Markov chain, because each transition kernel Ti leaves g invariant: only the i-
th component of the observation vector is affected at all, and it is updated exactly
according to the conditional distribution gi for this component. It even holds that
T has detailed balance w.r.t. g (exercise — do it!).

It remains to ascertain that the Markov chain with kernel T is ergodic. This is
certainly the case when the support of g in Rk (that is, the subset of Rk where g is
positive) is k-dimensionally connected. This means that for any points x,y ∈ Rk

with g(x) > 0, g(y) > 0 there exists a finite sequence of k-dimensional open balls
Bm of positive radius, the first containing x and the last containing y, such that
Bm intersects with Bm+1. However, if the support of g is not k-dimensionally
connected, then T may or may not be ergodic, and determining whether it is
needs to be done on a case by case basis. For instance, if g is a distribution
on R2 whose support lies exclusively in the first and third orthant, T would not
be ergodic, because the Gibbs sampler, when started from a point in the third
orthant, would be unable to jump into the first orthant. This situation is depicted
in Figure 55.

The Gibbs sampler is practically applicable only if one can easily sample from
the 1-dimensional conditional distributions gi. Therefore, the Gibbs sampler is
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Figure 55: A bipartite pdf g where the Gibbs sampler would fail.

mostly employed in cases where these gi are parametric, analytical distributions,
or in cases where S is finite and the gi thus become simple probability vectors (and
would be represented by pmfs, not pdfs). The Gibbs sampler is attractive for its
simplicity. A number of extensions and refinements of the basic idea is presented
in Neal 1993.

9.5.4 The Metropolis algorithm

The Metropolis algorithm is more sophisticated than the Gibbs sampler and works
in a much larger number of cases. The drawback is that it may be computationally
more expensive. This algorithm explicitly constructs a Markov transition kernel
with detailed balance. Like the Gibbs algorithm, the Metropolis algorithm can
be cyclically applied to the k dimensions of the observation vectors in turn (”lo-
cal” Metropolis algorithm) or it can be applied to all dimensions simultaneously
(”global” algorithm). I describe the local version.

Like the Gibbs sampler, the local Metropolis algorithm updates the sample
vector x(νk+i−1) = (x

(νk+i−1)
1 , . . . , x

(νk+i−1)
k )′ only in the i-th coordinate, yielding

an update

x(νk+i) = (x
(νk+i−1)
1 , . . . , x

(νk+i−1)
i−1 , y, x

(νk+i−1)
i+1 , . . . , x

(νk+i−1)
k )′

in two substeps, which together ensure detailed balance w.r.t. the conditional
distribution gi:

Step 1: Randomly choose a candidate value y∗ for y. Usually a proposal dis-
tribution Si(y

∗ |x(νk+i−1)) is used (it may depend on x(νk+i−1)), which is
symmetric in the sense that

Si(y |(x(νk+i−1)
1 , . . . , x

(νk+i−1)
i−1 , y′, x

(νk+i−1)
i+1 , . . . , x

(νk+i−1)
k )′ =

Si(y
′ |(x(νk+i−1)

1 , . . . , x
(νk+i−1)
i−1 , y, x

(νk+i−1)
i+1 , . . . , x

(νk+i−1)
k )′

for all y, y′,x.

Step 2: Randomly accept or reject y∗ as the new value for x
(νk+i)
i , in a fashion

that ensures detailed balance. In case of acceptance, x
(νk+i)
i is set to y∗;
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in case of rejection, x
(νk+i)
i is set to x

(νk+i−1)
i , i.e., the observation vector

is not changed at all and is identically repeated in the sampling sequence.
The probability for accepting y∗ is determined by an acceptance probability
Ai(y

∗|x).

Note that Si(y
∗ |x(νk+i−1)) is a probability distribution on the xi coordinate

space R, while Ai(y
∗|x) is a number (a probability value). An update step in the

resulting Markov chain comprises two probabilistic operations: first, generating
the candidate; and second, deciding whether to keep or reject it. Both operations
together give the coordinate-specific transition kernels Ti; or, if the k individual
coordinate steps are lumped together into one full-cycle operation, the single global
transition kernel T .

One (preferred, but not the only) way to ensure that the Ti (or T ) lead to a
Markov chain whose invariant distribution is the one that one wishes to sample
from, is to ensure that the proposal distribution and the acceptance probability
together must be designed to warrant detailed balance of Ti, that is, to ensure

∀x = (x1, . . . , xk)
′ ∈ Rk,∀y, y′ ∈ R :

gi(y |x) Ti(y
′ | (x1, . . . , xi−1, y, xi+1, . . . , xk)

′) =

gi(y
′ |x) Ti(y | (x1, . . . , xi−1, y

′, xi+1, . . . , xk)
′). (109)

There are several ways to ensure this. For instance, it is not difficult to see
(exercise!) that if Si(y

∗ |x(νk+i−1)) is symmetric, the acceptance function

Ai(y
∗ | (x1, . . . , xk)

′) =
gi(y

∗ | (x1, . . . , xk)
′)

gi(y∗ | (x1, . . . , xk)′) + gi(xi | (x1, . . . , xk)′)
(110)

leads to detailed balance of Ti. This is called the Boltzmann acceptance function.
However, the Metropolis algorithm standardly uses another acceptance distribu-
tion, namely the Metropolis acceptance function

Ai(y
∗ | (x1, . . . , xk)

′) = min

(
1,
gi(y

∗ | (x1, . . . , xk)
′)

gi(xi | (x1, . . . , xk)′)

)
. (111)

That is, whenever gi(y
∗ | (x1, . . . , xk)

′) ≥ gi(xi | (x1, . . . , xk)
′), — i.e. the pro-

posed observation in component i has no lower probability than the current one —,
accept with certainty; else accept with probability gi(y

∗ | (x1, . . . , xk)
′)/gi(xi | (x1, . . . , xk)

′).
For symmetric proposal distributions, the Metropolis acceptance function also

implies detailed balance. It is clear that in the rejection case, where the current
observation is not changed, the detailed balance condition trivially holds. In the
acceptance case we verify (108) as follows:
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gi(y
∗ | (x1, . . . , xk)

′) Ti(xi | (x1, . . . , y
∗, . . . , xn)′) =

= gi(y
∗ |x) Si(xi | (x1, . . . , y

∗, . . . , xn)′) Ai(xi |x)

= Si(xi | (x1, . . . , y
∗, . . . , xn)′) min (gi(y

∗ |x), gi(xi |x))

= Si(y
∗ | (x1, . . . , xi, . . . , xn)′) min (gi(y

∗ |x), gi(xi |x))

= gi(xi |x) Si(y
∗ | (x1, . . . , xi, . . . , xn)′) Ai(y

∗ |x)

= gi(xi |x) Ti(y
∗ | (x1, . . . , xi, . . . , xn)′).

Notes:

1. Both the Boltzmann and the Metropolis acceptance functions also work with
proto-pdf’s gi. This is an invaluable asset because often it is infeasible to
compute the normalization factor 1/Z needed to turn a proto-pdf into a pdf.

2. Like the Gibbs sampler, this local Metropolis algorithm can be turned into a
global one, then having a homogeneous Markov chain with transition kernel
T , by condensing one k-cycle through the component updates into a single
observation update.

3. Detailed balance guarantees that g is an invariant distribution of the ho-
mogeneous Markov chain with transition kernel T . Before the resulting
Metropolis sampler Y1, Y2, . . . can be used for sampling, it must in addition
be shown that this Markov chain is ergodic. The same caveats that we met
with the Gibbs sampler apply.

4. The Metropolis algorithm is more widely and typically also more easily appli-
cable than the Gibbs sampler because it obviates the need to design an i.i.d.
sampler for the coordinate distributions. The price one may have to pay is a
higher computational cost, because (i) the rejection events lead to duplicate
sample points which obviously leads to an undesirable “repetition redun-
dancy” in the sample that has to be compensated by a larger sample size,
and (ii) if the proposal distribution mostly proposes candidate points y∗ for
the next samplepoint that lie close to the current sample point, then there
will be long washout times after initialization and long interim sequences
whose points are strongly dependent on each other and thus contribute no
relevant novel information about the target distribution (see Figure 54 b).

5. In statistical physics, the term “Monte Carlo Simulation” is almost synony-
mous with this Metropolis algorithm (says Neal — I am no physicist and
couldn’t check).

6. The quality of Metropolis sampling depends very much on the used proposal
distribution. Specifically, the variance of the proposal distribution should
neither be too small (then exploration of new states is confined to a narrow
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neighborhood of the current state, implying that the Markov chain traverses
the distribution very slowly) nor too large (then one will often be propelled
far out in the regions of g where it almost vanishes, leading to numerous
rejection events). A standard choice is a normal distribution centered on the
current state.

7. I presented the Metropolis algorithm in the special case of sampling from a
distribution over (a subset of) Rk. This made the “cycle through dimensions”
scheme natural which we also described for the Gibbs sampler. But the
Metropolis algorithm also works on sample spaces S which do not have
the vector space structure of Rk; proposal distributions then have to be
designed as the individual case requires. The application study from the
next subsection is an example.

9.6 Application example: determining evolutionary trees

This section is a condensed version of a paper by Mau, Newton, and Larget 1999,
Bayesian Phylogenetic Inference via Markov Chain Monte Carlo Methods. It is a
beautiful demonstration of how various modeling techniques are combined to char-
acterize a highly complex pdf (namely, the conditional distribution of all possible
evolutionary pasts, given DNA data from living species), and how the Metropolis
algorithm is used to sample from it. The MCMC based method to determine evo-
lutionary trees seems to have become a standard method in the field (I am not an
expert to judge). A short paper (Huelsenbeck and Ronquist 2001) announcing a
software toolbox for this method has been cited more than 24,000 times on Google
Scholar, as of 2022. Methods to reconstruct phylogenetic trees from DNA obtained
in surviving species are needed, for instance, to reconstruct trees of evolutionary
descendence for man, or to derive hypotheses from which original virus in animals
the Covid virus has descended, and when. Such studies often make it into the
popular press.

This application example is instructive in several respects. First, it uses
Metropolis sampling on a sample space that is very different from Rk — the sam-
ple space will be a space of trees whose nodes are labelled with discrete symbols
and whose edges are labelled with real numbers. This highlights the flexibility
and generality of Metropolis sampling. Second, the distribution from which will
be sampled is a hyperdistribution — this application example also serves as a
demonstration of the usefulness (in this case, even necessity) of Bayesian model-
ing. And third, the distribution from which will be sampled is represented in a
format that is not normalized (the normalization factor 1/Z is unknown).

Data. DNA strings from related l living species, each string of length N , have
been aligned without gaps. In the reported paper, l = 32 African fish species from
the same family (cichlids from central African lakes except one cichlid species
from America that served as a control) were represented by DNA sequences of
length 1044. 567 of these 1044 sites were identical across all considered species
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and thus carried no information about phylogeny. The remaining N = 477 sites
represented the data D that was entered into the analysis. Reminder: the DNA
symbol alphabet is Σ = {A,C,G, T}.

Task. Infer from data D the most likely phylogenetic tree, assuming that the
considered living species have a common ancestor from which they all descended.

Modeling assumptions. Mutations act on all sites independently. Mutations
occur randomly according to a “molecular clock”, i.e. a probability distribution
of the form

P clock(y |x, t, θ) (112)

specifing the probability that the symbol y ∈ {A,C,G, T} occurs at a given site
where t years earlier the symbol x occurred. θ is a set of parameters specifying
further modeling assumptions about the clock mechanism. Mau et al. used the
molecular clock model proposed in Hasegawa, Kishino, and Yano 1985 which uses
two parameters θ = (φ, κ), the first quantifying an overall rate of mutation, and
the second a difference of rates between the more frequent mutations that leave the
type of nucleic acid (purine or pyrmidine) unchanged (“transitions”) vs. change
the type (“transversions”). All that we need to know here, not pretending to be
biologists, is that (112) can be efficiently computed. Note that θ is not known
beforehand but has to be estimated/optimized in the modeling process, based on
the data D.

Representing phylogenetic trees. A phylogenetic tree is a binary tree Ψ.
The nodes represent species; leaves are living species, internal nodes are extinct
species, the root node is the assumed common ancestor. Mau et al. plot their trees
bottom-up, root node at the bottom. Vertical distances between nodes metrically
represent the evolutionary timespans t between nodes. Clades are subsets of the
leaves that are children of a shared internal node. Figure 56 shows a schematic
phylogenetic tree and some clades.

A given evolutionary history can be represented by trees in 2n−1 different but
equivalent ways (where n is the number of living species), through permuting
the two child branches of an internal node. For computational purposes a more
convenient representation than a tree graph is given by

1. a specification of a left-to-right order σ of leaves (in Figure 56, σ = (1, 4, 7, 2, 3, 6, 5)),
plus

2. a specification a of the graph distances between two successive leaves.

The graph distance is the length of the connecting path between the two leaves.
In the example tree from Figure 56, the distances between leaves make the distance
vector a = 2(t1 + t2 + t3 + t4, t1, t1 + t2 + t3 + t4 + t5, t1 + t2 + t3, t1 + t2, t1 + t2 +
t3 + t4 + t5 + t6). A pair (σ, a) is a compact representation for a phylogenetic tree.

Likelihood of a phylogenetic tree. One subtask that must be solved in
order to find the most probable evolutionary tree is to devise a fast method for
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Figure 56: An examplary phylogenetic tree (from the Mau et al paper). {4,7}, {1
4 7}, {2, 3, 6} are examples of clades in this tree.

computing the likelihood of a particular tree Ψ and molecular clock parameters θ,
given the sequence data D:

L(Ψ, θ) = P (D |Ψ, θ). (113)

Because the mutation processes at different sites are assumed to be independent,
P (D |Ψ, θ) splits into a product of single-site probabilities P (Di |Ψ, θ), where Di

are the symbols found in the sequences from D at site i. Thus Di is a symbol
vector of length l. Therefore, we only must find a way to compute

Li(Ψ, θ) = P (Di |Ψ, θ). (114)

We approach this task sideways, assuming first that we know the symbols yν at the
i-th site of the internal nodes ν of Ψ. Let % be the root node and π0 a reasonable
distribution of symbols in % in site i (for instance the global distribution of all
symbols in all sites of all sequences in D). Then we get the probability of observed
data Di joined with the hypothetical data of these (yν)ν∈I (where I is the set of
internal nodes of Ψ) by

P (Di, (yν)ν∈I |Ψ, θ) = π0(y%)
∏

νis non-root node of Ψ

P clock(yν | ypar(ν), tν , θ), (115)

where par(ν) is the parent node of ν and tν is the timespan between par(ν) and
ν. From (115) we could obtain (114) by summing over all possible assignments of
symbols to internal nodes, which is clearly infeasible. Fortunately there is a cheap
recursive way to obtain (114), which works top-down from the leaves, inductively
assigning conditional likelihoods Lν(y) = P (Di � ν |Ψ, θ, node ν = y) to nodes ν,
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where y ∈ Σ and Di � ν is the subset of the Di which are siblings of node ν, as
follows:

Case 1: ν /∈ I : Lν(y) =

{
1, if y = yν

0, else

Case 2: ν ∈ I : Lν(y) =

(∑
z∈Σ

Lλ(z)P clock(z|y, tλ, θ)

)(∑
z∈Σ

Lµ(z)P clock(z|y, tµ, θ)

)
,

where λ, µ are the two children of ν, tλ is the timespan from ν to λ, and tµ is the
timespan from ν to µ. Then (114) is obtained from

Li(Ψ, θ) =
∑
z∈Σ

π0(z) L%(z),

from which (113) is obtained by

L(Ψ, θ) =
∏

i is site in D

Li(Ψ, θ).

O(N |Σ|l) flops are needed to compute L(Ψ, θ) – in our example, N = 477, |Σ| = 4,
l = 32.

The posteriori distribution of trees and mutation parameters. We
are actually not interested in the likelihoods L(Ψ, θ) but rather in the distribution
of models Ψ, θ given D – a hyperdistribution. This hyperdistribution is obtained
by Mau et al through a Bayesian modeling approach, by inserting prior expert
information about the plausibilities of certain values for Ψ and θ. The desired
hyperdistribution then is the Bayesian posterior distribution P (Ψ, θ|D) (Equation
92), which is proportional to the likelihood times the prior (hyper-)distribution
P (Ψ, θ) of Ψ, θ:

P (Ψ, θ |D) ∼ P (D |Ψ, θ) P (Ψ, θ) = L(Ψ, θ) P (Ψ, θ).

Lacking a profound theoretical insight, Mau et al. assume for P (Ψ, θ) a very simple,
uniform-like distribution (such uninformedness is perfectly compatible with the
Bayesian approach!). Specifically:

1. They bound the total hight of trees by some arbitrary maximum value, that
is, all trees Ψ with a greater hight are assigned P (Ψ, θ) = 0.

2. All trees of lesser height are assigned the same probability.

3. The mutation parameters θ are assigned a prior distribution that is uniform
on a range interval chosen generously large to make sure that all biologically
plausible possibilities are contained in it.
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The structure of P (Ψ, θ |D). Before we set forth to compute the posterior
hyperdistribution P (Ψ, θ |D), let us take a closer look at the structure of the
mathematical “space” in which the parameter pairs (Ψ, θ) lie.

Remember that a tree Ψ is specified by (σ, a), where σ is a permutation vector
of (1, . . . , l) and a is a numerical vector of length l − 1. Noticing that there are l!
permutations, a pair (σ, a) reflects a point in a product space {1, . . . , l!} × Rl−1;
together with the two real-valued parameters comprised in θ this brings us to a
space {1, . . . , l!} × Rl+1. Specifically, this space is a product of a discrete space
(the finite but very large set {1, . . . , l!}) with a continuous space (Rl+1). As a
consequence, one cannot mathematically describe a probability measure on this
space with a pmf, nor with a pdf! And thus, one cannot “compute” a pmf or pdf
for P (Ψ, θ |D). So — what can we compute for, about, with, or on P (Ψ, θ |D)?
The answer is: we can get arbitrarily precise and exhaustive information about
P (Ψ, θ |D) by ... and only by ... you guess right: sampling.

The Metropolis algorithm at work. Mau et al. use the Metropolis algo-
rithm (in a global version) to sample trees Ψ and evolutionary clock parameters
θ from P (Ψ, θ |D). A crucial design task is to find a good proposal distribution
S((Ψ∗, θ∗)|(Ψ, θ)). It should lead from any plausible (Ψ, θ) [“plausible” means that
g((Ψ, θ)) is not very small] to another plausible (Ψ∗, θ∗) which should be however
as distinct from (Ψ, θ) as possible. The way how Mau et al. go about this task is
one of the core contributions of their work.

The authors alternate between updating only θ and only Ψ. Proposing θ∗ from
θ is done in a straightforward way: the new ∗-parameters are randomly drawn from
a rectangular distribution centered on the current settings θ.

The tricky part is to propose an as different as possible, yet “plausibility-
preserving” new tree Ψ∗ from Ψ. Mau et al. transform Ψ = (σ, a) into Ψ∗ =
(σ∗, a∗) in two steps:

1. The current tree Ψ is transformed into one of its 2n−1 equivalent topological
versions by randomly reversing with 0.5 probability every of its internal
branches, getting Ψ′ = (σ′, a′).

2. In Ψ′ the evolutionary inter-species time spans t are varied by changing the
old values by a random increment drawn from the uniform distribution over
[−δ, δ], where δ is a fixed bound (see Figure 57). This gives Ψ∗ = (σ′, a∗).

Mau et al. show that this method yields a symmetric proposal distribution, and
that every tree Ψ′ can be reached from every other tree Ψ in a bounded number
of such transformations – the Markov chain is thus ergodic.

Concretely, the Metropolis algorithm was run for 1,100,000 steps (20 hours
CPU time on a 1998 Pentium 200 PC). The first 100,000 steps were discarded
to wash out possible distortions resulting from the arbitrary starting tree. The
remaining 1,000,000 trees were subsampled by 200 (reflecting the finding that
after every 200 steps, trees were empirically independent [zero empirical cross-
correlation at 200 step distance]), resulting in a final tree sample of size 5000.
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Figure 57: Proposal candidate trees, attainable from the current tree, are found
within timeshift intervals of size 2δ, centered at the current internal nodes, that
constrain the repositioning of the internal nodes. Note that if the two rightmost
internal nodes are shifted such that their relative heights become reversed (dashed
blue circles), the topology of the tree would change (dashed blue lines). Figure
adapted from the Mau et al paper.

Final findings. Recall that the overall goal of this entire effort was to de-
terming which tree topology is best explaining the current genetic Data D, under
the assumptions of the Bayesian prior P (Ψ, θ). After the sampling was done, 5000
trees had been collected whose sample frequencies reflect their Bayesian posterior
probabilities. The rest is easy: sort these sampled trees into different subsets, each
of which is defined by a specific tree topology, then interpret the relative sizes of
these sets as probability estimates.

The 600 (!) most frequent topologies make up for 90% of the total probability
mass. This high variability however is almost entirely due to minute variations
within 6 clades (labelled A, ..., F) that are stable across different topologies. Figure
58 shows the two most frequently found topologies resolved at the clade level, with
a very strong posterior probability indication for the first of the two.

For quality control, this was repeated 10 times, with no change of the final
outcome, which makes the authors confident of their work’s statistical reliability.
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Figure 58: The two clade tree structures of highest posterior probability found by
Mau et al.

10 Graphical models

My favourite motivational example for introducing graphical models is the Space
Shuttle. In the launch phase, the engineering staff in the control center and the
astronauts on board have to make many critical decisions under severe time pres-
sure. If anything on board of the roaring Space Shuttle seems to go wrong, it must
be immediately determined, for instance, whether to shut down an engine (means
ditching the Space Shuttle in the ocean but hopefully saving the astronauts) or not
(might mean explosion of the engine and death of astronauts — or it might be just
the right thing to do if it’s a case of sensor malfunction and in fact all is fine with
the engine). The functioning of the Space Shuttle is monitored with many dozens
of sensors, which under the enormous vibration stress are more prone to malfunc-
tion than you would believe. They are delivering a massive flow of information
which is impossible for human operators to evaluate for fast decision-making. So-
called decision support systems are needed which automatically calculate proba-
bilities for the actual system state from sensor readings and display to the human
operators a condensed, human-understandable view of its most decision-critical
findings. Read the original paper of Horvitz and Barry 1995 on the probabilistic
modeling of the combined SpaceShuttle-Pilots-GroundControlStaff system if you
want to see how thrilling and potentially life-saving statistical modeling can be.

Such decision support systems are designed around hidden and visible random
variables. The visible RVs represent observable variables, for instance the pressure
or temperature readings from Space Shuttle engine sensors, but also actions taken
by the pilot. The hidden RVs represent system state variables which cannot be di-
rectly measured but which are important for decision making, for instance a binary
RV “Sensor 32 is functioning properly — yes / no”, or “pilot-in-command is aware
of excess temperature reading in engine 3 — yes / no”. There are many causal
chains between the hidden and visible RVs which lead to chains of conditional
probability assessments, for instance “If sensor reading 21 is ’normal’ and sensor
reading 122 is ’normal’ and sensor reading 32 is ’excess temperature’, the proba-
bility that sensor 32 is misreading is 0.6”. Such causal dependencies between RVs
are mathematically represented by arrows between the participating RVs, which
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in total gives a directed graph whose nodes are the RVs. In such a graph, each
RV X has its own sample space SX which contains the possible values that X
may take. When the graph is used (for instance, for decision support), for each
RV a probability distribution PX on SX is computed. If X1, . . . , Xk are RVs with
arrows fanning in on a RV Y , the probability distribution PY on SY is calculated
as a conditional distribution which depends on the distributions PX1 , . . . , PXk .
These calculations quickly become expensive when the graph is large and richly
connected (exact statistical inference in such graphs is NP-hard) and require ap-
proximate solution strategies — for instance, through sampling methods. Despite
the substantial complexity of algorithms in the field, such graphical models are to-
day widely used. Many special sorts of graphical models have traditional special
names and have been investigated in a diversity of application contexts long be-
fore the general, unifying theory of graphical models was developed. Such special
kinds of graphical models or research traditions include

• Hidden Markov models, a basic model of stochastic processes with memory,
which for decades have been the standard machine learning model for speech
and handwriting recognition and today still are the reference model for DNA
and protein sequences;

• models for diagnostic reasoning where a possible disease is diagnosed from
symptoms and medical lab results (also in fault diagnostics in technical sys-
tems – when your car [if you already possess one] is checked at a service
point, collected sensor data are read out and pumped through a Bayesian
network model of the car to see what are probably sources of malfunction);

• decision support systems, not only in Space Shuttle launching but also in
economics or warfare to name but two;

• human-machine interfaces where the machine attempts to infer the user’s
state of mind from the user’s actions — the (in-)famous and now abolished
Microsoft Office “paperclip” online helper was based on a graphical model;

• Markov random fields which model the interactions between local phenom-
ena in spatially extended systems, for instance the pixels in an image;

• Boltzmann machines, a neural network model of hierarchical information
processing.

Graphical models, and in particular Bayesian networks, have recently re-emerged
in machine learning in a new, and possibly revolutionary, role. Since the early
1990’s, the pioneer of Bayesian networks, Judea Pearl, has been busy working out
ways how causal relationships between real-world state variables can be inferred
from statistical relationships between them. It is by no means clear that this
should be possible at all — as witnessed by the cautionary warning “correlation is
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not causation” that is given to all students in statistics classes. Using the represen-
tations of complex, multi-variable probability distributions in Bayesian networks
as a starting point, Pearl nonetheless found ways to achieve exactly that, infer-
ring causation from (conditional) probability. For a long time, these insights were
hardly taken up by machine learners, although they had an impact in medical
and epidemiologial statistics. This has changed. Causal modeling is becoming an
important topic in deep learning. Specifically, structuring modular neural network
systems along the lines of causal chains (and cycles) is emerging as a possible key
for achieving artifical general intelligence — machine learning systems that can
cope with many tasks of many sorts (like humans and unlike current deep learning
systems), using only a few training examples (like humans and unlike current deep
learning systems), and generalizing very robustly to out-of-distribution input (like
humans and unlike current deep learning systems). Schölkopf, Locatello, et al.
2021 presents a very well-written tutorial on causal modeling.

In this section I will give an introduction to the general theory of graphical
models. In my condensed treatment I lean heavily on the two tutorial texts by
Pearl and Russell 2003 and K. Murphy 2001. This material is very useful by
itself (e.g. if you want to help Space Shuttles to be launched safely), and it is also
requisite background for understanding causal modeling.

Graphical models are a heavyweight branch of machine learning and would best
be presented in an entire course of their own. The course Probabilistic Graphical
Models of Stefano Ermon at Stanford University is a (beautifully crafted) exam-
ple. The course homepage https://cs228.stanford.edu/ gives links to litera-
ture and programming toolboxes — and it serves you a transparently written set
of lecture notes on https://ermongroup.github.io/cs228-notes/ which culmi-
nates in explaining deep variational autoencoders, a powerful deep learning method
which includes a number of techniques from graphical models.

10.1 Bayesian networks

Bayesian networks (BNs) are graphical models where the graph structure is a
finite, directed, acyclic (that is, the arrows never form cycles) graph. Today’s
general theory of graphical models emerged from research on Bayesian networks,
and many themes of graphical models are best introduced with Bayesian networks.

The classical application domains for BNs are decision support, user modeling,
and diagnostic systems. BN algorithms and fast computers have become indispen-
sible for decision support because humans are simply bad at correctly combining
pieces of stochastic evidence in uncertain situations. They tend to make gross,
systematic prediction errors even in simple diagnostic tasks that involve only two
observables — which is why in good medical schools, future doctors must take
courses in diagnostic reasoning —, let alone in tasks concerning complex systems
with dozens or hundreds of random variables.

For a first impression, we consider a classical (and I must say, somewhat stupid)
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example which you can find in many BN tutorials. Let X1, . . . , X5 be five discrete
random variables, indicating the following observations:

X1 : indicates the season of the year, has values in
SX1 = {Winter, Spring, Summer,Fall},

X2 : indicates whether it rains, with values {0, 1},

X3 : indicates whether the lawn sprinkler is on, has values {0, 1},

X4 : indicates whether the pavement (close to the lawn) is wet, values {0, 1},

X5 : indicates whether the pavement is slippery, values from {0, 1}, too.

There are certain causal influences between some of these random variables.
For instance, the season co-determines the probabilities for rain; the sprinkler
state co-determines whether the pavement is wet (but one would not say that
the wetness of the pavement has a causal influence on the sprinkler state), etc.
Such influences can be expressed by arranging the Xi in a directed acyclic graph
(a DAG), such that each random variable becomes a node, with an edge (i, j)
indicating that what is measured by Xi has some causal influence on what is
measured by Xj. Of course there will be some subjective judgement involved
in claiming a causal influence between two observables, and denying it for other
pairs – such dependency graphs are not objectively “true”, they are designed
to represent one’s view of a part of the world (note that these are not the causal
links that are studied in causal modeling. In causal modeling, causal influences are
not stipulated by a subjective researcher but become mathematically identified).
Figure 59 is the DAG for our example.

Figure 59: A simple Bayesian network. Image taken from Pearl and Russell 2003.

A DAG must satisfy the following formal condition in order to qualify as a
Bayesian network:

191



Definition 10.1 A directed acyclic graph with nodes labelled by RVs {X1, . . . , Xn}
(each with its own sample space Si) is a Bayesian network (BN) for the joint
distribution PX of X = X1 ⊗ . . .⊗Xn if every Xi is conditionally independent of
its non-descendants in the graph given its parents.

For convenience of notation we often identify the nodes Xi of a BN with their
indices i. The descendants of a node i in a DAG G are all nodes j that can be
reached from i on a forward path in G. Descendance is a transitive relation: if
j is a descendant of i and k a descendant of j, then k is a descendant of i. The
non-descendants of i are all j that are not descendants of i.

The parents of a node i are all the immediate graph predecessors of i, that is,
all j such that (j, i) is an edge in the graph.

For instance, in the DAG shown in Figure 59, X3 has parent X1 and descen-
dants X4, X5, and the condition stated in the definition requires that P (X3|X1)
is independent of X2, that is P (X3|X1) = P (X3|X1, X2): our judgement whether
the sprinkler is on or off is not influenced by our knowledge whether it rains or
not, given that we know what season it is. Personal note: I always found this a
weird Californian way of behaving: those guys would set the sprinkler on or off
just depending on the season; I guess in Summer all Californian sprinklers sprin-
kled all Summer, come rain come shine (in the year 2000 when that tutorial was
written; today Californians surely are more water-aware).

The independence relations expressed in a BN in terms of parents and non-
descendants need not be the only independence relations that are actually true
in the joint distribution. In our example, for instance, it may be the case that
the pavement is always slippery because it was made from polished marble. Then
X5 would be unconditionally independent from any of the other variables. The
complete independence relations between the variables figuring in a BN depend
on the particulars of the joint distribution and need not all be represented in the
graph structure. A BN is only a partial model of the independence relations that
may be present in the concerned variables.

Let’s squeeze in a short remark on notation here. By P (X4 |X2, X3) we denote
the conditional distribution of X4 given X2 and X3. In rigorous mathematical texts
one would denote this distribution by PX4 |X2,X3 , but I will follow the notation in
the Pearl/Russell tutorial in this section. For discrete random variables, as in
our example, such conditional distributions can be specified by a table — for
P (X4 |X2, X3) such a table might look like

X2 X3 P (X4 = 0) P (X4 = 1)
0 0 1.0 0.0
0 1 0.1 0.9
1 0 0.1 0.9
1 1 0.01 0.99

(116)
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To specify a BN, one must supply such conditional distributions for every
RV Xi in the network. They give the probabilities for values of Xi for all value
combinations of its parents. If a RV Xi has no parents (that is, it is a root node
in the DAG), then this conditional distribution is conditioned on nothing — it is
just a plain probability distribution of the RV Xi.

For continuous-valued random variables, such conditional distributions cannot
in general be specified in a closed form (one would have to specify pdf’s for each
possible combination of values of the conditioning variables), except in certain spe-
cial cases, notably Gaussian distributions. One must then supply a computable
mathematical function which allows one to compute all concrete probability den-
sities like p(X4 = x4 |X2 = x2, X3 = x3), where p is a pdf.

I use lowercase P (x4 |x2, x3) as a shorthand for P (X4 = x4 |X2 = x2, X3 =
x3). This denotes a single probability number for particular values of our random
variables. – End of the remark on notation.

A Bayesian network can be used for reasoning about uncertain causes and
consequences in many ways. Here are three kinds of arguments that are frequently
made, and for which BNs offer algorithmic support:

Prediction. “If the sprinkler is on, the pavement is wet with a probability P (X4 =
1|X3 = 1) = ###”: reasoning from causes to effects, along the arrows of
the BN in forward direction. Also called forward reasoning in AI contexts.

Abduction. “If the pavement is wet, it is more probable that the season is spring
than that it is summer, by a factor of ### percent”: reasoning from effects
to causes, that is, diagnostic reasoning, backwards along the network links.
(By the way, for backward reasoning you need Bayes’ formula, which is what
gave Bayesian networks their name.)

Explaining away, and the rest. “If the pavement is wet and we don’t know
whether the sprinkler is on, and then observe that it is raining, the probability
of the sprinkler being on, too, drops by ### percent : in “explaining away”
there are several possible causes C1, . . . , Ck for some observed effect E, and
when we learn that actually cause Ci holds true, then the probabilities drop
that the other causes are likewise true in the current situation. There are
many other variants of reasoning “sideways”.

Bayesian networks offer inference algorithms to carry out such arguments and
compute the correct probabilities, ratios of probabilities, etc. These inference al-
gorithms are neither cheap nor easy to understand, and for some time researchers
believed that these inferences cannot be computed in feasible runtimes at all. It
came as a landslide surprise when practical algorithms were discovered in the mid-
80’s, and only then Bayesian networks began to make their way into applications.
I was personally present at an AI workshop (the annual meeting of the AI section
of the German Society for Computer Science) where the speaker – sadly I forget
who the speaker was – described an early version of such an algorithm, and was
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met with skepticism or plain disbelief by the audience. I will explain a classical
(and still widely used) algorithm in this section (the join tree algorithm for exact
inference); it is efficient in BNs whose connectivity is not too dense. Because ex-
act statistical inference in BNs is NP-hard, one has to take resort to approximate
algorithms in many cases. There are two main families of such approximate algo-
rithms, one based on sampling and the other on variational approximation. I will
give a hint on inference by sampling and omit variational inference.

In a sense, the most natural (the only?) thing you can do when it comes to
handle the interaction between many random variables is to arrange them in a
causal influence graph. So it is no surprise that related formalisms have been
invented independently in AI, physics, genetics, statistics, and image processing.
However, the most important algorithmic developments have been in AI / machine
learning, where feasible inference algorithms for large-scale BNs have first been
investigated. The unrivalled pioneer in this field is Judea Pearl http://bayes.
cs.ucla.edu/jp_home.html, who laid the foundations for the algorithmic theory
of BNs in the 1980’s. These foundations were later developed to a more general
theory of graphical models, a development promoted (among others) by Michael
I. Jordan https://people.eecs.berkeley.edu/~jordan/. Michael Jordan not
only helped to build the general theory of graphical models but also had a shaping
influence on other areas in machine learning. He is a machine learning superpower.
The list of his past students and postdocs on his homepage is awe-inspiring and
reads like a Who’s Who of machine learning.

In the world of BNs (and graphical models in general) there exist two funda-
mental tasks:

Inference: Find algorithms that exploit the graph structure as ingeneously as
possible to yield feasible algorithms for computing all the quantities asked
for in prediction, abduction and explaining-away tasks.

Learning: Find algorithms to estimate a BN from observed empirical data. Learn-
ing algorithms typically call inference algorithms as a subroutine, so we will
first treat the latter.

10.1.1 Brute-force inference in BNs

A Bayesian network is a probabilistic representation of a piece of reality – that
piece which we observe through the visible RVs and that we hypothetically capture
through the hidden RVs and all the arrows. A BN represents the joint probability
distribution of all of these RVs. In inference tasks one computes distributions of
target variables of interest (“probability that Space Shuttle engine will explode”)
as marginal or conditional probabilities derived from that joint distribution. In
this subsection I explain how such marginal or conditional distributions are math-
ematically connected to the joint distribution in cases where all RVs have finite
sample spaces, and how the graph structure can be exploited to factorize distri-
butions of interest, which makes them computationally more tractable.
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The joint distribution in our Californian pavement example is a distribution
over the sample space

{Winter, Spring, Summer,Fall} × {0, 1} × {0, 1} × {0, 1} × {0, 1},

which has 4 · 2 · 2 · 2 · 2 = 64 elements. Thus one would need a 64-dimensional pmf
to characterize it, which has 63 degrees of freedom (one parameter we get for free
because the pmf must sum to 1). This pmf would not be given in vector format
but as a 5-dimensional array of size 4×2×2×2×2. We will now investigate brute-
force methods for elementary inference in this joint probability array and see how
the graph structure leads to a dramatic reduction in computational complexity
(which however still is too high for practical applications with larger BNs – more
refined algorithms to be presented later).

By a repeated application of the factorization formula (174) (in Appendix B),
the joint distribution of our five random variables is

P (X) = P (
⊗

i=1,...,5

Xi) =

P (X1)P (X2|X1)P (X3|X1, X2)P (X4|X1, X2, X3)P (X5|X1, X2, X3, X4).(117)

Exploiting the conditional independencies expressed in the BN graph, this
reduces to

P (X) = P (X1)P (X2|X1)P (X3|X1)P (X4|X2, X3)P (X5|X4). (118)

For representing the factors on the right-hand side of (118) by tables like (116),
one would need tables of sizes 1×4, 4×2, 4×2, 4×2, and 2×2, respectively. Because
the entries per row in each of these tables must sum to 1, one entry per row is
redundant, so these tables are specified by 3, 4, 4, 4 and 2 parameters, respectively.
All in all, this makes 17 parameters needed to specify P (X), as opposed to the 63
parameters needed for the naive representation P (X) in a 5-dimensional array.

In general, the number of parameters required to specify the joint distribution
of n discrete random variables with maximally ν values each, arranged in a BN with
a maximum fan-in of k, is O(n νk) as opposed to the raw number of parameters
O(νn) needed for a naive characterization of the joint distribution. This is a
reduction from a space complexity that is exponential in n to a space complexity
that is linear in n! This simple fact has motivated many a researcher to devote
his/her life to Bayesian networks.

Any reasoning on BNs (predictive, abductive, sidestepping or other) boils down
to calculate conditional or marginal probabilities. For instance, the abductive
question, “If the pavement is wet, by which factor y is it more probable that the
season is spring than that it is summer”, asks one to compute

y =
P (X1 = spring |X4 = 1)

P (X1 = summer |X4 = 1)
. (119)
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Such probability ratios are often sought in diagnostic reasoning — as for in-
stance in “by which factor is it more probable that my symptoms are due to cancer,
than that they are due to having eaten too much sauerkraut”.

Any conditional probability P (y1, . . . , ym | z1, . . . , zl), where the Yi and Zj are
among the RVs in the BN, can be computed from the joint distribution of all
variables in the BN by first transforming P (y1, . . . , ym | z1, . . . , zl) into a fraction
of two marginal probabilities,

P (y1, . . . , ym | z1, . . . , zl) =
P (y1, . . . , ym, z1, . . . , zl)

P (z1, . . . , zl)

and then computing the denominator and the enumerator by marginalization from
the joint distribution of all RVs in the BN, exploiting efficient BN factorizations of
the kind exemplified in Equation 118. The probability P (X1 = spring |X4 = 1),
for instance, can be computed by

P (X1 = spring |X4 = 1) = (120)

=
P (X1 = spring, X4 = 1)

P (X4 = 1)

=

∑
x2,x3,x5

P (X1 = spring, x2, x3, X4 = 1, x5)∑
x1,x2,x3,x5

P (x1, x2, x3, X4 = 1, x5)

=

∑
x2,x3,x5

P (X1 = s)P (x2|X1 = s)P (x3|X1 = s)P (X4 = 1|x2, x3)P (x5|X4 = 1)∑
x1,x2,x3,x5

P (x1)P (x2|x1)P (x3|x1)P (X4 = 1|x2, x3)P (x5|X4 = 1)
,

where I abbreviated “spring” to “s” in order to squeeze the expression into a single
line.

(120) can be computed by a brute-force evaluation of the concerned summa-
tions. The sum to be taken in the denominator would run over 4×2×2×2 =
32 terms, each of which is a product of 5 subterms; we thus would incur 128
multiplications. It is apparent that this approach generally incurs a number of
multiplications that is exponential in the size of the BN.

A speedup strategy is to try pulling the sum into the product as far as possible,
and evaluate the resulting formula from the inside of bracketing levels. This is
called the method of variable elimination. For example, an equivalent formula for
the sum in the denominator of (120) would be

∑
x1

(
P (x1)

∑
x2,x3

(
P (x2|x1)P (x3|x1)P (X4 = 1|x2, x3)

(∑
x5

P (x5|X4 = 1)

)))
.

To evaluate this expression from the inside out, we note that the sum over x5 in
the innermost term is 1 and need not be explicitly calculated. For the remaining
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calculations, 15 sums and 36 multiplications are needed, as opposed to the 31
sums and 128 multiplications needed for the naive evaluation of the denominator
in (120). However, finding a summation order where this pulling-in leads to the
minimal number of summations and multiplications is again NP-hard, although
greedy algorithms for that purpose are claimed to work well in practice.

In such a situation, computer scientists can choose between three options:

1. Restrict the problem by suitable constraints, earning a tractable problem.
For BNs, this was the first strategy that was used with success: early (now
classical) inference algorithms were defined only for BNs with tree graphs.

2. Use heuristic algorithms, i.e. algorithms that embody human insight for com-
putational shortcuts. Heuristic algorithms need not always be successful in
leading to short runtimes; if they do, their result is perfectly accurate. The
goal is to find heuristics which lead to fast runtimes almost always and which
run too long only rarely. The “join tree” algorithm which we will study later
contains heuristic elements.

3. Use approximate algorithms, i.e. algorithms that yield results always and fast,
but with an error margin (which should be controllable). For BN inference,
a convenient class of approximate algorithms is based on sampling. In order
to obtain an estimate of some marginal probability, one samples from the
distribution defined by the BN and uses the sample as a basis to estimate
the desired marginal. There is an obvious tradeoff between runtime and
precision. Another class of approximate algorithms is to use variational
inference. Variational algorithms need some insight into the shape of the
conditional distributions in a BN. Their speedup results from restricting the
admissible shapes of these distributions to analytically tractable classes. I
will not go into this topic in this course — it’s not easy. Jordan, Ghahramani,
et al. 1999 give a tutorial introduction.

10.1.2 BN inference with the join-tree algorithm

In this subsection I will unfold the classical exact inference algorithm that can
compute conditional and marginal probabilities on BNs at (often) affordable cost.
This algorithm is often referred to as join tree algorithm, or junction tree algorithm.
It is an exact algorithm: it computes exact, not merely approximate values of the
desired probabilities. And it is a heuristic algorithm, because some substeps can
be set up in several ways, and deciding which set-up one uses is often done based
on the heuristic ’this has been reported in the literature to mostly work well’.

The join-tree algorithm isn’t simple and this subsection will be long. I will
follow the description given in Huang and Darwiche 1994.

Before the BN can be used with the join tree inference algorithm, the original
DAG must be transformed into an auxiliary graph structure, called a join tree,
by a rather involved process. This has to be done only once for a given BN
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however; the same join tree can be re-used for all subsequent inference calls. The
transformation from a DAG to a join tree runs through 4 steps. Here is a first
overview:

Given: A BN with DAG Gd with nodes X = {X1, . . . , Xn}

Step 1: Transform Gd to an undirected graph Gm, called the moral undirected
graphical model (moral UGM), which is an equivalent way of expressing
the independencies expressed in Gd, but using another graph separation
mechanism for expressing conditional independencies.

Step 2: Add some further undirected edges to Gm which triangulate Gm, ob-
taining Gt. This may destroy some of the original independence relations
between {X1, . . . , Xn} but will not introduce new ones. This step has no
unique single solution, and heuristics enter the game to decide which trian-
gulation to use.

Step 3: Detect all maximal cliques Ci in Gt. While this is NP-complete for gen-
eral undirected graphs, it can be done efficiently for triangulated undirected
graphs (Note: a clique in an undirected graph is a subset of nodes that are
all pairwise connected to each other. A subset of a clique is again a clique.
A clique C is maximal if no vertex outside C has edges to all vertices in C.)

Step 4: Build an undirected join tree T with nodes Ci. This is the desired target
structure. It represents an elegant factorization of the joint probability P (X)
which in turn can be processed with a fast, local inference algorithm known
as message passing. Again there is no unique way to create the join tree and
heuristics are used to obtain one that leads to fast inference algorithms.

We will go through these steps in a mostly informal manner. The purpose
of this presentation is not to provide you with a detailed recipe for building ex-
ecutable code. There exist convenient BN toolboxes that you would rather use.
The purpose of this subsection is to provide you with a navigation guide to gain
an overview of the general picture, then study the more detailed paper Huang and
Darwiche 1994, then start using (and understanding) a toolbox.

Undirected graphical models. Before we can delve into the join tree algo-
rithm, we have to introduce the concept of undirected graphical models (UGMs),
because these will be constructed as intermediate data structures when a BN is
transformed to a join tree.

The essence of BNs is that conditional independency relationships between
RVs are captured by directed graph structures, which in turn guide efficient in-
ference algorithms. But it is also possible to use undirected graphs. This leads
to undirected graphical models (UGMs), which have a markedly different flavour
from directed BNs. UGMs originated in statistical physics and image processing,
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while BNs were first explored in Artificial Intelligence. A highly readable non-
technical overview and comparison of directed and undirected models is given in
Smyth 1997.

We will use the following compact notation for statistical, conditional indepen-
dence between two sets Y and Z of random variables, given a another set S of
random variables:

Definition 10.2 Two sets Y and Z of random variables are independent given
S, if

P (Y,Z |S) = P (Y |S) P (Z |S).

We write Y⊥Z |S to denote this conditional independence.

It is easy to see that if Y⊥Z |S and Y′ ⊆ Y,Z′ ⊆ Z, then Y′⊥Z′ |S.
In an UGM, independence relations between sets of random variables are de-

fined in terms of a graph separation property:

Definition 10.3 Let G = (V,E) be an undirected graph with vertices V and edges
E ⊆ V × V . Let Y, Z, S ⊂ V be disjoint, nonempty subsets. Then Y is separated
from Z by S if every path from some vertex in Y to any vertex in Z contains a
node from S. S is called a separator for Y and Z.

And here is how statistical independence is reflected in a graph’s separation
properties:

Definition 10.4 An undirected graph with nodes X = {X1, . . . , Xn} is an undi-
rected graphical model (UGM) for P (X) if for all Y,Z ⊆ X it holds that if Y is
separated from Z by S, then Y⊥Z |S.

UGMs are sometimes defined in a slightly different but equivalent way. We
formulate this other definition as a proposition:

Proposition 10.1 An undirected graph with nodes X = {X1, . . . , Xn} is an UGM
for P (X) iff for all i = 1, . . . , n it holds that P (Xi | (Xj)j 6=i) = P (Xi | (Xj)j∈Ni),
where Ni is the set of all direct graph neighbors of node i.

In an UGM, the set Ni of all direct neighbors of Xi, which makes Xi inde-
pendent from all other RVs in the model, is also called the Markov blanket of Xi.
Notice that Markov chains (see Section 9.5.1) can be considered as UGMs where
the (only) edges are between subsequent Xn, Xn+1 and the Markov blanket of Xn

is given by its temporal neighbors {Xn−1, Xn+1}.
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Step 1: The moral UGN. After this quick introduction to UGMs we return
to the join tree algorithm for BNs. The first step is to transform the directed
graph structure of a BN into an UGM structure. This can be done in many ways.
The art lies in transforming a BN into an UGM such that as few as possible of the
valuable independence relations expressed in the BN get lost. The standard thing
to do as a first step is to moralize the directed BN graph Gd into an undirected
graph Gm by

1. converting all edges from directed to undirected ones,

2. for every node Xi, adding undirected edges between all parents of Xi.

See Figure 60 for an example. The peculiar name “moralizing” comes from the
act of “marrying” previously unmarried parents. The moral UGM Gm implies the
same conditional independence relations as the BN Gd from which it was derived
(proof omitted here).

Figure 60: A BN and its associated moral UGM. Image taken from Huang and
Darwiche 1994.

Step 2: Triangulation. An undirected graph is triangulated if every cycle of
length at least 4 contains two nodes not adjacent in the cycle which are connected
by an edge.

Any undirected graph can be triangulated by adding edges. There are in gen-
eral many ways of doing so. For best efficiency of UGM inference algorithms, one
should aim at triangulating in a way that minimizes the size of cliques of the trian-
gulated graph. This is (again) an NP-hard problem. However there are heuristic
algorithms which yield close to optimal triangulations in (fast) polynomial time.
One of them is sketched in the Huang/Darwiche guideline for BN inference design.
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Figure 61: Left: A triangulated version Gt of the moral UGM Gm from Figure 60.
Right: the 6 cliques in Gt. Image adopted from Huang and Darwiche 1994.

After triangulation, we have an UGM graph Gt. Figure 61 shows a possible
triangulation of the UGM from Figure 60.

The reason for triangulating is that triangulated graphs can be decomposed
into junction trees in Step 4.

Step 3: Finding the cliques. For a change, finding all maximal cliques in a
triangulated graph is not NP-hard — efficient algorithms for finding all maximal
cliques in a triangulated graph are known. In our running example, we get 6
cliques, namely all the ”triangles” ABD, ACE, ADE, DEF, CGE, and EGH (Figure
61 (right)). Our example conveys maybe a wrong impression that we always get
cliques of size 3 in triangulated graphs. In general, one may find maximal cliques
of any size ≥ 2 in such graphs.

Step 4: Building the join tree. This is a more interesting and involved step.
After BNs and UGMs, join trees are our third graph-based representation of in-
dependence relations governing a set X of random variables. We will first discuss
join trees in their own right, and then consider how a join tree can be obtained
from the cliques of a triangulated UGM.

Definition 10.5 Let X = {X1, . . . , Xn} be a set of discrete random variables with
joint distribution P (X), where Xi takes values in a sample space SXi. A join tree
for P (X) is an undirected tree whose nodes are labelled with subsets Ci ⊆ X (called
clusters) and whose edges are labelled with subsets Sj ⊆ X (called the separator
sets or sepsets). Furthermore, each cluster C = {Y1, . . . , Yk} is associated with a
belief potential ϕC : SY1× . . .×SYk → R≥0, and each sepset S = {S1, . . . , Sl} with
a belief potential ϕS : SS1 × . . . × SSl → R≥0, such that the following conditions
are satisfied:

1. The graph has the running intersection property, that is, given two cluster
nodes labelled with C and C′, all labels C∗ of cluster nodes on the path
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between C and C′ must have labels containing C ∩C′.

2. Each edge between two nodes labelled by C and C′ is labelled by S = C∩C′.

3. For each cluster C = {Y1, . . . , Yl, Yl+1, . . . , Yk} and neighboring sepset S =
{Y1, . . . , Yl} (note that l ≤ k because S ⊆ C), it holds that ϕC is consistent
with ϕS in the sense that∑

yl+1,...,yk

ϕC(y1, . . . , yk) = ϕS(y1, . . . , yl), (121)

that is, ϕS is obtained by marginalization from ϕC.

4. The joint distribution P (X) is factorized by the belief potentials according to

P (X) =

∏
i ϕCi∏
j ϕSj

, (122)

where i ranges over all clusters and j over all sepsets.

Figure 62: A join tree derived from the triangulated UGN shown in Figure 61.
Image taken from Huang and Darwiche 1994.

I mention without proof how statistical independence relations are reflected in
a join tree:

Proposition 10.2 Let T be a join tree for P (X) and Y,Z,S ⊆ X. Re-interpret
the link labels as nodes (so the join tree from Figure 62 would become an undirected
tree with 11 nodes and unlabelled links), obtaining a “homogenized” tree T ′. If
for all Y ∈ Y, Z ∈ Z the path from any node in T ′ containing Z to any node
containing Y passes through a node whose labels include S, then Y⊥Z |S.

In join trees, the belief potentials are the marginal distributions of their vari-
ables (again, I don’t give the proof):

Proposition 10.3 Let T be a join tree for P (X), and let K = {X1, . . . , Xk} ⊆
X = {X1, . . . , Xk, Xk+1, . . . , Xn} be a cluster or sepset label set. Then for any
value instantiation x1, . . . , xk of the variables from K, it holds that∑

xk+1∈SXk+1
,...,xn∈SXn

P (x1, . . . , xn) = ϕK(x1, . . . , xk), (123)

that is, ϕK is the marginal distribution of the variables in K.
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We will from now on use the shorthand notation∑
X\K

P (X) = ϕK (124)

to denote marginalization.
Ok., now that we know what a join tree is, we return to Step 4: constructing

a join tree from a triangulated moral UGM Gt. A join tree is specified through
(i) its labelled graph structure and (ii) its belief potentials. We first treat the the
question how one can derive the join tree’s graph structure from the triangulated
UGM Gt.

There is much freedom in creating a join tree graph from Gt. One goal for
optimizing the design is that one strives to end up with clusters that are as small
as possible (because the computational cost of using a join tree for inference will
turn out to grow exponentially in the maximal size of clusters). On the other hand,
in order to compute belief potentials later, any clique in Gt must be contained in
some cluster. This suggests to turn the cliques identified in Step 3 into the cluster
nodes of the join tree. This idea indeed gives a general recipe for constructing a
join tree from a triangulated UGM Gt, which I rephrase from Huang and Darwiche
1994:

1. Begin with an empty set SEP, and a completely unconnected graph whose
nodes are the m maximal cliques Ci found in Step 3.

2. For each distinct pair of cliques Ci,Cj create a candidate sepset Sij = Ci ∩
Cj, and put it into SEP. SEP will then contain m (m− 1)/2 such Sij (some
of which may be the empty set).

3. From SEP iteratively choose m − 1 sepsets and use them to create connec-
tions in the node graph, such that each newly chosen sepset connects two
subgraphs that were previously unconnected. This necessarily yields a tree
structure.

A note on the word “tree structure”: in most cases when a computer scientist
talks about tree graphs, there is a special “root” node. Here we use a more general
notion of trees to mean undirected graphs which (i) are connected (there is a path
between any two nodes) and (ii) where these paths are unique, that is between
any two nodes there is exactly one connecting path. In such tree graphs any node
can be designated as “root” if one wishes to see the familiar appearance of a tree.

This general recipe leaves much freedom in choosing the sepsets from SEP in
step 3. Not all choices will result in a valid join tree. In order to ensure the join
tree properties, we choose, in every step from 3., the candidate sepset that has the
largest number of contained variables.

This is not the only possible way of constructing a join tree, and it is still
underspecified (there may be several maximal-size sepsets at our disposal in a

203



step from 3.) Huang and Darwiche propose a full specification that heuristically
optimizes the join tree with respect to the ensuing inference algorithms.

If the original BN was not connected, some of the sepsets used in the join tree
will be empty; we get a join forest then.

We now turn to the second subtask in Step 4 and construct belief potentials
ϕC, ϕS for the clusters and sepsets, such that Equations 121 and 122 hold. These
belief potentials are constructed in two steps. First, the potentials are initialized
in a way such that (122) holds. Second, by a sequence of message passes, local
consistency (121) is achieved.

Initialization. Initialization works in two steps:

1. For each clique or sepset K (we use symbol K for cliques C or sepsets S),
set ϕK to the constant function

ϕK ≡ 1.

2. For each variable X, do the following. Assign to X a clique CX that contains
X and its parents ΠX from the original BN. Due to the moralizing, such a
clique must exist. Multiply ϕCX by P (X |ΠX):

ϕCX ← ϕCXP (X |ΠX).

This is a shorthand notation. In more detail: first, interpret P (X |ΠX)
as a real-valued function f of all variables contained in CX , as follows. Let
CX = {X1, . . . , Xk, Xk+1, . . . , Xl} where ΠX = {X1, . . . , Xk} are the parents
of X = Xk+1. Then set f(x1, . . . , xk, xk+1, . . . , xl) = P (Xk+1 = xk+1 |X1 =
x1, . . . , Xk = xk). Second, for all value combinations x̄ = (x1, . . . , xl), update

ϕCX (x̄)← ϕCX (x̄) · f(x̄).

After this initialization, the conditional distributions P (Xk |ΠXk) of all vari-
ables (and hence the information from the BN) have been multiplied into the
clique potentials, and (122) is satisfied:∏

i ϕCi∏
j ϕSj

=

∏
k=1,...,n

P (Xk|CXk)

1
=

∏
k=1,...,n

P (Xk|ΠXk) = P (X),

where i ranges over all cliques, j over all sepsets, and k over all RVs.
After having initialized the join tree potentials, we make them locally consistent

by propagating the information, which has been locally multiplied-in, across the
entire join tree. This is done through a suite of message passing operations, each of
which makes one clique/sepset pair consistent. We first describe a single message
pass operation and then show how they can be scheduled such that a message pass
does not destroy consistency of clique/sepset pairs that have been made consistent
in an earlier message passing.
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A single message pass. Consider two adjacent cliques C and D with an
intervening sepset S and their associated belief potentials ϕC, ϕD, ϕS. A message
pass from C to D occurs in two steps:

1. “Projection”: create a copy ϕold
S of ϕS for later use, then recompute ϕS by

marginalization from C:

ϕold
S ← ϕS, ϕS ←

∑
C\S

ϕC.

This makes ϕS consistent with ϕC according to Equation 121. The joint
distribution P (X) becomes changed through this operation by a factor of
ϕold
S /ϕS (notice that ϕS appears in the denominator of (122)).

2. “Absorption”: multiply the belief potential of D by the inverse of ϕold
S /ϕS

in order to restore the joint distribution:

ϕD ← ϕD
ϕS

ϕold
S

.

A technical detail: if ϕold
S (s) = 0, it can been shown that also ϕS(s) = 0; in

this case set ϕS(s)/ϕold
S (s) = 0.

After this step, C is consistent with S in the sense of (121). To also make
D consistent with S, a message passing in the reverse direction must be carried
out. An obvious condition is that this reverse-direction pass must preserve the
consistency of C with S. This is warrented if a certain order of passes is observed,
to which we now turn our attention.

Coordinating all message passes. In order to achieve local consistency
(121) for all neighboring clique-sepset pairs in the join tree, twice as many message
passes as there are such pairs must be executed, two for each pair. In order to
avoid that local consistency for a pair C, S achieved by a message pass from C
to D (where S is the sepset between C and D) is not destroyed by a subsequent
message pass in the reverse direction, the global order of these passes is crucial.
We will motivate a global propagation scheme by considering some connection C
– S – D within the tree, as depicted in Figure 63.

Figure 63: A connection C – S – D within the tree.
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This connection will be hit twice by a message pass, one in each direction.
Assume that the first of the two passes went from C to D. After this pass, we
have potentials ϕ0

C, ϕ
0
S, ϕ

0
D, and C is consistent with S:

ϕ0
S =

∑
C\S

ϕ0
C.

At some later time, another message pass sweeps back from D to C. Before this
happens, the potential of D might have been affected by some other passes, so it
is ϕ1

D when the pass from D to C occurs. After this pass, we have

ϕ1
S =

∑
D\S

ϕ1
D and ϕ1

C = ϕ0
C

ϕ1
S

ϕ0
S

.

It turns out that still S is consistent with C:

ϕ1
S = ϕ0

S

ϕ1
S

ϕ0
S

=

∑
C\S

ϕ0
C

 ϕ1
S

ϕ0
S

=
∑
C\S

(
ϕ0
C

ϕ1
S

ϕ0
S

)
=
∑
C\S

ϕ1
C.

In summary, we see that if a connection C – S – D is hit by two passes, one for
each direction, S will be consistent with C and D. In order to ensure consistency
for all connections in the tree, we must make sure that after some connection C –
S – D has been passed back and forth, neither C nor D take part in any further
passes, as this might again disrupt the already achieved consistency. The following
global scheduling scheme assures this condition:

1. To start, single out any clique C and call it the “center”.

2. In a first phase (“collect evidence” in the Huang/Darwiche paper), carry out
all passes that are oriented towards the center. Carry out these passes in
any order such that a pass “leaves” some node on some connection only after
all other “incoming” connections have been used for passes.

3. In a second phase (“distribute evidence”), carry out all passes that are ori-
ented away from the center, in an inside-out spreading order.

Figure 64 shows a possible global scheduling for our example join tree.
After all of this toiling, we have a magic join tree T — a tree graph adorned

with belief potentials that are locally consistent (Equation 121) and globally rep-
resent the joint distribution P (X) (Equation 122). The join tree is now ready for
use in inference tasks.
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Figure 64: A scheduling for the global propagation of message passing. The center
is ACE. Figure taken from the Huang/Darwiche paper.

Inference task 1: compute a single marginal distribution. For any RV
X in the BN, computing the marginal distribution P (X) is a simple two-step
procedure:

1. Identify a clique or sepset K which contains X.

2. Obtain P (X) by marginalization

P (X) =
∑

K\{X}

ϕK.

This follows from Proposition 10.3.

Inference task 2: Compute conditional distributions. Most use-cases of
BNs concern the calculation of probabilities for certain events, given that some
information is known / measured / observed. For instance, in the Space Shuttle
example, one wants to know the probability that the engine will explode given
certain sensor readings; or in medical diagnostic one wants to know the probability
that the patient has cancer given lab results.

In formal terms, this means to calculate conditional distributions of the kind
P (Z | E1 = e1, . . . , Ek = ek), where Z,E1, . . . , Ek are variables in the BN, and
current values for the Ei are known. The known facts Ei = ei are called evidence.

Let e1, . . . , ek = e be an evidence, that is values for RVs E1, . . . , Ek = E. To
feed this information into T , we introduce a new kind of belief potentials called (in
this context) likelihoods. For each E ∈ E we define the likelihood ΛE : SE → {0, 1}
by

ΛE(e) =

{
1 if e is the observed value of E

0 for all other e ∈ SE
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In order to compute P (Z | E1 = e1, . . . , Ek = ek) = P (Z | e), we have to go
through the routine of initializing T and making it consistent via global message
propagation again, using an augmented version of the method described previously.
Here is how.

Initialization: Exactly as described above. This yields initial belief potentials
ϕC, ϕS for all cliques and sepsets.

Observation entry: for each E ∈ E, do the following:

1. Identify a clique CE which contains E.

2. Update ϕCE = ϕCE ΛE.

Here ϕCE ΛE is a shorthand for the function ϕCE ΛE : SE×SA1× . . .×SAl →
R≥0 defined by

ϕCE ΛE(ẽ, a1, . . . , al) = ϕCE(ẽ, a1, . . . , al) · ΛE(ẽ),

where CE has labels (E,A1, . . . , Al), that is, ϕCE ΛE simply resets ϕCE to
zero for all arguments that have a different value for E than the observed
one. With the new potentials, the tree globally encodes P (X) 1e, where
1e : S⊗

Xi → {0, 1} is the indicator function of the set {(x1, . . . , xn) ∈
S⊗

Xi | xi = ej for Xi = Ej, j = 1, . . . , k}:∏
i ϕCi∏
j ϕSj

= P (X) ΛE1 . . .ΛEk = P (X) 1e =: P (X, e).

Note furthermore that ∑
X\E

= P (e).

Global propagation: Global propagation: exactly as before, but starting from
the updated potentials obtained by observation entry. After this is com-
pleted, the join tree is locally consistent. Furthermore, each clique or sepset
K has a potential satisfying

ϕK = P (K, e).

Normalization: In order to compute P (Z | e), determine a clique CZ which
contains Z. When we marginalize this clique’s potential to Z, we obtain the
probability of Z and e: ∑

CZ\{X}

ϕCZ = P (Z, e).

But our goal is to compute P (Z|e), the distribution of Z given e. We obtain
this by normalizing P (Z|e):

P (Z | e) =
P (Z, e)

P (e)
=

P (Z, e)∑
z∈SZ

P (Z, e)
.
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10.1.3 Learning Bayesian networks

We have seen how we can calculate statistical inferences on the basis of a given
BN. But who gives it to us, and how?

A common approach, especially in AI, is to distil the conditional probability
tables from interviews with experts of the target domain. Domain experts often
have clear conceptions of local conditional probabilities that connect a few vari-
ables. You might ask, why use a BN if such experts are available? The answer is
that while humans may have a good insight on local interdependencies between a
few variables, they are psychologically and intellectually poorly equipped to use
this local knowledge for making sound statistical inferences which connect many
variables in a globally connected causal interaction system.

In other cases, empirical observations are available that allow one to estimate
the conditional probability tables from data. For instance, the table shown in
Equation (116) could have been estimated from counts # of observed outcomes
as suggested in Figure 65.

Figure 65: Example of estimating a probability table from frequency counts.

Notice that each row in such a table is estimated independently from the other
rows. The task of estimating such a row is the same as estimating a discrete
distribution from data. When there is no abundance of data, Bayesian model esti-
mation via Dirichlet priors is the way to go, as in the protein frequency estimation
in Section 8.3.

When data like in Figure 65 are available for all nodes in a BN, estimating
the local conditional probabilities by the obvious frequency counting ratios gives
maximum likelihood estimates of the local conditional probabilities. It can be
shown that this is also the maximum likelihood estimate of the joint distribution
P (X) (not a deep result, the straightforward derivation can be found in the online
lecture notes of Ermon 2019, chapter “Learning in directed models”).

It is very often the case that for some of the variables, neither empirical obser-
vations nor an expert’s opinion is available, either because simply the observations
have not been carried out or because these quantities are in principle unobservable.
Such unobservable variables are called hidden variables. To get an impression of
the nature and virtues of hidden variables, consider the BN in Figure 66.

Maritial status is hardly causal for political preferences. According to some
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Figure 66: A BN for use by a social worker (apologies to professionals in the field)

Figure 67: A BN for use by a psychologically and statistically enlightened social
worker

(folk) psychology, the BN shown in Figure 67 would more appropriately capture
the causal logics connecting the variables from the model in Figure 66.

However, nobody has yet found a convincing way to directly measure self-
confidence — it is an explanatory concept, and becomes a hidden variable in a
statistical model. While all other variables in this BN can be readily measured,
self-confidence can’t. Yet the augmented BN is, in an intuitive sense, more valuable
than the first one, because it tries to reveal a causal mechanism whereas the former
one only superficially connects variables by arrows that can hardly be understood.

Besides being intellectually more pleasing, the second BN offers substantial
computational savings: its join tree (construct it!) is much more lightweight than
the first BN’s, so statistical inference algorithms will run much faster.

Generalizing from this simplistic example, it should be clear that hidden vari-
ables are a great asset in modeling reality. But — they are hidden, which means
that the requisite probability tables cannot be directly estimated from empirical
data.

When there are hidden variables in a BN for whose conditional distribution no
data are available, one uses EM algorithms to estimate their probability tables.
The basic version of EM for BNs which seems standard today has been introduced
in a paper by Lauritzen 1995. The algorithm is also described in a number of online
tutorials and open access papers, for instance Mouafo et al. 2016. The algorithm
is complex. In the E-step it uses inference in join trees as a subroutine.
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10.2 Undirected graphical models

Undirected graphical models (UGMs) play a much larger role than just helping out
as intermediate representations on the way from a BN to a join tree. UGMs have
been (re-)discovered independently in different fields and under different names,
for instance as

Markov random fields, a quite generic concept/word used in statistics but also
in a more special sense in image processing;

Ising models, a class of models of 2D or 3D magnetic / spintronic / quantum-
dynamical materials explored in statistical physics,

Boltzmann machines, a kind of stochastic, recurrent neural networks which
give a wonderfully elegant and powerful model of a universal learning system,
— unfortunately, computationally intractable,

restricted Boltzmann machines, a stripped-down version of the former, com-
putationally tractable, and instrumental in kicking off the deep learning
revolution (Hinton and Salakuthdinov 2006).

I originally planned to have a section on these models, exploring their deep con-
nection to physics and giving a demo in an image denoising task. But the BN part
of this section has grown sooooo long that I think it would be too much for one ses-
sion of this course. If you are interested — the online course notes of Ermon 2019
include an easy-reading fast introduction to Markov random fields in the chapter
with the same name, and my legacy lecture notes on “Statistical and Algorithmi-
cal Modeling” (https://www.ai.rug.nl/minds/uploads/LN_AlgMod.pdf) have
a substantial Section 6.3 on UGMs.

10.3 Hidden Markov models

I also once had planned to introduce hidden Markov models (HMMs) in this ses-
sion. HMMs are models of stochastic processes with memory — the standard
model of such processes. A modern view of HMMs is to see them as graphical
models, and since they are designed around hidden RVs (hence their name), they
are trained with a dedicated and efficient version of EM. All of this would be very
nice to have but Christmas is approaching and we should better be starting to
think about stopping to think about machine learning for a while. If you are very
motivated — the classical tutorial text on HMMs is Rabiner 1990.

HMMs are models of stochastic processes — they describe how observations
made in the past change conditional probabilities of things that may be observed
in the future. HMMs use DAGs, like Bayesian networks, but with HMMs, there
are causal arrows that mean causation in time: the causing RV Xn is earlier than
the influenced RV Xn+1. This leads to potentially infinite DAGs (if time just runs
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on), and connects graphical models to the theory of stochastic processes. In recent
years, directed graphical models which contain arrows that mean timesteps and
which are more complex than HMMs have become studied. A pioneer is Kevin
Murphy who more or less established this field with his PhD thesis (K. P. Murphy
2002) — another case of starting a stellar career by tying together all sorts of
existing loose ends in one unifying, tutorial work.
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11 Online adaptive modeling

Often an end-user of a machine learning model finds himself/herself in a situation
where the distribution of the input data changes over time. A learnt model will
then become inaccurate because it was trained with training data that had another
distribution of the input data. It would be desirable if the model, once trained
initially, could continue learning while being used and adapt itself to the new
statistics of the data it has to process. Two examples:

• A speech recognition system on a smartphone is used while walking in a
city and doing some shopping — the background noise will change every
few seconds — and the recognition system has to adapt its “de-noising”
continuously to changing sorts of noise.

• A credit risk prediction system is used month after month — but when an
economical crisis changes the loantakers’ payback morale, the system should
change its prediction biases.

Never-ending adaptation of machine learning systems has always been an issue
for machine learning. Currently this theme is receiving renewed attention in deep
learning in a special, somewhat restricted version, where it is discussed under the
headline of continual learning (or continuous learning). Here one seeks solutions
to the problem that, if an already trained neural network is subsequently trained
even more on new incoming training data, the previously learnt competences will
be destructively over-written by the process of continuing learning on new data.
This phenomenon is known since long as catastrophic forgetting. Methods for
counter-acting catastrophic forgetting are developing fast. If you are interested
— the PhD thesis of Xu He (He 2023), added to Brightspace underneath the
lecture notes, starts with a very readable overview on today’s continual learning
landscape.

In this section I will however not deal with continual (deep) learning, for two
reasons: (i) this material is advanced and requires substantial knowledge of deep
learning methods, (ii) the currently available methods still fall short of the desired
goal to enable ongoing, “life-long” learning.

Instead, I will present methods which have since long been explored and suc-
cessfully used in the field of signal processing and control. This material is not
normally treated in machine learning courses — I dare say, mostly because ma-
chine learners are just not aware of this body of knowledge, and maybe also if they
are, they find these methods “too linear” (no neural networks involved!). But I
find this material most valuable to know,

• because these techniques are broadly applicable, especially in application
contexts that involve signal processing and control — like robotics, industrial
engineering applications, and modeling biological systems including brains;
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• because these techniques are mathematically elementary and transparent
and give you a good understanding of conditions when gradient descent
optimization of loss functions becomes challenged — it’s a perfect primer
to get into the learning algorithms of deep learning — you will understand
better why they sometimes become veeeeery slow or numerically instable;

• and finally, because I think that machine learning is an interdisciplinary
enterprise and I believe that these signal processing flavored methods will
become important in a young and fast-growing field of research called neuro-
morphic computing which has a large overlap with machine learning — my
own field since a few years.

Throughout this section, I am guided by the textbook Adaptive Filters: The-
ory and Applications (Farhang-Boroujeny 1998), which has been my steadfast
companion since I bought it back in 1999. An updated edition came out 2013.

11.1 The adaptive linear combiner

In this subsection I introduce basic terminology and notation and the fundamen-
tal system model that I will discuss throughout this section, the adaptive linear
combiner.

I start with a refresher on systems and signals terminology. A discrete-time,
real-valued signal is a left-right infinite, real-valued sequence x = (x(n))n∈Z ∈ RZ

(we will only consider discrete-time, real-valued signals). Note that in this section,
x refers to a complete sequence of values; if we want to single out a particular signal
value at time n, we write x(n). I will often use the shorthand (x(n)) for (x(n))n∈Z.

A filter (or system — this word is a synonym for “filter” in the world of signal
processing) H is a mapping from signals to signals, written y = H(x). The signal
processing folks like to put this in a diagram where the filter is a box, see Figure
68.

x y
H

Figure 68: Diagram representation of a filter (or system) H.

The signal x is the input signal and y is the output signal of H.
There are arbitrarily complex filters — only think of a filter where the input

signals are (sampled versions of) microphone recordings of an English speaker and
the output is synthesized speech of an online Dutch translation of the input signal.
In this section we will restrict ourselves to a particularly simple, yet immensely
useful class of filters called transversal filters. A transversal filter generates the
output by a linear transform of the L preceding input values, where L is the length
of the transversal filter:

214



Definition 11.1 Let L ≥ 1 be an integer, and let w ∈ RL be a vector of filter
weights. The transversal filter Hw is the filter which transforms an input signal
x = (x(n)) into the output y = Hw(x) defined by

y(n) = w′ (x(n), x(n− 1), . . . , x(n− L+ 1))′ . (125)

The input vector (x(n), x(n− 1), . . . , x(n− L+ 1))′ is advantageously padded
with a constant 1 ’bias’ signal. This enables the filter to produce outputs y(n)
that have arbitrary shifts away from the zero line. We have seen a similar trick in
the linear regression rehearsal (Section 3.1). In fact, training a transversal filter on
a least mean square loss (which is how we will do it below) amounts to computing
a linear regression.

Note that here we consider the vector w as a column vector (often in the
literature, this specific weight vector is understood as row vector — as we did in
our earlier treatment of linear regression). Transversal filters are linear filters. A
filter H is called linear if for all a, b ∈ R and signals x1,x2

H(ax1 + bx2) = aH(x1) + bH(x2). (126)

The proof that transversal filters are linear is an easy exercise.
I remark in passing that the theory of signals and systems works with complex

numbers throughout both for signals and filter parameters; for us it is however
good enough if we only use real-valued signals and model parameters.

The unit impulse δ = (δ(n)) is the signal that is zero everywhere except for
n = 0, where δ(0) = 1. The unit impulse response of a filter H is the signal H(δ).
For a transversal filter Hw, the unit impulse response is the signal which repeats
w = (w1, . . . , wL)′ at times n = 0, 1, . . . , L− 1:

(Hw(δ))(n) =

{
wi if n = i− 1 (i = 1, . . . , L),

0 else.
(127)

Figure 69 shows the structure of a transversal filter in the graphical notation
used in signal processing.

The theme of this section is online adaptive modeling. In the context of fil-
ters, this means that the filter changes over time in order to continue complying
with new situational conditions. Concretely, we consider scenarios of supervised
training adaptation, where a teacher output signal is available. We denote this
“desirable” filter output signal by (d(n)). The objective of online adaptive fil-
tering is to continually adapt the filter weights wi such that the filter output
y(n) = w′ (x(n), . . . , x(n− L+ 1))′ stays close to the desired output d(n).

The situational conditions may change both with respect to the input signal
x(n), which might change its statistical properties, and/or with respect to the
teacher d(n), which might also change. For getting continual optimal performance
this implies that the filter weights must change as well: the filter weight vector w
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e(n) = d(n) – y(n)

x(n –L+1)

L

Figure 69: A transversal filter (black parts) and an adaptive linear combiner (blue
parts). Boxes labeled z−1 are what signal processing people call “unit delays” —
elementary filters which delay an input signal by one timestep. The triangular
boxes mean “multiply with”. In such box-and-arrow flow diagrams in the field of
signal processing, diagonal arrows spearing through some box indicate that what
is in the box is becoming adapted on the basis of the information that arrives with
the arrow.

becomes a temporal variable w(n). Using the shorthand x(n) = (x(n), . . . , x(n−
L + 1))′ for the last L inputs up to the current x(n), this leads to the following
online adaptation task:

Given at time n: the filter weight w(n−1) calculated at the end of the previous
timestep; new input and desired output data points x(n), d(n).

Compute error at time n: ε(n) = d(n)−w′(n− 1) x(n).

Adaptation goal: Compute new filter weights

w(n) = w(n− 1) + ∆w(n)

such that the squared error

ε2(n+ 1) = (d(n+ 1)−w′(n) x(n+ 1))2

at the next (!) timestep can be expected to be smaller than without the
adaptation. Notes:

• At the time of computing w(n), the next input/target pair
x(n+ 1), d(n+ 1) is not yet known. The filter weights w(n) can
only be optimized with regards to the expected next input/target pair
x(n+ 1), d(n+ 1).
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• Because the future signals x and d at time n + 1 and later are not
yet known, the best one can do is to assume that the x and d sig-
nals in the next timesteps will follow the same rules as during the
known past x(n), d(n), x(n − 1), d(n − 1), . . . up to the present mo-
ment. The filter weights w(n) will (have to) be adapted such that
the known squared errors that would be obtained in the past, namely
ε2(n− l) = (d(n− l)−w′(n) x(n− l))2 (where l = 0, 1, 2, . . .), are min-
imized on average. Since the input-output rule may be changing with
time, only a limited-horizon past can be used to minimize the average
past error. We will later see that the best option is to use a discounted
past: the filter weights w(n) will be optimized to minimize more recent
squared errors more strongly than squared errors that lie further in
the past. This will automatically happen if the modification ∆w(n) is
based only on the current error ε(n) = d(n)−w′(n− 1) x(n). Informa-
tion from earlier errors will already be incorporated in w(n− 1). This
leads to an error feedback based weight adaptation which is schemati-
cally shown in the blue parts of Figure 69. A diagonal arrow through
a box is the way how parameter adaptation is depicted in such signal
processing diagrams. Such continually adapted transversal filters are
called adaptive linear combiners in the Farhang/Boroujeny textbook.

• Notice that this task setting is entirely similar to the supervised learn-
ing task that we know from the ML context. The input-teacher pairs
(x(n), d(n)), (x(n−1), d(n−1)), . . . up to the current time n are known
training data, and the future input-teacher pairs (x(n + 1), d(n +
1)), (x(n+ 2), d(n+ 2)), . . . are test data that are not known at time n
when the weights have to be updated. All the difficulties that we are
now so familiar with are again present – a main challenge is to avoid
overfitting and underfitting and find the weight updates that will best
generalize to new data. To this familiar challege is added the enor-
mous new difficulty that we have a ’moving target’: the statistics of the
learning task changes as times goes on.

• The error signal ε2(n) which the adaptive filter tries to keep low need
not always be obtained by comparing the current model output
w(n−1)′ x(n) with a teacher d(n). Often the “error” signal is obtained
in other ways than by comparison with a teacher. In all cases, the
objective for the adaptation algorithm is to keep the “error” amplitude
at low levels. The error signal itself is the only source of information
to steer the adaptation (compare Figure 69). Several examples in the
next subsection will feature “error” signals which are not computed by
comparison with a teacher signal.
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11.2 Basic applications of adaptive linear combiners

Before explaining concrete algorithms for weight adaptation I want to highlight the
importance and versatility of adaptive linear combiners with a choice of application
examples, mostly taken from the Farhang/Boroujeny textbook.

11.2.1 System identification

This is the most basic task: reconstruct from x and teacher d a filter (“model
system”, “system model”, “identification model”) whose output y approximates
d. This kind of task is called system identification. A schematic block diagram
for this kind of application is shown in Figure 70.

x

g

d

y

Figure 70: Schema of the system identification task.

The following game is played here. Some target system is monitored while it
receives an input signal x and generates an output g which is observed with added
observation noise ν; this observed signal output becomes the teacher d. The model
system is a transversal filter Hw whose weights are adapted such that the model
system’s output y stays close to the observed output d of the target system.

Obtaining and maintaining a model system Hw is a task which occurs ubiq-
uitously in systems engineering. The model system can be used for manifold
purposes because it allows to simulate the target system. Such simulation mod-
els are needed, for instance, for making predictions about the future behavior of
the original system, or for assessing whether the target system might be running
into malfunction modes. Almost every control or predictive maintenance task in
electric or mechanical engineering requires system models. I illustrate the use of
system models with two concrete examples taken from the Farhang/Boroujeny
book.

Example 1: Geological exploration. In geological prospecting, before one
digs expensive holes, one wishes to obtain an idea of what’s what underground.
Figure 71 shows the basic principle of exploring the structure of the ground under
the earth surface. At some point A, the earth surface is excited by a strong acoustic
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Figure 71: Geological exploration via impulse response of learnt earth model. A.
Physical setup. B. Analysis of impulse response.

signal (explosion or large vibrating mass). An earth microphone is placed at a
distant point B, picking up a signal d. A model Hw (a “dummy earth”) is learnt.
This model captures how the (simulated) earth transmits the acoustic signal from
the generator to the microphone, - capturing all the delays and deformations that
the input signal has suffered when it arrives at the microphone (communication
engineers would call this earth model a channel model). After the model Hw has
been learnt, one analyses the impulse response w of this model (which, as we have
briefly mentioned earlier, in these simple transversal filters happens to coincide
with the tap weight vector). The peaks of w give indications about reflecting
layers in the earth crust between A and B, which correspond to different delayed
responses pj of the input impulse.

Example 2: Adaptive open-loop control. In general terms, an open-loop (or
direct or inverse or feedforward) controller is a filter that generates an input signal
u into a system (called ”plant” in control engineering) such that the system output
y follows a reference (or target) signal r as closely as possible. For example, when
the plant is an electric motor which one desires to run at a rotation speed (r(n)),
the task for an open-loop controller is to generate a voltage signal (u(n)) such that
the motor’s actual speed (y(n)) comes close to the target (r(n)). Since electric
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motors are nonlinear and have inertia effects of mass acceleration and magnetic
field build-up which delay the speed response to input voltage changes, this is not
necessarily a simple task.

One way to achieve this objective is to maintain a transversal filter model
Ĥ = Hw(n) of the plant H by online weight adaptation and analytically compute
an inverse filter H−1

w (n) for Hw(n). The inverse G−1 of a filter G is a filter which
cancels the effects of G, that is, for any input signal x, one has G−1(G(x)) = x.
Figure 72 shows the idea.

Note that the inverse of a transversal filter Hw is not itself a transversal filter
— it will be a filter that needs its own output fed back as additional input; we
will not consider such filters in this course.

y (should be ~ r)ur

𝐲"

Figure 72: Schema of online adaptive direct control.

11.2.2 Inverse system identification

This is the second most basic task: given an unknown system H which on input
d produces output x, learn an inverse system that on input x produces output d
(note the reversal of variable roles and names). A typical setup is shown in Figure
73.

d x y

𝑧"∆

𝑧"∆	𝐻&"'

Figure 73: Schema of inverse system identification.

This is an alternative to the analytical inversion of an estimated system model.
Introducing the delay z−∆ is not always necessary but typically improves sta-

bility of the learnt system.
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Equalization of a communication channel. A prime application of inverse
system modeling is in digital telecommunication, where a binary signal s (a bit
sequence) is distorted when it is passed through a noisy channel H, and should
be un-distorted (“equalized”) by passing it through an equalizing filter H−1 (for
short, called an equalizer). In order to train the equalizer, the correct signal s must
be known by the receiver when the equalizer is trained. But of course, if s would be
already known, one would not need the communication in the first place. This hen-
and-egg problem is often solved by using a predetermined, fixed training sequence
s = d. From time to time (especially at the initialization of a transmission), the
sender transmits s = d, which is known by the receiver and enables it to estimate
an inverse channel model. But also while useful communication is taking place,
the receiver can continue to train its equalizer, as long as the receiver is successful
in restoring the binary signal s: in that case, the correctly restored signal s can
be used for continued training. The overall setup is sketched in Figure 74.

d

s x y 𝐬"

Figure 74: Schema of adaptive online channel equalization. Delays (which one
would insert for stability) are omitted. The box on the right with the step function
indicates a filter that converts the continuous-valued equalizer output y to a binary
signal — assuming that we want a channel for binary bitstream signals.

Feedback error learning for a composite direct / feedback controller.
Pure open-loop control cannot cope with external disturbances to the plant. For
example, if an electric motor has to cope with varying external loads, the resulting
braking effects would remain invisible to the kind of open-loop controller shown in
Figure 72. One needs to establish some sort of feedback control, where the observed
mismatch between the reference signal r and the plant output y is used to insert
corrective input to the plant. There are many ways to design feedback controllers.

The scheme shown in Figure 75 (proposed in Jordan and Wolpert 1999 in a
nonlinear control context, using neural networks — yes, the same Michael Jor-
dan who also contributed so much to graphical models was likewise interested
in biological motor control, and many other things!) trains an open-loop inverse
(feedforward) controller in conjunction with the operation of a fixed, untrainable
feedback controller.
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r(n+D) u(n) y(n)uff(n)

𝑧"∆

e = ufb(n)

Figure 75: Schema of feedback error learning for a composite control system.

Some explanations for this ingenious architecture:

• The control input u(n) is the sum of the outputs ufb(n) of the feedback
controller and uff(n) of the feedforward controller.

• There is no teacher signal d in this architecture. The feedforward controller
is trained on an “error” signal which is not defined as a difference between
a teacher and a system output. That is just as well; the adaptation of the
feedforward controller just attempts to minimize the squared “error” signal.

• If the feedforward controller works perfectly, the feedback controller detects
no discrepancy between the reference r(n) and the plant output y(n) and
therefore produces a zero output ufb(n) — that is, the feedforward controller
sees zero error ε and does not change.

• When the overall control system does not work perfectly, the feedback con-
troller will output a nonzero control output ufb(n), which acts as an error
signal for adaptating of the feedforward controller. The feedforward con-
troller tries to minimize this error — that is, it changes its way to generate
output uff(n) such that the feedback controller’s output is minimized, that is,
such that (r(n)−y(n))2 is minimized, that is, such that the control improves
(an admittedly superficial explanation).

• When the plant characteristics change, or when external disturbances set in,
the feedback controller jumps to action, inducing further adaptation of the
feedforward controller.

11.2.3 Interference cancelling, “denoising”

Assume that there is a signal s+ν0 that is an additive mixture of a useful signal s
and a noise component ν0. You want to cancel the interfering component ν0 from
this mixture. Assume further that you also have another signal source ν1 that is
mainly generated by the same noise source as ν0, but contains only weak traces of
s. In this situation you may use the denoising scheme shown in Figure 76.
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Figure 76: Schema of denoising filter.

Denoising has many applications, for instance in airplane cockpit crew com-
munication (cancelling the acoustic airplane noises from pilot intercom speech),
postprocessing of live concert recordings, or (like in one of the suggested semester
projects) cancelling the mother’s ECG signal from the unborn child’s in prena-
tal diagnostics. In the Powerpoint file denoisingDemo.pptx which you find on
Brightspace together with the lecture notes, you can find an acoustic demo that I
once programmed.

Explanations:

• The “error” which the adaptive denoising filter tries to minimize is s+ν0−y,
where y is the filter output.

• The only information that the filter has to achieve this error minimization
is its input ν1. Because this input is (ideally) independent of s, but related
to ν0 via some noise-to-noise filter, all that the filter can do is to subtract
from s + ν0 whatever it finds correlates in s + ν0 with ν1. Ideally, this is ν0.
Then, the residual “error” ŝ would be just s — the desired de-noised signal.

• This scheme is interesting (not just a trivial subtraction of ν1 from s +
ν0) because the mutual relationship between ν1 and ν0 may be complex,
involving for instance a superposition of delayed versions of ν0.

More sophisticated methods for denoising are known today, often based on
mathematical principles from independent component analysis (ICA). You find an
acoustic demo on https://www.youtube.com/watch?v=tkkm6zVUDXo.

11.3 Iterative learning algorithms by gradient descent on
performance surfaces

So far in this course, we haven’t encountered iterative learning algorithms for su-
pervised learning tasks (the EM algorithms which we already saw are iterative,
but were used for the estimation of distribution models, which is an unsupervised
task). The online adaptive model estimation algorithms studied in the present
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section, and the “backpropagation” algorithm for training neural networks pre-
sented in the next section, are the first (and only) iterative supervised learning
algorithms treated in this course. Both work by gradient descent on performance
surfaces. In this subsection I give a general explanation of what that means.

11.3.1 Iterative supervised learning algorithms

A typical iterative supervised learning algorithm unfolds as follows:

Given: Training data (xi,yi)i=1,...,N where yi ∈ SY ; a parametric family H of
candidate models hθ where each parameter vector θ ∈ H defines a possible
model (“decision function”); and a loss function L : SY × SY → R≥0.

Wanted: An optimal model

(?) θopt = argmin
θ∈H

Remp(θ) = argmin
θ∈H

1

N

∑
i=1,...,N

L(hθ(xi),yi).

But reality strikes: The optimization problem (?) often cannot be solved di-
rectly, for instance because it is analytically intractable (the case for neural
network training) or because the training data come in as a time series and
their statistical properties change with time (as in adaptive online modeling).

Second best approach: Design an iterative algorithm which produces a sequence
of models (= parameter vectors) θ(0), θ(1), θ(2), . . . with decreasing empirical
risk Remp(θ(0)) > Remp(θ(1)) > . . .. The model θ(n+1) is typically computed
by an incremental modification of the previous model θ(n). The first model
θ(0) is a guess provided by the experimenter.

In neural network training, the hope is that this series converges to a model
θ(∞) = limn→∞ θ

(n) whose empirical risk is close to the minimal possible em-
pirical risk. In online adaptive modeling, the hope is that if one incessantly-
iteratively tries to minimize the empirical risk, one stays close to the moving
target of the current best model (we’ll see how that works).

This scheme only treats the approach where one tries to minimize the training
loss. We know that in standard supervised learning settings this invites overfitting
and that one should better employ a regularized loss function together with some
cross-validation procedure, a complication that we ignore here. In online adaptive
modeling, the empirical risk Remp(θ) is time-varying, another complication that
for the time being we will ignore. Such complications notwithstanding, the general
rationale of iterative supervised learning algorithms is to compute a sequence of
models with decreasing empirical risk.

In standard (not online adaptive) settings, such iterative algorithms, if they
converge, can find only locally optimal models. A model θ(∞) is locally optimal
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if every slight modification of it will lead to a higher empirical risk. The final
converged model limn→∞ θ

(n) will depend on the initial guess θ(0) — coming up
with a method for good initial guesses was the crucial innovation that started the
deep learning revolution (Hinton and Salakuthdinov 2006).

11.3.2 Performance surfaces

First a quick recap: the graph of a function. Recall that the graph of a function
f : A → B is the set {(a, f(a)) ∈ A × B | a ∈ A} of all argument-value pairs of
the function. For instance, the graph of the square function f : R → R, x 7→ x2

is the set of points in the familiar parabola curve in R2.
A performance surface is the graph of a risk function. Depending on the specific

situation, the risk function may be the empirical risk, the risk, a risk defined at a
particular time (in online adaptive scenarios), or some other “cost”. I will use the
symbol R to denote a generic risk function of whatever kind.

Performance surfaces are typically discussed with parametric model families
where each model h in a hypothesis space H is identified with a k-dimensional pa-
rameter vector θ, thus we can identifyH with some subset of Rk. The performance
surface then becomes the graph of the function R : H → R≥0.

Specifically, if we have k-dimensional parameter vectors (that is, H ⊆ Rk), the
performance surface is a k-dimensional surface in Rk+1.

Other terms are variously used for performance surfaces, for instance perfor-
mance landscape or error landscape or error surface or cost landscape or similar
wordings.

Performance surfaces can be folded in structures of stunning complexity. In
neural network training (next section in these lecture notes), they are tremendously
complex. Figure 77 shows a neural network error landscape randomly picked from
the web.

11.3.3 Iterative model learning by gradient descent on a performance
surface

Often a risk function R : H → R≥0 is differentiable. Then, for every θ ∈ H the
gradient of R with respect to θ = (θ1, . . . , θk)

′ is defined:

∇R(θ) =

(
∂R
∂θ1

(θ), · · · , ∂R
∂θk

(θ)

)′
. (128)

The gradient ∇R(θ) is the vector which points from θ in the direction of
the steepest ascent (“uphill”) of the performance surface. The negative gradient
−∇R(θ) is the direction of the steepest descent (Figure 78).

The idea of model optimization by gradient descent is to iteratively move
toward a minimal-risk solution θ(∞) = limn→∞ θ

(n) by always “sliding downhill”
in the direction of steepest descent, starting from an initial model θ(0). This idea
is as natural and compelling as can be. Figure 79 shows one such itinerary.
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Figure 77: A (2-dimensional cross-section of) a performance surface for a neural
network. The performance landscape shows the variation of the loss when (merely)
2 weights in the network are varied. Source: http://www.telesens.co/2019/01/
16/neural-network-loss-visualization/

The general recipe for iterative gradient descent learning goes like this:

Given: A differentiable risk function R : H → R≥0.

Wanted: A minimal-risk model θopt.

Start: Guess an initial model θ(0).

Iterate until convergence: Compute models

θ(n) = θ(n−1) − µ∇R(θ(n−1)). (129)

The adaptation rate (or learning rate) µ is set to a small positive value.

An obvious weakness of this elegant and natural approach is that the final
model θ(∞) depends on the choice of the initial model θ(0). In complex risk land-
scapes (as the one shown in Figure 77) there is no hope of guessing an initial
model which guarantees to end in the global minimum. This circumstance is gen-
erally perceived and accepted. There is a substantial mathematical literature that
amounts to “if the initial model is chosen with a good heuristic, the local minimum
that will be reached will be a rather good one with high probability”.

We will see that the real headaches with gradient descent optimization are of
a different nature — specifically, there is a inherently difficult tradeoff between
speed of convergence (one does not want to invest millions or even billions of
iterations) and stability (the iterations must not lead to erratic large-sized jumps
that lead away from the downhill direction). The adaptation rate µ plays a key role
in this difficult tradeoff. For good performance (stability plus satisfactory speed
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−∇R(𝜃)𝜃

𝜃1

𝜃2

Figure 78: A performance surface for a 2-dimensional model family with param-
eters θ1, θ2, with its contour plot at the bottom. For a model θ (yellow star in
contour plot) the negative gradient is shown as black solid arrow. It marks the
direction of steepest descent (broken black arrow) on the performance surface.

of convergence), the adaptation rate must be adapted online while the iterations
proceed. And doing that sagaciously is not trivial. The situation shown in Figure
79 is deceptively simplistic; say goodbye to any hope that gradient descent works
as smoothly as that in real-life applications.

These difficulties raise their ugly head already in the simplest possible risk
surfaces, namely the ones that arise with iterative solutions to linear regression
problems. Making you aware of these difficulties in an analytically tractable,
transparent setting is one of the two main reasons why I believe a machine learning
student should know about adaptive online learning of transversal filters. You will
learn a lot about the challenges in neural network training as a side effect. The
other main reason is that adaptive online learning of transversal filters is really,
really super useful in many practical tasks.
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𝜃(0)
𝜃(1)

𝜃(2)

𝜃(∞)

Figure 79: A gradient descent itinerary, re-using the contour map from Figure 78
and starting from the initial point shown in that figure. Notice the variable jump
length and the sad fact that from this initial model θ(0) the global minimum is
missed. Instead, the itinerary slides toward a local minimum at θ(∞). The blue
arrows show the negative gradient at raster points. They are perpendicular to the
contour lines and their length is inversely proportional to the spacing between the
contour lines.
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11.3.4 The performance surface of a stationary online learning task
for transversal filters

We will now return to the specific scenario of online adaptive filtering. Recall that
we are facing a left-right infinite signal of real-valued input data (x(n))n∈Z ∈ RZ

paired with a desired output signal (d(n))n∈Z ∈ RZ. Our goal is to compute, at
every time n and on the basis of the input and teacher signals up to time n, an L-
dimensional weight vector w(n) which we want to minimize the expected squared
error ε2

w(n)(n+ 1) = (d(n+ 1)−w′(n) x(n+ 1))2 at the next timestep.
For starters we will work under the assumption that the input and teacher

statistics does not change with time. In mathematical terms, this means that the
signals x and d are generated by a stationary stochastic process. That is, these
signals come from random variables (Xn)n∈Z and (Dn)n∈Z. Each time that we
would “run” this process, we would get another pair of signals x,d. To define
what “stationary” means in our context, let

[XLD]n := Xn ⊗Xn−1 ⊗ · · · ⊗Xn−L+1 ⊗Dn (130)

be the combined RV which picks, at time n, the previous L inputs up to and
including time n and the teacher at time n. We now say that the process is
stationary with respect to these RVs [XLD]n, if [XLD]k and [XLD]m have the
same distribution for all times k and m. Intuitively speaking, this means that if
we look at signal sniplets x(k), d(k) and x(m), d(m) at different times m and k,
the distribution of these sniplets across different runs of the stochastic process will
be the same at both times. The process does not change its statistical properties
over time. If this condition is met, the expectations

p := E[x(n) d(n)] = (E[x(n)d(n)], . . . , E[x(n− L+ 1)d(n)])′ (131)

R := E[x(n) x′(n)], (132)

where the expectation is taken with respect to time, are well-defined and indepen-
dent of n. R is called (in the field of signal processing) the correlation matrix of
the input process; it has size L× L. p is an L-dimensional vector.

In a stationary process there is no need to have different filter weights at
different times. We can thus, for now, drop the time dependence from w(n) and
consider unchanging weights w. For any such weight vector w we consider the
expected squared error

R(w) = E[ε2
w(n)]

= E[((d(n)−w′ x(n)) ((d(n)−w′ x(n))]

= E[(d(n))2]− 2 w′E[x(n) d(n)] + w′E[x(n) x′(n)] w

= E[(d(n))2]− 2 w′ p + w′R w. (133)

This expected squared error for a filter Hw is the risk that we want to minimize.
We now take a close look at the performance surface, that is at the graph of the
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risk function R : RL → R. Its geometrical properties are the key for mastering
the adaptive filtering task. Figure 80 gives a visual impression of the performance
surface for the case of L = 2 dimensional weight vectors w = (w1, w2)′.

w1

w2

R(w) = E[e2(n)]

Rmin

w1 opt

w2 opt

w(n) w(n+1) w(n+2)

Figure 80: The performance surface in the case of two-dimensional weight vectors
(black parts of this drawing taken from drip.colorado.edu/~kelvin/links/

Sarto_Chapter2.ps many years ago, page no longer online). An iterative al-
gorithm for weight determination would try to determine a sequence of weights
. . . ,w(n),w(n+1),w(n+2), . . . (green) that moves toward wopt (blue). The eigenvec-
tors uj (red) of the correlation matrix R lie on the principal axes of the hyperel-
lipsiods given by the level curves of the performance surface.

I mention without proof some basic geometric properties of the performance
surface. The function (133) is a (multidimensional) quadratic function of w.
The general form of a multidimensional quadratic function F : Rk → R for k-
dimensional vectors x is F (x) = a + x′b + x′Cx, where a ∈ R is a constant
offset, x′b is the linear term, and x′Cx is the quadratic term. C must be a posi-
tive definite matrix or negative definite matrix. The graph of a multidimensional
quadratic function shares many properties with the graph of the one-dimensional
quadratic function f(x) = a + bx + cx2. The one-dimensional quadratic function
graph has the familiar shape of a parabola, which depending on the sign of c is
opened upwards or downwards. Similarly, the graph of k-dimensional quadratic
function has the shape of a k-dimensional paraboloid, which is opened upwards
if C is positive definite and opened downwards if C is negative definite. A k-
dimensional paraboloid is a “bowl” whose vertical cross-sections are parabolas.
The contour curves of a k-dimensional paraboloid (the horizontal cross-sections)
are k-dimensional ellipsoids whose main axes lie in the directions of the k orthog-
onal eigenvectors u1, . . . ,uk of C.
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In the 2-dimensional case of a performance surface shown in Figure 80, the
paraboloid must open upwards because the risk R is an expected squared error
and hence cannot be negative; in fact, the entire surface must be nonnegative. The
figure also shows a projection of the ellipsoid contour curves of the paraboloid on
the w1-w2 plane, together with the eigenvectors of R.

Importantly, such quadratic performance surfaces have a single minimum
(provided that R has full rank, which we tacitly take for granted). This
minimum marks the position of the optimal (minimal risk) weight vector
wopt = argmin

w∈RL
R(w). An iterative learning algorithm would generate a sequence

. . . ,w(n),w(n+1),w(n+2), . . . of weight vectors where each new w(n) would be po-
sitioned at a place where the performance surface is deeper than at the previous
weight vector w(n−1) (green dots in the figure).

The optimal weight vector wopt can be calculated analytically, if one exploits
the fact that the partial derivatives ∂R/∂wi are all zero (only) for wopt. The
gradient ∇R is given by

∇R =

(
∂R

∂w1

, · · · , ∂R
∂wL

)′
= 2 Rw − 2 p

which follows from (133) (exercise). Setting this to zero gives the Wiener-Hopf
equation

Rwopt = p, (134)

which yields the optimal weights as

wopt = R−1 p. (135)

If you consider the definitions of R and p (Equations 132 and 131), you will
find that this solution for wopt is just the solution for the linear regression problem
that we already saw much earlier in Equation (19), and which we here have derived
using calculus.

In order to appreciate the challenges inherent in iterative gradient descent on
quadratic performance surfaces we have to take a closer look at the shape of the
hyperparaboloid.

First we use (133) and the Wiener-Hopf equation to express the expected
residual error Rmin (see Figure 80) that we are left with when we have found wopt:

Rmin = E[(d(n))2]− 2 w′opt p + w′opt R wopt

= E[(d(n))2]−w′opt p

= E[(d(n))2]−w′opt R wopt

= E[(d(n))2]− p′R−1 p.

(136)
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For a more convenient analysis we rewrite the error function R in new coordi-
nates such that it becomes centered at the origin. Observing that the paraboloid
is centered on wopt, that it has “elevation” Rmin over the weight space, and that
the shape of the paraboloid itself is determined by w′opt R wopt, we find that we
can rewrite (133) as

R(v) = Rmin + v′R v, (137)

where we introduced shifted (and transposed) weight coordinates v = (w−wopt).
Differentiating (137) with respect to v yields

∂R

∂v
=

(
∂R

∂v1

, . . . ,
∂R

∂vL

)′
= 2 R v. (138)

Since R is positive semi-definite, its SVD factorization is R = UDU′ =
UDU−1, where the columns of U are made from L orthonormal eigenvectors
of R and D is a diagonal matrix containing the corresponding eigenvalues (which
are real and non-negative) on its diagonal. Note that the eigenvectors uj of R
lie on the principal axes of the hyperellipsoid formed by the contour lines of the
performance surface (see Figure 80, red arrows).

By left-multiplication of the shifted coordinates v = (w − wopt) with U′ we
finally get normal coordinates ṽ = U′v. The coordinate axes of the ṽ system are
in the direction of the eigenvectors of R, and (138) becomes

∂R

∂ṽ
= 2 D ṽ = 2 (λ1ṽ1, . . . , λLṽL)′, (139)

from which we get the second derivatives

∂2R

∂ṽ2
= 2 (λ1, . . . , λL)′, (140)

that is, the eigenvalues of R are (up to a factor of 2) the curvatures of the per-
formance surface in the direction of the central axes of the hyperparabeloid. We
will shortly see that the computational efficiency of gradient descent on the per-
formance surface depends critically on these curvatures.

11.3.5 Gradient descent on a quadratic performance surface

Now let us do an iterative gradient descent on the performane surface, using the
normal coordinates ṽ. The generic gradient descent rule (129) here is

ṽ(n+1) = ṽ(n) − µ∇R(ṽ(n)),

which spells out (observing (139)) to

ṽ(n+1) = (I− 2µD) ṽ(n). (141)
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Because I− 2µD is a diagonal matrix, this gradient descent operates on the L
coordinates of ṽ without mutual coupling, yielding for every individual coordinate
a separate update rule

ṽ
(n+1)
j = (1− 2µλj) ṽ

(n)
j . (142)

This is a geometric sequence. If started in ṽ
(0)
j , one obtains

ṽ
(n)
j = (1− 2µλj)

n ṽ
(0)
j . (143)

If we would define and carry out gradient descent in the original weight co-
ordinates w(n) via w(n+1) = w(n) − µ∇R(w(n)), we would get the same model
sequence (up to the coordinate change w ↔ ṽ) as given by Equations 141, 142

and 143. The sequence w(n) converges to wopt if and only if ṽ
(n)
j converges for

all coordinates 1 ≤ j ≤ L. Equation 143 implies that this happens if and only if
|1− 2µλj| < 1 for all j. These inequalities can be re-written equivalently as

0 < µ < 1/λj for all j. (144)

Specifically, we must make sure that 0 < µ < 1/λmax , where λmax is the largest
eigenvalue of R. Depending on the size of µ, the convergence behavior of (141) can
be grouped in four classes which may be referred to as overdamped, underdamped,
and two types of unstable. Figure 81 illustrates how ṽj(n) evolves in these four
classes.

We can find an explicit representation of w(n) if we observe that

w(n) = wopt + v(n) = wopt +
∑
j

uj ṽ
(n)
j ,

where the uj are again the orthonormal eigenvectors of R. Inserting (143) gives
us

w(n) = wopt +
∑

j=1,...,L

ṽ
(0)
j uj (1− 2µλj)

n. (145)

This representation reveals that the convergence of w(n) toward wopt is gov-
erned by an additive overlay of L exponential terms, each of which describes
convergence in the direction of the eigenvectors uj and is determined in its con-
vergence speed by λj and the stepsize parameter µ. One speaks of the L modes of
convergence with geometric ratio factors (1− 2µλj). If all eigenvalues are roughly
equal, convergence rates are roughly identical in the L directions. If however two
eigenvalues are very different, say λ1 � λ2, and µ is small compared to the eigen-
values, then convergence in the direction of u1 will be much slower than in the
direction of u2 (see Figure 82).

Next we turn to the question how the error R evolves over time. Recall from
(137) that R(v) = Rmin +v′R v, which can be re-written as R(v) = Rmin + ṽ′D ṽ.
Thus the error in the n-th iteration is

R(n) = Rmin + ṽ′(n) D ṽ(n) = Rmin +
∑
j

λj (1− 2µλj)
2nṽ

(0)
j . (146)
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Figure 81: The development of ṽ
(n)
j [plotted in the y-axis] versus n [x-axis]. The

qualitative behaviour depends on the stepsize parameter µ. a. Overdamped case:
0 < µ < 1/(2λj). b. Underdamped case: 1/(2λj) < µ < 1/λj. c. Unstable with

µ < 0 and d. unstable with 1/λj < µ. All plots start with ṽ
(0)
j = 1.

For suitable µ (considering (144)), R(n) converges to Rmin. Plotting R(n) yields
a graph known as learning curve. Equation 146 reveals that the learning curve is
the sum of L decreasing exponentials (plus Rmin).

How this learning curve looks like depends on the size of µ relative to the
eigenvalues λj. If 2µλj is close to zero for all j, the learning curve separates into
sections that each are determined by the convergence of one of the j components.
Figure 83 shows a three-mode learning curve for the case of small µ, rendered in
linear and logarithmic scale.

This separation of the learning curve into approximately linear sections (in
logarithmic rendering) can be mathematically explained as follows. Each of the
terms (1− 2µλj)

2n is characterized by a time constant τj according to

(1− 2µλj)
2n = exp(−n/τj). (147)

If 2µλ is close to zero, exp(2µλ) is close to 1 + 2µλ and thus log(1 − 2µλ) ≈
−2µλ. Using this approximation, solving (147) for τj yields for the j-th mode a
time constant of

τj ≈
1

4µλj
.

That is, the convergence rate (i.e. the inverse of the time constant) of the j-th
mode is proportional to λj (for small µ).
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Figure 82: Two quite different modes of convergence (panel a.) versus rather
similar modes of convergence (panel b.). Plots shows contour lines of performance
surface for two-dimensional weights w = (w1, w2). Violet dotted lines indicate
some initial steps of weight evolution.

Figure 83: A learning curve with three modes of convergence, in linear (a.) and
logarithmic (b.) scaling. This plot shows the qualitative behavior of modes of
convergence when µ is small. Rmin is assumed zero in these plots.

However, this analysis is meaningless for larger µ. If we want to maximize the
speed of convergence, we should use significantly larger µ as we will presently see.
The final rate of convergence is dominated by the slowest mode of convergence,
which is characterized by the geometrical sequence factor

max{|1− 2µλj|
∣∣ j = 1, . . . , L} = max{|1− 2µλmax|, |1− 2µλmin|}. (148)

In order to maximize convergence speed, the learning rate µ should be chosen
such that (148) is minimized. Elementary considerations reveal that this minimum
is attained for |1− 2µλmax| = |1− 2µλmin|, which is equivalent to

µopt =
1

λmax + λmin
. (149)

For this optimal learning rate, 1−2µoptλmin is positive and 1−2µoptλmax is neg-
ative, corresponding to the overdamped and underdamped cases shown in Figure
81. However, the two modes converge at the same speed (and all other modes are
faster). Concretely, the optimal speed of convergence is given by the geometric
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factor β of the slowest mode of convergence,

β = 1− 2µoptλmin =
λmax/λmin − 1

λmax/λmin + 1
,

which can be derived by substituting (149) for µopt. β has a value between 0
and 1. There are two extreme cases: if λmax = λmin, then β = 0 and we have
convergence in a single step. As the ratio λmax/λmin increases, β approaches 1 and
the convergence slows down toward stillstand. The ratio λmax/λmin thus plays a
fundamental role in limiting the convergence speed of steepest descent algorithms.
It is called the eigenvalue spread.

All of the derivations in this subsection were done in the context of quadratic
performance surfaces. This may seem a rather limited class of performance land-
scapes. However, in almost all differentiable performance surfaces, the shape of
the surface in the vicinity of a local minimum can be approximated by a quadradic
surface. The stability conditions and the speed of convergence toward local min-
ima in generic gradient descent situations therefore is typically subject to the same
limiting conditions that we saw in this subsection.

Specifically, the eigenvalue spread (of the quadratic approximation) around a
local minimum sets stability limits to the achieveable rate of convergence. It is
a sad fact that this eigenvalue spread is typically large in neural networks with
many layers — today famously known as deep networks. For almost twenty years
(roughly, from 1985 when gradient descent training for neural networks became
widely adopted, to 2006 when deep learning started) no general, good ways were
known to achieve neural network training that was simultaneously stable and
exhibited a fast enough speed of convergence. Only shallow neural networks (typ-
ically with a single hidden layer) could be effectively trained, limiting the applica-
tions of neural network modeling to only mildly nonlinear tasks. In own research
(Jaeger et al. 2007) we once numerically investigated curvatures of performance
landscapes in recurrent neural networks and found eigenvalue spreads in the order
of 1019, which would demand leaerning rates smaller than 10−19! The deep learning
revolution is based, among other factors, on an assortment of “tricks of the trade”
to overcome the limitations of large eigenvalue spreads by clever modifications of
gradient descent, which cannot work in its pure form. If you are interested —
Section 8 in the deep learning bible (I. Goodfellow, Bengio, and Courville 2016) is
all about these refinements and modifications of, and alternatives to, pure gradient
descent.

11.4 Stochastic gradient descent with the LMS algorithm

The update formula w(n) via w(n+1) = w(n) − µ∇R(w(n)) for steepest gradient
descent is not applicable in practice because the gradient ∇R of the expected
squared error R(w(n)) = E[ε2

w(n) ] is not known. Given filter weights w(n), we
need to estimate E[ε2

w(n) ]. At first sight, one would need to estimate an expected
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squared error by collecting information over time —- namely, to observe the on-
going filtering with weights w(n) for some time and then approximate E[ε2

w(n) ] by
averaging over the errors seen in this observation interval. But we don’t have this
time —- because we want to be efficient and update w at every time step; and
furthermore, in online model estimation scenarios the error statistics may change
over time.

One ruthless way out of this impasse is to just use the momentary squared error
as an approximation to its expected value, that is, use the brutal approximation

R(n) ≈ ε2
w(n)(n) := (d(n)−w′(n) x(n))2. (150)

The gradient descent update formula w(n+1) = w(n)−µ∇R(w(n)) then becomes

w(n+1) = w(n) − µ∇ε2
w(n)(n), (151)

where we can calculate ∇ε2
w(n)(n) as follows:

∇ε2
w(n)(n) = 2 εw(n)(n) ∇εw(n)(n)

= 2 εw(n)(n)

(
∂εw(n)(n)

∂w1

, . . . ,
∂εw(n)(n)

∂wL

)
= −2 εw(n)(n)

(
∂w′(n) x(n)

∂w1

, . . . ,
∂w′(n) x(n)

∂wL

)
[use εw(n)(n) = d(n)−w′(n) x(n)]

= −2 εw(n)(n) (x(n), . . . , x(n− L+ 1))

= −2 ε(n) x(n), (152)

where in the last step we simplified the notation εw(n)(n) to ε(n). Inserting this
into (151) gives

w(n+1) = w(n) + 2µ ε(n) x(n), (153)

which is the weight update formula of one of the most compact, cheap powerful
and widely used algorithms I know of. It is called the least means squares (LMS)
algorithm in signal processing, or Widrow-Hoff learning rule in neuroscience where
the same weight adaptation rule has been (re-)discovered independently from the
signal processing tradition. In fact, this online weight adaptation algorithm for
linear regression has been independently discovered and re-discovered many times
in many fields.

For completeness, here are all the computations needed to carry out one full
step of online filtering and weight adaptation with the LMS algorithm:

1. read in input and compute output: y(n) = w′(n) x(n),
(inputs x are best padded with a 1)

2. compute current error: ε(n) = d(n)− y(n),
3. compute weight update: w(n+1) = w(n) + 2µ ε(n) x(n).
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One fact about the LMS algorithm should always be kept in mind: being a stochas-
tic version of steepest gradient descent, the LMS algorithm inherits the problems
connected with the eigenvalue spread of the input process Xn. If its eigenvalue
spread is very large, the LMS algorithm will not work satisfactorily.

Because of its eminent usefulness (if the input vector correlation matrix has
a reasonably small eigenvalue spread), the LMS algorithm has been analysed in
minute detail. I conclude this section by reporting the most important insights
without mathematical derivations. At the same time I introduce some of the
standard vocabulary used in the field of adaptive signal processing.

For starters, we again assume that [XLD] is a stationary processes (recall
(130)). The evolution w(n) of weights is now also a stochastic process, because
the LMS weight update depends on the stochastic vectors x(n). One interesting
question is how fast the LMS algorithm converges in comparison with the ideal
steepest gradient descent algorithm ṽ(n+1) = (I−2µD) ṽ(n) from (141). Because we
now have a stochastic update, the vectors ṽ(n) become random variables and one
can only speak about their expected value E[ṽ(n)] at time n. (Intuitive explanation:
this value would be obtained if many (infinitely many in the limit) training runs
of the adaptive filter would be carried out and in each of these runs, the value
of ṽ(n) at time n would be taken, and an average would be formed over all these
ṽ(n)). The following can be shown (using some additional assumptions, namely,
that µ is small and that the signal (x(n)) has no substantial autocorrelation for
time spans larger than L):

E[ṽ(n+1)] = (I − 2µD)E[ṽ(n)]. (154)

Rather to our surprise, if the LMS algorithm is used, the weights converge —
on average across different trials — as fast to the optimal weights as when the
ideal algorithm (141) is employed. Figure 84 shows an overlay of the deterministic
development of weights according to (141) with one run of the stochastic gradient
descent using to the LMS algorithm.

The fact that on average the weights converge to the optimal weights by no
means implies that R(n) converges to Rmin. To see why, assume that at some time
n, the LMS algorithm actually would have found the correct optimal weights, that
is, w(n) = wopt. What would happen next? Well, due to the random weight ad-
justment, these optimal weights would become misadjusted again in the next time
step! So the best one can hope for asymptotically is that the LMS algorithms lets
the weights w(n) jitter randomly in the vicinity of wopt. But this means that the
effective best error that can be achieved by the LMS algorithm in the asymptotic
average is not Rmin but Rmin + Rexcess, where Rexcess comes from the random scin-
tillations of the weight update. It is intuitively clear that Rexcess depends on the
stepsize µ. The larger µ, the larger Rexcess. The absolute size of the excess error
is not so interesting as is the ratio M = Rexcess/Rmin, that is the relative size of
the excess error compared to the minimal error. The quantity M is called the
misadjustment and describes what fraction of the residual error Rmin +Rexcess can
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Figure 84: Illustrating the similar performance of deterministic (pink) and stochas-
tic (red) gradient descent.

be attributed to the random oscillations effected by the stochastic weight update
[i.e., Rexcess], and what fraction is inevitably due to inherent limitations of the
filter itself [i.e., Rmin]. Notice that Rexcess can in principle be brought to zero by
tuning down µ toward zero — however, that would be at odds with the objective
of fast convergence.

Under some assumptions (notably, small M) and using some approximations
(Farhang-Boroujeny, Section 6.3), the misadjustment can be approximated by

M≈ µ trace(R), (155)

where the trace of a square matrix is the sum of its diagonal elements. The
misadjustment is thus proportional to the stepsize and can be steered by setting
the latter, if trace(R) is known. Fortunately, trace(R) can be estimated online
from the sequence (x(n)) simply and robustly [how? — easy exercise].

Another issue that one has always to be concerned about in online adaptive
signal processing is stability. We have seen in the treatment of the ideal case that
the adaptation rate µ must not exceed 1/λmax in order to guarantee convergence.
But this result does not directly carry over to the stochastic version of gradient
descent, because it does not take into account the stochastic jitter of the gradient
descent, which is intuitively likely to be harmful for convergence. Furthermore,
the value of λmax cannot be estimated robustly from few data points in a practical
situation. Using again middle-league maths and several approximations, in the
book of Farhang-Boroujeny the following upper bound for µ is derived:

µ ≤ 1

3 trace(R)
. (156)

If this bound is respected, the LMS algorithm converges stably.
In practical applications, one often wishes to achieve an initial convergence

that is as fast as possible: this can be done by using µ close to the stability
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boundary (156). After some time, when a reasonable degree of convergence has
been attained, one wishes to control the misadjustmentM; then one switches into
a control mode where µ is adapted dynamically according to µ = M/trace(R),
which follows from (155).

Up to here we have been analyzing LMS under the assumption of a stationary
process. But the real working arena for LMS are nonstationary processes, where
the objective is to track the changing statistics of the [XLD]n process by contin-
ually adapting the model w(n). In this situation one still uses the same LMS rule
(153). However, roughly speaking, the modeling error R(n) is now a sum of three
components: R(n) = Rmin(n) + Rexcess(n) + Rlag(n), all of which are temporally
changing. The new component Rlag(n) reflects the fact that iterative model adap-
tation always needs time to converge to a certain error level — when the signal
statistics change with time, the model adaptation always lags behind the changing
statistics. A rigorous analysis of this situation is beyond the scope of this course.
In practice one must tune µ online such that a good compromise is maintained
between, on the one hand, making Rlag(n) small (which means speeding up con-
vergence by increasing µ, in order to not lag behind the changing input statistics
too much), and on the other hand, minimizing Rexcess(n) (which means small µ);
all this while watching out for staying stable.

The LMS algorithm has been since 50 years or so the workhorse of adaptive
signal processing and numerous refinements and variants have been developed.
Here are some:

1. An even simpler stochastic gradient descent algorithm than LMS uses only
the sign of the error in the update: w(n+1) = w(n) + 2µ sign(ε(n))x(n). If µ
is a power of 2, this algorithm does not need a multiplication (a shift does
it then) and is suitable for very high throughput hardware implementations
which are often needed in communication technology. There exist yet other
“sign-simplified” versions of LMS [cf. Farhang-Boroujeny p. 169].

2. Online stepsize adaptation: at every update use a locally adapted stepsize
µ(n) ∼ 1/‖x‖2. This is called normalized LMS (NLMS). In practice this
pure NLMS is apt to run into stability problems; a safer version is µ(n) ∼
µ0/(‖x‖2 + ψ), where µ0 and ψ are hand-tuned constants [Farhang-B. p.
172]. In my own experience, normalized LMS sometimes works wonders in
comparison with vanilla LMS.

3. Include a whitening mechanism into the update equation: w(n+1) = w(n) +
2µ ε(n) R−1 x(n). This Newton-LMS algorithm has a single mode of conver-
gence, but a problem is to obtain a robust (noise-insensitive) approximation
to R−1, and to get that cheaply enough [Farhang-B. p. 210].

4. Block implementations: for very long filters (say, L > 10, 000) and high
update rates, even LMS may become too slow. Various computationally
efficient block LMS algorithms have been designed in which the input stream
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is partitioned into blocks, which are processed in the frequency domain and
yield weight updates after every block only [Farhang-B. p. 247ff].

To conclude this section, it should be said that besides LMS algorithms there
is another major class of online adaptive algorithms for transversal filters, namely
recursive least squares (RLS) adaptation algorithms. RLS algorithms are not
steepest gradient-descent algorithms. The background metaphor of RLS is not to
minimize Rn(w) but to minimize the accumulated squared error up to the current
time, ζ(n) =

∑
i=1,...,n(d(i)−y(i))2, so the performance surface we know from LMS

plays no role for RLS. The main advantages and disadvantages of LMS vs. RLS
are:

1. LMS has computational cost O(L) per update step, where L is filter length;
RLS has cost O(L2). Also the space complexity of RLS is an issue for long
filters because it is O(L2).

2. LMS is numerically robust when set up diligently. RLS is plagued by nu-
merical instability problems that are not easy to master.

3. RLS has a single mode of convergence and converges faster than LMS, very
much faster when the input signal has a high eigenvalue spread.

4. RLS is more complicated than LMS and more difficult to implement in ro-
bust, stable ways.

5. In applications where fast tracking of highly nonstationary systems is re-
quired, LMS may have better tracking performance than RLS (says Farhang-
Boroujeny).

The use of RLS in signal processing has been boosted by the development of
fast RLS algorithms which reach a linear time complexity in the order of O(20L)
[Farhang-B. Section 13].

Both LMS and RLS algorithms play a role in a field of recurrent neural net-
works called reservoir computing (Jaeger 2007), which happens to be one of my
personal playgrounds. In reservoir computing, the training of neural networks is
reduced to computing a linear regression. Reservoir computing has recently be-
come particularly relevant for low-power microchip hardware implementations of
neural networks. If time permits I will give an introduction to this emerging field
in a tutorial or extra session.
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12 Feedforward neural networks: the Multilayer

Perceptron

Artificial neural networks (ANNs) have been investigated for more than half a
century in two scientific domains:

In computational neuroscience, ANNs are studied as mathematical abstrac-
tions and computer simulation models of biological neural systems. These
models aim at biological plausibility and serve as a research vehicle to better
understand information processing in real brains.

In machine learning, ANNs are used for creating complex information process-
ing architectures whose function can be shaped by training from sample data.
The goal here is to solve complex learning tasks in a data engineering spirit,
aiming at models that combine good generalization with highly nonlinear
data transformations.

Historically these two branches of ANN research had been united. The ancestor
of all ANNs, the perceptron of Rosenblatt 1958, was a computational model of
optical character recognition (as we would say today) which was explicitly inspired
by design motifs imported from the human visual system (check out Wikipedia
on “perceptron”). In later decades the two branches diverged further and further
from each other, despite repeated attempts to re-unite them. Today most ANN
research in machine learning has more or less lost its connections to its biological
origins. In this course we only consider ANNs in machine learning.

Even if we only look at machine learning, ANNs come in many kinds and
variations. The common denominator for most (but not all) ANNs in ML can be
summarized as follows.

• An ANN is composed of a (possibly large) number of interconnected process-
ing units. These processing units are called “neurons” or just “units”. Each
such unit typically can perform only a very limited computational operation,
for instance applying a fixed nonlinear function to the sum of its inputs.

• The units of an ANN are connected to each other by links called “synaptic
connections” (an echo of the historical past) or just “connections” or “links”.

• Each of the links is weighted with a parameter called “synaptic weight”,
“connection weight”, or just “weight” of the link. Thus, in total an ANN
can be represented as a labelled graph whose nodes are the neurons and
whose edges are the links, labelled with their weights. The structure of an
ANN with L units can thus be represented by its L × L sized connection
weight matrix W, where the entry W(i, j) = wij is the weight on the link
leading from unit j to unit i. When wij = 0, then unit j has no connection
to unit i. The nonzero elements in W therefore determine the network’s
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connection graph. Often it is more convenient to split the global weight
matrix in submatrices, one for each “layer” of weights. In what follows I will
use the generic symbol θ for the vector of all weights in an ANN.

• Computing with an ANN means to compute a real-valued activation xi for
each unit i (i = 1, . . . , L). In an ANN with L units, all of these activations
together are combined into an state vector x ∈ RL.

• The calculation of the state vector in a feedforward ANN depends on the
input and connection weights, so we may write x = f(u, θ).

• The state calculation function f is almost always local : the activation xi of
unit i depends only on the activations xj of units j that “feed into” i, that
is, where wij 6= 0.

• The external functionality of an ANN results from the combined local in-
teractions between its interconnected units. Very complex functionalities
may thus arise from the structured local interaction between large numbers
of simple processing units. This is, in a way, analog to Boolean circuits –
and indeed some ANNs can be mapped on Boolean circuits. In fact, the
famous paper which can be regarded as the starting shot for computational
neuroscience, A logical calculus of the ideas immanent in nervous activity
(McCulloch and Pitts 1943), compared biological brains directly to Boolean
circuits.

• The global functionality of an ANN is determined by the connection weights
θ. Dramatic changes in functionality can be achieved by changing the weights
in θ. For instance, an ANN with a given connectivity structure can serve as
a recognizer of handwritten digits with some θ, and can serve as a recognizer
of facial expressions with another θ′ wherein only a fraction of the weights
have been replaced.

• The hallmark of ANNs is that its functionality is learnt from training data.
Most learning procedures that are in use today rely on some sort of iterative
model optimization with a flavor of gradient descent.

This basic scenario allows for an immense spectrum of different ANNs, which
can be set up for tasks as diverse as dimension reduction and data compression,
approximate solving of NP-hard optimization problems, time series prediction,
nonlinear control, game playing, dynamical pattern generation and many more.

In this course I give an introduction to a particular kind of ANNs called feed-
foward neural networks. Often they are also called — for historical reasons –
multilayer perceptrons (MLPs).

MLPs are used for the supervised learning of input-output tasks where both
input and output come in vector formats. In such tasks the training sample is of
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the kind (ui,yi)i=1,...,N , where u ∈ Rn, y ∈ Rk are drawn from a joint distribution
PU,Y .

Note that in this section my notation departs from the one used in earlier
sections: I now use u instead of x to denote input patterns, in order to avoid
confusion with the network states x.

The MLP is trained to produce outputs y ∈ Rk upon inputs u ∈ Rn in a way
that this input-output mapping is similar to the relationships ui 7→ yi found in
the training data. Similarity is measured by a suitable loss function.

Supervised learning tasks of this kind – which we have already studied in
previous sections – are generally called function approximation tasks or regression
tasks. It is fair to say that today MLPs and their variations are the most widely
used workhorse in machine learning when it comes to learning nonlinear function
approximation models.

An MLP is a neural network structured equipped with n input units and k
output units. An n-dimensional input pattern u is set as the state vector for the
input neurons, then the MLP does some interesting internal processing, at the end
of which the k-dimensional result vector of the computation can be read from the
activation of the k output units. An MLP N with n input units and k output
units thus instantiates a function N : Rn → Rk. Since this function is shaped
by the synaptic connection weights θ, one could also write Nθ : Rn → Rk if one
wishes to emphasize the dependance of N ’s functionality on its weights.

The learning task is defined by a loss function L : Rk×Rk → R≥0. As we have
seen before, a convenient and sometimes adequate choice for L is the quadratic
loss L(N (u),y) = ‖N (u) − y‖2, but other loss functions are also widely used.
Chapter 6.2 in the deep learning bible (I. Goodfellow, Bengio, and Courville 2016)
gives advice about which loss functions should be used in which task settings.

Given the loss function, the immediate goal of training an MLP is to find a
weight vector θopt which minimizes the empirical loss, that is

θopt = argmin
θ∈H

1

N

N∑
i=1

L(Nθ(ui),yi), (157)

where H is a set of candidate weight vectors. We have seen variants of this
formula many times by now in these lecture notes! And it goes almost without
saying (only “almost” because I can’t say this often enough) that some method of
regularization combined with some sort of cross-validation must be used to shield
solutions obtained from the training error minimization (157) against overfitting.

“Function approximation” sounds dry and technical, but many kinds of learn-
ing problems can be framed as function approximation learning. Here are some
examples:

Pattern recognition: inputs u are vectorized representations of any kind of “pat-
terns”, for example images, soundfiles, texts or customer profiles. Outputs
y are hypothesis vectors of the classes that are to be recognized.
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Time series prediction: inputs are vector encodings of a past history of a temporal
process, outputs are vector encodings of future observations of the process.
Examples are stock market timeseries or weather data recordings.

Denoising, restoration and pattern completion: inputs are patterns that are cor-
rupted by noise or other distortions, outputs are cleaned-up or repaired or
completed versions of the same patterns. Important applications can be
found for instance in satellite sensing, medical imaging or audio processing.

Data compression: Inputs are high-dimensional patterns, outputs are low-dimensional
encodings which can be restored to the original patterns using a decoding
MLP. The encoding and decoding MLPs are trained together.

Process control: In control tasks the objective is to send control inputs to a tech-
nological system (called “plant” in control engineering) such that the plant
performs in a desired way. The algorithm which computes the control in-
puts is called a “controller”. Control tasks range in difficulty from almost
trivial (like controlling a heater valve such that the room temperature is
steered to a desired value) to almost impossible (like operating hundreds of
valves and heaters and coolers and whatnots in a chemical factory such that
the chemical production process is regulated to optimal quality and yield).
The MLP instantiates the controller. Its inputs are target signals for the
desired plant behavior, plus optionally observation data from the current
plant performance. The outputs are the control actions which are sent to
the plant.

Note that animal brains can be seen as controllers that generate their own
targets (i.e. what the animal wants to do next), send control input to the
plant (i.e. activation signals to the animal’s own muscles) and receives feed-
back about the effects of these control inputs through sensor signals of all
sorts.

This list should convince you that “function approximation” is a worthwhile
topic indeed, and spending effort on learning how to properly handle MLPs is a
good professional investment for any engineer or data analyst.

12.1 MLP structure

Figure 85 gives a schematic of the architecture of a vanilla MLP. It consists of
several layers of units. Layers are numbered 0, . . . , K, where layer 0 is comprised
of the input units and layer K of the output units. The number of units in layer
m is Lm. The units of two successive layers are connected in an all-to-all fashion
by synaptic links (arrows in Figure 85). The link from unit j in layer m − 1 to
unit i in layer m has a weight wmij ∈ R. The layer 0 is the input layer and the layer
K is the output layer. The intermediate layers are called hidden layers. When an
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MLP is used for a computation, the i-th unit in layer m will have an activation
xmi ∈ R.

input 
neurons 

output 
neurons 

last hidden 
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neurons  
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units 
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K K K 
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Figure 85: Schema of an MLP with K − 1 hidden layers of neurons.

From a mathematical perspective, an MLP N implements a function N :
RL0 → RLK . Using the MLP and its layered structure, this function N (u) of an
argument u ∈ RL0

is computed by a sequence of transformations as follows:

1. The activations x0
j of the input layer are set to the component values of the

L0-dimensional input vector u.

2. For layers 0 < m < K, assume that the activations xm−1
j of units in layer

m− 1 have already been computed (or have been externally set to the input
values, in the case of m− 1 = 0). Then the activation xmi is computed from
the formula

xmi = σ

(
Lm−1∑
j=1

wmij x
m−1
j + wmi0

)
. (158)

That is, xmi is obtained from linearly combining the activations of the lower
layer with combination weights wmij , then adding the bias wmi0 ∈ R, then
wrapping the obtained sum with the activation function σ. The activation
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function is a nonlinear, “S-shaped” function which I explain in more detail
below. It is customary to interpret the bias wmi0 as the weight of a synaptic
link from a special bias unit in layer m − 1 which always has a constant
activation of 1 (as shown in Figure 85).

Equation 158 can be more conveniently written in matrix form. Let xm =
(xm1 , . . . , x

m
Lm)′ be the activation vector in layer m, let bm = (wm1 , . . . , w

m
Lm)′

be the vector of bias weights, and let Wm = (wmij )i=1,...,Lm; j=1,...,Lm−1 be the
connection weight matrix for links between layers m− 1 and m. Then (158)
becomes

xm = σ
(
Wm xm−1 + bm

)
, (159)

where the activation function σ is applied component-wise to the activation
vector.

3. The Lk-dimensional activation vector y of the output layer is computed from
the activations of the pre-output layer m = K−1 in various ways, depending
on the task setting (compare Chapter 6.2 in I. Goodfellow, Bengio, and
Courville 2016). For simplicity we will consider the case of linear output
units,

y = xK = WK xK−1 + bK , (160)

that is, in the same way as it was done in the other layers, except that no
activation function is applied. The output activation vector y is the result
y = N (u).

The activation function σ is traditionally either the hyperbolic tangent (tanh)
function or the logistic sigmoid given by σ(a) = 1/(1 + exp(−a)). Figure 86 gives
plots of these two S-shaped functions. Functions of such shape are often called
sigmoids. There are two grand reasons for using sigmoids:

• Historically, neural networks were conceived as abstractions of biological
neural systems. The electrical activation of a biological neuron is bounded.
Applying the tanh bounds the activations of MLP “neurons” to the interval
[−1, 1] and the logistic sigmoid to [0, 1]. This can be regarded as an abstract
model of a biological property.

• Sigmoids introduce nonlinearity into the function Nθ. Without these sig-
moids, Nθ would boil down to a cascade of affine linear transformations,
hence in total would be merely an affine linear function. No nonlinear func-
tion could be learnt by such a linear MLP.

In the area of deep learning, a drastically simplified “sigmoid” is today standardly
used, the rectifier function defined by r(a) = 0 for a < 0 and r(a) = a for a ≥ 0.
The rectifier has somewhat less pleasing mathematical properties compared to the
classical sigmoids but can be computed much more cheaply, and it helps mitigating
a nasty problem of gradient descent optimization called the “vanishing gradient”

247



problem (not treated in our course, if you are interested in a more detailed pre-
sentation of MLPs, take a look into my lecture notes on Neural Networks). This
is of great value in deep learning scenarios, where the neural networks and the
training samples both are often very large and the training process requires very
many evaluations of the sigmoid, and where the vanishing gradient problem is apt
to strike badly.

3 2 1 0 1 2 3
1

0.5

0

0.5

1

Figure 86: The tanh (blue), the logistic sigmoid (green), and the rectifier function
(red).

In intuitive terms, the operation of an MLP can be summarized as follows.
After an input vector u is written into the input units, a “wave of activation”
sweeps forward through the layers of the network. The activation vector xm in
each layer m is directly triggered by the activations xm−1 according to (159).
The data transformation from xm−1 to xm is a relatively “mild” one: just an
affine linear map Wm xm−1 + bm followed by a wrapping with the gentle sigmoid
σ. But when several such mild transformations are applied in sequence, very
complex “foldings” of the input vector u can be effected. Figure 87 gives a visual
impression of what a sequence of mild transformations can do. Also the term
“feedforward neural network” becomes clear: the activation wave spreads in a
single sweep unidirectionally from the input units to the output units.

12.2 Universal approximation and “deep” networks

One reason for the popularity of MLPs is that they can approximate arbitrary
functions f : Rn → Rk. Numerous results on the approximation qualities of
MLPs have been published in the early 1990-ies. Such theorems have the following
general format:

Theorem (schematic). Let F be a certain class of functions f : Rn → Rk.
Then for any f ∈ F and any ε > 0 there exists an multilayer perceptron N with
one hidden layer such that ‖f −N‖ < ε.
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Figure 87: Illustrating the power of iterating a simple transformation. The baker
transformation (also known as horseshoe transformation) takes a 2-dimensional
rectangle, stretches it and folds it back onto itself. The bottom right diagram
visualizes a set that is obtained after numerous baker transformations (plus some
mild nonlinear distortion). — Diagrams on the right taken from Savi 2016.

Such theorems differ with respect to the classes F of functions that are approx-
imated and with respect to the norms ‖ · ‖ that measure the mismatch between
two functions. All practically relevant functions belong to classes that are covered
by such approximation theorems. In a summary fashion it is claimed that MLPs
are universal function approximators. Again, don’t let yourself be misled by the
dryness of the word “function approximator”. Concretely, the universal function
approximation property of MLPs would spell out, for example, to the (proven)
statement that any task of classifying pictures can be solved to any degree of
perfection by a suitable MLP.

The proofs for such theorems are typically constructive: for some target func-
tion f and tolerance ε they explicitly construct an MLP N such that ‖f−N‖ < ε.
However, these constructions have little practical value because the constructed
MLPs N are far too large for any feasible implementation. You can find more
details concerning such approximation theorems and related results in my legacy
ML lecture notes https://www.ai.rug.nl/minds/uploads/LN_ML_Fall11.pdf,
Section 8.1.

Even when the function f that one wants to train into an MLP is very complex
(highly nonlinear and with many “baker folds”), it can in principle be approxi-
mated with 1-hidden-layer MLPs. However, when one employs MLPs that have
many hidden layers, the required overall size of the MLP (quantified by total
number of weights) is dramatically reduced (Bengio and LeCun 2007). Even for
super-complex target functions f (like photographic image caption generation),
MLPs of feasible size exist when enough layers are used (one of the subnetworks
in the TICS system described in Section 1.2.1 used 17 hidden layers, but today’s
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deep networks easily have 50-100 layers). This is the basic insight and motivation
to consider deep networks, which is just another word for “many hidden layers”.
Unfortunately it is not at all easy to train deep networks. Traditional learning
algorithms had made non-deep (“shallow”) MLPs popular since the 1980-ies. But
these shallow MLPs could only cope with relatively simple learning tasks. At-
tempts to scale up to larger numbers of hidden layers and more complex data sets
largely failed, due to numerical instabilities, too slow convergence, or poor model
quality. Since about 2006 an accumulation of clever “tricks of the trade”, plus the
availability of powerful, yet affordable, GPU hardware has overcome these hurdles.
This area of training deep neural networks is now one of the most thriving fields
of ML and has become widely known under the name deep learning.

12.3 Training an MLP with the backpropagation algorithm

In this section I give an overview of the main steps in training a non-deep MLP
for a mildly nonlinear task — tasks that can be solved with one or two hidden
layers. When it comes to unleash deep networks on gigantic training corpora for
hypercomplex tasks, the basic recipes given in this section will not suffice. You
would need to train yourself first in the art of deep learning, investing at least a
full university course’s effort (this is an advertisment of Matthia Sabatelli’s Deep
Learning course in summer). However, what you can learn in this section is a
necessary minimal outfit for surviving in the wilderness of deep learning.

12.3.1 General outline of an MLP training project

Starting from a task specification and access to training data (given to you by your
boss or a paying customer, with the task requirements likely spelled out in rather
informal terms, like “please predict the load of our internet servers 3 minutes
ahead”), a basic training procedure for a elementary MLP N goes like follows.

1. Get a clear idea of the formal nature of your learning task. Do you want
a model output that is a probability vector? or a binary decision? or a max-
imally precise transformation of the input? how should “precision” best be
measured? and so forth. Only proceed with using MLPs if they are really
looking like a suitable model class for your problem. MLPs are raw power
cannons. If you fire them on feeble datasets you make a professional error:
simpler models (like random forests) will give better result at lower cost and
better controllability and interpretability!

2. Decide on a loss function. Go for a simple quadratic loss if you want a
quick baseline solution, but be prepared to invest into other loss functions if
you have enough time and knowledge (Chapter 6.2 in I. Goodfellow, Bengio,
and Courville 2016).

250



3. Decide on a regularization method. For elementary MLP training, suit-
able candidates are adding an L2 norm regularizer to your loss function;
extending the size of the training data set by adding noisy / distorted exem-
plars (this is called data augmentation); varying the network size; or early
stopping (= stop gradient descent training a overfitting-enabled ANN when
the validation error starts increasing — requires continual validation during
gradient descent). Demyanov 2015 is a solid guide for ANN regularization.

4. Think of a suitable vector encoding of the available training data, including
dimension reduction if that seems advisable (it is advisable in all situations
where the ratio raw data dimension / size of training data set is high).

5. Fix an MLP architecture. Decide how many hidden layers the MLP shall
have, how many units each layer shall have, what kind of sigmoid is used
and what kind of output function and loss function. The structure should be
rich enough that data overfitting becomes possible and your regularization
method can kick in.

6. Set up a cross-validation scheme in order to optimize the generalization
performance of your MLPs. Recommended: implement a semi-automated k-
fold cross-validation scheme which is built around two subroutines, (1) “train
an MLP of certain structure for minimal training error on given training
data”, (2) “test MLP on validation data”. If, however, you are aiming for
the high end with very large datasets and very large networks, classical cross-
validation is not feasible due to the cost of training just a single model; the
only escape then is early stopping.

7. Implement the training and testing subroutines. The training will be
done with a suitable version of the error backpropagation algorithm, which
will require you to meddle with some global control parameters (like learning
rate, stopping criterion, initialization scheme, and more).

8. Do the job. Enjoy the powers, and behold the wickedness, of ANNs.

You see that “neural network training” is a multi-faceted thing and requires
you to consider all the issues that always jump at you in supervised machine
learning tasks. An ANN will not miraculously give good results just because it
has “neurons inside”. The actual “learning” part, namely solving the optimization
task (157), is only a subtask, albeit a conspicuous one because it is done with an
algorithm that has risen to fame, namely the backpropagation algorithm.

12.3.2 The error backpropagation algorithm

ANNs are trained by an iterative optimization procedure. In the classical, elemen-
tary case, this is pure gradient descent. I repeat the setup:
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Given: Labelled training data in vector/vector format (obtained possibly after
preprocessing raw data) (ui,yi)i=1,...,N , where u ∈ Rn,y ∈ Rk. Also given:
a network architecture for models Nθ that can be specified by l-dimensional
weight vectors θ ∈ H. Also given: a loss function L : Rk × Rk → R≥0.

Initialization: Choose an initial model θ(0). This needs an educated guess. A
widely used strategy is to set all weight parameters w

(0)
i ∈ θ(0) to small

random values. Remark: For training deep neural networks this is not good
enough — the deep learning field actually got kickstarted by a clever method
for finding a good model initialization (Hinton and Salakuthdinov 2006).

Iterate: Compute a series (θ(n))n=0,1,... of models of decreasing empirical loss (aka
training error) by gradient descent. Concretely, with

Remp(Nθ(n)) =
1

N

∑
i=1,...,N

L(Nθ(n)(ui),yi) (161)

denoting the empirical risk of the model θ(n), and with

∇Remp(Nθ(n)) =

(
∂Remp

∂w1

(θ(n)), . . . ,
∂Remp

∂wl
(θ(n))

)′
(162)

being the gradient of the empirical risk with respect to the parameter vector
θ = (w1, . . . , wl)

′ at point θ(n), update θ(n) by

θ(n+1) = θ(n) − µ ∇Remp(Nθ(n)).

Stop when a stopping criterion chosen by you is met. This can be reaching a
maximum number of iterations, or the empirical risk decrease falling under
a predermined threshold, or some early stopping scheme.

Computing a gradient is a differentiation task, and differentiation is easy. With
high-school maths you would be able to compute (162). However, the gradient
formula that you get from math textbooks would be too expensive to compute.
The error backpropagation algorithm (or simply “backprop” for the initiated, or
even just BP if you want to have a feeling of belonging to this select community)
is a specific algorithmic scheme to compute this gradient in a computationally
efficient way.

The backpropagation algorithm became widely known as late as 1986 (his-
torical remarks further below). In historical perspective it was the one and only
decisive breakthrough for making ANNs practically usable. Every student of ma-
chine learning must have understood it in detail at least once in his/her life, even
if later it’s just downloaded from a toolbox in some more sophisticated fashioning.
Thus, brace yourself and follow along!
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Let us take a closer look at the empirical risk (161). Its gradient can be written
as a sum of gradients

∇Remp(Nθ) = ∇

(
1

N

∑
i=1,...,N

L(Nθ(ui),yi)

)
=

1

N

∑
i=1,...,N

∇L(Nθ(ui),yi),

and this is also how it is actually computed: the gradient ∇L(Nθ(ui),yi) is eval-
uated for each training data example (ui,yi) and the obtained N gradients are
averaged.

This means that at every gradient descent iteration θ(n) → θ(n+1), all training
data points have to be visited individually. In MLP parlance, such a sweep through
all data points is called an epoch. In the neural network literature one finds
statements like “the training was done for 120 epochs”, which means that 120
average gradients were computed, and for each of these computations, N gradients
for individual training example points (ui,yi) were computed.

When training samples are large — as they should be — one epoch can clearly
be too expensive. Therefore one often takes resort to minibatch training, where
for each gradient descent iteration only a subset of the total sample S is used.

The backpropagation algorithm is a subroutine in the gradient descent game.
It is a particular algorithmic scheme for calculating the gradient ∇L(Nθ(ui),yi)
for a single data point (ui,yi). Highschool-math calculations of this quantity incur
a cost of O(l2) (where l is the number of network weights). When l is not extremely
small (it will almost never be extremely small — a few hundreds of weights will be
needed for simple tasks, and easily a million for deep networks applied to serious
real-life modeling problems), this cost O(l2) is too high for practical exploits (and it
has to be paid N times in a single gradient descent step!). The backprop algorithm
is a clever scheme for computing and storing certain auxiliary quantities which cuts
the cost down from O(l2) to O(l).

Here is how backprop works.

1. BP works in two stages. In the first stage, called the forward pass, the
current network Nθ is presented with the input u, and the output ŷ = Nθ(u)
is computed using the “forward” formulas (159) and (160). During this
forward pass, for each unit xmi that is not a bias unit and not an input unit,
the quantity

ami =
∑

j=0,...,Lm−1

wmij x
m−1
j (163)

is computed – this is sometimes referred to as the potential of unit xmi ; it is
its internal state before it is passed through the sigmoid.

2. Some bites of math in between. Applying the chain rule of calculus we have

∂L(Nθ(u),y)

∂wmij
=
∂L(Nθ(u),y)

∂ami

∂ami
∂wmij

. (164)
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Define

δmi =
∂L(Nθ(u),y)

∂ami
. (165)

Using (163) we find
∂ami
∂wmij

= xm−1
j . (166)

Combining (165) with (166) we get

∂L(Nθ(u),y)

∂wmij
= δmi x

m−1
j . (167)

Thus, in order to calculate the desired derivatives (164), we only need to
compute the values of δmi for each hidden and output unit.

3. Computing the δ’s for output units. Output units xKi are typically set up
differently from hidden units, and their corresponding δ values must be com-
puted in ways that depend on the special architecture. For concreteness here
I stick with the simple linear units introduced in (160). The potentials aKi
are thus identical to the output values ŷi and we obtain

δKi =
∂L(Nθ(u),y)

∂ŷi
. (168)

This quantity is thus just the partial derivative of the loss with respect to
the i-th output, which is usually simple to compute. For the quadratic loss
L(Nθ(u),y) = ‖Nθ(u)− y‖2, for instance, we get

δKi =
∂‖Nθ(u)− y‖2

∂ŷi
=
∂‖ŷ − y‖2

∂ŷi
=
∂(ŷi − yi)2

∂ŷi
= 2 (ŷi − yi). (169)

4. Computing the δ’s for hidden units. In order to compute δmi for 1 ≤ m < K
we again make use of the chain rule. We find

δmi =
∂L(Nθ(u),y)

∂ami
=

∑
l=1,...,Lm+1

∂L(Nθ(u),y)

∂am+1
l

∂am+1
l

∂ami
, (170)

which is justified by the fact that the only path by which ami can affect
L(Nθ(u),y) is through the potentials am+1

l of the next higher layer. If we
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substitute (165) into (170) and observe (163) we get

δmi =
∑

l=1,...,Lm+1

δm+1
l

∂am+1
l

∂ami

=
∑

l=1,...,Lm+1

δm+1
l

∂
∑

j=0,...,Lm w
m+1
lj σ(amj )

∂ami

=
∑

l=1,...,Lm+1

δm+1
l

∂ wm+1
li σ(ami )

∂ami

= σ′(ami )
∑

l=1,...,Lm+1

δm+1
l wm+1

li . (171)

This formula describes how the δmi in a hidden layer can be computed by
“back-propagating” the δm+1

l from the next higher layer. The formula can be
used to compute all δ’s, starting from the output layer (where (168) is used
— in the special case of a quadratic loss, Equation 169), and then working
backwards through the network in the backward pass of the algorithm.

When the logistic sigmoid σ(a) = 1/(1 + exp(−a)) is used, the computation
of the derivative σ′(ami ) takes a particularly simple form. Observing that for
this sigmoid it holds that σ′(a) = σ(a) (1− σ(a)) leads to

σ′(ami ) = xmi (1− xmi ).

Although simple in principle, and readily implemented, using the backprop
algorithm appropriately is something of an art, even in basic shallow MLP training.
I hint at some difficulties:

• The stepsize µmust be chosen sufficiently small in order to avoid instabilities.
But it also should be set as large as possible to speed up the convergence.
We have seen the inevitable and often brutal conflict between these two
requirements in Section 11. In neural networks it is not possible to provide an
analytical treatment of how to set the stepsize optimally. Generally one uses
adaptation schemes that modulate the learning rate as the gradient descent
proceeds, using larger stepsizes in early epochs. Novel, clever methods for
online adjustment of stepsize have been one of the enabling factors for deep
learning. For shallow MLPs stepsizes can be fixed without much thinking in
the order from 0.001 to 0.01.

• Gradient descent on nonlinear performance landscapes may sometimes be
crippling slow in “plateau” areas still far away from the next local minimum
where the gradient is small in all directions, for other reasons than what we
have seen in quadratic performance surfaces.

255



• Gradient-descent techniques on performance landscapes can only find a local
minimum of the risk function. This problem can be addressed by various
measures, all of which are computationally expensive. Some authors claim
that the local minimum problem is overrated.

The error backpropagation “trick” to speed up gradient calculations in layered
systems has been independently discovered several times and in a diversity of con-
texts outside neural network research. Schmidhuber 2015, Section 5.5, provides a
historical overview. In its specific versions for neural networks, backpropagation
apparently was first described by Paul Werbos in his 1974 PhD thesis, but re-
mained unappreciated until it was re-described in a widely read collection volume
on neural networks (Rumelhart, Hinton, and Williams 1986). From that point
onwards, backpropagation in MLPs developed into what today is likely the most
widely used computational technique in machine learning.

A truly beautiful visualization of MLP training has been pointed out to me by
Rubin Dellialisi: playground.tensorflow.org/.

Simple gradient descent, as described above, is cheaply computed but may take
long to converge and/or run into stability issues. A large variety of refined iterative
loss minimization methods have been developed in the deep learning field, which
often combine an acceptable speed of convergence with stability. Some of them
refine gradient descent, others use information from the local curvature (and are
therefore called “second-order” methods) of the performance surface. The main
alternatives are nicely sketched and compared at https://www.neuraldesigner.
com/blog/5_algorithms_to_train_a_neural_network (retrieved May 2017, lo-
cal copy at https://www.ai.rug.nl/minds/uploads/NNalgs.zip).

13 Open doors in ML — leading where?

This section is optional reading and will not be queried in exercises or exams.

The breathtaking achievements of current deep learning (DL) research may
suggest that ML has reached essential maturity, and further progress will mainly
be coming from further growth of computing power and data resources, not need-
ing revolutionary new ideas. After all, the best current DL system already sur-
pass human cognitive performance (face recognition in crowds! winning chess,
Go, complex strategic computer games against human world champions!), and
DL applications are broadly permeating all fields of engineering, science, finance,
administration, military, and cars and fridges and wrist watches and lamplight
switches!

Wrong wrong wrong. Almost all really fundamental questions about “learning”
and “cognition” remain almost as unsolved and ill-understood as they were fifty
years ago. The more ingenious and inventive DL researchers are, the more aware
they are of the hollows in their understanding. DL pioneers of stellar calibre, close
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to retirement age (Yoshua Bengio) or beyond (Geoffrey Hinton), burn their brains
in a final rush to find answers, in their remaining lifetime, to the questions that
have been driving them for decades.

First, a brief list of some of the most visible and important shortcomings of
current ML methods. These deficits are acutely felt by all leading thinkers in the
field, and heavy efforts are invested in Google Deep Mind, OpenAI et al. to find
ways to improve on these shortfalls (human performance highlighted in blue font):

Data inefficiency. High-end “cognitive” ML solutions (like GPT3 for text gen-
eration) need vast amounts of training data, orders of magnitude more than
a human ever sees in a lifetime.

Memorizing rather than understanding. ML systems are binge learners, like
overcharged students before an exam: they swallow large amounts of training
data and preserve a lot of superficial memory traces, but don’t understand
what they have gulped down. Again, GPT3 is a good example. When
queried about the size of an elephant’s egg, GPT may answer that it has a
diameter of 50 cm; and when GPT3 is asked to tell a longer story, the system
is liable to lose track of a storyline, confabulating incoherently. A human
would understand that the elephant question is a joke and give a laugh for
an answer, or (if we are dealing with a person who has no sense of humor)
would reject the question as making no sense. And an experienced criminal,
when interrogated by the police, can tell a very long, very coherent story —
and the even more experienced police officer can detect even the slightest
inconsistencies between what the culprit said two hours ago and what comes
out of his mouth now.

Lack of explainability. When a trained neural network outputs a result on a
query input, it is unclear on what grounds this output was derived. NNs
are very black boxes. To achieve explainable AI is a burning issue, because
human-understandable explanations are often critically needed. Examples:
decisions made by self-driving cars (legal liabilities!), medical dignosis sup-
port systems (life vs. death; a blind recommendation of a pill is not good
enough), financial investement recommendations (investors want to have
good reasons to spend millions), crime prediction or creditworthyness as-
sessment tools (citizens should get explanations when they are pre-emptively
detained or denied a credit). Human experts can usually explain why they
come up with an answer to a question, or at least, what they believe are
their reasons.

Slow and brittle learning from rewards. Some of the most stunning DL suc-
cesses, in particular in game playing, arise from reinforcement learning (RL,
which we unfortunately did not cover in this course), that is, learning from
past rewards to maximize future rewards. However, RL learning is excruci-
atingly slow and generalizes poorly to informal real-world applications. For
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example, the seemingly simple learning task of optimizing the switching cy-
cles of the traffic lights at a single street crossing marks the limits of what
is currently achievable with RL in real-world settings. I have learnt this
from an external PhD project that I am supervising. A 2-year effort of a
professional developer team was needed to train a RL traffic light controller
(Müller et al. 2021), which in the end was not fielded because of deficits in
sensor reliability and termination of funding. A little girl who has burnt her
finger on a candle just once, will not put her finger into flames thereafter
— not only not into candle flames, but also not into flames from matches,
torches, chimney fires.

Weak generalization and robustness. Today’s ML methods work best (often:
work only) when the test data come from the same distribution as the train-
ing data. With “out of distribution” test data, very bad things can happen
— recall our adversarial attack example from Section 1.2.1, or wait for the
next news article on a Tesla crashing into a van that the autopilot mistook
for blue sky over drivable area. Humans can drive cars safely. Well, ... pro-
vided that testosteron or alcohol level is not peaking, but that is another
story.

Limited adaptation, single-purpose performance. ML systems can be amaz-
ingly good at performing exactly the task they were trained on. But it is
difficult to design ML learners that can continue to learn after having been
dispatched to the end-user, carrying on to adapt themselves to new task
variations. This would obviously be a highly desirable feature, for instance
when a speech recognizer could adapt to a new dialect or a drunken speaker
(assuming drunken speaker recordings were not in the training corpus). In
the neural network world this problem has been realized since long under
the name of catastrophic forgetting. Only in the last few years, halfway satis-
factory solutions to the continual learning problem begin to appear (briefly
introduced in Section 11). However, these solutions function only in limited
scenarios where the new task variants are of the same sort as the originally
learnt one — same input data format, same output data format, for in-
stance. You and I continue to learn all throughout our lives, — for instance,
you have learnt about ML in the last weeks and I have learnt that there is
no blackboard in the Aletta Jacobs lecture halls. Furthermore, we are not
single-purpose but general-purpose performers. Not only can we recognize
faces, but also speak, sing, walk, make breakfast and funny grimaces, play
guitar (some of us), and all the rest. Try to come up with a complete list
for yourself: how long would that list be and how crazily diverse? It seems
we can do almost everything !

Why, oh why, is machine learning so far away from what we humans can learn?
What is the secret behind the magnificent efficiency, robustness, adaptability,
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versatility and creativity of human learning? If I knew the answer, I would know
how to make gold from lead and brains from C++ code. All I can offer are some
personal speculations about what might be the big blind spot in our view on
“learning”, and even more speculatively, which scientific revolutions may be lying
ahead — maybe just around the next corner.

In this course I tried to draw the essential picture of ML as it is understood
today. All modern ML grows from one root idea, which is elegant, simple, con-
vincing and powerful, and which I tried to carry across in this course in ever so
many repetitions and variations. This idea is that

• learning means extracting useful information from data;

• real-world data are always stochastic;

• all “information” in stochastic data sources is contained in the joint dis-
tribution of the random variables that can be observed (the visible ones)
or inferred (the hidden ones) — this view of “information = properties of a
probability distribution” is also the core of information theory and statistical
physics;

• therefore, all machine learning models should be, and can be, understood as
modeling probability distributions;

• which directly leads to our modern perception of the main challenges of ML,
namely

– finding representation formats for complex distributions that can be
handled on computers — like decision trees, Bayesian networks or neu-
ral networks,

– finding ways to estimate such representations from data, such that the
estimated distributions come close to the true one — this leads to
the core strategies of maximum-likelihood modeling paired with cross-
validation, or Bayesian modeling, and generally connects modern ML
closely to classical statistics.

The powers of this line of thinking become apparent not only in the successes
of ML, but also have left a deep imprint on cognitive and neuroscience, where
many theories that try to explain human cognition and brains are expressed in
statistical frameworks. A small choice of important examples:

• the Bayesian brain approaches (also known as, or closely related to, the
paradigms of the predictive brain or the free energy model of adaptive cogni-
tion, see this Wikipedia article), which cast cognitive processing and neural
processes as adaptive mechanisms that help the brain’s owner to extract
important and reliable information from noisy sensor data, solving the gen-
eralization problem by applying genetically evolved or individually acquired
Bayesian priors;
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• the neural sampling hypothesis which interprets the apparent stochasticity of
neural spikes as an MCMC sampling mechanism for computing approximate
inferences about probability distributions (Buesing et al. 2011);

• rigorous statistical models of neural mechanisms that enable reinforcement
learning in animals and humans (Xie and Seung 2004).

Beyond connecting ML to cognitive and neuroscience, the statistical view on learn-
ing also provides a basis for scientific exchange across other disciplinary bound-
aries, in particular statistical physics, signal processing & control, information and
communication theory, and optimization theory — and, of course, mathematical
statistics proper. Researchers in all of theses fields share the intuition and the
mathematical techniques to describe reality through probability distributions.

But — do the best known brains (still, that’s ours!) actually process informa-
tion on the basis of statistical inference and learning representations of distribu-
tions? Or — are our brains so good exactly because they don’t?

A first indication that this might indeed be the case is the somewhat dis-
turbing fact that humans are actually quite bad at statistical reasoning, as doc-
umented in the landmark paper of Tversky and Kahneman 1974 (47K Google
Scholar cites, as of January 2023). Famously, in elementary diagnostic reason-
ing (inferring causes Y from symptoms X), students of medicine typically fail at
properly factoring in the base rate P (Y ) when they (should) apply Bayes’ rule
P (Y |X) = P (X|Y )P (Y )/P (X) to get the conditional probability P (Y |X) of
causes given symptoms, which is why they tend to over-estimate the probability
of a serious, but rare, illness. Good medical schools therefore have mandatory
courses on medical decision making. Tversky and Kahneman present numerous
other, well-documented scenarios that reveal humans as statistically challenged.

Another indication comes from a strand in cognitive science that explains hu-
man conceptual systems and reasoning as something that has grown from bodily
experience and physical action in physical environments. I am a great fan of this
view and would love to give you a sparkling, full account of this tradition, but
that would mean an entire separate course. I must make do with a few links to
standard references. If you are interested, check out

• the book of Port and Gelder 1995, “Mind as Motion: Explorations in the
Dynamics of Cognition”, which collects papers that model cognition as non-
linear dynamical processes (as opposed to symbolic reasoning);

• or the textbook of Pfeifer and Scheier 1999, “Understanding Intelligence”,
which gives a systematic introduction to that approach to cognitive science,
AI and robotics that has also been branded under the names like embodied
cognitive science, behavior-based robotics / AI, situated agents, or simply new
AI, and whose core assumption is that “higher” cognitive functions emerge
“bottom-up”, on the timescales of evolution and of individual learning and

260



development, from elementary reflexes like and sensor-motor coordinations
like grasping and walking;

• or works from developmental psychology, where the epochal pioneer Jean
Piaget (introductory: Piaget 1951, “The biological problem of intelligence”)
founded the constructivist approach to cognition, which explains adult con-
cepts and reasoning as the result of a learning process that starts on day
1 when the newborn child jerks its arm and receives a sensory feedback as
the hand strikes the baby’s mouth, through many stages of differentiation
— all documented with ingeniously attentive observations of minute steps
of developmental progress in Piaget’s own children — until in early youth
the abilities to reason logically and judge ethically become established. The
foundations laid by Piaget were subsequently refined in many ways; impor-
tant proponents are Karmiloff-Smith 1994 who adds the insight that babies
do not start their development from an entirely blank slate but have been
equipped by evolution with some structuring predispositions; or infant psy-
chologist Thelen 2000, “Grounded in the world: Developmental origins of
the embodied mind”, who started to collaborate with mathematicians and
physicists to obtain rigorous and insightful dynamical systems models of
developmental progress;

• or the more foundational-philosophical principle of affordances introduced
in a lifetime’s work by philosopher-psychologist Gibson 1979, “Perceiving,
Acting, and Knowing”, which I would roughly summarize as the principle
that our cognitive concepts are grounded in what we can do with the concep-
tualized objects — like, any chair that we see directly “affords” the options
to touch it, sit on it, offer it to somebody else etc., and that’s the essence of
one’s “chair” concept;

• or at a grander scale of abstraction, the philosophical school of evoluationary
epistemology (Bradie 1986) whose central tenet is that our human conceptual
and reasoning apparatus has biologically evolved and can be continuously
traced back to the prerational intelligence of amoeba, see the 1500 page, 1-
year workshop proceedings “Prerational Intelligence: Adaptive Behavior and
Intelligent Systems Without Symbols and Logic” (Cruse, Dean, and Ritter
2013) (I was a member of that workshop for three months);

• or the PhD thesis book of Drescher 1991, “Made-up Minds: A Construc-
tivist Approach to Artificial Intelligence”, in which the author (who then
left academia, what a pity) develops and implements a computer simulation
version of Piaget’s developmental theory — this work passed under most
radars for two decades and is now being re-discovered by Google Deep Mind
researchers;

• or, finally (my favorite!), the work of cognitive scientists / cognitive linguists

261



Lakoff and R. E. Núñez 2000, “Where mathematics comes from: How the
embodied mind brings mathematics into being”, who analysed the most ab-
stract concepts that our brains have, namely the concepts of mathematics
itself (summary article: Lakoff and R. Núñez 2013), and trace their origins
back to our abilities and practices of purposeful motor action: walking from
here to there becomes the ultimate root of the mathematical “line” concept,
putting things on a heap is found to be the source of the “set” concept, etc.,
all worked out in much greater detail than I can highlight here.

While there are many differences between these lines of thinking and research,
they all grow forward from one common idea: that our conceptual and reason-
ing system has gradually grown from our bodily interaction with our physical
environment, both in the evolution of our species and again and further in the
development of every individual. As a consequence, if one wants to understand
intelligence, one should not start “top-down” from symbols, concepts, logic, and
adult rational reasoning, but instead reconstruct these precious items “bottom-
up” as an end product that arises from the basic physical-bodily conditions of our
existence. Seems a plausible enough story, no? And yet, classical AI and cognitive
science wanted to do it the other way round for decades, and still often cling to
the “logic first” imperative. But following up on that theme would lead us too far
astray here.

Returning to our main topic. The bottom-up approach to intelligence has no
difficulties explaining the weaknesses and errors that we humans make all the time
when trying to think logically, talk grammatically, or make statistical inferences.
The question however remains — can a proper understanding of human cognition
help us to revolutionize machine learning? Isn’t it so, to the contrary, that trying
to build human-like machine learning systems would just give us ML systems that
are just as weak as humans when they would try to think, talk or predict? Or,
is it so that these weaknesses are the other side of a coin, whose face side would
be the the positive powers of human cognition: all that astounding efficiency,
robustness, adaptability, versatility and creativity? We don’t know and I must
leave this question for you to think about. It’s a big one.

All I can do is to report on a recent development in machine learning, which
tries to flip that coin of learning on its other side. This recent work is based on
a 30 year long, specialized research line in Bayesian networks, which in turn turn
tried to come to terms with an eternal riddle of philosophy. I will tell this story
staring from that philosophical end.

That eternal riddle is the riddle to understand causality — intuitively, philo-
sophically, natural-science-ly, statistically.

Intuitively we recognize causality very well what we meet it. When I hit a nail
with a hammer, this hammer hit causes the nail to sink in a little further. It’s not
the other way round: you would call me crazy if I would claim that the nail’s little
sinking motion caused the hammer to hit it. Yet, both events are tightly — even
completely — correlated. They coincide. And causation seems always to connect
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causes with effects directly, both happening simultaneously. The archetype of
cause-effect pairings is when a causing force is applied to effect a change in the
location, speed, or shape of an object. But the change happens exactly at the
same time while the force is applied — when there is no force, there is no change.
Yet, somehow, the force comes “first” and its effect is “dependent”, “secondary”.
But this is not a temporal “first” versus “second”.

A brief digression: when you check out the Wikipedia article on Granger
causality , you will find a statistical method, which is widely used in financial
forecasting, that claims (or tries) to pinpoint causality by exploiting temporal
precedence of causes to their effects. Clive Granger was awarded the Nobel prize
in economics. Though it is called Granger causality, critics and Granger himself
emphasize that this method does not capture the essence of causality, but only
a certain phenomenon of systematic temporal precedence. Nonetheless, Granger
causality analyses have been applied in a less (self)critical fashion, also in neuro-
science where these statistical methods have been used to establish that activity
in certain brain regions “causes” response activity in other regions, leading to a
directed functional connectivity graph of neural modules (run Google Scholar on
“functional connectivity granger causality”).

Returning again to the main thread, I want to confuse you further. There does
seem to be something temporal about causation. When you play a video of any
everyday life scene backwards, you will find that it looks completely weird. You
can very clearly tell whether the movie was played forward or backward: there is
an arrow of time which always flies forward. Yet, no physical law is violated in
the backward version: all fundamental laws of physics are time-reversible (well,
this needs some differentiation: while all models of classical physics are time re-
versible, in subatomic particle and quantum physics one needs to reverse parity
and charge together with time to obtain the time-mirrored equivalent laws). Be-
sides the fundamental laws of physics, also the second law of thermodynamics
has been solicited as explaining why real-world time seems to differ in the for-
ward versus the reverse direction. This law states directly that there is an arrow
of time. It roughly says, the entropy of a system can only grow, or in more in-
tuitive terms: the world progresses from order to disorder. However, this is a
statistical law, not a fundamental one, and can explain the arrow of time only
by assuming that the state of the universe at its big bang beginning was highly
ordered, such that there is always enough leeway to continue becoming more dis-
ordered. The problem of the arrow of time becomes a problem of cosmology.
Furthermore, this statistical view cannot explain why you think that it is the
hammer that drives the nail, and not the nail that pulls the hammer. The ar-
row of time problem is not satisfactorily solved by today’s physics. Check out
https://en.wikipedia.org/wiki/T-symmetry for more information on the physics
of time reversal, https://en.wikipedia.org/wiki/Arrow of time for an introductory
(somewhat shallow) discussion of this arrow not only in physics but also in other
domains of science and life, and Callender 2011 for in introduction to the philos-
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ophy of time.
Cutting things short and maybe a bit unfairly, let me summarize the above

as follows: while intuitively we see a close connection between causation and the
arrow of time, physicists know that they don’t know what exactly this link is, and
philosophers know that they do not even know what they don’t know. Causation
is as ungraspable as time, space, and randomness. It is an eternal riddle.

After having set the stage in this big way, I come to this 30-year long research
line in Bayesian networks that I announced above. This part of the story is a
tribute to Judea Pearl. You know him as the pioneer of Bayesian networks. As
you have learnt in this course, Bayesian networks (BNs) are our best (in many
ways, only) tool when it comes to reason about joint probability distributions
of many interacting random variables. Specifically, BNs allow us to calculate
conditional probabilities P (Y |X) of causes given symptoms, where symptoms X
are observed and causes Y are inferred. Wait... “causes”?? This is the word that
is customarily used in the BN literature. Furthermore, BNs are also known as
“causal” networks, and the arrows in a BN are said to reflect “causal” influences:
a modeler drawing the graph structure of a BN should draw an arrow Y → X
when he/she thinks there is a “causal” influence from Y to X. This is allright
because and inasmuch a human modeler has a clear intuitive grasp on causation.
But above I painted a picture that shows that our intuitive understanding does not
amount to scientific or philosophical understanding. Thus, it seems that calling
BNs and the arrows within “causal” is neither good science, nor good philosophy
— just a selling point and a helper to let modelers think of heuristically okay’ish
graph structures.

The first person to become frustrated by this conceptual blank in BNs was
Pearl himself. Well, I guess so; I don’t know him in person. But it is a fact that
after establishing the foundations of BNs as you saw them in our course, ever after
1991 he directed his efforts to detecting true causality in statistical models (early
publications: Pearl and Verma 1992; Pearl 1993). Apparently his preoccupation
with causality started much earlier. Citing Pearl (after Russell 2011):

“I got my first hint of the dark world of causality during my junior year of
high school. My science teacher, Dr. Feuchtwanger, introduced us to the study of
logic by discussing the 19th century finding that more people died from smallpox
inoculations than from smallpox itself. Some people used this information to argue
that inoculation was harmful when, in fact, the data proved the opposite, that
inoculation was saving lives by eradicating smallpox.

And here is where logic comes in,” concluded Dr. Feuchtwanger, “To protect
us from cause-effect fallacies of this sort.” We were all enchanted by the marvels of
logic, even though Dr. Feuchtwanger never actually showed us how logic protects
us from such fallacies.

It doesn’t, I realized years later as an artificial intelligence researcher. Neither
logic, nor any branch of mathematics had developed adequate tools for managing
problems, such as the smallpox inoculations, involving cause-effect relationships.”
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Baysian networks, as you know them, do not allow one to pin down causality.
Citing Russell 2011: “A Bayesian network such as Smoking → Cancer fails to
capture causal information; indeed, it is mathematically equivalent to the network
Cancer → Smoking.” No model of a joint distribution has information about
true causal dependencies between the modeled random variables. All that can be
inferred from any such model are statistical dependencies of various sorts (corre-
lations, conditional probabilities), but as you surely have heard, Correlation Does
Not Imply Causation, and neither does the stronger brother of correlation, sta-
tistical dependence. In this situation, Pearl extended the mathematical apparatus
of statistics and added a new operator to statistics, today called the do-operator.
Here I can only give you an intuition of this operator; the mathematical theory
behind it is not super easy and describing it would turn your reading experience
into real work (if you want to dig deeper: the tutorial by Schölkopf, Locatello, et
al. 2021 gives a brilliantly written introduction). So, — what does the do-operator
do?

One way to understand it is to take a look at clinical studies that aim at
establishing the true causal efficacy of a new drug. To achieve this goal, a double-
blind study must be carried out. The new drug, or a placebo, are administered
to two balanced populations of patients. If the drug-administered population
shows a statistically significant improved health status compared to the placebo
group, a (positive) causal effect of the drug is established. While this scheme is
sound, it suffers from statistical variance, and from imperfections in balancing the
treatment versus placebo groups. The statistical efficiency of this scheme would be
very much enhanced if one could give the drug to the very same pool of patients as
the placebo. For this, however, one would need two worlds, which at the beginning
of the study would be identical, and where in world A one would give the patient
pool the drug, and in world B the placebo, and then compare the outcomes. But
we have only one world.

Here comes the do-operator. It creates these two worlds. Staying in the medical
domain, consider the classical probability P (X = x |Y = y), which describes the
probability that a health status x is observed after administering a treatment y.
Estimating the conditional distribution PX|Y from data — the standard basic task
of statistics and machine learning — is based on datasets (xi, yi)i=1,...,N , where
the cases i correspond to individual patients. Unfortunately, each patient i is
either given the drug, or the placebo. This bars the way to retrieving causality
from these data, because causal influences are confounded with the assignments
of patients i to the treatment versus placebo populations. We would however
get causality information if we could observe each patient i in two conditions, one
observation giving the health outcome xi when the drug yi was given, and the other
observation x′i when the placebo y′i was given. The do-operator gives us these two
sorts of probabilities. The formal expression P (X = x | do(Y = y)) represents the
probability of getting health outcome x if all patients received treatment y, and
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P (X = x | do(Y = y′)) is the probability of getting outcome x under administering
the placebo y′ to all patients. In the parlance of causal statistics, the two “do-
settings” do(Y = y) and do(Y = y′) are called interventions. If we would know
these two kinds of interventional probabilities, we could assert a causal effect of
the treatment (if there is any).

Obviously, these interventional statistics are not contained in the data. Each
patient i is observed only under one of the two conditions: the dataset contains
either (xi, yi), or (x′i, y

′
i), but not both. To get “data” for estimating P (X =

x | do(Y = y)) and P (X = x | do(Y = y′)), for each patient i we would need
counterfactual information that complements the actually observed half of the
picture, for instance: “if patient i would have gotten placebo y′, we would have
observed outcome x′. The new statistical theory, which was worked out and step-
wise refined by Pearl and others in his followship, has identified a number of
additional assumptions — often satisfiable in reasonably good approximation —
and computational techniques, which together allow us to derive the interventional
distributions PX|do(Y ) from a classical Bayesian network which was estimated from
“one-world-only” data (xi, yi)i=1,...,N . These techniques involve the construction
of modified versions of the original BN, in which certain links are deleted, and
involved estimations of auxiliary conditional probabilities.

You might ask, why not simply collect data like it is done in double-blind clin-
ical studies, and then have direct access to causality through these data? This is
not an option in general, for several reasons. First, in clinical studies the inde-
pendent variable (drug versus placebo) is binary, which mandates two balanced
patient populations. If one wants to study the causal impact of an independent
variable with n different values, one would need n separate patient populations.
And if one wants to investigate the causal relationships between k variables, each
with n values, one would need nk separate data-donating populations — a dead
end. Furthermore, BNs are typically estimated from data that do not come from
controlled experiments, but from opportunistically collected ad-hoc observations,
motto: “use any data you can get” (as was the case for the Space Shuttle example
in Section 10, and is the case for all the magnificient DL super-machines). The
do-operator methods of causal analysis enable the assessment of the direction and
strength of causal influence between all modeled random variables in all of these
scenarios! (BIG exclamation mark!)

So far, causal analysis techniques have become widely adopted mostly in medicine
and in particular, in epidemology (as far as I can tell, I am not an expert and this
is second-hand but reliable information). A recent Master’s project that I was
lucky enough to accompany from a distance (it was carried out at the Harvard
Medical School by RUG student Richard Fischer) provides a beautiful case study
and analysis of causal analysis, and if you are interested in these matters, is a rec-
ommendable reading with transparent methods explanations (Fischer 2023). This
thesis also illustrates the remaining problems of these techniques, among them nu-
merical instabilities and the need for numerous clever algorithm design decisions
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from the side of the data analyst. It’s not (yet) a download-and-be-happy tool for
non-expert users.

Before we proceed to the hopes for revolutionizing ML and DL at large, let us
step back and consider the big question of causality once again. Causal analysis
in the spirit of Pearl does not give a philosophical answer to the eternal question
of the essence of causality. It is a computational technique that lets us identify
a specific kind of causality in data. What is the nature of this specific kind
of causality? The key lies in the little word “do”. The do-operator formalizes
the decision to assign a drug or placebo to a patient, or in more general terms,
to set the value of an independent variable by a wilful act of an experimenter.
This is analog to how experiments in the natural sciences should be carried out:
the values of independent variables are systematically varied while otherwise the
experimental set-up is not changed. In our statistical terminology, these controlled
laboratory conditions amount to repeated observations of the same “individual”
i (the unchanged experiment set-up) under application of different “treatments”.
The workings of the do-operator are also analog to how human children and adults
learn about causal effects of their actions: in our daily experimentation with the
world around us we infer what our acts causally effect by comparing the outcomes
when we do something versus when we don’t do it. We observe that the nail does
not sink in while we do not use the hammer, and that it sinks in when we do. The
philosophical side of this: we learn about a kind of causality that is connected
to our wilful actions, “wilful” meaning that we decide when and what to do or
not to do. This view on “causality” is philosophically worked out in Kutach 2011
(warning: not an easy read, it’s a philosopher’s text!).

And now, finally, we return to ML, and DL in particular. We started our
thought odyssee by asking the double question, what is it in purely statistical dis-
tribution modeling that makes it so weak with regards to efficiency, generalization,
robustness etc., and what is it in human cognition and learning that makes us so
strong with regards to the same (at the price of being weak statisticians)? One
possible answer is that our human conceptual system is not organized around prob-
abilities, correlations and statistical dependencies, but around chains of causality,
and furthermore, that the sort of causality that we use roots in our experience of
the consequences of wilful action.

This leads to a revolutionary research programme for putting ML on a new
theoretical foundation. Instead of looking at data in search of statistical struc-
ture, look at them in search for causal structures. The hope and promise of this
view is that, if a ML model is structured by representational modules that inter-
act along causal influence chains, not through statistical dependency connections,
information from new data not contained in the original training corpus can be
incorporated much faster and more robustly. For instance, if a child has learnt
that when she hits a small solid object with a heavier one, the impact will cause
the smaller object to be driven away from the impact direction, and this child then
gets a hammer into her hands for the first time in her life, she will predict that
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the nail will go down. A purely statistical learner, in turn, will be quite helpless
because hammers were not present in the training data, and a good amount of new
hammering data would be needed to establish a sufficiently significant correlation
between the hammer’s and the nail’s behavior.

This is an intriguing perspective. Pearl’s original do-operator formalism is tied
to the mathematical BN framework, and furthermore, causal analysis starts from a
trained BN and the do-operator does not instruct us how we can improve training
the BN in the first place (as far as I can judge, I must repeat that I am no BN
expert). Thus, Pearl’s ingenious studies do not directly show us how we could
put ML at large on a new foundation. Enter Bernhard Schölkopf. Renown for his
contributions on statistical learning theory, kernel methods in general and support
vector machines in particular, since more than a decade Schölkopf has taken up
the challenge of making causality principles fertile for ML in general. He has
teamed up with deep neural network researchers. Two recent, extensive, visionary
tutorials written by him together with other ML experts (among them, DL pioneer
Joshua Bengio) will, as far as I can forecast, become a milestone in spreading the
idea (Schölkopf, Locatello, et al. 2021; Schölkopf and Kügelgen 2022). Deep neural
network models that are organized around causality are beginning to sprout (for
example, Tangemann et al. 2021). Do not expect an immediate total overthrow
of machine learning, however. Causal analysis is subtle and difficult enough even
in the restricted BN setting, and transfer to other branches of ML is far from
straightforward. I conclude by citing the concluding remarks of Schölkopf and
Kügelgen 2022: “Most of the discussed fields are still in their infancy [...]. With
the current hype around machine learning, there is much to say in favor of some
humility towards what machine learning can do, and thus towards the current state
of AI — the hard problems have not been solved yet, making basic research in this
field all the more exciting.”
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Appendix

A Elementary mathematical structure-forming

operations

A.1 Pairs, tuples and indexed families

If two mathematical objects O1,O2 are given, they can be grouped together in a
single new mathematical structure called the ordered pair (or just pair) of O1,O2.
It is written as

(O1,O2).

In many cases, O1,O2 will be of the same kind, for instance both are integers. But
the two objects need not be of the same kind. For instance, it is perfectly possible
to group integer O1 = 3 together with a random variable (a function!) O2 = X7

in a pair, getting (3, X7).
The crucial property of a pair (O1,O2) which distinguishes it from the set

{O1,O2} is that the two members of a pair are ordered, that is, it makes sense to
speak of the “first” and the “second” member of a pair. In contrast, it makes not
sense to speak of the “first” or “second” element of the set {O1,O2}. Related to
this is the fact that the two members of a pair can be the same, for instance (2, 2)
is a valid pair. In contrast, {2, 2} makes no sense.

A generalization of pairs is N-tuples. For an integer N > 0, an N -tuple of N
objects O1,O2, . . . ,ON is written as

(O1,O2, . . . ,ON).

1-tuples are just individual objects; 2-tuples are pairs, and for N > 2, N -tuples
are also called lists (by computer scientists that is; mathematicians rather don’t
use that term). Again, the crucial property of N -tuples is that one can identify its
i-th member by its position in the tuple, or in more technical terminology, by its
index. That is, in an N -tuple, every index 1 ≤ i ≤ N “picks” one member from
the tuple.

The infinite generalization of N -tuples is provided by indexed families. For any
nonempty set I, called an index set in this context,

(Oi)i∈I

denotes a compound object assembled from as many mathematical objects as
there are index elements i ∈ I, and within this compound object, every individual
member Oi can be “addressed” by its index i. One simply writes

Oi

to denote the ith “component” of (Oi)i∈I . Writing Oi is a shorthand for applying
the ith projection function on (Oi)i∈I , that is, Oi = πi((Oi)i∈I).
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A.2 Products of sets

We first treat the case of products of a finite number of sets. Let S1, . . . , SN be
(any) sets. Then the product S1 × . . .× SN is the set of all N -tuples of elements
from the corresponding sets, that is,

S1 × . . .× SN = {(s1, . . . , sN) | si ∈ Si}.
This generalizes to infinite products as follows. Let I be any set — we call it

an index set in this context. For every i ∈ I, let Si be some set. Then the product
set indexed by I is the set of functions∏

i∈I

Si = {ϕ : I →
⋃
i∈I

Si | ∀i ∈ I : ϕ(i) ∈ Si}.

Using the notation of indexed families, this could equivalently be written as∏
i∈I

Si = {(si)i∈I | ∀i ∈ I : si ∈ Si}.

If all the sets Si are the same, say S, then the product
∏

i∈I Si =
∏

i∈I S is
also written as SI .

An important special case of infinite products is obtained when I = N. This
situation occurs universally in modeling stochastic processes with discrete time.
The elements n ∈ N are the points in time when the amplitude of some signal is
measured. The amplitude is a real number, so at any time n ∈ N, one records an
amplitude value an ∈ Sn = R. The product set∏

n∈N

Sn = {ϕ : N→
⋃
n∈N

Sn | ∀n ∈ I : ϕ(n) ∈ Sn} = {ϕ : N→ R}

is the set of all right-infinite real-valued timeseries (with discrete time points start-
ing at time n = 0).

A.3 Products of functions

First, again, the case of finite products: let f1, . . . , fN be functions, all sharing
the same domain D, with image sets Si. Then the product f1 ⊗ . . .⊗ fN of these
functions is the function with domain D and image set S1 × . . .× SN given by

f1 ⊗ . . .⊗ fN : D → S1 × . . .× SN
d 7→ (f1(d), . . . , fN(d)).

Again this generalizes to arbitrary products. Let (fi : D → Si)i∈I be an
indexed family of functions, all of them sharing the same domain D, and where
the image set of fi is Si. The product

⊗
i∈I fi of this set of functions is defined by⊗

i∈I

fi : D →
∏
i∈I

Si

d 7→ ϕ : I →
⋃
i∈I

Si given by ϕ(i) = fi(d).
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B Joint, conditional and marginal probabilities

Note. This little section is only a quick memory refresher of some of the most
basic concepts of probability. It does not replace a textbook chapter!

We first consider the case of two observations of some part of reality that
have discrete values. For instance, an online shop creating customer profiles may
record from their customers their age and gender (among many other items). The
marketing optimizers of that shop are not interested in the exact age but only in
age brackets, say a1 = at most 10 years old, a2 = 11 − 20 years, a3 = 21 − 30
years, a4 = older than 30. Gender is roughly categorized into the possibilities
g1 = f, g2 = m, g3 = o. From their customer data the marketing guys estimate the
following probability table:

P (X = gi, Y = aj) a1 a2 a3 a4

g1 0.005 0.3 0.2 0.04
g2 0.005 0.15 0.15 0.04
g3 0.0 0.05 0.05 0.01

(172)

The cell (i, j) in this 3× 4 table contains the probability that a customer with
gender gi falls into the age bracket aj. This is the joint probability of the two
observation values gi and aj. Notice that all the numbers in the table sum to 1.

The mathematical tool to formally describe a category of an observable value is
a random variable (RV). We typically use symbols X, Y, Z, . . . for RVs in abstract
mathematical formulas. When we deal with concrete applications, we may also
use “telling names” for RVs. For instance, in Table (172), instead of P (X =
gi, Y = aj) we could have written P (Gender = gi,Age = aj). Here we have two
such observation categories: gender and age bracket, and hence we use two RVs
X and Y for gender and age, respectively. In order to specify, for example, that
female customers in the age bracket 11-20 occur with a probability of 0.3 in the
shop’s customer reservoir (the second entry in the top line of the table), we write
P (X = g1, Y = a2) = 0.3.

Some more info bits of concepts and terminology connected with RVs. You
should consider a RV as the mathematical counterpart of a procedure or apparatus
to make observations or measurements. For instance, the real-world counterpart of
the Gender RV could be an electronic questionnaire posted by the online shop, or
more precisely, the “what is your age?” box on that questionnaire, plus the whole
internet infrastructure needed to send the information entered by the customer
back to the company’s webserver. Or in a very different example (measuring
the speed of a car and showing it to the driver on the speedometer) the real-
world counterpart of a RV Speed would be the total on-board circuitry in a car,
comprising the wheel rotation sensor, the processing DSP microchip, and the
display at the dashboard.

A RV always comes with a set of possible outcomes. This set is called the
sample space of the RV, and I usually denote it with the symbol S. Mathematically,
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a sample space is a set. The sample space for the Gender RV would be the set
S = {m, f, o}. The sample space for Age that we used in the table above was S =
{{0, 1, . . . , 10}, {11, . . . , 20}, {21, . . . , 30}, {31, 32, . . .}}. For car speed measuring
we might opt for S = R≥0, the set of non-negative reals. A sample space can be
larger than the set of measurement values that are realistically possible, but it
must contain at least all the possible values.

Back to our table and the information it contains. If we are interested only in
the age distribution of customers, ignoring the gender aspects, we sum the entries
in each age column and get the marginal probabilities of the RV Y . Formally, we
compute

P (Y = aj) =
∑
i=1,2,3

P (X = gi, Y = aj).

Similarly, we get the marginal distribution of the gender variable by summing
along the rows. The two resulting marginal distributions are indicated in the table
(173).

a1 a2 a3 a4

g1 0.005 0.3 0.2 0.04 0.545
g2 0.005 0.15 0.15 0.04 0.345
g3 0.0 0.05 0.05 0.01 0.110

0.01 0.5 0.4 0.09

(173)

Notice that the marginal probabilities of age 0.01, 0.5, 0.4, 0.09 sum to 1, as do
the gender marginal probabilities.

Finally, the conditional probability P (X = gi |Y = aj) that a customer has
gender gi given that the age bracket is aj is computed through dividing the joint
probabilities in column j by the sum of all values in this column:

P (X = gi |Y = aj) =
P (X = gi, Y = aj)

P (Y = aj)
. (174)

There are two equivalent versions of this formula:

P (X = gi, Y = aj) = P (X = gi |Y = aj)P (Y = aj) (175)

where the righthand side is called a factorization of the joint distribution on
the lefthand side, and

P (Y = aj) =
P (X = gi, Y = aj)

P (X = gi |Y = aj)
, (176)

demonstrating that each of the three quantities (joint, conditional, marginal prob-
ability) can be expressed by the respective two others. If you memorize one of
these formulas – I recommend the second one – you have memorized the very key
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to master “probability arithmetics” and will never get lost when manipulating
probability formulas.

The factorization (175) can be done in two ways: P (Y = aj |X = gi)P (X =
gi) = P (X = gi |Y = aj)P (Y = aj), which gives rise to Bayes’ formula

P (Y = aj |X = gi) =
P (X = gi |Y = aj)P (Y = aj)

P (X = gi)
, (177)

which has many uses in statistical modeling because it shows how one can revert
the conditioning direction.

Joint, conditional, and marginal probabilities are also defined when there are
more than two categories of observations. For instance, the online shop marketing
people also record how much a customer spends on average, and formalize this by
a third random variable, say Z. The values that Z can take are spending brackets,
say s1 = less than 5 Euros to s20 = more than 5000 Euros. The joint probability
values P (X = gi, Y = aj, Z = sk) would be arranged in a 3-dimensional array
sized 3× 4× 20, and again all values in this array together sum to 1. Now there
are different arrangements for conditional and marginal probabilities, for instance
P (Z = sk |X = gi, Y = aj) is the probability that among the group of customers
with gender gi and age aj, a person spends an amount in the range sk. Or P (Z =
sk, Y = aj |X = gi) is the probability that in the gender group gi a person is aged
aj and spends sk. As a last example, the probabilities P (X = gi, Z = sj) are the
marginal probabilities obtained by summing away the Y variable:

P (X = gi, Z = sj) =
∑

k=1,2,3,4

P (X = gi, Y = ak, Z = sj) (178)

So far I have described cases where all kinds of observations were discrete, that
is, they (i.e. all RVs) yield values from a finite set – for instance the three gender
values or the four age brackets. Equally often one faces continuous random values
which arise from observations that yield real numbers – for instance, measuring
the body height or the weight of a person. Since each such RV can give infinitely
many different observation outcomes, their probabilities cannot be represented in
a table or array. Instead, one uses probability density functions (pdf’s) to write
down and compute probability values.

Let’s start with a single RV, say H = Body Height. Since body heights are
non-negative and, say, never larger than 3 m, the distribution of body heights
within some reference population can be represented by a pdf f : [0, 3] → R≥0

which maps the interval [0, 3] of possible values to the nonnegative reals (Figure
88). We will be using subscripts to make it clear which RV a pdf refers to, so the
pdf describing the distribution of body height will be written fH .

A pdf for the distribution of a continuous RV X can be used to calculate the
probability that this RV takes values within a particular interval, by integrating
the pdf over that interval. For instance, the probability that a measurement of

273



0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

H (body height)

pd
f

Figure 88: A hypothetical distribution of human body sizes in some reference
population, represented by a pdf.

body height comes out between 1.5 and 2.0 meters is obtained by

P (H ∈ [1.5, 2.0]) =

∫ 2.0

1.5

fH(x)dx, (179)

see the shaded area in Figure 88. Some comments:

• A probability density function is actually defined to be a function which
allows one to compute probabilities of value intervals as in Equation 179.
For a given continuous RV X over the reals there is exactly one function fX
which has this property, the pdf for X. (This is not quite true. There exist
also continuous-valued RVs whose distribution is so complex that it cannot
be captured by a pdf, but we will not meet with such phenomena in this
lecture. Furthermore, a given pdf can be altered on isolated points – which
come from what is called a null set in probability theory – and still be a pdf
for the same distribution. But again, we will not be concerned with such
subtelties in this lecture.)

• As a consequence, any pdf f : R → R≥0 has the property that it integrates
to 1, that is,

∫∞
−∞ f(x)dx = 1.

• Be aware that the values f(x) of a pdf are not probabilities! Pdf’s turn into
probabilities only through integration over intervals.

• Values f(x) can be greater than 1 (as in Figure 88), again indicating that
they cannot be taken as probabilities.

Joint distributions of two continuous RVs X, Y can be captured by a pdf fX,Y :
R2 → R≥0. Figure 89 shows an example. Again, the pdf fX,Y of a bivariate
continuous distribution must integrate to 1 and be non-negative; and conversely,
every such function is the pdf of a continuous distribution of two RV’s.
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Figure 89: An exemplary joint distribution of two continuous-valued RVs X, Y ,
represented by its pdf.

Continuing on this track, the joint distribution of k continuous-valued RVs
X1, . . . , Xk, where the possible values of each Xi are bounded to lie between ai
and bi can be described by a unique pdf function fX1,...,Xk : Rk → R≥0 which
integrates to 1, i.e. ∫ b1

a1

. . .

∫ bk

ak

f(x1, . . . , xk) dxk . . . dx1,

where also the cases ai = −∞ and bi =∞ are possible. A more compact notation
for the same integral is ∫

D

f(x) dx,

where D denotes the k-dimensional box [a1, b1]×. . .×[ak, bk] and x denotes vectors
in Rk. Mathematicians speak of k-dimensional intervals instead of “boxes”. The
set of points S = {x ∈ Rk | fX1,...,Xk > 0} is called the support of the distribution.
Obviously S ⊆ D.

In analogy to the 1-dim case from Figure 88, probabilities are obtained from
a k-dimensional pdf fX1,...,Xk by integrating over sub-intervals. For such a k-
dimensional subinterval [r1, s1] × . . . × [rk, sk] ⊆ [a1, b1] × . . . × [ak, bk], we get its
probability by

P (X1 ∈ [r1, s1], . . . , Xk ∈ [rk, sk]) =

∫ s1

r1

. . .

∫ sk

rk

f(x1, . . . , xk) dxk . . . dx1. (180)

In essentially the same way as we did for discrete distributions, the pdf’s of
marginal distributions are obtained by integrating away the RV’s that one wishes
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to expel. In analogy to (178), for instance, one would get

fX1,X3(x1, x3) =

∫ b2

a2

fX1,X2,X3(x1, x2, x3) dx2. (181)

And finally, pdf’s of conditional distributions are obtained through dividing
joint pdfs by marginal pdfs. Such conditional pdfs are used to calculate that some
RVs fall into a certain multidimensional interval given that some other RVs take
specific values. We only inspect a simple case analog to (174) where we want to
calculate the probability that X falls into a range [a, b] given that Y is known to
be c, that is, we want to evaluate the probability P (X ∈ [a, b] |Y = c), using pdfs.
We can obtain this probability from the joint pdf fX,Y and the marginal pdf fY
by

P (X ∈ [a, b] |Y = c) =

∫ b
a
fX,Y (x, c) dx

fY (c)
. (182)

The r.h.s. expression
∫ b
a
fX,Y (x, c) dx / fY (c) is a function of x, parametrized

by c. This function is a pdf, denoted by fX |Y=c, and defined by

fX |Y=c(x) =
fX,Y (x, c)

fY (c)
. (183)

Let me illustrate this with a concrete example. An electronics engineer is test-
ing a device which transforms voltages V into currents I. In order to empirically
measure the behavior of this device (an electronics engineer would say, in order
to “characterize” the device), the engineer carries out a sequence of measurement
trials where he first sets the input voltage V to a specific value, say V = 0.0. Then
he (or she) measures the resulting current many times, in order to get an idea of
the stochastic spread of the current. In mathematical terms, the engineer wants to
get an idea of the pdf fI |V=0.0. The engineer then carries on, setting the voltage
to other values c1, c2, ..., measuring resulting currents in each case, and getting
ideas of the conditional pdfs fI |V=ci . For understanding the characteristics of this
device, the engineer needs to know all of these pdfs.

Conditional distributions arise whenever cause-effect relationships are being
modeled. The conditioning variables are causes, the conditioned variables describe
effects. In experimental and empirical research, the causes are under the control of
an experimenter and can (and have to) be set to specific values in order to assess
the statistics of the effects – which are not under the control of the experimenter.
In ML pattern classification scenarios, the “causes” are the input patterns and
the “effects” are the (stochastically distributed) class label assignments. Since
research in the natural sciences is very much focussed on determining Nature’s
cause-effect workings, and 90% of the applications in machine learning concern
pattern classification (my estimate), it is obvious that conditional distributions lie
at the very heart of scientific (and engineering) modeling and data analysis.
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In this appendix (and in the lecture) I consider only two ways of representing
probability distributions: discrete ones by finite probability tables or probability
tables; continuous ones by pdfs. These are the most elementary formats of repre-
senting probability distributions. There are many others which ML experts readily
command on. This large and varied universe of concrete representations of prob-
ability distributions is tied together by an abstract mathematical theory of the
probability distributions themselves, independent of particular representations.
This theory is called probability theory. It is not an easy theory and we don’t at-
tempt an introduction to it. If you are mathematically minded, then you can get an
introduction to probability theory in my graduate lecture notes “Principles of Sta-
tistical Modeling” (https://www.ai.rug.nl/minds/uploads/LN_PSM.pdf). At
this point I only highlight two core facts from probability theory:

• A main object of study in probability theory are distributions. They are
abstractly and axiomatically defined and analyzed, without reference to par-
ticular representations (such as tables or pdfs).

• A probability distribution always comes together with random variables. We
write PX for the distribution of a RV X, PX,Y for the joint distribution of
two RVs X, Y , and PX |Y for the conditional distribution (a truly involved
concept since it is actually a family of distributions) of X given Y .

C The argmax operator

Let ϕ : D → R be some function from some domain D to the reals. Then

argmax
a

ϕ(a)

is that d ∈ D for which ϕ(d) is maximal among all values of ϕ on D. If there are
several arguments a for which ϕ gives the same maximal value, – that is, ϕ does
not have a unique maximum –, or if ϕ has no maximum at all, then the argmax
is undefined.

D Expectation, variance, covariance, and corre-

lation of numerical random variables

Recall that a random variable is the mathematical model of an observation /
measurement / recording procedure by which one can “sample” observations from
that piece of reality that one wishes to model. We usually denote RVs by capital
roman letters like X, Y or the like. For example, a data engineer of an internet
shop who wants to get a statistical model of its (potential) customers might record
the gender and age and spending of shop visitors – this would be formally captured
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by three random variables G, A, S. A random variable always comes together with
a sample space. This is the set of values that might be delivered by the random
variable. For instance, the sample space of the gender RV G could be cast as
{m, f, o} – a symbolic (and finite) set. A reasonable sample space for the age
random variable A would be the set of integers between 0 and 200 – assuming
that no customer will be older than 200 years and that age is measured in integers
(years). Finally, a reasonable sample space for the spending RV S could be just
the real numbers R.

Note that in the A and S examples, the sample spaces that I proposed look
very generous. We would not really expect that some customer is 200 years old,
nor would we think that ever a customer spends 101000 Euros – although both
values are included in the respective sample space. The important thing about a
sample space is that it must contain all the values that might be returned by the
RV; but it may also contain values that will never be observed in practice.

Every mathematical set can serve as a sample space. We just saw symbolic,
integer, and real sample spaces. Real sample spaces are used whenever one is
dealing with an observation procedure that returns numerical values. Real-valued
RVs are of great practical importance, and they allow many insightful statistical
analyses that are not defined for non-numerical RVs. The most important analyt-
ical characteristics of real RVs are expectation, variance, and covariance, which I
will now present in turn.

For the remainder of this appendix section we will be considering random
variables X whose sample space is Rn — that is, observation procedures which
return scalars (case n = 1) or vectors. We will furthermore assume that the
distributions of all RVs X under consideration will be represented by pdf’s fX :
Rn → R≥0. (In mathematical probability theory, more general numerical sample
spaces are considered, as well as distributions that have no pdf — but we will
focus on this basic scenario of real-valued RVs with pdfs).

The expectation of a RV X with sample space Rn and pdf fX is defined as

E[X] =

∫
Rn
x fX(x) dx, (184)

where the integral is written in a common shorthand for∫ ∞
x1=−∞

. . .

∫ ∞
xn=−∞

(x1, . . . , xn)′ fX((x1, . . . , xn)) dxn . . . dx1.

The expectation of a RV X can be intuitively understood as the “average”
value that is delivered when the observation procedure X would be carried out
infinitely often. The crucial thing to understand about the expectation is that it
does not depend on a sample, – it does not depend on specific data.

In contrast, whenever in machine learning we base some learning algorithm
on a (numerical) training sample (xi, yi)i=1,...,N drawn from the joint distribution
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PX,Y of two RVs X, Y , we may compute the average value of the xi by

mean({x1, . . . , xN}) = 1/N
N∑
i=1

xi,

but this sample mean is NOT the expectation of X. If we would have used another
random sample, we would most likely have obtained another sample mean. In
contrast, the expectation E[X] of X is defined not on the basis of a finite, random
sample of X, but it is defined by averaging over the true underlying distribution.

Since in practice we will not have access to the true pdf fX , the expectation
of a RV X cannot usually be determined in full precision. The best one can do is
to estimate it from observed sample data. The sample mean is an estimator for
the expectation of a numerical RV X. Marking estimated quantities by a “hat”
accent, we may write

Ê[X] = 1/N
N∑
i=1

xi.

A random variable X is centered if its expectation is zero. By subtracting the
expectation one gets a centered RV. In these lecture notes I use the bar notation
to mark centered RVs:

X̄ := X − E[X].

The variance of a scalar RV with sample space R is the expected squared
deviation from the expectation

σ2(X) = E[X̄2], (185)

which in terms of the pdf fX̄ of X̄ can be written as

σ2(X) =

∫
R
x2 fX̄(x) dx.

Like the expectation, the variance is an intrinsic property of an observation
procedure X and the part of the real world where the measurements may be
taken from — it is independent of a concrete sample. A natural way to estimate
the variance of X from a sample (xi)i=1,...,N is

σ̂2({x1, . . . , xN}) = 1/N
N∑
i=1

(
xi − 1/N

N∑
j=1

xj

)2

,

but in fact this estimator is not the best possible – on average (across different
samples) it underestimates the true variance. If one wishes to have an estimator
that is unbiased, that is, which on average across different samples gives the correct
variance, one must use

σ̂2({x1, . . . , xN}) = 1/(N − 1)
N∑
i=1

(
xi − 1/N

N∑
j=1

xj

)2
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instead. The Wikipedia article on “Variance”, section “Population variance and
sample variance” points out a number of other pitfalls and corrections that one
should consider when one estimates variance from samples.

The square root of the variance of X, σ(X) =
√
σ2(X), is called the standard

deviation of X.
The covariance between two real-valued scalar random variablesX, Y is defined

as
Cov(X, Y ) = E[X̄ Ȳ ], (186)

which in terms of a pdf fX̄ Ȳ for the joint distribution for the centered RVs spells
out to

Cov(X, Y ) =

∫
R×R

x y fX̄ Ȳ ((x, y)′) dx dy.

An unbiased estimate of the covariance, based on a sample (xi, yi)i=1,...,N is given
by

Ĉov((xi, yi)i=1,...,N) = 1/(N − 1)

(
xi − 1/N

∑
i

xi

)(
yi − 1/N

∑
i

yi

)
.

Finally, let us inspect the correlation of two scalar RVs X, Y . Here we have to
be careful because this term is used differently in different fields. In statistics, the
correlation is defined as

Corr(X, Y ) =
Cov(X, Y )

σ(X)σ(Y )
. (187)

It is easy to show that −1 ≤ Corr(X, Y ) ≤ 1. The correlation in the understanding
of statistics can be regarded as a normalized covariance. It has a value of 1 if X
and Y are identical up to some positive scaling factor, it has a value of −1 if X
and Y are identical up to some negative scaling factor. When Corr(X, Y ) = 0, X
and Y are said to be uncorrelated.

The quantity Corr(X, Y ) is also referred to as (population) Pearson’s correla-
tion coefficient, and is often denoted by the greek letter %(X, Y ) = Corr(X, Y ).

In the signal processing literature (for instance in my favorite textbook Farhang-
Boroujeny 1998), the term “correlation” is sometimes used in quite a different way,
denoting the quantity

E[X Y ],

that is, simply the expectation of the product of the uncentered RVs X and Y .
Just be careful when you read terms like “correlation” or “cross-correlation” or
“cross-correlation matrix” and make sure that your understanding of the term is
the same as the respective author’s.

There are some basic rules for doing calculations with expectations and covari-
ance which one should know:
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1. Expectation is a linear operator:

E[αX + β Y ] = αE[X] + β E[Y ],

where αX is the RV obtained from X by scaling observations with a factor
α.

2. Expectation is idempotent:

E[E[X]] = E[X].

3.
Cov(X, Y ) = E[X Y ]− E[X]E[Y ].

E Derivation of Equation 32

1/N
∑
i

‖xi − d ◦ f(xi)‖2 =

= 1/N
∑
i

‖x̄i −
m∑
k=1

(x̄′i uk)uk‖2

= 1/N
∑
i

‖
n∑
k=1

(x̄′i uk)uk −
m∑
k=1

(x̄′i uk)uk‖2

= 1/N
∑
i

‖
n∑

k=m+1

(x̄′i uk)uk‖2

= 1/N
∑
i

n∑
k=m+1

(x̄′i uk)
2 =

n∑
k=m+1

1/N
∑
i

(x̄′i uk)
2

=
n∑

k=m+1

σ2
k.
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[53] G. Lakoff and R. Núñez. “The metaphorical structure of mathematics:
sketching out cognitive foundations for a mind-based mathematics”. In:
Mathematical Reasoning. Routledge, 2013, pp. 29–98.
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