
 1

Advanced Machine Learning
Jacobs University Bremen

http://minds.jacobs-university.de/teaching/MLFall11

Herbert Jaeger

Lecture Notes

Version status:
Mar 29, 2013: corrected some URLs
Sep 6, 2011: created by copy from the 2009 version
Sep 26, 2011: corrected math typos in Section 2.9
Oct 4, 2011: extended and corrected Sections 4.4.1, 4.4.2
Oct 7, 2011: improved notation and explanations in 4.4.2
Oct 9, 2011: thorough workover and extension of entire 4.4
Oct 13, 2011: added paragraphs on linear regression in 4.4
Nov 1, 2011: small add-ons and improvements in beginnings of HMM section
Nov 3, 2011: replaced "measure space" by "observation space" throughout
Nov 11, 2011: added Section 10.6 on sequence model comparison
Nov 24, 2011: corrected and improved equations 8.10, 8.11
Jan 11, 2012: corrected typos in Sections 1 -- 5

 2

1. Introduction

1.1 What this lecture is – unfortunately – NOT about

What do you see?

(From an ad for "Fiddler on the Roof", www.addaclevenger.org/show/tophat.jpg)

Don't behave like an image processing algorithm. I think you can "see" much more:

What's sticking out in the left lower corner?
What's the expression on the face of that man?
What will be his next movement?
How does the hat smell?
Other questions you could answer...

How did your answers get there where they come from?

Human learning: uncomprehensively rich and complex, involving aspects of

• body growth
• brain development
• motion control
• exploration, curiosity, play
• creativity
• social interaction
• drill and exercise and rote learning

 3

• reward and punishment, pleasure and pain
• evolution
• dreaming
• remembering
• forgetting
• & 1000 more ...
•

and all is integrated into your person, makes up your individual personality

You are what you learnt.

What must be in place for you to become yourself through learning?

• The universe, the earth, the atmosphere, water, food, caves
• Your body, brain, sensor & motor apparatus
• Physiology and neurophysiology
• Evolution
• Other people, living
• Other people, long dead
• Machines, tools, buildings, toys
• Words and sentences
• Concepts and meanings
• Letters and books
• Traditions
• Schools

Your and your learning are part of the world's development

By the way, does evolution learn?
Is, what is learnt by an individual, affecting evolution? Can the results of learning be passed
on to siblings genetically? The Baldwin effect says, yes it can, albeit indirectly.

Excerpt from http://www.geocities.com/Athens/4155/edit.html:

At the turn of the century, it was unclear whether Darwin's theory or Lamarck's better
explained evolution. Lamarck believed in direct inheritance of characteristics acquired by
individuals during their lifetime. Darwin proposed that natural selection coupled with
diversity could largely explain evolution. Darwin himself believed that Lamarckian evolution
might play a small role in life, but most Darwinians rejected Lamarckism. One potentially
verifiable difference between the two theories was that Darwinians were committed to
gradualism (evolution in tiny, incremental steps), while Lamarckians expected occasional
rapid change. Lamarckians cited the gaps in the fossil record (which are now associated with
punctuated equilibria) as supporting evidence.

Lamarckism was a viable theory until August Weismann's (1893) work was widely accepted.
Weismann argued that higher organisms have two types of cells, germ cells that pass genetic
information to offspring and somatic cells that have no direct role in reproduction. He argued
that there is no way for information acquired by somatic cells to be transmitted to germ cells.

 4

In the context of this debate, James Mark Baldwin (1896) proposed "a new factor in
evolution", whereby acquired characteristics could be indirectly inherited. Morgan (1896) and
Osborn (1896) independently proposed similar ideas. The "new factor" was phenotypic
plasticity: the ability of an organism to adapt to its environment during its lifetime. The ability
to learn is the most obvious example of phenotypic plasticity, but other examples are the
ability to tan with exposure to sun, to form a callus with exposure to abrasion, or to increase
muscle strength with exercise. Baldwin (1896) pointed out that, among other things, the new
factor could explain punctuated equilibria.

The Baldwin effect works in two steps. First, phenotypic plasticity allows an individual to
adapt to a partially successful mutation, which might otherwise be useless to the individual. If
this mutation increases inclusive fitness, it will tend to proliferate in the population. However,
phenotypic plasticity is typically costly for an individual. For example, learning requires
energy and time, and it sometimes involves dangerous mistakes. Therefore there is a second
step: given sufficient time, evolution may find a rigid mechanism that can replace the plastic
mechanism. Thus a behavior that was once learned (the first step) may eventually become
instinctive (the second step). On the surface, this looks the same as Lamarckian evolution, but
there is no direct alteration of the genotype, based on the experience of the phenotype. This
effect is similar to Waddington's (1942) "canalization".

The Baldwin effect came to the attention of computer scientists with the work of Hinton and
Nowlan (1987). The Baldwin effect may arise in evolutionary computation when a genetic
algorithm is used to evolve a population of individuals that also employ a local search
algorithm. Local search is the computational analog of phenotypic plasticity in biological
evolution. In computational terms, in the first step of the Baldwin effect, local search smooths
the fitness landscape, which can facilitate evolutionary search. In the second step, as more
optimal genotypes arise in the population, there is selective pressure for reduction in local
search, driven by the intrinsic costs associated with the search.

1.2 What this lecture is about

This lecture is about inductive learning: given observations / experiences / examples, derive a
model / description / concept / rule (we'll stick to model)

Most important examples:

• Categorization (I see a man who wears a hat)
• Second-to-second action result expectations (if I let go of this pen, it will fall down)
• Skills, professional and everyday
• Everyday theories ("plants grow because rain falls and sun shines")
• Models in the natural sciences

Some might claim that induction is learning is induction and that Science is The Big
Learning, but we have learnt otherwise a few minutes ago.

This lecture is about inductive learning performed by algorithms: given a data set ("training
data", "sample"), condense it into a data structure that can be used for various purposes, such
as simulation, prediction, filtering (de-noising, transformation), classification, failure
monitoring, pattern completion.

 5

Examples:

• Given a set of plant descriptions with dozens to hundreds anatomical details per plant,
derive an efficient classification scheme (as you find it in botanic field guides)

• Given a sample of profile data records of customers, classify them into target groups

for marketing.

• Given a sample of profile data records of startup companies, predict the risk of
insolvency for a new startup company, together with predicting the inaccuracy of your
prediction.

• Given 100,000 spam emails and 1,000 non-spam emails, create a spam filter.

• Given audiorecordings of properly working gearboxes and of gearboxes shortly before

failure, develop a monitoring system that warns you of imminent failure.

• Given some thousand samples of hand-written postal codes, train an automated postal
code recognizer.

• Given a corrupted radio signal with echo and noise and amplifier distortion, distil a de-

distortion filter (an equalizer) which undoes these effects and returns the "clean"
signal; and, do this within milliseconds (your cellphone does it).

• Read a long text aloud into a microphone. From that recording, train a personal

dictating system that transforms your speech into text. When the system makes
mistakes, speak the mistyped word a few times and let the system adapt.

• Given test data from a combustion engine run under many different working

conditions, learn an automated control device that minimizes fuel consumption.

• Given a team of soccer robots and a lot of test game recordings, develop a behavior
control module that lets the team win.

In this lecture, you will learn techniques that enable you to start coping with most of the
examples.

You see, it's useful. But it's a far cry from the totality of human learning. And it involves
statistics... Don't be afraid, though, it's so powerful that statistics turns into a good feeling.

1.3 What this lecture isn't about either

This lecture is mostly about inductive learning of numerical models. The methods we will see
have mostly been developed in the fields of pattern recognition, signal processing, neural
networks and statistical decision making. The books of Bishop and Duda/Hart/Stork are
representative (see references list on course homepage).

 6

This is one big portion of the field of machine learning. Another big portion is concerned with
learning symbolic models, for instance, deriving sets of logical rules or even little computer
programs from training data. Such techniques often have a typical "artificial intelligence"
flavour. Here the book of Mitchell is a good source.

Finally, there are two further big fields of machine learning that we will not touch: genetic
algorithms / evolutionary optimization, and reinforcement learning. The former installs
artificial evolutionary processes to finding (sometimes amazingly "creative") solutions to
complex optimization tasks, the latter deals with leraning optimal action policies for
autonomous agents when during training only scarce reward / punishment signals are
provided. Mitchell's book gives short intros for both.

1.4. Technical remarks

The course homepage is at http://minds.jacobs-university.de/teaching/MLFall11. There you
can find this script, references, exercise sheets, software etc.

 7

2. A first tour of topics

2.1. Introducing the Digits example

The digits dataset and all Matlab routines used in this section are available at
http://www.faculty.jacobs-university.de/hjaeger/courses/MLFall04/OnlineGuide.html. If you
want to play around with this example, go ahead!

In order to get a feeling for the issues of ML, in the first few sessions we will informally
consider a simple learning task and learn about some crucial themes of that will turn up again
and again throughout the course.

Assume you want to train an algorithm to distinguish the written symbols "1" and "0". Part of
the training material might look like the first two lines in the following figure:

Figure 2.1: part of the digits training sample (created from a benchmark dataset donated by
Robert Duin, orginally retrieved from http://ftp.ics.uci.edu/pub/ml-repos/machine-learning-
databases/mfeat/mfeat-pix, now also at
 http://minds.jacobs-university.de/sites/default/files/uploads/teaching/share/mfeat-pix.txt and
http://minds.jacobs-university.de/sites/default/files/uploads/teaching/share/mfeat.info.txt.

Technically speaking, these samples are two-dimensional arrays of size 15x16, or
alternatively vectors xi of length 240, where i = 1, ..., N and N is the size of the training set.
The values of the vector components indicate greyscale values. In our digits dataset, these

 8

values are integers ranging from 0 to 6, and for "zero" and "one" patterns this data set contains
200 samples, so here N = 400.

In addition, this training set contains the information whether some input vector is a zero or a
one. We code this by introducing a class label yi ∈ {1, 2}, where yi = 1 if xi represents a
"zero" and yi = 2 if xi represents a "one". Thus, your training data is a set of labelled samples:

(2.1) (xi, yi)i = 1,..., N

What in the end you want to have is an algorithm that accepts as input some (new)
alternatively vectors x and produces as output a "1" or a "2" according to whether the input
vector represents a one or a zero. Formally, such an algorithm implements a binary decision
function

(2.2) y = f̂ (x), where y ∈ {1, 2}.

We generally use the hat, ^, to mark functions or variables that are learnt, or − as statisticians
would say with equal right − estimated from data. In writing y = f̂ (x), we indicate that we
believe that there is a correct (but unknown) decision function f, of which f̂ is an estimate
obtained through some learning method (or even by inspired hand design).

You might find it easy to explicitly write a little algorithm, inspired by insight into the nature
of 0's and 1's, that implements some reasonable f̂ . The zero and one pictures have some very
distinctive characteristics that you might be able to exploit. But you might find it much more
difficult to come up with a program that distinguishes between ones and twos, or between
ones an sevens!

Even humans are sometimes unsure about a classification. Look at the last "one" example in
Figure 2.1. If you wouldn't know it is a "one", you might be unsure whether it might not also
be a "zero".

Facing this intrinsic uncertainty of classifications, a more adequate type of classification
algorithm would not return on input x a single class label, but should rather return a
hypothesis vector: (P(y = 1 | x), P(y = 2 | x)). Because P(y = 2 | x) = 1 − P(y = 1 | x), one of the
two hypothesis components is redundant, and it is enough if the probability p = P(y = 1 | x) is
returned. That is, such an algorithm would implement a hypothesis function

(2.3) p = f̂ (x), where p ∈ [0,1].

The explicit design of a classification algorithm soon becomes tedious if not impractical, and
it would be hard to write an algorithm that returns reasonable hypotheses instead of just a
binary decision.

Bright idea: write a learning algorithm instead, that reads the training samples (2.1) and
automatically generates a function f of the kind (2.2) or (2.3)!

 9

2.2. The curse of dimensionality

We will now try to design an ad hoc, brute-force learning algorithm L for a decision function f
of type (2.2).

Since in the dataset we are using, vectors x coding for digits have integer values ranging
between 0 and 6, the input space for f is a 240-dimensional, integer-valued cube X with edge
length 6. Our (first, crude) approach to design L is learning by frequency counts:

• Partition X into a number of subcubes Xj, where j = 1, ..., d.
• For each subcube Xj, L considers all training samples (xi, yi) with xi ∈ Xj and counts

how many of them are "zeros" (= N0(j)) and how many are "ones" (= N1(j)).
• Store all these N0 (j), N1(j).
• f̂ (x) is then defined as follows:

o Determine index j of the subcube with x ∈ Xj.
o If N0 (j) > N1(j) return 1.
o If N0 (j) < N1(j) return 2.
o If N0 (j) = N1(j) return ?.

Hopeless! Why?

The coarsest reasonable partition of X into subcubes Xj would halve the edges of X and create
subcubes of edge length 3. This would give 2240 subcubes! That is, only in a vanishingly
small number of subcubes would we find a training sample at all. In the vast majority of
subcubes, N0(j) and N1(j) would be 0 and f wouldn't be defined. Even if we had a number N of
training samples amounting to the number of atoms in the universe, the situation would hardly
improve! (plus, we would run into storage problems).

So our naive approach fails completely.

This situation is common to many ML tasks and is known as the

Curse of dimensionality: Training samples (xi, yi) that are high-dimensional vectors populate
their input vector space X so thinly that it is meaningless to use them directly to define a
decision or hypothesis function f̂ over X.

2.3 Using features

A way to escape from the curse of dimensionality: use a few features instead of original input
vectors. The function of features is to reduce the dimensionality of the input space.

Technically, a feature F is a one-dimensional function over the original input vectors x.
Examples in the digit domain:

 10

• F1(x) = sum of components of x / 240 = 1T x / 240, where 1 is the 240-vector of all
ones and T denotes transpose (in this script, all vectors are assumed to be column
vectors unless noted otherwise). This is the average brightness of the digit picture.
Might be useful to distinguish between "ones" and "zeros" because "zeros" should use
more ink than "ones".

• F2(x) = 0 if in the middle row of the digit picture there are some black pixels followed

by some white pixels followed again by some black pixels, and = 1 else. Might single
out "zeros" from "ones" because F(x) = 0 seems typical for "zeros". (But look at the
fourth "one" image in Fig. 2.1).

• Construct F3 as follows. First, create a pixel image with a clean, clear, "one".

Transform this image into a vector xbest1. Put F(x) = < xbest1, x > = xbest1
T

 x. This is
the inner product between x and xbest1. Intuitively, F3 measures the overlap of a
pattern x with the prototype xbest1, and thus should be large for patterns x representing
"ones" and small for patterns representing "zeros".

There are very many ways to define useful features, and we will learn about more of them.

Features are a tool for dimensionality reduction. If you have some few (hopefully relevant)
features F1, ..., Fm, rewrite your high-dimensional input patterns x into low-dimensional
feature vectors F(x) = (F1(x), ..., Fm(x)). This transformation is called feature extraction. Use
(F(xi), yi)i = 1,..., N as training material. The learning task is then to distil from this material a
function y = f̂ (F(x)) that gets as input feature vectors and returns classification labels.

Finding "good" features for dimensionality reduction is a key factor in many ML tasks. It is
also something of an art, because the "good" features are often task-specific and require some
insight into the "nature" of the data (compare F2 from the list above). Unfortunately, there is
no known universal way to define the "best" features for a given learning task (but there are
good working solutions that are quite generally applicable).

Using low-dimensional features, our ad hoc approach of learning by frequency counts
suddenly makes sense. In the simplest case, we only use a single feature. The space X on
which f operates is now one-dimensional (the dimension of the feature value).

Using feature F3 and 10 subcubes (= subintervals here) we get the following histogram for
N0(j), N1(j):

 11

Figure 2.2. Frequency counts for "zero" and "one" training patterns w.r.t. feature F3

It becomes clear from this figure that a decision function f̂ based on this feature alone would
classify the majority of the training examples correctly but would also yield some
misclassifications. In fact, 5.25 per cent of the training samples would be misclassified –
apparently more misclassifications than a human would make. We will learn to do much
better.

2.4 Regression and time series prediction. Introducing the Mackey-Glass
attractor example.

The digit recognition task is a classification task. The training patterns for a classification task
are of the kind (xi, yi), where yi is a discrete-valued class label. "Discrete-valued" here means
that there are only finitely many possible values yi can take.

If the yi in the training patterns are allowed to take "analog", real-number values, then the
training patterns (xi, yi) are best seen as argument-value pairs of some function, that is, yi =
f(xi), and the learning task becomes one of estimating the function from training examples,
that is, to obtain some y = f̂ (x). Estimating real-valued functions from training data is called
regression. In a sense, classification is just a special case of regression, where the function f is
intended to take only discrete (class label) values.

Often, the training patterns come from noisy measurements. Figure 2.3 shows a noisy
"measurement" of a linear and the square function; the crosses mark the (xi, yi) training
patterns.

N0(j) (blue, left columns)
and
N1(j)(red)

 F3(x)

 12

Figure 2.3: A linear and the square function (solid lines), represented by "noisy observations"
(crosses).

If one wishes to obtain a linear function (as in the left panel of Fig. 2.3), one speaks of a linear
regression; otherwise, of a nonlinear regression. The term "regression" typically means that
one deals with noisy training patterns, but sometimes it is also used for noise-free training
samples. (While we are at it: the term "sample" may refer to a single training instance (one
red cross in Fig. 2.3), but is likewise used to denote the complete training set – don't blame me
for this confusion.)

Regression tasks abound in practical applications. Here are some examples:

• Predict the time a cancer patient will live. Training samples (xi, yi): xi is a vector
containing diagnostic measurements of patient i, yi is the time this patient lived after
diagnosis.

• Assess the quality of a production batch leaving a chemical factory. In training
samples (xi, yi), xi is a vector of measurements made during the production process, yi
is a vector of quality criteria describing the end product. This is not only interesting to
predict the quality of an end product currently being processed, but also (applied in
reverse) for finding "manufacturing tuning parameters" x that will yield a product with
certain desired characteristics y.

• Image restoration: Training samples (xi, yi) are pairs of a corrupted image xi and its
non-corrupted form yi. Here, both xi and yi are grayscale vectors.

Regression is also key in a type of problem where one would not, at first sight, expect it: time
series prediction. We will see now how time series prediction can be seen as a regression task.

By way of example, we consider a time series which is generated by a deterministic equation,
namely, the Mackey-Glass (MG) equation. The MG equation was first introduced as a model
for the onset of leukaemia1. It describes a chaotic system and has been used extensively as a
benchmark system in time series prediction research, so there is a big number of articles
available that treat the prediction task for the MG system and which allow one to compare
one's own prediction performance with the state of the art. Originally, the MG equation is a

1 J. McNames, J. A. K. Suykens, J. Vandewalle, Int. J. of Bifurcation and Chaos 9, 1485 (1999)

 13

so-called delay differential equation. When it is discretized with stepsize δ (that is, changed
from continuous time t to discrete time n), one gets an approximate update equation that looks
like this:

(2.4) 







−

−+
−

+=+)(1.0
)/(1
)/(2.0)()1(10 nx

nx
nxnxnx

δτ
δτ

δ

This equation describes how the value x(n+1) can be computed from previous values. The
delay parameter τ is usually set to 17 or to 30, that is, x(n+1) depends on the previous value
x(n) and the value 17 update steps before n. The larger τ , the more chaotic the resulting time
series. Fig. 2.4 shows how Eq. (2.4) evolves for τ = 17 and τ = 30 (a stepsize of δ = 0.1 was
used). For values of τ less than 17, the resulting time series is not chaotic but only periodic.

Figure 2.4: Evolution in time of the MG system for delays τ = 17 and τ = 30.

Time series prediction tasks. In the case of discrete time n, and a one-dimensional time series
(xn)n =1,2,3,... , a time series prediction task is set up as follows:

• Given: an initial sequence x1, x2, ..., xN. generated by some dynamical system (in our
case, Eq. (2.4)).

• NOT given: knowledge of the generating system!
• Wanted: an estimated continuation of this sequence x̂ N+1, x̂ N+2, ...

For the MG example, the initial sequence might for instance consist in the first 400 points of
Fig. 2.4 (left), and the prediction task would be to generate the next points. Here are some
other important time series prediction tasks:

• Predict the currency exchange rate, given the currency charts up to NOW.
• Predict the weather.
• Predict the next move of your opponent in a game (for instance, chess or real-life

warfare – yes, that's being tried!)
• Predict where a comet is heading (will it hit us?)

 14

• Predict the next sounds in a speech utterance (this is important for automated speech
processing systems, because such predictions are required to "filter" hypotheses about
what has actually been said).

• This is a learning task in the sense that in order to create the continuation x̂ N+1,
x̂ N+2, ...one has to induce (= "learn") from the given initial sequence x1, x2, ..., xN a

model M of the (unknown!) generating system, and then use M to compute the
continuation.

What kind of mathematical thing is M?

There are many, many possibilities. In fact, M might take the form of any
mathematical/algorithmical object capable of generating a time series. For instance, M might
be some kind of deterministic automaton, or a random system like a Markov chain, or a game
strategy, or simply an update equation of the form x(n+1) = f̂ (x(n)). A good deal of ingenuity
and intuitive insight is typically required to settle for a "suitable" type of algorithmical object
for a given time series prediction task.

Now we will see how the task of time series prediction can be cast as a regression task. The
idea is to establish M as a regression function f̂ (which has to be learnt from the training data
x1, x2, ..., xN). Consider a short section of the MG series (Fig. 2.5) for an illustration: the idea
is to learn a function f̂ which takes as arguments some previous, already known values of
the time series and computes the next value from those.

Figure 2.5: One way to specify a mechanism M capable of creating a time series: compute
next value (square) as a function (arrows) of some previous values (circles).

 15

Typically, when one uses this approach, one takes a relatively small number of preceding
points (order of 3 to 10), which are spaced at regular intervals (in Fig. 2.5., with 2 points in
between). Formally, M is an update equation f̂ of the following kind:

(2.5) x(n +1) = f̂ (x(n), x(n − d), x(n − 2d), ... x(n − kd))

At this point we make a little digression and describe a curious and extremely useful and
relatively recent mathematical insight – the Takens theorem2.

Consider some dynamical system that is governed by a differential equation of the form

(2.6))(xx h= ,

where x is a vector from a possibly high-dimensional vector space X. Assume further that the
dynamics described by this equation is confined to a compact submanifold A of X. Basically,
this means that the dynamics does not drive the system state to infinite values.This is typically
given for real-life physical systems. Furthermore, let the dimension of A be dA. A typical
occurence in very-high-dimensional physical systems is that dim(X) >> dA. This is due to the
fact that often the very many componentes variables of x are coupled through the dynamics
(2.6), a condition which makes them change in time in a coordinated fashion, which
effectively shrinks the dimension of the manifold A of X where the action x(t) happens. This
would for instance be expected in brain states or in many biomechanical systems. But still,
even with the dimensionality reduction afforded by mutual couplings of variables, dA still may
be quite large in many systems of interest.

In many cases where researchers face complex dynamical systems of the kind (2.6), they face
a situation where the following two facts are at odds:

1) The researcher wants to understand the dynamics of the system – for instance, whether it

is periodic, chaotic (and if so, how "badly" chaotic), whether it has stable equilibria and so
forth – in short, s/he wants to know about the qualitative properties of h.

2) The researcher cannot measure the high-dimensional state vector x, nor some lower-
dimensional transform of it that covers the dynamics on A. (Imagine, for instance, that x
contains the zillions of neural activations of a brain state, -- even given that many neurons
act in some coordinated way, dA still would be quite large; or imagine the hundreds of
concentrations of reactants in a complex chemical reaction).

In many cases, all that the researcher has in her hands is just the value of one single
measurement (or observation) variable y(x(t)) which is a function of the underlying high-
dimensional physical state. (For instance, y(x(t)) might be a voltage reading of an extracranial
electrode for measuring brain activity, or it might be the concentration of a single, easy-to-
measure reactant in a chemical reaction).

2 Original paper: F. Takens (1991), Detecting strange attractors in turbulence. In Dynamical Systems and
Turbulence (Rand, D.A. and Young, L.-S., eds.), Springer LN Mathematics 898, 366-381. More recent
extensions: Stark, J., Broomhead, D.S., Davies, M.E., Huke, J., Takens embedding theorems for forced and
stochastic systems. Nonlinear Analysis, Theory, Methods & Applications 30 (8), 1997, 5303-5314 Websites: try
"Takens theorem" on Google and you will immediately find pages with a rigorous statement of Takens theorem.

 16

Now the Takens theorem comes to your help! It says that under certain conditions, the
dynamics x(t) of the original state vector is essentially identical to the dynamics of a delay
embedding of the observation variable, that is, to the dynamics of a vector of the kind

(2.7) y(t) = (y(t), y(t - τ), y(t - 2τ), ..., y(t – (k−1)τ)).

Some explanations:

• The phrase, "the dynamics is essentially identical", intuitively means that the
dynamics of x(t) and of y(t) exhibit the same qualitative properties, for instance same
number of equilibrium points, same number of possible oscillation patterns, etc.
Technically speaking, the dynamics of y(t) evolves on some compact manifold y(A),
and there is a differentiable embedding of y(A) into A which maps the dynamics of y(t)
on the dynamics of the original states x(t).

• The dimension k of y(t) is called the embedding dimension. Takens theorem states that
if k is chosen to be at least 2 dA + 1, one obtains "essentially identical dynamics".

• Since Takens' pioneering paper, numerous embedding theorems of the same flavour
have been found. Specifically, a theorem that goes back to Sauer et al3 states that if the
dynamical system in question is a chaotic attractor of (fractal) dimension d, then the
system can be reconstructed generically in delay embedding coordinates of dimension
k > 2d.

• The value of the delay τ must be chosen with some care to get good results in practical
applications.

• For many dynamical systems (even when the system equation is known), it is not
possible to compute the embedding dimension analytically. Approximate numerical
methods to estimate this dimension from one-dimensional observation sequences y(t)
have been developed; they are often somewhat hairy and need a good deal of
mathematical understanding to yield reliable estimates.

Takens theorem has been mis-used in the last decade in sometimes extreme ways, which
disregarded the "small print" of the technical prerequisites for its application, and often
disregarded the malicious influence of noise in observations (the theorem holds strictly only
for noise-free observations). It is a seductive but also dangerous theorem!

And this is the connection of Takens/Sauer's theorem with our update function f̂ (Eq. (2.5))
for the Mackey-Glass system. The original MG equation is a so-called delay differential
equation. Technically, this implies that the dynamics governed by the MG equation uses an
infinite-dimensional state space X! However, after the dynamics converges on the final MG
attractor (that is what we see in Fig. 2.4), the (fractal) dimension of the attractor is small
(about ~3 for a delay of τ = 30). Because in Eq. (2.4) we took a discrete-time approximation
to the original continuous-time MG equation, the dimension of X in this discrete-time
approximate system is not infinite but equals the delay, that is, it is dim(X) = 17 or 30. If we

3 T. Sauer, J. Yorke, and M. Casdagli, Embedology, J. Stat. Phys. 65, 579 (1991). Preprint at
http://math.gmu.edu/~tsauer/pre/embedology.pdf

Takens theorem can be re-phrased as follows: If you observe a high-dimensional
dynamical system over time through a single measurement variable, you can reach full
knowledge about the "hidden" high-dimensional dynamics if you take a delay
embedding of your observation variable instead of the original state.

 17

consider the dynamics only on the final attractor, it again is a fractal of dimension ~3 for τ =
30.

Although Eq. (2.4) superficially looks like a one-dimensional difference equation of the type
x(n+1) = h(x(n)), it actually specifies a high-dimensional system (of dim 17 or 30) due to the
delay that appears in it. The variable x of Eq. (2.4) should actually be seen not as a state
variable, but as an observation variable of the kind y(x(t)) as described above. For the MG
attractor, embedding dimensions of k = 7 or 8 are often used.

The reason why it works out to implement M as a function f̂ that takes some previous values
to compute the next, as in Figure 2.5., now becomes clear: the previous values provide a delay
embedding state that is "essentially equivalent" to the true (unknown) ~3-dimensional
attractor state. So it is no coincidence that in Fig. 2.5, the number of previous points is 7: it is
actually the minimal number required (for τ = 30).

Tricky question: Equation (2.4) uses only 2 previous points to compute the next. So why is
the embedding dimension not just 2? Assuming τ = 30 and δ = 1, the form of Eq. (2.4) is
x(n+1) = g(x(n), x(n−30)). So why shouldn't one be able to learn some ĝ (x(n), x(n−30)), that
is, why shouldn't an embedding dimension of 2 be sufficient? Answer: yes, it is possible to
learn ĝ (x(n), x(n−30)) from training data. BUT one has to divine the correct delay value of
30 first in order to make this work! Eq. (2.4) has no equivalent version that uses a different
delay value. By contrast, using the 7-dimensional delay embedding suggested by Takens'
theorem is in principle insensitive to the choice of the embedding delay duration (although
some delays work more efficiently than others). Because there is no known way of guessing
the correct original delay from training data, one has to apply Takens' theorem.

2.5 Analytical vs. blackbox modelling

Things are relatively simple if one knows, from insight or analysis, that the given initial time
series has been generated by a mathematical object of a particular type. For instance, in
predicting the trajectory of celestial objects the type of governing equations is known since
Newton's days. If one knows the form of the equation, the learning task boils down to fix the
values of the few "free parameters" in the equation (for instance, the comet's mass). Or in a
chess game prediction, one might settle for one's favourite game-theoretic formalism to write
up a template for M; this would then have to be filled with the current opponent's "personality
parameters", which would have to be induced from the known training data. In many
engineering and chemical processing tasks – and in weather prediction – , a well-guided guess
about the form of the governing equations can be made. In such cases where the basic form of
M is known, one speaks of analytical models (or physical models). Learning boils down to
fitting a small number of parameters to the individual case at hand.

In many cases, however, analytical models are ruled out. For instance, it is close to impossible
to invent "suitable" equation templates for stock market developments, or for brain or cardial
recordings (medical and biological time series in general), -- generally, biological,
economical, social systems are hard to press into an equation. In other cases, analytical
models might be obtainable, but would be too complex for any practical dealings. This is a
typical situation when one is confronted with complete, complex technical systems, like

 18

power plants, combustion engines, manufacturing lines and the like. Besides the sheer
complexity of such systems, analytical models would present difficulties because they would
have to integrate several types of formalisms: For instance, modeling a combustion engine
would require an amalgamation of chemical, thermodynamic, and mechanical formalisms.

If analytical models are inaccessible, the model M has to be established in some "generic"
formalism that is capable of mimicking basically any kind of dynamical system, without
paying respect to the underlying physical mechanism. The only requirement about M here is
that M can produce the same input-output time series as the original generator. This is the
approach of blackbox modeling: the original system is seen as an intransparent ("black")
device whose internal workings cannot be understood; only the externally observable
measurements are available, and only they are "modeled" by M.

The best known type of blackbox model M is probably neural networks, and we will learn a
lot about them. However, there are other important types of blackbox models, which I will at
least name here: support vector machines (very fashionable these days), mixtures of
Gaussians, Fourier decompositions, Taylor expansions, Volterra expansions, Markov chains
and hidden Markov models. All of these models can accomodate to a wide range of systems,
and all of them typically require a very large number of free parameters to be fixed through
the learning process.

The general picture of a blackbox modeling task is shown in Fig. 2.6.

Figure 2.6: General scheme of blackbox modeling (here, for time series).

 19

2.6 The bias-variance dilemma

(Adapted from Bishop Sec. 1.5)

We have encountered two elementary learning tasks,

• classification tasks with training data (xi, yi), where yi ∈ {1, ..., n} are taken from a
finite set of class labels and a classification function f̂ (x) is sought,

• regression tasks with training data (xi, yi), where yi is a real-valued vector and a
regression function f̂ (x) is sought.

Both types of tasks have a similar basic structure, and both types of tasks have to face the
same fundamental problem of machine learning: the bias-variance dilemma. We will
introduce it with the simple regression task of polynomial curve fitting.

Let's consider a one-dimensional input, one-dimensional output regression task of the kind
where the training data are of form (xi, yi). Assume that there is some systematic relationship
y = f(x) that we want to recover from the training data. We consider a simple artificial case
where the xi range in [0, 1] and the to-be-discovered relationship is y = sin(2 π x). The training
data, however, contain a noise component, that is, yi = sin(2 π xi) + νi, where νi is drawn from
a normal distribution with zero mean and standard deviation σ. Fig. 2.7 shows a sample (xi,
yi), where eleven xi are chosen equidistantly.

Fig. 2.7: An example of training data (red squares) obtained from a noisy observation of an
underlying "correct" function sin(2 π x) (dashed blue line).

We now want to solve the task of learning a good approximation f̂ for f from the training
data (xi, yi) by applying polynomial curve fitting, an elementary technique you might be
surprised to meet here as a case of machine learning. Consider an M-th order polynomial

(2.8) ∑ =

=+++=
M

j
j

j
M

M xwxwxwwxp
010)( .

 20

We want to approximate the function given to us via the training data (xi, yi) by a polynomial,
that is, we want to find ("learn") a polynomial p(x) such that p(xi) ≈ yi. More precisely, we
want to minimize the mean square error on the training data

(2.9) ∑ =
−=

N

i ii yxp
N 1

2
train))((1MSE

by a good choice of p(x) (here N is the number of training samples, in our example N = 11). If
we assume that the order M of the polynomial is given, minimizing (2.9) boils down to
finding polynomial coefficients wj such that

(2.10) ∑ ∑= =
−=

N

i i
M

j
j

j yxw
N 1

2
0train)(1MSE

is minimized. At this moment we don't bother how this task is solved computationally but
simply rely on the Matlab function polyfit which does exactly this job for us: given
training data (xi, yi) and polynomial order M, find the polynomial coefficients that minimize
(2.10). Fig. 2.8 shows the polynomials found in this way for M = 1, 3, 10.

Fig. 2.8: Fitting polynomials (green lines) for polynomial orders 1, 3, 10 (from left to right)

If we compute the MSE's (2.10) for the three orders 1, 3, 10, we get MSEtrain = 0.4852,
0.0703, 0.0000. Some observations:

• If we increase the order M, we get increasingly better MSEtrain.
• For M = 1, we get a linear polynomial, which apparently does not represent our original

sine function well.
• For M = 3, we get a polynomial that hits our target sine apparently quite well.
• For M = 10, we get a polynomial that perfectly matches the training data, but apparently

misses the target sine function.

We have stumbled over a phenomenon that will haunt us for the rest of this lecture: we
apparently do NOT get the optimal estimate f̂ = p(x) for f if we try to optimally fit the
training data. This is our first encounter with the bias-variance dilemma, one of the fiercest
enemies of machines in machine learning. We take a closer look at it.

First we discuss what actually makes the M = 3 solution "look better" than the other two. If
we knew the correct target function f(x) = sin(2 π x), it would be clear what "better" means: a

 21

solution f̂ = p(x) is better if it is closer to the target function. However, in real-life
applications the correct target function is in general not accessible. In real life, what we desire
of a "good" solution to a learning problem derived from training data (xi, yi) is that it
generalizes well to new test data not contained in the training data set. Formally, we want the
following: if (x'j, y'j) are new data coming in from noisy observations y'j = sin(2 π x'j) + νj,
then the expected discrepancy (in the mean square error sense) between the actual new
observations y'j and the model predictions p(x'j) is minimal, that is,

(2.11) MSEtest =))'('((2xpyE −

becomes minimal. Because the empirical observations y' are scattered around the correct
target function f, (2.11) essentially amounts to our original intuition that a "good" solution is
close to the target function.

We can estimate MSEtest by creating a large set of test data (x'j, y'j) (where j = 1, ..., K) and
approximate (2.11) through

(2.12)

€

Mˆ S Etest =
1
K

(y j '−p(x j '))
2

j=1

K
∑ .

Using 101 equally spaced x'j, computing (2.12) for learnt polynomials of orders 1 through 10
and comparing it with the training MSEs (2.10), we get the following picture:

Fig. 2.9: Training (blue solid line) vs. testing errors (green dashed line) for polynomial fits of
orders 1 through 10.

We find in Fig. 2.9 a pattern that is highly representative for machine learning tasks: if we
train models of increasing complexity (here: polynomials of increasing order), the training
error goes down (it here even reaches zero because a 10th order polynomial can fit 11 training
points perfectly). On the other hand, the test error first goes down but then up again. When it
goes up again, we say that the training data are overfitted by the learnt function f̂ . Intuitively,
overfitting means that the training procedure manages to fit even the noise component in the
training data – and in doing so, generalizes poorly to new test data which have other noise
components.

Abstracting from our simple polynomial fit example, the following situation is common in
machine learning:

 22

• When trying to fit the training data with some model (here: a polynomial), we can

choose from models of different complexity (here: order of polynomial; another
example would be to choose between neural networks of different size).

• More complex models have a larger number of free parameters that have to be
estimated through the learning process (here: the polynomial weights). The more
complex a model, the more free parameters can be utilized to fit training data, and the
smaller the MSEtrain.

• The test error, however, has a minimum at some intermediate level of model
complexity.

• Much of the art of machine learning lies in the choice of an appropriate model
complexity. This is tricky because usually one does not have, at the time of learning,
independent test data which one could use to find the appropriate model complexity.
All one has is the training data. We will learn about several strategies to cope with this
situation.

The conflict between choosing models of low complexity (which might under-exploit the
information in the training data) and choosing models of high complexity (which might
generalize poorly due to overfitting) is known as the bias-variance dilemma. This terminology
will become clearer when we treat Bayesian model estimation techniques (coming soon), but
intuitively it means the following. If we choose a low-complexity model, what we actually do
is to impose restrictions on the possible solutions – for instance, if we choose an order-1
polynomial, we restrict ourselves to linear solutions. But imposing restrictions is just another
way of stating that we enforce certain preconceptions on the possible solutions – we are
"biased" about the possible solutions. In contrast, high-complexity models hook up into the
model noise components – as a consequence, if you would repeatedly estimate such models
from respectively fresh training data, the resulting models would exhibit a high inter-model
variance (because each models the fresh noise in the fresh data).

The bias-variance dilemma, or synonymously the problem of overfitting, arises in
classification tasks, too. Consider Fig. 2.10. It shows a training data set where two-
dimensional vectors xi = (x1, x2)i come in two classes (black cross vs. red circle). One way of
specifying a classification function f̂ is to provide a decision boundary (solid black line).
Again, if we allow only low-complexity decision boundaries (such as the linear boundary in
the left panel), we get a high training error (number of misclassifications is 4). Conversely,
with a high-complexity decision boundary (right panel) we get a low training error (zero
misclassifications in Fig. 2.10). We might suspect that the best model should look something
like the one in the middle panel (intermediate complexity, number of training errors is 2). But
in the absence of fresh test data, we actually can't assess which one of the models is best! it
might be the case that the underlying correct decision boundary is in effect linear – then the
low-complexity model from the left panel would be appropriate, and the high number of
misclassifications is due to a high level of observation noise. But it might just as well be the
case the high-complexity model is best – namely, if we have low-noise observations.
Unfortunately, it is not easy to guess from the training data what the noise level is.

 23

Fig. 2.10: The bias-variance dilemma in a classification task.

It might seem that these are academic considerations, but in fact, our simple examples let the
situation appear simpler than it is. If we have high-dimensional training data combined a
small number of training samples – an unfortunate condition that is all too often found in
practice – the bias-variance dilemma becomes a dominating source of trouble.

There are many approaches to deal with the bias-variance dilemma, some of them very
sophisticated. However, in daily practice when quick (but possibly "dirty") solutions are
demanded, two simple approaches are often used: regularizers and cross-validation schemes.
We will briefly introduce them.

2.7 Using regularization terms to control overfitting

We have seen that minimizing the training MSE alone leads into overfitting. The idea of
regularizers is to minimize an additive combination of the training MSE plus a "penalty" term
that grows when models exhibit some undesired property. This obviates the need to search
explicitly for a good model complexity (e.g., an appropriate polynomial order). For instance,
in the polynomial fit task one might consider only 10th order polynomials but punish the
"oscillations" seen in the right panel of Fig. 2.8, that is, favour such 10th order polynomials
that exhibit only weak oscillations. The degree of "oscillativity" can be measured, for
instance, by the integral over the (square of the) second derivative of the polynomial,

(2.13) dx
dx
xpd

21

0
2

2)(
∫ 








=Ω

Using this measure of oscillation, high-oscillation solutions are suppressed by adding a
penalty term to the error function that is minimized. That is, instead of minimizing the
MSEtrain given in (2.10) we seek a polynomial that minimizes

(2.14)

€

LFtrain =
1
N

(p(xi) − yi)
2

i=1

N
∑ + cΩ,

where c is a constant suitably chosen. cΩ is called a penalty term or regularizer. The larger c,
the stronger we favour low-oscillation solutions. The quantity (2.14) that we want to minimize
is called a loss function – this is the gerneric term in such optimization tasks (the MSE is just
a particular loss function). Implicitly, the model complexity is kept in limits – not by

 24

restricting the polynomial order but by restricting the search space within 10th order
polynomials to "smooth" ones.

One difficulty with using regularization is that finding a solution that minimizes

€

LFtrain might
be more difficult to compute. Another, more difficult difficulty is that it is not obvious how to
define a "good" regularizer, or how to weigh it by a regularization weight c. A regularizer
implements just another kind of preconception about what makes a solution "good" and thus
is just another case of introducing bias – the larger the regularization coefficient c, the
stronger the influence of our bias.

2.8 Using cross-validation to overcome overfitting

We saw that independent test data can be used to assess the degree of overfitting. The idea of
cross-validation is to split the training data set X artificially into two subsets X1 = (xi, yi) and
X2 = (x'j, y'j). The first subset is used to learn several models of different complexity. Their
generalization performance is then tested on the second subset (x'j, y'j). The model complexity
that gives best generalization is then chosen, and a model of this complexity is re-trained on
the original, complete training data set X.

In this simplistic version, cross-validation might suffer from ill fortune in splitting the training
data – the data sets X1 and X2 used for training and testing might by chance exhibit
peculiarities which systematically favour models that are less complex or more complex than
appropriate. Specifically, if the noise components in X1 and X2 happen to be positively
correlated, models of higher complexity than appropriate are favoured. One common way to
sidestep this possibility is to split X into many subsets Xi of equal size (i = 1, ..., k). For each
model complexity, k learning trials are carried out, the first using X1 ∪ X2 ∪ ... ∪ Xk-1 for
training and Xk for testing, the second trial using all Xi except Xk-1 for training and Xk-1 for
testing, etc. Then, the average testing error across all of these k trials is taken as an indicator
for the generalization performance of this particular complexity. After this has been carried
out for all complexities that one wants to consider, the complexity that gave the best average
generalization performance is chosen and a model of this complexity is finally learnt on the
complete training data set. In the extreme, all Xi contain just a single data point – we then
speak of leave-one-out cross-validation. If the Xi each contain n samples, we speak of leave-
n-out cross-validation. Another terminology is to speak of k-fold cross validation, where k is
the number of "batches".

A clever way to perform cross-validation is to start with low-complexity models, assess their
generalization capabilities through cross-validation, and increase the complexity until the
generalization performance starts to go down. The complexity level reached at that point is
likely to be about right.

The advantage of cross-validation techniques is their conceptual simplicity, the disadvantage
is the high computational cost resulting from many repeated training trials. If the
computational cost of a single learning trial is already significant (as it unfortunately often is –
machine learning algorithms are often very expensive), elaborate cross-validation may not be
a viable option.

 25

2.9 Bayes' theorem and optimal decision boundaries

Let's return to the digits classification task. Assume you are getting a new data vector x
representing a 15 by 16 pixel image of a "zero" or a "one" – and this pixel image is of very
bad quality (as the last one in the second row of Fig. 2.1), so you really can't tell very well
whether it's a "0" or a "1". The feature value of F3(x) is 3000, which in Fig. 2.2 puts this x
into the sixth bin where there are about twice as many "ones" as "zeros".

But assume you know that x originated from a financial report, and you know that in the
world of finance, the digit "0" occurs 4 times more frequently than the digit "1" (is there some
empirical truth to this?). What should you decide x to represent, a zero or a one? By which
probability?

Here we face the task to combine two sources of information. The first source is your prior
knowledge about the base rates of zeros vs. ones in financial databases, which assigns to x
being a "1" a prior probability of 0.2. The second source of information comes from analysing
your sample x – which apparently favours the hypothesis that x is a "one" by a factor of two.

The proper way of combining these two sources of information makes use of Bayes' theorem,
a fundamental (and simple) theorem of statistics. To explain this, we redraw Fig. 2.2. in a
slightly different way.

Fig. 2.11: Figure 2.2 redrawn (schematic): Binning the training data in bins distinguished by
class (the two rows) and feature values (the columns). Horizontal axis: the ten subsegments
("bins") of the F3(x) feature. Vertical: the two classes C1 (containing the "zero" samples) and
C2 (containing the "one" samples). In the plotted example, an equal number of instances from
each class was given as training data.

Some terminology:

• The joint probability P(Ck, Xi) is the probability that some sample x belongs to class
Ck and has feature value Xi. This corresponds to the probability that some sample falls
into a particular cell of Fig. 2.11.

• The conditional (or class-conditional) probability P(Xi | Ck) specifies the probability
that some observation has feature value Xi given that it belongs to class Ck. In Fig.
2.11, this corresponds to the fraction of all samples in row Ck which fall in column Xi.

 26

• The total (or prior) probability P(Ck) is the probability that some sample falls into row
Ck. This corresponds to the fraction of all samples that fall into row Ck. In our
financial database world, we would have P(C1) = 0.8 and P(C2) = 0.2.

• The probability P(Xi) is the probability that some sample x has feature value Xi. This
probability has no special name.

• The posterior probability P(Ck | Xi) is the probability that a sample x belongs to class
Ck given that feature value Xi was observed. In Fig. 2.11, it is the fraction of all
samples in column Xi which fall in row Ck, provided that the training sample correctly
reflects the prior probabilities – which it does not do here (because we assumed that in
the world of finance there are four times as many 0's as 1's – so the training data
plotted in this figure over-represent the 1's).

Obviously it is the posterior probability that we want to know when confronted with a sample
x that we want to classify. We get at it through the Bayes theorem, which we will now derive.

Using the generally valid formula for joint probabilities, P(A, B) = P(A | B) P(B), we can write
the joint probability in two ways:

(2.15) P(Ck, Xi) = P(Xi | Ck) P(Ck)
 = P(Ck | Xi) P(Xi).

Combining the two expressions on the rhs., we get

(2.16) P(Ck | Xi) =
)(

)()|(

i

kki

XP
CPCXP ,

which is (one form of) the theorem of Bayes. It allows us to compute the posteriori probability
from the class-conditional probability P(Xi | Ck) and the prior probability P(Ck). The
denominator P(Xi) plays the role of a normalization term, and it can itself be expressed in
terms of class-conditional probabilities and prior probabilities by

(2.17) P(Xi) = ∑k kki CPCXP)()|(.

Why is Bayes' theorem so important?

• In many practical problems, the prior probabilities are known (or can be reasonably

guessed), and the class-conditional probabilities can be estimated from observations /
experiments. Consider for example a situation where we want to design a medical
screening test for distinguishing between normal (= class C1) and tumor (= class C2)
tissue, by exploiting the information we can get from some tissue diagnostic feature F
with values Xi. From epidemiological statistics we know that tumor tissue probes occur
very rarely, say with 0.01 %. If we would try to assess our statistics for P(Ck | Xi) by
evaluation data counts of the kind shown in Fig. 2.11, we would need, say, data from
about 1000 tumor patients to get good estimates of the probabilities in the C2 (= tumor)
row. But this would mean that the C1 row would contain samples from 1,000,000 patients!
We would instead want to analyse probes from only another 1000 healthy patients in order
to calibrate a decision function based on feature F. Bayes' theorem tells us how.

 27

• More generally speaking, Bayes' theorem shows us how to do valid abductive reasoning.
An abductive argument is of the following type: given knowledge about the consequences
of some causal effect, what is the probability of a certain cause? This is the standard
situation of diagnostic reasoning, for instance in medicine or machine fault monitoring.
The consequences Xi are observable – for instance, the outcomes of a medical diagnostic
probe. The cause Ck is hidden – for instance, a disease. Bayes tells us how to arrive at
valid diagnostic conclusions. In fact, naive humans are prone to make gross errors in this
respect. For instance, if a tumor test returns value X2, and the probability of getting this
value in case of a tumor is 90%, this is not necessarily bad news for the patient. Assume,
for instance (not unrealistically) that the prior probability of tumors C2 in the population
(of patients going to doctors for a broad-band health check) is 1%, and that the class-
conditional probability of the tumor test to yield X2 in non-tumor patients is 5%. Then
Bayes teaches us that P(tumor | X2) = 0.9 * 0.01 / P(X2) and P(no tumor | X2) = 0.05 *
0.99 / P(X2), so the ratio P(tumor | X2) / P(no tumor | X2) is only (0.9 * 0.01) / (0.05 *
0.99) ≈ 0.18. We also see here that the denominator Xi need not be computed if we want to
obtain a hypothesis vector (P(C1| Xi), P(C2| Xi)). And we see why in fact it is part of the
professional training of doctors to learn about Bayes' theorem (there is even a complete
research field on medical decision making).

Let's briefly finish our digit decision problem. The frequencies in Fig. 2.2 and Fig. 2.11
actually were obtained from an equal number of class C1 and class C2 samples (as in the
hypothetical medical tumor screening example), so these figures do not represent the unequal
distribution of "zeros" vs. "ones" in our financial database. Using Bayes' theorem, and the
probability estimates from those figures, we would classify our pattern x as a "zero" vs. a
"one" with a probability ratio of P(C1| X6) / P(C2| X6) = 1 * 0.8 / 2 * 0.2 = 2.

So far we have considered raw high-dimensional observation vectors x, from which we
distilled low-dimensional feature vectors F(x) taking values in some feature space X, which
we partitioned into discrete bins Xi., that is, we considered discrete-valued feature vectors.
From now on, we will take the feature extraction for granted (it is done in virtually every
machine learning task) and denote by x the feature vector directly. Furthermore we will
consider the more general (and more convenient) case where we do not discretize the (feature)
observation space X into bins but consider continuous-valued observation vectors x. In order
to lift our treatment of Bayes' theorem to the continuous-valued case, we quickly recapitulate
how to work with continuous probability densities.

The probability that an observation x falls into some region  ⊆ X is given by

(2.18) ∫=∈

R
R xxx dpP)()(,

where p(x) is the probability density function of the distribution of x. Observe that

1)(=∫X dp xx . If Q: X →  is a numerical function of observations, the expectation of Q is

given by

(2.19) ∫= X

dpQQE xxx)()(][

which can be approximated by

 28

(2.20) ∑ =
≈

N

i iQ
N

QE
1

)(1][x

if we have N samples xi randomly drawn from the distribution of x. Note that we use smallcap
letter p to denote densities and capital letter P to denote probabilities. In the continuous
domain, Bayes' theorem becomes

(2.21) P(Ck | x) =
)(

)()|(
x

x
p

CPCp kk ,

where the unconditional density p(x) is given by

(2.22) p(x) = ∑k kk CPCp)()|(x ,

which ensures that the posterior probabilities sum to unity,

(2.23) ∑ =

k kCP 1)|(x .

In a decision problem, we are given an observation x and want to find the class Ck such that
the probability of misclassification becomes minimal. Intuitively, it is clear that the proper
class choice is to select that class Ck that makes

(2.24) p(Ck | x) > p(Cj | x) for all j ≠ k.

We will soon justify (2.24) but simply take it as granted for the time being. If we fill (2.21)
into (2.24), we find that the comparison ">" is independent of the denominator p(x), so for
purposes of comparing posterior probabilities we can drop it and use

(2.25) p(x | Ck) P(Ck) > p(x | Cj) P(Cj) for all j ≠ k

instead of (2.24). The borders in X where p(x | Ck) P(Ck) = p(x | Cl) P(Cl) for some l ≠ k and
p(x | Ck) P(Ck) = p(x | Cl) P(Cl) > p(x | Cj) P(Cj) for all j ≠ k, l, are called the decision
boundaries of the decision problem. Our class decision would change when the observation x
passes over the some decision boundary. The decision boundaries partition X into regions i,
where within each region i the value of p(x | Ci) P(Ci) is maximal among all p(x | Cj) P(Cj).
A region i need not be connected, convex, or in any other way easy to describe.

 29

Fig. 2.12. Decision boundaries separating three classes. The "hills" are pdfs p(x | Cj) P(Cj) for
some two-dimensional observations x.

The decision criteria (2.24) (or (2.25)) certainly look plausible – but why are they in fact the
best one can do? What we want is to minimize the probability P(error) of making a
misclassification. For simplicity we restrict ourselves to the case of only two classes C1 and
C2. Assume that we have divided X into two regions 1 and 2 (not necessarily the ones
given by criteria (2.24) or (2.25)), such that we decide for class Ci whenever x ∈ i (i = 1, 2).
We make a classification error when we assign a new sample x to class C1 when it rightfully
belongs to C2, and vice versa. Then P(error) is the probability of making an error of either
kind:

(2.26) P(error) = P(x ∈ 1, x ∈ C2) + P(x ∈ 2, x ∈ C1)
 = P(x ∈ 1| C2) P(C2) + P(x ∈ 2 | C1) P(C1)
 = ∫1 p(x | C2) P(C2) dx + ∫2 p(x | C1) P(C1) dx

Thus, if p(x | C2) P(C2) > p(x | C1) P(C1) for a given x, we should choose the regions i such
that x ∈ 2 because that minimizes the integrals' contribution to P(error). We recognize this
as the criteria (2.24) or (2.25).

So, we base our decision rightfully on the relative magnitude of the functions p(x | Ci) P(Ci).
Apparently our decision would not change if we base it on the relative magnitude of some
monotonic function g of p(x | Ci) P(Ci), that is, on the relative magnitude of some
discriminant functions

(2.27) yi(x) = g(p(x | Ci) P(Ci)).

A much-used choice for g is the logarithm. We would neither change the decision regions i
nor the outcome of our decision criteria (2.24) or (2.25), if we replaced (2.25) by choosing
class k whenever

 30

(2.28) ln p(x | Ck) + ln P(Ck) > ln p(x | Cj) + ln P(Cj) for all j ≠ k.

In the case of two-class decision problems, a slightly different version of discriminant
functions is often used. Instead of using two discriminant functions y1(x) and y2(x), one
introduces a single function y(x) = y1(x) − y2(x) and assign x to class C1 iff y(x) > 0. From
what we have just seen it follows that we can use various forms of y(x) including

(2.29) y(x) = p(C1) − p(x | C2)
 [= (p(x | C1) P(C1) – p(x | C2) P(C2)) / (p(x | C1) + p(x | C2)),
 use that P(C1) + P(C2) = 1!]

and

(2.30) y(x) =

€

ln p(x |C1)
p(x |C2)

+ ln P(C1)
P(C2)

 [= ln (p(x | C1) P(C1)) – ln(p(x | C2) P(C2)) !]

Discriminant functions are sometimes easier to use than the original probabilities from (2.24)
or (2.25), because it is often possible to determine suitable discriminant functions without
going through the intermediate step of probability density estimation. Furthermore, one often
works with log's of probabilities directly, without ever computing probabilities, because this
helps to avoid numerical underflow problems with very small probabilities.

3 A refresher on essential probability theory and statistics – classical
and Bayesian

The aim of this section is to make you acquainted with a number of notions from probability
theory and statistics that constitute a required background for this course.

3.1 A handful of basic concepts

It is possible to become a reasonably good modelling practician without really knowing what
probabilities are – you can use equations like the Bayes formula or decision criteria
"mechanically" – but it is not possible to become a really creative in this field without this
knowledge. Therefore we devote some time to a more rigorous (re-) introduction of the basic
concepts of probability theory and statistics.

A fine webpage is http://www.probability.net – you can find there an online tutorial and a
dictionary of all important definitions.

We will in some detail consider a simple standard task, namely, estimating the probabilities of
symbols from a sample. If the sample is small, this task becomes surprisingly subtle. A typical
situation in bioinformatics is the following. Proteins are sequences of amino acids, of which
there are 20 different that occur in proteins. They are standardly tagged by 20 capital symbols,
as A, G, H, ..., all intimately familiar to biologists. Proteins come in families. Some protein in
one species has typically close relatives in other species. Related proteins differ in detail but
generally can be aligned, that is, corresponding sites in the amino acid string can be detected,

 31

put side by side, and compared. For instance, consider the following short section of an
alignment of 7 amino acids from one family4:

 ...GHGK...
 ...AHGK...
 ...KHGV...
 ...THAN...
 ...WHAE...
 ...AHAG...
 ...ALGA...

Fig. 3.1: Seven aligned protein sniplets from one protein family (here: of globulines).

A basic task that bioinformatics faces is: for each column in such a family alignment, estimate
the probability distribution of the amino acids in this column, as you would expect it to be in
the total population of all proteins belonging to this family. This task is, on the one hand,
important: because such distribution estimates are the basis for deciding whether some newly
found protein belongs into the family. On the other hand, this task is apparently rendered
difficult by the fact that the sample of aligned proteins used to estimate this distribution is
typically quite small – here we have only 7 individuals in the sample. As can be seen in Fig.
3.1, some columns have widely varying entries (e.g. the last column K K V N E G A). In
contrast, the family of related proteins is huge: in every animal species one would expect at
least one family member; typically many more. So how can one derive "good" estimates for
the distribution of symbols in a large population, from very small samples?

For this task of estimating a probability distribution (and all other such tasks) there are two
major types of approaches:

1. The "classical", "frequentist", "objective", where probabilities are defined in terms of

limits of frequency counts. This is the kind of probability theory and statistics that has
dominated mathematics and statistics in the last centuries and it is the approach taught in
most university courses on statistics. In this view, a probability of a symbol in a
population is defined to be its frequency in the limit of infinite population size. The
probability P(A) of "amino acid A occurs in the population" is objectively defined – at
least in ideal theory (assuming the population is infinitely large). The classical approach
gives a clear picture of things when one has access to large samples but has difficulties in
dealing with small samples.

2. The "Bayesian", "subjective" approach where a probability is defined as a subjective
degree in belief that a newly observed symbol would be of some particular kind. Here the
probability P(A) need not be defined objectively. But this does not mean Bayesian
statistics is not a rigorous mathematical field. Bayesian theory is not concernd with what
probability is but with how rational people should correctly reason about probabilities.
Bayesian statisticians ask (and answer) questions like: If someone believes some things
about some probabilities in some population, what can this person formally deduce from
his starting assumptions? The Bayesian approach is better suited than the classical one
when it comes to drawing conclusions from small samples. In the words of E.T. Jaynes, a
fierce proponent of Bayesian statistics: "Scientific inference is concerned, necessarily, not
with empty assertions of 'objectivity' but with information processing; how to extract the
best conclusions possible from the incomplete information available to us." Because such

4 Example and some parts of this Section taken from: R. Durbin, S. Eddy, A. Krogh, G. Mitchinson: Biological
sequence analysis: probabilistic models of proteins and nucleic acids. Cambridge University press 2000

 32

questions have recently found to be of extreme practical relevance – not the least in
bioinformatics and in Artificial Intelligence – Bayesian statistics has seen a surge of
interest in the last two decades, and has become very important for practical machine
learning techniques.

Until recently there was something like a "war of believers" between the two approaches. The
belligerent atmosphere is reflected in the most prominent, original textbook on Bayesian
statistics (4 MB) by E.T. Jaynes, called not very modestly "Probability theory: the Logic of
Science". Click on http://www.quackgrass.com/roots/0796rts.html for a short intro to
Bayesian logic / probability theory. Today the aggressive tone has largely vanished and both
approaches to probability are considered as valid, if alternative, perspectives.

A condensed, detailed, rigorous writeup of the basic definitions of probability theory has been
produced by Dr. Mingjie Zhao as reference for a probability primer accompanying course in
2007. This document is available online, and I suggest that you download and print it.

Both approaches share the definitions (but not the interpretation) of some elementary
concepts, which we will now revise.

Event space, probability space. Symbol: Ω. This concept, which is the fundament of
statistics and probability theory, is unfortunately very hard to understand. The reason for this
conceptual difficulty is that Ω has a dual nature: (i) as a real-world entity, which cannot be
formally specified but needs everyday language to be described, and (ii) as a mathematical
object that can be formally specified... Event spaces are, so to speak, the interface between the
real world and mathematical (probabilistic) models. If one looks at some event space from the
real-world side, one sees a real-world thing, which can be described only with real-world
language, i.e. plain English. If one looks at some Ω from the formal side, from maths, one
sees a mathematical object (a set, to be more precise – an object of set theory). Confused? you
should be...

As a real-world entity, a good way to understand event spaces is to start from scientific paper
writing (in the empirical sciences, like physics, biology, experimental psychology etc). Such
papers typically describe an experimental setup where certain measurements are taken, or they
specify (e.g. in the geosciences or botany) a location on this earth where observations have
been made (e.g. a mountain range where rock samples have been taken, or a wildforest area
where plant specimen were collected). The essence of empirical science is that other groups
than the one who first did the experiment / expedition must be enabled to reproduce the
findings. The outcomes of reproducing experiments are comparable to the originally reported
results only to the extent that the reproducing experimenter reconstructs the original
experimental setup (or goes to the same mountains or forests). Only if this similarity is
warranted, the data collected by the second experimenter can be assumed to have the same
"distribution" (we will soon explain that concept, for the time being your intuition must
suffice) as the data sampled in the original investigation. An event space is what is specified
(in a scientific paper, for instance) as a setup / context / location / experimental condition with
respect to its role as a source of potential data. In papers in physics / chemistry / biosciences,
this specification is usually done in a section called "methods". In papers in psychology /
medicine /sociology it would typically be the specification of the population of human
subjects that were investigated ("As subjects for our study we used undergraduate students
from psychology, balanced in gender and with an age between 19 and 23..."). In sum,
specifying an event space amounts to specifying particular conditions for collecting data.

 33

As a formal entity, an event space is just seen as a set – and almost always denoted by Ω. In
the light of what I said before, the elements ω of this set Ω should be considered as all the
potential acts of measurements that could be made in experiments / expeditions of a certain
type. A sometimes used terminology is to speak of ω as realizations of Ω. Each such
realization is a source of measurement data. For example, if (in the real-world perspective)
Ω is "undergraduate students from psychology, balanced in gender and with an age between
19 and 23...", then whenever in some university a particular undergraduate psychology
student Mr. A with age between 19 and 23 is chosen from a gender-balanced sample, this Mr.
A would be considered an ω ∈ Ω. However, mathematicians don't care about this real-world
interpretation of the ω ∈ Ω. What they care about is that once Ω is fixed, the measurement
data that can be obtained from ω ∈ Ω have a well-defined statistical distribution.
Mathematicians, then, care about the mathematical apparatus needed to equip (arbitrary) sets
with the requisite add-on mathematical structure that enables them to handle such statistical
distriubutions of measurement data obtained from ω ∈ Ω.

We will now describe this mathematical structure. Unfortunately, it is not simple (and has
taken mathematics centuries to develop – only completed by the work of Andrey Kolmogorov
in the early 1930's).

Events are subsets A ⊆ Ω. In the extreme case, an event is an elementary event {ω} ⊆ Ω, but
in general an event is a larger subset. In our example, "proteins belonging to a particular
family" would be an event, or "proteins of family X, which have amino acid G in position
110".

σ-algebra, σ-field, event field: The set of all events in Ω. Typical symbol: F or , , ... (if
you have Latex with the AMS package, use \mathfrak font!). We have F ⊆ Pot(Ω). If Ω is
finite, typically F = Pot(Ω). With infinite Ω, F is typically much smaller than Pot(Ω). Not any
subset of Pot(Ω) qualifies as a σ-algebra. A σ-algebra must adhere to certain structural
axioms. Here is the definition of σ-algebras:

Definition 3.1: F ⊆ Pot(Ω) is a σ-algebra if

1) Ω ∈ F,
2) A ∈ F ⇒ AC ∈ F (closure under complement),

3) for every sequence (An)n = 1, 2, ... in F, the set 
∞

=1n
nA is in F (closure under countable

union).

This definition reflects how we would like to be able to reason about events. Condition 1)
says that the "all-event" is an event, that is, the event "we observe some individual from Ω".
Condition 2) requires that if we have some event A, then we can also talk about the event "not
A". Finally, condition 3) fixes that if we have a (countable) number of events An, then the
event "we observe something from one of the An" is also a valid event.

σ-algebras are the fundamental concept of probability theory, of measure theory, and the
theory of (Lebesgue) integration.

A measureable space is an event space equipped with some σ-algebra, written (Ω, F).

A probability measure P is defined as follows:

 34

Definition 3.2: Let (Ω, F) be a measurable space. A function P: F → [0, 1] is a probability
measure on (Ω, F), if

4) P(Ω) = 1,
5) for every sequence (An)n = 1, 2, ... of pairwise disjoint events it holds that

∑
∞

=

∞

=

=
11

)()(
n

n
n

n APAP  (σ-additivity)

Remarks:

a) Conditions 1) through 5) are the Kolmogorov axioms of probability theory. In classical
statistics, these axioms are the foundation of probability theory. In Bayesian statistics,
these laws are derived from other axioms.

b) The "Bayesians" often admit in 5) only finite sequences.
c) The triple (Ω, F, P) is called a probability space.

d) Very often it holds that P(ω) = 0 or even P(A) = 0 for nonempty A. Then A is a null set.
For instance, if Ω is the set of all infinite sequences generated by some random number
generator, then P(π) = 0: the chance of obtaining the digit sequence belonging to π is zero.

e) Here are some elementary properties of probability spaces:
i) A, Β ∈ F ⇒ A ∩ Β ∈ F, A ∪ Β ∈ F, A \ Β ∈ F.

ii) ∅ ∈ F.

iii) For every sequence (An)n = 1, 2, ... of events it holds that 
∞

=1n
nA is in F.

iv) A ⊆ B ⇒ P(A) ≤ P(B).

Conditional probability. Let (Ω, F, P) be a probability space, B ∈ F an event with P(B) > 0.
The function

(3.1) P(⋅ | B): F → [0, 1]

)(
)(

BP
BAPA ∩



is again a probability measure on (Ω, F), the conditional probability under hypothesis B.

Here is a graphical display that explains how to think about conditional probabilities:

Ω

B

A2 A1

A3 P(A1 | B) = 0
P(A3 | B) = 1

P(A2 | B) =
)(
)(2

BP
BAP ∩

P(B | B) = 1

 35

Here are some rules for computing with conditional probabilities:

1) P(A ∩ B) =: P(A, Β) = P(A | B) P(B)

2) Let Ω = 
Ii

iB
∈

 with pairwise disjoint Bi. Then for every A ∈ F,

P(A) = ∑

∈Ii
ii BAPBP)|()(,

the formula of total probability.

3) Let Ω = 

Ii
iB

∈

 with pairwise disjoint Bi. Then

∑
∈

==

Ii
ii

nnnn
n BAPBP

BAPBP
AP

BAPBPABP
)|()(
)|()(

)(
)|()()|(,

which is Bayes formula.

Baysian statistics starts from rules like P(A ∩ B) =: P(A, Β) = P(A | B) P(B), which are
justified as "rational", "intuitively correct" laws of reasoning about probabilities. (To be more
precise, a Baysian statistician would write P(A ∩ B | M) =: P(A, Β | M) = P(A | B,M) P(B| M)
instead – Baysians always include a formal reference M to some prior knowledge about the
relevant domain of reality into their formulas, reflecting the fact that all intuitive reasoning
about probabilities must start from some prior assumptions about the world one is reasoning
about.)

Further elementary concepts...

Observation space. Typical symbol: (E, ). This concept is closely related to, but
fundamentally different from the measurable space (Ω, F). The basic intuition is that the
"things" in Ω are "just there as they are there" (a Kantian philosopher might think of the Ding
an und für sich, the "things as they are for themselves", not being understood or observed by
humans). In order to get access to a thing ω ∈ Ω, one has to observe or measure it. The
outcome of the observation is an object a ∈ E. In our protein example, ω might be a physical
gene coding a protein in a biochemist's sequencing apparatus, and after sequencing the gene, a
might be the formal sequence of amino acid symbols corresponding to the protein. Thus E
would be created from Ω through the measurement operation "run a gene ω through a
sequencer, transform the nucleic acid sequence into an amino acid sequence, and output the
sequence of its symbols". With another observation operation one gets another observation
space E. Taking up our example, with the measurement operation "run a gene ω through a
sequencer, transform the nucleic acid sequence into an amino acid sequence, and output the
110th symbol that you get", one would only observe genes/proteins at the 110th position. The
set of possible observation outcomes then would be the set E = {A, ..., Y}, which has 20
elements. In sum, the observation space builds on a set E that contains all possible outcomes
of observing elements ω ∈ Ω under a given observation procedure.

 36

It is very important to keep the observation space apart from the underlying probability space
with its measurable space (Ω, F). In our last example, the event space Ω of the underlying
probability space (Ω, F, P) would have as many elements as there are proteins of the family –
potentially (given the open-endedness of evolution) infinitely many. In contrast, E contains
just 20 elements.

An observation space is also equipped with a σ-algebra, . In our last example, since E is
finite, we would typically take  = Pot(E). The pair (E, ) is thus a measurable space.

Random variables, typical symbol: X. If you thoroughly understand the concept of a random
variable, nothing can happen to you in the remainder of this lecture! Formally, a random
variable is a mapping X: Ω → E, also written as X: (Ω, F, P) → (E, ). Intuitively, a random
variable describes a measurement or observation procedure. To each elementary event ω ∈ Ω,
a random variable assigns an observation, or measurement outcome, X(ω)= x ∈ E. In our
example, X would assign to every protein the amino acid symbol detected at the 110th
position.

Now comes a subtle and powerful idea. A random variable X: (Ω, F, P) → (E, ) "transports"
the probability measure P from the underlying probability space (Ω, F, P) into the observation
space, creating there another probability measure, the induced measure PX, by the
prescription

(3.2) ∀B ∈ : PX(B) = P(X−1(B))

In our example, for instance, we would have

PX("symbol A is observed") = P("all globulines that show A at position 110")

Instead of PX(B), the notation P(X ∈ B) is also used.

The observation space (E, ) is typically much smaller and has a simpler structure than the
underlying probability space (Ω, F, P). This reflects the loss of information usually incurred
by any measurement process!

Distribution. The induced probability measure PX on the observation space is called the
distribution of the random variable X.

In real-world modelling tasks, the underlying probability space (Ω, F, P) is usually an object
that we cannot directly access or model mathematically (think of how difficult it would be to
model "the set of all globulines in all organisms of past, present and future"). However, the
much simpler observation spaces with their induced probability measures (distributions) can
be analysed. Therefore,

All we have said so far is just the long, hidden story behind the simple distributions that we
are used to work with. It is the story of how axiomatic probability theory tries to come to
terms with the concept of probability. The probabilities we mostly speak of are distributions,

the main object of study in probability theory and statistics is distributions.

 37

which are "borrowed" from the underlying (but ignored) probability spaces by virtue of Eqn.
(3.2).

A cautionary remark. The distinction between the underlying probability space and
distributions is sometimes obscured in introductory textbooks that try to make life (too) easy
for the reader. In these books, the distinction between Ω and E is not made. For instance, one
may find that the set {1, 2, 3, 4, 5, 6} of possible outcomes of throwing a die is called a
probability space, and the set of probabilities of these outcomes (all 1/6 for a fair die) are
called a probability measure (used interchangeably with distribution). Technically speaking
this is admissible: because the events ω ∈ Ω are not formally defined but represent one's pre-
mathematical choice of the "piece of reality" one wants to model, one is in principle free to
choose anything for Ω, including E. But if the distinction is dropped, the intuitive
interpretation of random variables as measurement/observation operators is lost; furthermore,
some themes of advanced probability theory become impossible to treat (for instance, the
question of whether the zigzag trajectories of Brownian motion can be assumed to be
continuous).

In finite observation spaces, a distribution is most conveniently expressed by a table or a bar
chart giving the values of PX(x) = P(X = x) for all x ∈ E. In continuous-valued observation
spaces, a distribution is often represented by a probability density function (pdf is a much-
used abbreviation). For instance, the normal distribution density function with mean µ and
standard deviation σ is given by

(3.3) 2

2

2
)(

2
1)(σ

µ

σπ

−
−

=
x

exp

We use smallcap p to denote pdf's and capital P to denote probability measures or
distributions in general. For the event B = "measurement lies between 0.5 and 1.2" (note B ∈
) we can use (3.3) to calculate a probability

(3.4) ∫=∈

2.1

5.0
)()(dxxpBXP .

Note that B does not refer to a single measurement "action" – it refers to the class of all
individual measurement actions that return a value between 0.5 and 1.2. In probability theory,
when talking about distributions, the concept "event" refers not to individual observation
actions (those would be the measurements X(ω) ∈ E), but to classes of measurements, defined
by ranges of their outcomes, that is, the concept "event" refers to the B ∈ .

When it is clear from the context that one is dealing with distributions (and not with the
underlying probability space), often the induced probability measure PX is simply written as
P. In fact, most "P" symbols that you will encounter in statistics should actually be interpreted
as PX.

Numerical random variables and expectation. A random variable is numerical if the
observation space E is numerical, that is, integer-, real-, or complex-valued. The expectation
of a numerical random variable X is its "average value" and for integer-valued X is given by

(3.5) E[X] = ,)(∑

∞=

−∞=
=

i

i
iXPi

 38

and for the case of real-valued variables with pdf p is given by

(3.6) E[X] = ∫

∞=

−∞=

x

x
dxxpx)(.

Given a numerical random variable X, one obtains a random variable X' that is normalized to
zero mean by putting X' = X – E[X].

Independent and uncorrelated random variables. Let X: (Ω, F, P) → (E, ) and
Y: (Ω, F, P) → (F, ℭ) be two random variables in arbitrary observation spaces. They are
called independent if for all A ∈ , B ∈ ℭ it holds that

(3.7) P(X ∈ A, Y ∈ B) := P(X−1(A) ∩ Y−1(B)) = P(X ∈ A) P(Y ∈ B).

If X and Y are numerical RVs, then X and Y are uncorrelated if

(3.8) E[X Y] = E[X] E[Y],

or equivalently, if their covariance

(3.9) cov(X, Y) = E[(X – E[X]) (Y – E[Y])]

is zero. Only random variables with numerical values can be uncorrelated, but random
variables with values in any arbitrary observation space can be independent. Independent
numerical random variables are always uncorrelated, but uncorrelated numerical random
variables are not necessarily independent. Thus independence is a (much) stronger notion than
uncorrelatedness. Unfortunately, in analytical and computational investigations, independence
is also much more difficult to prove or use.

Side remark. A modern and fashionable field within machine learning is blind source
separation. Given n statistically independent signal sources (e.g., speakers in a room) and n
measurements which each pick up a different mixture of the source signals (e.g. microphones
placed at different positions in the room), one can use the fact that the sources are statistically
independent to learn from a training sequence of the mixed measurements a filtering device
that re-separates the signal mixtures into their independent components. The quality of the
separated signals is sometimes astounding. Applications (besides speech processing): picking
out a unborn baby's heartbeat from the "noise" signals generated inside a mother; detecting
individual signal sources in EEG mixtures of signals. Check
http://web.media.mit.edu/~paris/ica.html for pointers to people, papers, labs and striking
audio-demos. The results obtained from independence analysis with the modern techniques of
blind source separation are often much stronger than results obtained with the more traditional
and easier methods of classical linear signal analysis and filtering, which rely merely on
uncorrelatedness.

Joint and marginal distributions. Often a probability space (Ω, F, P) is observed/described
by several random variables X = (Xi)i = 1, ..., n simultaneously. These variables may take values
in different observation spaces (Ei, i). Think of this as describing a complex piece of reality
in terms of a number of different measurables, observables, concepts. One may glue the
individual random variables together in a single product random variable

 39

nini
XXX ××=⊗

∈
1},...,1{

 that takes values in the product space nini
EEE ××=⊗

∈
1},...,1{

, so the

values taken by the product random variable is an n-tuple of the individual variables' values:

(3.10)),...,())(),...,(())((11},...,1{ nnini

xxXXX =ωω=ω⊗
∈

.

The distribution

ini
XP
},...,1{∈

⊗ of this product random variable is called the joint distribution of the

random variables (Xi)i = 1, ..., n. We also write)(
},...,1{ ini
XP

∈
⊗ or simply P(X) for the joint

distribution. Notice that the joint distribution is likely to be a very unwieldy beast. To see
why, consider the simplest possible case, where all the concerned random variables are binary
(you may conceive them as Boolean observations, indicating the presence or absence of an
observation). Then the distribution P(Xi) of any individual variable is just a histogram over
the values 0 and 1. However, the joint distribution would assign a probability value to each
possible combination of the n binary observations, which makes this a histogram over 2n
arguments. In naive words, joint distributions are "exponentially more complex" than the
individual distributions. If the individual distributions are themselves not as simple as just a
binary distribution, it soon becomes practically impossible even to write down some closed
formula for characterizing the joint distribution – and the computational and computer-based
methods for handling complex distributions that we will learn about in this lecture will be
needed.

The joint distribution of a descriptive ensemble (Xi)i = 1, ..., n.comprises the complete
probabilistic information about the piece of reality that one is modelling by (Xi)i = 1, ..., n. Any
specific question that one might ask about this piece of reality can be derived from

)(
},...,1{ ini
XP

∈
⊗ . For instance, one may wish to ignore some of the descriptors and ask for the

distribution of one or a few selected observables only. Such "ignore the rest" distributions are
called marginal distributions. They can be computed, in principle, by integrating away the
others. For instance, if the joint distribution is characterized by an n-dimensional pdf g, we
could recover the pdf g1 of the marginal distribution of X1 by

(3.11) nn dxdxdxxxgxg

n

...),...,()(32111
1
∫
−ℜ

= ,

or in the discrete case, where each Xi takes values in },...,{ 1

i
m

i
i i

aaE = , the marginal
probabilities of X1 would be obtained by summing over all combinations of the other
variables' values:

(3.12)),...,,(...)(2

2
1

1
1

1
2

2

n
nx

Ea Ea
x aXaXaXPaXP

n
n

===== ∑ ∑
∈ ∈

.

Marginal distributions of more than a single variable can be computed by
integrating/summing away the remaining ones in a similar way. While thus the marginal
distributions can be recovered from the joint distribution, conversely the joint distribution can
be constructed from the marginal distributions only if the (Xi)i = 1, ..., n.are independent. Then
(and only then) it holds that the joint pdf g is

(3.13))(...)(),...,(111 nnn xgxgxxg ⋅⋅=

 40

for distributions with pdf's, and

(3.14) ∏

=

=====
ni

i
i

n
n aXPaXaXaXP

,...,1

2
2

1
1)(),...,,(.

The joint distribution)(

},...,1{ ini
XP

∈
⊗ can be factorized into a product of conditional

distributions by

(3.15)),...,|(),|()|()()(11213121},...,1{ −

∈
=⊗ nnini

XXXPXXXPXXPXPXP … .

The proof is a homework exercise.

Samples. The underlying event space Ω contains all possible individual measurable events ω
(or elementary events). In life's reality, only a small fraction ωi ∈ Ω (where i ∈ I and I is by
life's necessity finite) of all possible measurable events is realized in concrete observations.
Such a set { ωi | i ∈ I } of actually realized measureable events is called a sample. At least,
this is the strict definition of the term.

However, we have noted that statisticians prefer not to talk about measurable events ωi but
rather like to think in terms of their distributions. This is reflected in another, related usage of
the word sample, which also reflects a typical situation in the experimental sciences, namely,
that some experiment or measurement is repeated many times in order to obtain an as precise
as feasible estimate of some quantity of interest (for instance, by taking the mean over
reapeated measurements).

To model this situation the following approach is taken in statistics. The elements ω of the
underlying probability space (Ω, F, P) are taken to be the sequences of repeated experiments
– and for mathematical convenience, it is assumed that one such "repeat-experiment-session"
ω comprises infinitely many repetitions of the experiment. Next, a sequence (Xi)i ∈ Õ of
random variables is considered, where Xi(ω) refers to the i-th measurement outcome in the
repeat-experiment session ω. This is of course an idealized picture: in practice, an experiment
cannot be repeated infinitely many times. What one has in real-life, is the outcomes of n many
measurements of one repeat-experiment session ω, that is, the data that one has really
available are comprised in a vector X(ω) = (X1(ω), ..., Xn(ω)) = (x1, ..., xn) ∈ En. Such data
vectors are then called samples.

Although this might appear a bit contrived, it gives a faithful account of how research in the
empirical sciences should be carried out: In some Lab A, some quantity of interest is derived
with an as great as possible precision (implying repeated measurements) – this is, (X1(ω), ...,
Xn(ω)) is used by Lab A's statistician to estimate the quantity of interest. Another Lab B may
want to contest or improve on Lab A's result. They will also carry out a repeat-experiment
session ω', obtain a sample (X1(ω'), ..., Xn' (ω')), and infer something about the quantity of
interest from this sample. Typically, their results will somewhat deviate from Lab A's results.
The question, then, is how the conclusions obtained in Lab A from the sample (X1(ω), ...,
Xn(ω)) can be compared with the conclusions obtained in Lab B from the sample (X1(ω'), ...,
Xn' (ω')) – for instance, if n' > n, to what extent are the conclusions drawn by Lab B's

 41

statistician more reliable than the findings in Lab A? Such considerations lie at the heart of
statistics and the theory of statistical estimation (of quantities of interest from samples).

This strict understanding of a sample as (X1(ω'), ..., Xn' (ω')) is not easy to grasp, especially
because there is also a "naïve" setup of a probability model where one has only a single
random variable X. An example will be helpful to sort these subtle concepts out.

Consider an article in a medical journal where it is stated that patients with a particular form
of cancer have, with a probability of 0.1, a particular antibody A in their blood. The most
natural probability model would introduce the following items:

This natural model contrasts with the model that professional statisticians would use. They
would set up their probability space and random variables as follows:

The variables X1, X2, ... of the "professional" model would be assumed to be i.i.d., and they
would have the same distribution as the RV X from the "natural" model. Both the "naïve" and
the "professional" type of model are mathematically correct and conceptually legitimate (and
either of the two could be used for answering exam questions…).

The more complicated (and I admit: somewhat less intuitive) "professional" type of model
becomes a necessity when it comes to build the theory of statistical estimation – that is, to
understand how one can extract an estimate of the distribution PX from a sample (X1(ω), ...,
Xn(ω)) = (x1, ..., xn). This is the core task of statistics (classical and Bayesian):

Basic task of statistics. Given a sample (x1, ..., xn), find out something about the
underlying distribution PX – typically, give an estimate of PX.

"Natural" model:

Ω: set of all patients with this type of cancer (suitably restricted, e.g. all patients in

Germany who come to hospital – depends on the data source used for the journal
article)

X: measuring whether a patient carries antibody A. This would typically be effected by a
binary indicator X, i.e. the measure space E is {0,1} and for a patient ω, X(ω) = 1 iff the
patient carries antibody A.

"Professional" model:

Ω: set of all sequences of tests for antibody A that would be carried out for one study (the

original study of the journal, or some confirmation studies, or hypothetical studies of
the same sort that could be done). One ω ∈ Ω would be the suite of all such
measurements done for one study. (Again, suitable restrictions would apply, e.g. to all
such studies in Germany, or studies carried out in a particular year)

Xi: for i = 1, 2, ..., Xi(ω) is the i-th measurement of the sample for the study ω. Again, a
standard choice for the measure space would be the indicator values {0,1}.

 42

Parametrized distributions. Concretely, PX is often to be represented by some (few)
parameters. For instance, a normal distribution PX is characterized by its pdf, which in turn is
characterized by its mean µ and its standard deviation σ, that is, by two parameters. In our
amino acid example, the distribution PX of amino acid symbols at location 110 would be
represented by 20 probability values of the various possible symbols, that is, by 20
parameters. A common symbol for the set of parameters characterizing a distribution is θ.
With parametrized distributions, the basic task of statistics then spells out like this:

Note that there are other, "parameter-free" ways of characterizing a distribution – we will
soon meet some.

Estimators. Formally, the task estimating the parameters θ of a distribution from a sample
can be expressed in terms of a function Tn which assigns to each sample (X1(ω), ..., Xn(ω)) of
size n a set θ̂ of parameters. Such functions Tn: (X1(ω), ..., Xn(ω)) θ̂ are called estimators
or estimation functions. Note that Tn(X1(ω), ..., Xn(ω)) is fully determined by ω, so we might
also write Tn(ω) – that is, estimators are themselves random variables.

The art and science of statistics is to find "good" estimators. The art and science of (much of)
algorithmical modelling is to find "good" ways of describing pdf's – an analytic expression
being rather the exception than the rule, because one mostly is confronted with high-
dimensional, badly-behaved distributions for which finding an analytic pdf is all but hopeless.
(And the art and science of machine learning is to find good estimators for a kind of pdf
representation that the modellers wish to use, with a little more emphasis than in "ordinary"
statistics on efficient algorithms – T((x1, ..., xn)) must be efficiently computable, that is, one
looks for fast learning algorithm).

While the notion of an estimator typically refers to parametrized distributions, you may also
use it in a more loosely fashion for any method that creates a characterization of a distribution
from a sample.

Basic task of statistics, formulated as parameter estimation task. Given a
sample (x1, ..., xn), give an estimate θ̂ of the parameters of the distribution.

One basic task of (the statistical branch of) algorithmical modelling. Given a piece of
world (POW) that one wishes to capture in a (statistical) model, find a way to represent its
distribution(s) such that
• these distributions are complex enough to capture essential aspects of the POW, and

adapted to the particulars of the POW (e.g., a normal distribution would be incapable to
express the most interesting aspects of a stock market index)

• these distributions are simple enough to be manipulated with efficient algorithms
(aspects of memory demands, "sampling", computing probabilities of events)

• these distributions can be learned from data (the machine learning part of algorithmical
modelling)

Unlike in traditional statistics, you are allowed to use a lot of raw computational power,
heuristics, and borrow ideas from other fields such as physics, neurobiology, psychology,
evolutionary biology, or any other.

 43

3.2 Maximum-likelihood estimators

One of the most common approaches to design estimators is the maximum-likelihood
approach. It is conceptually transparent, it is a typical "frequentist" approach, and it works
well when the sample size is not too small. We will explain it with our amino acid example.

We use abbreviation D ("data") for the sample. The distribution estimation (or learning) task
is the following:

• Given: a sample D of n observations of amino acids in some location in n representatives

of some protein class. In Fig. 3.1, we would have n = 7 and for instance D = H H H H H
H L (in the location shown in the second column in Fig. 3.1) or D = K K V N E G A
(last column). Another, equivalent way to write D is as a count vector D = (n1, ..., n20)
where ni is the number of counts of the i-th amino acid symbol in the sample.

• Wanted: an estimate))(ˆ),...,(ˆ()ˆ,...,ˆ(ˆ
201 VA XX PP=θθ=θ of the 20 parameters

describing the amino acid distribution in some location over all proteins in a family.

Approach: estimate)ˆ,...,ˆ(ˆ

201 θθ=θ such that the P(D | θ) is maximized over all θ, that is,
put

(3.16) T(D) = θML = argmaxθ P(D | θ).

P(D | θ) is called the likelihood of θ given D, and often written as (θ). The notion of
likelihood must not be confused with the notion of probability – they are dual concepts.
P(D | θ) is the probability of D given θ, and it is the likelihood of θ given D.

For simple frequency counts as in our example, the ML-estimator θML can be analytically
shown to be

(3.17)),...,(),...,(201ML
20

ML
1

ML

N
n

N
n

=θθ=θ ,

where N is the sample size (here N = 7) and ni is the count number of the i-th amino acid
symbol in the sample.

This is beautifully simple and apparently convincing – but very inadequate for small sample
sizes. Consider D = H H H H H H L. The maximum-likelihood estimator would assign
zero probabilities to all amino acids except H and L. But every geneticist worth his/her salt
would expect that in the protein family at large, every other amino acid would also occur in
this location in some protein, albeit maybe rarely. But if we really assign zero probabilities to
them, we would be forced to exclude every such protein from the family, which is not
something we want to happen.

 44

ML estimators of conditional distributions with Gaussian noise. There exists an intimate
connection between ML estimators and the "method of least mean square (LMS) errors". We
first recapitulate from High School the essentials of the LMS method. It applies in regression
tasks where one wants to recover a deterministic input-output relationship from noisy
observations of the outputs. Assume a situation where a researcher manipulates some
experimental setup by subjecting it to inputs xi ∈ m, where i = 1, ..., N. The researcher
obtains scalar measurements yi as a result. An example would be a psychological experiment
where a graphical pattern is flashed on a screen at position xi = (x1

i, x2
i), and a response time yi

of the subject is measured; an other example would be a medical survey where each xi
describes a patient by a vector of diagnostic variables, and yi would be the remaining lifetime
after diagnosis. Galileo did do the same thing when he let a heavy object fall from different
heights xi (m = 1 in this case) and recorded the falling times yi (I did not check the history
books of modern physics – I just guess that Galileo did something like this). Well, this is just
the most standard situation in the empirical sciences. Now assume that the researcher knows
that there is a law of nature which deterministically establishes a function f: m → , that is,
on input xi the "true" outcome would be yi = f(xi). The researcher even knows the nature of
this function – it comes from a family parametrized by parameters

€

θ ∈ d. So the researcher
knows that f = f(θtrue) for a particular parameter vector θtrue. But, the researcher does not know
θtrue, and wants to estimate these parameters from his experimental data. For example, Galileo
(or later, Newton) might have known that the falling time y is equal to y = sqrt(2 x / g), where
g is the constant of gravitation, which would be the unknown parameter θtrue which he wanted
to estimate from his falling experiments.

In such situations, the LMS method is to estimate the sought-after θtrue as the parameter vector
which minimizes the mean square error of the observations, i.e. to calculate

(3.18)

€

ˆ θ LMS = argminθ (f (θ)(x i) − yi)
2.

i=1

N

∑

As a justification for the LMS method, you may remember from High School statements like,
"we want an estimate that punishes larger deviations from the predicted true outcome more
strongly than smaller deviations" – at least, that was how I was taught the LMS principle.
However, there is a better and more rigorous justification for the LMS method than this. This
runs as follows.

We assume that the measurement process is subject to Gaussian noise, that is, if the effective
parameter is θ, then upon input xi the observation yi will be drawn from a Gaussian
distribution centered on f(θ)(xi):

(3.19) p(y | xi, θ) =

€

1
2πσ 2

exp(− (f (θ)(x i) − y)
2

2σ 2),

where p is the pdf of the distribution of the yi and σ is the standard deviation of the Gaussian
(which we assume is the same for all possible inputs x). Assuming that the observations yi are
independent, and calling the ensemble of all outcomes yi our data D, then

(3.20)

€

p(D |{x i},θ) =
1
2πσ 2

exp(− (f (θ)(x i) − yi)
2

2σ 2)
i=1

N

∏

 45

is the likelihood of θ, or more conveniently,

(3.21) (θ) =

€

N
2πσ 2

−
1
2σ 2 (f (θ)(x i) − yi)

2

i=1

N

∑

its log likelihood. Maximizing the likelihood of θ amounts to finding

(3.22)

€

ˆ θ ML = argmaxθ − (f (θ)(x i) − yi)
2,

i=1

N

∑

which is identical to (3.18). We thus find that under an assumption of Gaussian measurement
noise, the LMS estimate of the true parameters is the maximum likelihood solution. A note on
terminology: When statisticians speak of a "regression problem", they typically refer to
exactly this situation, where the parameters of a regression function f(θ) are computed by a
LMS calculation, with the tacit understanding that this is also the ML estimate to the extent
that a Gaussian measurement noise assumption is valid.

In (very) many cases, one does not know the nature of f(θ). Then, one often resorts to the
least-committing assumption that f is linear, that is, f(x) = f(w)(x) = wT x, where T is
matrix/vector transpose. In this context the parameters θ are typically denoted by w, and
called the (linear) regression weights. The LMS/ML solution

€

ˆ w ML can then be analytically
computed in closed form via the following derivation. First observe that

(3.23)

€

ˆ w ML = argminw (wT x i − yi)
2

i=1

N

∑ = argminw (wT x i)
2 − 2wT x iyi + yi

2 .
i=1

N

∑

At the argmin, the gradient w.r.t. w

(3.24)

€

∇w = (2wTx i x i
T − 2x i

T yi
i=1

N

∑) = 2wT x i x i
T − 2 x i

T yi
i=1

N

∑
i=1

N

∑ = 0T

must be the all-zero row vector. Transposing this equation, and introducing the input data
matrix Φ = (x1 ... xN)T and an output vector y = (y1 ... yN)T, (3.24) can be written as

(3.25)

€

0 =ΦTΦw−ΦTy,

which resolves to w as

(3.26)

€

w = (ΦTΦ)−1ΦTy.

The matrix

€

(ΦTΦ)−1ΦT is known as the (left) pseudo-inverse of Φ. It generalizes the usual
matrix inverse, which is defined only for full-rank square matrices, to full-column-rank
rectangular matrices of size a × b, where a ≥ b. Indeed, it is obvious to check that

€

[(ΦTΦ)−1ΦT]Φ = Ib×b . Formula (3.26) indicates one way to compute solutions to linear
regression problems: first compute

€

(ΦTΦ)−1 , then multiply with

€

ΦTy. This is fast but prone
to numerical instability when

€

(ΦTΦ)−1 is not well-conditioned. If you call in Matlab the

 46

routine pinv (for pseudo-inverse), another algorithm is used which is slower but more stable
because it avoids to explicitly compute

€

(ΦTΦ)−1 .

3.3 The bias-variance dilemma

We have just seen how a maximum-likelihood estimator can yield clearly unsatisfactory
results. The problem we stumbled across is known as the overfitting problem, or the bias-
variance dilemma. In fact, it is a general problem that always raises its ugly head when it
comes to statistical model estimation. In a nutshell, the best model of a probability
distribution that one can get, given empirical data, is not the model yielded by maximum-
likelihood methods – because ML methods try to come as close as possible to the empirical
distribution represented by the training data; as a result, the model also "models" the purely
random fluctuations of the training data. A thorough treatment of the bias-variance dilemma
has in the last two decades been started in a modern branch of statistics called statistical
learning theory. I will here only give a traditional account of the problem, which also explains
why it is called "bias-variance" dilemma.

We consider only a special case here, which is enough to demonstrate the concept. Assume
that you possess an estimator Tn: (X1(ω), ..., Xn(ω))

€

 ˆ θ (ω) , where ∈θ̂ d. We ask the
question, how much does the estimate)(ˆ ωθ deviate, in the mean square error sense, from the

true value θ? That is, we ask for the value of])ˆ[(2θ−θE . We can compute this as follows:

(3.27)

.)]ˆ[(]])ˆ[ˆ[(

)]]ˆ[])(ˆ[ˆ[(2])]ˆ[[(]])ˆ[ˆ[(

])]ˆ[]ˆ[ˆ[(])ˆ[(

22

22

22

θ−θ+θ−θ=

θ−θθ−θ+θ−θ+θ−θ=

θ−θ+θ−θ=θ−θ

EEE

EEEEEEE

EEEE

The third term in the second line vanishes because

.00)]ˆ[(2]])ˆ[[]ˆ[)(]ˆ[(2])]ˆ[ˆ[()]ˆ[(2 =⋅θ−θ=θ−θθ−θ=θ−θθ−θ EEEEEEEE Among

the remaining two terms, the first term,]])ˆ[ˆ[(2θ−θ EE , gives the variance of the estimates,

and the second, 2)]ˆ[(θ−θE , gives the systematic (averaged) squared amount by which the

estimates deviate from the correct value. The quantity θ−θ]ˆ[E is the bias of the estimator.

Thus we have seen that the error inherent in an estimator can be split into two parts, a
variance part that captures how much the estimates scatter around the mean estimate, and a
bias part that quantifies how much the mean estimate differs from the correct value. The
lessons taught by statistical learning theory is that there is a tension between the two: within a
given class of estimators (say, neural networks) one can tune models either towards a low bias
error (by data (over-)fitting, using larger networks) or towards a low variance error (by
introducing a bias, e.g. small networks), but it is intrinsically impossible to optimize both
simultaneously.

For an elementary demonstration of the bias-variance theme, consider a situation where
θ = (µ1, µ2) is comprised of the two coordinate means of some distribution over 2. That is,
the observation space is E = 2, and measurement values Xi(ω) are vectors xi = (x1, x2)T,

 47

where superscript T denotes transpose. Now consider the following three estimators for
θ = (µ1, µ2):

where (m1, m2)T is an informed guess about true (but not precisely known) mean (µ1, µ2)T.
The following figure shows typical outcomes of applying these estimators to samples (x1, ...,
xN). It turns out that the U estimator would fare best in the sense of yielding the lowest
expected error, although it is not unbiased – its estimates will be centered not around (µ1, µ2)T
but around ((m1, m2)T + (µ1, µ2)T) / 2. Intuitively speaking, it is superior because (and if) our
guess (m1, m2)T comes close to the true value. This is a simple instance of a general principle
in designing estimators: whenever one has some prior insight in the nature of the true
parameters θ, and one finds a way to insert this knowledge into the estimator, then one may
reasonably hope that the resulting estimator is better than another estimator where this prior
knowledge has not been inserted. Since this prior knowledge will usually not exactly hit the
correct θ, it will however introduce a bias into the estimator. In the next subsection 3.4, we
will see how one can insert such prior information into an estimator in a principled fashion,
such that prior information in which we only weakly trust has a lower impact than prior
information in which we put much trust.

3.4 An estimator with Bayesian priors

In the ML-approach, the problematic zero probability estimates occurred because the
estimator exclusively used the information given by the sample. The background knowledge
that every protein expert has, namely, that every amino acid may (albeit possibly rarely) occur
at every position, was ignored. This knowledge is crucial for getting an estimator that really
makes sense, and it is the starting point in a Bayesian analysis: start from the assumption
("prior") P(θ | M) about the distribution of parameters.

€

S : (x1,...,xN) (x1 + x2) /2

€

T : (x1,...,xN) (x1 +…+ xN) /N

€

U : (x1,...,xN)1/2 ⋅
m1
m2









 + (x1 +…+ xN) /2N

 48

This needs two bits of explanation.

• The first explanation is simple: M does not refer to a measurable event [like the B in the

"classical" expression P(A | B)] but simply is the Bayesian way to make explicit that some
background knowledge, or model, M is involved. M need not (and usually cannot) be
formalized; it is a pointer to what biologists know a priori about distributions of amino
acids in families of proteins.

• The second explanation is not so simple. The distribution P(θ | M) is a hyperdistribution:
it describes how distributions (which are characterized by the various possible settings of
θ) are distributed. Syntactically, it is just a distribution of numerical values (namely, the
possible values of θ), but semantically, it is a distribution of distributions, because each
possible value of θ represents a distribution. In our protein example, the prior wisdom that
any amino acid might occur at a given site could be reflected in a choice of P(θ | M) which
would assign a relatively high (and nonzero!) pdf value to the distribution parameter θ =
(1/20, ..., 1/20).

With a Bayesion prior information P(θ | M), the biologist's background knowledge enters the
parameter estimation as follows, through Bayes' formula:

(3.28)
)()|(
)()|(

)(
)()|(

)|(
)|(),|(),|(

θθ

θθ
=

θθ
=

θθ
=θ

∫ PdDP
PDP

DP
PDP

MDP
MPMDPMDP ,

where the two rightmost terms are understood by Bayesians as a shorthand for the middle
term. P(θ | D, M) is the posterior distribution (of parameters) and P(θ | M) is the prior
distribution (of distributions...) or simply the prior.

Notice that P(θ | D, M) is a (hyper)distribution over parameters – but the target of model
estimation is some estimate value θ̂ of parameters, not a distribution over candidate values.
Therefore, Bayesian model inference must conclude with a final step where from the
distribution P(θ | D, M) a specific value θ̂ is obtained. The usual approach here is to take the
mean value of θ over this distribution, that is, calculate the mean posterior estimate

(3.29) θθθ=θ=θ ∫ dMDP),|(ˆ PME .

We will now concretely compute (3.29) step by step for our amino acid distribution problem,
where),...,(201 θθ=θ .

To start, we remark that with true),...,(201 θθ=θ the sample statistics for D should follow a
multinomial distribution, that is, the probability to obtain a sample D = (n1, ..., n20) is

(3.30) ∏
=

θ=θ
20

1201 !!
!)|(

i

n
i
i

nn
NDP


.

Next we try to fix how the prior P(θ | M) should look like. This is a subjective decision! For
reasons that will soon become clear we (and most proteinologists) opt for the Dirichlet

 49

distribution P(θ | M) = (θ | α) with parameters α = α1, ..., α20. The pdf of (θ | α) is given
by

(3.31) 







−θδ⋅θ⋅

α
=αθ ∑∏

==

−α 1)(
)(

1)|(
20

1

20

1

1

i
i

i
i
i

Z
D .

Some comments will help to make this formula look less frightening. The factor)(/1 αZ is
just there to ensure that the integral over (θ | α) is unity, that is it holds that

(3.32) ∫ ∑∏ θ







−θδ⋅θ=α

==

−α)(1)()(
20

1

20

1

1 dZ
i

i
i

i
i .

This integral has an explicit solution

(3.33)
)(
)(

)(
∑

∏
αΓ

αΓ
=α

i i

i iZ ,

where Γ is the gamma function. We don't have to understand Γ because it will later cancel
out. The δ in (3.31) is the Dirac delta function which is defined by

(3.34)




≠

=
=δ

0 if,0
0 if,1

)(
x
x

x and 1)(=δ∫ℜ xx d
n

.

Equipped with (3.30) and (3.31) we return to (3.28), which we now can calculate as a pdf:

(3.35)

)|(
)(
)(

!!
!

)|(
1

1)()(
!!

!
)|(

1
)|(

)|(),|(),|(

201

20

1

20

1

11
20

1201

α+θ
α
α+

=









−θδ⋅θ⋅αθ=

θθ
=θ

∑∏∏
==

−α−

=

D
Z
DZ

nn
N

MDP

Z
nn

N
MDP

MDP
MpMDPMDp

i
i

i
i

i

n
i

ii

D




where D + α = (n1+α1, ..., n20+α20). Because p(θ|D,M) and (θ | D+α) are probability
distribution functions, the first three multiplicative terms in the last line of (3.35) must
evaluate to unity, whereby we find

(3.36) p(θ|D,M) = (θ | D+α).

Thus we have the posterior distribution of θ. In order to arrive at the posterior mean estimator,
we integrate over the posterior distribution (of distributions!):

 50

(3.37)

,

)(
)(

)(
)(

)(
)(

)(
)(

)(
)(

1)()(

)|(
20

1

20

1

11

PME

AN
n

en
n

n
en

n
n

en
en

DZ
eDZ

dDZ

dD

ii

i iii

i ii

ii

iii

i ii

i ii

i iii

i iii

i

i
i

j

n
ji

ii

jj

+
α+

=

+α+Γ

α+Γ
⋅

α+Γ
+α+Γ

=

α+Γ

α+Γ
⋅

+α+Γ

+α+Γ
=

α+
+α+

=

θ







−θδ⋅θ⋅θα+=

θα+θθ=θ

∑
∑
∏
∑

∑
∏

∑∏∫

∫

==

−α+−

D

where by D + α + ei we mean (n1+α1+e1 , ..., n20+α20+e20); ei(n) = 1 if i = n, else 0; A = α1 +
...+α20 and in the last step we exploit Γ(x+1) = xΓ(x).

We see that the posterior mean estimator
AN

n ii
i +

α+
=θPME is rather similar to the maximum

likelihood estimator
N
ni

i =θ ML , and we can see how the parameters αi of the Dirichlet

distribution can intuitively be interpreted as "pseudo-counts". That is, the prior knowledge is
entered into the game here by augmenting the empirical counts ni with extra pseudo-counts αi.
These pseudo-counts reflect the subjective intuitions of the biologist, and there is no rigorous
rule of how to set them correctly. There are two limiting cases: if we don't add any pseudo
counts, the Bayesian approach reduces the the maximum-likelihood case, that is, only the
empirical information enters the estimation. This would drive us to the "far right" side in the
bias-variance dilemma, that is, we run danger of overfitting. If we add, on the contrary, very
large pseudo-counts, the final "estimate" will just replay the prior information with almost no
influence from the empirical information; this would put us to the far left side in the bias-
variance-dilemma, that is, we would just get our bias (the Bayesian prior) back. So the
Bayesian approach does not solve the bias-variance dilemma; it only makes it transparent and
forces the researcher to take his/her stand.

The outcome of (3.37) can be seen in yet another way, which indicates another way of how
one may work in one's personal bias into a parameter estimation. Assume that according to
your personal insight (before seeing the data) you expect that the parameters

),...,(201 θθ=θ have true values),...,(201
priorpriorprior θθ=θ . This θprior does not incorporate

any information from D and thus marks the extreme left (bias) end of the bias-variance
dilemma. (Note that θprior is not a proper Bayesian prior – a proper Bayesian prior would be a
distribution of distributions θ!). You compute the maximum-likelihood estimator

),...,(),...,(201ML
20

ML
1

ML

N
n

N
n

=θθ=θ from D. θML does not reflect any prior information, fits

the data perfectly and thus marks the extreme right end of the bias-variance-range. Now, in
order to settle at some compromise between the two extremes, construct "blended" estimators

 51

(3.38) θpost = q θprior + (1 – q) θML,

where 0 ≤ q ≤ 1. Writing θprior as),...(201

AA
prior αα

=θ and putting q = A / (N + A) and (1 –

q) = N / (N + A) yields the same result as (3.37). Note however that this procedure of linearly
blending the parameters of a "personally expected" distribution with the parameters of a ML
distribution does not universally work – not all types of parametrizations θ of distributions
allow linear blending.

The biosequence analysis textbook of Durbin et al., from which this example is taken, some
thought is given to how one should properly select the pseudo-counts. The proper exploitation
of such "soft" knowledge makes all the difference in real-life machine learning problems.

Here is a summary of Bayesian approaches to parameter estimation for parametrized
distributions:

3.5 Some general remarks on estimation theory

We have seen that even in a situation as simple as estimating the probabilities of 20 symbols
from a sample, several estimators T: (x1, ..., xn) θ̂ can be considered, which have each
their pro's and con's. This situation is typical and has spurred the development of a complete
subbranch of statistics, estimation theory. Estimation theory is concerned in defining general
quality criteria for estimators, thus helping to compare the various estimators one might think
of in a given situation. The field was pioneered by Sir Ronald Aylmer Fisher in the first half
of the 20th century.

The general approach in estimation theory is to investigate the behavior of an estimator T as
the number N of observations grows, that is, consider T as a sequence of related estimators Tn:
(x1, ..., xn) θ̂ . Note that an estimator Tn is a random variable.

Let θ0 denote the true distribution. Here are the most important quality criteria for estimators:

1. Carefully choose a prior P(θ | M) which reflects your a-priori expert belief
about how distributions θ should be distributed. If you don't know much
beforehand, P(θ | M) should be close to uniform; if you have strong
preferences for particular θ, make P(θ | M) peak strongly around the
preferred values.

2. Make your measurements and think of a proper type of distribution (here:
polynomial distribution) to obtain P(D |θ , M).

3. Use Bayes formula to obtain the posterior distribution of distributions,
P(θ | D, M).

4. Integrate over P(θ | D, M) to find the final posterior distribution θ̂ .

Always do step 1 before making measurements! If your choice of the prior
would be influenced by what you empirically observe, the Bayesian approach
becomes thoroughly flawed!

 52

1. Unbiasedness. T is unbiased if for all n, E[Tn] = θ0. In our example, ML

iθ was unbiased
but PME

iθ was not.

2. Asymptotic unbiasedness. T is asymptotically unbiased if limn→∞ E[Tn] = θ0. PME

iθ is an
example.

For the next quality criteria we need to consider a probability space (Ω, F, P) where each
ω ∈ Ω is an "experiment" in which we carry out an infinite sequence
x1, x2,... = X1(ω), X2(ω)... of measurements (so Xi is the random variable "carry out the ith
measurement within such an experiment"). Tn(ω) is then Tn(x1, ..., xn) for ω = x1, x2,....Then
we can define:

3. Strong consistency. T is strongly consistent if Tn converges to θ0 P-almost-surely, that is,
if(3.39)

(3.39) P(limn→∞ Tn(ω) = θ0) = 1

ML
iθ and PME

iθ are strongly consistent (by the law of large numbers). Explanation: The strong
law of large numbers isn't actually a law but a property of a sequence X1, X2, ... of numerical
random variables. Such a sequence obeys the strong law of large numbers if

(3.40) ∑ =∞→
=−

n

i iin
XEX

n 1
0))((1lim P-almost surely.

It holds, for instance, if all Xi are integrable, independent, and identically distributed (a
fundamental theorem of Kolmogorov). For ML

iθ , we can use the law of large numbers to

show (3.39) as follows. For a sample of size N,)(ML
, ωθ Ni = ∑ =

ω
N

j jXN 1
)(1 , where

1)(=ωjX if the j-th protein sequence in our sample has the i-th amino acid symbol in the

location of interest, else 0)(=ωjX . The Xj are integrabel, independent, and identically

distributed, so the strong law applies. The expectation of Xj is θi for all j. So we can conclude:

1

)0))(1((lim

)0))(1((lim

))(1(lim))((lim

1

1

1,

=

=θ−ω=

=θ−ω=

θ=ω=θ=ωθ

∑

∑

∑

=∞→

=∞→

=∞→∞→

i
N

j jN

i
N

j jN

i
N

j jNi
ML
NiN

X
N

P

X
N

P

X
N

PP

where the last equality is justified by the strong law. For PME
iθ a similar argument can be used.

A background note. As we have just seen, the strong law justifies that (and how, namely with

probability 1) we may interpret the limit of relative frequency counts, ∑ =∞→ ω
N

j jN X
N 1

)(1lim ,

 53

as the probability of a discrete observation outcome. This is, on the one hand, the intuitive
foundation of the frequentist approach to probability, but on the other hand, it is also a derived
result within that theory. Therefore, the law of large numbers (especially the fundamental
theorem of Kolmogorov) is a pillar in the frequentist theory of probability.

4. Weak consistency. T is weakly consistent if Tn converges to θ0 in probability, that is, if

(3.41) for all ε > 0, limn→∞ P({ω ∈ Ω | 7 Tn(ω) − θ0 7 > ε}) = 0.

Weak consistency follows from strong consistency, so our two estimators ML

iθ and PME
iθ are

weakly consistent, too. Many estimators of great practical significance in machine learning
have none of the properties 1. – 4. This is likely to happen if the estimator incorporates a
nonlinear optimum finding subroutine, which for instance is the case in most neural network
(widely used in pattern recognition) and hidden Markov model (widely used in speech
recognition) based estimators.

5. Efficiency. These critiera 1. – 4. are all-or-none, that is, an estimator either has that
property or has it not. Another kind of quality criterium asks for the relative efficiency of an
estimator, that is, how efficiently it makes use of the information contained in a sample. The
general idea is that an estimator Tn (which should be unbiased to start with) is efficient if it
has small variance σ2(Tn), that is, if the estimates θ̂ returned by Tn are scattered narrowly
around θ0. An unbiased estimator Sn is more efficient than an unbiased estimator Tn, if σ2(Sn)
> σ2(Tn).

6. Sufficiency. (Here I roughly follow the book from Duda/Hart/Stork, Section 3.6). Yet
another angle on judging the quality of estimators starts from the question whether the choice
θ of parameters is appropriate in the first place. For our amino acid example (distribution of
discrete symbols in classes) the set of class probabilities makes an obviously adequate set of
parameters; when one wants to characterize a normal distribution, one chooses θ = (µ, σ). But
what about cases where one does not have a well-founded intuition about how one should
characterize the unknown distribution with a few parameters? Assume that the unknown
distribution would rightfully be described by parameters θ, but you don't know which kind of
θ. This is a standard situation in practice, where you meet "wild" distributions that cannot be
expected to be of any known, simple kind. So you devise of a vector s of parameters that you
can estimate from data instead of θ, hoping that s contains all the relevant information about
the underlying distribution. Such a set s of parameters that you estimate from data is called a
statistic. Technically, a statistic is just some (possibly vector-valued) function s = ϕ(D). A
statistic is called sufficient if indeed it contains all the relevant information about the
underlying distribution, that is, about θ.

Intuitively, one would define s to be sufficient if

(3.42) P(θ | s, D) = P(θ | s),

that is, if s extracts from the data D all that is relevant for learning about θ. However, this
would imply that θ is taken as a random variable, a perspective not common for "classical"
statisticians, who therefore defined sufficiency in another way: a statistic s is said to be

 54

sufficient for θ if P(D | θ ,s) is independent of θ, that is, P(D | θ ,s) = P(D | s). The two ways
of defining sufficiency are equivalent. To see this, first assume the classical definition P(D | θ
,s) = P(D | s). Use the Bayesian formula to spell out P(θ | s, D) by

(3.43) P(θ | s, D) =
)|(

)|(),|(
s

ss
DP
PDP θθ

,

where the r.h.s. cancels to P(θ | s) with P(D | θ ,s) = P(D | s), yielding the Bayesian-style
definition. Conversely, if you assume P(θ | s, D) = P(θ | s), you get P(D | θ ,s) = P(D | s) by a
mirrored argument (you need the extra condition P(θ | s) ≠ 0.).

A fundamental theorem characterizes sufficient statistics as those statistics s, where P(D| θ)
can be factorized into a part that depends only on s and θ, and another part that depends only
on D:

Theorem 3.1 (factorization theorem): A statistics s is sufficient for θ if there exist functions g
and h such that P(D| θ) = g(s, θ) h(D).

For an intuitive grasp, here is a sloppy version of a proof for the ⇒ direction. Assume that s is
sufficient, and formally write P(D| θ) = P(D, s | θ) = P(D| s, θ) P(s | θ), which is equal to
P(D| s) P(s | θ) by sufficiency of s. The first factor P(D| s) is a function of D, namely,
P(D| s) = P(D| ϕ(D)). Put h(D) = P(D| s). The second factor is the desired g(s, θ) = P(s | θ).
Thus, P(D| θ) = g(s, θ) h(D) = P(s | θ) P(D| ϕ(D)).

A more detailed proof for the case of discrete distributions can be found in Duda/Hart/Stork
(p. 104). The importance of the factorization theorem lies in the fact that when we want to
check whether a statistic s is sufficient, we can restrict our analysis to the distribution P(D| θ)
instead of having to deal with P(D | θ ,s). If D = (x1, ..., xn), and the individual measurements
are statistically independent, P(D| θ) takes the simple form of

(3.44))|()|(
1

θ=θ ∏
=

n

k
kxPDP .

Specifically, the factorization theorem teaches us that a sufficient statistic depends only on the
probabilties P(xk| θ) and not on (inaccessible) assumptions on a prior P(θ).

Exponential distributions. The factorization theorem and Eq. (3.44) can be applied
particularly well if we are dealing with parametric probability distributions from the
exponential familiy. This family includes most of the standard textbook distributions, for
instance the normal, exponential, Poisson, Gamma, Beta, Bernoulli, binomial and multinomial
distributions. Exponential distributions are characterized by a pdf of the form

(3.45) p(x | θ) = α(x) exp [a(θ) + b(θ)T c(x)],

where a, b, c are linear functions.

 55

For exponential distributions, one gets a sufficient statistic by

(3.46) ∑
=

=
n

k
kxn 1

)(1 cs ,

and the two factorizing functions as

(3.47) ∏
=

α=θ+θ=θ
n

k
k

T xDhng
1

)()()],)()((exp[),(sbas .

A table containing an overview of all these expressions for a dozen or so much-used
distributions is shown in Duda/Storck/Hart p. 108-109.

Once one has a sufficient statistic s = ϕ(D) and the factorization functions, given a sample x
= (x1, ..., xn) one can find the maximum likelihood estimator MLθ through

(3.48)

).('

),(maxarg
)(),(maxarg

)|(maxarg)(

ML

ML

s

s
xs

xx

θ=

θ=

θ=

θ=θ

θ

θ

θ

g
hg

P

For the various exponential distributions, the sufficient statistics and the factorization
functions g are significantly simpler than the original formulae for the pdfs. Because very
many distributions of practical relevance are exponential, the tools of sufficient statistics and
factorization are of great practical importance.

 56

4. Linear discrimination and single-layer neural networks

In this section we will treat a special case of two-class classification, namely, linear
discrimination. Together with the maths we will introduce a particular conceptual / graphical
notation, namely, cast the classification algorithm as a neural network. Linear discrimination
is the basis for understanding more advanced techniques that we will treat later: adaptive
Wiener filters, multilayer neural networks, support vector machines. I follow closely chapter 3
of Bishop's book.

4.1. Linear discrimination: two classes

Recall. Toward the end of Section 2 we introduced discriminant functions as monotonically
increasing functions f

(4.1) yi(x) = f(p(x | Ci) P(Ci))

of the class-conditional probability times the prior. For the case of binary discrimination we
mentioned that one can introduce a single discrimination function

(4.2) y(x) = y1(x) − y2(x)

and decide that x falls into class 1 whenever y(x) > 0. We remarked at the end of that section
that it is sometimes easier to learn discriminant functions directly from the training data, than
first estimate the class-conditional distributions first and construct the discriminant function
from those distributions in the second place.

This is the approach we will take in this section: we forget (for a while) the connection of
discriminant functions with distributions and start directly from a given functional form of the
two-class discriminant function (4.2), namely, linear discriminants of the form

(4.3) y(x) = wTx + w0,

where w is a weight (column) vector and w0 is a bias (this usage of the term "bias" is
historical and not identical to the Bayesian notion of a bias we met in connection with the
bias-variance dilemma). For the case of two and three-dimensional features x = (x1, x2) or x =
(x1, x2, x3), linear discriminants can be visualized as in Fig. 4.1. See figure caption for a
geometrical interpretation.

In a neural network interpretation, a linear discriminant corresponds to a network with M + 1
input neurons, where M is the dimension of the features x, and a single output neuron, where
the output y(x) of the discriminant is read from. The first input neuron x0 receives constant
input 1, the remaining input neurons receive input x = (x1, ..., xM). The "synaptic" network
weights are w0, w1, ..., wM = (w0, wT) =w~ T. The output in this network is computed in the
output neuron by summing up the inputs, weighted by the weights, which gives

(4.4) y(x) = w~ T x~ = w0 + wTx.

 57

Fig. 4.1 Geometrical interpretation of two-class linear discriminant y(x) = wTx + w0 for two-
dimensional (left) and three-dimensional features x. A hyperplane H defined by y(x) = 0
separates the feature space into two decision regions 1 and 2. The hyperplane has
orientation perpendicular to w and distance w/0w to the origin. (Left figure after the book
from Bishop, right figure was taken from the online supplements to the book of
Duda/Hart/Stork).

The notation y(x) = w~ T x~ is often more convenient than (4.3). The network representation of
the discriminant is shown in Fig. 4.2.

Figure 4.2: A network representation of a two-class linear discriminant.

4.2 Linear discrimination: several classes

The two-class case can be extended to n classes by introducing linear discriminant functions
yk for each class:

(4.5) yk(x) = wk

Tx + wk0,

assigning an input pattern x to class k if yk(x) > yj(x) for all j ≠ k. Because yk(x) > yj(x) if yk(x)
− yj(x) > 0, the decision boundary between classes k and j are given by

x1

x2

w

1

2

y(x) = 0

w
0w

H

x0 = 1 x1 ... xM

w0
w1

wM

output y(x)

 58

(4.6) yk(x) − yj(x) = (wk − wj)
Tx + (wk0 − wj0) = 0.

The network representation of (4.5) is sketched in Fig. 4.3:

Figure 4.3: Representation of multiple linear discriminant functions.

As before in (4.4), we cover the bias by an additional constant input xi of unit size and thus
may re-write (4.5) as

(4.7) yk(x) = ∑
=

M

i
iki xw

0
.

The decision regions are now regions in M+1. They have linear hyperplanes as boundaries, as
can be seen from (4.6). Furthermore, the decision regions are connected and convex. To see
this, consider two points xA and xB, which both lie in region k. Any point x̂ that lies on a
line between xA and xB can be written as BA xxx)1(ˆ α−+α= for some 0 ≤ α ≤ 1. From the
linearity of the discriminant functions it follows that yk(x̂) > yj(x̂) for all j ≠ k. Therefore all
x̂ between xA and xB are in class k, too. This is schematically shown in Fig. 4.4.

Figure 4.4 Convexity and connectedness of linear decision regions.

4.3 Computing logistic discriminants for Gaussian class-conditional distributions

We have not yet addressed the obvious question of how the weights w and w0 can be
computed in order to yield optimal classifications. In special (and important) cases, explicit
solutions can be given. In this subsection we address the case where the class-conditional
probabilities p(x | Ci) are normal distributed. The closed-form solution in this case also

x0 = 1 x1 ... xM

... outputs ... y1(x) yn(x)

k

i

j

xA

x̂

xB

 59

reveals a connection of the discriminant function with the underlying class-conditional
probabilities p(x | Ci).

We have seen earlier in this lecture (end of Section 2) that decision regions are not affected by
wrapping the outcome of a discrimination function with a monotonically increasing function f.
Instead of using yk(x) = wk

Tx + wk0, as in (4.5), in an n-class classification network as shown
in Fig. 4.3 we may just as well use

(4.8) yk(x) = f(wk

Tx + wk0).

In the neural network metaphor, f describes how the output of the output neuron is re-shaped
after the simple summation of the incoming signals. Because in neural networks the output
values of neurons are called activations, f is called an activation function in this context. Since
the decision boundaries generated by (4.8) are still linear, this setup is still regarded as a case
of linear discrimination. The case where f is the identity is also referred to as the linear
activation function. We will later see that linear learning techniques that estimate weights for
linear activation functions can be adapted to likewise linear learning techniques that estimate
weights for nonlinear activation functions.

A common choice for a nonlinear f is the logistic function

(4.9) f(a) = ae−+1
1 .

Figure 4.5 shows a plot.

Figure 4.5 The logistic function.

The logistic function has a value range between 0 and 1; for large arguments it "saturates" at
1, which is an abstract version of the biological fact that biological neurons cannot become
activated (in the sense of average firing frequency) above a certain saturation value. Thus,
there is a biological motivation for using the logistic. The logistic function is S-shaped
("sigmoid"). There is another sigmoid function in common usage in neural networks, namely f
= tanh. This function ranges from –1 to +1 and has no good biological justification (what
would be negative activations?).

a

f(a)

1.0

0.5

0.0

-5.0 0.0 5.0

 60

However, there is also a mathematical reason for using the logistic function. Consider a two-
class problem where the class-conditional densities are given by Gaussian distributions with
equal covariance matrices Σ1 = Σ2 = Σ:

(4.10) 






 −Σ−−
Σπ

= −)()(
2
1exp

)det()2(
1)|(1

2/12/ kkMkCp µµ xxx T ,

where k = 1, 2. (A more detailed discussion of multidimensional Gaussians will be given in
Section 4.4.2).

Using Bayes' theorem, we find that the posterior probability of membership in class C1 is
given by

(4.11)

),(
1
1

)()|()()|(
)()|()|(

2211

11
1

af
e

CPCpCPCp
CPCpCp

a

=
+

=

+
=

−

xx
xx

where

(4.12)
)()|(
)()|(ln
22

11

CPCp
CPCpa

x
x

= .

If we substitute (4.10) into (4.12) we obtain [by multiplying out the expressions

)()(
2
1 1

kk µµ −Σ−− − xx T]

(4.13) a = wTx + w0,

where

(4.14)
.
)(
)(ln

2
1

2
1

)(

2

1
2

1
21

1
10

21
1

CP
CPw +Σ+Σ−=

−Σ=

−−

−

µµµµ

µµ

TT

w

Thus we see that)()()|(01 wfafCp +== xwx T , that is, the output of the first output neuron
in a two-class network (set up with two output neurons, like in the n-class network in Fig. 4.3)
can be interpreted directly as a posterior probability for class 1 if we use the weights given in
(4.14). As we have seen in Section 2.9, this gives us optimal decisions in the sense of
minimizing the probability of misclassifications.

Supplementary background information. Our findings can be generalized in several
directions.

First, using a logistic activation function together with the right weight vector gives us correct
posterior pdfs not only for class-conditional probabilities that are normal distributed, but also

 61

for any other exponential distribution. This is described in Section 6.7.1 in Bishop's book; a
special case (Bernoulli distributed class-conditional probabilities) is detailed out in Section
3.1.4 in Bishop's book.

Second, our finding can be generalized from the two-class classification task to n-class
classification. Let the summed input to the k-th output unit be given by

(4.15) ak = wk

Tx + wk0.

Define the activation of the k-th output neuron by

(4.16) yk(x) =
∑ =

n

i
a

a

i

k

e
e

1

.

This is known as the softmax "activation function". Note that the k-th output neuron must
"know" the inputs to the other output neurons to compute its own output, so the simple
network metaphor shown in Figure 4.3 does not really hold any longer, and softmax is
actually not a single-unit activation function. The softmax activation function enforces that
the sum of activations of all output units is 1, and each is nonnegative, so the vector of all
outputs is a probability vector. Using softmax output activations, for class-conditional
distributions from the exponential family one can derive closed-form solutions for the weights
wk and wk0 (as we did in Eqn. (4.14) for the two-class Gaussian case) such that the outputs
become the posterior distributions (Section 6.9 in Bishop's book).

Third, when in the binary classification task we drop the assumption of equal covariance
matrices, now having covariance matrices Σ1 and Σ2 for the two class-conditional
distributions (4.10), we end up with a quadratic function

(4.17) a = x W x + wTx + w0,

with different w and w0 than before. The decision boundaries are then quadratic hyperplanes
(hyperparaboloids).

Perceptrons. Historically, the first "neural networks" (not called like that then) for
classification tasks used another kind of activation function, namely, binary threshold
functions f(a) = −1 if a < 0, f(a) = 1 if a ≥ 0. These networks were introduced by Rosenblatt in
the early 60ies and named Perceptrons. Perceptrons were biologically inspired in a context of
visual pattern classification from pixel images. Another characteristic of perceptrons is that
they come with a particular type of feature extraction, that is, their input neurons correspond
to a particular kind of features extracted from pixel images. Figure 4.6. (redrawn from
Bishop's book) shows the setup of a perceptron. There exists a learning rule for perceptrons
that incrementally adapts network weights for maximal discrimination rates; this rule can be
proven to converge. Perceptrons are still rather popular.

 62

Figure 4.6: The perceptron's input neurons φj are patched to the input pattern by (random)
links. They typically compute their outputs by a threshold function from the sum of the
signals received through these links. Input neuron outputs are weighted, summed, and passed
through another threshold function f whose output indicates whether the pattern belongs to
class 1 or class 2 (binary classification).

4.4 The powers of, and maths behind, linear data transformations

So far we have only described linear discrimination networks and have seen that weights exist
which yield optimal decisions, if the class-conditional distributions are from the exponential
family. This is reassuring from a theoretical perspective, but does not help too much in
practice, because strong assumptions about the form of the class-conditional distributions are
needed to justify using the closed-form weight computations. In this subsection we will show
another case, of greater practical relevance, where the network weights have closed-form
solutions, without making assumptions about the form of the class-conditional distributions.

Before we embark on this topic, we will quickly refresh some linear algebra (Section 4.4.1)
and facts about multi-dimensional normal distributions (Section 4.4.2). This material is
adapted from Appendix A of the Bishop book and Appendix A.5.1 of Duda/Hart/Stork.

4.4.1 The eigenmagic of symmetric matrices

Definition. A matrix A is symmetric if its columns and rows permute, that is, A = AT.

Example. We will encounter symmetric matrices very often through covariance and
correlation matrices. Given n numerical random variables X = (X1, ..., Xn)T, their covariance
matrix Σ = (σij) is given by

(4.18) σij = Cov(Xi, Xj) = E[(Xi – E[Xi]) (Xj – E[Xj])]

and their correlation matrix R = (rij) by

(4.19) rij = E[Xi Xj], or equivalently, R = E[XXT]

Inverse. The inverse of a symmetric matrix is symmetric.

A commutative property. For symmetric matrices A and vectors u, v we have

(4.20) uTAv = vTAu.

 63

Eigenvector equations of a matrix. The eigenvectors u of an n × n matrix A (not necessarily
symmetric) by definition satisfy

(4.21) A u = λu,

where λ is an eigenvalue of A. In matrix notation, (4.21) can be rewritten as

(4.22) (A − λI) u = 0,

where I is the n × n identity matrix and 0 the n × 1 null vector. To prevent the trivial solution
u = 0, the matrix A − λI has to be singular, that is,

(4.23) det(A − λI) = 0.

Remember that the determinant of an n by n matrix M is given by

(4.24) det(M) =

€

sgn(σ) Mi,σ i
i=1

n

∏
σ ∈Sn

∑ ,

where Sn is the set of all permutations of {1, ..., n}, and sgn(σ) is +1 if σ is even, and sgn(σ) is
−1 if σ is odd. Equation (4.23) is the characteristic equation of the matrix A. When expanded
into the form (4.24), it is an n-th order polynomial in the unknown λ. The roots of this
polynomial, which may be called λ1, ..., λn, are the eigenvalues of A. When a root λi has
multiplicity 1 (that is, there is only a single root with this value), there exists a unique (up to
scaling) eigevector u to that eigenvalue. If a root λi has multiplicity k > 1, the eigenvectors to
that eigenvalue span a k'-dimensional subspace V(λi) whose dimension is at most k. This is
often stated as "the geometric multiplicity [i.e., dim(V(λi))] of λi is at most as large as the
algebraic multiplicity of λi".

Note that the roots of a polyonomial with real coefficients may be complex numbers. Thus,
even when M is real, it may have complex eigenvalues and complex eigenvectors of the form
u + iv. This does however not happen when M is symmetric:

Real eigenvalues. The eigenvalues of a real symmetric matrix A are real. Proof: Consider the
eigenvalue equation Au = λu. Premultiplication by Tu yields uuAuu TT λ= . By multiplying
out AuuT , it is easy to see that AuuT is real. Likewise, uuT is real. Therefore, λ must be
real.

Real eigenvectors suffice. The eigenvectors of a real symmetric matrix may be chosen real.
Proof: Consider A(u + iv) = λ(u + iv). Since A and λ are real, we have Au = λu and Av = λv.
This means that the subspace V(λ) in n is spanned by real eigenvectors of λ.

Orthonormal eigenvectors in symmetric matrices. Without proof I mention that an n-
dimensional symmetric matrix A has n eigenvectors spanning n. Furthermore, if A is real
and symmetric, the eigenvectors can be chosen to be real and orthonormal (that is, orthogonal
and of unit length). To see this, for real eigenvectors uj, uk (with eigenvalues λj, λk) consider

 64

(4.25) uj
T A uk = λk uj

T uk and uk
T A uj = λj uk

T uj,

which follows from (4.21). Subtracting these two equations and exploiting (4.20) we get
0 = uj

T A uk − uk
T A uj = (λk − λj) uk

T uj, from which it follows that for λk ≠ λj, uk and uj
must be orthogonal. If λk = λj, any linear combination of uk and uj is also an eigenvector; this
can be used to create a selection of pairwise orthogonal eigenvectors for the eigenvalue λk.
This gives us an altogether orthogonal set of eigenvectors, which can be then each normalized
to unit length to yield orthonormal eigenvectors, that is,

(4.26) uk

Tuj= δkj.

This has two immediate consequences. First, the matrix U = [u1 . . . un] may be assumed to be
orthonormal, that is,

(4.27) UTU = UUT = I, or equivalently, U-1 = UT.

Second, the eigenvalues can be obtained from the eigenvectors by

(4.28) uk

TA uk = λk,

which follows from (4.21) and (4.26).

Geometric interpretation. Considering that symmetric real matrices have orthonormal
eigenvectors with real-valued eigenvalues, we see that geometrically, such a matrix describes
a linear transformation of n which shrinks/expands the orthonormal coordinate system given
by the eigenvectors by the amounts given by the eigenvalues. If all eigenvalues are
nonnegative, the unit sphere in n is mapped to an ellipsoid whose central axes point in the
directions of the uk and have length λk:

Figure 4.7: A. Effects of a symmetric matrix A (with non-negative eigenvalues) transforming
the unit sphere in 2. B. Effect of applying Λ in the transformed coordinates =x~ UTx.

Eigensystem of A−1. If we multiply (4.21) by A−1 we find A−1 uk = λk

−1uk, that is, the
eigenvectors of A−1 are the same as the eigenvectors of A, and the eigenvalues of A−1 are the
λk

−1. Geometrically this means "undoing" the expansion/shrinking in the direction of the
eigenvectors.

λ1u1

λ2u2

x1

x2

u2

u1 λ1u~ 1 λ2u2

1
~x

2
~x
 u~ 2

u~ 1

A B

 65

Diagonalization and coordinate transformation. A symmetric matrix A can be
diagonalized using U. Left-multiplication of AU = [λ1 u1 . . . λn un] by UT, observing (4.26)
yields

(4.29) UTAU = Λ =

€

λ1


λn






 






 
.

Left-multiplication by UT maps eigenvectors uk on the unit vectors of n, and more generally
any x ∈ n on

(4.30)

€

˜ x =UTx.

With respect to the new coordinate system, Λ acts like A in n (see Figure 4.7 B). The effect
of UT is a rigid rotation of n.

Positive definiteness. A matrix A is positive [semi-]definite if vTAv > 0 [vTAv ≥ 0,
respectively] for all nonzero vectors v. Correlation [and hence, covariance] matrices R are
positive semidefinite. To see this, we use R = E[XXT] from (4.19) and get

(4.31)

€

vTRv = vT E[XXT]v = E[vTXXTv] = E[vTX
2
] ≥ 0.

All eigenvalues of a positive [semi-]definite matrix are positive [nonnegative]. This follows
from (4.28).

General quadratic forms. Consider a quadratic function F on n of the form

(4.32) F(x) = xTAx,

where A = (aij) is any real matrix. Replacing A by the symmetric matrix
A' = (a'ij) = ((aij − aji)/2) doesn't change F, so without loss of generality A can be assumed to
be symmetric. F can be computed using the matrix U of orthogonal eigenvectors of A, as
follows:

(4.33)

€

F(x) = xTAx
= xTUUTAUUTx
= xTUΛUTx
= ˜ x TΛ˜ x

= λi ˜ x i
2

i=1

n

∑ ,

where we used (4.26), (4.29) and (4.30). Elementary geometry tells us that the surfaces of
constant F(x) are hyperellipsoids, with principal axes having lengths proportional to

€

λk
−1/ 2 .

 66

Notice that in a symmetric matrix A need not be positive definite or semi-definite. (4)(4.33)
shows that a symmtetric matrix A is positive (semi-)definite iff all its eigenvalues are positive
(non-negative). All symmetric matrices map the unit sphere to an ellipsiod; when A has
negative eigenvalues, the mapping includes a mirroring along the associated principal
directions; when A has zero eigenvalues, the ellipsiod is degenerate (squashed to zero
thickness) in the corresponding directions.

Multi-dimensional normal distributions. Now we are equipped to understand the nature of
multi-dimensional normal distributions. Consider a vector-valued random variable X(ω) =
(X1(ω), ..., Xn(ω))T. If the outcome of the i-th measurement Xi can be considered as an
additive effect of many independent physical causes – a not too unrealistic asssumption in
many cases – then X will be (approximately) distributed according to the n-dimensional
normal distribution (this is a rough statement of the central limit theorem). Its pdf is given by

(4.34)

€

p(x) =
1

(2π)n / 2 det(Σ)1/ 2
exp − 1

2
(x −µ)T Σ−1(x −µ)









 ,

where the mean µ is the (vector) mean E[(X1, ..., Xn)T] and Σ is the n × n covariance matrix of
the random variables X1, ..., Xn. The prefactor ensures that this pdf integrates to unity; we will
ignore it in our discussion. From our discussion in 4.4.1. we know that the argument of the
exponential is a quadratic form on n, in the centered coordinates x – µ . Therefore, the
constant level lines of p(x) are hyperellipsoids with principal axes having lengths proportional
to

€

λk
1/ 2, where λk are the eigenvalues of the covariance matrix Σ. These hyperellipsoids are

centered on µ . Furthermore, the principal axes fall in the directions of orthonormal
eigenvectors uk of Σ. Figure 4.8 shows some level curves of a two-dimensional Gaussian with
a nondiagonal Σ.

Figure 4.8: A two-dimensional Gaussian with a nondiagonal Σ. Samples lie in a cloud
centered on µ .

Karhunen-Loéve transform. If we transform the vector of the centered random variable X0
= (X1−E[X1], ..., Xn−E[Xn])T by premultiplication with UT (compare (4.30)) we get a new
random variable X' = (X1', ..., Xn')T:

(4.35) X' = UT X0,

u2 u1
u2

u1 u2

 67

whose components Xk' are pairwise uncorrelated. This can be seen as follows:

(4.36)

€

E[X'X'T] =UTE[X0X0
T]U

=UTΣU
=UTUΛUTU
= Λ,

where Λ is the diagonal matrix with the eigenvalues of Σ and we observed Σ = UΛUT, which
follows from (4.29). Because Λ is diagonal form, E[Xi' Xj'] = 0 for i ≠ j. The transformation
(4.35) is not constrained to normal distributed X, but can generally be used to transform n
random variables X into another set of n random uncorrelated variables, by first normalizing
X to zero mean variables X0, then using the covariance matrix Σ and its eigenvector matrix U
to apply (4.35). This transformation is called the Karhunen-Loéve transform in the area of
signal processing; in other areas it has no special name. It is used in many techniques of signal
processing and machine learning; often filtering or learning techniques work better when the
original observations / inputs X are first decorrelated in this way.

Whitening: A very practical routine for data preprocessing. After you have decorrelated a
centered random variable X0 = (X1−E[X1], ..., Xn−E[Xn])T via (4.35), obtaining X', you can
carry out an additional step of normalizing the n signals in X0 to unit variance, by computing

(4.37)

€

X' '=
λ1
−1/ 2



λn
−1/ 2
















X'= Λ−1/ 2X',

where Λ-1/2 is the diagonal matrix of the inverse square roots of the eigenvalues of Σ. This
operation (4.37) scales the decorrelated signals X' such that they reach unit variance, which
can be checked as follows:

€

E[X' 'X' 'T] = E[Λ−1/ 2X'X'T Λ−1/ 2] = Λ−1/ 2E[X'X'T]Λ−1/ 2 = Λ−1/ 2ΛΛ−1/ 2 = I.

The overall transformation from some n-dimensional random variable X, through its centered
version X0 and decorrelation and normalization, up to X'' is called whitening, sometimes also
sphering.

Beware of the difference between true and estimated Σ. In machine learning applications
one often starts from a sample of observations xk = (xk

1, ..., xk
n)T, where k = 1, ..., N. These

observations are typically registered row-wise in a data collection matrix M = (xi
j)i=1,...,N; j=1...n.

From M one can compute an estimate

€

ˆ Σ =1/N M0
TM0 of the true correlation matrix Σ of the

centered random variable X0 = (X1−E[X1], ..., Xn−E[Xn])T which gave rise to the samples xk.
Here M0 is obtained from M by subtracting the column mean vector µ = 1/N 1N

T M from
each row in M; 1N denotes the vector of N ones. Using this estimate

€

ˆ Σ and its eigenvectors
and eigenvalues

€

ˆ U and

€

ˆ Λ , one can orthogonalize the columns of M by putting

(4.38) M' = M

€

ˆ U ,

 68

and if one wishes, further normalize the columns of M' to unit norm by putting

(4.39) M'' = M'

€

ˆ Λ -1/2 = M

€

ˆ U

€

ˆ Λ -1/2.

It is important to stay aware of the fact that this operation only decorrelates / normalizes the
particular data set that you have in M; if you would continue to use the estimates

€

ˆ Σ etc. which
you obtained from M on further (test) data not contained in M, say in a data collection matrix
K, then the columns of K would not be perfectly decorrelated / normalized by

€

ˆ U and

€

ˆ Λ .

Principal component analysis. Principal component analysis (PCA) is another close relative
in this family of basic algebraic data manipulations. Assume again that you are handling data
which are obtained from a centered random variable X0 = (X1

raw−E[X1], ..., Xn
raw −E[Xn])T,

obtained from the raw data Xraw by subtracting the expectation E[X] =: µ , and that you know
the covariance matrix Σ with its associated eigenvectors U and eigenvalues Λ (or know at
least estimates thereof). Assume furthermore that the eigenvalues are ordered to be
monotonically decreasing, i.e. λ1 ≥ λ2 ≥ ... ≥ λn. This means that the variance of the n-
dimensional signal X0 is greatest in the direction of u1, then the next greatest orthogonal
signal direction is aligned with u2, etc. See Figure 4.8 for a graphical impression (note that we
do not require X0 to be normal distributed; PCA does not need this assumption). The
eigenvectors ui are also called the principal components5 of the distribution PX0.

Now let X0(ω) = x = (x1, ..., xn) be some data point. Call the projection of x on ui, i.e. the inner
product xT ui , the loading of x on the i-th principal component. Then it holds that

(4.40) x =

€

(xTui)ui
i=1

n

∑ , or respectively

€

x raw = µ + (xTui)ui
i=1

n

∑ ,

which is just a way to state that x (or xraw, respectively) can be expressed in the orthonormal
(µ-shifted, respectively) coordinate system of the ui. Now furthermore assume that n is big –
say, in the order of hundreds or even tens of thousands; this situation easily occurs e.g. when
x is a pixel value vector of an image. Now consider what error in accuracy of representing x is
incurred if we use only a first few k of the principal components to reconstruct x, i.e. if we
consider

(4.41)

€

˜ x = (xTui)ui
i=1

k

∑ or ˜ x raw = µ + (xTui)ui
i=1

k

∑ (k << n).

The expected squared norm error between x and

€

˜ x is obtained by

• 5 beware of the wrong spelling "principle components"!

 69

(4.42)

€

E[˜ X −X
2
] = E[(XTui)ui

i= k+1

n

∑
2

] = E[(XTui)ui

2

i= k+1

n

∑]

= E[(XTui)
2

i= k+1

n

∑] = E[(XTui)
2]

i= k+1

n

∑

= E[ui
TXXTui]

i= k+1

n

∑ = ui
TΣui

i= k+1

n

∑ = ui
Tλiui

i= k+1

n

∑

= λi
i= k+1

n

∑

It is a general observation about real-world data x that the eigenvalues of the associated
covariance matrix decrease very quickly (often roughly exponentially), so the reconstruction
error (4.42) will likely be small even when only a few leading principal components are used.

PCA has very many applications. For our purposes, the most important ones are data
compression and preprocessing. Instead of storing a data point x in its raw form, i.e. as a high-
dimensional vector, one can store instead only a few loadings of x on a small number of
leading principal components. Then, an approximate version

€

˜ x (or

€

˜ x raw) of x can be
reconstructed from these loadings via (4.41). The savings in storage space can be enormous.
Furthermore, this is a simple yet powerful way to escape from the curse of dimensionality.
To break away from cursed high-dimensional raw data, use as a low-dim feature vector the
loads of each raw data sample on some leading principal components. For splendid examples,
check out Google images for "eigenfaces reconstruction" (for instance,
http://www.cse.iitk.ac.in/users/amit/courses/768/00/vamsi/ links to a nice student project
which also points out problems).

4.4.2 Generalized linear discriminants

Now we introduce a type of linear discrimination networks whose weights we will learn from
data, using a closed-form computation.

We will consider networks for n-class discrimination with linear output activation functions.
However, we will use a more general form for such networks, namely, allow that the input
patterns x are pre-processed by bank of M preprocessing filters φj, which may be nonlinear.
That is, there are M input neurons which may perform arbitrary filter functions on the patterns
x. One example of such a generalized linear discriminant is the Perceptron [except for its
nonlinear output activation function], where the input neurons each first pick some pixels and
then do some thresholding. The general form of such networks is

(4.43) yk(x) = 01

)(k
M

j jkj ww +φ∑ =
x ,

where k = 1, ..., n is the index for the classes to be discriminated (= number of output
neurons), and j = 1, ..., M is the index for the input filters (= number of input neurons). Again,
we may wish to represent the contribution of bias wk0 by a constant dummy input φ0(x) ≡ 1,
which would give us the following variant of (4.43):

 70

(4.44) yk(x) = ∑ =
φ

M

j jkjw0)(x .

Example: Radial basis function networks. A very popular type of such networks is radial
basis function networks (RBF networks). If dim(x) = d, each filter φj is a symmetric ("radial"),
typically unimodal function on d with center µ j. Gaussian density functions are a typical
choice. For Gaussians, the output φj(x) of filter φj (j > 0) is

(4.45)














σ

−
−=φ 2

2

2
exp)(

j

j
j

µx
x .

Note that (i) we do not normalize the Gaussian function here to integral 1, and (ii) although
we have an d-dimensional Gaussian, we do not have to care about a covariance matrix Σ
because we restrict ourselves to radially symmetric Gaussians.

RBF networks offer the possibility to place many fine-grained filters φj into regions of the
input space X where we need a fine-tuned discrimination, and to be more generous in "less
interesting" regions where we plant only a few broad filters. Figure 4.9. shows an example
where X is one-dimensional and where we want a high discriminiation precision around the
origin and around 1.

Figure 4.9: Radial basis functions example.

Two background notes:

Remark 1: The performance of RBF networks obviously depends on the proper sizing and
placement of the basis functions φj. These are often optimized by unsupervised training
schemes in a data-driven way. In Section 5 we will introduce such an algorithm that is often
used with RBF networks.

Remark 2: Any desired input-output mapping Fk from X to the output unit yk can be achieved
with perfect precision with networks of the kind specified by Eq. (4.43). This is trivially clear
because you may just use M = n and φj = Fk and wkj = δkj. However, more interesting results
state that any desired input-output mapping Fk can be approximated arbitrarily well with
radial basis functions of a given simple class, for instance Gaussians. The art of designing
RBF networks is to achieve good performance with as few as possible basis filters – because
the fewer filters you have, the fewer training data points you need for estimating the network
weights (another instance of the bias-variance dilemma!).

φ1 ... φM

X 0 1

 71

Let's return to the general equation (4.43). If such a network would be working perfectly, on
input xi ∈ Ck it would return an output vector ti = (0 ... 0 1 0 ... 0)T of length n, with a single 1
at position k. One natural way to specify a good set of network weights
W = (wkj)k=1,...,n; j=0,...,M is to demand that the squared error

(4.46) ∑
=

−=
N

i
ii tSE

1

2
train);(

2
1)(WxyW

is minimal, where i is the index for training patterns xi, and y(xi;W) is the output vector of a
network with weights W on input xi. Formally, we want to find network weights Wopt such
that

(4.47))(argmin trainopt WW

W
SE= .

Wopt can be calculated analytically – given the general approximation property of Eq. (4.43)
mentioned in remark 2 above, this is a piece of powerful good news.

But before we derive the solution, it is instructive to give a geometrical interpretation of the
least-squares problem in a simple case (Fig. 4.10). Consider the case where we have only two
filters φ0, φ1 (M = 1), a single output unit y (n = 1), and three training samples x1, x2, x3 (N =
3). The three values of φ1 yield a three-dimensional vector φ1 = (φ1(x1) φ1(x2) φ1(x3))T, the
three target values ti yield a likewise three-dimensional vector t, and the three identical values
of the dummy filter become φ0 = (1,1,1)T. The network outputs y(xi) = ∑ =

φ
1

0
)(

j ijjw x

become another three-dimensional vector y(W) = (y(x1) y(x2) y(x3))T, which of course
depends on the weights wj. The two vectors φ0 and φ1 span a 2-dimensional subspace S in 3.
Now, the least squares solution for the weights wj yields a vector of network outputs y which
is the orthogonal projection of t on S. Thus, the least squares solution gives us the network
output which has smallest Euclidean distance to the teacher data t.

Why is this so? Observe that in our simple case, the error equation (4.46) can be rewritten as

(4.48)

€

SE train (W) =
1
2

y(x i;W) − ti
2

i=1

N

∑ =
1
2

w jφ j (x i)j= 0

1
∑ − ti


 



2

i=1

3

∑ =

=
1
2

w jφ j − t
j= 0

1
∑

2

=
1
2
y(W) − t 2 .

Thus, SEtrain is the square of the Eucledian distance between t and y(W). Because y(W) lies in
S, the orthogonal projection of t on S minimizes the distance, and thereby the square of the
distance, which is the error SEtrain.

 72

Figure 4.10: Illustrating the geometry of least squares weights. (Redrawn from Bishop's
book).

Now we proceed to finding a numerical solution for the least squares problem. First we write
(4.46) out in full detail:

(4.49) ∑∑ ∑∑
= = ==









−φ=−=

N

i

n

k

M

j

k
iijkj

N

i
ii twtSE

1 1

2

01

2
train)(

2
1);(

2
1)(xWxyW ,

where k

it is the k-th component of the target outputs on input xi. At a minimum of SEtrain(W),
the derivatives of SEtrain(W) w.r.t. the weights must be zero. This gives us the normal
equations for the least squares problem:

(4.50) 0)()()(
2
1

1 0'
''

1 1'

2

0'

'
''' =φ








−φ=








−φ

∂

∂
∑ ∑∑∑ ∑
= == = =

ij

N

i

M

j

k
iijkj

N

i

n

k

M

j

k
iijjk

kj

twtw
w

xxx .

Assembling all these n times M equations into a matrix equation yields

(4.51) (ΦTΦ)WT = ΦTT,

where Φ has dimension N × M and elements)(ij xφ − that is, contains in its rows the filtered
input vectors to the network for the training data patterns −, and T has dimension N × n and
contains the desired target outputs for the training samples in its rows. The matrix (ΦTΦ) is
square of dimension M × M. Provided it is nonsingular, we obtain the following solution for
the weight matrix W:

(4.52) WT = (ΦTΦ)−1ΦTT =: Φ † T,

where Φ † is known as the pseudo-inverse of Φ . Note that Φ is in general a non-square
matrix and thus does not have an inverse. The name "pseudo-inverse" derives from the fact
that Φ †Φ = (ΦTΦ)−1ΦT Φ = I (but note that not in general Φ Φ† = I).

A direct calculation of (ΦTΦ)−1ΦT is prone to suffer from numerical instability, namely,
when ΦTΦ is close to singular. Then, numerical roundoff error or statistical data noise
contained in Φ becomes largely magnified through the –1 operation. This can be avoided by

φ1

φ0

y
S

t

[SEtrain(Wopt)]
1/2

 73

calculating the pseudo-inverse via the singular value decomposition of Φ . Actually, that is
how most (if not all) professional software tools do it, including Matlab and Mathematica. If
you want to see a truly beautiful introduction to singular value decompositions, check the
online tutorial of Todd Will at http://www.uwlax.edu/faculty/will/svd/index.html. Going
through this tutorial will give you perfect insight into basic matrix theory within one hour –
you should absolutely do it.

Linear regression. If one has N n-dimensional data vectors xi assembled row-wise in a data
collection matrix M of size n × N, and a target vector t of size N, the task to find weights W
which minimize the square error

(4.53) SE(W) =

€

WMT − tT
2

is known as the linear regression task; and its solution according to (4.52),

(4.54)

€

Wopt = argminW SE(W) = (M† t)T

is called the regression weights.

A cautionary remark. The least mean square solution for learning network weights from
data is easy to compute and does not require much thinking about the class-conditional
distributions of the input features xi. That's good. However, neither is linear discrimination
appropriate for all problems (they might be nonlinear), nor is it easy to find good
preprocessing filters φj if you want to tackle nonlinear classification problems (you will need
unsupervised learning techniques to optimize them), nor – even if you have found good φj – is
the least mean square approach necessarily the best you can do for training classificators
(because it tends to over-represent extreme or even outlier inputs; you may land far from the
optimal weights that would be yielded by a probabilistic approach where you first estimate the
posterior class distributions). So there is ample room for further improvements. This all said,
in practice a linear discriminant trained by minimizing square error often is a quite accurate
and certainly a very simple way to learn a classificator.

4.4.3 Slow Feature Analysis

Slow Feature Analysis (SFA) is a recently found method of machine learning which is a
beautiful illustration of the power and elegance of the basic linear algebra transformations that
we have been considering throughout this section. In my treatment I follow (often verbatim)
the 2002 article6 from Laurenz Wiskott and Terry Sejnowski where this method was first
presented. A tutorial slideshow by Laurenz is online at http://minds.jacobs-
university.de/sites/default/files/uploads/teaching/share/TutorialWiskott2008.pdf. In these
lecture notes I only outline the basic algorithm; the tutorial is rich in amazing examples.

The data on which SFA learns is a time series signal x(t) = (x1(t), ..., xl(t))T, where t = 0, ..., N.
The goal is to find an input-output function g(x) = (g1(x), ..., gJ(x))T generating a J-
dimensional output signal y(t) = (y1(t), ..., yJ(t))T, with yj(t) := gj(x(t)), which are "slow" in the
following sense. Let

€

˙ y j (t) := y j (t +1) − y j (t) be the discrete version of the "time derivative"

• 6 L. Wiskott, T. J. Sejnowski (2002): Slow Feature Analysis: Unsupervised Learning of Invariances.
Neural Computation 14, 715-770

 74

of the signal yj(t). Let <yj> =

€

1/N y j (t)t=1,...,N∑ denote the temporal average of yj(t). Then we
desire that for all j, the average squared time derivative

(4.55) Δj := Δ(yj) := <

€

˙ y j
2>

is minimal under the constraints

(4.56) <yj> = 0 (zero mean)
(4.57) <yj

2> = 1 (unit variance)
(4.58) < yj' yj > = 0 for all j' < j (decorrelation).

Equation (4.55) expresses the primary objective of minimizing the temporal variation of the
output signal. Constraints (4.56) and (4.57) help avoid the trivial solution yj(t) = const.
Constraint (4.58) guarantees that different output signal components carry different
information and do not simply reproduce each other. It also induces an order, so that y1(t) is
the optimal (slowest) output signal component, while y2(t) is a less optimal one, since it obeys
the additional constraint < y1 y2> = 0. Thus, Δ(yj') ≤ Δ(yj) if j' < j.

A general solution to this slowness optimization would try to optimize over all nonlinear
candidate functions for the gj. This task is difficult and would require methods from
variational calculus. However, there is a workaround that is used in several situations in
machine learning – in fact, it is the same trick that we used in radial basis function networks.
Namely, we first project the raw data x(t) into a rich (and possibly high-dimensional) feature
space, by using a fixed, pre-determined bank of K (nonlinear) filters φk: l → , where
k = 1, ..., K. A typical choice in SFA is to use all polynomials of the raw xi of order up to 2.
For example, if l = 2, we would use φ1 = x1, φ2 = x2, φ3 = x1x1, φ4 = x1x2, φ5 = x2x2. Applying
φ = (φ1, ..., φK)T to the input signal yields a nonlinearly expanded, K-dimensional signal

€

˜ z (t) = φ(x(t)). As a next step, we whiten the signals

€

˜ z (t) using the method from Section 4.4.2,
obtaining a new version z(t) = (z1(t), ..., zK(t))T of nonlinear transforms which satisfy

(4.59) <z> = 0 and
(4.60) <z zT > = I,

and which we will use hereafter instead of the raw x.

Just as we did in the case of RBF networks, after the nonlinear expansion (and whitening) we
will treat the optimization problem as linear in the expanded signal components zk(t). That is,
we restrict our optimization search to functions yj(t) = gj(x(t)) = wj

T z(t), where the weight
vectors wj = (wj1, ..., wjK)T are subject to learning. Now, in this setting, the objective (4.55) to
minimize <

€

˙ y j
2> reduces to find wj such that

(4.61) Δ(yj) := <

€

˙ y j
2> = wj

T <

€

˙ z ̇ z T> wj

becomes minimal, subject to the constraints (4.56) – (4.58). Constraint (4.57) and
yj(t) = wj

T z(t) and (4.60) imply that

€

w j =1, so we may restrict our search for optimal
weights to unit norm weight vectors.

 75

Observe that wj
T <

€

˙ z ̇ z T> wj is a quadratic form in w, with

€

˙ z ̇ z T being a symmetric (covariance)
matrix. Let λ1 ≤ ... ≤ λJ be the J smallest eigenvalues of

€

˙ z ̇ z T , and u1, ..., uJ the associated unit
norm eigenvectors. If you think about Figure 4.7A, you will find that wT <

€

˙ z ̇ z T> w is smallest
when w = u1. So we choose w1 = u1, which gives us y1 = w1

T z. Furthermore, the next
smallest solution which is orthogonal to y1 (constraint (4.58)!) is obtained by choosing w2 =
u2, etc. We thus end up with using for the wj the J norm-1 eigenvectors of

€

˙ z ̇ z T that
correspond to the smallest eigenvalues.

Summing up, the SFA algorithm takes us through the following steps:

1. Nonlinear expansion: transform the raw data x to (K-dimensional)

€

˜ z (t) = φ(x(t)), where
φ is some predetermined bank of nonlinear transforms (often polynomials).

2. Whiten

€

˜ z to obtain z.
3. Choose the J smallest-eigenvalue eigenvectors of

€

˙ z ̇ z T and declare them as the weights
w1, ..., wJ.

4. Then, yj = wj
T z will be the desired solutions that solve the constrained optimization

problem (4.55) – (4.58).

A didactic example. The following simple, synthetic example (taken from the Wiskott &
Sejnowski paper) illustrates the working of SFA. For explanation see figure caption.

 a) input signal x(t) b) expanded signal

€

˜ z (t) = φ(x(t)).
 Three of five components are shown.

 c) whitened ("sphered") z(t) d) time derivative signal

€

˙ z (t)

 76

 e) output signal y(t) f) input-output function g1(x)

Figure 4.11 (taken from Wiskott & Sejnowski 2002). Illustration of the learning algorithm by
means of a simplified example. (a) Input signal x(t) is given by x1(t) := sin(t) + cos2(11 t),
x2(t) := cos(11 t), t œ [0, 2], where sin(t) constitutes the slow feature signal. It results in a 2-D
trajectory where a fast parabola is evolving while slowly moving up and down. (b) Expanded
signal

€

˜ z (t) is defined as

€

˜ z 1(t) := x1(t),

€

˜ z 2(t) := x2(t), and

€

˜ z 3(t) := x2
2(t). Components x1

2(t) and
x1(t) x2(t) are left out for easier display. (c) Whitened signal z(t) has zero mean and unit
covariance matrix. Its orientation in space is algorithmically determined by the principal axes
of

€

˜ z (t) but otherwise arbitrary. (d) Time derivative signal

€

˙ z (t) . The direction of minimal
variance determines the weight vector w1. This is the direction in which the whitened signal
z(t) varies most slowly. The axes of next higher variance determine the weight vectors w2 and
w3, shown as dashed lines. (e) Projecting the whitened signal z(t) onto the w1-axis yields the
first output signal component y1(t), which is the slow feature signal sin(t). (f) The first
component g1(x1, x2) of the input-output function derived by the steps a) to e) is shown as a
contour plot.

This simple example does not reveal the true powers of SFA. One nice example that was
worked out in a partner lab of mine (Reservoir Lab, University of Gent) used SFA to train
speaker and spoken digit recognizers. The training data consisted in (suitably pre-processed)
audiorecordings of utterances of the digits "zero" to "nine", spoken by different speakers.
When SFA was used on a training audiostream where first all digits were spoken by one
speaker, then by the next speaker, etc., a speaker voice recognizer resulted because the
slowest feature was "speaker". When the single recordings were ordered in time such first all
"zero" utterances, across speakers, were displayed, then all "one" recordings etc., a spoken
digit recognizer came out – because now the slowest source of variance was the kind of digit.
The main application area of SFA seems to be in visual (video) image processing; SFA also
has been proposed as a model of how animals learn positions of landmarks (these are
persistent, i.e. slow, while the animal moves) and register them in a brain region known as
hippocampus.

 77

Take-home messages from Section 4

• In this section we "forgot" about the probabilistic approach to the classification

problem and considered the "shortcut" to estimate generalized linear discriminant
functions yk(x) = 01

)(k
M

j jkj ww +φ∑ =
x directly.

• Such discriminant functions can be seen as single-layer neural networks ("layer" refers
to a layer of weights, not neurons).

• With logistic output activation functions, the probabilistic interpretation of
discriminant functions, yk(x) = p(Ck | x), can be recovered if the class-conditional
probability distributions come from the exponential family.

• Using linear output activation functions, explicit solutions for the network weights can
be calculated that minimize the training error in the least square error sense. This also
works when the input neurons are arbitrary preprocessing filters φj.

• In SFA the same trick is used, namely, first use pre-defined nonlinear filters φj to
expand an input signal into a higher-dimensional feature space, and then use linear
methods to solve the task, which in SFA was to identify the slowest characteristics in
the input signal.

• If you know how to handle eigenvectors and eigenvalues of covariance matrices you
can get awfully far in an easy-going way – using Karhunen-Loéve, whitening, PCA to
start with and (not) ending in a variety of machine learning methods that boil down to
linear regression performed on the basis of nonlinearly transformed data, as in RBF
networks or in SFA. The method of Echo State Networks, treated in a later section of
these lecture notes, are another example of this trick.

 78

5 An unsupervised intermezzo: K-means clustering

In this lecture we almost exclusively treat supervised learning problems. Such problems are
characterized by the fact that each training sample comes with a correct target value (for
instance a class label or a regression value). The task is then to learn from the training data an
algorithm that should approximate the known target values on the training data, and
generalize well to samples not seen during training.

In unsupervised learning, no correct target values are supplied – only the input patterns xi.
The learning task is here to discover structure in the data.

For instance, the xi might be vectors of customer data of some mail order warehouse. The
company running this business is probably interested in grouping their customers into groups
that have similar customer profiles, in order to facilitate group-specific advertisment
campaigns. More generally, discovering clusters within an a priori unstructured sample set is
often a first step in exploratory data analysis in the natural and social sciences. The guiding
idea is to find K clusters such that the training samples x, x' that are assigned to the same
cluster G should lie closely together, that is, 'xx − should be small. Conversely, if x, x' are

assigned to two different clusters G, G', then 'xx − should be large. This is easy if samples x
are just numerical feature vectors. When samples come in a heterogeneous data format – for
instance, x is a description of a customer involving numerical data and class data and
symbolic descriptions – then finding a distance measure ⋅ in the first place is a challenging
task. Solving this task often requires some ingenuity, and the distance measure found may not
satisfy all the mathematical requisites of a metric. In such cases, there are many specific
clustering techniques that work with different kinds of pseudo-distances.

There are many other unsupervised data-structuring tasks besides simple clustering of real-
valued sample vectors x:

• In a time series that is generated by alternating, different generators, one might want to

discover the number of such generators and when they start and end generating a time
series (unsupervised time series segmentation). A nice example for this is the discovery of
different sleep phases in EEGs of human subjects. A common approach is to train a set of
K signal predictor devices (e.g., neural networks) in mutual competition. In such mixture
of experts training, at each time step only one of the K predictors is allowed to adjust its
parameters – namely the one that could best predict the next signal value. Starting from K
randomly initialized predictors, this setup leads to a competitive differentiation of
predictors, each of which learns to specialize on the prediction of a particular generating
mode in the time series.

• In an auditory signal that is an additive mixture of generators, one might wish to single out
the generating signals. Surprisingly enough, this is possible if the original generators are
statistically independent. Check Paris Smaragdis' FAQ page on blind signal separation
and independent component analysis at http://web.media.mit.edu/~paris/ica.html for
compelling audio demo tracks where a raw signal that is an overlay of several speakers or
muscial instruments is separated into almost crystal-clear audiotracks of the individual
speakers or instruments.

• In symbolic machine learning and data mining, there are numerous unsupervised learning
techniques that aim at distilling concise symbolic descriptions (e.g., context-free
grammars or automata) from (huge) symbolic datasets.

 79

• Another field that is, technically speaking, a case of unsupervised learning is data
compression. Here the task is to detect regularities (= redundancies) in a large dataset that
can be used to rewrite the data in a condensed form.

All in all, the field of unsupervised machine learning is as large, as important and as
fascinating as the field of supervised learning. It is sad that a semester is short and enforces
concentration on only one branch of ML. All we will do is to describe a particularly simple
technique for clustering, called K-means clustering. Without some such unsupervised
technique, one cannot really use RBF networks – the determination of well-placed and well-
shaped input filters φi is a typical unsupervised learning task.

We can be brief, because K-means clustering is almost self-explanatory. Given: a training data
set (xi)i=1,...,N = ((xi

1, ... , xi
n))i=1,...,N of real-valued feature vectors, and a number K of clusters

that one maximally wishes to obtain. The algorithm goes like this:

Initialization: randomly assign the training samples to K sets Sj (j = 1, ..., K).

Repeat: For each set Sj, compute the mean ∑ ∈
=

jS
j

j S x
x1

µ . Create new sets S'j by putting

each sample x into the set S'j where x−jµ is minimal. Dismiss empty S'j and reduce K to K'

by subtractring the number of dismissed empty sets (this happens rarely). Put Sj = S'j (for the
nonempty sets) and K = K'.

Termination criterium: Stop when in one iteration the sets remain unchanged.

It can be shown that at each iteration, the error quantity

(5.1)
2

1∑ ∑= ∈
−=

K

j S j
j

J
x

x µ

will not increase. The algorithm typically converges quickly and works well in practice. It
finds a local minimum or saddle point of J. The final clusters Sj may depend on the random
initialization. The clusters are bounded by straight-line boundaries; each cluster forms a
Voronoi cell. Thus, K-means cannot find clusters defined by nonlinear boundaries. Figure 5.1
shows an example of a clustering run using K-means.

Figure 5.1: Running K-means with K = 3 on two-
dimensional samples x. Dots mark cluster means µ j, lines
mark cluster boundaries. The algorithm terminates after
three iterations. (Picture taken from chapter 10 of the
Duda/Hart/Stork book).

 80

It is clear how K-means clustering may be used in conjunction with an RBF network. This is
how:

Problem statement: given d-dimensional training data xi (i = 1,..., N, may be preprocessed),
find a "good" number M of "good" RBF filters filters φj (j = 1,..., M) to train a RBF network
yk(x) = 01

)(k
M

j jkj ww +φ∑ =
x for n classes k = 1, ..., n.

Idea: Cluster the xi by K-means clustering, create one filter per cluster, use Gaussian RBFs
with covariance matrix Σ determined by cluster properties to represent data of each cluster.

Algorithm:

1) Use intuition (or trial and error with cross-validation...) to fix a desired target clustering

number M. Put M = K.
2) Run K-means clustering on training data xi, which partitions the training samples into M'

(maybe M' < K = M, but most likely M' = K) D1, ..., DM with means µ1, ..., µM'.
3) For cluster j (j = 1, ..., M') let j

N
j

j
',...,'1 xx be the normalized (i.e., cluster mean subtracted)

samples in Dj, and let X'j be the matrix that contains j
N

j
j

',...,'1 xx as columns. Compute the

covariance matrix Σj = X'j (X'j)T. Put 






 −Σ−−=φ −)()(
2
1exp)(1

jjjj µµ xxx T .

Notes:

The RBF filters filters φj created in this way should accomodate to the shape and orientation
of their cluster due to Σj. Some experimentation with Σj might however further improve the
overall classificator performace: one might for instance try to flatten out the filters φj for
clusters with only few members, by using κj Σj instead of Σj, where κj > 1.

Strictly speaking, we don't have a radial basis function network any more, because the filters
φj are not radially symmetric. However, one still speaks of RBF networks.

The RBF filters are derived from pdf's of multivariate Gaussians. However, they are not
strictly pdfs because our φj don't integrate to unity. For the purposes of using the φj as input
filters in a RBF network, that does not matter (the weights of the network will be adjusted
automatically to make up for different scalings of the filter functions).

What we did here is related to the task of approximating a probability distribution by a
mixture of Gaussians. What is that? Let p be some pdf over a d-dimensional sample space,
possibly shaped in a badly nonlinear and "bumpy" way. Let (µ j, Σj) [j = 1,..., M] be d-
dimensional Gaussian distributions with pdfs pj, and let p' = ∑

=

α
Mj

jj p
,...,1

, where ∑
=

=α
Mj
j

,...,1

1 , be

a mixture pdf made from the Gaussian distributions with non-negative mixture coefficients αj.
The task of finding a "good" mixture of Gaussians is to find parameters (µ j, Σj) such that p'
becomes as similar to p as possible (there are several ways to specify what "similar" means).
Our method of finding φj via K-means clustering would lead to reasonably good such
mixtures of Gaussians if we would use the true (integrating to unity) pdfs (µ j, Σj) for our φj,

 81

and would weigh them by the relative sizes of the clusters, that is, put αj = Nj/N. However,
there are better (but more complex and computationally more expensive) ways to find good
(indeed, optimal) mixture of Gaussian approximations to a target distribution (using the EM
algorithm – which we will meet later in this lecture in a different context – see Section 2.6 in
the Bishop book).

 82

6 The adaptive linear combiner

Overview. In this section we will consider a linear regression task (as opposed to the linear
classification tasks from Section 4) on time series data (as opposed to the static samples x
from Section 4), training an online adaptive filter that incrementally adapts its weights as new
data come in (as opposed to the "batch" offline least squares solutions from Section 4). The
background is signal processing / electrical engineering. The assumption that the dynamic
system we want to learn is indeed linear is often satisfied in signal processing – wired and
wireless communication channels, which are a main type of system that require signal
processing techniques, are indeed typically quite linear.

Throughout this section, I am loosely guided by the book from B. Farhang-Boroujeny,
Adaptive Filters: Theory and Applications, Wiley & Sons 1999, [IRC: TK7872.F5 F37]
which I would recommend to purchase to those students who aim at a career in signal
processing.

6.1 The adaptive linear combiner, a special Wiener filter

I start with a refresher on systems and signals terminology. A discrete-time, real-valued signal
is a left-right infinite sequence x = {x(n)} = (x(n))n ∈  ∈ . (We will only consider discrete-
time, real-valued signals here.) Note that in this section, x and {x(n)} refer to a complete
sequence of values; if we want to single out a particular signal value, we write x(n). A system
(or filter) H is a mapping from signals to signals, written y = H(x) or in graphical notation

The signal x is the input signal and y is the output signal of H. A system is linear if for all
complex constants a, b and signals x1, x2 it holds that

(6.1) H(a x1 + b x2) = H(a x1) + H(b x2).

A system is shift-invariant if

(6.2) ∀{x(n)} ∀k ∈  H({x(n – k)}) = {H({x(n)})(n – k)}.

A shift-invariant, linear system is called an LSI system for short. We will be concerned with
LSI systems exclusively.

• The unit impulse δ(n) is a signal that is defined to be 1 for n = 0 and zero elsewhere. Let

H(δ) = h be the impulse response of a system H. For an LSI H, we get the system response
on input x by convolving x with the impulse response:

(6.3) {y(n)} =

€

x(k) h(n − k)
k=−∞

∞

∑{ } = h(k) x(n − k)
k=−∞

∞

∑{ } = {x(n)}⊗ {h(n)} .

A system is causal if its current output does not depend on future inputs, or equivalently, if
h(n) = 0 for n < 0.

 H
 x y

 83

An LSI filter is a finite impulse response filter (FIR filter) if h has a finite carrier, that is, h is
zero except at a finite number of points.

We will restrict ourselves to time-domain signal representations in this section; a frequency-
domain treatment of adaptive filters is also possible but seems less common (Farhang-
Boroujeny book, Section 7).

In a causal FIR filter, the output y(n) is a linear function of a finite number of previous M
inputs x(n), x(n – 1), ..., x(n – M+1), that is,

(6.4) y(n) = .)1(

1∑ =
+−

M

j j jnxw

Engineers call this equation a transversal filter, and the engineer's (and Simulink's) way of
graphically representing it is shown in Figure 6.1.

Figure 6.1: A transversal filter (black) and an adaptive linear combiner (black plus blue). The
z−1 boxes are unit delay elements.

We will consider the task where the filter output y(n) should be made to follow a desired
teacher signal d(n) as well as possible in the mean square error sense, by adapting the weights
wj. Engineers sometimes call this setup an adaptive linear combiner (blue parts in Fig. 6.1), a
special case of Wiener filters (Wiener filters in general have a version of Eq. (6.4) where on
the lhs there are also weighted terms of the form wi y(n-k), that is, the current output depends
on previous inputs and previous outputs. If such terms are included, the impulse response of a
filter generally attains infinite length, and one has infinite impulse response (IIF) filters).
Another name for transversal filters is tapped delay line, and the filter weights are sometimes
called tap weights.

Formally, we want to find optimal weights wopt = (wopt1, ..., woptM)T such that

z-1 z-1 z-1

w1 w2 wM

x(n) x(n−1) x(n−M+1)

+
y(n)

. . .

. . .

− d(n) ε(n)

 84

(6.5) wopt =],))()([(minarg]))()([(minarg])([minarg 222 nndEnyndEnE xw
w

w
w

w
w

T−=−=ε

where x(n) = (x(n), x(n – 1), ..., x(n – M+1))T.

We could frame this in the spirit of Section 4.4 as a single-layer neural network with a single
output unit y and M input units (with no extra bias input). The training patterns would be the
x(n) and the targets would be d(n). We could use Eq. (4.52) directly to obtain an estimate for
wopt from a finite training data set comprising filter inputs x(1), ..., x(N) and desired outputs
d(M), d(M+1), ..., d(N).

However, here we want to derive an online, adaptive algorithm that updates the weights
incrementally as new training data come in. Such an adaptive procedure maintains a set of
weights w(n) at every time, and should yield the correct optimal weights in the limit of
infinite time, that is, opt)(lim ww =∞→ nn . This reflects the temporal nature of our training data,
and the common situation in signal processing that a filter should be able to track time-
varying systems online.

Wiener-Hopf equation. In order to prepare the grounds for an online learning algorithm, we
derive a variant of Eq. (4.52), the Wiener-Hopf equation, from scratch. Let

))]([()(2 nE ww ε=ξ denote the mean square error, and rewrite it as follows:

(6.6)
,2]))([(

)]()([)]()([2]))([(
))]()(())()([()(

2

2

Rwwpw
wxxwxw

xwxww

TT

TTT

TT

+−=

+−=

−−=ξ

ndE
nnEndnEndE

nndnndE

where we introduced the M x 1 cross-correlation vector of the tap inputs with the desired
signal

(6.7) p = E[x(n)d(n)] = (E[x(n)d(n)]... E[x(n−M+1)d(n)])T,

and the M x M correlation matrix

(6.8) R = E[x(n)xT(n)].

Eq. (6.6) is a quadratic function in w. Because ξ(w) cannot be negative, ξ(w) must have the
shape of a hyperparabeloid which is opened upwards. Figure 6.2 shows this function for the
case of two-dimensional w.

 85

Fig. 6.2: The performance surface, case of two-dimensional weight vectors (black parts of
this drawing taken from drip.colorado.edu/~kelvin/links/Sarto_Chapter2.ps). An adaptive
algorithm for weight determiniation would try to determine a sequence of weights ... w(n),
w(n+1), w(n+2),... that moves toward wopt (green). The eigenvectors ui of the correlation
matrix lie on the central axes of the hyperellipsiod given by the level curves of the
performance surface (red).

The function shown in Fig. 6.2 is called the performance surface of an adaptive linear
combiner. It has a minimum at wopt, which is the unique weight value where the gradient of ξ
vanishes. This gradient can be computed (by expanding (6.6), for a complete derivation see
Farhang-Boroujeny p. 53) as

(6.9) .22
1

pRw −=








∂
ξ∂

∂
ξ∂

=ξ∇
T

Mww


Putting this to zero gives us the Wiener-Hopf equation

(6.10) R wopt = p,

which yields the optimal weights by wopt = R−1p.

Note that (6.10) can be seen as a version Eq. (4.51), which was (ΦTΦ)WT = ΦTT, for the
special case where we have only a single network output unit. There are two differences. The
unimportant one is that (6.10) concerns the case of a single output, whereas (4.51) described
several outputs. The important difference is that (4.51) described weights that gave least mean
square error on a finite set of training data, whereas (6.10) describes the weights for the least
mean square error in the average over all possible signals from a probability space, which
gives rise to R.

Principle of orthogonality. In passing, we derive a fundamental property of optimally tuned
transversal filters, the principle of orthogonality, which states that the residual error is
uncorrelated to all tap inputs. While we will not use this principle in the sequel, it provides a

 w(n)
w(n+1) w(n+2)

ξmin

u1

u2

 86

deeper insight into such filters and is often exploited in the analysis and design of optimal
filters.

Using))]([(2 nE ε=ξ we have

(6.11) 








∂

ε∂
ε=

∂

ξ∂

ii w
nnE

w
)()(2 for i = 1, ..., M.

Since ε(n) = d(n) – y(n) and d(n) does not depend on wi, it holds that

(6.12)).1()()(
+−−=

∂

∂
−=

∂

ε∂ inx
w
ny

w
n

ii

Inserting this into (6.11) yields

(6.13))]1()([2 +−ε−=
∂

ξ∂ inxnE
wi

.

For optimal weights these gradients are zero, that is,

(6.14))]1()([0 opt +−ε= inxnE for i = 1, ..., M,

which is the principle of orthogonality. Intuitively, it can be re-phrased like this: "As long as
there is any correlation between a tap input and the current error, one can reduce the error
further by subtracting away this correlation through a suitable tuning of the weights".

A geometric interpretation of the principle of orthogonality is maybe more enlightening than
this rote derivation. A signal source for signals x can be modeled (under certain conditions) as
a sequence of random variables Xn, where a particular observed sequence {x(n)} is modelled
by a sequence (Xn(ω))n ∈ . Such a sequence of random variables (Xn)n ∈  is an example of a
stochastic process. Random variables Xn, Ym, etc., can be linearly combined and thus can be
conceived as vectors in a suitable vector space V (these vectors are numerical functions from
Ω to ). Such vector spaces are typically infinite-dimensional. The correlation E[X Y]
induces an inner product on such spaces, thereby a norm 2/12][XEX = and thus a metric

YXYXd −=),(, plus a notion of orthogonality: X ¶ Y iff E[X Y] = 0, that is, two such
random variables are orthogonal if they are uncorrelated. In short, we get all the conveniences
of a (pre-)Hilbert space – that is, intuitively, you can work with random variables as with
vectors of an Euclidean vector space. Now, let's reconsider our tapped delay line. The inputs
x(n), x(n – 1), ..., x(n – M+1) turn into random variables Xn, Xn-1, ..., Xn-M+1, as does the
teacher signal d(n) which becomes Dn. All of these are vectors in V. The vectors Xn, Xn-1, ...,
Xn-M+1 span an M-dimensional subspace S in V. Typically, Dn is not contained in this
subspace. The task of finding optimal weights, in this view, boils down to combine the filter
input vectors into a filter output vector Yn via Yn = w1Xn + ... + wM Xn-M+1., such that the error
signal achieves minimal norm, that is, such that 2/12/12])[(nnnnn YDEYD ξ=−=− .

Geometrically this amounts to finding the orthogonal projection of Dn on the subspace S. The
error signal ε = d – y becomes the vector En = Dn – Yn. We can simply re-use Figure 4.10 with

 87

different vector names to illustrate this. It becomes clear from Figure 6.3 that the optimal
weights lead to an error vector that is orthogonal to all the signals Xn, Xn-1, ..., Xn-M+1 – but
this is just the principle of orthogonality.

Figure 6.3: Illustration of the principle of orthogonality if x(n) is treated as a random variable.

6.2 Basic applications of adaptive linear combiners

In the previous subsection we considered the following general situation. A time series x =
{x(n)} = (x(n))n ∈  of some filter inputs is given, together with a desired filter output d =
{d(n)} = (d(n))n ∈ . We started to address the task to train a filter that on the same input x
produces an output y = {y(n)} = (y(n))n ∈  that matches d as closely as possible in the mean
square error sense. We considered tapped delay line filters, but other, more complicated filter
designs are of course also possible. Before we proceed with learning algorithms for this task,
we will briefly present some standard application situations where this task arises. In the
signal processing field, one often finds four basic applications: system identification, inverse
system identification, adaptive noise cancelling, and beamforming (design of antenna arrays).

6.2.1 System identification

This is the most basic task: reconstruct from x and d a filter ("model system", "system model",
"identification model") y that approximates d. This kind of task is called system identification.
A schematic block diagram for this kind of application looks as follows:

Xn

Xn-1

Yn

S

Dn En

 88

Figure 6.4: Schema of the system identification task.

Notes:

• The randomness that is inherent in most real-life systems is modeled by white noise ν that

is added to a deterministic system output g. This is a highly simplifying assumption
("system + noise" model). Other models of randomness might for instance have systems
whose parameters vary randomly – which leads to much more complicated maths.

• The graphical representation with the diagonal ε-arrow through the model system should
be read as "adjust model parameters such that E[|ε|2] is minimized".

• If the unknown system is shift-invariant ("stationary"), the system identification means to
find a model of the system. If however the unknown system is non-stationary, that is, its
parameters vary (slowly) over time, the system identification task means that one wants to
track the unknown system, that is, over time the model system should follow the unknown
system as closely as possible.

Examples (taken from Farhang-Boroujeny).

1. Geological exploration. At one point A, the earth surface is excited by a strong acoustic
signal x (explosion or large vibrating mass). An earth microphone is placed at a distant point
B, picking up a signal d. A model M ("dummy earth") is learnt. After M is obtained, one may
analyse the impulse response r of M. The peaks of r give indications about reflecting layers in
the earth crust between A and B, which correspond to different delayed responses pi of the
input signal x.

unknown
system

model
system

+

-

x

g
noise ν

d

 y

ε

dummy
earth

-
x

p1

vibrator
d

 y

ε

A B micro

p2

p3
noise

a. Physical setup

 89

Figure 6.5: Geological exploration via impulse response of learnt earth model.

2. Adaptive open-loop control. In general terms, an open-loop (or direct or inverse or
feedforward) controller is a device that generates an input signal u into a system (or plant)
such that the system output y follows a reference (or target) trajectory r as closely as possible.
In linear systems theory, the system is characterized by a transfer function H(ω) = Y(ω)/U(ω)
in the frequency domain (where U, Y are the frequency transforms of the input and output
signals of the system, respectively). If the controller has a transfer function H-1(ω) =
U(ω)/Y(ω), and the controller is serially connected to the plant, the two transfer functions
cancel out and r = y is obtained. One way to obtain H-1 is to identify H online as an adaptive
linear combiner and compute H-1 analytically, as shown in Fig. 6.6:

Figure 6.6: Schema of online adaptive direct control.

6.2.2 Inverse system identification

This is the second most basic task: given an unknown system that on input d produces output
x, learn an inverse system that on input x produces output d [note the reversal of variable roles
and names]. A typical setup is shown in Figure 6.7.

b. Analysis of impulse response

r

time
0

due to path p1
 due to path p2

due to path p3

controller
Ĥ -1

plant model
Ĥ

-

r u

d

 y

ε

plant
H

analytical
computation

 90

Figure 6.7: Schema of inverse system identification.

Introducing the delay z-Δ is not always necessary but typically improves stability of the learnt
system. Inverse system identification is also referred to as deconvolution because the original
system H transforms its input d by convolving it with its impulse response h.

Examples.

Equalization of a communication channel (from Farhang-Boroujeny). A prime
application of inverse system modelling is in telecommunication, where a binary signal s is
distorted when it is passed through a noisy channel H, and should be un-distorted
("equalized") by passing it through an equalizing filter with system transfer function H-1. In
order to train the equalizer, the correct signal s must be known by the receiver, where the
equalizer is trained. But of course, if s would be already known, one would not need the
communication in the first place... this hen-and-egg problem is often solved by using a
predetermined training sequence s = d. From time to time (especially at the initialization of a
transmission), the sender transmits s = d, which is already known by the receiver and enables
it to estimate an inverse channel model. But also while useful communication is taking place,
the receiver can continue to train its equalizer, as long as the receiver is successful in restoring
the binary signal s: in that case, the correctly restored signal s can be used for continued
training. The overall setup is sketched in Figure 6.8

Figure 6.8: Schema of adaptive online channel equalization. Delays are omitted.

Feedback error learning for a composite direct / feedback controller. Pure open-loop
control cannot cope with external disturbances to the plant. Furthermore, the simple setup
from Fig. 6.6 requires that for training the plant is driven by specially prepared training input,

unknown
system

H

z-Δ

+

-

x
noise ν

d y

ε

inverse model
with delay Δ

z-Δ Ĥ -1

channel
H +

-

x

 ν
s y

ε

equalizer
Ĥ -1

ŝ

.

.
 d known training

sequence

continuation

initialization

 91

a condition not desirable in true online applications where the controller has to adapt to the
plant continuously while the entire system is operating. The following scheme (proposed by
Michael Jordan in a nonlinear control context, using neural networks7) trains an open-loop
inverse controller in conjunction with the operation of a fixed feedback-controller. The
architecture is shown in Fig. 6.9.

Figure 6.9: Schema of feedback error learning for a composite control system.
Some explanations on this ingenious architecture:

• The control input u(n) is the sum of the outputs ufb(n) of the feedback controller and uff(n)

of the feedforward controller.
• If the feedforward controller works perfectly, the feedback controller detects no

discrepancy between the reference r and the plant output y and therefore produces a zero
output ufb(n) – that is, the feedforward controller sees zero error ε and does not change.

• If the feedforward controller does not work perfectly, its output ufb(n) acts as an error
signal for further adaptation of the feedforward controller. The feedforward controller
tries to minimize this "error" – that is, it changes its way to generate output uff(n) such
that the feedback controller's output is minimized, that is, such that r – y is minimized,
that is, such that the control improves.

• When the plant characteristics change, or when external disturbances set on, the feedback
controller sets on again – as does the further adaptation of the feedforward controller.
Thus, situations that cannot be handled by a pure feedforward controller are coped with
by the composite architecture, which is always operative.

6.2.3 Interference cancelling, "denoising" (from Farhang-Boroujeny)

Assume that there is a signal s + ν0 that is an additive mixture of a useful signal s and a noise
component ν0. You want to cancel the interfering component ν0 from this mixture. Assume
further that you also have another signal source ν1 that correlates strongly with ν0 but
weakly with s. In this situation you may use a denoising scheme as shown in Figure 6.10.

7 M. I. Jordan, Computational Motor Control, in M.S. Gazzaniga (ed.), The Cognitive Neurosciences, MIT Press
1995, 597-612)

feedforward
controller

feedback
controller

uff(n) r(n+1) plant

+
u(n) y(n)

z-Δ

ε = ufb(n)

 92

Figure 6.10: Schema of denoising filter.

Some explanations:

• The "error" that the adaptive denoising filter tries to minimize is s + ν0 − y.
• The only information that the filter has to achieve this is its input ν1. Because this input is

(ideally) not correlated with s, but highly correlated with ν0, all that the filter can do is to
subtract from s + ν0 whatever it finds correlates in s + ν0 with ν1. Ideally, this is ν0.
Then, the residual "error" ξmin would be just s.

• Note that the working principle behind this architecture is just an application of the
principle of orthogonality.

• This scheme is interesting (and not just a trivial subtraction of ν1 from s + ν0) because the
correlation between ν1 and ν0 may be complex, involving superposition of delayed
versions of ν0.

• Applications include cleaning up EKG signals (the ν1 signal corresponds to electrodes that
are planted on you at distant positions from the heart), distinguishing the child's
heartbeat from the mother's in prenatal diagnosis, cancelling the 50Hz background noise
found in many biological recordings, denoising of speech signals. Interference
cancelling as explained here is a traditional technique. Today, one might want to employ
the more advanced techniques of blind signal separation for similar purposes. But I
would not be surprised if most EKG recording devices sold today still use this traditional
approach.

6.2.4 Beamforming

I will only briefly mention the fourth traditional application area of adaptive filters. If one has
an array of M omnidirectional antennas, at which a mixture of M radio signals xi arrives, all of
the same frequency but coming from different directions, it is desirable in many
telecommunication applications to pick out one of M incoming signals from all the others, say
x1. This can be done by postprocessing the M antenna signals by a filter that basically cancels
the interfering signals x2, ..., xM. What is different here as compared to the other applications
of adaptive filters considered so far is that here the data vector x1, ..., xM used as input to the
filter is not temporal but spatial. However, the mathematics remain the same. The name
beamforming illustrates that by adaptation of its filter, the antenna array forms a "lobe" or
"beam", that is an angular segment in the compass circle from which it effectively receives
signals while suppressing signal input from directions outside the lobe.

denoising
filter

signal
source

s + ν0

filter
output

y

-
s

noise
source

ν0
ν1 ν1

denoised signal
~ s

 93

6.3 Gradient descent for finding optimal weights in online adaptive tasks

The solution of the Wiener-Hopf equation provides an offline algorithm to compute optimal
weights from a fixed training time series. In practice, however, one often desires an online
algorithm that incrementally improves the weights. Specifically this is the case when the
system that one wishes to model is varying over time. Then, adaptive algorithms are needed.
The terms "online" and "adaptive" have slightly different meanings. "Adaptive" refers to the
circumstance that the target system is time-varying and the model has to track the target
system. This is typically done by using online algorithms but could, in principle, be done with
an offline algorithm, too – over time, one would have to collect training sequences into a
memory, and recompute the model from scratch on new training sequences. "Online" refers to
algorithms that adapt their weights incrementally using each new data point as it comes in
while the filter is being used. That is, at every time n, a set of weights w(n) is computed, and
typically w(n) ≠ w(n+1) . For adaptive system identification tasks, online methods are in most
cases more natural, more elegant, computationally cheaper, and more precise.

In this subsection we provide and introduction to the simplest kind of online algorithms. They
rest on the idea of gradient descent: at each time n, go "downhill" on the performance surface
a little bit in the steepest direction, just like a tired mountaineer. We will first treat this task
from a theoretical perspective, assuming that the gradient is perfectly known (Subsection
6.3.1), and then describe a practical algorithm that estimates this gradient online. This
algorithm, variously known as the LMS-algorithm ("least mean square", this name is common
in signal processing), as stochastic gradient descent (common in machine learning) or as the
[Widrow-Hoff-] delta rule (in the biologically oriented neural network community). This
multitude of names indicates that this algorithm has been re-discovered independently many
times in different contexts, and it is certainly the simplest and likely the most widely used
algorithm in adaptive signal processing. (I re-discovered it myself when I started to work my
way into machine learning...) I lean on the treatment given in Farhang-Boroujeny, but any
other book on neural networks, pattern recognition or adaptive signal processing will treat this
subject, too.

6.3.1 Principles of gradient descent on quadratic performance surfaces

Further properties of the performance surface; normalized coordinates. Our goal in this
section is to find online adaptive algorithms that incrementally adapt the weights w(n) such
that the error decreases. Such algorithms (of which there are many) exploit the geometry of
the performance surface. Therefore, next we investigate this geometric object more closely.

First we use (6.6) and the Wiener-Hopf equation (6.10) to write in various ways the expected
residual error ξmin that we are left with when we have found wopt:

(6.15)
.]))([(]))([(]))([(

2]))([(
12

optopt
2

opt
2

optoptopt
2

min

pRpRwwpw

Rwwpw
−−=−=−=

+−=ξ
TTT

TT

ndEndEndE

ndE

Next we present an alternative version of the error function ξ. Observing that the paraboloid is
centered on wopt, that is has "elevation" ξmin over the weight space, and that the shape of the
paraboloid itself is determined by wTRw, we find that we can rewrite (6.6) as

 94

(6.16)
,

)()(

min

optoptmin

Rvv

wwRww
T

T

+ξ=

−−+ξ=ξ

where we introduced shifted weight coordinates v = w − wopt. Differentiating (6.16) w.r.t. v
yields

(6.17) .2
1

Rv
v

=








∂
ξ∂

∂
ξ∂

=
∂
ξ∂

T

Mvv


From our discussion in Section 4.4 we obtain immediately the following insights. Since R is
symmetric and positive semi-definite, we can write R = UTDU = UDU−1, where U contains a
set of orthonormal real eigenvectors in its columns and D is a diagonal matrix containing the
corresponding eigenvalues, which are likewise real, and non-negative. Furthermore, the
eigenvectors ui of R lie on the central axes of the hyperellipsoid formed by the contour lines
of the performance surface (see Fig. 6.2, red arrows). By left-multiplication of the shifted
coordinates v = w − wopt with UT we get new normal coordinates vUv T=~ . The coordinate
axes of the v~ system are in the direction of the eigenvectors of R, and equation (6.17)
becomes

(6.18) ,)~~(2~2~ 11
T

MM vv λλ==
∂
ξ∂

vD
v

from which we get the second derivatives

(6.19) ,)(2~ 12

2
T

Mλλ=
∂
ξ∂


v

that is, the eigenvalues of R are (up to a factor of 2) the curvatures of the performance surface
in the direction of the central axes of the hyperparabeloid. We will shortly see that the most
natural and simple adaptive learning algorithm, the LMS algorithm, depends in its efficiency
critically on these curvatures.

The basic formula for taking a small step downhill along the gradient, thereby adapting w(n)
to w(n+1), is

(6.20) w(n+1) = w(n) – µ ∇ξ(w(n)),

where µ is a stepsize parameter and ∇ξ(w(n)) is the gradient of the performance surface at
point w(n). In typical cases, µ is set to values of 1/100 to 1/1000 – we will later learn to
optimize this. We now analyze the convergence properties of the update rule (6.20). We will
operate in the normal coordinates vUv T=~ (remember v = w − wopt and TU was the matrix
containing orthonormal eigenvectors of R; further recall that R = UTDU and D contains the
eigenvalues λj of R on its diagonal). By some elementary transformations [use (6.18)] (6.20)
turns into

(6.21))(~)2()1(~ nn vDIv µ−=+ .

 95

Because I – 2µD is diagonal, this can be split up into the components of v~ , yielding

(6.22))(~)21()1(~ nvnv jjj µλ−=+ (j = 1, ..., M).

This is a geometric sequence. If started in)0(~jv , one obtains

(6.23))0(~)21()(~ j

n
jj vnv µλ−= .

The sequence w(n) converges to wopt if)(~ nv j converges to zero for all j. (6.23) implies that
this happens if and only if 1|21| <µλ− j for all j. These inequalities can be re-written as

1211 <µλ−<− j or equivalently,

(6.24) jλ<µ< /10 .

Specifically, we must make sure that max/10 λ<µ< , where maxλ is the largest eigenvalue of
R. Depending on the size of µ, the convergence behavior of (6.23) can be grouped in four
classes which may be referred to as overdamped, underdamped, and two types of unstable.
Figure 6.11 illustrates how)(~ nv j evolves in these four classes.

Figure 6.11: The development of)(~ nv j [plotted in the y-axis] vs. n [x-axis]. The qualitative
behaviour depends on the stepsize parameter µ. a. Overdamped case:)2/(10 jλ<µ< . b.
Underdamped case: jj λ<µ<λ /1)2/(1 . c. Unstable with 0<µ and d. unstable with

µ<λ j/1 . All plots start with 1)0(~ =jv .

We can find an explicit representation of w(n) if we observe that w(n) = wopt + v(n) = wopt +

)(~
1

nv jj

M

j∑ =
u , where the uj are the orthonormal eigenvectors of R. Inserting (6.23) gives us

0 20
0

1

20

a.

0 20
-40

40

0

d.

0 20
-1

1

0

b.

0
0

40

c.

 96

(6.25) w(n) = wopt + n

jj

M

j jv)21()0(~
1

µλ−∑ =
u .

This representation reveals that the convergence of w(n) toward wopt is governed by an
additive overlay of M exponential terms, each of which describes convergence in the direction
of the eigenvectors uj and is determined in its convergence speed by λj and the stepsize
parameter µ. One speaks of the M modes of convergence with geometric ratio factors

jµλ− 21 . If all eigenvalues are roughly equal, convergence rates are roughly identical in the
M directions. If however two eigenvalues are very different, say 21 λ<<λ , and µ is small
compared to the eigenvalues, then convergence in the direction of u1 will be much slower
than in the direction of u2 (see Figure 6.12).

Figure 6.12: Two quite different modes of convergence (a.) vs. rather similar modes of
convergence (b.). Plot shows contour lines of performance surface for two-dimensional
weights w = (w1, w2). Violet dotted lines indicate some initial steps of weight evolution,
starting from w(0).

Next we turn to the question how the error ξ evolves over time. Recall from (6.16) that

,min RvvT+ξ=ξ which can be re-written as vDv ~~
min

T+ξ=ξ . Thus the error in the n-th
iteration is

(6.26) ∑ =

µλ−λ+ξ=+ξ=ξ
M

j j
n

jj vnnn
1

22
minmin)0(~)21()(~)(~)(vDvT .

For suitable µ (see (6.24)), ξ(n) converges to ξmin. Plotting ξ(n) yields a graph known as
learning curve. (6.26) reveals that the learning curve is the sum of M decreasing exponentials
(plus ξmin). Figure 6.13 shows a three-mode learning curve for the case ξmin = 0, where in a.
ξ(n) is plotted on a linar scale and in b. in a logarithmic scale.

u1

u2
u2

u1 wopt wopt
a. b.

w(0) w(0)

 97

Figure 6.13: a learning curve (case ξmin = 0) with three modes of convergence.

Each of the terms n

j
2)21(µλ− is characterized by a time constant τj according to

(6.27) j

n
n

j e τ
−

=µλ− 2)21(

If µλ2 is close to zero, exp(µλ2) is close to 1+ µλ2 and thus ln(1− µλ2) ≈ − µλ2 . Using this
approximation, solving (6.27) for τj yields for the j-th mode a time constant of

(6.28)
j

j µλ
≈τ
4
1 .

That is, the convergence rate (i.e. the inverse of the time constant) of the j-th mode is
proportional to λj for very small µ.

However, this analysis is meaningless for larger µ. If we want to maximize the speed of
convergence, we should use significantly larger µ, as we will presently see. As can be seen
from Fig. 6.13 b., the final rate of convergence is dominated by the slowest mode of
convergence, which is characterized by the geometrical ratio factor

(6.29) |}21||,21max{|},...,1|21max{| minmax µλ−µλ−==µλ− Mjj .

In order to maximize convergence speed, the learning rate µ should be chosen such that (6.29)
is minimized. Some elementary considerations reveal that this minimum is attained at

|21||21| minmax µλ−=µλ− , which is equivalent to

(6.30)
maxmin

1
λ+λ

=µopt .

For this optimal learning rate, min21 λµ− opt is positive and max21 λµ− opt is negative,
corresponding to the overdamped and underdamped cases shown in Figure 6.11. However, the
two modes converge at the same speed (and all other modes are faster). Concretely, the
optimal speed of convergence is given by the geometric ratio facto

n

1.0

0.8
0.6

0.4
0.2

0
n

100

10-1

10-2

10-3

10-4

10-5

a. b.

 98

(6.31)
1/
1/21

minmax

minmax
min +λλ

−λλ
=λµ−=β opt ,

where the last term is found by substituting (6.30). This has a value between 0 and 1. There
are two extreme cases: if minmax λ=λ , then β = 0 and we have convergence in a single step. As
the ratio minmax /λλ increases, β approaches 1 and the convergence slows down toward
stillstand. The ratio minmax /λλ thus plays a fundamental role in limiting the convergence
speed of steepest descent algorithms. It is called the eigenvalue spread.

The eigenvalue spread is closely related to the spectral properties of the input process x. We
can only sketch the connection here. Recall that for a stationary stochastic process {x(n)},
φxx(k) = E[x(n) x(n−k)] is the autocorrelation function and Φxx(ω) = ∑

∞=

−∞=

ω−φ
k

k
ki

xx ek)(is its
power spectral density (or simply power spectrum or just spectrum). For each frequency –π ≤
ω < π, Φxx(ω) gives the squared contribution of that frequency (the energy of that frequency)
to x. It can be shown (details in Farhang-Boroujeny p. 97ff) that

(6.32)
).(max

),(min

max

min

ωΦ≤λ

ωΦ≥λ

ω

ω

xx

xx

Thus, if x has a flat power spectrum (i.e.,)(max)(min ωΦ≈ωΦ

ωω
xxxx), then 1/ minmax ≈λλ and

we can expect fast convergence in steepest descent algorithms – and conversely, if x has a
very uneven power distribution, steepest descent algorithms are likely to perform poorly. For
this reason, it helps to speed up convergence if the input signal x is first passed through a
whitening filter that flattens its power spectrum, before it is used as input to an adaptive filter.

6.3.2 The LMS algorithm

The update formula (6.20) for steepest gradient descent, w(n+1) = w(n) – µ ∇ξ(w(n)), is not
useful in practice because the gradient ∇ξ(w(n)) is not known. Remember that][2ε=ξ E is
the expected squared error of filter output y vs. teacher d. Given filter weights w(n), we need
to estimate the expected squared error ξ(w(n)) of the filter output generated by the filter with
weights w(n) vs. the teacher d. At first sight, what one needs to estimate an expected squared
error is time – namely, to observe the ongoing filtering with weights w(n) for some time and
then approximate))](([))((2 nEn ww ε=ξ by averaging over the errors seen in this
observation interval. But we don't have this time – because we want to update w(n) at every
time step n. One ruthless way out of this impasse is to just use the momentary squared error as
an approximation to its expected value, that is, use

(6.33) ξ(w(n)) ≈ ε2(w(n)) = 2))()()((nnnd xwT− .

Using this most brutal possible approximation, the update formula (6.20) for steepest gradient
descent becomes

(6.34) w(n+1) = w(n) – µ ∇ε2(w(n)),

 99

We can compute ∇ε2(w(n)) as follows:

(6.35)

€

∇ε2(w(n)) = 2ε(w(n))∇ε(w(n)) =

= 2ε(w(n)) ∂ε(w(n))
∂w1


∂ε(w(n))
∂wM











T

= −2ε(w(n)) ∂y(n)
∂w1

∂y(n)
∂wM











T

[use ε(n) = d(n) − y(n)]

= −2ε(w(n)) x(n)x(n −M +1)[]T

= −2ε(n) x(n)

where in the last step we simplified the notation ε(w(n)) to ε(n). Inserting this into (6.34)
gives

(6.36)

which is the weight update formula of the LMS algorithm. This formula can hardly be beaten
in simplicity and computational efficiency! For completeness, here are all the computations
needed to carry out one full step of online filtering & weight adaptation with the LMS
algorithm:

(4) read in input and compute output: y(n) = wT(n) x(n),
(4) compute current error: ε(n) = d(n) – y(n),
(4) compute weight update: w(n+1) = w(n) + 2 µ ε(n) x(n).

One fact about the LMS algorithm should always be kept in mind: being a stochastic version
of steepest gradient descent, the LMS algorithm inherits the problems connected with the
power spectrum of the input process x. It this power spectrum is very unevenly distributed, the
LMS algorithm is likely not to work satisfactorily. (As an aside, in my working with neural
networks, I tried out learning algorithms related to LMS. But the input signal to this learning
algorithm had an eigenvalue spread of 1014 to 1016, so the beautifully simple LMS algorithm
was entirely useless.)

w(n+1) = w(n) + 2 µ ε(n) x(n),

 100

Because of its eminent usefulness (if the input signal has a reasonably flat power spectrum),
the LMS algorithm has been analysed in minute detail. We conclude this section by reporting
the most important insights without mathematical derivations. At the same time we introduce
some of the standard vocabulary used in the field of adaptive signal processing.

We assume that x and d are stationary processes. The evolution w(n) of weights is now also a
stochastic process, because the LMS weight update depends on the stochastic vector x(n). One
interesting question is how fast the LMS algorithm converges in comparison with the ideal
steepest gradient descent "algorithm")(~)2()1(~ nn vDIv µ−=+ from (6.21). Because we now
have a stochastic update, the vectors)(~ nv become random variables and one can only speak
about their expected value E[)(~ nv] at time n. [Intuitively, this value would be obtained if
many (infinitely many in the limit) training runs ω of the adaptive filter would be carried out
and in each of these runs, the value of)(~ nv at time n would be taken, and an average would
be formed over all these)(~ nv .]. The following can be shown (using some additional
assumptions, namely, that µ is small and that the signal x has no substantial autocorrelation
for time spans larger than M):

(6.37))](~[)2()]1(~[nEnE vDIv µ−=+ .

Rather to our surprise, if the LMS algorithm is used, the weights converge – on average – as
fast to the optimal weights as when the ideal algorithm (6.21) is employed. Figure 6.14
depicts an overlay of the deterministic development of weights according to (6.21) (grayish
pink line) with one run of the stochastic gradient descent according to the LMS algorithm.

Figure 6.14: Illustrating the similar performance on average of deterministic (pink) and
stochastic gradient descent.

The fact that on average the weights converge to the optimal weights (cf. (6.38)) by no means
implies that)(nξ converges to ξmin. To see why, assume that at some time n, the LMS
algorithm actually would have found the correct optimal weights, that is, w(n) = wopt. What
would happen next? Well, due to the random weight adjustment, these optimal weights would
become misadjusted again in the next time step! So the best one can hope for asymptotically
is that the LMS algorithms lets the weights w(n) jitter randomly in the vicinity of wopt. But
this means that the effective best error that can be achieved by the LMS algorithm in the
asymptotic limit is not ξmin but ξmin + ξexcess, where ξexcess comes from the random
scintillations of the weight update. It is intuitively clear that ξexcess depends on the stepsize µ
− the larger µ, the larger we expect ξexcess to become. The absolute size of the excess error

u1

u2
u2

u1 wopt wopt
a. b.

w(0) w(0)

 101

ξexcess is not so interesting as is the ratio  = ξexcess/ξmin, the relative size the excess error
w.r.t. the minimal error. The quantity  is called the misadjustment and describes what
fraction of the residual error ξmin + ξexcess can be attributed to the random oscillations
effected by the stochastic weight update [i.e., ξexcess], and what fraction is inevitably due to
inherent limitations of the filter itself [i.e., ξmin]. Notice that ξexcess can in principle be brought
to zero by tuning down µ to zero – however, that would be at odds with the objective of fast
convergence.

Under some assumptions (notably, small ) and using some approximations (cf. Farhang-
Boroujeny, Section 6.3), the misadjustment can be approximated by

(6.39)  ≈ µ trace(R),

where the trace of a matrix is the sum of its diagonal elements. The misadjustment is thus
proportional to the stepsize and can be steered by setting the latter, if trace(R) is known.
Fortunately, trace(R) can be estimated online from the sequence x(n) simply and robustly
[how? – easy exercise].

This is an important insight if one wishes to track a nonstationary system adaptively while
maintaining a given misadjustment. In this situation, one commits oneself to a fixed level of
misadjustment, maintains an online estimate of trace(R), and uses µ =  / trace(R).

Another issue that one has always to be concerned about in online adaptive signal processing
is stability. We have seen in the treatment of the ideal case (Section 6.3.1) that the stepsize µ
must not exceed 1/ maxλ in order to guarantee convergence. But this result does not directly
carry over to our stochastic version of gradient descent, because it does not take into account
the stochastic jitter of the gradient descent, which is intuitively likely to be harmful for
convergence. Furthermore, the value of maxλ cannot be estimated robustly from few data
points in a practical situation. Using again middle-league maths and several approximations,
in the book of Farhang-Boroujeny the following upper bound for µ is derived:

(6.40) µ ≤ 1 / (3 trace(R))

If this bound is respected, the LMS algorithm converges stably.

In practical applications, one often wishes to achieve an initial convergence that is as fast as
possible: this can be done by using µ close to the stabilty boundary from (6.40). After some
time, when a reasonable degree of convergence has been attained, one wishes to optimize the
mismatch; then one switches into a control mode where µ is adapted dynamically according to
(6.39).

The LMS algorithm is since 40 years the workhorse of adaptive signal processing and
numerous refinements and variants have been developed. Here are some:

4) An even simpler stochastic gradient descent algorithm than LMS uses only the sign of the

error in the update, i.e. uses w(n+1) = w(n) + 2 µ sign(ε(n)) x(n). If µ is a power of 2, this
algorithm does not need a multiplication (a shift does it then) and is suitable for very high
throughput hardware implementations. There exist yet other "sign-simplified" versions of
LMS [cf. Farhang-Boroujeny p. 169]

 102

5) Online stepsize adaptation: at every update use a locally adapted stepsize µ(n) ≈ 1/(xT(n)
x(n)). This is called "Normalized LMS" or "NLMS". In practice this pure NLMS is apt to
run into stability problems; a safer version is µ(n) ≈ µ0/[xT(n) x(n) + ψ], where µ0 and ψ
are hand-tuned constants [Farhang-B. p. 172]. In my own experience, normalized LMS
sometimes works wonders in comparison with standard LMS.

6) Include a whitening mechanism into the update equation: w(n+1) = w(n) + 2 µ R−1 ε(n)
x(n). This "Newton-LMS" algorithm has a single mode of convergence, but a problem is
to obtain a good estimate of R−1. [Farhang-B. p. 210]

7) Block implementations: for very long filters (say, M > 10,000) and high update rates, even
LMS may become too slow. Various computationally efficient "block LMS" algorithms
have been designed in which the input stream is partitioned into blocks, which are
processed in the frequency domain and yield weight updates after every block only
["block LMS", cf. Farhang-B. p. 247ff].

To conclude this section, it should be said that besides LMS algorithms there is another major
class of online adaptive algorithms for tapped delay line filters, namely, recursive least
squares (RLS) filters. RLS algorithms are not steepest gradient-descent algorithms; in fact,
the background metaphor of RLS is not to minimize ξ but to minimize the error ζ(n) =

∑ =
−

n

i
iyid

1
2))()((, so the performance surface we know from LMS plays no role for RLS.

The main advantages and disadvantages of LMS vs. RLS are:

6) LMS has computational cost O(M), where M is filter length; RLS has O(M2). Also the

space complexity of RLS is an issue for long filters because it is O(M2).
7) LMS is numerically robust, RLS is plagued by numerical stability problems.
8) RLS has a single mode of convergence and converges faster than LMS, much faster when

the input signal is highly coloured.
9) RLS is more complicated than LMS and thus more difficult to implement.
10) In applications where fast tracking of highly nonstationary systems is required, LMS may

have better tracking performance than RLS.

The RLS class of algorithms has been boosted by the development of fast RLS algorithms
which reach a linear time complexity in the order of O(20 M) [Farhang-B. Section 13].

 103

7 A closer look at the bias-variance dilemma

In this short section we will give a formal treatment of the bias-variance theme. First we will
see how the relatively young statistical learning theory8 (SLT) addresses this problem. Then
we will take a more traditional stance and see how the generalization error of any learning
method is made of two components, the approximation error (squared "bias") and an
estimation error ("variance"). The approximation error captures how close the best possible
model in some model class comes to the target function; the variance measures how strongly
the learnt models adapt themselves to the random variations of individual training data sets. I
use material from Section 9.1 of the Bishop book and from the texts indicated in the
footnotes.

We consider the following situation of learning a regression model. We are given a
probability space (Ω, F, P), a random variable X with values x in k and a random variable D
with values d in . Pairs (X(ω), D(ω)) = (x, d) are argument-value pairs of some stochastic
function which we want to learn from such pairs. From an eagle's perspective, the task of
statistical learning is to estimate a function f̂ (the model that we learn) which provides the
smallest possible value of the average error R that we make when we use functions f to predict
d from x,

(7.1) R(f) = ∫ ∫

Ω ℜ×ℜ

×−=ωω−ω
k

ddPdfdPDXf DX),())(()())())(((22 xx

R(f) is called the risk in statistical learning theory. The risk can be interpreted as a
generalization error or expected test error. It is not possible to use (7.1) for minimizing the
risk because the joint distribution PX×D is unknown. All that is available for learning is a
finite sample of N instances of pairs Data = ((xi, di))i = 1,...,N – well known to us as training
data. A straightforward way to estimate f̂ is to minimize the training error Remp(f), which is
called empirical risk in statistical learning theory:

(7.2) Remp(f) = ∑
=

−
N

i
ii df

N 1

2))((1 x

We know from all our experience that a brute-force minimization of Remp(f) is likely to
succeed perfectly, yielding a model f̂ that has zero empirical risk – but generalizes poorly
because we just (over)fitted the training data. SLT is a rigorous mathematical account of this
situation. One main result gives bounds on the risk that connect the sample size N to the
model complexity of f (for the time being, think of model complexity as the number of
parameters available to tune f).

SLT assumes that models f are selected (by learning) from some family – for instance, the
family of linear neural networks, the family of linear neural networks with k neurons, or
whatever. Formally, such a family of potential models is written as (fα)α∈Λ. The risk of a

8 Recommended textbook: Vladimir N. Vapnik, The Nature of Statistical Learning Theory (Second Edition).
Springer Verlag 1999

2
. Recommended introductory paper (online via IRC): V. N. Vapnik, An Overview of

Statistical Learning Theory. IEEE Transactions on Neural Networks 10(5), 1999

 104

particular function fα from such a family is also written as R(α), the empirical risk as Remp(α).
A fundamental idea in SLT is to characterise such a family of candidate functions by their
"expressiveness", giving a single characteristic quantity that captures how "rich" the family
(fα)α∈Λ is. There are several such characteristics, but the most widely used is the Vapnik-
Chervonenkis(VC)-dimension. Here is the definition of the VC dimension for a family of
functions, for two cases: when the functions are used for binary classification tasks and when
they are used for regression tasks.

Definition 7.1 (VC dimension for indicator functions). Let (fα)α∈Λ be a family of indicator
functions (that is, 0-1-valued functions) on some vector space V. Then the VC-dimension of
(fα)α∈Λ is the maximal number h of vectors z1, ..., zh that can be shattered by functions from
(fα)α∈Λ, that is, for each of the 2h possible ways of assigning the vectors to two classes C1 and
C2, there exists one function from the family that assigns a value of 0 to the vectors in C1 and
a value of 1 to the vectors in C2. If any number of vectors can be shattered, h = ∞.

Definition 7.2 (VC dimension for real-valued functions). Let (fα)α∈Λ be a family of real-
valued functions on some vector space V. Consider the family of indicator functions
(Iα,β) α∈Λ, β∈Ñ obtained from (fα)α∈Λ by putting Iα,β(x) = 0 if fα(x) − β < 0, else 1. Then the
VC-dimension h of (fα)α∈Λ is the VC-dimension of (Iα,β) α∈Λ, β∈Ñ.

Example 1. If (fα)α∈Λ is the family of lines in the plane [more precisely, the family of
indicator functions that are 0 on one side of a line], then h = 3, because 3 points in the plane
can be separated into all possible two-class partitions by lines (Fig. 7.1 left) whereas this is
not possible for 4 points (Fig. 7.1 right).

Figure 7.1: Three points z1, z2, z3 can be shattered in the plane by lines, but with four points
there are always two (here: z2 and z3) that cannot be separated from the other two by lines.

Example 2. Let H be the Heaviside step function (recall: H(x) = 0 if x < 0, else 1). Consider
the set of linear indicator functions

(7.3) fα((x1,...,xk)) = 







α+α∑

=
0

1

k

i
ii xH

on k. This set of functions has VC dimension h = n+1.

Example 3. The VC dimension of the set of linear functions

z1 z1
z2

z4
z3

z2
z3

 105

(7.4) fα((x1,...,xk)) = 0
1

α+α∑
=

k

i
ii x

on k also has VC dimension h = n+1.

Note that in these examples, the number of free parameters α0,..., αk equals the VC-
dimension, in accordance with our old intuition that the complexity, or expressiveness, of a
class of models scales with the number of tuneable parameters. In general, however, this
correspondence need not hold:

Example 3. Let Λ be the set 1{0,1}* of all binary strings starting with a 1, interpreted as
integer numbers written in base 2. For α ∈ Λ, consider the function fα:  → {0,1} defined by

(7.5) fα(x) =
1a withstarts/ ofremainder theif1,

0a withstarts 2) base (in/ ofremainder theif,0





α

α

x
x

With this set of indicator functions, we can shatter k points z1 = 10, z2 = 100, ..., zk = 2k, (in
binary representation), for any k. To see why, consider an example where k = 4 and we want
to find an indicator function that assigns z1, z2 and z4 to class 2, z3 to class 1. We choose α =
1011 and find α/z1 = 101.1, α/z2 = 10.11, α/z3 = 1.011, α/z4 = 0.1011, that is, fα(z1) = fα(z2)
fα(z4) = 1 and fα(z3) = 0. It becomes clear from this example how we just exploit a binary shift
operation to code arbitrary class memberships. Because this works for any k, the VC
dimension of this family is infinite – although we only have a single free parameter, α.

The VC dimension is called called the capacity of a family of models. An important
contribution of SLT is that by the VC dimension / capacity it has found a rigorous and
productive method to quantify what we have earlier in the lecture called the complexity (or
expressiveness) of a class of models, and what we intuitively related to the number of
tuneable parameters. One lesson of SLT is that the sheer number of free parameters in a
model family is not always an appropriate measure of the family's modelling capacity.

Equipped with the capacity h, we can now state a fundamental result of SLT, which gives an
upper bound on the total risk R(α):

Theorem 7.1 (structural risk minimization principle9). The total risk R(α) is bounded by

(7.6) 






 η
φ+α≤α

NN
hRR)log(,)()(emp

with a probability of at least 1−η, where the confidence term φ is defined by

(7.7)
N

h
Nh

NN
h

)4/log(12log
)log(,

η−






 +
=







 η
φ .

9 given here as presented in B. Schölkopf, Support Vector Learning, GMD-Bericht Nr. 287, R. Oldenbourg
Verlag 1997

 106

Here, N is the size of the training data set and h is the VC-dimension of the family (fα)α∈Λ.

The bound in (7.6) deserves some comment. It is intended as a guide in situations where we
have small training samples, where "small" means that the ratio N/h is small, say, N/h < 20. In
this condition, the confidence term increases with h. If we wish to control the risk we can
adjust two quantities, the empirical risk and the confidence term. The empirical risk becomes
smaller when we fit our training data better – which we can achieve by increasing h, that is,
use more complex models. However, by increasing h at the same time we increase the
confidence term. Thus we fare best at some compromise value of h.

Concretely, SLT proposes to do the following. Instead of considering a single family (fα)α∈Λ,
a sequence of families (fnα)α∈Λn is considered, such that the corresponding capacities hn form
an increasing sequence h1 ≤ h2 ≤ ... ≤ hn ≤ This could, for instance, be achieved by
considering families of neural networks with increasing numbers of neurons. The capacity is
used as a control parameter to optimize the final risk, that is, to minimize the generalization
error. One considers the sum of the empirical risk and the confidence term, according to (7.6),
and selects that hi which makes this minimal. Figure 7.2 shows the error curves.

Figure 7.2 Optimal model capacity as a compromise between conflicting demands of small
training error vs. small confidence term.

This principle for defining and finding an optimal tradeoff between small training error and a
small confidence term is called the principle of structural risk minimization in SLT. It can be
regarded as one way to deal with the bias-variance dilemma. SLT offers numerous concrete
techniques for various types of learning problems to implement the principle of structural risk
minimization. The most conspicuous contribution of SLT is, however, that it gives a
theoretical foundation for support vector machines, a relatively recent technique for learning
classification functions. From a SLT perspective, support vector machines are distinguished
by the fact that they have a huge number of tuneable parameters but a small VC dimension
(just the contrary of our binary shift example 3 from above!). The huge number of tuneable
parameters brings with it a small training error, which is however not bought at the expense of
a bad generalization error, because the confidence term can be kept small due to the small h.

After this glimpse on SLT we re-address the bias-variance dilemma from a more traditional
angle. We will finally explain the origin of the term "bias-variance"!

Without proof we note the following, intuitively plausible fact. Among all functions f that we
may consider, the risk R(f) = ∫ ×−),())((2 ddPdf DX xx is minimized by the function

h

error

training error Remp(α)

confidence term

bound on test error R(α)

optimal h

 107

(7.8) fminrisk(x) = EP[D | X = x] = ,)(|∫
ℜ

= ddPd XD x

that is, the expected value of d under condition x. Here PD|X=x is the conditional distribution
of d under hypothesis x. We will use shorthand x|d for EP [D | X = x]. Note that x|d is

just a function of x. We use subscript P in EP to indicate that the expectation is computed
w.r.t. a conditional probability measure that is derived from the probability space (Ω, F, P).

Let us analyse the learning situation. Statistically, a learning algorithm is an estimator that
gets Data = ((xi, di))i = 1,...,N as input and returns an estimate f̂ . We can consider this
estimator as a random variable from a probability space (Ω', F', P'), whose elements ω' are
events of drawing a sample ((xi, di))i = 1,...,N, so we should correctly write ((xi, di))i = 1,...,N (ω')
or ((xi(ω'), di(ω')))i = 1,...,N. The estimates f̂ are also random variables over this probability
space, and we should correctly write f̂ (ω') to denote the function obtained from learning, and
f̂ (ω')(x) to denote the value on argument x of this function.

Now let us fix some x and ask by how much f̂ (x) deviates, on average and in the sqared
error sense, from the theoretical optimal function x|d . This expected error is

(7.9) EP'[(f̂ (x) − x|d)2] = .')|))((ˆ(

'

2∫
Ω

−ω dPdf xx

We can learn more about this error if we re-write (f̂ (x) − x|d)2 as follows:

(7.10)

).|)](ˆ[)])((ˆ[)(ˆ(2

)|)](ˆ[()])(ˆ[)(ˆ(

)|)](ˆ[)](ˆ[)(ˆ()|)(ˆ(

''

2
'

2
'

2
''

2

xxxx

xxxx

xxxxxx

dfEfEf

dfEfEf

dfEfEfdf

PP

PP

PP

−−+

−+−=

−+−=−

If we now take the expectation EP' on both sides, we see that the third term on the r.h.s.
vanishes and we get

(7.11) .

variance
])])(ˆ[)(ˆ[(

)bias(

)|)](ˆ[(])|)(ˆ[(2
''

2

2
'

2
'     

xxxxxx fEfEdfEdfE PPPP −+−=−

The two components of this error are conventionally named the bias and the variance
contribution to the error EP'[(f̂ (x) − x|d)2]. The bias measures how on average the

learning result f̂ (x) differs from the optimal value x|d . The bias measures how strongly
the average learning result deviates from the optimal value; thus is indicates a systematic error
component. The variance measures how strongly the learning results f̂ (x) vary around their
mean EP'[(f̂ (x)]; thus this is an indication of how strongly the particular training data sets
induce variations on the learning result. Note that the bias and variance shown in (7.11) are

 108

functions of x. By integrating over x, one can obtain the average values for the bias and
variance:

(7.12)
.])])(ˆ[)(ˆ[(]])])(ˆ[)(ˆ[([variance

)|)](ˆ[]])|)](ˆ[[)bias(

2
''

2
''

2
'

2
'

2

∫

∫

ℜ

ℜ

−=−=

−=−=

k

k

XPPPPP

XPPP

dPfEfEfEfEE

dPdfEdfEE

xxxx

xxxx

 109

8 Multilayer feedforward networks

We saw in Section 5 that single-layer neural networks can only compute linear decision
boundaries (unless they are equipped with preprocessing filters). In this section we will
introduce multi-layer neural networks. We will first discuss their representational capacity
and then describe a famous gradient-descent learning algorithm for weight-optimization in
such networks, the backpropagation algorithm. I lean heavily on Section 4 of the Bishop
book.

8.1 Structure and representational capacity of multilayer networks

One way to boost the power of our single-layer networks from Section 5 is to add more
"hidden" layers of neurons between the layer of input neurons and the layer of output neurons.
Fig. 7.1 shows such a general layered architecture.

Figure 8.1: Schema of a multi-layer network with k−1 hidden layers of neurons. Layers of
neurons are numbered 0, ..., k+1, where layer 0 contains the input units and layer k+1 the
output units. The number of input units is L0, of output units Lk, and of units in hidden layer m
is Lm. The connection weight between the j-th unit in layer m and the i-th unit in layer m+1 is
denoted by wij

m. The activation of the i-th unit in layer m is xi
m (for m = 0 this is an input

value, for m = k+1 an output value). In this figure, the units with activations x0
0, ..., x0

k-1 are
dummy inputs responsible for feeding a bias term into the next upper layer of units.

input
neurons

output
neurons

last hidden
layer of
neurons

first hidden
layer of
neurons

bias
units

x0
0 ≡ 1 x1

0 x2
0 . . . xL0

0

 1 x1
0 x2

0 . . . xL0
0

x0
1 ≡ 1 x1

1 x2
1 . . . xL1

1

x0
k-1 ≡1 x1

k-1 x2
 k-1 . . . xLk-1

k-1

 x1
k x2

 k . . . xLk
k

wij
1

wij
k

 110

In "network talk", one speaks of a single-layer network when there is a single layer of
connection weights, that is, when we have a linear network as we saw in Section 5.
Correspondingly, a two-layer network has two layers of connections and one layer of
"hidden" units between the input and output layer of units.

The network architecture shown in Fig. 8.1 has an orderly layered structure. It is also possible
to extend the powers of single-layer networks by adding more units in a "disordered" way
without a clear layer topology. However, this is rarely done. Layered networks of the kind
shown in the Figure are also often called multi-layer perceptrons (MLPs).

From a mathematical perspective, a MLP implements a function y = fMLP(u), where

T),,(00
1 0Lxx …=u is the vector of inputs to the network and T),,(1

k
L

k
kxx …=y is the output

vector. The network computes y by passing the input u through its internal layers. To make
this formal, first consider the circumstance that both in training and in exploitation we will
use the network for many different inputs, which we denote by u(n), where n is an index
marking different exemplars of input, not time. Then y(n) is the output obtained on that input,
xi

m(n) are the internal activations, etc.

Formally, a k-layer MLP has the following components. The activation of input units is just
the input, with the first input unit (index 0) set up as a dummy to contribute a constant bias
input to the next higher layer:

(8.1) TTTT))(,),(,1())(,),(),(())(,1()(00

1
00

1
0
0

0
00 nxnxnxnxnxnn LL …… === ux

The activations of the dummy units x0

m(n) [where 1 ≤ m ≤ k−1] is always fixed at 1. The
activation xi

m(n) of the i-th non-dummy unit in a non-input unit layer m (where i, m ≥ 1) is
computed from the activations of the next lower layer by

(8.2))).(()(1

,...,0 1

nxwgnx m
j

Lj

m
ij

mm
i

m

−

=
∑

−

=

Thus, the activation xi

m(n) is computed by first taking a linear combination of the activations
of the units from one layer below, and passing this through the unit's activation function gm.
(also called output function). The activation function may change across layers. We will
consider here cases where gm is a sigmoid function for hidden layers of units. The activation
function of the output layer may be a sigmoid too; but sometimes it is more convenient to use
linear activation functions on the output units. If one uses sigmoids on the output layer, one
can only implement functions whose value range is within [0 1] (for the logistic sigmoid) or
within [–1 1] (for the tanh sigmoid). If one uses linear output units, the implementable
function range is unbounded.

Typical choices for sigmoid g are

(8.3) 11 1
1)(

−+
=

e
ag , the "logistic" sigmoid, and aa

aa

ee
eeaag
−

−

+

−
==)tanh()(2 .

Figure 8.2 shows these two. Note that g2 differs from g1 only through linear pre- and
postprocessing transformations. Specifically, it holds that g2(a) = 2 g1(2a) – 1. Thus, any
network that uses g2 as an activation function for hidden units can be replaced by an

 111

equivalent network using g1 but having different weights. Empirically it is often found that
networks set up with the tanh sigmoid exhibit faster convergence in training algorithms than
when the logistic sigmoid is used.

Figure 8.2: The two most commonly used sigmoids. Blue: tanh, green: the logistic 1/(1+e-a).

The weights wij

m are trainable in an MLP. The objective is to find weights such that for a
given set of training input-output data,

(8.4)],...,1[))(,),(()(,))(,),(()(1

00
1 0 Nnndndnnxnxn k

L
k

L k === TT
…… du

the network outputs T))(,),(()(1 nxnxn k

L
k

k…=y become a good approximation of the teacher
output d(n) in the sense of a small training sum of squared errors:

(8.5) ∑∑

==

=−=
NnNn
nEnnSE

,...,1

2

,...,1
train)()()(yd .

The following two facts explain why MLPs have become so popular in the last thirty years:

• Any smooth function f: L0

 → Lk

 from the unit hypercube to Lk

 can be approximated
arbitrarily well by two-layer MLPs with linear output units (universal approximation
property).

• There exists an relatively efficient learning algorithm to find weights that represent a local
minimum of SEtrain.

Taken together, these facts recommend MLPs as powerful and computationally sufficiently
efficient black-box modelling devices for nonlinear function approximation and classification
tasks.

We will outline a simple proof of the universal approximation property. We consider the case
of f being a mapping from the two-dimensional unit square to . We know that f can be
Fourier-approximated with arbitrarily small sum-of-squares error by

 112

(8.6) f(x1, x2) ≈

,)'sin(')sin()'cos(')cos(
2
1

))cos()'(cos('))'sin()(sin(

))'sin()(sin('))'cos()(cos(
2
1

))cos()(cos('))sin()(sin(

))sin()(sin('))cos()(cos(
2
1

)sin()sin(')sin()cos()cos()sin(')cos()cos(

)sin())sin(')cos(()cos())sin(')cos((

)sin()()cos()(

,

,

21211212

,
21212121

2121
,

2121

211
,

211

2121

∑

∑

∑

∑

∑

∑

δ+δ+γ+γ=

−β++β

+−α++α=

+−−β+−−+β

+−−+α+−++α=

β+β+α+α=

β+β+α+α=

β+α

ts
stststststststst

stststststst

ts
stststststst

stst

ts
stst

stst
ts

stst

stst
ts

stst

s
s

s

zzzz

zzzz

zzzz

sxtxsxtxtxsxtxsx

sxtxsxtxsxtxsxtx

sxtxsxtxsxtxsxtx

sxtxtxsxtxtx

sxxsxx

where αs(x1) and βs(x1) are functions of x1, and we used elementary trigonometric identies
like cos(α)cos(β) = 1/2 cos(α + β) + 1/2 cos(α – β) and substitutions zst = tx1 + sx2 and z'st =
tx1 − sx2 to show that f(x1, x2) can be approximated by a linear combination of trignonometric
functions sin or cos of linear combinations of the arguments x1, x2. Now consider any one of
these trigonometric terms, for instance cos(zst). It can itself be approximated to arbitrary
precision (in the mean squared distance sense) on [zstmin, zstmax] by a superposition of unit step
functions H (recall: this is the Heaviside step function H(x) = 0 if x < 0, else 1):

(8.7) cos(zst) ≈ cos(zstmin) +)())cos()(cos(
0

1 i

K

i
ii zzHzz −−∑

=
+ ,

where zstmin = z0 < z1 < ... < zK = zstmax is some sequence of intermediate arguments.

Note finally that the Heaviside function can be approximated arbitrarily well by the logistic
sigmoid, by linear scaling of the argument of this sigmoid.

Taking all this together, we can approximate f(x1, x2) to arbitrary accuracy by a two-layer
MLP, when we

5. use the first weight layer to transform the input x1, x2 into the linear transform
variables substitutions zst = tx1 + sx2 and z'st = tx1 − sx2,

6. use (8.7) to approximate cos(zst) by the combined output of K+1 hidden units,
7. use (8.6) to approximate f(x1, x2) as the output from the output layer of units.

The core of this proof idea is that we can transform a product of trigonometric functions, e.g.
cos(α)cos(β), into a linear combination of single trigonometric functions. This is also possible
for longer products of trigonometric functions, e.g. it holds that cos(α)cos(β)cos(γ) =
1/4[cos(α + β − γ)+ cos(−α + β + γ) + cos(α− β + γ) + cos(α + β + γ)], etc. Thus the idea of
this proof carries over to higher-dimensional input.

 113

Numerous mathematical articles on the representational power of MLPs have appeared in the
early 90-ies, showing that MLPs can approximate smooth, differentiable functions arbitrarily
well, including their derivatives, in various norms for measuring the distance between
network output and the correct target functions. These results have been important to establish
the reputation of MLPs as universal approximation machines. However, such results are of
little practical importance, because the network solutions that these theorems find for a given
approximation task are typically very generous w.r.t. the size of the networks. Practical
learning algorithms typically find much smaller networks for the same required
approximation accuracy.

Little is known about the minimal size of a network that is required for a given degree of
approximation in a given task, or about the best structure of the network (e.g., number of
hidden layers). Three-layer networks are often preferred over the two-layer networks that are
theoretically sufficient. Experience, personal taste and patience are asked for from the MLP
designer!

A much cited result by Barron10 gives the following bound on the risk of a two-layer MLP
fMLP that is trained to approximate a function (with one-dimensional target domain) y = f(u):

(8.8) R(fMLP) ≤ ,)log(
1

1

2









+









N

N
dLO

L
C

O f

where L1 is the number of hidden neurons, N is the size of training data, d is the dimension of
the input space (that is, d = L0− 1), and Cf is a certain spectral measure of complexity of the
function f which is to be approximated. The first term in (8.8) is a bound on the (squared) bias
(cf. Eq. (7.12)) while the second term is a bound on the variance. Note that the number of
adjustable weights is O(L1d). A consequence of (8.8), also obtained by Barron in the same
paper, gives a bound on the risk that is obtained when the network size L1 is optimized for
minimal risk depending on the training sample size N. The risk is then

(8.9) R(fMLP) ≤ O(Cf ((d/N) log N)1/2)

The bound (8.9) states that the rate of risk convergence with optimally selected network sizes,
as a function of sample size is of order (d/N)1/2 (times a logarithmic factor), where the
exponent 1/2 is independent on the input dimension d.

The traditional way to construct approximations to nonlinear functions is by a linear
combination of a fixed set of n basis functions (e.g. polynomials in Taylor expansions,
multinomials in Volterra expansions, or sines in Fourier expansions). Putting learning aside,
and considering the ideal case where the linear combination is set to yield the minimal risk,
Barron11 showed that there are functions in class Cf where the risk is at least

10 Andrew R. Barron, Approximation and Estimation Bounds for Artificial Neural Networks, Machine Learning
14 (1994), 115-133
11 Barron, A. R., Universal Approximation Bounds for Superpositions of a Sigmoidal Function, IEEE Trans. Inf.
Theory 39(3), 1993, 930-945

 114

(8.10) R(best linear model from n components)

€

≥κ
Cf

d
1
n








1/ d

,

where κ is a universal constant. This indicates the presence of a learning-independent version
of the curse of dimensionality, because the risk scales exponentially with d. In contrast, for 2-
layer MLPs the corresponding ideal risk for a model with n hidden units is (Barron 1994)

(8.11) R(best n-hidden-unit MLP)

€

≤
(2Cf)

2

n
.

If one looks at the ratio of the convergence rates w.r.t. n of (8.10) and (8.11) for fixed d, i.e. at

(8.12)

€

κ
Cf

d
1
n








1/ d

/
(2Cf)

2

n
= K n1−1/ d

d
,

one sees that this is (up to a constant K) approximately equal to n/d for not too small d. That
is, if one wishes to approximate f better and better by increasing the number of basis functions
(in (8.10)) or the number of hidden units (in (8.11)), this race for better risk is won by the
neural network approach – the risk ratio between the two approaches grows roughly linearly
with n. The underlying reason for this superiority of MLPs over fixed basis functions
combinations is that the MLP can shape the functions represented by the hidden units, which
then are linearly combined into the output layer. With linear combinations of fixed basis
functions, one cannot adapt to the particulars of the given target function f.

Another result by Koiran and Sontag12 that also adresses the risk convergence of MLPs, but
from the perspective of statistical learning theory, states that for MLPs with at least one
hidden layer of units and logistic sigmoid activation functions, the VC dimension is h =
O(|W|2), where |W| is the total number of adjustable weights. If we insert this into the
expression of the confidence term (cf. Eq. (7.7)) in the SLT risk bound, we get

(8.13)











η−++≤

η−







+

=






 η
φ

)4/log()
||

2log(||||1

)4/log(1
||

2log||
)log(,

2
2

W
NWW

N

N
W
NW

NN
h

.

Both (8.8) and (8.13) reveal a linearly bounded relationship between the number of adjustable
weights and the generalization error of MLPs, which is described through the variance term in
(8.8) and through the confidence term in (8.13). Thus, for MLPs, our rather vague intuition
that "the danger of overfitting grows with the number of adjustable parameters" is here
justified.

8.2 Training MLPs with the backpropagation algorithm

12 Koiran, P. and E.D. Sontag, Neural networks with quadratic VC dimension, in: Advances in Neural
Information Processing Systems (NIPS), vol. 8, MIT Press (1996). Cited after: S. Haykin, Neural Networks: A
Comprehensive Foundation, Second Edition. Prentice-Hall 1999 (page 97).

 115

Because MLPs are nonlinear functions with a large number of adjustable variables (the
weights), a closed-form solution (like the Wiener-Hopf equation for linear systems) for the
weights that give the smallest training error is not available. Instead, one uses iterative
gradient-descent methods like we know them from adaptive linear combiners. However, now
the performance surface has no longer the simple shape of a bowl with a unique minimum.
Rather you should think of it as a rugged landscape with many local minima. If one starts the
gradient descent from a particular set of starting weights, one ends up in the nearest local
minimum – which may or may not give a training error close to the possible minimal error.
We will discuss later how to deal with this situation.

The gradient of the training error w.r.t. the weights is a vector made from the partial
derivatives of the training error w.r.t. the weights. These are (compare (8.5)):

(8.14) m
ij

Nn
m
ij

Nn
m
ij

train

w

nn

w

nE

w
SE

∂

−∂
=

∂

∂
=

∂

∂ ∑∑ ==

2

,...1,...1
)()()(yd

,

where m = 1, ..., k and j = 0, ..., Lm-1 and i = 1, ..., Lm. Note that for computing this gradient
for a single iteration step "downhill", we have to use the entire training data set! However,
because

(8.15) ∑
∑

=

=

∂

∂
=

∂

∂

Nn
m
ij

m
ij

Nn

w
nE

w

nE

,...1

,...1)()(
,

we only need to compute the gradient on single instances of the training data and may then
sum up these values. Once we have solved the problem of computing (8.15), we obtain a
weight update algorithm through

(8.16) m
ij

m
ij

m
ij w

Ewwnew
∂

∂
γ−= ,

where γ is a small learning rate. Naive implementations for computing the derivatives

m
ijwnE ∂∂ /)(for all weights need O(W2) operations, where W is the number of weights.

Considering that for a single gradient-downhill-step, we need N O(W2) operations, and that
both N and W can easily be of the order of 1000, naive implementations quickly run out of
steam. The backpropagation algorithm is a computationally efficient method to evaluate

m
ijwnE ∂∂ /)(at cost O(W). Only with this algorithm MLPs became widely useful. The

backpropagation algorithm was made popular in a paper by Rumelhart, Hinton and
Williams13. It appeard in 1986 in a famous two-volume collection of articles that laid the
foundations of what today can be considered mainstream neural network techniques. The
algorithm had precursors in work by Werbos14 and Parker15. We now derive this algorithm.

13 Rumelhart, D.E., G.E. Hinton, R.J. Williams (1986): Learning internal representations by error propagation. In
D.E. Rumelhart, J.L. McClelland, and the PDP Research Group (eds.), Parallel Distributed Processing:
Explorations in the Microstructure of Cognition, Vol. 1: Foundations, pp. 318-362. Cambridge, MA: MIT Press
14 Werbos, P.J. (1974): Beyond regression: new tools for prediction and analysis in the behavioural sciences.
PhD thesis, Harvard Univ., Boston, MA.
15 Parker, D.B. (1985): Learning Logic. Technical Report TR-47, MIT, Cambridge, MA.

 116

The overall structure of the algorithm is as follows. The network is first initialized with
randomly chosen (typically small) weights. Then the backprop algorithm is used iteratively.
At each iteration, all weights are updated, going "downhill" the performance surface a small
step, using the information from all training samples. Each such iteration is called an epoch.
The procedure terminates if the output error falls under a pre-set threshold, or if the error
improvement per step falls under another pre-set threshold, or if the number of epochs reaches
a pre-set maximum.

Now we describe what happens in one epoch. At the beginning, weights wm

ij are given from
the previous epoch. From (8.15) we see that we need to consider only a single training
sample, n. In order to compute all m

ijwnE ∂∂ /)(, the first step is to present the input pattern
u(n) to the network and compute its output y(n). This is called the forward pass. In the
forward pass, for each unit we compute the activation xm

i; and in order to obtain this
activation, we also compute the following quantity:

(8.17))()(1

,...,0 1

nxwna m
j

Lj

m
ij

m
i

m

−

=
∑

−

= ,

which is sometimes referred to as the potential or the internal state of the unit. Applying the
chain rule we have

(8.18) m
ij

m
i

m
i

m
ij w

a
a
nE

w
nE

∂

∂

∂

∂
=

∂

∂)()(.

Define

(8.19)

€

δi
m =

∂E(n)
∂ai

m .

Using (8.17), we can write

(8.20) .1−=
∂

∂ m
jm

ij

m
i x
w
a

Inserting (8.19) and (8.20) into (8.18), we get

(8.21) .)(1−δ=
∂

∂ m
j

m
im

ij

x
w
nE

Thus, in order to calculate the derivatives, we only need to compute the values of m

iδ for each
hidden and output unit. For output units, this is straightforward. From the definition (8.19),
we have

(8.22)).('))()((2))()(()(')()(')(2
k
iii

i

iik
i

i

k
ik

i

k
i agnynd

y
nyndag

y
nEag

a
nE

−=
∂

−∂
=

∂

∂
=

∂

∂
=δ

To evaluate the m

iδ for the hidden units, we again make use of the chain rule,

 117

(8.23) ,)()(
1,...,1

1

1∑
+=

+

+ ∂

∂

∂

∂
=

∂

∂
=δ

mLl
m
i

m
l

m
l

m
i

m
i a

a
a
nE

a
nE

which is justified by the fact that the only path by which m

ia can affect E(n) is through the
potentials 1+m

la of the next higher layer, that is, E(n) is a function of the 1+m
la . If we now

substitute (8.19) into (8.23) and observe (8.17), we get

(8.24)

€

δi
m =

∂E(n)
∂ai

m = δl
m+1 ∂al

m+1

∂ai
m

l=1,...,Lm+1

∑

= δl
m+1

∂ wlj
m+1

j= 0,...,Lm
∑ gm (a j

m (n))

∂ai
m

l=1,...,Lm+1

∑

= δl
m+1 ∂wli

m+1gm (ai
m (n))

∂ai
m

l=1,...,Lm+1

∑

= gm '(ai
m (n)) δl

m+1wli
m+1

l=1,...,Lm+1

∑

This formula describes how the m

iδ in a hidden layer can be computed by "back-propagating"
the 1+δml from the next higher layer. The formula can be used to compute all m

iδ , starting from
the output layer (where (8.22) is used) as a basis, and then working backwards through the
network in the backward pass of the algorithm to compute the m

iδ using the values already
found in the next higher layer.

If the logistic sigmoid g1 is used for the gm, the computation of g1' (m

ia (n)) takes a particularly
simple form, observing that for this sigmoid

(8.25)

€

g1'(a) = g1(a)(1− g1(a)) ,

which leads to

€

gm '(ai
m (n)) = xi

m (1− xi
m).

Although simple in principle, and readily implemented, using the backprop algorithm
appropriately is something of an art. Here is only place to point out some difficulties:

• The stepsize γ in (8.16) must be chosen sufficiently small in order to avoid instabilities.

But it also should be set as large as possible to speed up the convergence. It is however
not possible to provide an analytical treatment of how to set the stepsize optimally.
Generally, one uses larger stepsizes in early epochs.

• Gradient descent on nonlinear surfaces may sometimes be very slow in areas where the
gradient is small in some directions. By consequence, the backpropagation algorithm may
sometimes need in the order of thousand(s) iterations to settle near a local minimum.

• Like all gradient-descent techniques on error surfaces, backpropagation finds only a local
error minimum. This problem can be addressed by various measures, e.g. adding noise
during training (simulated annealing approaches) to avoid getting stuck in poor minima, or
by repeating the entire learning from different initial weight settings, or by using task-

 118

specific prior information to start from an already plausible set of weights. All of these
counter-measures (except the last one) are computationally expensive. Some authors claim
that the local minimum problem is overrated.

• Finally, finding a network structure (number of units, number of layers) that is appropriate
for a given task is not trivial. A decent amount of experimentation and cross-validation
exploration may be needed.

These difficulties are not unique to MLPs trained by the backpropagation algorithm. The
same problems surface with all methods for learning nonlinear regression models; they are a
consequence of nonlinearity. The field of estimating nonlinear systems is difficult and rich in
problems and techniques, it requires a lot of experience, and it has great importance for
practical applications. By the way, our own brain is in many ways an exceedingly good
learning apparatus for nonlinear (dynamical) systems, but nobody comes anywhere close to
understanding how it functions.

 119

9. Recurrent neural networks

This section is a slightly revised version of: H. Jaeger, Tutorial on training recurrent neural
networks, covering BPPT, RTRL, EKF and the "echo state network approach, GMD Report
159, GMD – German National Research Institute for Information Technology, Sankt
Augustin, 2002.

9.1 First impressions

9.1.1 Recurrent vs. Feedforward networks

There are two major types of neural networks, feedforward and recurrent. As we have seen in
the previous section, in feedforward networks, activation is "piped" through the network from
input units to output units (from left to right in left drawing in Fig. 9.1):

Figure 9.1: Typical structure of a feedforward network (left) and a recurrent network (right).

For the sake of contrast, here are some characteristic properties of feedforward networks:

 Typically, activation is fed forward from input to output through "hidden layers" (as in
MLPs), though many other architectures exist.

 Mathematically, they implement static input-output mappings (functions).
 Basic theoretical result: MLPs can approximate arbitrary (term needs some

qualification) nonlinear maps with arbitrary precision ("universal approximation
property").

 Most popular supervised training algorithm: backpropagation algorithm.
 Huge literature, 95 % of neural network publications concern feedforward nets (my

estimate).
 Have proven useful in many practical applications as approximators of nonlinear

functions and as pattern classificators.

By contrast, a recurrent neural network (RNN) has (at least one) cyclic path of synaptic
connections. Basic characteristics:

 Virtually all biological neural networks are recurrent.
 Mathematically, RNNs implement dynamical systems. While feedforward networks

are used with "static" data (input-output pairs), RNNs are always used with time series
data (signals in, signals out).

 120

 Basic theoretical result: RNNs can approximate arbitrary (term needs some
qualification) dynamical systems with arbitrary precision ("universal approximation
property").

 Several types of training algorithms are known, no clear winner.
 Theoretical and practical difficulties by and large have prevented practical

applications so far.
 Not covered in most neuroinformatics textbooks, absent from engineering textbooks.

Types of tasks for which RNNs can, in principle, be used:

 system identification and inverse system identification,
 filtering and prediction ,
 dynamic pattern classification,
 stochastic sequence modelling,
 associative memory,
 data compression.

Some relevant application areas:

 telecommunication,
 control of chemical plants,
 control of engines and generators,
 fault monitoring, biomedical diagnostics and monitoring,
 speech recognition,
 robotics, toys and edutainment,
 video data analysis,
 man-machine interfaces.

9.1.2 Time series data

At first glance, there is no big difference in the kind of training data that we use with RNNs
vs. with feedforward networks. The training samples still essentially look like (xi, di)i = 1,...,N,
only in the context of RNNs we will use a slightly other convention, namely use u to denote
inputs, n to denote the sample index, and x(n), d(n) to denote the n-th sample item:

(9.1) Training data: (u(n), d(n))n = 1,...,N

The reason for using this notation is to agree with the conventions in signal processing and
control, where the symbol u is typically reserved for inputs, and – because one always deals
with time series data – one writes u(n), d(n) to indicate that the input and teacher values are
functions of time n.

9.1.3 Formal description of RNNs

Exactly like in feedforward networks, the elementary building blocks of a RNN are neurons
(we will often use the term units) connected by synaptic links (connections) whose synaptic
strength is coded by a weight. One typically distinguishes input units, internal (or hidden)
units, and output units. At a given time, a unit has an activation.We denote the activations of
input units by u(n), of internal units by x(n), of output units by y(n). Sometimes we ignore the
input/internal/output distinction and then use x(n) in a metonymical fashion.

 121

Figure 9.2: A typology of RNN models (incomplete).

There are many types of formal RNN models (see Fig. 9.2). Discrete-time models are
mathematically cast as maps iterated over discrete time steps n = 1, 2, 3, Continuous-time
models are defined through differential equations whose solutions are defined over a
continous time t. Especially for purposes of biological modeling, continuous dynamical
models can be quite involved and describe activation signals on the level of individual action
potentials (spikes). Often the model incorporates a specification of a spatial topology, most
often of a 2D surface where units are locally connected in retina-like structures.

In this tutorial we will only consider a particular kind of discrete-time models without spatial
organization. Our model consists of K input units with an activation (column) vector

(9.2)

€

u(n) = (u1(n),…,uK (n))
T ,

of N internal units with an activation vector

(9.3)

€

x(n) = (x1(n),…,xN (n))
T ,

and of L output units with an activation vector

(9.4)

€

y(n) = (y1(n),…,yL (n))
T ,

The input / internal / output connection weights are collected in N x K / N x N / L x (K+N)
weight matrices

(9.5)

€

W in = (wij
in), W = (wij), Wout = (wij

out).

The output units may optionally project back to internal units with connections whose weights
are collected in a N x L backprojection weight matrix

(9.6)

€

Wback = (wij
back).

 122

Figure 9.3: Our basic RNN architecture. Shaded arrows indicate optional connections. Dotted
arrows mark connections which are trained in the "echo state network" approach (in other
approaches, all connections can be trained).

A zero weight value can be interpreted as "no connection". Note that output units may have
connections not only from internal units but also (often) from input units and (rarely) from
output units.

The activation of internal units is updated according to

(9.7)

€

x(n +1) = f(W inu(n +1) +Wx(n) +Wbacky(n)),

where u(n+1) is the externally given input, and f denotes the component-wise application of
the individual unit's transfer function, f (also known as activation function, unit output
function, or squashing function). We will mostly use the sigmoid function f = tanh but
sometimes also consider linear networks with f = 1. The output is computed according to

(9.8)

€

y(n +1) = f out (Wout (u(n +1),x(n +1)),

where (u(n+1),x(n+1),y(n)) denotes the concatenated vector made from input, internal, and
output activation vectors. We will use output transfer functions fout = tanh or fout = 1; in the
latter case we have linear output units.

9.1.4 Example: a little timer network

Consider the input-output task of timing. The input signal has two components. The first
component u1(n) is 0 most of the time, but sometimes jumps to 1. The second input u2(n) can
take values between 0.1 and 1.0 in increments of 0.1, and assumes a new (random) of these
values each time u1(n) jumps to 1. The desired output is 0.5 for 10 · u2(n) time steps after
u1(n) was 1, else is 0. This amounts to implementing a timer: u1(n) gives the "go" signal for
the timer, u2(n) gives the desired duration.

 123

Figure 9.4: Schema of the timer network.

The following figure shows traces of input and output generated by a RNN trained on this
task according to the ESN approach:

Figure 1.7: Performance of a RNN trained on the timer task. Solid line in last graph: desired
(teacher) output. Dotted line: network output.

Clearly this task requires that the RNN must act as a memory: it has to retain information
about the "go" signal for several time steps. This is possible because the internal recurrent
connections let the "go" signal "reverberate" in the internal units' activations. Generally, tasks
requiring some form of memory are candidates for RNN modeling.

9.2 Standard training techniques for RNNs

During the 1990’s, several methods for supervised training of RNNs have been explored,
which today already might be considered "classics". All of these rely on gradient descent
methods for training error minimization. Since 2000, an altogether different approach to RNN
training was found, which will be presented later. In this subsection we review the most

 124

important "classical" trianing methods: backpropagation through time (BPTT), real-time
recurrent learning (RTRL), and extended Kalman filtering based techniques (EKF). BPTT is
probably the most widely used, RTRL is the mathematically most straightforward, and EKF is
(arguably) the technique among the classics that gives best results – if used by experts.

9.2.1 Backpropagation revisited

BPTT is an adaptation of the well-known backpropagation training method known from
feedforward networks.

We start with a recap of this notation, as introduced in section 8.1. We consider a multi-layer
perceptron (MLP) with k hidden layers of neurons.Together with the layer of input units and
the layer of output units this gives k+2 layers of units altogether, which we number by 0, ...,
k+1 (as in figure 8.1). The number of input units is L0, of output units Lk+1, and of units in
hidden layer m is Lm. The weight of the j-th unit in layer m and the i-th unit in layer m+1 is
denoted by wij

m. The activation of the i-th unit in layer m is xi
m (for m = 0 this is an input

value, for m = k+1 an output value).

The training data for a feedforward network training task consist of T input-output (vector-
valued) data pairs

(9.9)

€

u(n) = (x1
0(n),...,x

L0
0 (n))T , d(n) = (d1

k+1(n),...,d
Lk+1
k+1 (n))T ,

where n denotes training instance, not time. The activation of non-input units is computed
according to

(9.10)

€

xi
m+1(n) = f (wij

m

j=1,...,N m

∑ x j (n)).

(Standardly one also has bias terms, which we omit here). Presented with teacher input u(t),
the previous update equation is used to compute activations of units in subsequent hidden
layers, until a network response

(9.11)

€

y(n) = (x1
k+1(n),…,xL

k+1(n))'

is obtained in the output layer. The objective of training is to find a set of network weights
such that the summed squared error

(9.12)

€

E = d(n) − y(n)
n=1,...,T
∑

2
= E(n)

n=1,...,T
∑

is minimized. This is done by incrementally changing the weights along the direction of the
error gradient w.r.t. weights

(9.13)

€

∂E
∂wij

m =
∂E(n)
∂wij

m
t=1,...T
∑

using a (small) learning rate γ:

 125

(9.14)

€

new wij
m = wij

m − γ
∂E
∂wij

m .

This is the formula used in batch learning mode, where new weights are computed after
presenting all training samples. One such pass through all samples is called an epoch. Before
the first epoch, weights are initialized, typically to small random numbers. A variant is
incremental learning, where weights are changed after presentation of individual training
samples:

(9.15)

€

new wij
m = wij

m − γ
∂E(n)
∂wij

m .

The central subtask in this method is the computation of the error gradients

€

∂E(n)
∂wij

m , which is

affected by the backpropagation algorithm which we described in Section 8.2.

9.2.2. Backpropagation through time

The feedforward backpropagation algorithm cannot be directly transferred to RNNs because
the error backpropagation pass presupposes that the connections between units induce a cycle-
free ordering. The solution of the BPTT approach is to "unfold" the recurrent network in time,
by stacking identical copies of the RNN, and redirecting connections within the network to
obtain connections between subsequent copies. This gives a feedforward network, which is
amenable to the backpropagation algorithm.

Figure 9.6: Schema of the basic idea of BPTT. A: the original RNN. B: The feedforward
network obtained from it. The case of single-channel input and output is shown.

The weights wij

in, wij, wij
out, wij

back are identical in/between all copies. The teacher data
consists now of a single input-output time series

(9.16)

€

u(n) = (u1 (n),…,uK (n))' , d(n) = (d1 (n),…,dL (n))' n =1,…T .

The forward pass of one training epoch consists in updating the stacked network, starting
from the first copy and working upwards through the stack. At each copy (= time) n input
u(n) is read in, then the internal state x(n) is computed from u(n), x(n-1) [and from y(n-1) if
nonzero wij

back exist], and finally the current copy's output y(n) is computed.

 126

The error to be minimized is again (like in (9.12))

(9.17)

€

E = d(n) − y(n)
n=1,...,T
∑

2
= E(n)

n=1,...,T
∑ ,

but the meaning of n has changed from "training instance" to "time". The algorithm is a
straightforward, albeit notationally complicated, adaptation of the feedforward algorithm:

Input: current weights wij, training time series.

Output: new weights.

Computation steps:

1.

Forward pass: as described above.
2.

Compute, by proceeding backward through n = T,...,1, for each time n and unit
activation xi(n), yj(n) the error propagation term di(n)

(9.18)

€

δ j (T) = (d j (T) − y j (T))
∂f (u)
∂u u= z j (T)

for the output units of time layer T and

(9.19)

€

δi (T) = δ j (T)w ji
out

j=1

L

∑












∂f (u)
∂u u= zi (n)

for internal units xi(T) at time layer T and

(9.20

€

δ j (n) = (d j (n) − y j (n))+ δi (n +1)wij
back

i=1

N

∑









∂f (u)
∂u u= z j (n)

for the output units of earlier layers, and

(9.21)

€

δi (n) = δ j (n +1)w ji
j=1

N

∑ + δ j (n)w ji
out

j=1

L

∑












∂f (u)
∂u u= zi (n)

for internal units xi(n) at earlier times, where zi(n) again is the potential of the
corresponding unit.

3.

Adjust the connection weights according to

 127

(2.22)

€

new wij = wij + γ δi (n) x j (n −1)
n=1

T

∑ [use x j (n −1) = 0 for n =1]

new wij
in = wij

in + γ δi (n)u j (n)
n=1

T

∑

new wij
out = wij

out + γ ×

δi (n)u j (n), if j refers to input unit
n=1

T

∑

δi (n) x j (n −1), if j refers to hidden unit
n=1

T

∑















new wij
back = wij

back + γ δi (n) y j (n −1)
n=1

T

∑ [use y j (n −1) = 0 for n =1]

Warning: programming errors are easily made but not easily perceived when they degrade
performance only slightly.

The remarks concerning slow convergence made for standard backpropagation carry over to
BPTT. The computational complexity of one epoch is O(T N2), where N is number of internal
units. Several thousands of epochs are typically required.

A variant of this algorithm is to use the teacher output

€

d(n) in the computation of activations
in layer n+1 in the forward pass. This is known as teacher forcing. Teacher forcing typically
speeds up convergence, or even be necessary to achieve convergence at all, but when the
trained network is exploited, it may exhibit instability. A general rule when to use teacher
forcing cannot be given.

A drawback of this "batch" BPTT is that the entire teacher time series must be used. This
precludes applications where online adaptation is required. The solution is to truncate the past
history and use, at time n, only a finite history

(9.23)

€

u(n − p),u(n − p +1),…,u(n) ,d(n − p),d(n − p +1),…,d(n)

as training data. Since the error backpropagation terms d need to be computed only once for
each new time slice, the complexity is O(N2) per time step. A potential drawback of such
truncated BPPT (or p-BPTT) is that memory effects exceeding a duration p cannot be
captured by the model. Anyway, BPTT generally has difficulties capturing long-lifed memory
effects, because backpropagated error gradient information tends to "dilute" exponentially
over time. A frequently stated opinion is that memory spans longer than 10 to 20 time steps
are hard to achieve.

Repeated execution of training epochs shift a complex nonlinear dynamical system (the
network) slowly through parameter (weight) space. Therefore, bifurcations are necessarily
encountered when the starting weights induce a qualitatively different dynamical behavior
than task requires. Near such bifurcations, the gradient information may become essentially
useless, dramatically slowing down convergence. The error may even suddenly grow in the
vicinity of such critical points, due to crossing bifurcation boundaries. Unlike feedforward
backpropagation, BPTT is not guaranteed to converge to a local error minimum. This

 128

difficulty cannot arise with feedforward networks, because they realize functions, not
dynamical systems.

All in all, it is far from trivial to achieve good results with BPTT, and much experimentation
(and processor time) may be required before a satisfactory result is achieved.

Because of limited processing time, BPTT is typically used with small networks sizes in the
order of 3 to 20 units. Larger networks may require many hours of computation on current
hardware.

9.2.3. Real-time recurrent learning

Real-time recurrent learning (RTRL) is a gradient-descent method which computes the exact
error gradient at every time step. It is therefore suitable for online learning tasks. I basically
quote the description of RTRL given in Doya (199516). The most cited early description of
RTRL is Williams & Zipser (198917).

The effect of weight change on the network dynamics can be seen by simply differentiating
the network dynamics equations (9.7) and (9.8) by its weights. For convenience, activations of
all units (whether input, internal, or output) are enumerated and denoted by vi and all weights
are denoted by wkl, with i = 1,...,N denoting internal units, i = N+1,...,N+L denoting output
units, and i = N+L+1,...,N+L+K denoting input units. The derivative of an internal or output
unit w.r.t. a weight wkl is given by

(9.24)

€

∂vi(n +1)
∂wkl

= ′ f (ai(n)) (wij

∂v j (n)
∂wkl

) + δikvl (n)
j=1

n

∑












i =1,…,N + L ,

where k, l ≤ N + L + K, aii(n) is again the unit's potential (as in (8.14)), but δik here denotes
Kronecker's delta (δik =1 if i = k and 0 otherwise). The term δik vl(n) represents an explicit
effect of the weight wkl onto the unit k, and the sum term represents an implicit effect onto all
the units due to network dynamics.

Equation (9.24) for each internal or output unit constitutes an N+L-dimensional discrete-time
linear dynamical system with time-varying coefficients, where

(9.25)

€

∂v1
∂wkl

,…,∂vN +L

∂wkl











is taken as a dynamical variable. Since the initial state of the network is independent of the
connection weights, we can initialize (9.24) by

(9.26)

€

∂vi(0)
∂wkl

= 0 .

16 Doya, K. (1992), Bifurcations in the learning of recurrent neural networks. Proceedings of 1992 IEEE Int. Symp. On
Circuits and Systems vol. 6, 1992, 2777-2780
17 Williams, R.J. and D. Zipser (1989) A learning algorithm for continually running fully recurrent neural networks. Neural
Computation 1, 1989, 270-280

 129

Thus we can compute (9.25) forward in time by iterating equation (9.24) simultaneously with
the network dynamics (9.7) and (9.8). From this solution, we can calculate the error gradient
(for the error given in (9.12)) by the chain rule as follows:

(9.27)

€

∂E
∂wkl

= 2 (vi(n) − di(n))
i=N

N +L

∑
n=1

T

∑ ∂vi(n)
∂wkl

.

A standard batch gradient descent algorithm is to accumulate the error gradient by equation
(9.27) and update each weight after a complete epoch of presenting all training data by

(9.28)

€

new wkl = wkl − γ
∂E
∂wkl

,

where γ is is a learning rate. An alternative update scheme is the gradient descent of current
output error at each time step,

(9.29)

€

wkl (n +1) = wkl (n) − γ (vi(n) − di(n))
i=1

L

∑ ∂vi(n)
∂wkl

.

Note that we assumed wkl is a constant, not a dynamical variable, in deriving (9.27), so we
have to keep the learning rate small enough. (9.29) is referred to as real-time recurrent
learning.

RTRL is mathematically transparent and in principle suitable for online training. However,
the computational cost is O((N+L)4) for each update step, because we have to solve the
(N+L)-dimensional system (9.24) for each of the weights. This high computational cost
makes RTRL useful for online adaptation only when very small networks suffice.

9.2.4. Higher-order gradient descent techniques

Just a little note: Pure gradient-descent techniques for optimization generally suffer from slow
convergence when the curvature of the error surface is different in different directions. In that
situation, on the one hand the learning rate must be chosen small to avoid instability in the
directions of high curvature, but on the other hand, this small learning rate might lead to
unacceptably slow convergence in the directions of low curvature. A general remedy is to
incorporate curvature information into the gradient descent process. This requires the
calculation of the second-order derivatives, for which several approximative techniques have
been proposed in the context of recurrent neural networks. These calculations are expensive,
but can accelerate convergence especially near an optimum where the error surface can be
reasonably approximated by a quadratic function. Dos Santos & von Zuben (200018) and
Schraudolph (200219) provide references, discussion, and propose approximation techniques
which are faster than naive calculations.

18 Dos Santos, E.P. and von Zuben, F.J. (2000) Efficient second-order learning algorithms for discrete-time
recurrent neural networks. In: Medsker, L.R. and Jain, L.C. (eds), Recurrent Neural Networsk: Design and
Applications, 2000, 47-75. CRC Press: Boca Raton, Florida
19 Schraudolph, N. (2002). Fast curvature matrix-vector products for second-order gradient descent. To appear
in Neural Computation. Manuscript online at http://www.icos.ethz.ch/~schraudo/pubs/#mvp.

 130

9.2.5 Extended Kalman-filtering approaches

9.2.5.1 The extended Kalman filter

The extended Kalman filter (EKF) is a state estimation technique for nonlinear systems
derived by linearizing the well-known linear-systems Kalman filter around the current state
estimate. We consider a simple special case, a time-discrete system with additive input and no
observation noise:

(9.30)

€

x(n +1) = f(x(n))+ q(n)
d(n) = hn (x(n))

,

where x(n) is the system's internal state vector, f is the system's state update function (linear in
original Kalman filters), q(n) is external input to the system (an uncorrelated Gaussian white
noise process, can also be considered as process noise), d(n) is the system's output, and hn is a
time-dependent observation function (also linear in the original Kalman filter). At time n = 0,
the system state x(0) is guessed by a multidimensional normal distribution with mean

€

ˆ x (0)
and covariance matrix P(0). The system is observed until time n through d(0),..., d(n). The
task addressed by the extended Kalman filter is to give an estimate

€

ˆ x (n +1) of the true state
x(n+1), given the initial state guess and all previous output observations. This task is solved
by the following two time update and three measurement update computations:

(9.31)

€

ˆ x * (n) = F(ˆ x (n))
P * (n) = F(n)P(n −1)F(n)t + Q(n)

(9.32)

€

K(n) = P * (n)H(n)[H(n)tP * (n)H(n)]−1

ˆ x (n +1) = ˆ x * (n) + K(n)ξ(n)
P(n +1) = P * (n) −K(n)H(n)tP * (n)

where we roughly follow the notation in Singhal and Wu (1989)20, who first applied extended
Kalman filtering to (feedforward) network weight estimation. Here F(n) and H(n) are the
Jacobians

(9.33)

€

F(n) =
∂f (x)
∂x x= ˆ x (n)

, H(n) =
∂hn (x)
∂x x= ˆ x (n)

of the components of f, hn with respect to the state variables, evaluated at the previous state
estimate;

€

ξ(n) = d(n) −hn (ˆ x (n))

€

ξ(n) = d(n) −hn (ˆ x (n))

€

ξ(n) is the error (difference between
observed output and output calculated from state estimate

€

ˆ x (n)), P(n) is an estimate of the
conditional error covariance matrix E[ξξ | d(0),..., d(n)]; Q(n) is the (diagonal) covariance
matrix of the process noise, and the time updates

€

ˆ x * (n),P * (n) of state estimate and state
error covariance estimate are obtained from extrapolating the previous estimates with the
known dynamics f.

20 Singhal, S. and L. Wu (1989), Training multilayer perceptrons with the extended Kalman algorithm. In D.S.
Touretzky (ed.), Advances in Neural Information Processing Systems 1, 1989, 133-140. San Mateo, CA: Morgan
Kaufmann

 131

The basic idea of Kalman filtering is to first update

€

ˆ x (n),P(n) to preliminary guesses

€

ˆ x * (n),P * (n) by extrapolating from their previous values, applying the known dynamics in
the time update steps (9.31), and then adjusting these preliminary guesses by incorporating the
information contained in d(n) – this information enters the measurement update in the form of
ξ(n), and is accumulated in the Kalman gain K(n).

In the case of classical (linear, stationary) Kalman filtering, F(n) and H(n) constant, and the
state estimates converge to the true conditional mean state E[x(n) | d(0),..., d(n)]. For
nonlinear f, hn, this is not generally true, and the use of extended Kalman filters leads only to
locally optimal state estimates.

9.2.5.2 Applying EKF to RNN weight estimation

Assume that there exists a RNN which perfectly reproduces the input-output time series of the
training data

(9.34)

€

u(n) = (u1 (n),…,uK (n))
t , d(n) = (d1 (n),…,dL (n))

t n =1,…T

where the input / internal / output / backprojection connection weights are as usual collected
in N x K / N x N / L x (K+N+L) / N x L weight matrices

(9.35)

€

W in = (wij
in), W = (wij), Wout = (wij

out), Wback = (wij
back) .

In this subsection, we will not distinguish between all these different types of weights and
refer to all of them by a weight vector w.

In order to apply EKF to the task of estimating optimal weights of a RNN, we interpret the
weights w of the perfect RNN as the state of a dynamical system. From a bird's eye
perspective, the output d(n) of the RNN is a function h of the weights and input up to n:

(9.36)

€

d(n) = h(w,u(0),...,u(n))

where we assume that the transient effects of the initial network state have died out. The
inputs can be integrated into the output function h, rendering it a time-dependent function hn.
We further assume that the network update contains some process noise, which we add to the
weights (!) in the form of a Gaussian uncorrelated noise q(n). This gives the following version
of (9.30) for the dynamics of the perfect RNN:

(9.37)

€

w(n +1) = w(n) + q(n)
d(n) = hn (x(n))

Except for noisy shifts induced by process noise, the state "dynamics" of this system is static,
and the input u(n) to the network is not entered in the state update equation, but is hidden in
the time-dependence of the observation function. This takes some mental effort to swallow!

The network training task now takes the form of estimating the (static, perfect) state w(n)
from an initial guess and the sequence of outputs d(0),..., d(n). The error covariance
matrix P(0) is initialized as a diagonal matrix with large diagonal components, e.g. 100.

 132

The simpler form of (9.37) over (9.30) leads to some simplifications of the EKF recursions
(9.31) and (9.32): because the system state (= weight!) dynamics is now trivial, the time
update steps become unnecessary. The measurement updates become

(9.38)

€

K(n) = P(n)H(n)[H(n)tP(n)H(n)]−1

ˆ w (n +1) = ˆ w (n) + K(n)ξ(n)
P(n +1) = P(n) −K(n)H(n)tP(n) + Q(n)

A learning rate η (small at the beginning [!] of learning to compensate for initially bad
estimates of P(n)) can be introduced into the Kalman gain update equation:

(9.39)

€

K(n) = P(n)H(n)[(1/η)I+H(n)tP(n)H(n)]−1,

which is essentially the formulation given in Puskorius and Feldkamp (1994)21.

Inserting process noise q(n) into EKF has been claimed to improve the algorithm's numerical
stability, and to avoid getting stuck in poor local minima (Puskorius and Feldkamp 1994).

EKF is a second-order gradient descent algorithm, in that it uses curvature information of the
(squared) error surface. As a consequence of exploiting curvature, for linear noise-free
systems the Kalman filter can converge in a single step. We demonstrate this by a super-
simple feedforward network example. Consider the single-input, single-output network which
connects the input unit with the output unit by a connection with weight w, without any
internal unit

(9.40)

€

w(n +1) = w(n)
d(n) = wu(n)

We inspect the running EKF (in the version of (9.38)) at some time n, where it has reached an
estimate

€

ˆ w (n). Observing that the Jacobian H(n) is simply dwu(n)/dw = u(n), the next
estimated state is

(9.41)

€

ˆ w (n +1) = ˆ w (n) +K(n)ξ(n) = ˆ w (n) +
1

u(n)
(wu(n) − ˆ w u(n)) = w .

The EKF is claimed in the literature to exhibit fast convergence, which should have become
plausible from this example at least for cases where the current estimate

€

ˆ w (n) is already close
to the correct value, such that the linearisation yields a good approximation to the true system.

EKF requires the derivatives H(n) of the network outputs w.r.t. the weights evaluated at the
current weight estimate. These derivatives can be exactly computed as in the RTRL
algorithm, at cost O(N4). This is too expensive but for small networks. Alternatively, one can
resort to truncated BPTT, use a "stacked" version of (9.37) which describes a finite sequence
of outputs instead of a single output, and obtain approximations to H(n) by a procedure
analogous to (9.18) – (9.21). Two variants of this approach are detailed out in Feldkamp et al.
(1998)22. The cost here is O(pN2), where p is the truncation depth.

21 Puskorius, G.V. and L. A. Feldkamp (1994) Neurocontrol of nonlinear dynamical systems with Kalman filter
trained recurrent networks. IEEE Transactions on Neural Networks 5(2), 1994, 279-297
22 Feldkamp, L. A., Prokhorov, D., Eagen, C.F., and F. Yuan (1998) Enhanced multistream Kalman filter

 133

Apart from the calculation of H(n), the most expensive operation in EKF is the update of
P(n), which requires O(LN2) computations. By setting up the network architecture with
suitably decoupled subnetworks, one can achieve a block-diagonal P(n), with considerable
reduction in computations (Feldkamp et al. 1998).

As far as I have an overview, it seems to me that currently the best results in RNN training are
achieved with EKF, using truncated BPTT for estimating H(n), demonstrated especially in
many remarkable achievements from Lee Feldkamp's research group (see references). As with
BPTT and RTRL, the eventual success and quality of EKF training depends very much on
professional experience, which guides the appropriate selection of network architecture,
learning rates, the subtelties of gradient calculations, presentation of input (e.g., windowing
techniques), etc.

The methods presented so far – BPTT, RTRL, and EKF training – are all gradient-descent-
based. A unifying framework for these techniques (and some others) has been given in Atiya
and Parlos(200023). They also introduced another learning rule, which combines and
gerneralizes insights from BPTT, RTRL, and EKF, now frequently referred to as the Atiya-
Parlos learning rule.

9.3 Echo state networks

9.3.1 First example: a sinewave generator

In this subsection I informally demonstrate the principles of echo state networks (ESN) by
showing how to train a RNN to generate a sinewave.

The desired sinewave is given by d(n) = 1/2 sin(n/4). The task of generating such a signal
involves no input, so we want a RNN without any input units and a single output unit which
after training produces d(n). The teacher signal is a 300-step sequence of d(n).

We start by constructing a recurrent network with 20 units, whose internal connection weights
W are set to random values. We will refer to this network as the "dynamical reservoir" (DR).
The internal weights W will not be changed in the training described later in this subsection.
The network's units are standard sigmoid units, as in Eq. (1.6), with a transfer function f =
tanh.

A randomly constructed RNN, such as our DR, might develop oscillatory or even chaotic
acitivity even in the absence of external excitation. We do not want this to occur: The ESN
approach needs a DR which is damped, in the sense that if the network is started from an
arbitrary state x(0), the subsequent network states converge to the zero state. This can be
achieved by a proper global scaling of W: the smaller the weights of W, the stronger the
damping. We assume that we have scaled W such that we have a DR with modest damping.
Fig. 9.7 shows traces of the 20 units of our DR when it was started from a random initial state
x(0). The desired damping is clearly visible.

training for recurrent networks. In: J.A.K. Suykens and J. Vandewalle (ed.), Nonlinear modeling: advanced
black-box techniques, 1998, 29-53. Boston: Kluwer
23 Atiya, A.F. and Parlos, A.G. (2000), New Results on Recurrent Network Training: Unifying the Algorithms
and Accelerating Convergence, IEEE Trans. Neural Networks 11(3), 697-709

 134

Figure 9.7. The damped dynamics of our dynamical reservoir.

We add a single output unit to this DR. This output unit features connections that project back
into the DR. These backprojections are given random weights Wback, which are also fixed do
not change during subsequent training. We use a linear output unit in this example, i.e. fout =
id.

The only connections which are changed during learning are the weights Wout from the DR to
the output unit. These weights are not defined (nor are they used) during training. Figure 6.2
shows the network prepared for training.

Figure 9.8: Schematic setup of ESN for training a sinewave generator.

The training is done in two stages, sampling and weight computation.

Sampling. During the sampling stage, the teacher signal is written into the output unit for
times n = 1,....,300. (Writing the desired output into the output units during training is often
called teacher forcing). The network is started at time n = 1 with an arbitrary starting state; we
use the zero state for starting but that is just an arbitrary decision. The teacher signal d(n) is
pumped into the DR through the backprojection connections Wback and thereby excites an

 135

activation dynamics within the DR. Figure 9.9 shows what happens inside the DR for
sampling time steps n = 101,...,150.

Figure 9.9. The dynamics within the DR induced by teacher-forcing the sinewave d(n) in the
output unit. 50-step traces of the 20 internal DR units and of the teacher signal (last plot) are
shown.

We can make two important observations:

 The activation patterns within the DR are all periodic signals of the same period length
as the driving teacher d(n).

 The activation patterns within the DR are different from each other.

During the sampling period, the internal states x(n) = (x1(n),...,x20(n)) for n = 101, ..., 300 are
collected into the rows of a state-collecting matrix M of size 200x20. At the same time, the
teacher outputs d(n) are collected into the rows of a matrix T of size 200x1.

We do not collect information from times n = 1, ..., 100, because the network's dynamics is
initially partly determined by the network's arbitrary starting state. By time n = 100, we can
safely assume that the effects of the arbitrary starting state have died out and that the network
states are a pure reflection of the teacher-forced d(n), as is manifest in Fig. 9.9.

Weight computation. We now compute 20 output weights wi

out for our linear output unit y(n)
such that the teacher time series d(n) is approximated as a linear combination of the internal
activation time series xi(n) by

(9.42)

€

d(n) ≈ y(n) = wi
out xi(n)

i=1

20

∑ .

More specifically, we compute the weights wi

out such that the mean squared training error

 136

(9.43)

€

MSE train =1/200 (d(n) − y(n))2
n=101

300

∑ =1/200 (d(n) − wi
out xi(n)

i=1

20

∑)2
n=101

300

∑

is minimized.

From a mathematical point of view, this is a linear regression task: compute regression
weights wi

out for a regression of d(n) on the network states xi(n). [n = 101, ..., 300].

From an intuitive-geometrical point of view, this means combining the 20 internal signals
seen in Fig. 9.9 such that the resulting combination best approximates the last (teacher) signal
seen in the same figure.

From an algorithmical point of view, this offline computation of regression weights boils
down to the computation of a pseudoinverse: The desired weights which minimize MSEtrain
are obtained by multiplying the pseudoinverse of M with T (we have derived this method for
computing linear regression weights already in section 4.5, equation (4.51)!):

(9.44)

€

Wout =M+T

In our example, the training error computed by (9.43) with optimal output weights obtained
by (9.44) was found to be MSEtrain.= 1.2e–13.

The computed output weights are implemented in the network, which is then ready for use.

Exploitation. After the learnt output weights were written into the output connections, the
network was run for another 50 steps, continuing from the last training network state x(300),
but now with teacher forcing switched off. The output y(n) was now generated by the trained
network all on its own [n = 301, ..., 350]. The test error

(9.45)

€

MSE test =1/50 (d(n) − y(n))2
n= 301

350

∑

was found to be MSEtest.= 5.6e–12. This is greater than the training error, but still very small.
The network has learnt to generate the desired sinewave very precisely. An intuitive
explanation of this precision would go as follows:

 The sinewave y(n) at the output unit evokes periodic signals xi(n) inside the DR whose
period length is identical to that of the output sine.

 These periodic signals make a kind of "basis" of signals from which the target y(n) is
combined. This "basis" is optimally "pre-adapted" to the target in the sense of identical
period length. This pre-adaptation is a natural consequence of the fact that the "basis"
signals xi(n) have been induced by the target itself, via the feedback projections.

So, in a sense, the task [to combine y(n) from xi(n)] is solved by means [the xi(n)] which have
been formed by the very task [by the backprojection of y(n) into the DR]. Or said in intuitive
terms, the target signal y(n) is re-constituted from its own echos xi(n)!

An immediate question concerns the stability of the solution. One may rightfully wonder
whether the error in testing phase, small as it was in the first 50 steps, will not grow over time

 137

and finally render the network's global oscillation unstable. That is, we might suspect that the
precise continuation of the sine output after the training is due to the fact that we start testing
from state x(300), which was produced by teacher forcing. However, this is not usually the
case. Most networks trained according to the prescription given here can be started from
almost any arbitrary nonzero starting state and will lock into the desired sinewave. Figure
9.10 shows an example. In mathematical terms, the trained network is a dynamical system
with a single attractor, and this attractor is the desired oscillation. However, the strong
stability observed in this example is a pleasant side-effect ot the simplicity of the sinewave
generating task. When the tasks become more difficult, the stability of the trained dynamics is
indeed a critical issue for ESN training.

Figure 9.10: Starting the trained network from a random starting state. Plot shows first 50
outputs. The network quickly settles into the desired sinewave oscillation.

9.3.2 Second Example: a tuneable sinewave generator

We now make the sinewave generation task more difficult by demanding that the sinewave be
adjustable in frequency. The training data now consists of an input signal u(n), which sets the
desired frequency, and an output d(n), which is a sinewave whose frequency follows the input
u(n). Figure 9.11 shows the resulting network architecture and a short sequence of teacher
input and output.

Figure 9.11: Setup of tuneable sinewave generator task. Trainable connections appear as
dotted red arrows, fixed connections as solid black arrows.

Because the task is now more difficult, we use a larger DR with 100 units. In the sampling
period, the network is driven by the teacher data. This time, this involves both inputting the
slow signal u(n), and teacher-forcing the desired output d(n). We inspect the resulting
activation patterns of internal units and find that they reflect, combine, and modify both u(n)
and d(n) (Figure 9.12).

 138

Figure 9.12: Traces of some internal DR units during the sampling period in the tuneable
frequency generation task.

In this example we use a sigmoid output unit. In order to make that work, during sampling we
collect into T not the raw desired output d(n) but the transfer-inverted version tanh-1(d(n)).
We also use a longer training sequence of 1200 steps of which we discard the first 200 steps
as initial transient. The training error which we minimize concerns the tanh-inverted
quantities:

(9.46)

€

MSE train =1/1000 (tanh−1 d(n) − tanh−1 y(n))2
n= 201

1000

∑ =1/1000 (tanh−1 d(n) − wi
out xi(n)

i=1

100

∑)2
n201

1000

∑

This is achieved, as previously, by computing

€

Wout =M+T. The training error was found to be
8.1e-6, and the test error on the first 50 steps after inserting the computed output weights was
0.0006. Again, the trained network stably locks into the desired type of dynamics even from a
random starting state, as displayed in Figure 9.13.

Figure 9.13 Starting the trained generator from a random starting state.

Stability of the trained network was not as easy to achieve here as in the previous example. In
fact, a trick was used which was found empirically to foster stable solutions. The trick is to

 139

insert some noise into the network during sampling. That is, during sampling, the network
was updated according to the following variant of (9.7):

(9.47)

€

x(n +1) = f(W inu(n +1) +Wx(n) +Wbacky(n) + ν(n)),

where ν(n) is a small white noise vector of size N.

9.3.3 Mathematics of echo states

In the two introductory examples, we rather vaguely said that the DR should exhibit a
"damped" dynamics. We now describe in a rigorous way what kind of "damping" is required
to make the ESN approach work, namely, that the DR must have echo states.

The key to understanding ESN training is the concept of echo states. Having echo states (or
not having them) is a property of the network prior to training, that is, a property of the weight
matrices Win, W, and (optionally, if they exist) Wback. The property is also relative to the type
of training data: the same untrained network may have echo states for certain training data but
not for others. We therefore require that the training input vectors u(n) come from a compact
interval U and the training output vectors d(n) from a compact interval D. We first give the
mathematical definition of echo states and then provide an intuitive interpretation.

Definition 9.1 (echo states). Assume an untrained network with weights Win, W, and Wback is
driven by teacher input u(n) and teacher-forced by teacher output d(n) from compact intervals
U and D. The network (Win, W, Wback) has echo states w.r.t. U and D, if for every left-infinite
input/output sequence (u(n), d(n)), where n = ..., -2,-1,0, and for all state sequences x(n), x'(n)
compatible with the teacher sequence, i.e. with

(9.48)

€

x(n +1) = f(W inu(n +1) +Wx(n) +Wbackd(n))
x'(n +1) = f(W inu(n +1) +Wx'(n) +Wbackd(n))

it holds that x(n) = x'(n) for all n ≤ 0.

Intuitively, the echo state property says, "if the network has been run for a very long time
[from minus infinity time in the definition], the current network state is uniquely determined
by the history of the input and the (teacher-forced) output". An equivalent way of stating this
is to say that for every internal signal xi(n) there exists an echo function ei which maps
input/output histories to the current state:

(9.49)

€

ei : (U ×D)− → 

....,(u(−1),d(−2)),(u(0),d(−1))() xi(0)

We often say, somewhat loosely, that a (trained) network (Win, W, Wout, Wback) is an echo
state network if its untrained "core" (Win, W, Wback) has the echo state property w.r.t.
input/output from any compact interval U ×D.

Several conditions have been shown to be equivalent to echo states. We provide one for
illustration.

 140

Definition 9.2 (uniformly state contracting). With the same assumptions as in Def. 9.1, the
network (Win, W, Wback) is uniformly state contracting w.r.t. U and D, if there exists a null
sequence (δn)n ≥ 1, such that for all right-infinite input/output sequences (u(n), d(n-1)) є U x D,
where n = 0,1,2,... and for all starting states x(0), x'(0) and for all n > 0 it holds that
│x(n) - x'(n)│< δn , where x(n) [resp. x'(n)] is the network state at time n obtained when the
network is driven by (u(n), d(n-1)) up to time n after having been started in x(0), [resp. in
x'(0)].

Intuitively, the state forgetting property says that the effects on initial network state wash out
over time. Note that there is some subtelty involved here in that the null sequence used in the
definition depends on the the input/output sequence.

The echo state property is connected to algebraic properties of the weight matrix W.
Unfortunately, there is no known necessary and sufficient algebraic condition which allows
one to decide, given (Win, W, Wback), whether the network has the echo state property. We
quote here from Jaeger (200124) a sufficient condition for the non-existence of echo states.

Proposition 9.1 Assume an untrained network (Win, W, Wback) with state update according to
(9.7) and with transfer functions tanh. Let W have a spectral radius |λmax| > 1, where |λmax| is
the largest absolute value of an eigenvector of W. Then the network has no echo states with
respect to any input/output interval U x D containing the zero input/output (0, 0).

At face value, this proposition is not helpful for finding echo state networks. However, in
practice it was consistently found that when the condition noted in Proposition 9.1 is not
satisfied, i.e. when the spectral radius of the weight matrix is smaller than unity, we do have
an echo state network.

Note that in Proposition 9.1 the input and backprojection weights are not used for the claims.
It seems that these weights are irrelevant for the echo state property. In practice, it is found
that they can be freely chosen without affecting the echo state property. Again, a
mathematical analysis of these observations remains to be done.

For practical purposes, the following procedure (also used in the conjecture) seems to
guarantee echo state networks:

 Randomly generate an internal weight matrix W0.
 Normalize W0 to a matrix W1 with unit spectral radius by putting W1 =1/|λmax| W0,

where |λmax| is the spectral radius of W0.
 Scale W1 to W = α W1, where α < 1, whereby W has a spectral radius of α.
 Then, the untrained network (Win, W, Wback) is (or more precisely, has always been

found to be) an echo state network, regardless of how Win, Wback are chosen.

The diligent choice of the spectral radius α of the DR weight matrix is of crucial importance
for the eventual success of ESN training. This is because α is intimately connected to the
intrinsic timescale of the dynamics of the DR state. Small α means that one has a fast DR,
large α (i.e., close to unity) means that one has a slow DR. The intrinsic timescale of the task
should match the DR timescale. For example, if one wishes to train a sine generator as in the

24 H. Jaeger (2001), The "echo state" approach to analysing and training recurrent neural networks. GMD
Report 148, GMD - German National Research Institute for Computer Science, 2001,
http://www.faculty.iubremen.de/hjaeger/pubs/EchoStatesTechRep.pdf

 141

example of Subsection 9.3.1, one should use a small α for fast sinewaves and a large α for
slow sinewaves.

Note that the DR timescale seems to depend exponentially on 1 - α so e.g. settings of α = 0.99,
0.98, 0.97 will yield an exponential speedup of DR timescale, not a linear one. However,
these remarks rest only on empirical observations; a rigorous mathematical investigation
remains to be carried out. An illustrative example for a fast task is given in Jaeger (2001,
Section 4.2), where very fast "switching"-type of dynamics was trained with a DR whose
spectral radius was set to 0.44, which is quite small considering the exponential nature of time
scale dependence on α. The sinewave generator and the tuneable sinewave generator from
above both used a DR with α = 0.8.

Figure 9.14 gives a plot of the training log error log(MSEtrain) of the sinewave generator
training task considered in Section 9.3.1 obtained with different settings of α. It is evident that
a proper setting of this parameter is crucial for the quality of the resulting generator network.

Figure 9.14: log10(MSEtrain) vs. spectral radius of the DR weight matrix for the sinewave
generator experiment from Section 9.3.1.

9.3.4 Training echo state networks: algorithm

With the solid grasp on the echo state concept, we can now give a complete description of
training ESNs for a given task. In this description we assume that the output unit(s) are
sigmoid units; we further assume that there are output-to-DR feedback connections. This is
the most comprehensive version of the algorithm. Often one will use simpler versions, e.g.
linear output units; no output-to-DR feedback connections; or even systems without input
(such as the pure sinewave generator). In such cases, the algorithm presented below has to be
adapted in obvious ways.

Given: A training input/output sequence (u(1), d(1)), ..., (u(T), d(T)).

Wanted: A trained ESN (Win, W, Wback, Wout) whose output y(n) approximates the teacher
output d(n), when the ESN is driven by the training input u(n).

Notes:

 We can merely expect that the trained ESN approximates the teacher output well after
initial transient dynamics have washed out, which are invoked by the (untrained,
arbitrary) network starting state. Therefore, more precisely what we want is that the
trained ESN approximates the teacher output for times n = T0, ..., T, where T0 > 1.

 142

Depending on network size and intrinsic timescale, typical ranges for T0 are 10 (for
small, fast nets) to 500 (for large, slow nets).

 What we actually want is not primarily a good approximation of the teacher output,
but more importantly, a good approximation of testing output data from independent
test data sets generated by the same (unknown) system which also generated the
teacher data. In practice this means that we have to use cross-validation methods to
optimize our model capacity.

Step 1. Procure an untrained DR network (Win, W, Wback) which has the echo state property,
and whose internal units exhibit mutually interestingly different dynamics when excited.

This step involves many heuristics. The way I proceed most often involves the following
substeps.

 Randomly generate an internal weight matrix W0.
 Normalize W0 to a matrix W1 with unit spectral radius by putting W1 =1/|λmax| W0,

where |λmax| is the spectral radius of W0. Standard mathematical packages for matrix
operations all include routines to determine the eigenvalues of a matrix, so this is a
straightforward thing.

 Scale W1 to W = α W1, where α < 1, whereby W obtains a spectral radius of α.
 Randomly generate input weights Win and output backpropagation weights Wback.

Then, the untrained network (Win, W, Wback) is (or more honestly, has always been
found to be) an echo state network, regardless of how Win, Wback are chosen.

Notes:

 The matrix W0 should be sparse, a simple method to encourage a rich variety of
dynamics of different internal units. Furthermore, the weights should be roughly
equilibrated, i.e. the mean value of weights should be about zero. I usually draw
nonzero weights from a uniform distribution over [– 1, 1], or I set nonzero weights
randomly to –1 or 1.

 The size N of W0 should reflect both the length T of training data, and the difficulty of
the task. As a rule of thumb, N should not exceed an order of magnitude of T/10 to T/2
(the more deterministic/low-noise the training data, the closer to T/2 can N be chosen).
This is a simple precaution against overfitting. Furthermore, more difficult tasks
require larger N.

 The setting of α is crucial for subsequent model performance. It should be small for
fast teacher dynamics and large for slow teacher dynamics, according to the
observations made above in Section 9.3.3. Typically, α needs to be hand-tuned by
trying out several settings.

 The absolute size of input weights Win is also of some importance. Large absolute Win
imply that the network is strongly driven by input, small absolute values mean that the
network state is only slightly excited around the DR's resting (zero) state. In the latter
case, the network units operate around the linear central part of the sigmoid, i.e. one
obtains a network with an almost linear dynamics. Larger Win drive the internal units
closer to the saturation of the sigmoid, which results in a more nonlinear behavior of
the resulting model. In the extreme, when Win becomes very large, the internal units
will be driven into an almost pure – 1 / +1 valued, binary dynamics. If one has severyl
inputs, one can at this point steer their relative impact on the reservoir dynamics by
scaling the input weights individually for the different inputs. For instance, low-
amplitude inputs can be emphasized by upscaling their input weights; noisy or not

 143

very relevant inputs can be depreciated by downscaling their input weights. Again,
manual adjustment and repeated learning trials will often be required to find the
taskappropriate

 Similar remarks hold for the absolute size of weights in Wback.
 More often than not, the training error can be improved by adding a bias input whose

value is frozen to 1. Again, its impact on the reservoir dynamics needs to be adjusted
by scaling the corresponding input weights.

Step 2. Sample network training dynamics.

This is a mechanical step, which involves no heuristics. It involves the following operations:

 Initialize the network state arbitrarily, e.g. to zero state x(0) = 0.
 Drive the network by the training data, for times n = 0, ..., T, by presenting the teacher

input u(n), and by teacher-forcing the teacher output d(n-1), by computing

(9.50)

€

x(n +1) = f(W inu(n +1) +Wx(n) +Wbackd(n))

 At time n = 0, where d(n) is not defined, use d(n) = 0.
 For each time larger or equal than an initial washout time T0, collect the concatenated

input and network state

€

(u(n),x(n))T as a new row into a state collecting matrix M. In
the end, one has obtained a state collecting matrix of size (T – T0 +1) x (K + N).

 Similarly, for each time larger or equal to T0, collect the sigmoid-inverted teacher
output tanh-1d(n) row-wise into a teacher collection matrix T, to end up with a teacher
collecting matrix T of size (T – T0 +1) x L.

Note: Be careful to collect into M and T the vectors u(n), x(n) and tanh-1d(n), not u(n), x(n)
and tanh-1d(n-1)!

Step 3: Compute output weights.

 Concretely, multiply the pseudoinverse of M with T, to obtain a (K + N) x L sized
matrix (Wout)T whose i-th column contains the output weights from all network
units to the i -th output unit:

(9.51)

€

(Wout)T =M−1T .

Every programming package of numerical linear algebra has optimized procedures
for computing pseudoinverses.

 Transpose (Wout)T to Wout in order to obtain the desired output weight matrix.

Step 4: Exploitation.

The network (Win, W, Wback, Wout) is now ready for use. It can be driven by novel input
sequences u(n), using the update equations (9.7) and (9.8), which we repeat here for
convenience:

(9.52)

€

x(n +1) = f(W inu(n +1) +Wx(n) +Wbacky(n)),
(9.53)

€

y(n +1) = f out (Wout (u(n +1),x(n +1),y(n)).

 144

If stability problems are encountered when using the trained network, it very often helps to
add some small noise during sampling, i.e. to use an update equation

(9.54)

€

x(n +1) = f(W inu(n +1) +Wx(n) +Wbackd(n) + ν(n)),

where ν(n) is a small uniform white noise term (typical sizes 0.0001 to 0.01). The rationale
behind this is explained in Jaeger 2001.

9.3.5 Why echo states?

Why must the DR have the echo state property to make the approach work?

From the perspective of systems engineering, the (unknown) system's dynamics is governed
by an update equation of the form

(9.55)

€

d(n) = e(u(n),u(n −1),...,d(n −1),d(n − 2)),

where e is a (possibly highly complex, nonlinear) function of the previous inputs and system
outputs. (9.55) is the most general possible way of describing a deterministic, stationary
system. In engineering problems, one typically considers simpler versions, for example,
where e is linear and has only finitely many arguments (i.e., the system has finite memory).
Here we will however consider the fully general version (9.55).

The task of finding a black-box model for an unknown system (9.55) amounts to finding a
good approximation to the system function e. We will assume an ESN with linear output units
to facilitate notation. Then, the network output of the trained network is a linear combination
of the network states, which in turn are governed by the echo functions, see (9.49). We
observe the following connection between (9.55) and (9.49):

(9.56)

€

e(u(n),u(n −1),...,d(n −1),d(n − 2)) =

= d(n)
≈ y(n)

= wi
out∑ xi(n)

= wi
outei (u(n),u(n −1),...,y(n −1),y(n − 2))∑

It becomes clear from this equation how the desired approximation of the system function e
can be interpreted as a linear combination of echo functions ei. This transparent
interpretatation of the system approximation task directly relies on the interpretation of
network states as echo states. The arguments of e and ei are identical in nature: both are
collections of previous inputs and system (or network, respectively) outputs. Without echo
states, one could neither mathematically understand the relationship between network output
and original system output, nor would the training algorithm work.

9.3.6 Liquid state machines

An approach very similar to the ESN approach has been independently explored by Wolfgang
Maass et al. at Graz Technical University. It is called the "liquid state machine" (LSM)
approach. Like in ESNs, large recurrent neural networks are conceived as a reservoir (called

 145

"liquid" there) of interesting excitable dynamics, which can be tapped by trainable readout
mechanisms. LSMs compare with ESNs as follows:

 LSM research focuses on modeling dynamical and representational phenomena in
biological neural networks, whereas ESN research is aimed more at engineering
applications.

 The "liquid" network in LSMs is typically made from biologically more adequate,
spiking neuron models, whereas ESNs "reservoirs" are typically made up from simple
sigmoid units.

 LSM research considers a variety of readout mechanisms, including trained
feedforward networks, whereas ESNs typically make do with a single layer of readout
units.

An introduction to LSMs and links to publications can be found at http://www.lsm.tugraz.at/.

9.3.7 Short term memory in ESNs

Many time-series processing tasks involve some form of short term memory (STM). By short-
term memory we understand the property of some input-output systems, where the current
output y(n) depends on earlier values u(n-k) of the input and/or earlier values y(n-k) of the
output itself. This is obvious, for instance, in speech processing. Engineering tasks like
suppressing echos in telephone channels or the control of chemical plants with attenuated
chemical reactions require system models with short-term memory capabilities.

We saw in Section 9.3.3 that the DR unit's activations xi(n) can be understood in terms of
echo functions ei which maps input/output histories to the current state. We repeat the
corresponding Equation (9.49) here for convenience:

(9.57)

€

ei : (U ×D)− → 

…,(u(−1),d(−2)),(u(0),d(−1))() xi(0)

The question which we will now investigate more closely is how many of the previous
inputs/output arguments (u(n-k), y(n-k-1)) are actually relevant for the echo function? or
asked in other words, how long is the effective short-term memory of an ESN?

A good intiuitive grasp on this issue is important for successful practical work with ESNs
because as we will see, with a suitable setup of the DR, one can control to some extent the
short-term memory characteristics of the resulting ESN model.

We will provide here only an intuitive introduction; for a more detailed treatment consult the
technical report devoted to short-term memory (Jaeger 2001a).

9.3.9 First example: training an ESN as a delay line

Much insight into the STM of ESNs can be gained when we train ESNs on a pure STM task.
We consider an ESN with a single input channel and many output channels. The input u(n) is
a white noise signal generated by sampling at each time independently from a uniform

 146

distribution over [–0.5, 0.5]. We consider delays k = 1, 2, For each delay k, we train a
separate output unit with the training signal dk(n) = u(n-k). We do not equip our network with
feedback connections from the output units to the DR, so all output units can be trained
simultaneously and independently from each each other. Figure 9.15 depicts the setup of the
network.

Figure 9.15: Setup of delay learning task.

Concretely, we use a 20-unit DR with a connectivity of 15%, that is, 15% of the entries of the
weight matrix W are non-null. The non-null weights were sampled randomly from a uniform
distribution over [–1,1], and the resulting weigth matrix was rescaled to a spectral radius of α
= 0.8, as described in Section 9.3.3. The input weights were put to values of –0.1 or +0.1 with
equal probability. We trained 4 output units with delays of k = 4, 8, 16, 20. The training was
done over 300 time steps, of which the first 100 were discarded to wash out initial transients.
On test data, the trained network showed testing mean square errors of MSEtest.= 0.0000047,
0.00070, 0.040, 0.12 for the four trained delays. Figure 9.16 (upper diagrams) shows an
overlay of the correct delayed signals (solid line) with the trained network output.

Figure 9.16: Results of training delays k = 4, 8, 16, 20 with a 20-unit DR. Top row: input
weights of size –0.1 or +0.1, bottom row: input weights sized –0.001 or +0.001.

When the same experiment is redone with the same DR, but with much smaller input weights
set to random values of –0.001 or +0.001, the performance greatly improves: testing errors
MSEtest.= 0.000035, 0.000038, 0.000034, 0.0063 are now obtained.

Three fundamental observations can be gleaned from this simple example:

 The network can master the delay learning task, which implies that the current
network state x(n) retains extractable information about previous inputs u(n-k).

 The longer the delay, the poorer the delay learning performance.

 147

 The smaller the input weights, the better the performance.

9.3.10 Theoretical insights on short term memory

I now report some theoretical findings (from Jaeger 2001a), which explain the observations
made in the previous subsection.

First, we need a precise version of the intuitive notion of "network performance for learning
the k-delay task". We consider the correlation coefficient r(u(n-k), yk(n)) between the correct
delayed signal u(n-k) and the network ouput yk(n) of the unit trained on the delay k. It ranges
between –1 and 1. By squaring it, we obtain a quantity called in statistics the determination
coefficient r2(u(n-k), yk(n)). It ranges between 0 and 1. A value of 1 indicates perfect
correlation between correct signal and network output,k a value of 0 indicates complete loss
of correlation. (In statistical terms, the determination coefficient gives the proportion of
variance in one signal explained by the other). Perfect recall of the k –delayed signal thus
would be indicated by r2(u(n-k), yk(n)) = 1, complete failure by r2(u(n-k), yk(n)) = 0.

Next, we define the overall delay recalling performance of a network, as the sum of this
coefficient over all delays. We define the memory capacity MC of a network by

(9.58)

€

MC = r2(u(n − k),yk (n))
k=1

∞

∑

Without proof, we cite (from Jaeger 2001a) some fundamental results concerning the memory
capacity of ESNs:

Proposition 9.2. In a network whose DR has N nodes, MC ≤ N. That is, the maximal possible
memory capacity is bounded by DR size.

Proposition 9.3. In a linear network with N nodes, generically MC = N. That is, a linear
network will generically reach maximal network capacity. Notes: (i) a linear network is a
network whose internal units have a linear transfer function, i.e. f = id. (ii) "Generically"
means: if we randomly construct such a network, it will have the desired property with
probability one.

Proposition 9.4. In a linear network, long delays can never be learnt better than short delays
("monotonic forgetting")

When we plot the determination coefficient against the delay, we obtain the forgetting curves
of an ESN. Figure 9.17 shows some forgetting curves obtained from various 400-unit ESNs.

 148

Figure 9.17: Forgetting curves of various 400-unit networks. A: randomly created linear DR.
B: randomly created sigmoid DR. C: like A, but with noisy state update of DR. D: almost
unitary weight matrix, linear update. E: same as D, but with noisy state update. F: same as D,
but with spectral radius α = 0.999. Mind the different scalings of the x-axis!

The forgetting curves in Figure 9.17 exhibit some interesting phenomena:

 According to theorem 9.3, the forgetting curve in curve A should reflect a memory
capacity of 400 (= network size). That is, the area under the curve should be 400.
However, we find an area (= memory capacity) of about 120 only. This is due to
rounding errors in the network update. The longer the delay, the more severe the effect
of accumulated rounding errors, which reduce the effectively achievable memory
capacity.

 The curve B was generated with a DR made from the same weight matrix as in A, but
this time, the standard sigmoid transfer function tanh was used for network update.
Compared to A, we observe a drop in memory capacity. It is a general empirical
observation that the more nonlinear a network, the lower its memory capacity. This
also explains the finding from Section 9.3.9, namely, that the STM of a network is
improved when the input weights are made very small. Very small input weights make
the input drive the network only minimally around its zero resting state. Around the
zero state, the sigmoids are almost linear. Thus, small input weights yield an almost
linear network dynamics, which is good for its memory capacity.

 Curve C was generated like A, but the (linear) network was updated with a small noise
term added to the states. As can be expected, this decreases the memory capacity.
What is worth mentioning is that the effect is quite strong. An introductory discussion
can be found in Jaeger (2001a).

 The forgetting curve D comes close to the theoretical optimum of MC = 400. The trick
was to use an almost unitary weight matrix, again with linear DR units. Intuitively,
this means that a network state x(n), which carries the information about the current
input, "revolves" around the state space ℝN without interaction with succeeding states,

 149

for N update steps. There is more about this in Jaeger (2001a) and Bertschinger
(2002)25.

 The forgetting curve E was obtained from the same linear unitary network as D, but
noise was added to state update. The corruption of memory capacity is less dramatic as
in curve C.

 Finally, the forgetting curve F was obtained by scaling the (linear, unitary) network
from D to a spectral radius α = 0.999. This leads to long-term "reverberations" of
input. On the one hand, this yields a forgetting curve with a long tail – in fact, it
extends far beyond the value of the network size, N = 400. On the other hand,
"reverberations" of long-time past inputs still occupying the present network state lead
to poor recall of even the immediately past input: the forgetting curve is only about 0.5
right at the beginning. The area under the forgetting curve, however, comes close to
the theoretical optimum of 400.

For practical purposes, when one needs ESNs with long STM effects, on can resort to a
combination of the following approaches:

 Use large DRs. This is the most efficient and generally applicable method, but it
requires sufficiently large training data sets.

 Use small input weights, to work in the almost linear working range of the network.
This might conflict with nonlinear task characteristics.

 Use linear update for the DR. Again, might conflict with nonlinear task characteristics.
 Use specially prepared DRs with almost unitary weight matrices.
 Use a spectral radius α close to 1. This would work only with "slow" tasks (for

instance, it would not work if one wants to have fast oscillating dynamics with long
STM effects).

9.3.11 Tricks of the trade

The basic idea of ESNs for black-box-modeling can be condensed into the following
statement:

"Use an excitable system [the DR] to give a high-dimensional dynamical representation of the
task input dynamics and/or output dynamics, and extract from this reservoir of task-related
dynamics a suitable combination to make up the desired target signal."

Obviously, the success of the modeling task depends crucially on the nature of the excited
dynamics – it should be adapted to the task at hand. For instance, if the target signal is slow,
the excited dynamics should be slow, too. If the target signal is very nonlinear, the excited
dynamics should be very nonlinear, too. If the target signal involves long short-term memory,
so should the excited dynamics. And so forth.

Successful application of the ESN approach, then, involves a good judgement on important
characteristics of the dynamics excited inside the DR. Such judgement can only grow with the
experimenter's personal experience. However, a number of general practical hints can be
given which will facilitate this learning process. All hints refer to standard sigmoid networks.

25 N. Bertschinger (2002), Kurzzeitspeicher ohne stabile Zustände in rückgekoppelten neuronalen Netzen.
Diplomarbeit, Informatik VII, RWTH Aachen, 2002 (in German)
http://www.igi.tugraz.at/nilsb/publications/DABertschinger.pdf

 150

Plot internal states

Since the dynamics within the DR is so essential for the task, you should always visually
inspect it. Plot some of the internal units xi(n) during sampling and/or testing. These plots can
be very revealing about the cause of failure. If things don't go well, you will frequently
observe in these plots one or two of the following misbehaviors:

 Fast oscillations. In tasks where you don't want fast oscillations, this observation
indicates a too large spectral radius of the weight matrix W, and/or too large values of
the output feedback weights (if they exist). Remedy: scale them down.

 Almost saturated network states. Sometimes you will observe that the DR units
almost always take extreme values near 1 or –1. This is caused by a large impact of
incoming signals (input and/or output feedback). It is only desirable when you want to
achieve some almost binary, "switching" type of target dynamics. Otherwise it's
harmful. Remedy: scale down the input and/or output feedback weights.

Plot output weights

You should always inspect the output weights obtained from the learning procedure. The
easiest way to do this is to plot them. They should not become too large. Reasonable absolute
values are not greater than, say, 50. If the learnt output weights are in the order of 1000 and
larger, one should attempt to bring them down to smaller ranges. Very small values, by
contrast, do not indicate anything bad.

When judging the size of output weights, however, you should put them into relation with the
range of DR states. If the DR is only minimally excited (let's say, DR unit activations in the
range of 0.005 – this would for instance make sense in almost linear tasks with long-term
memory characteristics), and if the desired output has a range up to 0.5, then output weights
have to be around 100 just in order to scale up from the internal state range to the output
range.

If after factoring out the range-adaptation effect just mentioned, the output weights still seem
unreasonably large, you have an indication that the DR's dynamics is somehow badly adapted
to your learning task. This is because large output weights imply that the generated output
signal exploits subtle differences between the DR unit's dynamics, but does not exploit the
"first order" phenomena inside the DR (a more mathematical treatment of large output
weights can be found in Jaeger (2001a)).

It is not easy to suggest remedies against too large output weights, because they are an
indication that the DR is generally poorly matched with the task. You should consider large
output values as a symptom, not as the cause of a problem. Good doctors do not cure the
symptoms, but try to address the cause.

Large output values will occur only in high-precision tasks, where the training material is
mathematical in origin and intrinsically very accurate. Empirical training data will mostly
contain some random noise component, which will lead to reasonably scaled output weights
anyway. Adding noise during training is a safe method to scale output weights down, but is
likely to impair the desired accuracy as well.

 151

Find a good spectral radius

The single most important knob to tune an ESN is the spectral radius of the DR weight
matrix. The general rule: for fast, short-memory tasks use small α, for slow, long-memory
tasks use large α. Manual experimentation will be necessary in most cases. One does not have
to care about finding the precise best value for α , however. The range of optimal settings is
relatively broad, so if an ESN works well with α = 0.8, it can also be expected to work well
with α = 0.7 and with α = 0.85. The closer you get to 1, the smaller the region of optimality.

Find an appropriate model size

Generally, with larger DR one can learn more complex dynamics, or learn a given dynamics
with greater accuracy. However, beware of overfitting: if the model is too powerful (i.e. the
DR too large), irrelevant statistical fluctuations in the training data will be learnt by the
model. That leads to poor generalization on test data. Try increasing network sizes until
performance on test data deteriorates.

The problem of overfitting is particularly important when you train on empirical, noisy data.
It is not theoretically quite clear (at least not to me) whether the concept of overfitting also
carries over to non-statistical, deterministic, 100%-precisely defined training tasks, for
example training a chaotic attractor described by a differential equation (as in Jaeger 2001).
The best results I obtained in that task were achieved with a 1000-unit network trained on
2000 data points, which means that 1000 parameters were estimated from 2000 data points.
For empirical, statistical tasks, this would normally lead to overfitting (a rule of thumb in
statistical learning is to have at least 10 data points per estimated parameter).

Add noise during sampling

When you are training an ESN with output feedback from accurate (mathematical, noise-free)
training data, stability of the trained network is often difficult to achieve. A method that works
wonders is to inject noise into the DR update during sampling, as described in Section 9.3.2,
Eqn. (9.47). It is not clearly understood why this works. Attempts at an explanation are made
in Jaeger (2001); Bertschinger (2002) provides a more extensive analysis.

In tasks with empirical, noisy training data, noise insertion does not a priori make sense. Nor
is it required when there are no output feedback connections.

There is one situation, however, where noise insertion might make sense even with empirical
data and without output feedback connections. That is when the learnt model overfits data,
which is revealed by a small training and a large test error. In this condition, injection of extra
noise works as a regularizer in the sense of statistical learning theory. The training error will
increase, but the test error will go down. However, a more appropriate way to avoid
overfitting is to use smaller networks.

Use an extra bias input

When the desired output has a mean value that departs from zero, it is a good idea to invest an
extra input unit and feed it with a constant value ("bias") during training and testing. This bias
input will immediately enable the training to set the trained output to the correct mean value.

 152

A relatively large bias input will shift many internal units towards one of the extremer outer
ranges of their sigmoids; this might be advisable when you want to achieve a strongly
nonlinear behavior.

Sometimes you do not want to affect the DR strongly by the bias input. In such cases, use a
small value for the bias input (for instance, a value of 0.01), or connect the bias only to the
output (i.e., put all bias-to-DR connections to zero).

Beware of symmetric input

Standard sigmoid networks with the tanh sigmoid are "symmetric" devices in the sense that
when an input sequence u(n) gives an output sequence y(n), then the input sequence –u(n) will
yield an output sequence – y(n). For instance, you can never train an ESN to produce an
output y(n) = u(n)2 from an input u(n) which takes negative and positive values. There are two
simple methods to succeed in "asymmetric" tasks:

 Feed in an extra constant bias input. This will effectively render the DR an
unsymmetric device.

 Shift the input. Instead of using the original input signal, use a shifted version which
only takes positive sign.

The symmetric-input fallacy comes in many disguises and is often not easy to recognize.
Generally be cautious when the input signal has a range that is roughly symmetrical around
zero. It almost never harms to shift it into an asymmetrical range. Nor does a small bias input
usually harm.

Shift and scale input

You are free to transform the input into any value range [a, b] by scaling and/or shifting it. A
rule I work with: the more nonlinear the task, the more extravagantly I shift the input range.
For instance, in a difficult nonlinear system identification task (30th order NARMA system) I
once got best models with an input range [a, b] = [3, 3.5]. The apparent reason is that shifting
the input far away from zero made the DR work in a highly nonlinear range of its sigmoid
units.

Blackbox modeling generals

Be aware of the fact that ESN is a blackbox modeling technique. This means that you cannot
expect good results on test data which operate in a working range that was never visited
during training. Or to put it the other way round, make sure that your training data visit all the
working conditions that you will later meet when using the trained model.

This is sometimes not easy to satisfy with nonlinear systems. For instance, a typical approach
to obtain training data is to drive the empirical system with white noise input. This approach
is well-motivated with linear systems, where white noise input in training data generally
reveals the most about the system to be identified. However, this may not be the case with
nonlinear systems! By contrast, what typically happens is that white noise input keeps the
nonlinear system in a small subregion of its working range. When the system (the original
system or the trained model) is later driven with more orderly input (for instance, slowly
changing input), it will be driven into a quite different working range. A black-box model

 153

trained from data with white noise input will be unable to work well in another working
range.

On the other hand, one should also not cover in the training data more portions of the working
range than will be met in testing / exploitation. Much of the modeling capacity of you model
will then be used up to model those working regions which are later irrelevant. As a
consequence, the model accuracy in the relevant working regions will be poorer.

The golden rule is: use basically the same kind of input during training as you will later
encounter in testing / exploitation, but make the training input a bit more varied than you
expect the input in the exploitation phase.

 154

10 Hidden Markov Models and the EM Learning Algorithm

10.1 Introduction

In this section we will learn about how models of discrete-valued stochastic processes can be
learnt from data. Think of a "discrete-valued stochastic process" simply as some mechanism
that generates random symbol sequences – for instance, sequences of dice throws (the
symbols would then be 1,...,6) or ASCII texts (the symbols then would be the ASCII symbols)
or amino acid sequences. Our learning task will be the following: given a (long) observed
sequence x(0) x(1) x(2)... generated by an unknown generating mechanism, learn from this
sample string a model  that then can replace the original generator. The model can be used
in various way, for instance to generate new sequences (useful for running simulations), or to
predict a given sequence into the future, or to classify sequences, and many more.

Specifically, we will consider a type of models known as hidden Markov models (HMMs).
HMMs have important applications. Here is a choice:

• Virtually every speech recognition system is made from HMMs.
• HMMs are becoming more and more the standard tool for biosequence analysis.
• In communications engineering, HMMs are used to predict subchannel load in order to

optimize throughput.
• In robotics, an input-output version of HMMs, called partially observable Markov

decision processes (POMDPs) is a standard type of "world model" that enables a robot to
predict the consequences of its actions.

HMMs are quite powerful – very complicated processes can be modelled by them, and
especially, processes that have a memory. A process is said to have memory when the
probabilities of future observations x(n + 1) x(n + 2)... depend not only on the current
observation x(n) but also on previous observations x(n – 1), x(n – 2) English texts are
processes with a very strong memory component: if you only know that x(n) = e, and you
would be asked how this process continues, you could hardly make a guess. But if you know
that x(n– 21) ... x(n– 1) x(n) = my_mother_and_my_fathe, then there is an
overwhelming probability that x(n + 1) = r.

HMMs are equipped with a learning algorithm called the EM-algorithm, or more specifically,
with a particular subtype of the EM-algorithm called the Baum-Welch algorithm. EM
algorithms are a large family of learning algorithms with applications in many fields of
statistics and machine learning. We will learn both the general EM principle and the specific
Baum-Welch variety that is tailored to HMMs.

Although hidden Markov processes have been known and investigated in mathematical
statistics since at least 50 years, they became popular in applications only in the early 90-ies.
In a small number of years, the field of automated speech recognition was completely taken
over by HMM techniques. The trigger for the surge of popularity of HMMs was a tutorial text
written by L. R. Rabiner in 1989, which is still one of the main teaching texts on HMMs and
is cited in almost every article on HMMs. An electronic version of this tutorial can be found
at http://minds.jacobs-
university.de/sites/default/files/uploads/teaching/share/RabinerTutorialHMM.pdf.

 155

Hidden Markov processes generalize Markov processes (also called Markov chains), and we
first must understand this simpler kind of stochastic process.

A Markov chain describes random sequences from a finite set S = {q1, ..., qm} of states. The
evolution of such sequences is governed by a simple probabilistic law: if at some time n the
process has generated a state qi, then the next generated state is chosen from S with fixed
conditional probabilities P(Xn+1 = qj | Xn = qi) that depend only on qi (we denote by Xn the
random variable that returns the state at time n). Two convenient ways to represent these
conditional probabilities are the transition graph and the transition matrix.

Example 10.1. Here is a simple Markov process with states S = {q1, q2} represented by its
transition graph (left) and transition matrix (right):

Figure 10.1 A very simple Markov chain.

In words, this processed is characterized by the following facts:

• If the current state is q1, then the next state is q1 with probability 0.6 and q2 with
probability 0.4.

• If the current state is q2, then the next state is q1 with probability 1.0 and q2 with
probability 0.0.

More formally, the transition matrix for an m-state Markov chain is

(10.1) M = (pij)i,j =1,...,m = (P(Xn+1 = qj | Xn = qi))i,j =1,...,m

It should be clear that the probability labels of all arcs that leave a state node in the graph sum
to 1, and that the rows of a transition matrix are non-negative and each sum to 1. Matrices
with this property are also called stochastic matrices or Markov matrices. Since a Markov
matrix only specifies probabilities of next states given a previous state, in order to specify a
stochastic process one must additionally know the probabilities of the first state. This is a
probability vector w0 = (P(X0 = q1), ..., P(X0 = qm))T. A pair (M, w0) uniquely specifies a
Markov chain. If you are given (M, w0), you can generate random sequences as follows:

1. Choose the first state according to the probabilities in w0.
2. If the n-th state you have generated is qi, choose the (n+1)th state according to the

probabilities you find in the i-th row of M.

The probability of a sequence qi0 qi1 ... qiN-1 is the product of the individual transition
probabilites involved, times the starting probability of qi0:

q1 q2
0.4

1.0

0.0 0.6









0.00.1
4.06.0

 156

 P(X0 = qi0, ..., XN-1 = qiN-1) =
 = P(XN-1 = qiN-1| XN-2 = qiN-2) ... P(X1 = qi1| X0 = qi0) P(X0 = qi0)

(10.2) = P(X0 = qi0) ∏
−

=

1

1

N

n
 P(Xn = qin| Xn-1 = qin-1)

 = P(X0 = qi0) ∏
−

=

1

1

N

n
 pin-1 in

Eq. (10.2) is the fundamental equation for Markov chains. If for some process Eq. (10.2)
holds, it is a Markov chain and vice versa.

Note that Markov chains have no memory. The probabilities of the next state choices depend
only on the current state, not on any that came before.

A note on a rigorous probability-theoretic treatment of stochastic processes (which we don't
do). Mathematically, a stochastic process (with disrete time n = 0, 1, 2, ...) is a sequence of
random variables (Xn)n = 1, 2, ... , where all the Xi share the same observation space E (in our
Markov chain example, E = S is the finite set of states). The intuitive interpretation of Xi is to
consider it as the observation of the process at time i. Each ω ∈ Ω is corresponds to one
realization of the process, that is, the sequence (Xn(ω))n = 1, 2, ... ∈ Ε  is an observed path, or
time series, of the process.

It is always technically possible to identify the underlying probability space Ω with the set of
all paths, that is, one may assume Ω = S∞. That this representation of Ω is always possible is
the essence of a quite nontrivial theorem due to Kolmogorov. If one were 100% correct, one
would write P(X0(ω)= qi0, ..., XN-1(ω) = qiN-1) instead of P(X0 = qi0, ..., XN-1 = qiN-1). But
instead of being 100% correct, one is rather more often 50% sloppy and writes simply P(qi0 ...
qiN-1) instead of P(X0 = qi0, ..., XN-1 = qiN-1).

10.3 Hidden Markov Processes

Intuitive description. A hidden Markov model (HMM) [or hidden Markov process] is a
generating mechanism for stochastic symbol sequences that consists of two cascaded
stochastic mechanisms. First there is a Markov chain with a state set S = {q1, ..., qm} and
associated starting and transition probabilities. However, the states qi are not observable –
when the Markov chain "runs", its states are hidden. Instead, a state qi "emits", when the chain
passes through that state, an observable symbol from another alphabet Σ = {a1, ..., ak}
according to a probability distribution P(aj| qi) that is characteristic (and fixed) for that state.
Our example 10.1 turns into a HMM if we equip it with such observables:

 157

Example 10.2. This transition graph represents a HMM made from the Markov chain from
Example 10.1, with observables Σ = {a, b}:

Figure 10.2 The Markov chain from Figure 10.1 emitting observable symbols from its states.

The symbol sequences that are generated by HMMs are sequences from the alphabet of
observables, Σ, not from the set of states, S. So the HMM from Example 10.2 would generate
strings like abbaab... .

One intuitive interpretation of HMM processes is that the emitted observables are noisy
measurements of their states.

Here is the formal definition:

Definition 10.1 A hidden Markov model is a quintuple H = (S, Σ, M, E, w0), where S = {q1,
..., qm} is a finite non-empty set of hidden states, Σ = {a1, ..., ak} is an alphabet of
observables, M is an m × m stochastic matrix of state transition probabilities, E is an m × k
matrix of emission probabilities, and w0 is an m-dimensional probability vector, the starting
vector. The rows of E must be probability vectors.

Note: the emission matrix E contains in its i-th row the emission probabilities for the k
symbols from Σ, that is,

(10.3) E = (eij)i =1,...,m; j = 1,..,k = (P(aj| qi))i =1,...,m; j = 1,..,k .

An HMM H = (S, Σ, M, E, w0) describes two stochastic processes (Xi)i ∈ , (Yi)i ∈ . The first
process describes the Markov chain through the states S according to the Markov transition
matrix M – that is, the random variables Xi take values in S, and the index i is interpreted as a
discrete time. The other process, (Yi)i ∈ , takes values in Σ and describes the sequence of
observable symbols. Formally, the joint probability that the process (Xi) goes through a state
sequence qi0 qi1 ... qiN-1 while the observed symbols are aj0 aj1 ... ajN-1, is determined by:

P(X0 = qi0, ..., XN-1 = qiN-1, Y0 = aj0, ..., YN-1 = ajN-1) =

= P(Y0 = aj0 | X0 = qi0) P(X0 = qi0) ∏
−

=

1

1

N

n
P(Yn = ajn | Xn = qin) P(Xn = qin| Xn-1 = qin-1)

(10.4) = ei0 j0 w0 i0∏
−

=

1

1

N

n
 ein jn pin-1 in.

q1 q2
0.4

1.0

0.0 0.6

P(a| q2) = 0.8
P(b| q2) = 0.2

P(a| q1) = 0.3
P(b| q1) = 0.7

 158

One often illustrates the interplay between the "hidden" Markov process (Xi) and the
observable process (Yi) graphically in the following way (see Figure 10.3).

Figure 10.3 A graphical representation of the statistical (in-)dependencies prevailing in an
HMM

Each random variable is represented by a node in a directed graph, which are connected by
links in a specific way. In such (directed) graphical models some random variable X is
statistically independent from all its non-descendants26, given its parents27. Thus, for instance,
the graph structure of Figure 10.3 tells us that the random variable Xn+1 is independent of Xn-1,
given Xn – that is, P(Xn+1 | Xn, Xn-1) = P(Xn+1 | Xn). Or, it would also tell us that Xn+1 is
independent of Yn, given Xn. Do not confound graphical representations like in Figure 10.3
(where graph nodes are random variables) with transition graphs as in Figure 10.2 (where
nodes are states, that is, values of random variables)! both are quite common, but have a very
different interpretation.

The observable process Y0, Y1, Y2, ... is a process with memory! This is at first counter-
intuitive, because the underlying hidden process is a Markov chain and has no memory. But
recall that for a process Y0, Y1, Y2, ... having no memory means that we don't gain any
additional information about future probabilities of Yn+1, Yn+2, ... if we learn about previous
observations Yn–1, Yn–2, ... : all possible information about the future is given with Yn. But this
is not the case with HMMs. We can indeed give a better estimate of the future distribution of
Yn+1, Yn+2, ... if we are informed about the outcome of Yn–1, Yn–2, The reason is that if we
learn about Yn–1, Yn–2, ..., then we implicitly gain knowledge about the current hidden state Xn,
which in turn sharpens our predictions about the observable future.

Here is a simple demonstration of the memory effect. Consider the following HMM:

26 The descendants of a node k in a directed graph are all nodes that can be reached by iteratively traversing
outgoing links from k in forward direction.
27 The parents of a node k in a directed graph are all nodes from which a single link leads to k.

Xn-1 Xn Xn+1 Xn+2

Yn-1 Yn Yn+1 Yn+2

.

P(a| q1) = 1
 q1 q2

1.0

q3 1.0 1.0

P(a| q2) = 1

P(b| q3) = 1

 159

This HMM cycles (deterministically) through the states q1, q2, q3 while emitting (likewise
deterministically) symbols a, a, b. If one observes a single "a", then the next symbol to be
observed can either be an a or a b. If one however observes one symbol before the "a", then
the next symbol becomes fully determined. For instance, observing "ba" allows one to infer
that the next symbol must be an "a" – the b that came before the a provided this additional
information, which is another way of stating that there is memory in this process.

This memory effect may on a grander scale also be illustrated with our example from the
Introduction. Assume that the text string that starts with my_mother_and was generated by
a human brain, and assume furthermore that the workings of that brain can be described by a
Markov chain (with a very large state number). Any physicist worth his/her salt would
subscribe to that view. We (= the readers of the string) don't have access to that Markov
chain, it is hidden to us. So the text string my_mother_and... can be considered as a
sequence of observables that was emitted from the hidden brain state sequence. Now if we,
the readers, only know that Y27 = e, we can't infer much about the text producing brain's state,
and our predictions about the continuation of the sequence after this e are accordingly vague.
If however we learn about the previous portion of the sequence,
my_mother_and_my_fathe, then we learn a lot about the underlying brain state (this
brain is currently reasoning about his/her parents), and this helps us (together with general
knowledge about English) to predict with almost certainty that the next symbol will be r.

Equation (10.4) is not really useful, because it makes explicit use of the hidden state
sequence, which is typically not known in HMM processes. In real-life applications, all one
has is a sequence of observations aj0 aj1 ... ajN-1. Several questions are of interest:

1. Given aj0 aj1 ... ajN-1, what is the most probable state sequence?
2. Given aj0 aj1 ... ajN-1, what is the probability of this sequence?
3. Given aj0 aj1 ... ajN-1 and a time n ≤ N – 1, what is the probability that the hidden state

at time n is qi?

There are standard algorithms that provide answers to these basic questions, which we will
now treat in turn. Formally, the first question is to find that state sequence qi'0 qi'1 ... qi'N-1 that
is the most probable, given the sequence of observations:

(10.5) qi'0 qi'1 ... qi'N-1 =

10 ...
maxarg

−Nii qq
 P(X0 = qi0, ..., XN-1 = qiN-1 | Y0 = aj0, ..., YN-1 = ajN-1).

This maximally probable state sequence is called the Viterbi sequence. It can be obtained
from the observed sequence aj0 aj1 ... ajN-1 by the Viterbi algorithm, a straightforward
dynamic programming algorithm. It runs as follows. Let vk(l) be the probability of the most
probable state/observation sequence up to time l that ends in state qk with observation ajl, that
is,

(10.6) vk(l) =

€

max
qi0 ...qil−1

P(X0 = qi0, ..., Xl-1 = qil-1, Xl = qk, Y0 = aj0, ..., Yl = ajl).

 160

For the (l+1)th time step, these probabilities can be computed from the ones from time l by

(10.7) vk' (l+1) = ek' jl+1

k
max (vk(l) pkk').

The initialization is given by

(10.8) vk (0) = ek j0 P(X0 = qk).

After we have computed all vk (N – 1), we can infer that the index i'N-1 of the last state of the
Viterbi sequence is

(10.9) i'N-1 =

k
maxarg vk (N – 1).

The earlier states of the Viterbi sequence can be found by state backtracking: if we know that
the l-th state of the Viterbi sequence has index i'l, then the (l – 1)th state can be found by

(10.10) i'l-1 =

k
maxarg vk (l – 1) pki'l.

Now we answer the second standard question. The correct probability P(aj0 ... ajN-1) can
obviously be obtained by

(10.11) P(aj0 ... ajN-1) = ∑

∈
−

N
Nii Sqq 10 ...

 P(qi0 ... qiN-1, aj0 ... ajN-1).

But this requires a sum over exponentially (in N) many paths which is infeasible. A feasible
method is provided by another dynamic programming algorithm that resembles the Viterbi
algorithm but has a sum instead of a max operation. We define fk(l) to be the probability that
aj0 aj1 ... ajl is observed on any state sequence that ends in qk, that is,

(10.12) fk(l) = P(Xl = qk, Y0 = aj0, ..., Yl = ajl).

The recursion then is

(10.13) fk' (l+1) = ek' jl+1 ∑

k
fk(l) pkk'.

and the initialization is again

(10.14) fk (0) = ek j0 P(X0 = qk).

Having computed the fk (N – 1) [for k = 1,..., m], the desired probability of an observed
sequence can be obtained by

(10.15) P(Y0 = aj0, ..., YN-1 = ajN-1) = ∑

k
 fk (N – 1)

 161

This algorithm is known as the forward algorithm to compute probabilities of observed
sequences in HMM processes. Its computational time complexity is O(N |S|2).

Without proof (easy exercise!) we mention that there is a convenient matrix representation for
the forward algorithm, which lends itself to transparent implementations. To this end, for each
observable aj ∈ Σ, define an m × m diagonal matrix Oj which contains the emission
probabilities eij of observing aj in states i = 1, ..., m on its diagonal. Define Tj = MT Oj. Let 1m
be the all-ones vector (1, ..., 1)T of size m. Then it holds that

(10.16) P(Y0 = aj0, ..., YN-1 = ajN-1) = 1m

T TjN-1 … Tj0 w0.

The third basic task is to infer from an observation sequence aj0 aj1 ... ajN-1 the hidden state
probability at some time l, that is,

(10.17) P(Xl = qk | aj0 ... ajN-1).

Examples where this question is of interest:

1. If we inspect a genome sequence at a particular location, do we happen to meet what is

called a "CpG-island", that is, a batch within the sequence that due to certain chemical
stabilization effects has a different nucleic acid statistics than ordinary DNA?

2. If we analyze a speech signal, did the speaker intend to utter an "a" at a particular
place? (that is the crucial question that has to be answered in any speech-to-text
recognizer, e.g. in automated dictation systems).

3. In communication systems with noisy channels, at the receiving end one obtains a
noisy and/or coded signal Yn from which the receiver wants to recover the denoised and/or
decoded "source signal" Xn such that each recovered

€

ˆ X n is the most probable one, given
the entire signal Y0 ... YN-1.

While the forward algorithm can be used to compute

(10.18) P(Xl = qk | aj0 ...ajl) = P(Xl = qk, aj0 ...ajl) / P(aj0 ...ajl)

this does not help, because it only gives us a clue about hidden state probabilities using the
observable information up to time n. In this situation we employ a mirror version of the
forward algorithm, called the backward algorithm, to obtain the probability to see ajl+1 ajl+2 ...
ajN-1 if the hidden process is in state qk at time l:

(10.19) bk(l) = P(Yl+1 = ajl+1, ..., YN-1 = ajN-1 | Xl = qk),

which can then be combined with (10.12) to get (10.17). bk(l) can be computed recursively by

(10.20) bk'(l – 1) = ∑

k
 pk'k.ekil bk(l),

and the initialization is

(10.21) bk(N – 1) = 1.

 162

We now combine (10.19) with (10.12):

(10.22) P(Xl = qk | aj0 ...ajN-1) =
 = P(qk, aj0 ...ajN-1) / P(aj0 ...ajN-1)
 = P-1(aj0 ...ajN-1) P(qk, aj0 ...ajl) P(ajl+1 ...ajN-1 | qk, aj0 ...ajl)
 = P-1(aj0 ...ajN-1) P(qk, aj0 ...ajl) P(ajl+1 ...ajN-1 | qk)
 = P-1(aj0 ...ajN-1) fk(l) bk(l).

Seen from an abstract perspective, the posterior distribution P(Xl = qk | aj0 ...ajN-1) can be
used to de-noise or even decode a signal aj0 ...ajN-1.

Notice that a direct implementation of 10.22 on a digital computer is prone to run into
numerical underflow problems. While P(Xl = qk | aj0 ...ajN-1) will be a number of reasonable
size (not underflowing machine precision), P(aj0 ...ajN-1), fk(l), and bk(l) are likely too small to
be accurately represented. To avoid this, practical implementations of 10.22 make use of
dynamic rescaling schemes, where the intermediate quantities that arise during the iterative
computations of these quantities are magnified by rescaling factors when needed. In the end,
all these rescaling factors cancel out and a rescaled version of the quotient P-1(aj0 ...ajN-1) fk(l)
bk(l) can be reliably evaluated. The Rabiner tutorial describes such a rescaling scheme. In
ready-made toolboxes for HMMs these rescalings are integrated (at least they should be) and
you don't have to think about them.

10.4 The expectation-maximization (EM) algorithm

The "EM algorithm" is not really an algorithm but rather a general recipe to construct
algorithms for maximum likelihood estimators in situations where one has observable (=
training) data Y that depend on unobservable (hidden) quantities X. The EM principle was first
described in 1977 by Dempster, Laird and Rubin28 and can be considered a landmark
discovery in statistics. Here I first give an abstract account of the general principle and then
describe the specific version that is used for HMM learning, called the Baum-Welch
algorithm. I roughly follow the exposition given in a paper by Sam Roweis and Zoubin
Ghahramani, A unifying review of linear Gaussian models29, which also covers other versions
of EM for other machine learning problems. I use however another notation than these and I
supply more detail.

The general situation is the following. Let Y be (a vector of) observable random variables
over a probability space (Ω, F, P) and let X be a vector of hidden random variables over the
same space. Let the observation spaces of X and Y be EX and EY, respectively. In our HMM
example, we would have Y = Y0, ..., YN-1 and X = X0, ..., XN-1, and EX = SN and EY = ΣN,

28 Dempster, A.P. , Laird, N.M. and Rubin, D.B. (1977). Maximum likelihood from incomplete data via the EM
algorithm (with discussion). Journal of the Royal Statistical Society series B 39, 1-38. Cited more than 12,500
times in the ISI citation index – I know no other paper that even comes close
29 Roweis, S. and Ghahramani, Z., (1999) A unifying review of linear Gaussian models. Neural Computation
11(2), 305-345. Online copy at http://minds.jacobs-
university.de/sites/default/files/uploads/teaching/share/1616_RoweisGhahramani99.pdf

 163

respectively. Let θ be a set of parameters describing a model for the joint distribution PX,Y(θ)
of X and Y. In the HMM example, θ would consist of all the parameters of a HMM, that is, θ
= (M, E, w0). Now let D be a sample of the observable variables Y – in our example, D would
be a sequence aj0 ...ajN-1. The objective of an EM algorithm is to determine θ such that the
likelihood

(10.23) L(θ) = P(D | θ)

is maximized. This is equivalent to finding θ such that the log likelihood

(10.24) (θ) = log P(D | θ)

becomes maximal. The difficulty we are facing is that the probability P(D | θ) depends
implicitly on the values that the hidden variables take – as becomes clear from Eq. 10.11. Let
X and Y have the pdf p(X, Y) w.r.t. the uniform distribution over EX × EY. Then we can re-
write (10.24) as

(10.25)  (θ) = log P(D | θ) = log ∫ θ

XE

dDXp x)|,(,

that is, P(D | θ) is computed by marginalization w.r.t. X. Now let Q(X) be any pdf over the
hidden variables. Then we can obtain a lower bound on  (θ) by

(10.26) log ∫ θ xdDXp)|,(=

 = log ∫
θ xd

XQ
DXpXQ
)(
)|,()(

 ≥ ∫
θ xd

XQ
DXpXQ
)(
)|,(log)(

(10.27) =

€

Q(X)log p(X,D |θ) dx∫ − Q(X)logQ(X) dx∫

 =  (Q, θ),

where the inequality is an instance of the Jensen inequality for expectations of random
variables:

(10.28) E[q ° X] ≤ q (E[X]) for any concave function q.

Note: the log is a concave function! – and the expectation we use is

∫= xdXQXZXZE)()()]([.

Aside. There is an interesting connection between (10.27) and statistical physics, which I want
to mention at this point for the ones who want to dig below the surface (not needed in the
remainder of these LNs). If we define the possible joint values (x, d) of (X, D) as microstates
of a thermodynamical system, then the energy of such a microstate is – log p(x, d | θ), and the
expectation under Q of the energy of microstates is

€

− Q(X)log p(X,D |θ) dx∫ , i.e. the

negative of the first term in (10.27). The second term in (10.27),

€

− Q(X)logQ(X) dx∫ , is the
entropy of Q.

 164

EM algorithms maximize (Q, θ), by alternatingly maximizing  (Q, θ) w.r.t. Q and θ,
starting from an initial good parameter guess θ0. That is, the following two operations are
carried out in a seesaw fashion:

(10.29) E(xpectation) step: Qk+1 =

Q
maxarg  (Q, θk)

(10.30) M(aximization) step: θk+1 =
θ
maxarg  (Qk+1, θ)

The maximum in the E-step is obtained when Q is the conditional distribution of X:

(10.31) Qk+1 = p(X | D, θk),

because then it holds that  (Qk+1, θk) = (θk):

(10.32)  (p(X | D, θk), θk) =
 = ∫∫ θθ−θθ xx dDXpDXpdDXpDXp kkkk),|(log),|()|,(log),|(

 = ∫∫ θθ=
θ

θ
θ xx dDpDXpd

DXp
DXpDXp kk

k

k
k)|(log),|(

),|(
)|,(log),|(

 = ∫∫ θ
θ

θ
=θ

θ

θ xx dDXp
Dp
DpdDp

Dp
DXp

k
k

k
k

k

k)|,(
),(
)|(log)|(log

),(
)|,(

 = log p(D | θk) = (θk).

The maximum in the M-step is obtained if the first term in (10.27) is maximized, because the
second term does not depend on θk:

(10.33) θk+1 =

θ
maxarg ∫ θ+ xdDXpXQk)|,(log)(1

 =
θ
maxarg ∫ θθ xdDXpDXp k)|,(log),|(

How the M-step is concretely computed depends on the particular kind of model. Because we
have  = (θn) before each M-step, and the E-step does not change θn, and  cannot decrease
in an EM-double-step, the sequence  (θ0),  (θ1),  (θ2) ... monotonously grows toward a
supremum. The computation is stopped when  (θn) =  (θn+1), or more realistically, when a
predefined number of iterations is reached or when the growth rate falls below a
predetermined threshold. The last parameter set θ that was computed is taken as the outcome
of the EM algorithm.

It must be emphasized that EM algorithms steer toward a local maximum of the likelihood. If
started from another θ0, another final parameter set may be found. Here is a summary of the
EM principle:

E-step: estimate the distribution p(X | D, θn) of the hidden variables, given a
preliminary model θn and data D.

 165

M-step: use the (preliminary, approximate) knowledge of the distribution p(X | D, θn)
of the hidden variables to obtain a maximum likelihood estimate of θn+1.

10.5 The EM algorithm for HMMs, "Baum-Welch" algorithm

We proceed to give a concrete instantiation of the EM principle for HMM learning, the
"Baum-Welch" algorithm. There are other EM variants for HMM estimation, but the Baum-
Welch algorithm seems to be the most widely used.

Let D = aj0 ...ajN-1 be an observed sequence. Furthermore, assume that the number m of
hidden states is known. Note: in reality, m is rarely known. Coming up with a good guess for
m is not trivial, and typically boils down to trying out various choices of m, comparing the
quality of the resulting models (after EM estimation of parameters) with cross-validation
schemes – expensive!

The first thing to do is to "guess" a reasonable starter set θ0 of transition, emission, and start
state probabilities. A typical choice (in the absence of prior information about the model) is to
use the uniform distribution with some noise on it.

Now we treat the E-step. That is, we have some preliminary estimated set θn of HMM
parameters. From the knowledge of D and θn we have to derive the joint distribution
p(X0, ..., XN-1 | D, θn). Actually for the later use in the M-step we will not need the full
information of p(X0, ..., XN-1 | D, θn) but can make do with the distributions p(Xl | D, θn) and
p(Xl, Xl+1 | D, θn). Working our way towards these distributions we first note that from the
forward and backward algorithms we can get the following probabilities:

(10.34) fk

(n+1)(l) = P(Xl = qk, aj0 ... ajl | θn) and

(10.35) bk

(n+1)(l) = P(ajl+1 ... ajN-1 | Xl = qk, θn) and

(10.36) P(D | θn) = ∑

k
 fk

(n+1) (N – 1).

Using these we can compute P(Xl = qk, Xl+1 = qk' | D, θn) =: ξkk'

(n+1)(l) by

(10.37) ξkk'
(n+1)(l) =

€

fk
(n+1)(l) pkk'

(n) ek ' jl+1
(n) bk '

(n+1)(l +1)
P(D |θn)

Note that)(

'
)(
' 1
, n

jk
n
kk l
ep

+
 are part of θn. Furthermore, from (10.17) we know how to compute

(10.38) γk

(n+1)(l) = P(Xl = qk | aj0 ... ajN-1).

With the ξkk'

(n+1)(l) and γk
(n+1)(l) we have extracted all that we need to know about the

distribution of the hidden variables and proceed to the M-step. In that step we derive a new
maximum likelihood estimate for θn+1 from ξkk'

(n+1)(l), γk
(n+1)(l) and D. This happens through

 166

the following self-explaining re-estimation formulas. For the m components of the starting
distribution w0 we can take

(10.39) P(X0 = qk)

(n+1) = γk
(n+1) (0).

The transition probabilities are re-estimated by

(10.40) pkk'
(n+1) =

stateany ns transitioof nr. expected
' ns transitioof nr. expected

→

→

k
kk

 = .
)(

)(

2

0

)1(

2

0

)1(
'

∑

∑
−

=

+

−

=

+

γ

ξ

N

l

n
k

N

l

n
kk

l

l

Finally, the emission probabilities are re-estimated through

(10.41) ekj
(n+1) =

k

jk

q
aq
 throughpasses of nr. expected

emitted is where, throughpasses of nr. expected

 = .
)(

)(

1

0

)1(

2

1,...,0

)1(

∑

∑

−

=

+

−

=

−=

+

γ

γ

N

l

n
k

N

aa
Nl

n
k

l

l

jlj

This finishes the M-step.

10.6 How to compare models for stochastic processes

When estimating HMMs (or any other kind of stochastic sequence model, for that matter)
from data, one needs a way to compare the quality of different models, for instance in cross-
validation schemes. A standard way of doing so is to use the log likelihood of the model on
the training data (caution! overfitting!) or on test data (better! in cross-validation schemes, test
data are taken from withheld portions of the training data). Concretely, assume first that the
true model is known. Call it θtrue. Let D = ajl+1 ... ajN-1be the available data for quality
checking. Then, the model θtrue should enable you to compute the log probability of D as

(10.42) LLtrue = log P(D | θtrue)

In the case of HMMs, LLtrue can be conveniently computed with the matrix version of the
forward algorithm 10.16, as follows:

1. Initialize LLtrue = 0.
2. for l = 0 to N-1 do

a. compute vl = Tjl wl (notice that for l = 0, w0 is given as part of the model)
b. update LLtrue = LLtrue + log 1m

T vl
c. if l < N-1, put wl+1 = vl / 1m

T vl

 167

3. return LLtrue.

It's a good exercise to work out for yourself why this algorithm indeed computes LLtrue.

Now, if you have another model θcheck besides the true one, you can likewise compute
LLcheck = log P(D | θcheck). It is a fact which we mention without proof that always

(10.43) LLcheck ≤ LLtrue .

 (Well, this is almost true... for short test sequences D, the check model θcheck may spuriously
give higher LLcheck than LLtrue occasionally due to random fluctuations in D; when D grows
bigger this will become increasingly improbable). This gives you a way to assess the quality
of your model: the closer it comes to LLtrue, the better it is – and it's optimal, namely
equivalent to the true model, when equality is obtained.

Usually however one does not have access to the true model LLtrue. Then, this procedure can
still be used to compare two check models θ1

check and θ2
check: if θ1

check ≤ θ2
check, the second

model is the better one, and vice versa. You don't know how close you are to the optimal
model, but at least you know whether your models get better or worse.

10.7 Miscellaneous Remarks on HMMs

Good news: The Baum-Welch algorithm for HMMs is numerically robust, easy to use, and
the only choice for training HMMs. Here are some not so good news:
This algorithm can become computationally expensive. It needs time O(N |S|2) per iteration,

and in the order of 100 iterations are typically needed. For large N (e.g. in speech
processing, N easily reaches 100,000) and large |S| (again, may reach half a million in
speech processing) this induces minutes or even hours of training time, which render
HMMs awkward for adaptive applications (e.g. re-training on the spot for new speakers).
State-of-the art HMM-based learning algorithms don't use the raw Baum-Welch method
however, but exploit numerous tricks to reduce computation time (and at the same time
introduce Bayesian priors for better data exploitation, for instance by prescribing pairwise
equality of many of the parameters to be learnt).

Only a local optimum is guaranteed by EM. To make things worse, for complex HMMs
(having many states) the likelihood landscape is very rugged, and one may easily land in a
globally very subobtimal local optimum. The literature claims that this is not a real
problem, but in my own experience I have found that even 3-dimensional HMMs can
easily (and repeatedly) get stuck in very bad "optima". To overcome this impasse, one can
use extra search methods (e.g., simulated annealing or restarting from different initial
guesses of θ0) that however multiply the computation time.

It is not immediately clear from a training sample what an appropriate model size (= number
of states) is. This may force one to add yet another level of computational superstructure,
namely, searching for an optimal model size (negotiating for a good compromise in the
bias-variance dilemma).

One partial remedy to computational complexity is to use the Viterbi approximation to the
Baum-Welch algorithm. In this "cheap" version of EM for HMM estimation, the E-step
simply computes the Viterbi state sequence.

 168

In spite of these difficulties and challenges, HMM + Baum-Welch is essentially the only
available option for learning complex stochastic systems of the "speech or other information-
bearing symbol sequence" flavour. The art and technology of HMM design and learning is far
advanced, and various public-domain implementations are available. The one that I use was
developed in Matlab by Kevin Murphy from MIT and can be downloaded from
http://www.cs.ubc.ca/~murphyk/Software/HMM/hmm.html, where also a good choice of
tutorial links is provided (this HMM toolbox requires several other public-domain Matlab
toolboxes to be installed, as indicated on that webpage. You can download all of them
bundled together with Kevin Murphy's HMM toolbox in a single zip file from
http://minds.jacobs-university.de/sites/default/files/uploads/teaching/share/HMM.zip.

We have assumed in our treatment of HMM + Baum-Welch that the training sample consists
of a single (long) sequence. In many applications, the training material consists instead in
many short or medium-long sequences (for instance for single-word recognition in speech
processing or in biosequence modeling). The Baum-Welch algorithm, as presented above, can
be immediately adapted to that kind of training material.

One important way to reduce training time and at the same time to insert prior information
intot the HMM that is to be learnt, is to prescribe the structure of the transition graph of the
underlying Markov chain. That is, one specifies the number of states and also which state
transitions are forbidden (frozen at a zero transition probability). This is of special importance
in speech processing and biosequence modelling. A typical hand-coded transition graph for a
HMM that models the utterance of a particular target word might look like in Figure 10.4.

Figure 10.4 A state transition graph for a (finite) Markov chain, as could be obtained in
modelling a short vocal utterance.

Many variants of HMMs have been explored together with variants of the EM learning
algorithm. A good overview of basic variants is given in Rabiner's tutorial paper. They
include:

HMMs that don't just emit from their state symbols from a finite alphabet but instead

continuous-valued quantities according to a pdf associated with each state,
HMMs that emit observable events not from states, but from transitions,
HMMs that allow the hidden process to stay in a state for a stochastic time (and repeatedly

emit observables from that state during that time) that is specified by additional model
parameters.

Finally, I want to point out that HMMs are specific members of a far greater class of
stochastic models, termed Bayesian Networks or – even more generally still – Graphical
Models. Graphical models present stochastic models of complex pieces of reality, especially

q1 q2 q3 q4 q5 q6 q7 q8

 169

in applications of diagnostic reasoning (medical expert systems, production line surveillance
systems, fault monitoring systems), decision support systems, and image processing (where
the random variables correspond to pixels). Such models often comprise thousands or even
millions of random variables, whose joint distribution provides the most complete and
profound possible description of a modelled piece of reality. However, joint distributions of
very many variables cannot be in general learnt from data (curse of dimensionality!), and even
if they could be, there is no general way even just to represent such joint distributions (how
would you represent a complicated, empirical function over 1000?). Graphical models (and
their subspecies, Bayesian Networks) exploit that in systems comprising thousands of random
variables, most of them are conditionally pairwise independent, a circumstance that can be
described by graphs whose nodes are the random variables – just as we did for HMMs in
Figure 10.3. Combining advanced graph algorithms and techniques from nonlinear stochastic
optimization, using fast computers it becomes in fact feasible to handle modelling tasks of
enormous calibre. I give an introduction to graphical models is given in the companion lecture
to this Machine Learning course, "Algorithmical and Statistical Modelling".

