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1. Introduction 
 

1.1 What this lecture is – unfortunately – NOT about 
 
What do you see? 
 

 
(From an ad for "Fiddler on the Roof", www.addaclevenger.org/show/tophat.jpg) 
 
Don't behave like an image processing algorithm. I think you can "see" much more:  
 
What's sticking out in the left lower corner? 
What's the expression on the face of that man? 
What will be his next movement? 
How does the hat smell? 
Other questions you could answer... 
 
How did your answers get there where they come from? 
 
Human learning: uncomprehensively rich and complex, involving aspects of 
 

• body growth 
• brain development 
• motion control 
• exploration, curiosity, play 
• creativity 
• social interaction 
• drill and exercise and rote learning 
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• reward and punishment, pleasure and pain 
• evolution 
• dreaming 
• remembering 
• forgetting 
• & 1000 more ... 
•  

and all is integrated into your person, makes up your individual personality  
 
You are what you learnt. 
 
What must be in place for you to become yourself through learning? 
 

• The universe, the earth, the atmosphere, water, food, caves 
• Your body, brain, sensor & motor apparatus 
• Physiology and neurophysiology 
• Evolution 
• Other people, living 
• Other people, long dead 
• Machines, tools, buildings, toys 
• Words and sentences 
• Concepts and meanings 
• Letters and books 
• Traditions  
• Schools 

 
Your and your learning are part of the world's development 
 
By the way, does evolution learn?  
Is, what is learnt by an individual, affecting evolution? Can the results of learning be passed 
on to siblings genetically? The Baldwin effect says, yes it can, albeit indirectly.  
 
Excerpt from http://www.geocities.com/Athens/4155/edit.html: 
 
 
 

At the turn of the century, it was unclear whether Darwin's theory or Lamarck's better 
explained evolution. Lamarck believed in direct inheritance of characteristics acquired by 
individuals during their lifetime. Darwin proposed that natural selection coupled with 
diversity could largely explain evolution. Darwin himself believed that Lamarckian evolution 
might play a small role in life, but most Darwinians rejected Lamarckism. One potentially 
verifiable difference between the two theories was that Darwinians were committed to 
gradualism (evolution in tiny, incremental steps), while Lamarckians expected occasional 
rapid change. Lamarckians cited the gaps in the fossil record (which are now associated with 
punctuated equilibria) as supporting evidence.  

Lamarckism was a viable theory until August Weismann's (1893) work was widely accepted. 
Weismann argued that higher organisms have two types of cells, germ cells that pass genetic 
information to offspring and somatic cells that have no direct role in reproduction. He argued 
that there is no way for information acquired by somatic cells to be transmitted to germ cells.  



 4 

In the context of this debate, James Mark Baldwin (1896) proposed "a new factor in 
evolution", whereby acquired characteristics could be indirectly inherited. Morgan (1896) and 
Osborn (1896) independently proposed similar ideas. The "new factor" was phenotypic 
plasticity: the ability of an organism to adapt to its environment during its lifetime. The ability 
to learn is the most obvious example of phenotypic plasticity, but other examples are the 
ability to tan with exposure to sun, to form a callus with exposure to abrasion, or to increase 
muscle strength with exercise. Baldwin (1896) pointed out that, among other things, the new 
factor could explain punctuated equilibria.  

The Baldwin effect works in two steps. First, phenotypic plasticity allows an individual to 
adapt to a partially successful mutation, which might otherwise be useless to the individual. If 
this mutation increases inclusive fitness, it will tend to proliferate in the population. However, 
phenotypic plasticity is typically costly for an individual. For example, learning requires 
energy and time, and it sometimes involves dangerous mistakes. Therefore there is a second 
step: given sufficient time, evolution may find a rigid mechanism that can replace the plastic 
mechanism. Thus a behavior that was once learned (the first step) may eventually become 
instinctive (the second step). On the surface, this looks the same as Lamarckian evolution, but 
there is no direct alteration of the genotype, based on the experience of the phenotype. This 
effect is similar to Waddington's (1942) "canalization".  

The Baldwin effect came to the attention of computer scientists with the work of Hinton and 
Nowlan (1987). The Baldwin effect may arise in evolutionary computation when a genetic 
algorithm is used to evolve a population of individuals that also employ a local search 
algorithm. Local search is the computational analog of phenotypic plasticity in biological 
evolution. In computational terms, in the first step of the Baldwin effect, local search smooths 
the fitness landscape, which can facilitate evolutionary search. In the second step, as more 
optimal genotypes arise in the population, there is selective pressure for reduction in local 
search, driven by the intrinsic costs associated with the search.  

1.2 What this lecture is about 
 
This lecture is about inductive learning: given observations / experiences / examples, derive a 
model / description / concept / rule (we'll stick to model) 
 
Most important examples:  
 

• Categorization (I see a man who wears a hat) 
• Second-to-second action result expectations (if I let go of this pen, it will fall down) 
• Skills, professional and everyday 
• Everyday theories ("plants grow because rain falls and sun shines") 
• Models in the natural sciences 

 
Some might claim that induction is learning is induction and that Science is The Big 
Learning, but we have learnt otherwise a few minutes ago. 
 
This lecture is about inductive learning performed by algorithms: given a data set ("training 
data", "sample"), condense it into a data structure that can be used for various purposes, such 
as simulation, prediction, filtering (de-noising, transformation), classification, failure 
monitoring, pattern completion. 
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Examples: 
 

• Given a set of plant descriptions with dozens to hundreds anatomical details per plant, 
derive an efficient classification scheme (as you find it in botanic field guides) 

 
• Given a sample of profile data records of customers, classify them into target groups 

for marketing.  
 

• Given a sample of profile data records of startup companies, predict the risk of 
insolvency for a new startup company, together with predicting the inaccuracy of your 
prediction. 

 
• Given 100,000 spam emails and 1,000 non-spam emails, create a spam filter.  

 
• Given audiorecordings of properly working gearboxes and of gearboxes shortly before 

failure, develop a monitoring system that warns you of imminent failure. 
 

• Given some thousand samples of hand-written postal codes, train an automated postal 
code recognizer.  

 
• Given a corrupted radio signal with echo and noise and amplifier distortion, distil a de-

distortion filter (an equalizer) which undoes these effects and returns the "clean" 
signal; and, do this within milliseconds (your cellphone does it). 

 
• Read a long text aloud into a microphone. From that recording, train a personal 

dictating system that transforms your speech into text. When the system makes 
mistakes, speak the mistyped word a few times and let the system adapt.  

 
• Given test data from a combustion engine run under many different working 

conditions, learn an automated control device that minimizes fuel consumption.  
 

• Given a team of soccer robots and a lot of test game recordings, develop a behavior 
control module that lets the team win.  

 
In this lecture, you will learn techniques that enable you to start coping with most of the 
examples.  
 
You see, it's useful. But it's a far cry from the totality of human learning. And it involves 
statistics... Don't be afraid, though, it's so powerful that statistics turns into a good feeling. 
 
 
 

1.3 What this lecture isn't about either 
 
This lecture is mostly about inductive learning of numerical models. The methods we will see 
have mostly been developed in the fields of pattern recognition, signal processing, neural 
networks and statistical decision making. The books of Bishop and Duda/Hart/Stork are 
representative (see references list on course homepage).  
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This is one big portion of the field of machine learning. Another big portion is concerned with 
learning symbolic models, for instance, deriving sets of logical rules or even little computer 
programs from training data. Such techniques often have a typical "artificial intelligence" 
flavour. Here the book of Mitchell is a good source.  
 
Finally, there are two further big fields of machine learning that we will not touch: genetic 
algorithms / evolutionary optimization, and reinforcement learning. The former installs 
artificial evolutionary processes to finding (sometimes amazingly "creative") solutions to 
complex optimization tasks, the latter deals with leraning optimal action policies for 
autonomous agents when during training only scarce reward / punishment signals are 
provided. Mitchell's book gives short intros for both.  
 

1.4. Technical remarks 
 
The course homepage is at http://minds.jacobs-university.de/teaching/MLFall11. There you 
can find this script, references, exercise sheets, software etc.   
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2. A first tour of topics 
 

2.1. Introducing the Digits example 
 
The digits dataset and all Matlab routines used in this section are available at  
http://www.faculty.jacobs-university.de/hjaeger/courses/MLFall04/OnlineGuide.html. If you 
want to play around with this example, go ahead! 
 
In order to get a feeling for the issues of ML, in the first few sessions we will informally 
consider a simple learning task and learn about some crucial themes of that will turn up again 
and again throughout the course.  
 
Assume you want to train an algorithm to distinguish the written symbols "1" and "0". Part of 
the training material might look like the first two lines in the following figure: 
 

 
Figure 2.1: part of the digits training sample (created from a benchmark dataset donated by 
Robert Duin, orginally retrieved from http://ftp.ics.uci.edu/pub/ml-repos/machine-learning-
databases/mfeat/mfeat-pix, now also at 
 http://minds.jacobs-university.de/sites/default/files/uploads/teaching/share/mfeat-pix.txt and 
http://minds.jacobs-university.de/sites/default/files/uploads/teaching/share/mfeat.info.txt.  
 
Technically speaking, these samples are two-dimensional arrays of size 15x16, or 
alternatively vectors xi of length 240, where i = 1, ..., N and N is the size of the training set. 
The values of the vector components indicate greyscale values. In our digits dataset, these 
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values are integers ranging from 0 to 6, and for "zero" and "one" patterns this data set contains 
200 samples, so here N = 400.  
 
In addition, this training set contains the information whether some input vector is a zero or a 
one. We code this by introducing a class label yi ∈ {1, 2}, where yi = 1 if xi represents a 
"zero" and yi = 2 if xi represents a "one". Thus, your training data is a set of labelled samples:  
 
(2.1)  (xi, yi)i = 1,..., N 
 
What in the end you want to have is an algorithm that accepts as input some (new) 
alternatively vectors x and produces as output a "1" or a "2" according to whether the input 
vector represents a one or a zero. Formally, such an algorithm implements a binary decision 
function  
 
(2.2)  y = f̂ (x),  where y ∈ {1, 2}. 
 
We generally use the hat, ^, to mark functions or variables that are learnt, or −  as statisticians 
would say with equal right −  estimated from data. In writing y = f̂ (x), we indicate that we 
believe that there is a correct (but unknown) decision function f, of which f̂  is an estimate 
obtained through some learning method (or even by inspired hand design). 
 
You might find it easy to explicitly write a little algorithm, inspired by insight into the nature 
of 0's and 1's, that implements some reasonable f̂ . The zero and one pictures have some very 
distinctive characteristics that you might be able to exploit. But you might find it much more 
difficult to come up with a program that distinguishes between ones and twos, or between 
ones an sevens!  
 
Even humans are sometimes unsure about a classification. Look at the last "one" example in 
Figure 2.1. If you wouldn't know it is a "one", you might be unsure whether it might not also 
be a "zero".  
 
Facing this intrinsic uncertainty of classifications, a more adequate type of classification 
algorithm would not return on input x a single class label, but should rather return a 
hypothesis vector: (P(y = 1 | x), P(y = 2 | x)). Because P(y = 2 | x) = 1 − P(y = 1 | x), one of the 
two hypothesis components is redundant, and it is enough if the probability  p = P(y = 1 | x) is 
returned. That is, such an algorithm would implement a hypothesis function 
 
(2.3)  p = f̂ (x),  where p ∈ [0,1]. 
 
The explicit design of a classification algorithm soon becomes tedious if not impractical, and 
it would be hard to write an algorithm that returns reasonable hypotheses instead of just a 
binary decision.  
 
Bright idea: write a learning algorithm instead, that reads the training samples (2.1) and 
automatically generates a function f of the kind (2.2) or (2.3)! 
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2.2. The curse of dimensionality 
 
We will now try to design an ad hoc, brute-force learning algorithm L for a decision function f 
of type (2.2).  
 
Since in the dataset we are using, vectors x coding for digits have integer values ranging 
between 0 and 6, the input space for f  is a 240-dimensional, integer-valued cube X with edge 
length 6. Our (first, crude) approach to design L is learning by frequency counts: 
 

• Partition X into a number of subcubes Xj, where j = 1, ..., d.  
• For each subcube Xj, L considers all training samples (xi, yi) with xi ∈ Xj and counts 

how many of them are "zeros" (= N0(j) ) and how many are "ones"  (= N1(j) ). 
• Store all these N0 (j), N1(j).  
• f̂ (x)  is then defined as follows:  

o Determine index j of the subcube with x ∈ Xj.  
o If N0 (j) > N1(j) return 1. 
o If N0 (j) < N1(j) return 2. 
o If N0 (j) = N1(j) return ?. 

 
Hopeless! Why? 
 
The coarsest reasonable partition of X into subcubes Xj would halve the edges of X and create 
subcubes of edge length 3. This would give 2240 subcubes! That is, only in a vanishingly 
small number of subcubes would we find a training sample at all. In the vast majority of 
subcubes, N0(j) and N1(j) would be 0 and f wouldn't be defined. Even if we had a number N of 
training samples amounting to the number of atoms in the universe, the situation would hardly 
improve! (plus, we would run into storage problems).  
 
So our naive approach fails completely.  
 
This situation is common to many ML tasks and is known as the 
 
Curse of dimensionality: Training samples (xi, yi) that are high-dimensional vectors populate 
their input vector space X so thinly that it is meaningless to use them directly to define a 
decision or hypothesis function f̂  over X.  
 
 
 

2.3 Using features 
 
A way to escape from the curse of dimensionality: use a few features instead of original input 
vectors. The function of features is to reduce the dimensionality of the input space. 
 
Technically, a feature F is a one-dimensional function over the original input vectors x. 
Examples in the digit domain: 
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• F1(x) = sum of components of x / 240 = 1T x / 240, where 1 is the 240-vector of all 
ones and T denotes transpose (in this script, all vectors are assumed to be column 
vectors unless noted otherwise). This is the average brightness of the digit picture. 
Might be useful to distinguish between "ones" and "zeros" because "zeros" should use 
more ink than "ones".  

 
• F2(x) = 0 if in the middle row of the digit picture there are some black pixels followed 

by some white pixels followed again by some black pixels, and = 1 else. Might single 
out "zeros" from "ones" because F(x) = 0 seems typical for "zeros". (But look at the 
fourth "one" image in Fig. 2.1). 

 
• Construct F3 as follows. First, create a pixel image with a clean, clear, "one". 

Transform this image into a vector xbest1. Put F(x) = < xbest1, x > = xbest1
T

  x. This is 
the inner product between x and xbest1. Intuitively, F3 measures the overlap of a 
pattern x with the prototype xbest1, and thus should be large for patterns x representing 
"ones" and small for patterns representing "zeros".  

 
There are very many ways to define useful features, and we will learn about more of them.  
 
Features are a tool for dimensionality reduction. If you have some few (hopefully relevant) 
features F1, ..., Fm, rewrite your high-dimensional input patterns x into low-dimensional 
feature vectors F(x) = (F1(x), ..., Fm(x)).  This transformation is called feature extraction. Use 
(F(xi), yi)i = 1,..., N  as training material. The learning task is then to distil from this material a 
function  y = f̂ (F(x)) that gets as input feature vectors and returns classification labels.  
 
 
Finding "good" features for dimensionality reduction is a key factor in many ML tasks. It is 
also something of an art, because the "good" features are often task-specific and require some 
insight into the "nature" of the data (compare F2  from the list above). Unfortunately, there is 
no known universal way to define the "best" features for a given learning task (but there are 
good working solutions that are quite generally applicable). 
 
 
Using low-dimensional features, our ad hoc approach of learning by frequency counts 
suddenly makes sense. In the simplest case, we only use a single feature. The space X on 
which f operates is now one-dimensional (the dimension of the feature value).  
 
Using feature F3 and 10 subcubes (= subintervals here) we get the following histogram for 
N0(j), N1(j): 
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Figure 2.2. Frequency counts for "zero" and "one" training patterns w.r.t. feature F3 
 
It becomes clear from this figure that a decision function f̂  based on this feature alone would 
classify the majority of the training examples correctly but would also yield some 
misclassifications. In fact, 5.25 per cent of the training samples would be misclassified – 
apparently more misclassifications than a human would make. We will learn to do much 
better.  
 
 
 

2.4 Regression and time series prediction. Introducing the Mackey-Glass 
attractor example.  
 
The digit recognition task is a classification task. The training patterns for a classification task 
are of the kind (xi, yi), where yi is a discrete-valued class label. "Discrete-valued" here means 
that there are only finitely many possible values yi can take.  
 
If the yi in the training patterns are allowed to take "analog", real-number values, then the 
training patterns (xi, yi) are best seen as argument-value pairs of some function, that is, yi = 
f(xi), and the learning task becomes one of estimating the function from training examples, 
that is, to obtain some y = f̂ (x). Estimating real-valued functions from training data is called 
regression. In a sense, classification is just a special case of regression, where the function f is 
intended to take only discrete (class label) values.  
 
Often, the training patterns come from noisy measurements. Figure 2.3 shows a noisy 
"measurement" of a linear and the square function; the crosses mark the (xi, yi) training 
patterns. 
 

N0(j) (blue, left columns)  
and 
N1(j)(red)

 
     F3(x) 
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Figure 2.3: A linear and the square function (solid lines), represented by "noisy observations" 
(crosses). 
 
If one wishes to obtain a linear function (as in the left panel of Fig. 2.3), one speaks of a linear 
regression; otherwise, of a nonlinear regression. The term "regression" typically means that 
one deals with noisy training patterns, but sometimes it is also used for noise-free training 
samples. (While we are at it: the term "sample" may refer to a single training instance (one 
red cross in Fig. 2.3), but is likewise used to denote the complete training set – don't blame me 
for this confusion.) 
 
Regression tasks abound in practical applications. Here are some examples: 
 

• Predict the time a cancer patient will live. Training samples (xi, yi): xi is a vector 
containing diagnostic measurements of patient i, yi is the time this patient lived after 
diagnosis. 

• Assess the quality of a production batch leaving a chemical factory. In training 
samples (xi, yi), xi is a vector of measurements made during the production process, yi 
is a vector of quality criteria describing the end product. This is not only interesting to 
predict the quality of an end product currently being processed, but also (applied in 
reverse) for finding "manufacturing tuning parameters" x that will yield a product with 
certain desired characteristics y.  

• Image restoration: Training samples (xi, yi) are pairs of a corrupted image xi and its 
non-corrupted form yi. Here, both xi and yi are grayscale vectors. 

 
Regression is also key in a type of problem where one would not, at first sight, expect it: time 
series prediction. We will see now how time series prediction can be seen as a regression task. 
 
By way of example, we consider a time series which is generated by a deterministic equation, 
namely, the Mackey-Glass (MG) equation. The MG equation was first introduced as a model 
for the onset of leukaemia1. It describes a chaotic system and has been used extensively as a 
benchmark system in time series prediction research, so there is a big number of articles 
available that treat the prediction task for the MG system and which allow one to compare 
one's own prediction performance with the state of the art. Originally, the MG equation is a 

                                                
1 J. McNames, J. A. K. Suykens, J. Vandewalle, Int. J. of Bifurcation and Chaos 9, 1485 (1999) 
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so-called delay differential equation. When it is discretized with stepsize δ (that is, changed 
from continuous time t to discrete time n), one gets an approximate update equation that looks 
like this: 
 

(2.4)  







−

−+
−

+=+ )(1.0
)/(1
)/(2.0)()1( 10 nx

nx
nxnxnx

δτ
δτ

δ  

 
This equation describes how the value x(n+1) can be computed from previous values. The 
delay parameter τ is usually set to 17 or to 30, that is, x(n+1) depends on the previous value 
x(n) and the value 17 update steps before n. The larger τ , the more chaotic the resulting time 
series. Fig. 2.4 shows how Eq. (2.4) evolves for τ = 17 and τ = 30 (a stepsize of δ = 0.1 was 
used). For values of τ less than 17, the resulting time series is not chaotic but only periodic.  
 

 
Figure 2.4: Evolution in time of the MG system for delays τ = 17 and τ = 30. 
 
 
Time series prediction tasks. In the case of discrete time n, and a one-dimensional time series 
(xn)n =1,2,3,... , a time series prediction task is set up as follows: 
 

• Given: an initial sequence x1, x2, ..., xN. generated by some dynamical system (in our 
case, Eq. (2.4)). 

• NOT given: knowledge of the generating system! 
• Wanted: an estimated continuation of this sequence x̂ N+1, x̂ N+2, ... 

 
For the MG example, the initial sequence might for instance consist in the first 400 points of 
Fig. 2.4 (left), and the prediction task would be to generate the next points. Here are some 
other important time series prediction tasks: 
 

• Predict the currency exchange rate, given the currency charts up to NOW.  
• Predict the weather. 
• Predict the next move of your opponent in a game (for instance, chess or real-life 

warfare – yes, that's being tried!) 
• Predict where a comet is heading (will it hit us?)  
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• Predict the next sounds in a speech utterance (this is important for automated speech 
processing systems, because such predictions are required to "filter" hypotheses about 
what has actually been said). 

 
• This is a learning task in the sense that in order to create the continuation x̂ N+1, 
x̂ N+2, ...one has to induce (= "learn") from the given initial sequence x1, x2, ..., xN a 

model M of the (unknown!) generating system, and then use M to compute the 
continuation.  

 
What kind of mathematical thing is M?  
 
There are many, many possibilities. In fact, M might take the form of any 
mathematical/algorithmical object capable of generating a time series. For instance, M might 
be some kind of deterministic automaton, or a random system like a Markov chain, or a game 
strategy, or simply an update equation of the form x(n+1) = f̂ (x(n)). A good deal of ingenuity 
and intuitive insight is typically required to settle for a "suitable" type of algorithmical object 
for a given time series prediction task.  
 
Now we will see how the task of time series prediction can be cast as a regression task. The 
idea is to establish M as a regression function f̂  (which has to be learnt from the training data 
x1, x2, ..., xN). Consider a short section of the MG series (Fig. 2.5) for an illustration: the idea 
is to learn a function f̂  which takes as arguments some previous, already known values of 
the time series and computes the next value from those.  
 
 

  
 
 
Figure 2.5: One way to specify a mechanism M capable of creating a time series: compute 
next value (square) as a function (arrows) of some previous values (circles).  
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Typically, when one uses this approach, one takes a relatively small number of preceding 
points (order of 3 to 10), which are spaced at regular intervals (in Fig. 2.5., with 2 points in 
between). Formally, M is an update equation f̂  of the following kind: 
 
(2.5)  x(n +1)  =  f̂ (x(n), x(n − d), x(n − 2d),  ... x(n − kd)) 
 
At this point we make a little digression and describe a curious and extremely useful and 
relatively recent mathematical insight – the Takens theorem2.   
 
Consider some dynamical system that is governed by a differential equation of the form 
 
(2.6)  )(xx h= , 
 
where x is a vector from a possibly high-dimensional vector space X. Assume further that the 
dynamics described by this equation is confined to a compact submanifold A of X. Basically, 
this means that the dynamics does not drive the system state to infinite values.This is typically 
given for real-life physical systems. Furthermore, let the dimension of A be dA. A typical 
occurence in very-high-dimensional physical systems is that dim(X) >> dA. This is due to the 
fact that often the very many componentes variables of x are coupled through the dynamics 
(2.6), a condition which makes them change in time in a coordinated fashion, which 
effectively shrinks the dimension of the manifold A of X where the action x(t) happens. This 
would for instance be expected in brain states or in many biomechanical systems. But still, 
even with the dimensionality reduction afforded by mutual couplings of variables, dA still may 
be quite large in many systems of interest.  
 
In many cases where researchers face complex dynamical systems of the kind (2.6), they face 
a situation where the following two facts are at odds: 
 
1) The researcher wants to understand the dynamics of the system – for instance, whether it 

is periodic, chaotic (and if so, how "badly" chaotic), whether it has stable equilibria and so 
forth – in short, s/he wants to know about the qualitative properties of h.  

2) The researcher cannot measure the high-dimensional state vector x, nor some lower-
dimensional transform of it that covers the dynamics on A. (Imagine, for instance, that x 
contains the zillions of neural activations of a brain state, -- even given that many neurons 
act in some coordinated way,  dA still would be quite large; or imagine the hundreds of 
concentrations of reactants in a complex chemical reaction).  

 
In many cases, all that the researcher has in her hands is just the value of one single 
measurement (or observation) variable y(x(t)) which is a function of the underlying high-
dimensional physical state. (For instance, y(x(t)) might be a voltage reading of an extracranial 
electrode for measuring brain activity, or it might be the concentration of a single, easy-to-
measure reactant in a chemical reaction).  
 

                                                
2 Original paper: F. Takens (1991), Detecting strange attractors in turbulence. In Dynamical Systems and 
Turbulence (Rand, D.A. and Young, L.-S., eds.), Springer LN Mathematics 898, 366-381. More recent 
extensions: Stark, J., Broomhead, D.S., Davies, M.E., Huke, J., Takens embedding theorems for forced and 
stochastic systems. Nonlinear Analysis, Theory, Methods & Applications 30 (8), 1997, 5303-5314 Websites: try 
"Takens theorem" on Google and you will immediately find pages with a rigorous statement of Takens theorem. 
 



 16 

Now the Takens theorem comes to your help! It says that under certain conditions, the 
dynamics x(t) of the original state vector is essentially identical to the dynamics of a delay 
embedding of the observation variable, that is, to the dynamics of a vector of the kind  
 
(2.7)  y(t) = (y(t), y(t - τ), y(t - 2τ), ..., y(t – (k−1)τ)).  
 
Some explanations: 
 

• The phrase, "the dynamics is essentially identical", intuitively means that the 
dynamics of x(t) and of y(t) exhibit the same qualitative properties, for instance same 
number of equilibrium points, same number of possible oscillation patterns, etc. 
Technically speaking, the dynamics of y(t) evolves on some compact manifold y(A), 
and there is a differentiable embedding of y(A) into A which maps the dynamics of y(t) 
on the dynamics of the original states x(t).  

• The dimension k of y(t) is called the embedding dimension. Takens theorem states that 
if k is chosen to be at least 2 dA + 1, one obtains "essentially identical dynamics".  

• Since Takens' pioneering paper, numerous embedding theorems of the same flavour 
have been found. Specifically, a theorem that goes back to Sauer et al3 states that if the 
dynamical system in question is a chaotic attractor of (fractal) dimension d, then the 
system can be reconstructed generically in delay embedding coordinates of dimension 
k  > 2d.  

• The value of the delay τ must be chosen with some care to get good results in practical 
applications.  

• For many dynamical systems (even when the system equation is known), it is not 
possible to compute the embedding dimension analytically. Approximate numerical 
methods to estimate this dimension from one-dimensional observation sequences y(t) 
have been developed; they are often somewhat hairy and need a good deal of 
mathematical understanding to yield reliable estimates.  

 

 
Takens theorem has been mis-used in the last decade in sometimes extreme ways, which 
disregarded the "small print" of the technical prerequisites for its application, and often 
disregarded the malicious influence of noise in observations (the theorem holds strictly only 
for noise-free observations). It is a seductive but also dangerous theorem!  
 
And this is the connection of Takens/Sauer's theorem with our update function f̂  (Eq. (2.5)) 
for the Mackey-Glass system. The original MG equation is a so-called delay differential 
equation. Technically, this implies that the dynamics governed by the MG equation uses an 
infinite-dimensional state space X! However, after the dynamics converges on the final MG 
attractor (that is what we see in Fig. 2.4), the (fractal) dimension of the attractor is small 
(about ~3  for a delay of  τ = 30). Because in Eq. (2.4) we took a discrete-time approximation 
to the original continuous-time MG equation, the dimension of X in this discrete-time 
approximate system is not infinite but equals the delay, that is, it is dim(X) = 17 or 30. If we 
                                                
3 T. Sauer, J. Yorke, and M. Casdagli, Embedology, J. Stat. Phys. 65, 579 (1991). Preprint at 
http://math.gmu.edu/~tsauer/pre/embedology.pdf  

Takens theorem can be re-phrased as follows: If you observe a high-dimensional 
dynamical system over time through a single measurement variable, you can reach full 
knowledge about the "hidden" high-dimensional dynamics if you take a delay 
embedding of your observation variable instead of the original state.  
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consider the dynamics only on the final attractor, it again is a fractal of dimension ~3 for τ = 
30.  
 
Although Eq. (2.4) superficially looks like a one-dimensional difference equation of the type 
x(n+1) = h(x(n)), it actually specifies a high-dimensional system (of dim 17 or 30) due to the 
delay that appears in it. The variable x of Eq. (2.4) should actually be seen not as a state 
variable, but as an observation variable of the kind y(x(t)) as described above. For the MG 
attractor, embedding dimensions of k = 7 or 8 are often used.  
 
The reason why it works out to implement M as a function f̂  that takes some previous values 
to compute the next, as in Figure 2.5., now becomes clear: the previous values provide a delay 
embedding state that is "essentially equivalent" to the true (unknown) ~3-dimensional 
attractor state. So it is no coincidence that in Fig. 2.5, the number of previous points is 7: it is 
actually the minimal number required (for τ = 30).  
 
Tricky question: Equation (2.4) uses only 2 previous points to compute the next. So why is 
the embedding dimension not just 2? Assuming τ = 30 and δ = 1, the form of Eq. (2.4) is             
x(n+1) = g(x(n), x(n−30)). So why shouldn't one be able to learn some ĝ ( x(n), x(n−30)), that 
is, why shouldn't an embedding dimension of 2 be sufficient? Answer: yes, it is possible to 
learn ĝ ( x(n), x(n−30)) from training data. BUT one has to divine the correct delay value of 
30 first in order to make this work! Eq. (2.4) has no equivalent version that uses a different 
delay value. By contrast, using the 7-dimensional delay embedding suggested by Takens' 
theorem is in principle insensitive to the choice of the embedding delay duration (although 
some delays work more efficiently than others). Because there is no known way of guessing 
the correct original delay from training data, one has to apply Takens' theorem. 
 
 
 

2.5  Analytical vs. blackbox modelling 
 
Things are relatively simple if one knows, from insight or analysis, that the given initial time 
series has been generated by a mathematical object of a particular type. For instance, in 
predicting the trajectory of celestial objects the type of governing equations is known since 
Newton's days. If one knows the form of the equation, the learning task boils down to fix the 
values of the few "free parameters" in the equation (for instance, the comet's mass). Or in a 
chess game prediction, one might settle for one's favourite game-theoretic formalism to write 
up a template for M; this would then have to be filled with the current opponent's "personality 
parameters", which would have to be induced from the known training data. In many 
engineering and chemical processing tasks – and in weather prediction – , a well-guided guess 
about the form of the governing equations can be made. In such cases where the basic form of 
M is known, one speaks of analytical models (or physical models). Learning boils down to 
fitting a small number of parameters to the individual case at hand. 
 
In many cases, however, analytical models are ruled out. For instance, it is close to impossible 
to invent "suitable" equation templates for stock market developments, or for brain or cardial 
recordings (medical and biological time series in general), -- generally, biological, 
economical, social systems are hard to press into an equation. In other cases, analytical 
models might be obtainable, but would be too complex for any practical dealings. This is a 
typical situation when one is confronted with complete, complex technical systems, like 
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power plants, combustion engines, manufacturing lines and the like. Besides the sheer 
complexity of such systems, analytical models would present difficulties because they would 
have to integrate several types of formalisms: For instance, modeling a combustion engine 
would require an amalgamation of chemical, thermodynamic, and mechanical formalisms.  
 
If analytical models are inaccessible, the model M has to be established in some "generic" 
formalism that is capable of mimicking basically any kind of dynamical system, without 
paying respect to the underlying physical mechanism. The only requirement about M here is 
that M can produce the same input-output time series as the original generator. This is the 
approach of blackbox modeling: the original system is seen as an intransparent ("black") 
device whose internal workings cannot be understood; only the externally observable 
measurements are available, and only they are "modeled" by M.  
 
The best known type of blackbox model M is probably neural networks, and we will learn a 
lot about them. However, there are other important types of blackbox models, which I will at 
least name here: support vector machines (very fashionable these days), mixtures of 
Gaussians, Fourier decompositions, Taylor expansions, Volterra expansions, Markov chains 
and hidden Markov models. All of these models can accomodate to a wide range of systems, 
and all of them typically require a very large number of free parameters to be fixed through 
the learning process. 
 
The general picture of a blackbox modeling task is shown in Fig. 2.6. 
 

 
 
Figure 2.6: General scheme of blackbox modeling (here, for time series). 
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2.6 The bias-variance dilemma 
 
(Adapted from Bishop Sec. 1.5) 
 
We have encountered two elementary learning tasks,  
 

• classification tasks with training data (xi, yi), where yi ∈ {1, ..., n} are taken from a 
finite set of class labels and a classification function f̂ (x) is sought, 

• regression tasks with training data (xi, yi), where yi is a real-valued vector and a 
regression function f̂ (x) is sought.  

 
Both types of tasks have a similar basic structure, and both types of tasks have to face the 
same fundamental problem of machine learning: the bias-variance dilemma. We will 
introduce it with the simple regression task of polynomial curve fitting.  
 
Let's consider a one-dimensional input, one-dimensional output regression task of the kind 
where the training data are of form (xi, yi). Assume that there is some systematic relationship  
y = f(x) that we want to recover from the training data. We consider a simple artificial case 
where the xi range in [0, 1] and the to-be-discovered relationship is y = sin(2 π x). The training 
data, however, contain a noise component, that is, yi = sin(2 π xi) + νi, where νi is drawn from 
a normal distribution with zero mean and standard deviation σ. Fig. 2.7 shows a sample (xi, 
yi), where eleven xi are chosen equidistantly.  
 
 

   
 
 
Fig. 2.7: An example of training data (red squares) obtained from a noisy observation of an 
underlying "correct" function sin(2 π x) (dashed blue line).  
 
We now want to solve the task of learning a good approximation f̂  for f from the training 
data (xi, yi) by applying polynomial curve fitting, an elementary technique you might be 
surprised to meet here as a case of machine learning. Consider an M-th order polynomial 
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We want to approximate the function given to us via the training data (xi, yi) by a polynomial, 
that is, we want to find ("learn") a polynomial p(x) such that  p(xi) ≈ yi. More precisely, we 
want to minimize the mean square error on the training data 
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by a good choice of p(x) (here N is the number of training samples, in our example N = 11). If 
we assume that the order M of the polynomial is given, minimizing (2.9) boils down to 
finding polynomial coefficients wj such that 
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is minimized. At this moment we don't bother how this task is solved computationally but 
simply rely on the Matlab function polyfit which does exactly this job for us: given 
training data (xi, yi) and polynomial order M, find the polynomial coefficients that minimize 
(2.10). Fig. 2.8 shows the polynomials found in this way for M = 1, 3, 10.  
 

 
 
Fig. 2.8: Fitting polynomials (green lines) for polynomial orders 1, 3, 10 (from left to right) 
 
If we compute the MSE's (2.10) for the three orders 1, 3, 10, we get MSEtrain = 0.4852, 
0.0703, 0.0000. Some observations: 
 
• If we increase the order M, we get increasingly better MSEtrain. 
• For M = 1, we get a linear polynomial, which apparently does not represent our original 

sine function well.  
• For M = 3, we get a polynomial that hits our target sine apparently quite well. 
• For M = 10, we get a polynomial that perfectly matches the training data, but apparently 

misses the target sine function.   
 
We have stumbled over a phenomenon that will haunt us for the rest of this lecture: we 
apparently do NOT get the optimal estimate f̂ = p(x) for f if we try to optimally fit the 
training data. This is our first encounter with the bias-variance dilemma, one of the fiercest 
enemies of machines in machine learning. We take a closer look at it.  
 
First we discuss what actually makes the M = 3 solution "look better" than the other two. If 
we knew the correct target function f(x) =  sin(2 π x), it would be clear what "better" means: a 



 21 

solution f̂ = p(x) is better if it is closer to the target function. However, in real-life 
applications the correct target function is in general not accessible. In real life, what we desire 
of a "good" solution to a learning problem derived from training data (xi, yi) is that it 
generalizes well to new test data not contained in the training data set. Formally, we want the 
following: if (x'j, y'j) are new data coming in from noisy observations  y'j = sin(2 π x'j) + νj, 
then the expected discrepancy (in the mean square error sense) between the actual new 
observations y'j and the model predictions p(x'j) is minimal, that is,  
 
(2.11)  MSEtest =  ))'('(( 2xpyE −  
 
becomes minimal. Because the empirical observations y' are scattered around the correct 
target function f, (2.11) essentially amounts to our original intuition that a "good" solution is 
close to the target function.  
 
We can estimate MSEtest by creating a large set of test data (x'j, y'j) (where j = 1, ..., K) and 
approximate (2.11) through 
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Using 101 equally spaced x'j, computing (2.12) for learnt polynomials of orders 1 through 10 
and comparing it with the training MSEs (2.10), we get the following picture: 
 

 
Fig. 2.9: Training (blue solid line) vs. testing errors (green dashed line) for polynomial fits of 
orders 1 through 10. 
 
We find in Fig. 2.9 a pattern that is highly representative for machine learning tasks: if we 
train models of increasing complexity (here: polynomials of increasing order), the training 
error goes down (it here even reaches zero because a 10th order polynomial can fit 11 training 
points perfectly). On the other hand, the test error first goes down but then up again. When it 
goes up again, we say that the training data are overfitted by the learnt function f̂ . Intuitively, 
overfitting means that the training procedure manages to fit even the noise component in the 
training data – and in doing so, generalizes poorly to new test data which have other noise 
components.  
 
Abstracting from our simple polynomial fit example, the following situation is common in 
machine learning: 
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• When trying to fit the training data with some model (here: a polynomial), we can 

choose from models of different complexity (here: order of polynomial; another 
example would be to choose between neural networks of different size).  

• More complex models have a larger number of free parameters that have to be 
estimated through the learning process (here: the polynomial weights). The more 
complex a model, the more free parameters can be utilized to fit training data, and the 
smaller the MSEtrain.  

• The test error, however, has a minimum at some intermediate level of model 
complexity. 

• Much of the art of machine learning lies in the choice of an appropriate model 
complexity. This is tricky because usually one does not have, at the time of learning, 
independent test data which one could use to find the appropriate model complexity. 
All one has is the training data. We will learn about several strategies to cope with this 
situation. 

 
The conflict between choosing models of low complexity (which might under-exploit the 
information in the training data) and choosing models of high complexity (which might 
generalize poorly due to overfitting) is known as the bias-variance dilemma. This terminology 
will become clearer when we treat Bayesian model estimation techniques (coming soon), but 
intuitively it means the following. If we choose a low-complexity model, what we actually do 
is to impose restrictions on the possible solutions – for instance, if we choose an order-1 
polynomial, we restrict ourselves to linear solutions. But imposing restrictions is just another 
way of stating that we enforce certain preconceptions on the possible solutions – we are 
"biased" about the possible solutions. In contrast, high-complexity models hook up into the 
model noise components – as a consequence, if you would repeatedly estimate such models 
from respectively fresh training data, the resulting models would exhibit a high inter-model 
variance (because each models the fresh noise in the fresh data).  
 
The bias-variance dilemma, or synonymously the problem of overfitting, arises in 
classification tasks, too. Consider Fig. 2.10. It shows a training data set where two-
dimensional vectors xi = (x1, x2)i come in two classes (black cross vs. red circle). One way of 
specifying a classification function f̂  is to provide a decision boundary (solid black line). 
Again, if we allow only low-complexity decision boundaries (such as the linear boundary in 
the left panel), we get a high training error (number of misclassifications is 4). Conversely, 
with a high-complexity decision boundary (right panel) we get a low training error (zero 
misclassifications in Fig. 2.10). We might suspect that the best model should look something 
like the one in the middle panel (intermediate complexity, number of training errors is 2). But 
in the absence of fresh test data, we actually can't assess which one of the models is best! it 
might be the case that the underlying correct decision boundary is in effect linear – then the 
low-complexity model from the left panel would be appropriate, and the high number of 
misclassifications is due to a high level of observation noise. But it might just as well be the 
case the high-complexity model is best – namely, if we have low-noise observations. 
Unfortunately, it is not easy to guess from the training data what the noise level is.  
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Fig. 2.10: The bias-variance dilemma in a classification task.  
 
It might seem that these are academic considerations, but in fact, our simple examples let the 
situation appear simpler than it is. If we have high-dimensional training data combined a 
small number of training samples – an unfortunate condition that is all too often found in 
practice – the bias-variance dilemma becomes a dominating source of trouble.  
 
There are many approaches to deal with the bias-variance dilemma, some of them very 
sophisticated. However, in daily practice when quick (but possibly "dirty") solutions are 
demanded, two simple approaches are often used: regularizers and cross-validation schemes. 
We will briefly introduce them. 
 

2.7 Using regularization terms to control overfitting 
 
We have seen that minimizing the training MSE alone leads into overfitting. The idea of 
regularizers is to minimize an additive combination of the training MSE plus a "penalty" term 
that grows when models exhibit some undesired property. This obviates the need to search 
explicitly for a good model complexity (e.g., an appropriate polynomial order). For instance, 
in the polynomial fit task one might consider only 10th order polynomials but punish the 
"oscillations" seen in the right panel of Fig. 2.8, that is, favour such 10th order polynomials 
that exhibit only weak oscillations. The degree of "oscillativity" can be measured, for 
instance, by the integral over the (square of the) second derivative of the polynomial,  
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Using this measure of oscillation, high-oscillation solutions are suppressed by adding a 
penalty term to the error function that is minimized. That is, instead of minimizing the 
MSEtrain given in (2.10) we seek a polynomial that minimizes 
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where c is a constant suitably chosen. cΩ is called a penalty term or regularizer. The larger c, 
the stronger we favour low-oscillation solutions. The quantity (2.14) that we want to minimize 
is called a loss function – this is the gerneric term in such optimization tasks (the MSE is just 
a particular loss function). Implicitly, the model complexity is kept in limits – not by 
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restricting the polynomial order but by restricting the search space within 10th order 
polynomials to "smooth" ones.  
 
One difficulty with using regularization is that finding a solution that minimizes 

€ 

LFtrain  might 
be more difficult to compute. Another, more difficult difficulty is that it is not obvious how to 
define a "good" regularizer, or how to weigh it by a regularization weight c. A regularizer 
implements just another kind of preconception about what makes a solution "good" and thus 
is just another case of introducing bias – the larger the regularization coefficient c, the 
stronger the influence of our bias. 
 
 

2.8 Using cross-validation to overcome overfitting 
 
We saw that independent test data can be used to assess the degree of overfitting. The idea of 
cross-validation is to split the training data set X artificially into two subsets X1 = (xi, yi) and 
X2 = (x'j, y'j). The first subset is used to learn several models of different complexity. Their 
generalization performance is then tested on the second subset (x'j, y'j). The model complexity 
that gives best generalization is then chosen, and a model of this complexity is re-trained on 
the original, complete training data set X.  
 
In this simplistic version, cross-validation might suffer from ill fortune in splitting the training 
data – the data sets X1 and X2 used for training and testing might by chance exhibit 
peculiarities which systematically favour models that are less complex or more complex than 
appropriate. Specifically, if the noise components in X1 and X2 happen to be positively 
correlated, models of higher complexity than appropriate are favoured. One common way to 
sidestep this possibility is to split X into many subsets Xi of equal size (i = 1, ..., k). For each 
model complexity, k learning trials are carried out, the first using X1 ∪ X2 ∪ ... ∪ Xk-1 for 
training and Xk for testing, the second trial using all Xi except Xk-1  for training and  Xk-1 for 
testing, etc. Then, the average testing error across all of these k trials is taken as an indicator 
for the generalization performance of this particular complexity. After this has been carried 
out for all complexities that one wants to consider, the complexity that gave the best average 
generalization performance is chosen and a model of this complexity is finally learnt on the 
complete training data set. In the extreme, all Xi contain just a single data point – we then 
speak of leave-one-out cross-validation. If the Xi each contain n samples, we speak of leave-
n-out cross-validation. Another terminology is to speak of k-fold cross validation, where k is 
the number of "batches". 
 
A clever way to perform cross-validation is to start with low-complexity models, assess their 
generalization capabilities through cross-validation, and increase the complexity until the 
generalization performance starts to go down. The complexity level reached at that point is 
likely to be about right.  
 
The advantage of cross-validation techniques is their conceptual simplicity, the disadvantage 
is the high computational cost resulting from many repeated training trials. If the 
computational cost of a single learning trial is already significant (as it unfortunately often is – 
machine learning algorithms are often very expensive), elaborate cross-validation may not be 
a viable option. 
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2.9 Bayes' theorem and optimal decision boundaries 
 
Let's return to the digits classification task. Assume you are getting a new data vector x 
representing a 15 by 16 pixel image of a "zero" or a "one" – and this pixel image is of very 
bad quality (as the last one in the second row of Fig. 2.1), so you really can't tell very well 
whether it's a "0" or a "1". The feature value of F3(x) is 3000, which in Fig. 2.2 puts this x 
into the sixth bin where there are about twice as many "ones" as "zeros".  
 
But assume you know that x originated from a financial report, and you know that in the 
world of finance, the digit "0" occurs 4 times more frequently than the digit "1" (is there some 
empirical truth to this?). What should you decide x to represent, a zero or a one? By which 
probability? 
 
Here we face the task to combine two sources of information. The first source is your prior 
knowledge about the base rates of zeros vs. ones in financial databases, which assigns to x 
being a "1" a prior probability of 0.2. The second source of information comes from analysing 
your sample x – which apparently favours the hypothesis that x is a "one" by a factor of two.  
 
The proper way of combining these two sources of information makes use of Bayes' theorem, 
a fundamental (and simple) theorem of statistics. To explain this, we redraw Fig. 2.2. in a 
slightly different way.  
 

 
 
Fig. 2.11: Figure 2.2 redrawn (schematic): Binning the training data in bins distinguished by 
class (the two rows) and feature values (the columns). Horizontal axis: the ten subsegments 
("bins") of the F3(x) feature. Vertical: the two classes C1 (containing the "zero" samples) and 
C2 (containing the "one" samples).  In the plotted example, an equal number of instances from 
each class was given as training data.  
 
Some terminology: 
 

• The joint probability P(Ck, Xi) is the probability that some sample x belongs to class 
Ck and has feature value Xi. This corresponds to the probability that some sample falls 
into a particular cell of Fig. 2.11. 

• The conditional (or class-conditional) probability P(Xi | Ck) specifies the probability 
that some observation has feature value Xi given that it belongs to class Ck. In Fig. 
2.11, this corresponds to the fraction of all samples in row Ck which fall in column Xi. 
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• The total (or prior) probability P(Ck) is the probability that some sample falls into row 
Ck. This corresponds to the fraction of all samples that fall into row Ck. In our 
financial database world, we would have P(C1) = 0.8 and P(C2) = 0.2. 

• The probability P(Xi) is the probability that some sample x has feature value Xi. This 
probability has no special name. 

• The posterior probability P(Ck | Xi) is the probability that a sample x belongs to class 
Ck given that feature value Xi was observed. In Fig. 2.11, it is the fraction of all 
samples in column Xi which fall in row Ck, provided that the training sample correctly 
reflects the prior probabilities – which it does not do here (because we assumed that in 
the world of finance there are four times as many 0's as 1's – so the training data 
plotted in this figure over-represent the 1's).   

 
Obviously it is the posterior probability that we want to know when confronted with a sample 
x that we want to classify. We get at it through the Bayes theorem, which we will now derive.  
 
Using the generally valid formula for joint probabilities, P(A, B) = P(A | B) P(B), we can write 
the joint probability in two ways: 
 
(2.15)  P(Ck, Xi)  = P(Xi | Ck) P(Ck) 
    = P(Ck | Xi) P(Xi). 
 
Combining the two expressions on the rhs., we get 
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which is (one form of) the theorem of Bayes. It allows us to compute the posteriori probability 
from the class-conditional probability P(Xi | Ck) and the prior probability P(Ck). The 
denominator P(Xi) plays the role of a normalization term, and it can itself be expressed in 
terms of class-conditional probabilities and prior probabilities by 
 
(2.17)  P(Xi) = ∑k kki CPCXP )()|( . 
 
Why is Bayes' theorem so important?  
 
• In many practical problems, the prior probabilities are known (or can be reasonably 

guessed), and the class-conditional probabilities can be estimated from observations / 
experiments. Consider for example a situation where we want to design a medical 
screening test for distinguishing between normal (= class C1) and tumor (= class C2) 
tissue, by exploiting the information we can get from some tissue diagnostic feature F 
with values Xi. From epidemiological statistics we know that tumor tissue probes occur 
very rarely, say with 0.01 %. If we would try to assess our statistics for P(Ck | Xi) by 
evaluation data counts of the kind shown in Fig. 2.11, we would need, say, data from 
about 1000 tumor patients to get good estimates of the probabilities in the C2 (= tumor) 
row. But this would mean that the C1 row would contain samples from 1,000,000 patients! 
We would instead want to analyse probes from only another 1000 healthy patients in order 
to calibrate a decision function based on feature F. Bayes' theorem tells us how. 
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• More generally speaking, Bayes' theorem shows us how to do valid abductive reasoning. 
An abductive argument is of the following type: given knowledge about the consequences 
of some causal effect, what is the probability of a certain cause? This is the standard 
situation of diagnostic reasoning, for instance in medicine or machine fault monitoring. 
The consequences Xi are observable – for instance, the outcomes of a medical diagnostic 
probe. The cause Ck is hidden – for instance, a disease. Bayes tells us how to arrive at 
valid diagnostic conclusions. In fact, naive humans are prone to make gross errors in this 
respect. For instance, if a tumor test returns value X2, and the probability of getting this 
value in case of a tumor is 90%, this is not necessarily bad news for the patient. Assume, 
for instance (not unrealistically) that the prior probability of tumors C2 in the population 
(of patients going to doctors for a broad-band health check) is 1%, and that the class-
conditional probability of the tumor test to yield X2 in non-tumor patients is 5%. Then 
Bayes teaches us that P(tumor | X2) = 0.9 * 0.01 / P(X2) and P(no tumor | X2) = 0.05 * 
0.99 / P(X2), so the ratio P(tumor | X2) / P(no tumor | X2) is only (0.9 * 0.01) / (0.05 * 
0.99) ≈ 0.18. We also see here that the denominator Xi need not be computed if we want to 
obtain a hypothesis vector (P(C1| Xi), P(C2| Xi)). And we see why in fact it is part of the 
professional training of doctors to learn about Bayes' theorem (there is even a complete 
research field on medical decision making).  

 
Let's briefly finish our digit decision problem. The frequencies in Fig. 2.2 and Fig. 2.11 
actually were obtained from an equal number of class C1 and class C2 samples (as in the 
hypothetical medical tumor screening example), so these figures do not represent the unequal 
distribution of "zeros" vs. "ones" in our financial database. Using Bayes' theorem, and the 
probability estimates from those figures, we would classify our pattern x as a "zero" vs. a 
"one" with a probability ratio of P(C1| X6) / P(C2| X6) = 1 * 0.8 / 2 * 0.2 = 2. 
 
So far we have considered raw high-dimensional observation vectors x, from which we 
distilled low-dimensional feature vectors F(x) taking values in some feature space X, which 
we partitioned into discrete bins Xi., that is, we considered discrete-valued feature vectors. 
From now on, we will take the feature extraction for granted (it is done in virtually every 
machine learning task) and denote by x the feature vector directly. Furthermore we will 
consider the more general (and more convenient) case where we do not discretize the (feature) 
observation space X into bins but consider continuous-valued observation vectors x. In order 
to lift our treatment of Bayes' theorem to the continuous-valued case, we quickly recapitulate 
how to work with continuous probability densities.  
 
The probability that an observation x falls into some region  ⊆ X is given by  
 
(2.18)  ∫=∈

R
R xxx dpP )()( , 

 
where p(x) is the probability density function of the distribution of x. Observe that 

1)( =∫X dp xx . If Q: X →  is a numerical function of observations, the expectation of Q is 

given by  
 
(2.19)  ∫= X

dpQQE xxx )()(][  

 
which can be approximated by  
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(2.20)  ∑ =
≈

N

i iQ
N

QE
1

)(1][ x  

 
if we have N samples xi randomly drawn from the distribution of x. Note that we use smallcap 
letter p to denote densities and capital letter P to denote probabilities. In the continuous 
domain, Bayes' theorem becomes 
 

(2.21)  P(Ck | x) = 
)(

)()|(
x

x
p

CPCp kk , 

 
where the unconditional density p(x) is given by  
 
(2.22)  p(x) = ∑k kk CPCp )()|(x , 
 
which ensures that the posterior probabilities sum to unity,  
 
(2.23)  ∑ =

k kCP 1)|( x . 
 
In a decision problem, we are given an observation x and want to find the class Ck such that 
the probability of misclassification becomes minimal. Intuitively, it is clear that the proper 
class choice is to select that class Ck that makes  
 
(2.24)  p(Ck | x) > p(Cj | x) for all j ≠ k. 
 
We will soon justify (2.24) but simply take it as granted for the time being. If we fill (2.21) 
into (2.24), we find that the comparison ">" is independent of the denominator p(x), so for 
purposes of comparing posterior probabilities we can drop it and use  
 
(2.25)  p(x | Ck) P(Ck)  >  p(x | Cj) P(Cj) for all j ≠ k 
 
instead of (2.24). The borders in X where p(x | Ck) P(Ck)  =  p(x | Cl) P(Cl) for some l ≠ k and 
p(x | Ck) P(Ck) = p(x | Cl) P(Cl)  >  p(x | Cj) P(Cj) for all j ≠ k, l, are called the decision 
boundaries of the decision problem. Our class decision would change when the observation x 
passes over the some decision boundary. The decision boundaries partition X into regions i, 
where within each region i the value of p(x | Ci) P(Ci) is maximal among all p(x | Cj) P(Cj). 
A region i need not be connected, convex, or in any other way easy to describe.  
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Fig. 2.12. Decision boundaries separating three classes. The "hills" are pdfs p(x | Cj) P(Cj) for 
some two-dimensional observations x. 
 
The decision criteria (2.24) (or (2.25)) certainly look plausible – but why are they in fact the 
best one can do? What we want is to minimize the probability P(error) of making a 
misclassification. For simplicity we restrict ourselves to the case of only two classes C1 and 
C2. Assume that we have divided X into two regions 1 and 2 (not necessarily the ones 
given by criteria (2.24) or (2.25)), such that we decide for class Ci whenever x ∈ i (i = 1, 2). 
We make a classification error when we assign a new sample x to class C1 when it rightfully 
belongs to C2, and vice versa. Then P(error) is the probability of making an error of either 
kind:  
 
(2.26) P(error)  =  P(x ∈ 1, x ∈ C2) + P(x ∈ 2, x ∈ C1) 
  =  P(x ∈ 1| C2) P(C2) + P(x ∈ 2 | C1) P(C1) 
  =  ∫1 p(x | C2) P(C2) dx + ∫2 p(x | C1) P(C1) dx 
 
Thus, if p(x | C2) P(C2) > p(x | C1) P(C1) for a given x, we should choose the regions i such 
that x ∈ 2 because that minimizes the integrals' contribution to P(error). We recognize this 
as the criteria (2.24) or (2.25). 
 
So, we base our decision rightfully on the relative magnitude of the functions p(x | Ci) P(Ci). 
Apparently our decision would not change if we base it on the relative magnitude of some 
monotonic function g of p(x | Ci) P(Ci), that is, on the relative magnitude of some 
discriminant functions  
 
(2.27) yi(x) = g(p(x | Ci) P(Ci)). 
 
A much-used choice for g is the logarithm. We would neither change the decision regions i 
nor the outcome of our decision criteria (2.24) or (2.25), if we replaced (2.25) by choosing 
class k whenever 
 



 30 

(2.28)  ln p(x | Ck) + ln P(Ck)  >  ln p(x | Cj) + ln P(Cj) for all j ≠ k. 
 
In the case of two-class decision problems, a slightly different version of discriminant 
functions is often used. Instead of using two discriminant functions y1(x) and y2(x), one 
introduces a single function y(x) = y1(x) − y2(x) and assign x to class C1 iff y(x) > 0. From 
what we have just seen it follows that we can use various forms of y(x) including 
 
(2.29)  y(x) = p(C1) − p(x | C2)  
    [ = (p(x | C1) P(C1)  –  p(x | C2) P(C2)) / (p(x | C1) + p(x | C2)),  
        use that P(C1) + P(C2) = 1!] 
 
and 
 

(2.30)  y(x) = 

€ 

ln p(x |C1)
p(x |C2)

+ ln P(C1)
P(C2)

  

   [= ln (p(x | C1) P(C1))  –  ln(p(x | C2) P(C2)) !] 
 
Discriminant functions are sometimes easier to use than the original probabilities from (2.24) 
or (2.25), because it is often possible to determine suitable discriminant functions without 
going through the intermediate step of probability density estimation. Furthermore, one often 
works with log's of probabilities directly, without ever computing probabilities, because this 
helps to avoid numerical underflow problems with very small probabilities.  
 

3 A refresher on essential probability theory and statistics – classical 
and Bayesian 
 
The aim of this section is to make you acquainted with a number of notions from probability 
theory and statistics that constitute a required background for this course.   
 
3.1 A handful of basic concepts 
 
It is possible to become a reasonably good modelling practician without really knowing what 
probabilities are – you can use equations like the Bayes formula or decision criteria 
"mechanically" – but it is not possible to become a really creative in this field without this 
knowledge. Therefore we devote some time to a more rigorous (re-) introduction of the basic 
concepts of probability theory and statistics.  
 
A fine webpage is http://www.probability.net – you can find there an online tutorial and a 
dictionary of all important definitions.  
 
We will in some detail consider a simple standard task, namely, estimating the probabilities of 
symbols from a sample. If the sample is small, this task becomes surprisingly subtle. A typical 
situation in bioinformatics is the following. Proteins are sequences of amino acids, of which 
there are 20 different that occur in proteins. They are standardly tagged by 20 capital symbols, 
as A, G, H, ..., all intimately familiar to biologists. Proteins come in families. Some protein in 
one species has typically close relatives in other species. Related proteins differ in detail but 
generally can be aligned, that is, corresponding sites in the amino acid string can be detected, 
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put side by side, and compared. For instance, consider the following short section of an 
alignment of 7 amino acids from one family4: 
 
 ...GHGK... 
 ...AHGK... 
 ...KHGV... 
 ...THAN... 
 ...WHAE... 
 ...AHAG... 
 ...ALGA... 
 
Fig. 3.1: Seven aligned protein sniplets from one protein family (here: of globulines).  
 
A basic task that bioinformatics faces is: for each column in such a family alignment, estimate 
the probability distribution of the amino acids in this column, as you would expect it to be in 
the total population of all proteins belonging to this family. This task is, on the one hand, 
important: because such distribution estimates are the basis for deciding whether some newly 
found protein belongs into the family. On the other hand, this task is apparently rendered 
difficult by the fact that the sample of aligned proteins used to estimate this distribution is 
typically quite small – here we have only 7 individuals in the sample. As can be seen in Fig. 
3.1, some columns have widely varying entries (e.g. the last column K K V N E G A).  In 
contrast, the family of related proteins is huge: in every animal species one would expect at 
least one family member; typically many more. So how can one derive "good" estimates for 
the distribution of symbols in a large population, from very small samples?  
 
For this task of estimating a probability distribution (and all other such tasks) there are two 
major types of approaches: 
 
1. The "classical", "frequentist", "objective", where probabilities are defined in terms of 

limits of frequency counts. This is the kind of probability theory and statistics that has 
dominated mathematics and statistics in the last centuries and it is the approach taught in 
most university courses on statistics. In this view, a probability of a symbol in a 
population is defined to be its frequency in the limit of infinite population size. The 
probability P(A) of "amino acid A occurs in the population" is objectively defined – at 
least in ideal theory (assuming the population is infinitely large). The classical approach 
gives a clear picture of things when one has access to large samples but has difficulties in 
dealing with small samples.  

2. The "Bayesian", "subjective" approach where a probability is defined as a subjective 
degree in belief that a newly observed symbol would be of some particular kind. Here the 
probability P(A) need not be defined objectively. But this does not mean Bayesian 
statistics is not a rigorous mathematical field. Bayesian theory is not concernd with what 
probability is but with how rational people should correctly reason about probabilities. 
Bayesian statisticians ask (and answer) questions like: If someone believes some things 
about some probabilities in some population, what can this person formally deduce from 
his starting assumptions? The Bayesian approach is better suited than the classical one 
when it comes to drawing conclusions from small samples. In the words of E.T. Jaynes, a 
fierce proponent of Bayesian statistics: "Scientific inference is concerned, necessarily, not 
with empty assertions of 'objectivity' but with information processing; how to extract the 
best conclusions possible from the incomplete information available to us." Because such 

                                                
4 Example and some parts of this Section taken from: R. Durbin, S. Eddy, A. Krogh, G. Mitchinson: Biological 
sequence analysis: probabilistic models of proteins and nucleic acids. Cambridge University press 2000  
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questions have recently found to be of extreme practical relevance – not the least in 
bioinformatics and in Artificial Intelligence – Bayesian statistics has seen a surge of 
interest in the last two decades, and has become very important for practical machine 
learning techniques.  

 
Until recently there was something like a "war of believers" between the two approaches. The 
belligerent atmosphere is reflected in the most prominent, original textbook on Bayesian 
statistics (4 MB) by E.T. Jaynes, called not very modestly "Probability theory: the Logic of 
Science". Click on http://www.quackgrass.com/roots/0796rts.html for a short intro to 
Bayesian logic / probability theory. Today the aggressive tone has largely vanished and both 
approaches to probability are considered as valid, if alternative, perspectives.  
 
A condensed, detailed, rigorous writeup of the basic definitions of probability theory has been 
produced by Dr. Mingjie Zhao as reference for a probability primer accompanying course in 
2007. This document is available online, and I suggest that you download and print it.  
 
Both approaches share the definitions (but not the interpretation) of some elementary 
concepts, which we will now revise.  
 
Event space, probability space. Symbol: Ω. This concept, which is the fundament of 
statistics and probability theory, is unfortunately very hard to understand. The reason for this 
conceptual difficulty is that Ω has a dual nature: (i) as a real-world entity, which cannot be 
formally specified but needs everyday language to be described, and (ii) as a mathematical 
object that can be formally specified... Event spaces are, so to speak, the interface between the 
real world and mathematical (probabilistic) models. If one looks at some event space from the 
real-world side, one sees a real-world thing, which can be described only with real-world 
language, i.e. plain English. If one looks at some Ω from the formal side, from maths, one 
sees a mathematical object (a set, to be more precise – an object of set theory). Confused? you 
should be... 
 
As a real-world entity, a good way to understand event spaces is to start from scientific paper 
writing (in the empirical sciences, like physics, biology, experimental psychology etc). Such 
papers typically describe an experimental setup where certain measurements are taken, or they 
specify (e.g. in the geosciences or botany) a location on this earth where observations have 
been made (e.g. a mountain range where rock samples have been taken, or a wildforest area 
where plant specimen were collected). The essence of empirical science is that other groups 
than the one who first did the experiment / expedition must be enabled to reproduce the 
findings. The outcomes of reproducing experiments are comparable to the originally reported 
results only to the extent that the reproducing experimenter reconstructs the original 
experimental setup (or goes to the same mountains or forests). Only if this similarity is 
warranted, the data collected by the second experimenter can be assumed to have the same 
"distribution" (we will soon explain that concept, for the time being your intuition must 
suffice) as the data sampled in the original investigation. An event space is what is specified 
(in a scientific paper, for instance) as a setup / context / location / experimental condition with 
respect to its role as a source of potential data. In papers in physics / chemistry / biosciences, 
this specification is usually done in a section called "methods". In papers in psychology / 
medicine /sociology it would typically be the specification of the population of human 
subjects that were investigated ("As subjects for our study we used undergraduate students 
from psychology, balanced in gender and with an age between 19 and 23..."). In sum, 
specifying an event space amounts to specifying particular conditions for collecting data. 
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As a formal entity, an event space is just seen as a set – and almost always denoted by Ω. In 
the light of what I said before, the elements ω of this set Ω should be considered as all the 
potential acts of measurements that could be made in experiments / expeditions of a certain 
type. A sometimes used terminology is to speak of ω as realizations of Ω. Each such 
realization is a source of measurement data. For example, if (in the real-world perspective) 
Ω is "undergraduate students from psychology, balanced in gender and with an age between 
19 and 23...", then whenever in some university a particular undergraduate psychology 
student Mr. A with age between 19 and 23 is chosen from a gender-balanced sample, this Mr. 
A would be considered an ω ∈ Ω. However, mathematicians don't care about this real-world 
interpretation of the ω ∈ Ω. What they care about is that once Ω is fixed, the measurement 
data that can be obtained from ω ∈ Ω have a well-defined statistical distribution. 
Mathematicians, then, care about the mathematical apparatus needed to equip (arbitrary) sets 
with the requisite add-on mathematical structure that enables them to handle such statistical 
distriubutions of measurement data obtained from ω ∈ Ω.  
 
We will now describe this mathematical structure. Unfortunately, it is not simple (and has 
taken mathematics centuries to develop – only completed by the work of Andrey Kolmogorov 
in the early 1930's).  
 
Events are subsets A ⊆ Ω. In the extreme case, an event is an elementary event {ω} ⊆ Ω, but 
in general an event is a larger subset. In our example, "proteins belonging to a particular 
family" would be an event, or "proteins of family X, which have amino acid G in position 
110".  
 
σ-algebra, σ-field, event field: The set of all events in Ω. Typical symbol: F or , , ...  (if 
you have Latex with the AMS package, use \mathfrak font!). We have F ⊆ Pot(Ω). If Ω is 
finite, typically F = Pot(Ω). With infinite Ω, F is typically much smaller than Pot(Ω). Not any 
subset of Pot(Ω) qualifies as a σ-algebra. A σ-algebra must adhere to certain structural 
axioms. Here is the definition of σ-algebras: 
 
Definition 3.1: F ⊆ Pot(Ω) is a σ-algebra if 

1) Ω ∈ F,   
2) A ∈ F ⇒  AC ∈ F (closure under complement), 

3) for every sequence (An)n = 1, 2, ...  in F, the set 
∞

=1n
nA  is in F (closure under countable 

union). 
 
This definition reflects how we would like to be able to reason about events. Condition 1) 
says that the "all-event" is an event, that is, the event "we observe some individual from Ω". 
Condition 2) requires that if we have some event A, then we can also talk about the event "not 
A". Finally, condition 3) fixes that if we have a (countable) number of events An, then the 
event "we observe something from one of the An" is also a valid event.  
 
σ-algebras are the fundamental concept of probability theory, of measure theory, and the 
theory of (Lebesgue) integration.  
 
A measureable space is an event space equipped with some σ-algebra, written (Ω, F).  
 
A probability measure P is defined as follows: 
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Definition 3.2: Let (Ω, F) be a measurable space. A function P: F → [0, 1] is a probability 
measure on (Ω, F), if  
 
4) P(Ω) = 1, 
5) for every sequence (An)n = 1, 2, ...  of pairwise disjoint events it holds that  

∑
∞

=

∞

=

=
11

)()(
n

n
n

n APAP             (σ-additivity) 

 
Remarks: 
 

a) Conditions 1) through 5) are the Kolmogorov axioms of probability theory. In classical 
statistics, these axioms are the foundation of probability theory. In Bayesian statistics, 
these laws are derived from other axioms. 

b) The "Bayesians" often admit in 5) only finite sequences.  
c) The triple (Ω, F, P) is called a probability space.   

d) Very often it holds that P(ω) = 0 or even P(A) = 0 for nonempty A. Then A is a null set. 
For instance, if Ω is the set of all infinite sequences generated by some random number 
generator, then P(π) = 0: the chance of obtaining the digit sequence belonging to π is zero.  

e) Here are some elementary properties of probability spaces: 
i) A, Β ∈ F ⇒ A ∩ Β ∈ F, A ∪ Β ∈ F, A \ Β ∈ F.    

ii) ∅ ∈ F. 

iii) For every sequence (An)n = 1, 2, ... of events it holds that 
∞

=1n
nA  is in F.  

iv) A ⊆ B ⇒ P(A) ≤ P(B).  

 
Conditional probability. Let (Ω, F, P) be a probability space, B ∈ F an event with P(B) > 0. 
The function 
 
(3.1) P( ⋅ | B):  F → [0, 1] 

   
)(
)(

BP
BAPA ∩

  

 
is again a probability measure on (Ω, F), the conditional probability under hypothesis B.  
 
Here is a graphical display that explains how to think about conditional probabilities: 
 
 
 
 
 
 
 
 
 
 

 
Ω 

B 

A2 A1 

A3 P(A1 | B) = 0 
P(A3 | B) = 1 

P(A2 | B) = 
)(
)( 2

BP
BAP ∩  

P(B | B) = 1 
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Here are some rules for computing with conditional probabilities: 
 
1) P(A ∩ B) =: P(A, Β) = P(A | B) P(B) 

2) Let Ω =  
Ii

iB
∈

 with pairwise disjoint Bi. Then for every A ∈ F,  

 
P(A) = ∑

∈Ii
ii BAPBP )|()( , 

 
the formula of total probability.  

 
3) Let Ω =  

Ii
iB

∈

 with pairwise disjoint Bi. Then  

 

∑
∈

==

Ii
ii

nnnn
n BAPBP

BAPBP
AP

BAPBPABP
)|()(
)|()(

)(
)|()()|( , 

 
which is Bayes formula. 

 
Baysian statistics starts from rules like P(A ∩ B) =: P(A, Β) = P(A | B) P(B), which are 
justified as "rational", "intuitively correct" laws of reasoning about probabilities. (To be more 
precise, a Baysian statistician would write P(A ∩ B | M) =: P(A, Β | M) = P(A | B,M) P(B| M) 
instead – Baysians always include a formal reference M to some prior knowledge about the 
relevant domain of reality into their formulas, reflecting the fact that all intuitive reasoning 
about probabilities must start from some prior assumptions about the world one is reasoning 
about.)  
 
Further elementary concepts... 
 
Observation space. Typical symbol: (E, ). This concept is closely related to, but 
fundamentally different from the measurable space (Ω, F). The basic intuition is that the 
"things" in Ω are "just there as they are there" (a Kantian philosopher might think of the Ding 
an und für sich, the "things as they are for themselves", not being understood or observed by 
humans). In order to get access to a thing ω ∈ Ω, one has to observe or measure it. The 
outcome of the observation is an object a ∈ E. In our protein example, ω might be a physical 
gene coding a protein in a biochemist's sequencing apparatus, and after sequencing the gene, a 
might be the formal sequence of amino acid symbols corresponding to the protein. Thus E 
would be created from Ω through the measurement operation "run a gene ω through a 
sequencer, transform the nucleic acid sequence into an amino acid sequence, and output the 
sequence of its symbols". With another observation operation one gets another observation 
space E. Taking up our example, with the measurement operation "run a gene ω through a 
sequencer, transform the nucleic acid sequence into an amino acid sequence, and output the 
110th symbol that you get", one would only observe genes/proteins at the 110th position. The 
set of possible observation outcomes then would be the set E = {A, ..., Y}, which has 20 
elements. In sum, the observation space builds on a set E that contains all possible outcomes 
of observing elements ω ∈ Ω under a given observation procedure.  
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It is very important to keep the observation space apart from the underlying probability space 
with its measurable space (Ω, F). In our last example, the event space Ω of the underlying 
probability space (Ω, F, P) would have as many elements as there are proteins of the family – 
potentially (given the open-endedness of evolution) infinitely many. In contrast, E contains 
just 20 elements.  
 
An observation space is also equipped with a σ-algebra, . In our last example, since E is 
finite, we would typically take  = Pot(E). The pair (E, ) is thus a measurable space. 
 
Random variables, typical symbol: X. If you thoroughly understand the concept of a random 
variable, nothing can happen to you in the remainder of this lecture! Formally, a random 
variable is a mapping X: Ω → E, also written as X: (Ω, F, P) → (E, ). Intuitively, a random 
variable describes a measurement or observation procedure. To each elementary event ω ∈ Ω, 
a random variable assigns an observation, or measurement outcome, X(ω)= x ∈ E. In our 
example, X would assign to every protein the amino acid symbol detected at the 110th 
position.  
 
Now comes a subtle and powerful idea. A random variable X: (Ω, F, P) → (E, ) "transports" 
the probability measure P from the underlying probability space (Ω, F, P) into the observation 
space, creating there another probability measure, the induced measure PX,  by the 
prescription 
 
(3.2)  ∀B ∈ :  PX(B) = P(X−1(B)) 
 
In our example, for instance, we would have 
 

PX("symbol A is observed") = P("all globulines that show A at position 110") 
 

Instead of PX(B), the notation P(X ∈ B) is also used.  
 
The observation space (E, ) is typically much smaller and has a simpler structure than the 
underlying probability space (Ω, F, P). This reflects the loss of information usually incurred 
by any measurement process! 
 
Distribution. The induced probability measure PX on the observation space is called the 
distribution of the random variable X.  
 
In real-world modelling tasks, the underlying probability space (Ω, F, P) is usually an object 
that we cannot directly access or model mathematically (think of how difficult it would be to 
model "the set of all globulines in all organisms of past, present and future"). However, the 
much simpler observation spaces with their induced probability measures (distributions) can 
be analysed. Therefore,  
 
 
 
 
All we have said so far is just the long, hidden story behind the simple distributions that we 
are used to work with. It is the story of how axiomatic probability theory tries to come to 
terms with the concept of probability. The probabilities we mostly speak of are distributions, 

the main object of study in probability theory and statistics is distributions. 
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which are "borrowed" from the underlying (but ignored) probability spaces by virtue of Eqn. 
(3.2).  
 
A cautionary remark. The distinction between the underlying probability space and 
distributions is sometimes obscured in introductory textbooks that try to make life (too) easy 
for the reader. In these books, the distinction between Ω and E is not made. For instance, one 
may find that the set {1, 2, 3, 4, 5, 6} of possible outcomes of throwing a die is called a 
probability space, and the set of probabilities of these outcomes (all 1/6 for a fair die) are 
called a probability measure (used interchangeably with distribution). Technically speaking 
this is admissible: because the events ω ∈ Ω are not formally defined but represent one's pre-
mathematical choice of the "piece of reality" one wants to model, one is in principle free to 
choose anything for Ω, including E. But if the distinction is dropped, the intuitive 
interpretation of random variables as measurement/observation operators is lost; furthermore, 
some themes of advanced probability theory become impossible to treat (for instance, the 
question of whether the zigzag trajectories of Brownian motion can be assumed to be 
continuous).   
 
In finite observation spaces, a distribution is most conveniently expressed by a table or a bar 
chart giving the values of PX(x) = P(X = x) for all x ∈ E. In continuous-valued observation 
spaces, a distribution is often represented by a probability density function (pdf is a much-
used abbreviation). For instance, the normal distribution density function with mean µ and 
standard deviation σ  is given by 
 

(3.3)  2

2

2
)(

2
1)( σ

µ

σπ

−
−

=
x

exp  

 
We use smallcap p to denote pdf's and capital P to denote probability measures or 
distributions in general. For the event B = "measurement lies between 0.5 and 1.2"  (note B ∈ 
) we can use (3.3) to calculate a probability 
 
(3.4)  ∫=∈

2.1

5.0
)()( dxxpBXP . 

 
Note that B does not refer to a single measurement "action" – it refers to the class of all 
individual measurement actions that return a value between 0.5 and 1.2. In probability theory, 
when talking about distributions, the concept "event" refers not to individual observation 
actions (those would be the measurements X(ω) ∈ E), but to classes of measurements, defined 
by ranges of their outcomes, that is, the concept "event" refers to the B ∈ .  
 
When it is clear from the context that one is dealing with distributions (and not with the 
underlying probability space), often the induced probability measure PX is simply written as 
P. In fact, most "P" symbols that you will encounter in statistics should actually be interpreted 
as PX.  
 
Numerical random variables and expectation. A random variable is numerical if the 
observation space E is numerical, that is, integer-, real-, or complex-valued. The expectation 
of a numerical random variable X is its "average value" and for integer-valued X is given by 
 
(3.5)  E[X] = ,)(∑

∞=

−∞=
=

i

i
iXPi  
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and for the case of real-valued variables with pdf p is given by 
 
(3.6)  E[X] = ∫

∞=

−∞=

x

x
dxxpx )( . 

 
Given a numerical random variable X, one obtains a random variable X' that is normalized to 
zero mean by putting X' = X – E[X].   
 
Independent and uncorrelated random variables. Let X: (Ω, F, P) → (E, ) and         
Y: (Ω, F, P) → (F, ℭ) be two random variables in arbitrary observation spaces. They are 
called independent if for all A ∈ , B ∈ ℭ it holds that  
 
(3.7)  P(X ∈ A, Y ∈ B) := P(X−1(A) ∩ Y−1(B)) = P(X ∈ A) P(Y ∈ B). 
 
If X and Y are numerical RVs, then X and Y are uncorrelated if  
 
(3.8)  E[X Y] = E[X] E[Y],  
 
or equivalently, if their covariance 
 
(3.9)  cov(X, Y) = E[(X – E[X]) (Y – E[Y])] 
 
is zero. Only random variables with numerical values can be uncorrelated, but random 
variables with values in any arbitrary observation space can be independent. Independent 
numerical random variables are always uncorrelated, but uncorrelated numerical random 
variables are not necessarily independent. Thus independence is a (much) stronger notion than 
uncorrelatedness. Unfortunately, in analytical and computational investigations, independence 
is also much more difficult to prove or use.  
 
Side remark. A modern and fashionable field within machine learning is blind source 
separation. Given n statistically independent signal sources (e.g., speakers in a room) and n 
measurements which each pick up a different mixture of the source signals (e.g. microphones 
placed at different positions in the room), one can use the fact that the sources are statistically 
independent to learn from a training sequence of the mixed measurements a filtering device 
that re-separates the signal mixtures into their independent components. The quality of the 
separated signals is sometimes astounding. Applications (besides speech processing): picking 
out a unborn baby's heartbeat from the "noise" signals generated inside a mother; detecting 
individual signal sources in EEG mixtures of signals. Check 
http://web.media.mit.edu/~paris/ica.html for pointers to people, papers, labs and striking 
audio-demos. The results obtained from independence analysis with the modern techniques of 
blind source separation are often much stronger than results obtained with the more traditional 
and easier methods of classical linear signal analysis and filtering, which rely merely on 
uncorrelatedness.  
 
Joint and marginal distributions. Often a probability space (Ω, F, P) is observed/described 
by several random variables X = (Xi)i = 1, ..., n simultaneously. These variables may take values 
in different observation spaces (Ei, i). Think of this as describing a complex piece of reality 
in terms of a number of different measurables, observables, concepts. One may glue the 
individual random variables together in a single product random variable 
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∈
1},...,1{

 that takes values in the product space nini
EEE ××=⊗

∈
1},...,1{

, so the 

values taken by the product random variable is an n-tuple of the individual variables' values:  
 
(3.10)  ),...,())(),...,(())(( 11},...,1{ nnini

xxXXX =ωω=ω⊗
∈

.  

 
The distribution 

ini
XP
},...,1{∈

⊗  of this product random variable is called the joint distribution of the 

random variables (Xi)i = 1, ..., n. We also write )(
},...,1{ ini
XP

∈
⊗  or simply P(X) for the joint 

distribution. Notice that the joint distribution is likely to be a very unwieldy beast. To see 
why, consider the simplest possible case, where all the concerned random variables are binary 
(you may conceive them as Boolean observations, indicating the presence or absence of an 
observation). Then the distribution P(Xi) of any individual variable is just a histogram over 
the values 0 and 1. However, the joint distribution would assign a probability value to each 
possible combination of the n binary observations, which makes this a histogram over 2n 
arguments. In naive words, joint distributions are "exponentially more complex" than the 
individual distributions. If the individual distributions are themselves not as simple as just a 
binary distribution, it soon becomes practically impossible even to write down some closed 
formula for characterizing the joint distribution – and the computational and computer-based 
methods for handling complex distributions that we will learn about in this lecture will be 
needed.  
 
The joint distribution of a descriptive ensemble (Xi)i = 1, ..., n.comprises the complete 
probabilistic information about the piece of reality that one is modelling by (Xi)i = 1, ..., n. Any 
specific question that one might ask about this piece of reality can be derived from 

)(
},...,1{ ini
XP

∈
⊗ . For instance, one may wish to ignore some of the descriptors and ask for the 

distribution of one or a few selected observables only. Such "ignore the rest" distributions are 
called marginal distributions. They can be computed, in principle, by integrating away the 
others. For instance, if the joint distribution is characterized by an n-dimensional pdf g, we 
could recover the pdf g1 of the marginal distribution of X1 by 
 
(3.11)  nn dxdxdxxxgxg

n

...),...,()( 32111
1
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= ,  

 
or in the discrete case, where each Xi takes values in },...,{ 1

i
m

i
i i

aaE = , the marginal 
probabilities of X1 would be obtained by summing over all combinations of the other 
variables' values: 
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Marginal distributions of more than a single variable can be computed by 
integrating/summing away the remaining ones in a similar way. While thus the marginal 
distributions can be recovered from the joint distribution, conversely the joint distribution can 
be constructed from the marginal distributions only if the (Xi)i = 1, ..., n.are independent. Then 
(and only then) it holds that the joint pdf g is  
 
(3.13)  )(...)(),...,( 111 nnn xgxgxxg ⋅⋅=   
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for distributions with pdf's, and  
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The joint distribution )(

},...,1{ ini
XP

∈
⊗  can be factorized into a product of conditional 

distributions by 
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The proof is a homework exercise. 
 
Samples. The underlying event space Ω contains all possible individual measurable events ω 
(or elementary events). In life's reality, only a small fraction ωi ∈ Ω (where i ∈ I and I is by 
life's necessity finite) of all possible measurable events is realized in concrete observations. 
Such a set { ωi | i ∈ I } of actually realized measureable events is called a sample. At least, 
this is the strict definition of the term.  
 
However, we have noted that statisticians prefer not to talk about measurable events ωi but 
rather like to think in terms of their distributions. This is reflected in another, related usage of 
the word sample, which also reflects a typical situation in the experimental sciences, namely, 
that some experiment or measurement is repeated many times in order to obtain an as precise 
as feasible estimate of some quantity of interest (for instance, by taking the mean over 
reapeated measurements). 
 
To model this situation the following approach is taken in statistics. The elements ω of the 
underlying probability space (Ω, F, P) are taken to be the sequences of repeated experiments 
– and for mathematical convenience, it is assumed that one such "repeat-experiment-session" 
ω comprises infinitely many repetitions of the experiment. Next, a sequence (Xi)i ∈ Õ of 
random variables is considered, where Xi(ω) refers to the i-th measurement outcome in the 
repeat-experiment session ω. This is of course an idealized picture: in practice, an experiment 
cannot be repeated infinitely many times. What one has in real-life, is the outcomes of n many 
measurements of one repeat-experiment session ω, that is, the data that one has really 
available are comprised in a vector X(ω) = (X1(ω), ..., Xn(ω)) = (x1, ..., xn) ∈ En. Such data 
vectors are then called samples.  
 
Although this might appear a bit contrived, it gives a faithful account of how research in the 
empirical sciences should be carried out: In some Lab A, some quantity of interest is derived 
with an as great as possible precision (implying repeated measurements) – this is, (X1(ω), ..., 
Xn(ω)) is used by Lab A's statistician to estimate the quantity of interest. Another Lab B may 
want to contest or improve on Lab A's result. They will also carry out a repeat-experiment 
session ω', obtain a sample (X1(ω'), ..., Xn' (ω')), and infer something about the quantity of 
interest from this sample. Typically, their results will somewhat deviate from Lab A's results. 
The question, then, is how the conclusions obtained in Lab A from the sample (X1(ω), ..., 
Xn(ω)) can be compared with the conclusions obtained in Lab B from the sample (X1(ω'), ..., 
Xn' (ω')) – for instance, if n' > n, to what extent are the conclusions drawn by Lab B's 
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statistician more reliable than the findings in Lab A? Such considerations lie at the heart of 
statistics and the theory of statistical estimation (of quantities of interest from samples). 
 
This strict understanding of a sample as (X1(ω'), ..., Xn' (ω')) is not easy to grasp, especially 
because there is also a "naïve" setup of a probability model where one has only a single 
random variable X. An example will be helpful to sort these subtle concepts out.  
 
Consider an article in a medical journal where it is stated that patients with a particular form 
of cancer have, with a probability of 0.1, a particular antibody A in their blood. The most 
natural probability model would introduce the following items: 

 
This natural model contrasts with the model that professional statisticians would use. They 
would set up their probability space and random variables as follows: 
 

 
The variables X1, X2, ... of the "professional" model would be assumed to be i.i.d., and they 
would have the same distribution as the RV X from the "natural" model. Both the "naïve" and 
the "professional" type of model are mathematically correct and conceptually legitimate (and 
either of the two could be used for answering exam questions…).  
 
The more complicated (and I admit: somewhat less intuitive) "professional" type of model 
becomes a necessity when it comes to build the theory of statistical estimation – that is, to 
understand how one can extract an estimate of the distribution PX from a sample (X1(ω), ..., 
Xn(ω))  = (x1, ..., xn). This is the core task of statistics (classical and Bayesian): 
 
 
 
 

Basic task of statistics. Given a sample (x1, ..., xn), find out something about the 
underlying distribution PX  –  typically, give an estimate of PX. 

"Natural" model: 
 
Ω: set of all patients with this type of cancer (suitably restricted, e.g. all patients in 

Germany who come to hospital – depends on the data source used for the journal 
article) 

X: measuring whether a patient carries antibody A. This would typically be effected by a 
binary indicator X, i.e. the measure space E is {0,1} and for a patient ω, X(ω) = 1 iff the 
patient carries antibody A. 

"Professional" model: 
 
Ω: set of all sequences of tests for antibody A that would be carried out for one study (the 

original study of the journal, or some confirmation studies, or hypothetical studies of 
the same sort that could be done). One ω ∈ Ω  would be the suite of all such 
measurements done for one study.  (Again, suitable restrictions would apply, e.g. to all 
such studies in Germany, or studies carried out in a particular year) 

Xi: for i = 1, 2, ..., Xi(ω) is the i-th measurement of the sample for the study ω. Again, a 
standard choice for the measure space would be the indicator values {0,1}.  
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Parametrized distributions. Concretely, PX is often to be represented by some (few) 
parameters. For instance, a normal distribution PX is characterized by its pdf, which in turn is 
characterized by its mean µ and its standard deviation σ, that is, by two parameters. In our 
amino acid example, the distribution PX of amino acid symbols at location 110 would be 
represented by 20 probability values of the various possible symbols, that is, by 20 
parameters. A common symbol for the set of parameters characterizing a distribution is θ. 
With parametrized distributions, the basic task of statistics then spells out like this: 
 
 
 
 
 
Note that there are other, "parameter-free" ways of characterizing a distribution – we will 
soon meet some. 
 
Estimators.  Formally, the task estimating the parameters θ of a distribution from a sample 
can be expressed in terms of a function Tn which assigns to each sample (X1(ω), ..., Xn(ω)) of 
size n a set θ̂  of parameters. Such functions Tn: (X1(ω), ..., Xn(ω)) θ̂  are called estimators 
or estimation functions. Note that Tn(X1(ω), ..., Xn(ω)) is fully determined by ω, so we might 
also write Tn(ω) – that is, estimators are themselves random variables.  
 
The art and science of statistics is to find "good" estimators. The art and science of (much of) 
algorithmical modelling is to find "good" ways of describing pdf's – an analytic expression 
being rather the exception than the rule, because one mostly is confronted with high-
dimensional, badly-behaved distributions for which finding an analytic pdf is all but hopeless. 
(And the art and science of machine learning is to find good estimators for a kind of pdf 
representation that the modellers wish to use, with a little more emphasis than in "ordinary" 
statistics on efficient algorithms  – T((x1, ..., xn)) must be efficiently computable, that is, one 
looks for fast learning algorithm).  
 
While the notion of an estimator typically refers to parametrized distributions, you may also 
use it in a more loosely fashion for any method that creates a characterization of a distribution 
from a sample. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Basic task of statistics, formulated as parameter estimation task. Given a 
sample (x1, ..., xn), give an estimate θ̂  of the parameters of the distribution. 

One basic task of (the statistical branch of) algorithmical modelling. Given a piece of 
world (POW) that one wishes to capture in a (statistical) model, find a way to represent its 
distribution(s) such that 
• these distributions are complex enough to capture essential aspects of the POW, and 

adapted to the particulars of the POW (e.g., a normal distribution would be incapable to 
express the most interesting aspects of a stock market index) 

• these distributions are simple enough to be manipulated with efficient algorithms 
(aspects of memory demands, "sampling", computing probabilities of events) 

• these distributions can be learned from data (the machine learning part of algorithmical 
modelling) 

Unlike in traditional statistics, you are allowed to use a lot of raw computational power, 
heuristics, and borrow ideas from other fields such as physics, neurobiology, psychology, 
evolutionary biology, or any other.  
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3.2 Maximum-likelihood estimators 
 
One of the most common approaches to design estimators is the maximum-likelihood 
approach. It is conceptually transparent, it is a typical "frequentist" approach, and it works 
well when the sample size is not too small. We will explain it with our amino acid example.  
 
We use abbreviation D ("data") for the sample. The distribution estimation (or learning) task 
is the following: 
 
• Given: a sample D of n observations of amino acids in some location in n representatives 

of some protein class. In Fig. 3.1, we would have n = 7 and for instance D = H H H H H 
H L (in the location shown in the second column in Fig. 3.1) or D = K K V N E G A 
(last column). Another, equivalent way to write D is as a count vector D = (n1, ..., n20) 
where ni is the number of counts of the i-th amino acid symbol in the sample.  

• Wanted: an estimate  ))(ˆ),...,(ˆ()ˆ,...,ˆ(ˆ
201 VA XX PP=θθ=θ  of the 20 parameters 

describing the amino acid distribution in some location over all proteins in a family. 
 
Approach: estimate  )ˆ,...,ˆ(ˆ

201 θθ=θ  such that the P(D | θ) is maximized over all θ, that is, 
put 
 
(3.16)  T(D) = θML = argmaxθ P(D | θ). 
 
P(D | θ) is called the likelihood of θ given D, and often written as (θ). The notion of 
likelihood must not be confused with the notion of probability – they are dual concepts.      
P(D | θ) is the probability of D given θ, and it is the likelihood of θ given D.  
 
For simple frequency counts as in our example, the ML-estimator θML can be analytically 
shown to be 
 

(3.17)  ),...,(),...,( 201ML
20

ML
1

ML

N
n

N
n

=θθ=θ ,  

 
where N is the sample size (here N = 7) and ni is the count number of the i-th amino acid 
symbol in the sample.  
 
This is beautifully simple and apparently convincing – but very inadequate for small sample 
sizes. Consider D = H H H H H H L. The maximum-likelihood estimator would assign 
zero probabilities to all amino acids except H and L. But every geneticist worth his/her salt 
would expect that in the protein family at large, every other amino acid would also occur in 
this location in some protein, albeit maybe rarely. But if we really assign zero probabilities to 
them, we would be forced to exclude every such protein from the family, which is not 
something we want to happen.  
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ML estimators of conditional distributions with Gaussian noise. There exists an intimate 
connection between ML estimators and the "method of least mean square (LMS) errors". We 
first recapitulate from High School the essentials of the LMS method. It applies in regression 
tasks where one wants to recover a deterministic input-output relationship from noisy 
observations of the outputs. Assume a situation where a researcher manipulates some 
experimental setup by subjecting it to inputs xi ∈  m, where i = 1, ..., N. The researcher 
obtains scalar measurements yi as a result. An example would be a psychological experiment 
where a graphical pattern is flashed on a screen at position xi = (x1

i, x2
i), and a response time yi 

of the subject is measured; an other example would be a medical survey where each xi 
describes a patient by a vector of diagnostic variables, and yi would be the remaining lifetime 
after diagnosis. Galileo did do the same thing when he let a heavy object fall from different 
heights xi (m = 1 in this case) and recorded the falling times yi (I did not check the history 
books of modern physics – I just guess that Galileo did something like this). Well, this is just 
the most standard situation in the empirical sciences. Now assume that the researcher knows 
that there is a law of nature which deterministically establishes a function f: m → , that is, 
on input xi the "true" outcome would be yi = f(xi). The researcher even knows the nature of 
this function – it comes from a family parametrized by parameters 

€ 

θ ∈  d. So the researcher 
knows that f = f(θtrue) for a particular parameter vector θtrue. But, the researcher does not know 
θtrue, and wants to estimate these parameters from his experimental data. For example, Galileo 
(or later, Newton) might have known that the falling time y is equal to y = sqrt(2 x / g), where 
g is the constant of gravitation, which would be the unknown parameter θtrue which he wanted 
to estimate from his falling experiments.  
 
In such situations, the LMS method is to estimate the sought-after θtrue as the parameter vector 
which minimizes the mean square error of the observations, i.e. to calculate 
 

(3.18)   

€ 

ˆ θ LMS = argminθ ( f (θ)(x i) − yi)
2.

i=1

N

∑  

 
As a justification for the LMS method, you may remember from High School statements like, 
"we want an estimate that punishes larger deviations from the predicted true outcome more 
strongly than smaller deviations" – at least, that was how I was taught the LMS principle. 
However, there is a better and more rigorous justification for the LMS method than this. This 
runs as follows.  
 
We assume that the measurement process is subject to Gaussian noise, that is, if the effective 
parameter is θ, then upon input xi the observation yi will be drawn from a Gaussian 
distribution centered on f(θ)(xi): 
 

(3.19)   p(y | xi, θ) = 

€ 

1
2πσ 2

exp(− ( f (θ)(x i) − y)
2

2σ 2 ), 

 
where p is the pdf of the distribution of the yi and σ is the standard deviation of the Gaussian 
(which we assume is the same for all possible inputs x). Assuming that the observations yi are 
independent, and calling the ensemble of all outcomes yi our data D, then  
 

(3.20)   

€ 

p(D |{x i},θ) =
1
2πσ 2

exp(− ( f (θ)(x i) − yi)
2

2σ 2 )
i=1

N

∏  
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is the likelihood of θ, or more conveniently, 
 
 

(3.21)   (θ) = 

€ 

N
2πσ 2

−
1
2σ 2 ( f (θ)(x i) − yi)

2

i=1

N

∑  

 
its log likelihood. Maximizing the likelihood of θ amounts to finding 
 

(3.22)   

€ 

ˆ θ ML = argmaxθ − ( f (θ)(x i) − yi)
2,

i=1

N

∑  

 
which is identical to (3.18). We thus find that under an assumption of Gaussian measurement 
noise, the LMS estimate of the true parameters is the maximum likelihood solution. A note on 
terminology: When statisticians speak of a "regression problem", they typically refer to 
exactly this situation, where the parameters of a regression function f(θ) are computed by a 
LMS calculation, with the tacit understanding that this is also the ML estimate to the extent 
that a Gaussian measurement noise assumption is valid.  
 
In (very) many cases, one does not know the nature of f(θ). Then, one often resorts to the 
least-committing assumption that f is linear, that is, f(x) = f(w)(x) = wT x, where T is 
matrix/vector transpose. In this context the parameters θ are typically denoted by w, and 
called the (linear) regression weights. The LMS/ML solution 

€ 

ˆ w ML  can then be analytically 
computed in closed form via the following derivation. First observe that  
 

(3.23)   

€ 

ˆ w ML = argminw (wT x i − yi)
2

i=1

N

∑ = argminw (wT x i)
2 − 2wT x iyi + yi

2 .
i=1

N

∑  

 
At the argmin, the gradient w.r.t. w  
 

(3.24)   

€ 

∇w = (2wTx i x i
T − 2x i

T yi
i=1

N

∑ ) = 2wT x i x i
T − 2 x i

T yi
i=1

N

∑
i=1

N

∑  = 0T 

 
must be the all-zero row vector. Transposing this equation, and introducing the input data 
matrix Φ = (x1 ...  xN)T and an output vector y = (y1 ... yN)T,  (3.24) can be written as  
 
(3.25)   

€ 

0 =ΦTΦw−ΦTy, 
 
which resolves to w as  
 
(3.26)   

€ 

w = (ΦTΦ)−1ΦTy. 
 
The matrix 

€ 

(ΦTΦ)−1ΦT  is known as the (left) pseudo-inverse of Φ.  It generalizes the usual 
matrix inverse, which is defined only for full-rank square matrices, to full-column-rank 
rectangular matrices of size a × b, where a ≥ b.  Indeed, it is obvious to check that 

€ 

[(ΦTΦ)−1ΦT ]Φ = Ib×b . Formula (3.26) indicates one way to compute solutions to linear 
regression problems: first compute  

€ 

(ΦTΦ)−1 , then multiply with 

€ 

ΦTy. This is fast but prone 
to numerical instability when 

€ 

(ΦTΦ)−1  is not well-conditioned. If you call in Matlab the 
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routine pinv (for pseudo-inverse), another algorithm is used which is slower but more stable 
because it avoids to explicitly compute 

€ 

(ΦTΦ)−1 .  
 
 
3.3 The bias-variance dilemma 
 
We have just seen how a maximum-likelihood estimator can yield clearly unsatisfactory 
results. The problem we stumbled across is known as the overfitting problem, or the bias-
variance dilemma. In fact, it is a general problem that always raises its ugly head when it 
comes to statistical model estimation. In a nutshell, the best model of a probability 
distribution that one can get, given empirical data, is not the model yielded by maximum-
likelihood methods – because ML methods try to come as close as possible to the empirical 
distribution represented by the training data; as a result, the model also "models" the purely 
random fluctuations of the training data. A thorough treatment of the bias-variance dilemma 
has in the last two decades been started in a modern branch of statistics called statistical 
learning theory. I will here only give a traditional account of the problem, which also explains 
why it is called "bias-variance" dilemma.  
 
We consider only a special case here, which is enough to demonstrate the concept. Assume 
that you possess an estimator Tn: (X1(ω), ..., Xn(ω))   

€ 

 ˆ θ (ω) , where ∈θ̂  d. We ask the 
question, how much does the estimate )(ˆ ωθ  deviate, in the mean square error sense, from the 

true value θ? That is, we ask for the value of ])ˆ[( 2θ−θE . We can compute this as follows: 
 

(3.27) 
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The third term in the second line vanishes because 

.00)]ˆ[(2]])ˆ[[]ˆ[)(]ˆ[(2])]ˆ[ˆ[()]ˆ[(2 =⋅θ−θ=θ−θθ−θ=θ−θθ−θ EEEEEEEE  Among 

the remaining two terms, the first term, ]])ˆ[ˆ[( 2θ−θ EE , gives the variance of the estimates, 

and the second, 2)]ˆ[( θ−θE , gives the systematic (averaged) squared amount by which the 

estimates deviate from the correct value. The quantity θ−θ]ˆ[E  is the bias of the estimator.  
 
Thus we have seen that the error inherent in an estimator can be split into two parts, a 
variance part that captures how much the estimates scatter around the mean estimate, and a 
bias part that quantifies how much the mean estimate differs from the correct value. The 
lessons taught by statistical learning theory is that there is a tension between the two: within a 
given class of estimators (say, neural networks) one can tune models either towards a low bias 
error (by data (over-)fitting, using larger networks) or towards a low variance error (by 
introducing a bias, e.g. small networks), but it is intrinsically impossible to optimize both 
simultaneously.  
 
For an elementary demonstration of the bias-variance theme, consider a situation where 
θ = (µ1, µ2) is comprised of the two coordinate means of some distribution over 2. That is, 
the observation space is E = 2, and measurement values Xi(ω) are vectors xi = (x1, x2)T, 



 47 

where superscript T denotes transpose. Now consider the following three estimators for 
θ = (µ1, µ2): 

 
 

 
 

 
 
 

 
 
where (m1, m2)T is an informed guess about true (but not precisely known) mean (µ1, µ2)T. 
The following figure shows typical outcomes of applying these estimators to samples  (x1, ..., 
xN). It turns out that the U estimator would fare best in the sense of yielding the lowest 
expected error, although it is not unbiased – its estimates will be centered not around (µ1, µ2)T 
but around ((m1, m2)T + (µ1, µ2)T) / 2. Intuitively speaking, it is superior because (and if) our 
guess (m1, m2)T  comes close to the true value. This is a simple instance of a general principle 
in designing estimators: whenever one has some prior insight in the nature of the true 
parameters θ, and one finds a way to insert this knowledge into the estimator, then one may 
reasonably hope that the resulting estimator is better than another estimator where this prior 
knowledge has not been inserted. Since this prior knowledge will usually not exactly hit the 
correct θ, it will however introduce a bias into the estimator. In the next subsection 3.4, we 
will see how one can insert such prior information into an estimator in a principled fashion, 
such that prior information in which we only weakly trust has a lower impact than prior 
information in which we put much trust. 
 
 
 

 
 
 
 
3.4 An estimator with Bayesian priors 
 
In the ML-approach, the problematic zero probability estimates occurred because the 
estimator exclusively used the information given by the sample. The background knowledge 
that every protein expert has, namely, that every amino acid may (albeit possibly rarely) occur 
at every position, was ignored. This knowledge is crucial for getting an estimator that really 
makes sense, and it is the starting point in a Bayesian analysis: start from the assumption 
("prior") P(θ | M) about the distribution of parameters.  
 

  

€ 

S : (x1,...,xN ) (x1 + x2) /2

  

€ 

T : (x1,...,xN ) (x1 +…+ xN ) /N

  

€ 

U : (x1,...,xN )1/2 ⋅
m1
m2

 

 
 

 

 
 + (x1 +…+ xN ) /2N
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This needs two bits of explanation.  
 
• The first explanation is simple: M does not refer to a measurable event [like the B in the 

"classical" expression P(A | B)] but simply is the Bayesian way to make explicit that some 
background knowledge, or model, M is involved. M need not (and usually cannot) be 
formalized; it is a pointer to what biologists know a priori about distributions of amino 
acids in families of proteins.  

• The second explanation is not so simple. The distribution P(θ | M) is a hyperdistribution: 
it describes how distributions (which are characterized by the various possible settings of 
θ) are distributed. Syntactically, it is just a distribution of numerical values (namely, the 
possible values of θ), but semantically, it is a distribution of distributions, because each 
possible value of θ represents a distribution. In our protein example, the prior wisdom that 
any amino acid might occur at a given site could be reflected in a choice of P(θ | M) which 
would assign a relatively high (and nonzero!) pdf value to the distribution parameter θ = 
(1/20, ..., 1/20).  

 
With a Bayesion prior information P(θ | M), the biologist's background knowledge enters the 
parameter estimation as follows, through Bayes' formula: 
 

(3.28)  
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where the two rightmost terms are understood by Bayesians as a shorthand for the middle 
term.   P(θ | D, M) is the posterior distribution  (of parameters) and P(θ | M) is the prior 
distribution (of distributions...) or simply the prior.  
 
Notice that P(θ | D, M) is a (hyper)distribution over parameters – but the target of model 
estimation is some estimate value θ̂  of parameters, not a distribution over candidate values. 
Therefore, Bayesian model inference must conclude with a final step where from the 
distribution P(θ | D, M) a specific value θ̂  is obtained. The usual approach here is to take the 
mean value of θ over this distribution, that is, calculate the mean posterior estimate 
 
(3.29)  θθθ=θ=θ ∫ dMDP ),|(ˆ PME . 

 
We will now concretely compute (3.29) step by step for our amino acid distribution problem, 
where ),...,( 201 θθ=θ .  
 
To start, we remark that with true ),...,( 201 θθ=θ  the sample statistics for D should follow a 
multinomial distribution, that is, the probability to obtain a sample D = (n1, ..., n20) is 
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Next we try to fix how the prior P(θ | M) should look like. This is a subjective decision! For 
reasons that will soon become clear we (and most proteinologists) opt for the Dirichlet 
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distribution P(θ | M) = (θ | α) with parameters α = α1, ..., α20. The pdf of (θ | α) is given 
by  
 

(3.31)  
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Some comments will help to make this formula look less frightening. The factor )(/1 αZ is 
just there to ensure that the integral over (θ | α) is unity, that is it holds that 
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This integral has an explicit solution  
 

(3.33)  
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where Γ is the gamma function. We don't have to understand Γ because it will later cancel 
out. The δ in (3.31) is the Dirac delta function which is defined by  
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Equipped with (3.30) and (3.31) we return to (3.28), which we now can calculate as a pdf: 
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where D + α = (n1+α1, ..., n20+α20). Because p(θ|D,M) and (θ | D+α) are probability 
distribution functions, the first three multiplicative terms in the last line of (3.35) must 
evaluate to unity, whereby we find 
 
(3.36)  p(θ|D,M) = (θ | D+α). 
 
Thus we have the posterior distribution of θ. In order to arrive at the posterior mean estimator, 
we integrate over the posterior distribution (of distributions!): 
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(3.37)  
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where by D + α + ei we mean (n1+α1+e1  , ..., n20+α20+e20); ei(n) = 1 if i = n, else 0; A = α1 + 
...+α20 and in the last step we exploit Γ(x+1) = xΓ(x). 
 

We see that the posterior mean estimator 
AN

n ii
i +

α+
=θPME  is rather similar to the maximum 

likelihood estimator 
N
ni

i =θ ML , and we can see how the parameters αi of the Dirichlet 

distribution can intuitively be interpreted as "pseudo-counts". That is, the prior knowledge is 
entered into the game here by augmenting the empirical counts ni with extra pseudo-counts αi. 
These pseudo-counts reflect the subjective intuitions of the biologist, and there is no rigorous 
rule of how to set them correctly. There are two limiting cases: if we don't add any pseudo 
counts, the Bayesian approach reduces the the maximum-likelihood case, that is, only the 
empirical information enters the estimation. This would drive us to the "far right" side in the 
bias-variance dilemma, that is, we run danger of overfitting. If we add, on the contrary, very 
large pseudo-counts, the final "estimate" will just replay the prior information with almost no 
influence from the empirical information; this would put us to the far left side in the bias-
variance-dilemma, that is, we would just get our bias (the Bayesian prior) back. So the 
Bayesian approach does not solve the bias-variance dilemma; it only makes it transparent and 
forces the researcher to take his/her stand.  
 
The outcome of (3.37) can be seen in yet another way, which indicates another way of how 
one may work in one's personal bias into a parameter estimation. Assume that according to 
your personal insight (before seeing the data) you expect that the parameters 

),...,( 201 θθ=θ have true values ),...,( 201
priorpriorprior θθ=θ . This θprior does not incorporate 

any information from D and thus marks the extreme left (bias) end of the bias-variance 
dilemma. (Note that θprior is not a proper Bayesian prior – a proper Bayesian prior would be a 
distribution of distributions θ!). You compute the maximum-likelihood estimator 

),...,(),...,( 201ML
20

ML
1

ML

N
n

N
n

=θθ=θ  from D. θML does not reflect any prior information, fits 

the data perfectly and thus marks the extreme right end of the bias-variance-range. Now, in 
order to settle at some compromise between the two extremes, construct "blended" estimators  
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(3.38)  θpost = q θprior + (1 – q) θML,  
 

where 0 ≤ q ≤ 1. Writing θprior as ),...( 201

AA
prior αα

=θ  and putting q = A / (N + A) and (1 – 

q) = N / (N + A) yields the same result as (3.37). Note however that this procedure of linearly 
blending the parameters of a "personally expected" distribution with the parameters of a ML 
distribution does not universally work – not all types of parametrizations θ of distributions 
allow linear blending.  
 
The biosequence analysis textbook of Durbin et al., from which this example is taken, some 
thought is given to how one should properly select the pseudo-counts. The proper exploitation 
of such "soft" knowledge makes all the difference in real-life machine learning problems. 
 
Here is a summary of Bayesian approaches to parameter estimation for parametrized 
distributions: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.5 Some general remarks on estimation theory 
 
We have seen that even in a situation as simple as estimating the probabilities of 20 symbols 
from a sample, several estimators T: (x1, ..., xn) θ̂  can be considered, which have each 
their pro's and con's. This situation is typical and has spurred the development of a complete 
subbranch of statistics, estimation theory. Estimation theory is concerned in defining general 
quality criteria for estimators, thus helping to compare the various estimators one might think 
of in a given situation. The field was pioneered by Sir Ronald Aylmer Fisher in the first half 
of the 20th century.  
 
The general approach in estimation theory is to investigate the behavior of an estimator T as 
the number N of observations grows, that is, consider T as a sequence of related estimators Tn: 
(x1, ..., xn) θ̂ . Note that an estimator Tn is a random variable.  
 
Let θ0 denote the true distribution. Here are the most important quality criteria for estimators:  

1. Carefully choose a prior P(θ | M) which reflects your a-priori expert belief 
about how distributions θ should be distributed. If you don't know much 
beforehand, P(θ | M) should be close to uniform; if you have strong 
preferences for particular θ, make P(θ | M) peak strongly around the 
preferred values.  

2. Make your measurements and think of a proper type of distribution (here: 
polynomial distribution) to obtain P(D |θ , M). 

3. Use Bayes formula to obtain the posterior distribution of distributions, 
P(θ | D, M). 

4. Integrate over P(θ | D, M) to find the final posterior distribution θ̂ . 
 
Always do step 1 before making measurements! If your choice of the prior 
would be influenced by what you empirically observe, the Bayesian approach 
becomes thoroughly flawed! 
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1. Unbiasedness. T is unbiased if for all n, E[Tn] = θ0. In our example, ML

iθ  was unbiased 
but PME

iθ  was not. 
 
2. Asymptotic unbiasedness. T is asymptotically unbiased if limn→∞  E[Tn] = θ0. PME

iθ  is an 
example. 
 
For the next quality criteria we need to consider a probability space (Ω, F, P) where each 
ω ∈ Ω is an "experiment" in which we carry out an infinite sequence                                     
x1, x2,... = X1(ω), X2(ω)... of measurements (so Xi is the random variable "carry out the ith 
measurement within such an experiment"). Tn(ω) is then Tn(x1, ..., xn) for ω = x1, x2,....Then 
we can define: 
 
3. Strong consistency. T is strongly consistent if Tn converges to θ0 P-almost-surely, that is, 
if(3.39) 
 
(3.39)  P(limn→∞ Tn(ω)  = θ0) = 1 
 
ML
iθ  and PME

iθ  are strongly consistent (by the law of large numbers). Explanation: The strong 
law of large numbers isn't actually a law but a property of a sequence X1, X2, ... of numerical 
random variables. Such a sequence obeys the strong law of large numbers if  
 

(3.40)  ∑ =∞→
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n

i iin
XEX

n 1
0))((1lim   P-almost surely.  

It holds, for instance, if all Xi are integrable, independent, and identically distributed (a 
fundamental theorem of Kolmogorov). For ML

iθ , we can use the law of large numbers to 

show (3.39) as follows. For a sample of size N, )(ML
, ωθ Ni  =  ∑ =

ω
N

j jXN 1
)(1 , where 

1)( =ωjX  if the j-th protein sequence in our sample has the i-th amino acid symbol in the 

location of interest, else 0)( =ωjX . The Xj are integrabel, independent, and identically 

distributed, so the strong law applies. The expectation of Xj is θi for all j. So we can conclude: 
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where the last equality is justified by the strong law. For PME
iθ  a similar argument can be used.  

 
A background note. As we have just seen, the strong law justifies that (and how, namely with 

probability 1) we may interpret the limit of relative frequency counts,  ∑ =∞→ ω
N

j jN X
N 1

)(1lim , 
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as the probability of a discrete observation outcome. This is, on the one hand, the intuitive 
foundation of the frequentist approach to probability, but on the other hand, it is also a derived 
result within that theory. Therefore, the law of large numbers (especially the fundamental 
theorem of Kolmogorov) is a pillar in the frequentist theory of probability. 
 
 
 
4. Weak consistency. T is weakly consistent if Tn converges to θ0 in probability, that is, if 
 
(3.41)  for all ε > 0, limn→∞ P({ω ∈ Ω | 7 Tn(ω) − θ0 7 > ε}) = 0. 
 
Weak consistency follows from strong consistency, so our two estimators ML

iθ  and PME
iθ  are 

weakly consistent, too. Many estimators of great practical significance in machine learning 
have none of the properties 1. – 4. This is likely to happen if the estimator incorporates a 
nonlinear optimum finding subroutine, which for instance is the case in most neural network 
(widely used in pattern recognition) and hidden Markov model (widely used in speech 
recognition) based estimators.  
 
5. Efficiency. These critiera 1. – 4. are all-or-none, that is, an estimator either has that 
property or has it not. Another kind of quality criterium asks for the relative efficiency of an 
estimator, that is, how efficiently it makes use of the information contained in a sample. The 
general idea is that an estimator Tn (which should be unbiased to start with) is efficient if it 
has small variance σ2(Tn), that is, if the estimates θ̂  returned by Tn are scattered narrowly 
around θ0. An unbiased estimator Sn is more efficient than an unbiased estimator Tn, if σ2(Sn) 
> σ2(Tn).  
 
6. Sufficiency. (Here I roughly follow the book from Duda/Hart/Stork, Section 3.6). Yet 
another angle on judging the quality of estimators starts from the question whether the choice 
θ of parameters is appropriate in the first place. For our amino acid example (distribution of 
discrete symbols in classes) the set of class probabilities makes an obviously adequate set of 
parameters; when one wants to characterize a normal distribution, one chooses θ = (µ, σ). But 
what about cases where one does not have a well-founded intuition about how one should 
characterize the unknown distribution with a few parameters? Assume that the unknown 
distribution would rightfully be described by parameters θ, but you don't know which kind of 
θ. This is a standard situation in practice, where you meet "wild" distributions that cannot be 
expected to be of any known, simple kind. So you devise of a vector s of parameters that you 
can estimate from data instead of θ, hoping that s contains all the relevant information about 
the underlying distribution. Such a set s of parameters that you estimate from data is called a 
statistic. Technically, a statistic is just some (possibly vector-valued) function s = ϕ(D). A 
statistic is called sufficient if indeed it contains all the relevant information about the 
underlying distribution, that is, about θ.  
 
Intuitively, one would define s to be sufficient if  
 
(3.42)  P(θ | s, D) = P(θ | s),  
 
that is, if s extracts from the data D all that is relevant for learning about θ. However, this 
would imply that θ is taken as a random variable, a perspective not common for "classical" 
statisticians, who therefore defined sufficiency in another way: a statistic s is said to be 
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sufficient for θ if P(D | θ ,s) is independent of θ, that is, P(D | θ ,s) = P(D | s). The two ways 
of defining sufficiency are equivalent. To see this, first assume the classical definition P(D | θ 
,s) = P(D | s). Use the Bayesian formula to spell out P(θ | s, D) by 
 

(3.43)  P(θ | s, D) = 
)|(

)|(),|(
s

ss
DP
PDP θθ

, 

 
where the r.h.s. cancels to P(θ | s) with P(D | θ ,s) = P(D | s), yielding the Bayesian-style 
definition. Conversely, if you assume P(θ | s, D) = P(θ | s), you get P(D | θ ,s) = P(D | s) by a 
mirrored argument (you need the extra condition P(θ | s) ≠ 0.).  
 
A fundamental theorem characterizes sufficient statistics as those statistics s, where P(D| θ) 
can be factorized into a part that depends only on s and θ, and another part that depends only 
on D: 
 
Theorem 3.1 (factorization theorem): A statistics s is sufficient for θ if there exist functions g 
and h such that P(D| θ) = g(s, θ) h(D).  
 
For an intuitive grasp, here is a sloppy version of a proof for the ⇒ direction. Assume that s is 
sufficient, and formally write P(D| θ) = P(D, s | θ) = P(D| s, θ) P(s | θ), which is equal to        
P(D| s) P(s | θ) by sufficiency of s. The first factor P(D| s) is a function of D, namely,         
P(D| s) = P(D| ϕ(D)). Put h(D) = P(D| s). The second factor is the desired g(s, θ) = P(s | θ). 
Thus, P(D| θ) = g(s, θ) h(D) =  P(s | θ) P(D| ϕ(D)). 
 
A more detailed proof for the case of discrete distributions can be found in Duda/Hart/Stork 
(p. 104). The importance of the factorization theorem lies in the fact that when we want to 
check whether a statistic s is sufficient, we can restrict our analysis to the distribution P(D| θ) 
instead of having to deal with P(D | θ ,s). If D = (x1, ..., xn), and the individual measurements 
are statistically independent, P(D| θ) takes the simple form of 
 

(3.44)  )|()|(
1

θ=θ ∏
=

n

k
kxPDP . 

 
Specifically, the factorization theorem teaches us that a sufficient statistic depends only on the 
probabilties P(xk| θ) and not on (inaccessible) assumptions on a prior P(θ). 
 
  
 
Exponential distributions. The factorization theorem and Eq. (3.44) can be applied 
particularly well if we are dealing with parametric probability distributions from the 
exponential familiy. This family includes most of the standard textbook distributions, for 
instance the normal, exponential, Poisson, Gamma, Beta, Bernoulli, binomial and multinomial 
distributions. Exponential distributions are characterized by a pdf of the form 
 
(3.45)  p(x | θ) = α(x) exp [a(θ) + b(θ)T c(x)], 
 
where a, b, c are linear functions. 
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For exponential distributions, one gets a sufficient statistic by 
 

(3.46)  ∑
=
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kxn 1

)(1 cs , 

 
and the two factorizing functions as 
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A table containing an overview of all these expressions for a dozen or so much-used 
distributions is shown in Duda/Storck/Hart p. 108-109. 
 
Once one has a sufficient statistic s = ϕ(D)  and the factorization functions, given a sample x 
= (x1, ..., xn) one can find the maximum likelihood estimator MLθ  through 
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For the various exponential distributions, the sufficient statistics and the factorization 
functions g are significantly simpler than the original formulae for the pdfs. Because very 
many distributions of practical relevance are exponential, the tools of sufficient statistics and 
factorization are of great practical importance.  
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4. Linear discrimination and single-layer neural networks 
 
In this section we will treat a special case of two-class classification, namely, linear 
discrimination. Together with the maths we will introduce a particular conceptual / graphical 
notation, namely, cast the classification algorithm as a neural network. Linear discrimination 
is the basis for understanding more advanced techniques that we will treat later: adaptive 
Wiener filters, multilayer neural networks, support vector machines. I follow closely chapter 3 
of Bishop's book.  
 
4.1. Linear discrimination: two classes 
 
Recall. Toward the end of Section 2 we introduced discriminant functions as monotonically 
increasing functions f  
 
(4.1) yi(x) = f(p(x | Ci) P(Ci))  
 
of the class-conditional probability times the prior. For the case of binary discrimination we 
mentioned that one can introduce a single discrimination function  
 
(4.2) y(x) = y1(x) − y2(x)  
 
and decide that x falls into class 1 whenever y(x) > 0. We remarked at the end of that section 
that it is sometimes easier to learn discriminant functions directly from the training data, than 
first estimate the class-conditional distributions first and construct the discriminant function 
from those distributions in the second place.  
 
This is the approach we will take in this section: we forget (for a while) the connection of 
discriminant functions with distributions and start directly from a given functional form of the 
two-class discriminant function (4.2), namely, linear discriminants of the form 
 
(4.3) y(x) = wTx + w0, 
 
where w is a weight (column) vector and w0 is a bias (this usage of the term "bias" is 
historical and not identical to the Bayesian notion of a bias we met in connection with the 
bias-variance dilemma). For the case of two and three-dimensional features x = (x1, x2) or x = 
(x1, x2, x3), linear discriminants can be visualized as in Fig. 4.1. See figure caption for a 
geometrical interpretation.  
 
In a neural network interpretation, a linear discriminant corresponds to a network with M + 1 
input neurons, where M is the dimension of the features x, and a single output neuron, where 
the output y(x) of the discriminant is read from. The first input neuron x0 receives constant 
input 1, the remaining input neurons receive input x = (x1, ..., xM). The "synaptic" network 
weights are w0, w1, ..., wM = (w0, wT) =w~ T. The output in this network is computed in the 
output neuron by summing up the inputs, weighted by the weights, which gives 
 
(4.4) y(x) = w~ T x~  = w0 + wTx. 
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Fig. 4.1 Geometrical interpretation of two-class linear discriminant y(x) = wTx + w0 for two-
dimensional (left) and three-dimensional features x. A hyperplane H defined by y(x) = 0 
separates the feature space into two decision regions 1 and 2. The hyperplane has 
orientation perpendicular to w and distance w/0w  to the origin. (Left figure after the book 
from Bishop, right figure was taken from the online supplements to the book of 
Duda/Hart/Stork). 
 
 
The notation y(x) = w~ T x~  is often more convenient than (4.3). The network representation of 
the discriminant is shown in Fig. 4.2. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.2: A network representation of a two-class linear discriminant. 
 
 
4.2 Linear discrimination: several classes 
 
The two-class case can be extended to n classes by introducing linear discriminant functions 
yk for each class: 
 
(4.5) yk(x) = wk

Tx + wk0, 
 
assigning an input pattern x to class k if yk(x) > yj(x) for all j ≠ k. Because yk(x) > yj(x) if yk(x) 
− yj(x) > 0, the decision boundary between classes k and j are given by  
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x2 

w 

1 

2 

y(x) = 0 

w
0w  

H 

x0 = 1   x1  ...          xM 

w0 
w1 

wM 

output y(x) 
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(4.6) yk(x) − yj(x) = (wk − wj)
Tx + (wk0 − wj0) = 0. 

 
The network representation of (4.5) is sketched in Fig. 4.3: 
 
 
 
 
 
 
 
 
 
 
Figure 4.3: Representation of multiple linear discriminant functions.  
 
 
As before in (4.4), we cover the bias by an additional constant input xi of unit size and thus 
may re-write (4.5) as 
 

(4.7) yk(x) = ∑
=

M

i
iki xw

0
. 

 
The decision regions are now regions in M+1. They have linear hyperplanes as boundaries, as 
can be seen from (4.6). Furthermore, the decision regions are connected and convex. To see 
this, consider two points xA and xB, which both lie in region k. Any point x̂  that lies on a 
line between xA and xB can be written as BA xxx )1(ˆ α−+α=  for some 0 ≤ α ≤ 1. From the 
linearity of the discriminant functions it follows that yk( x̂ ) > yj( x̂ ) for all j ≠ k. Therefore all 
x̂  between xA and xB are in class k, too. This is schematically shown in Fig. 4.4. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.4 Convexity and connectedness of linear decision regions. 
 
 
4.3 Computing logistic discriminants for Gaussian class-conditional distributions 
 
We have not yet addressed the obvious question of how the weights w and w0 can be 
computed in order to yield optimal classifications. In special (and important) cases, explicit 
solutions can be given. In this subsection we address the case where the class-conditional 
probabilities p(x | Ci) are normal distributed. The closed-form solution in this case also 
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reveals a connection of the discriminant function with the underlying class-conditional 
probabilities p(x | Ci).  
 
We have seen earlier in this lecture (end of Section 2) that decision regions are not affected by 
wrapping the outcome of a discrimination function with a monotonically increasing function f. 
Instead of using  yk(x) = wk

Tx + wk0, as in (4.5), in an n-class classification network as shown 
in Fig. 4.3 we may just as well use  
 
(4.8) yk(x) = f(wk

Tx + wk0). 
 
In the neural network metaphor, f describes how the output of the output neuron is re-shaped 
after the simple summation of the incoming signals. Because in neural networks the output 
values of neurons are called activations, f is called an activation function in this context. Since 
the decision boundaries generated by (4.8) are still linear, this setup is still regarded as a case 
of linear discrimination. The case where f is the identity is also referred to as the linear 
activation function. We will later see that linear learning techniques that estimate weights for 
linear activation functions can be adapted to likewise linear learning techniques that estimate 
weights for nonlinear activation functions.  
 
A common choice for a nonlinear f is the logistic function 
 

(4.9) f(a) = ae−+1
1 . 

 
Figure 4.5 shows a plot.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.5 The logistic function. 
 
The logistic function has a value range between 0 and 1; for large arguments it "saturates" at 
1, which is an abstract version of the biological fact that biological neurons cannot become 
activated (in the sense of average firing frequency) above a certain saturation value. Thus, 
there is a biological motivation for using the logistic. The logistic function is S-shaped 
("sigmoid"). There is another sigmoid function in common usage in neural networks, namely f 
= tanh. This function ranges from –1 to +1 and has no good biological justification (what 
would be negative activations?). 
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However, there is also a mathematical reason for using the logistic function. Consider a two-
class problem where the class-conditional densities are given by Gaussian distributions with 
equal covariance matrices Σ1 = Σ2 = Σ: 
 

(4.10) 






 −Σ−−
Σπ

= − )()(
2
1exp

)det()2(
1)|( 1

2/12/ kkMkCp µµ xxx T , 

 
where k = 1, 2. (A more detailed discussion of multidimensional Gaussians will be given in 
Section 4.4.2). 
 
Using Bayes' theorem, we find that the posterior probability of membership in class C1 is 
given by  
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where  
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If we substitute (4.10) into (4.12) we obtain [by multiplying out the expressions 
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(4.13) a = wTx + w0, 
 
where  
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Thus we see that )()()|( 01 wfafCp +== xwx T , that is, the output of the first output neuron 
in a two-class network (set up with two output neurons, like in the n-class network in Fig. 4.3) 
can be interpreted directly as a posterior probability for class 1 if we use the weights given in 
(4.14). As we have seen in Section 2.9, this gives us optimal decisions in the sense of 
minimizing the probability of misclassifications.  
 
Supplementary background information. Our findings can be generalized in several 
directions.  
 
First, using a logistic activation function together with the right weight vector gives us correct 
posterior pdfs not only for class-conditional probabilities that are normal distributed, but also 
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for any other exponential distribution. This is described in Section 6.7.1 in Bishop's book; a 
special case (Bernoulli distributed class-conditional probabilities) is detailed out in Section 
3.1.4 in Bishop's book.  
 
Second, our finding can be generalized from the two-class classification task to n-class 
classification. Let the summed input to the k-th output unit be given by 
 
(4.15) ak = wk

Tx + wk0. 
 
Define the activation of the k-th output neuron by 
 

(4.16) yk(x) = 
∑ =

n

i
a

a

i

k

e
e

1

. 

 
This is known as the softmax "activation function". Note that the k-th output neuron must 
"know" the inputs to the other output neurons to compute its own output, so the simple 
network metaphor shown in Figure 4.3 does not really hold any longer, and softmax is 
actually not a single-unit activation function. The softmax activation function enforces that 
the sum of activations of all output units is 1, and each is nonnegative, so the vector of all 
outputs is a probability vector. Using softmax output activations, for class-conditional 
distributions from the exponential family one can derive closed-form solutions for the weights 
wk and wk0 (as we did in Eqn. (4.14) for the two-class Gaussian case) such that the outputs 
become the posterior distributions (Section 6.9 in Bishop's book).  
 
Third, when in the binary classification task we drop the assumption of equal covariance 
matrices, now having covariance matrices Σ1 and Σ2 for the two class-conditional 
distributions (4.10), we end up with a quadratic function  
 
(4.17) a = x W x + wTx + w0, 
 
with different w and w0 than before. The decision boundaries are then quadratic hyperplanes 
(hyperparaboloids).  
 
Perceptrons. Historically, the first "neural networks" (not called like that then) for 
classification tasks used another kind of activation function, namely, binary threshold 
functions f(a) = −1 if a < 0, f(a) = 1 if a ≥ 0. These networks were introduced by Rosenblatt in 
the early 60ies and named Perceptrons. Perceptrons were biologically inspired in a context of 
visual pattern classification from pixel images. Another characteristic of perceptrons is that 
they come with a particular type of feature extraction, that is, their input neurons correspond 
to a particular kind of features extracted from pixel images. Figure 4.6. (redrawn from 
Bishop's book) shows the setup of a perceptron. There exists a learning rule for perceptrons 
that incrementally adapts network weights for maximal discrimination rates; this rule can be 
proven to converge. Perceptrons are still rather popular.  
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Figure 4.6: The perceptron's input neurons φj are patched to the input pattern by (random) 
links. They typically compute their outputs by a threshold function from the sum of the 
signals received through these links. Input neuron outputs are weighted, summed, and passed 
through another threshold function f whose output indicates whether the pattern belongs to 
class 1 or class 2 (binary classification).  
 
4.4 The powers of, and maths behind, linear data transformations 
 
So far we have only described linear discrimination networks and have seen that weights exist 
which yield optimal decisions, if the class-conditional distributions are from the exponential 
family. This is reassuring from a theoretical perspective, but does not help too much in 
practice, because strong assumptions about the form of the class-conditional distributions are 
needed to justify using the closed-form weight computations. In this subsection we will show 
another case, of greater practical relevance, where the network weights have closed-form 
solutions, without making assumptions about the form of the class-conditional distributions.  
 
Before we embark on this topic, we will quickly refresh some linear algebra (Section 4.4.1) 
and facts about multi-dimensional normal distributions (Section 4.4.2). This material is 
adapted from Appendix A of the Bishop book and Appendix A.5.1 of Duda/Hart/Stork.  
 
 
4.4.1 The eigenmagic of symmetric matrices 
 
Definition. A matrix A is symmetric if its columns and rows permute, that is, A = AT.  
 
Example. We will encounter symmetric matrices very often through covariance and 
correlation matrices. Given n numerical random variables X = (X1, ..., Xn)T, their covariance 
matrix Σ = (σij) is given by  
 
(4.18) σij = Cov(Xi, Xj) = E[(Xi – E[Xi]) (Xj – E[Xj])]  
 
and their correlation matrix R = (rij) by 
 
(4.19) rij = E[Xi Xj], or equivalently, R = E[XXT] 
 
Inverse. The inverse of a symmetric matrix is symmetric. 
 
A commutative property. For symmetric matrices A and vectors u, v we have  
 
(4.20) uTAv = vTAu. 
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Eigenvector equations of a matrix. The eigenvectors u of an n × n matrix A (not necessarily 
symmetric) by definition satisfy  
 
(4.21) A u = λu,  
 
where λ is an eigenvalue of A. In matrix notation, (4.21) can be rewritten as  
 
(4.22) (A − λI) u = 0, 
 
where I is the n × n identity matrix and 0 the n × 1 null vector. To prevent the trivial solution 
u = 0, the matrix A − λI has to be singular, that is,  
 
(4.23) det(A − λI) = 0. 
 
Remember that the determinant of an n by n matrix M is given by 
 

(4.24) det(M) = 

€ 

sgn(σ ) Mi,σ i
i=1

n

∏
σ ∈Sn

∑ , 

 
where Sn is the set of all permutations of {1, ..., n}, and sgn(σ) is +1 if σ is even, and sgn(σ) is 
−1 if σ is odd. Equation (4.23) is the characteristic equation of the matrix A. When expanded 
into the form (4.24), it is an n-th order polynomial in the unknown λ. The roots of this 
polynomial, which may be called λ1, ..., λn, are the eigenvalues of A. When a root λi has 
multiplicity 1 (that is, there is only a single root with this value), there exists a unique (up to 
scaling) eigevector u to that eigenvalue. If a root λi has multiplicity k > 1, the eigenvectors to 
that eigenvalue span a k'-dimensional subspace V(λi) whose dimension is at most k. This is 
often stated as "the geometric multiplicity [i.e., dim(V(λi))] of λi is at most as large as the 
algebraic multiplicity of λi". 
 
Note that the roots of a polyonomial with real coefficients may be complex numbers. Thus, 
even when M is real, it may have complex eigenvalues and complex eigenvectors of the form 
u + iv. This does however not happen when M is symmetric: 
 
Real eigenvalues. The eigenvalues of a real symmetric matrix A are real. Proof: Consider the 
eigenvalue equation Au = λu. Premultiplication by Tu  yields uuAuu TT λ= . By multiplying 
out AuuT , it is easy to see that AuuT  is real. Likewise, uuT  is real. Therefore, λ must be 
real. 
 
Real eigenvectors suffice. The eigenvectors of a real symmetric matrix may be chosen real. 
Proof: Consider A(u + iv) = λ(u + iv). Since A and λ are real, we have Au = λu and Av = λv. 
This means that the subspace V(λ) in n is spanned by real eigenvectors of λ. 
 
Orthonormal eigenvectors in symmetric matrices. Without proof I mention that an n-
dimensional symmetric matrix A has n eigenvectors spanning n.  Furthermore, if A is real 
and symmetric, the eigenvectors can be chosen to be real and orthonormal (that is, orthogonal 
and of unit length). To see this, for real eigenvectors uj, uk (with eigenvalues  λj, λk) consider  
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(4.25) uj
T A uk = λk uj

T uk  and  uk
T A uj = λj uk

T uj, 
 
which follows from (4.21). Subtracting these two equations and exploiting (4.20) we get  
0 = uj

T A uk − uk
T A uj = (λk − λj) uk

T uj, from which it follows that for λk ≠ λj, uk and uj 
must be orthogonal. If λk = λj, any linear combination of uk and uj is also an eigenvector; this 
can be used to create a selection of pairwise orthogonal eigenvectors for the eigenvalue λk. 
This gives us an altogether orthogonal set of eigenvectors, which can be then each normalized 
to unit length to yield orthonormal eigenvectors, that is,  
 
(4.26) uk

Tuj= δkj. 
 
This has two immediate consequences. First, the matrix U = [u1 . . . un] may be assumed to be 
orthonormal, that is,  
 
(4.27) UTU = UUT = I, or equivalently, U-1 = UT. 
 
Second, the eigenvalues can be obtained from the eigenvectors by 
 
(4.28) uk

TA uk = λk, 
 
which follows from (4.21) and (4.26).  
 
 
Geometric interpretation. Considering that symmetric real matrices have orthonormal 
eigenvectors with real-valued eigenvalues, we see that geometrically, such a matrix describes 
a linear transformation of n which shrinks/expands the orthonormal coordinate system given 
by the eigenvectors by the amounts given by the eigenvalues. If all eigenvalues are 
nonnegative, the unit sphere in n is mapped to an ellipsoid whose central axes point in the 
directions of the uk and have length λk: 
 
 
 
 
 
 
 
 
 
 
Figure 4.7: A. Effects of a symmetric matrix A (with non-negative eigenvalues) transforming 
the unit sphere in 2. B. Effect of applying Λ  in the transformed coordinates =x~ UTx.  
 
Eigensystem of A−1. If we multiply (4.21) by A−1 we find A−1 uk = λk

−1uk, that is, the 
eigenvectors of A−1 are the same as the eigenvectors of A, and the eigenvalues of A−1 are the 
λk

−1. Geometrically this means "undoing" the expansion/shrinking in the direction of the 
eigenvectors.  
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Diagonalization and coordinate transformation. A symmetric matrix A can be 
diagonalized using U. Left-multiplication of AU = [λ1 u1 . . . λn un] by UT, observing (4.26) 
yields 
 

(4.29) UTAU = Λ  = 

  

€ 

λ1


λn

 

 

 
  

 

 

 
  
. 

 
Left-multiplication by UT maps eigenvectors uk on the unit vectors of n, and more generally 
any x ∈ n on  
 
(4.30) 

€ 

˜ x =UTx.  
 

With respect to the new coordinate system, Λ  acts like A in n (see Figure 4.7 B). The effect 
of UT is a rigid rotation of n.  
 
Positive definiteness. A matrix A is positive [semi-]definite if vTAv > 0  [vTAv ≥ 0, 
respectively] for all nonzero vectors v. Correlation [and hence, covariance] matrices R are 
positive semidefinite. To see this, we use R = E[XXT] from (4.19) and get 
 
(4.31) 

€ 

vTRv = vT E[XXT ]v = E[vTXXTv] = E[ vTX
2
] ≥ 0. 

 
All eigenvalues of a positive [semi-]definite matrix are positive [nonnegative]. This follows 
from (4.28).  
 
General quadratic forms. Consider a quadratic function F on n of the form 
 
(4.32) F(x) = xTAx, 
 
where A = (aij) is any real matrix. Replacing A by the symmetric matrix           
A' = (a'ij) = ((aij − aji)/2) doesn't change F, so without loss of generality A can be assumed to 
be symmetric. F can be computed using the matrix U of orthogonal eigenvectors of A, as 
follows: 
 

(4.33) 

  

€ 

F(x) = xTAx
= xTUUTAUUTx
= xTUΛUTx
= ˜ x TΛ˜ x 

= λi ˜ x i
2

i=1

n

∑ ,

 

 
where we used (4.26), (4.29) and (4.30). Elementary geometry tells us that the surfaces of 
constant F(x) are hyperellipsoids, with principal axes having lengths proportional to 

€ 

λk
−1/ 2 .  
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Notice that in a symmetric matrix A need not be positive definite or semi-definite. (4)(4.33) 
shows that a symmtetric matrix A is positive (semi-)definite iff all its eigenvalues are positive 
(non-negative). All symmetric matrices map the unit sphere to an ellipsiod; when A has 
negative eigenvalues, the mapping includes a mirroring along the associated principal 
directions; when A has zero eigenvalues, the ellipsiod is degenerate (squashed to zero 
thickness) in the corresponding directions.   
 
Multi-dimensional normal distributions. Now we are equipped to understand the nature of 
multi-dimensional normal distributions. Consider a vector-valued random variable X(ω) = 
(X1(ω), ..., Xn(ω))T. If the outcome of the i-th measurement Xi can be considered as an 
additive effect of many independent physical causes – a not too unrealistic asssumption in 
many cases – then X will be (approximately) distributed according to the n-dimensional 
normal distribution (this is a rough statement of the central limit theorem). Its pdf is given by 
 

(4.34) 

€ 

p(x) =
1

(2π )n / 2 det(Σ)1/ 2
exp − 1

2
(x −µ)T Σ−1(x −µ)

 

 
 

 

 
 , 

 
where the mean µ  is the (vector) mean E[(X1, ..., Xn)T] and Σ is the n × n covariance matrix of 
the random variables X1, ..., Xn. The prefactor ensures that this pdf integrates to unity; we will 
ignore it in our discussion. From our discussion in 4.4.1. we know that the argument of the 
exponential is a quadratic form on n, in the centered coordinates x – µ . Therefore, the 
constant level lines of p(x) are hyperellipsoids with principal axes having lengths proportional 
to 

€ 

λk
1/ 2, where λk are the eigenvalues of the covariance matrix Σ. These hyperellipsoids are 

centered on µ . Furthermore, the principal axes fall in the directions of orthonormal 
eigenvectors uk of Σ. Figure 4.8 shows some level curves of a two-dimensional Gaussian with 
a nondiagonal Σ.  
 
 
  
 
 
 
 
 
 
 
 
 
 
Figure 4.8: A two-dimensional Gaussian with a nondiagonal Σ. Samples lie in a cloud 
centered on µ .  
 
 
 
Karhunen-Loéve transform. If we transform the vector of the centered random variable X0 
= (X1−E[X1], ..., Xn−E[Xn])T by premultiplication with UT (compare (4.30)) we get a new 
random variable X' = (X1', ..., Xn')T: 
 
(4.35) X' = UT X0,  

u2 u1 
u2 

 

u1 u2 
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whose components Xk' are pairwise uncorrelated. This can be seen as follows: 
 

(4.36) 

  

€ 

E[X'X'T ] =UTE[X0X0
T ]U

=UTΣU
=UTUΛUTU
= Λ,

 

 
where Λ  is the diagonal matrix with the eigenvalues of Σ and we observed Σ = UΛUT, which 
follows from (4.29). Because Λ  is diagonal form, E[Xi' Xj'] = 0 for i ≠ j. The transformation 
(4.35) is not constrained to normal distributed X, but can generally be used to transform n 
random variables X into another set of n random uncorrelated variables, by first normalizing 
X to zero mean variables X0, then using the covariance matrix Σ and its eigenvector matrix U 
to apply (4.35). This transformation is called the Karhunen-Loéve transform in the area of 
signal processing; in other areas it has no special name. It is used in many techniques of signal 
processing and machine learning; often filtering or learning techniques work better when the 
original observations / inputs X are first decorrelated in this way.  
 
Whitening: A very practical routine for data preprocessing. After you have decorrelated a 
centered random variable X0 = (X1−E[X1], ..., Xn−E[Xn])T via (4.35), obtaining X', you can 
carry out an additional step of normalizing the n signals in X0 to unit variance, by computing 
 

(4.37) 

  

€ 

X' '=
λ1
−1/ 2



λn
−1/ 2

 

 

 
 
 

 

 

 
 
 
X'= Λ−1/ 2X', 

 
where Λ-1/2 is the diagonal matrix of the inverse square roots of the eigenvalues of Σ. This 
operation (4.37) scales the decorrelated signals X' such that they reach unit variance, which 
can be checked as follows: 
 
 

€ 

E[X' 'X' 'T ] = E[Λ−1/ 2X'X'T Λ−1/ 2] = Λ−1/ 2E[X'X'T ]Λ−1/ 2 = Λ−1/ 2ΛΛ−1/ 2 = I. 
 
The overall transformation from some n-dimensional random variable X, through its centered 
version X0 and decorrelation and normalization, up to X'' is called whitening, sometimes also 
sphering.  
 
Beware of the difference between true and estimated Σ. In machine learning applications 
one often starts from a sample of observations xk  = (xk

1, ..., xk
n)T, where k = 1, ..., N. These 

observations are typically registered row-wise in a data collection matrix M = (xi
j)i=1,...,N; j=1...n. 

From M one can compute an estimate 

€ 

ˆ Σ =1/N M0
TM0 of the true correlation matrix Σ of the 

centered random variable X0 = (X1−E[X1], ..., Xn−E[Xn])T which gave rise to the samples xk. 
Here M0 is obtained from M by subtracting the column mean vector µ  = 1/N 1N

T M from 
each row in M; 1N denotes the vector of N ones. Using this estimate 

€ 

ˆ Σ  and its eigenvectors 
and eigenvalues 

€ 

ˆ U  and 

€ 

ˆ Λ , one can orthogonalize the columns of M by putting 
 
(4.38) M' = M 

€ 

ˆ U ,  
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and if one wishes, further normalize the columns of M' to unit norm by putting 
 
(4.39) M'' = M' 

€ 

ˆ Λ -1/2 = M 

€ 

ˆ U 

€ 

ˆ Λ -1/2. 
 
It is important to stay aware of the fact that this operation only decorrelates / normalizes the 
particular data set that you have in M; if you would continue to use the estimates 

€ 

ˆ Σ  etc. which 
you obtained from M on further (test) data not contained in M, say in a data collection matrix 
K, then the columns of K would not be perfectly decorrelated / normalized by 

€ 

ˆ U  and

€ 

ˆ Λ . 
 
Principal component analysis. Principal component analysis (PCA) is another close relative 
in this family of basic algebraic data manipulations. Assume again that you are handling data 
which are obtained from a centered random variable X0 = (X1

raw−E[X1], ..., Xn
raw −E[Xn])T, 

obtained from the raw data Xraw by subtracting the expectation E[X] =: µ , and that you know 
the covariance matrix Σ with its associated eigenvectors U and eigenvalues Λ (or know at 
least estimates thereof). Assume furthermore that the eigenvalues are ordered to be 
monotonically decreasing, i.e. λ1 ≥ λ2 ≥ ... ≥ λn. This means that the variance of the n-
dimensional signal X0 is greatest in the direction of u1, then the next greatest orthogonal 
signal direction is aligned with u2, etc. See Figure 4.8 for a graphical impression (note that we 
do not require X0 to be normal distributed; PCA does not need this assumption). The 
eigenvectors ui are also called the principal components5 of the distribution PX0.  
 
Now let X0(ω) = x = (x1, ..., xn) be some data point. Call the projection of x on ui, i.e. the inner 
product xT ui , the loading of x on the i-th principal component. Then it holds that 
 

(4.40) x = 

€ 

(xTui)ui
i=1

n

∑ ,  or respectively 

€ 

x raw = µ + (xTui)ui
i=1

n

∑ , 

 
which is just a way to state that x (or xraw, respectively) can be expressed in the orthonormal 
(µ-shifted, respectively) coordinate system of the ui. Now furthermore assume that n is big – 
say, in the order of hundreds or even tens of thousands; this situation easily occurs e.g. when 
x is a pixel value vector of an image. Now consider what error in accuracy of representing x is 
incurred if we use only a first few k of the principal components to reconstruct x, i.e. if we 
consider 
 

(4.41) 

€ 

˜ x = (xTui)ui
i=1

k

∑ or ˜ x raw = µ + (xTui)ui
i=1

k

∑ (k << n). 

 
The expected squared norm error between x and 

€ 

˜ x  is obtained by 
 

                                                
• 5 beware of the wrong spelling "principle components"! 
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(4.42) 

€ 

E[ ˜ X −X
2
] = E[ (XTui)ui

i= k+1

n

∑
2

] = E[ (XTui)ui

2

i= k+1

n

∑ ]

= E[ (XTui)
2

i= k+1

n

∑ ] = E[(XTui)
2]

i= k+1

n

∑

= E[ui
TXXTui]

i= k+1

n

∑ = ui
TΣui

i= k+1

n

∑ = ui
Tλiui

i= k+1

n

∑

= λi
i= k+1

n

∑

 

It is a general observation about real-world data x that the eigenvalues of the associated 
covariance matrix decrease very quickly (often roughly exponentially), so the reconstruction 
error (4.42) will likely be small even when only a few leading principal components are used.  
 
PCA has very many applications. For our purposes, the most important ones are data 
compression and preprocessing. Instead of storing a data point x in its raw form, i.e. as a high-
dimensional vector, one can store instead only a few loadings of x on a small number of 
leading principal components. Then, an approximate version 

€ 

˜ x  (or 

€ 

˜ x raw) of x can be 
reconstructed from these loadings via (4.41). The savings in storage space can be enormous. 
Furthermore, this is a simple yet powerful way to escape from the curse of dimensionality. 
To break away from cursed high-dimensional raw data, use as a low-dim feature vector the 
loads of each raw data sample on some leading principal components. For splendid examples, 
check out Google images for "eigenfaces reconstruction" (for instance, 
http://www.cse.iitk.ac.in/users/amit/courses/768/00/vamsi/ links to a nice student project 
which also points out problems).  
 
 
4.4.2 Generalized linear discriminants 
 
Now we introduce a type of linear discrimination networks whose weights we will learn from 
data, using a closed-form computation.  
 
We will consider networks for n-class discrimination with linear output activation functions. 
However, we will use a more general form for such networks, namely, allow that the input 
patterns x are pre-processed by bank of M preprocessing filters φj, which may be nonlinear. 
That is, there are M input neurons which may perform arbitrary filter functions on the patterns 
x. One example of such a generalized linear discriminant is the Perceptron [except for its 
nonlinear output activation function], where the input neurons each first pick some pixels and 
then do some thresholding. The general form of such networks is  
 
(4.43) yk(x) = 01

)( k
M

j jkj ww +φ∑ =
x ,  

 
where k = 1, ..., n is the index for the classes to be discriminated (= number of output 
neurons), and j = 1, ..., M is the index for the input filters (= number of input neurons). Again, 
we may wish to represent the contribution of bias wk0 by a constant dummy input φ0(x) ≡ 1, 
which would give us the following variant of (4.43): 
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(4.44) yk(x) = ∑ =
φ

M

j jkjw0 )(x . 

 
Example: Radial basis function networks. A very popular type of such networks is radial 
basis function networks (RBF networks). If dim(x) = d, each filter φj is a symmetric ("radial"), 
typically unimodal function on d with center µ j. Gaussian density functions are a typical 
choice. For Gaussians, the output φj(x) of filter φj (j > 0) is  
 

(4.45) 














σ

−
−=φ 2

2

2
exp)(

j

j
j

µx
x . 

 
Note that (i) we do not normalize the Gaussian function here to integral 1, and (ii) although 
we have an d-dimensional Gaussian, we do not have to care about a covariance matrix Σ 
because we restrict ourselves to radially symmetric Gaussians.  
 
RBF networks offer the possibility to place many fine-grained filters φj into regions of the 
input space X where we need a fine-tuned discrimination, and to be more generous in "less 
interesting" regions where we plant only a few broad filters. Figure 4.9. shows an example 
where X is one-dimensional and where we want a high discriminiation precision around the 
origin and around 1.  
 
 
 
 
 
 
 
 
 
 
Figure 4.9: Radial basis functions example. 
 
Two background notes: 
 
Remark 1: The performance of RBF networks obviously depends on the proper sizing and 
placement of the basis functions φj. These are often optimized by unsupervised training 
schemes in a data-driven way. In Section 5 we will introduce such an algorithm that is often 
used with RBF networks. 
 
Remark 2: Any desired input-output mapping Fk from X to the output unit yk can be achieved 
with perfect precision with networks of the kind specified by Eq. (4.43). This is trivially clear 
because you may just use M = n and φj = Fk and wkj = δkj. However, more interesting results 
state that any desired input-output mapping Fk can be approximated arbitrarily well with 
radial basis functions of a given simple class, for instance Gaussians. The art of designing 
RBF networks is to achieve good performance with as few as possible basis filters – because 
the fewer filters you have, the fewer training data points you need for estimating the network 
weights (another instance of the bias-variance dilemma!). 
 

φ1   ...      φM 

X 0 1 
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Let's return to the general equation (4.43). If such a network would be working perfectly, on 
input xi ∈ Ck it would return an output vector ti = (0 ... 0 1 0 ... 0)T of length n, with a single 1 
at position k. One natural way to specify a good set of network weights  
W = (wkj)k=1,...,n; j=0,...,M is to demand that the squared error 
 

(4.46) ∑
=

−=
N

i
ii tSE

1

2
train );(

2
1)( WxyW  

 
is minimal, where i is the index for training patterns xi, and y(xi;W) is the output vector of a 
network with weights W on input xi. Formally, we want to find network weights Wopt such 
that  
 
(4.47) )(argmin trainopt WW

W
SE= . 

 
Wopt can be calculated analytically – given the general approximation property of Eq. (4.43) 
mentioned in remark 2 above, this is a piece of powerful good news.  
 
But before we derive the solution, it is instructive to give a geometrical interpretation of the 
least-squares problem in a simple case (Fig. 4.10). Consider the case where we have only two 
filters φ0, φ1 (M = 1), a single output unit y (n = 1), and three training samples x1, x2, x3 (N = 
3). The three values of φ1 yield a three-dimensional vector φ1 = (φ1(x1) φ1(x2) φ1(x3))T, the 
three target values ti yield a likewise three-dimensional vector t, and the three identical values 
of the dummy filter become φ0 = (1,1,1)T. The network outputs y(xi) = ∑ =

φ
1

0
)(

j ijjw x  

become another three-dimensional vector y(W) = (y(x1) y(x2) y(x3))T, which of course 
depends on the weights wj. The two vectors φ0 and φ1 span a 2-dimensional subspace S in 3. 
Now, the least squares solution for the weights wj yields a vector of network outputs y which 
is the orthogonal projection of t on S. Thus, the least squares solution gives us the network 
output which has smallest Euclidean distance to the teacher data t.  
 
Why is this so? Observe that in our simple case, the error equation (4.46) can be rewritten as  
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Thus, SEtrain is the square of the Eucledian distance between t and y(W). Because y(W) lies in 
S, the orthogonal projection of t on S minimizes the distance, and thereby the square of the 
distance, which is the error SEtrain.  
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Figure 4.10: Illustrating the geometry of least squares weights. (Redrawn from Bishop's 
book). 
 
 
Now we proceed to finding a numerical solution for the least squares problem. First we write 
(4.46) out in full detail: 
 

(4.49)  ∑∑ ∑∑
= = ==









−φ=−=

N

i

n

k

M

j

k
iijkj

N

i
ii twtSE

1 1

2

01

2
train )(

2
1);(

2
1)( xWxyW , 

 
where k

it  is the k-th component of the target outputs on input xi. At a minimum of SEtrain(W), 
the derivatives of SEtrain(W) w.r.t. the weights must be zero. This gives us the normal 
equations for the least squares problem: 
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Assembling all these n times M equations into a matrix equation yields 
 
(4.51)  (ΦTΦ)WT = ΦTT, 
 
where Φ  has dimension N × M and elements )( ij xφ  − that is, contains in its rows the filtered 
input vectors to the network for the training data patterns −, and T has dimension N × n and 
contains the desired target outputs for the training samples in its rows. The matrix (ΦTΦ) is 
square of dimension M × M. Provided it is nonsingular, we obtain the following solution for 
the weight matrix W: 
 
(4.52)  WT = (ΦTΦ)−1ΦTT =: Φ  † T,  
 
where Φ  † is known as the pseudo-inverse of Φ . Note that Φ  is in general a non-square 
matrix and thus does not have an inverse. The name "pseudo-inverse" derives from the fact 
that Φ  †Φ  =  (ΦTΦ)−1ΦT Φ  = I  (but note that not in general Φ  Φ† =  I).  
 
A direct calculation of (ΦTΦ)−1ΦT is prone to suffer from numerical instability, namely, 
when ΦTΦ  is close to singular. Then, numerical roundoff error or statistical data noise 
contained in Φ  becomes largely magnified through the –1 operation. This can be avoided by 

φ1 

φ0 

y 
S 

t 

[SEtrain(Wopt)]
1/2 
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calculating the pseudo-inverse via the singular value decomposition of Φ . Actually, that is 
how most (if not all) professional software tools do it, including Matlab and Mathematica. If 
you want to see a truly beautiful introduction to singular value decompositions, check the 
online tutorial of Todd Will at http://www.uwlax.edu/faculty/will/svd/index.html. Going 
through this tutorial will give you perfect insight into basic matrix theory within one hour – 
you should absolutely do it. 
 
Linear regression. If one has N n-dimensional data vectors xi assembled row-wise in a data 
collection matrix M of size n × N, and a target vector t of size N, the task to find weights W 
which minimize the square error  
 
(4.53)  SE(W) = 

€ 

WMT − tT
2
 

 
is known as the linear regression task; and its solution according to (4.52),  
 
(4.54)  

€ 

Wopt = argminW SE(W) = (M† t)T   
 
is called the regression weights.  
 
A cautionary remark. The least mean square solution for learning network weights from 
data is easy to compute and does not require much thinking about the class-conditional 
distributions of the input features xi. That's good. However, neither is linear discrimination 
appropriate for all problems (they might be nonlinear), nor is it easy to find good 
preprocessing filters φj if you want to tackle nonlinear classification problems (you will need 
unsupervised learning techniques to optimize them), nor – even if you have found good φj – is 
the least mean square approach necessarily the best you can do for training classificators 
(because it tends to over-represent extreme or even outlier inputs; you may land far from the 
optimal weights that would be yielded by a probabilistic approach where you first estimate the 
posterior class distributions). So there is ample room for further improvements. This all said, 
in practice a linear discriminant trained by minimizing square error often is a quite accurate 
and certainly a very simple way to learn a classificator. 
 
4.4.3 Slow Feature Analysis 
 
Slow Feature Analysis (SFA) is a recently found method of machine learning which is a 
beautiful illustration of the power and elegance of the basic linear algebra transformations that 
we have been considering throughout this section. In my treatment I follow (often verbatim) 
the 2002 article6 from Laurenz Wiskott and Terry Sejnowski where this method was first 
presented. A tutorial slideshow by Laurenz is online at http://minds.jacobs-
university.de/sites/default/files/uploads/teaching/share/TutorialWiskott2008.pdf. In these 
lecture notes I only outline the basic algorithm; the tutorial is rich in amazing examples.  
 
The data on which SFA learns is a time series signal x(t) = (x1(t), ..., xl(t))T, where t = 0, ..., N. 
The goal is to find an input-output function g(x) = (g1(x), ..., gJ(x))T generating a J-
dimensional output signal y(t) = (y1(t), ..., yJ(t))T, with yj(t) := gj(x(t)), which are "slow" in the 
following sense. Let 

€ 

˙ y j (t) := y j (t +1) − y j (t) be the discrete version of the "time derivative" 

                                                
• 6 L. Wiskott, T. J. Sejnowski (2002): Slow Feature Analysis: Unsupervised Learning of Invariances. 
Neural Computation 14, 715-770 
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of the signal yj(t). Let <yj> =  

€ 

1/N y j (t)t=1,...,N∑  denote the temporal average of yj(t). Then we 
desire that for all j, the average squared time derivative 
 
(4.55)  Δj := Δ(yj) := <

€ 

˙ y j
2> 

 
is minimal under the constraints 
 
(4.56)  <yj> = 0 (zero mean) 
(4.57)  <yj

2> = 1 (unit variance) 
(4.58)  < yj' yj > = 0 for all j' < j (decorrelation).  
 
Equation (4.55) expresses the primary objective of minimizing the temporal variation of the 
output signal. Constraints (4.56) and (4.57) help avoid the trivial solution yj(t) = const. 
Constraint (4.58) guarantees that different output signal components carry different 
information and do not simply reproduce each other. It also induces an order, so that y1(t) is 
the optimal (slowest) output signal component, while y2(t) is a less optimal one, since it obeys 
the additional constraint < y1 y2> = 0. Thus, Δ(yj') ≤ Δ(yj) if j' < j. 
 
A general solution to this slowness optimization would try to optimize over all nonlinear 
candidate functions for the gj. This task is difficult and would require methods from 
variational calculus. However, there is a workaround that is used in several situations in 
machine learning – in fact, it is the same trick that we used in radial basis function networks. 
Namely, we first project the raw data x(t) into a rich (and possibly high-dimensional) feature 
space, by using a fixed, pre-determined bank of K (nonlinear) filters φk: l → , where          
k = 1, ..., K. A typical choice in SFA is to use all polynomials of the raw xi of order up to 2. 
For example, if l = 2, we would use φ1 = x1, φ2 = x2, φ3 = x1x1, φ4 = x1x2, φ5 = x2x2. Applying   
φ  = (φ1, ..., φK)T to the input signal yields a nonlinearly expanded, K-dimensional signal     

€ 

˜ z (t) = φ(x(t)). As a next step, we whiten the signals 

€ 

˜ z (t) using the method from Section 4.4.2, 
obtaining a new version z(t) = (z1(t), ..., zK(t))T of nonlinear transforms which satisfy 
 
(4.59)  <z> = 0    and    
(4.60)  <z zT > = I, 
 
and which we will use hereafter instead of the raw x.  
 
Just as we did in the case of RBF networks, after the nonlinear expansion (and whitening) we 
will treat the optimization problem as linear in the expanded signal components zk(t). That is, 
we restrict our optimization search to functions yj(t) = gj(x(t)) = wj

T z(t), where the weight 
vectors wj = (wj1, ..., wjK)T are subject to learning. Now, in this setting, the objective (4.55) to 
minimize <

€ 

˙ y j
2> reduces to find wj such that 

 
(4.61)  Δ(yj) := <

€ 

˙ y j
2> = wj

T <

€ 

˙ z ̇  z T> wj 
 
becomes minimal, subject to the constraints (4.56) – (4.58). Constraint (4.57) and       
yj(t) = wj

T z(t) and (4.60) imply that 

€ 

w j =1, so we may restrict our search for optimal 
weights to unit norm weight vectors.  
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Observe that wj
T <

€ 

˙ z ̇  z T> wj is a quadratic form in w, with 

€ 

˙ z ̇  z T  being a symmetric (covariance) 
matrix. Let λ1 ≤ ... ≤ λJ be the J smallest eigenvalues of

€ 

˙ z ̇  z T , and u1, ..., uJ the associated unit 
norm eigenvectors. If you think about Figure 4.7A, you will find that wT <

€ 

˙ z ̇  z T> w is smallest 
when w = u1. So we choose w1 = u1, which gives us y1 = w1

T z. Furthermore, the next 
smallest solution which is orthogonal to y1 (constraint (4.58)!) is obtained by choosing w2 = 
u2, etc. We thus end up with using for the wj the J norm-1 eigenvectors of 

€ 

˙ z ̇  z T  that 
correspond to the smallest eigenvalues.  
 
Summing up, the SFA algorithm takes us through the following steps: 
 
1. Nonlinear expansion: transform the raw data x to (K-dimensional)

€ 

˜ z (t) = φ(x(t)), where 
φ  is some predetermined bank of nonlinear transforms (often polynomials). 

2. Whiten 

€ 

˜ z  to obtain z. 
3. Choose the J smallest-eigenvalue eigenvectors of 

€ 

˙ z ̇  z T  and declare them as the weights  
w1, ..., wJ. 

4. Then, yj = wj
T z will be the desired solutions that solve the constrained optimization 

problem (4.55) – (4.58). 
 
A didactic example. The following simple, synthetic example (taken from the Wiskott & 
Sejnowski paper) illustrates the working of SFA. For explanation see figure caption.  
 

  a) input signal x(t)       b) expanded signal 

€ 

˜ z (t) = φ(x(t)).  
               Three of five components are shown. 
 
 
 
 
 
 
 
 
 
 
 
 c) whitened ("sphered") z(t)      d) time derivative signal 

€ 

˙ z (t)  
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 e) output signal y(t)   f) input-output function g1(x) 
 
Figure 4.11 (taken from Wiskott & Sejnowski 2002). Illustration of the learning algorithm by 
means of a simplified example. (a) Input signal x(t) is given by x1(t) := sin(t) + cos2(11 t),  
x2(t) := cos(11 t), t œ [0, 2 ], where sin(t) constitutes the slow feature signal. It results in a 2-D 
trajectory where a fast parabola is evolving while slowly moving up and down. (b) Expanded 
signal 

€ 

˜ z (t) is defined as 

€ 

˜ z 1(t) := x1(t), 

€ 

˜ z 2(t) := x2(t), and 

€ 

˜ z 3(t) := x2
2(t). Components x1

2(t) and 
x1(t) x2(t) are left out for easier display. (c) Whitened signal z(t) has zero mean and unit 
covariance matrix. Its orientation in space is algorithmically determined by the principal axes 
of 

€ 

˜ z (t) but otherwise arbitrary. (d) Time derivative signal 

€ 

˙ z (t) . The direction of minimal 
variance determines the weight vector w1. This is the direction in which the whitened signal 
z(t) varies most slowly. The axes of next higher variance determine the weight vectors w2 and 
w3, shown as dashed lines. (e) Projecting the whitened signal z(t) onto the w1-axis yields the 
first output signal component y1(t), which is the slow feature signal sin(t). (f) The first 
component g1(x1, x2) of the input-output function derived by the steps a) to e) is shown as a 
contour plot. 
 
 
This simple example does not reveal the true powers of SFA. One nice example that was 
worked out in a partner lab of mine (Reservoir Lab, University of Gent) used SFA to train 
speaker and spoken digit recognizers. The training data consisted in (suitably pre-processed) 
audiorecordings of utterances of the digits "zero" to "nine", spoken by different speakers. 
When SFA was used on a training audiostream where first all digits were spoken by one 
speaker, then by the next speaker, etc., a speaker voice recognizer resulted because the 
slowest feature was "speaker". When the single recordings were ordered in time such first all 
"zero" utterances, across speakers, were displayed, then all "one" recordings etc., a spoken 
digit recognizer came out – because now the slowest source of variance was the kind of digit. 
The main application area of SFA seems to be in visual (video) image processing; SFA also 
has been proposed as a model of how animals learn positions of landmarks (these are 
persistent, i.e. slow, while the animal moves) and register them in a brain region known as 
hippocampus.  
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Take-home messages from Section 4 
 
• In this section we "forgot" about the probabilistic approach to the classification 

problem and considered the "shortcut" to estimate generalized linear discriminant 
functions yk(x) = 01

)( k
M

j jkj ww +φ∑ =
x  directly.  

• Such discriminant functions can be seen as single-layer neural networks ("layer" refers 
to a layer of weights, not neurons).  

• With logistic output activation functions, the probabilistic interpretation of 
discriminant functions, yk(x) = p(Ck | x), can be recovered if the class-conditional 
probability distributions come from the exponential family.  

• Using linear output activation functions, explicit solutions for the network weights can 
be calculated that minimize the training error in the least square error sense. This also 
works when the input neurons are arbitrary preprocessing filters φj. 

• In SFA the same trick is used, namely, first use pre-defined nonlinear filters φj to 
expand an input signal into a higher-dimensional feature space, and then use linear 
methods to solve the task, which in SFA was to identify the slowest characteristics in 
the input signal.  

• If you know how to handle eigenvectors and eigenvalues of covariance matrices you 
can get awfully far in an easy-going way – using Karhunen-Loéve, whitening, PCA to 
start with and (not) ending in a variety of machine learning methods that boil down to 
linear regression performed on the basis of nonlinearly transformed data, as in RBF 
networks or in SFA. The method of Echo State Networks, treated in a later section of 
these lecture notes, are another example of this trick.  
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5 An unsupervised intermezzo: K-means clustering 
 
In this lecture we almost exclusively treat supervised learning problems. Such problems are 
characterized by the fact that each training sample comes with a correct target value (for 
instance a class label or a regression value). The task is then to learn from the training data an 
algorithm that should approximate the known target values on the training data, and 
generalize well to samples not seen during training.  
 
In unsupervised learning, no correct target values are supplied – only the input patterns xi. 
The learning task is here to discover structure in the data.  
 
For instance, the xi might be vectors of customer data of some mail order warehouse. The 
company running this business is probably interested in grouping their customers into groups 
that have similar customer profiles, in order to facilitate group-specific advertisment 
campaigns. More generally, discovering clusters within an a priori unstructured sample set is 
often a first step in exploratory data analysis in the natural and social sciences. The guiding 
idea is to find K clusters such that the training samples x, x' that are assigned to the same 
cluster G should lie closely together, that is, 'xx −  should be small. Conversely, if x, x' are 

assigned to two different clusters G, G', then 'xx −  should be large. This is easy if samples x 
are just numerical feature vectors. When samples come in a heterogeneous data format – for 
instance, x is a description of a customer involving numerical data and class data and 
symbolic descriptions – then finding a distance measure ⋅  in the first place is a challenging 
task. Solving this task often requires some ingenuity, and the distance measure found may not 
satisfy all the mathematical requisites of a metric. In such cases, there are many specific 
clustering techniques that work with different kinds of pseudo-distances.  
 
There are many other unsupervised data-structuring tasks besides simple clustering of real-
valued sample vectors x: 
 
• In a time series that is generated by alternating, different generators, one might want to 

discover the number of such generators and when they start and end generating a time 
series (unsupervised time series segmentation). A nice example for this is the discovery of 
different sleep phases in EEGs of human subjects. A common approach is to train a set of 
K signal predictor devices (e.g., neural networks) in mutual competition. In such mixture 
of experts training, at each time step only one of the K predictors is allowed to adjust its 
parameters – namely the one that could best predict the next signal value. Starting from K 
randomly initialized predictors, this setup leads to a competitive differentiation of 
predictors, each of which learns to specialize on the prediction of a particular generating 
mode in the time series.  

• In an auditory signal that is an additive mixture of generators, one might wish to single out 
the generating signals. Surprisingly enough, this is possible if the original generators are 
statistically independent. Check Paris Smaragdis' FAQ page on blind signal separation 
and independent component analysis at http://web.media.mit.edu/~paris/ica.html for 
compelling audio demo tracks where a raw signal that is an overlay of several speakers or 
muscial instruments is separated into almost crystal-clear audiotracks of the individual 
speakers or instruments.  

• In symbolic machine learning and data mining, there are numerous unsupervised learning 
techniques that aim at distilling concise symbolic descriptions (e.g., context-free 
grammars or automata) from (huge) symbolic datasets.  
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• Another field that is, technically speaking, a case of unsupervised learning is data 
compression. Here the task is to detect regularities (= redundancies) in a large dataset that 
can be used to rewrite the data in a condensed form. 

 
 
All in all, the field of unsupervised machine learning is as large, as important and as 
fascinating as the field of supervised learning. It is sad that a semester is short and enforces 
concentration on only one branch of ML. All we will do is to describe a particularly simple 
technique for clustering, called K-means clustering. Without some such unsupervised 
technique, one cannot really use RBF networks – the determination of well-placed and well-
shaped input filters φi is a typical unsupervised learning task.  
 
We can be brief, because K-means clustering is almost self-explanatory. Given: a training data 
set (xi)i=1,...,N = ((xi

1, ... , xi
n))i=1,...,N of real-valued feature vectors, and a number K of clusters 

that one maximally wishes to obtain. The algorithm goes like this: 
 
Initialization: randomly assign the training samples to K sets Sj (j = 1, ..., K). 

Repeat: For each set Sj, compute the mean ∑ ∈
=

jS
j

j S x
x1

µ . Create new sets S'j by putting 

each sample x into the set S'j where x−jµ  is minimal. Dismiss empty S'j and reduce K to K' 

by subtractring the number of dismissed empty sets (this happens rarely). Put Sj = S'j (for the 
nonempty sets) and K = K'.  
 
Termination criterium: Stop when in one iteration the sets remain unchanged.  
 
It can be shown that at each iteration, the error quantity 
 

(5.1)  
2

1∑ ∑= ∈
−=

K

j S j
j

J
x

x µ  

 
will not increase. The algorithm typically converges quickly and works well in practice. It 
finds a local minimum or saddle point of J. The final clusters Sj may depend on the random 
initialization. The clusters are bounded by straight-line boundaries; each cluster forms a 
Voronoi cell. Thus, K-means cannot find clusters defined by nonlinear boundaries. Figure 5.1 
shows an example of a clustering run using K-means. 

 
 
Figure 5.1: Running K-means with K = 3 on two-
dimensional samples x. Dots mark cluster means µ j, lines 
mark cluster boundaries. The algorithm terminates after 
three iterations. (Picture taken from chapter 10 of the 
Duda/Hart/Stork book). 
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It is clear how K-means clustering may be used in conjunction with an RBF network. This is 
how: 
 
Problem statement: given d-dimensional training data xi (i = 1,..., N, may be preprocessed), 
find a "good" number M of "good" RBF filters filters φj (j = 1,..., M) to train a RBF network   
yk(x) = 01

)( k
M

j jkj ww +φ∑ =
x  for n classes k = 1, ..., n.  

 
Idea: Cluster the xi by K-means clustering, create one filter per cluster, use Gaussian RBFs 
with covariance matrix Σ determined by cluster properties to represent data of each cluster.  
 
Algorithm: 
 
1) Use intuition (or trial and error with cross-validation...) to fix a desired target clustering 

number M. Put M = K. 
2) Run K-means clustering on training data xi, which partitions the training samples into M' 

(maybe M' < K = M, but most likely M' = K)  D1, ..., DM  with means µ1, ..., µM'.  
3) For cluster j (j = 1, ..., M') let j

N
j

j
',...,'1 xx be the normalized (i.e., cluster mean subtracted) 

samples in Dj, and let X'j be the matrix that contains j
N

j
j

',...,'1 xx  as columns. Compute the 

covariance matrix Σj = X'j (X'j)T. Put 






 −Σ−−=φ − )()(
2
1exp)( 1

jjjj µµ xxx T . 

 
Notes:  
 
The RBF filters filters φj created in this way should accomodate to the shape and orientation 
of their cluster due to Σj. Some experimentation with Σj might however further improve the 
overall classificator performace: one might for instance try to flatten out the filters φj for 
clusters with only few members, by using κj Σj instead of Σj, where κj > 1.  

Strictly speaking, we don't have a radial basis function network any more, because the filters 
φj are not radially symmetric. However, one still speaks of RBF networks. 

The RBF filters are derived from pdf's of multivariate Gaussians. However, they are not 
strictly pdfs because our φj don't integrate to unity. For the purposes of using the φj as input 
filters in a RBF network, that does not matter (the weights of the network will be adjusted 
automatically to make up for different scalings of the filter functions).  

What we did here is related to the task of approximating a probability distribution by a 
mixture of Gaussians. What is that? Let p be some pdf over a d-dimensional sample space, 
possibly shaped in a badly nonlinear and "bumpy" way. Let (µ j, Σj) [j = 1,..., M] be d-
dimensional Gaussian distributions with pdfs pj, and let p' = ∑

=

α
Mj

jj p
,...,1

, where ∑
=

=α
Mj
j

,...,1

1 , be 

a mixture pdf made from the Gaussian distributions with non-negative mixture coefficients αj. 
The task of finding a "good" mixture of Gaussians is to find parameters (µ j, Σj) such that p' 
becomes as similar to p as possible (there are several ways to specify what "similar" means). 
Our method of finding φj via K-means clustering would lead to reasonably good such 
mixtures of Gaussians if we would use the true (integrating to unity) pdfs (µ j, Σj) for our φj, 
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and would weigh them by the relative sizes of the clusters, that is, put αj = Nj/N. However, 
there are better (but more complex and computationally more expensive) ways to find good 
(indeed, optimal) mixture of Gaussian approximations to a target distribution (using the EM 
algorithm – which we will meet later in this lecture in a different context – see Section 2.6 in 
the Bishop book).  

 



 82 

6 The adaptive linear combiner 
 
Overview. In this section we will consider a linear regression task (as opposed to the linear 
classification tasks from Section 4) on time series data (as opposed to the static samples x 
from Section 4), training an online adaptive filter that incrementally adapts its weights as new 
data come in (as opposed to the "batch" offline least squares solutions from Section 4). The 
background is signal processing / electrical engineering. The assumption that the dynamic 
system we want to learn is indeed linear is often satisfied in signal processing – wired and 
wireless communication channels, which are a main type of system that require signal 
processing techniques, are indeed typically quite linear. 
 
Throughout this section, I am loosely guided by the book from B. Farhang-Boroujeny, 
Adaptive Filters: Theory and Applications, Wiley & Sons 1999, [IRC: TK7872.F5 F37] 
which I would recommend to purchase to those students who aim at a career in signal 
processing.  
 

6.1 The adaptive linear combiner, a special Wiener filter  
 
I start with a refresher on systems and signals terminology. A discrete-time, real-valued signal 
is a left-right infinite sequence x = {x(n)} = (x(n))n ∈  ∈ . (We will only consider discrete-
time, real-valued signals here.) Note that in this section, x and {x(n)} refer to a complete 
sequence of values; if we want to single out a particular signal value, we write x(n). A system 
(or filter) H is a mapping from signals to signals, written y = H(x) or in graphical notation 
 
 
 
 
The signal x is the input signal and y is the output signal of H. A system is linear if for all 
complex constants a, b and signals x1, x2 it holds that 
 
(6.1)  H(a x1 + b x2) = H(a x1) + H(b x2). 
 
A system is shift-invariant if  
 
(6.2)  ∀{x(n)} ∀k ∈   H({x(n – k)}) = {H({x(n)})(n – k)}. 
  
A shift-invariant, linear system is called an LSI system for short. We will be concerned with 
LSI systems exclusively.  
 
• The unit impulse δ(n) is a signal that is defined to be 1 for n = 0 and zero elsewhere. Let 

H(δ) = h be the impulse response of a system H. For an LSI H, we get the system response 
on input x by convolving x with the impulse response: 

 
(6.3) {y(n)} = 

€ 

x(k) h(n − k)
k=−∞

∞

∑{ } = h(k) x(n − k)
k=−∞

∞

∑{ } = {x(n)}⊗ {h(n)} . 

 
A system is causal if its current output does not depend on future inputs, or equivalently, if 
h(n) = 0 for n < 0.  

 H 
 x  y 
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An LSI filter is a finite impulse response filter (FIR filter) if h has a finite carrier, that is, h is 
zero except at a finite number of points.  
 
We will restrict ourselves to time-domain signal representations in this section; a frequency-
domain treatment of adaptive filters is also possible but seems less common (Farhang-
Boroujeny book, Section 7). 
 
In a causal FIR filter, the output y(n) is a linear function of a finite number of previous M 
inputs x(n), x(n – 1), ..., x(n – M+1), that is,  
 
(6.4) y(n) = .)1(

1∑ =
+−

M

j j jnxw  

 
Engineers call this equation a transversal filter, and the engineer's (and Simulink's) way of 
graphically representing it is shown in Figure 6.1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.1: A transversal filter (black) and an adaptive linear combiner (black plus blue). The 
z−1 boxes are unit delay elements.  
 
 
We will consider the task where the filter output y(n) should be made to follow a desired 
teacher signal d(n) as well as possible in the mean square error sense, by adapting the weights 
wj. Engineers sometimes call this setup an adaptive linear combiner (blue parts in Fig. 6.1), a 
special case of Wiener filters (Wiener filters in general have a version of Eq. (6.4) where on 
the lhs there are also weighted terms of the form wi y(n-k), that is, the current output depends 
on previous inputs and previous outputs. If such terms are included, the impulse response of a 
filter generally attains infinite length, and one has infinite impulse response (IIF) filters). 
Another name for transversal filters is tapped delay line, and the filter weights are sometimes 
called tap weights.   
 
Formally, we want to find optimal weights wopt = (wopt1, ..., woptM)T such that 
 

z-1 z-1 z-1 

w1 w2 wM 

x(n) x(n−1) x(n−M+1) 

+ 
y(n) 

. . . 

. . . 

−  d(n) ε(n) 
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(6.5) wopt = ],))()([(minarg]))()([(minarg])([minarg 222 nndEnyndEnE xw
w

w
w

w
w

T−=−=ε  

 
where x(n) = (x(n), x(n – 1), ..., x(n – M+1))T.  
 
We could frame this in the spirit of Section 4.4 as a single-layer neural network with a single 
output unit y and M input units (with no extra bias input). The training patterns would be the 
x(n) and the targets would be d(n). We could use Eq. (4.52) directly to obtain an estimate for 
wopt from a finite training data set comprising filter inputs x(1), ..., x(N) and desired outputs 
d(M), d(M+1), ..., d(N).  
 
However, here we want to derive an online, adaptive algorithm that updates the weights 
incrementally as new training data come in. Such an adaptive procedure maintains a set of 
weights w(n) at every time, and should yield the correct optimal weights in the limit of 
infinite time, that is, opt)(lim ww =∞→ nn . This reflects the temporal nature of our training data, 
and the common situation in signal processing that a filter should be able to track time-
varying systems online.  
 
Wiener-Hopf equation. In order to prepare the grounds for an online learning algorithm, we 
derive a variant of Eq. (4.52), the Wiener-Hopf equation, from scratch. Let 

))]([()( 2 nE ww ε=ξ  denote the mean square error, and rewrite it as follows: 
 
 

(6.6)  
,2]))([(

)]()([)]()([2]))([(
))]()(())()([()(

2

2

Rwwpw
wxxwxw

xwxww

TT

TTT

TT

+−=

+−=

−−=ξ

ndE
nnEndnEndE

nndnndE
 

 
where we introduced the M x 1 cross-correlation vector of the tap inputs with the desired 
signal 
 
(6.7)  p = E[x(n)d(n)] = (E[x(n)d(n)]... E[x(n−M+1)d(n)])T,  
 
and the M x M correlation matrix 
 
(6.8)  R = E[x(n)xT(n)]. 
 
Eq. (6.6) is a quadratic function in w. Because ξ(w)  cannot be negative, ξ(w) must have the 
shape of a hyperparabeloid which is opened upwards. Figure 6.2 shows this function for the 
case of two-dimensional w.  
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Fig. 6.2: The performance surface, case of two-dimensional weight vectors (black parts of 
this drawing taken from drip.colorado.edu/~kelvin/links/Sarto_Chapter2.ps). An adaptive 
algorithm for weight determiniation would try to determine a sequence of weights ... w(n), 
w(n+1), w(n+2),... that moves toward wopt (green). The eigenvectors ui of the correlation 
matrix lie on the central axes of the hyperellipsiod given by the level curves of the 
performance surface (red). 
 
The function shown in Fig. 6.2 is called the performance surface of an adaptive linear 
combiner. It has a minimum at wopt, which is the unique weight value where the gradient of ξ 
vanishes. This gradient can be computed (by expanding (6.6), for a complete derivation see 
Farhang-Boroujeny p. 53) as 
 

(6.9)  .22
1

pRw −=








∂
ξ∂

∂
ξ∂

=ξ∇
T

Mww
  

 
Putting this to zero gives us the Wiener-Hopf equation 
 
(6.10)  R wopt = p, 
 
which yields the optimal weights by wopt = R−1p. 
 
Note that (6.10) can be seen as a version Eq. (4.51), which was (ΦTΦ)WT = ΦTT, for the 
special case where we have only a single network output unit. There are two differences. The 
unimportant one is that (6.10) concerns the case of a single output, whereas (4.51) described 
several outputs. The important difference is that (4.51) described weights that gave least mean 
square error on a finite set of training data, whereas (6.10) describes the weights for the least 
mean square error in the average over all possible signals from a probability space, which 
gives rise to R. 
 
Principle of orthogonality. In passing, we derive a fundamental property of optimally tuned 
transversal filters, the principle of orthogonality, which states that the residual error is 
uncorrelated to all tap inputs. While we will not use this principle in the sequel, it provides a 

 w(n) 
w(n+1) w(n+2) 

ξmin 

u1 

u2 
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deeper insight into such filters and is often exploited in the analysis and design of optimal 
filters. 
 
Using ))]([( 2 nE ε=ξ  we have 
 

(6.11)  








∂

ε∂
ε=

∂

ξ∂

ii w
nnE

w
)()(2       for i = 1, ..., M. 

 
Since ε(n) = d(n) – y(n) and d(n) does not depend on wi, it holds that 
 

(6.12)  ).1()()(
+−−=

∂

∂
−=

∂

ε∂ inx
w
ny

w
n

ii

 

 
Inserting this into (6.11) yields 
 

(6.13)  )]1()([2 +−ε−=
∂

ξ∂ inxnE
wi

. 

 
For optimal weights these gradients are zero, that is, 
 
(6.14)  )]1()([0 opt +−ε= inxnE      for i = 1, ..., M, 
 
which is the principle of orthogonality. Intuitively, it can be re-phrased like this: "As long as 
there is any correlation between a tap input and the current error, one can reduce the error 
further by subtracting away this correlation through a suitable tuning of the weights". 
 
A geometric interpretation of the principle of orthogonality is maybe more enlightening than 
this rote derivation. A signal source for signals x can be modeled (under certain conditions) as 
a sequence of random variables Xn, where a particular observed sequence {x(n)} is modelled 
by a sequence (Xn(ω))n ∈ . Such a sequence of random variables (Xn)n ∈  is an example of a 
stochastic process. Random variables Xn, Ym, etc., can be linearly combined and thus can be 
conceived as vectors in a suitable vector space V (these vectors are numerical functions from 
Ω to ). Such vector spaces are typically infinite-dimensional. The correlation E[X Y] 
induces an inner product on such spaces, thereby a norm 2/12 ][XEX =  and thus a metric 

YXYXd −=),( , plus a notion of orthogonality: X ¶ Y iff  E[X Y] = 0, that is, two such 
random variables are orthogonal if they are uncorrelated. In short, we get all the conveniences 
of a (pre-)Hilbert space – that is, intuitively, you can work with random variables as with 
vectors of an Euclidean vector space. Now, let's reconsider our tapped delay line. The inputs 
x(n), x(n – 1), ..., x(n – M+1) turn into random variables Xn, Xn-1, ..., Xn-M+1, as does the 
teacher signal d(n) which becomes Dn. All of these are vectors in V. The vectors Xn, Xn-1, ..., 
Xn-M+1 span an M-dimensional subspace S in V. Typically, Dn is not contained in this 
subspace. The task of finding optimal weights, in this view, boils down to combine the filter 
input vectors into a filter output vector Yn via Yn = w1Xn + ... + wM Xn-M+1., such that the error 
signal achieves minimal norm, that is, such that 2/12/12 ])[( nnnnn YDEYD ξ=−=− . 

Geometrically this amounts to finding the orthogonal projection of Dn on the subspace S. The 
error signal ε = d – y becomes the vector En = Dn – Yn. We can simply re-use Figure 4.10 with 
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different vector names to illustrate this. It becomes clear from Figure 6.3 that the optimal 
weights lead to an error vector  that is orthogonal to all the signals Xn, Xn-1, ..., Xn-M+1 – but 
this is just the principle of orthogonality. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.3: Illustration of the principle of orthogonality if x(n) is treated as a random variable. 
 
 

6.2 Basic applications of adaptive linear combiners 
 
In the previous subsection we considered the following general situation. A time series x = 
{x(n)} = (x(n))n ∈  of some filter inputs is given, together with a desired filter output d = 
{d(n)} = (d(n))n ∈ . We started to address the task to train a filter that on the same input x 
produces an output y = {y(n)} = (y(n))n ∈  that matches d as closely as possible in the mean 
square error sense. We considered tapped delay line filters, but other, more complicated filter 
designs are of course also possible. Before we proceed with learning algorithms for this task, 
we will briefly present some standard application situations where this task arises. In the 
signal processing field, one often finds four basic applications: system identification, inverse 
system identification, adaptive noise cancelling, and beamforming (design of antenna arrays). 
 
6.2.1 System identification 
 
This is the most basic task: reconstruct from x and d a filter ("model system", "system model", 
"identification model") y that approximates d. This kind of task is called system identification. 
A schematic block diagram for this kind of application looks as follows: 
 
 
 
 
 
 
 
 
 

Xn 

Xn-1 

Yn 

S 

Dn En 
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Figure 6.4: Schema of the system identification task. 
 
Notes:  
 
• The randomness that is inherent in most real-life systems is modeled by white noise ν that 

is added to a deterministic system output g. This is a highly simplifying assumption 
("system + noise" model). Other models of randomness might for instance have systems 
whose parameters vary randomly – which leads to much more complicated maths. 

• The graphical representation with the diagonal ε-arrow through the model system should 
be read as "adjust model parameters such that E[|ε|2] is minimized". 

• If the unknown system is shift-invariant ("stationary"), the system identification means to 
find a model of the system. If however the unknown system is non-stationary, that is, its 
parameters vary (slowly) over time, the system identification task means that one wants to 
track the unknown system, that is, over time the model system should follow the unknown 
system as closely as possible. 
 

Examples (taken from Farhang-Boroujeny).  
 
1. Geological exploration. At one point A, the earth surface is excited by a strong acoustic 
signal x (explosion or large vibrating mass). An earth microphone is placed at a distant point 
B, picking up a signal d. A model M ("dummy earth") is learnt. After M is obtained, one may 
analyse the impulse response r of M. The peaks of r give indications about reflecting layers in 
the earth crust between A and B, which correspond to different delayed responses pi of the 
input signal x. 
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Figure 6.5: Geological exploration via impulse response of learnt earth model. 
 
 
2. Adaptive open-loop control. In general terms, an open-loop (or direct or inverse or 
feedforward) controller is a device that generates an input signal u into a system (or plant) 
such that the system output y follows a reference (or target) trajectory r as closely as possible. 
In linear systems theory, the system is characterized by a transfer function H(ω) = Y(ω)/U(ω) 
in the frequency domain (where U, Y are the frequency transforms of the input and output 
signals of the system, respectively). If the controller has a transfer function H-1(ω) = 
U(ω)/Y(ω), and the controller is serially connected to the plant, the two transfer functions 
cancel out and r = y is obtained. One way to obtain H-1 is to identify H online as an adaptive 
linear combiner and compute H-1 analytically, as shown in Fig. 6.6: 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.6: Schema of online adaptive direct control. 
 
 
6.2.2 Inverse system identification 
 
This is the second most basic task: given an unknown system that on input d produces output 
x, learn an inverse system that on input x produces output d [note the reversal of variable roles 
and names]. A typical setup is shown in Figure 6.7. 
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Figure 6.7: Schema of inverse system identification. 
 
Introducing the delay z-Δ is not always necessary but typically improves stability of the learnt 
system. Inverse system identification is also referred to as deconvolution because the original 
system H transforms its input d by convolving it with its impulse response h.  
 
Examples. 
 
Equalization of a communication channel (from Farhang-Boroujeny). A prime 
application of inverse system modelling is in telecommunication, where a binary signal s is 
distorted when it is passed through a noisy channel H, and should be un-distorted 
("equalized") by passing it through an equalizing filter with system transfer function H-1. In 
order to train the equalizer, the correct signal s must be known by the receiver, where the 
equalizer is trained. But of course, if s would be already known, one would not need the 
communication in the first place... this hen-and-egg problem is often solved by using a 
predetermined training sequence s = d. From time to time (especially at the initialization of a 
transmission), the sender transmits s = d, which is already known by the receiver and enables 
it to estimate an inverse channel model. But also while useful communication is taking place, 
the receiver can continue to train its equalizer, as long as the receiver is successful in restoring 
the binary signal s: in that case, the correctly restored signal s can be used for continued 
training. The overall setup is sketched in Figure 6.8 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.8: Schema of adaptive online channel equalization. Delays are omitted. 
 
 
Feedback error learning for a composite direct / feedback controller. Pure open-loop 
control cannot cope with external disturbances to the plant. Furthermore, the simple setup 
from Fig. 6.6 requires that for training the plant is driven by specially prepared training input, 
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a condition not desirable in true online applications where the controller has to adapt to the 
plant continuously while the entire system is operating. The following scheme (proposed by 
Michael Jordan in a nonlinear control context, using neural networks7) trains an open-loop 
inverse controller in conjunction with the operation of a fixed feedback-controller. The 
architecture is shown in Fig. 6.9. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.9: Schema of feedback error learning for a composite control system. 
Some explanations on this ingenious architecture: 
 
• The control input u(n) is the sum of the outputs ufb(n) of the feedback controller and uff(n) 

of the feedforward controller. 
• If the feedforward controller works perfectly, the feedback controller detects no 

discrepancy between the reference r and the plant output y and therefore produces a zero 
output ufb(n) – that is, the feedforward controller sees zero error ε and does not change. 

• If the feedforward controller does not work perfectly, its output ufb(n) acts as an error 
signal for further adaptation of the feedforward controller. The feedforward controller 
tries to minimize this "error" – that is, it changes its way to generate output uff(n) such 
that the feedback controller's output is minimized, that is, such that r – y is minimized, 
that is, such that the control improves. 

• When the plant characteristics change, or when external disturbances set on, the feedback 
controller sets on again – as does the further adaptation of the feedforward controller. 
Thus, situations that cannot be handled by a pure feedforward controller are coped with 
by the composite architecture, which is always operative. 

 
 
6.2.3 Interference cancelling, "denoising" (from Farhang-Boroujeny) 
 
Assume that there is a signal s + ν0  that is an additive mixture of a useful signal s and a noise 
component ν0. You want to cancel the interfering component ν0 from this mixture. Assume 
further that you also have another signal source  ν1  that correlates strongly with  ν0 but 
weakly with s. In this situation you may use a denoising scheme as shown in Figure 6.10. 
 
 
 
 
 
                                                
7 M. I. Jordan, Computational Motor Control, in M.S. Gazzaniga (ed.), The Cognitive Neurosciences, MIT Press 
1995, 597-612) 
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Figure 6.10: Schema of denoising filter. 
 
 
Some explanations: 
 
• The "error" that the adaptive denoising filter tries to minimize is s + ν0 − y.  
• The only information that the filter has to achieve this is its input ν1. Because this input is 

(ideally) not correlated with s, but highly correlated with ν0, all that the filter can do is to 
subtract from s + ν0 whatever it finds correlates in s + ν0 with ν1. Ideally, this is ν0. 
Then, the residual "error" ξmin would be just s.  

• Note that the working principle behind this architecture is just an application of the 
principle of orthogonality. 

• This scheme is interesting (and not just a trivial subtraction of ν1 from s + ν0) because the 
correlation between ν1 and ν0 may be complex, involving superposition of delayed 
versions of ν0.  

• Applications include cleaning up EKG signals (the ν1 signal corresponds to electrodes that 
are planted on you at distant positions from the heart), distinguishing the child's 
heartbeat from the mother's in prenatal diagnosis, cancelling the 50Hz background noise 
found in many biological recordings, denoising of speech signals. Interference 
cancelling as explained here is a traditional technique. Today, one might want to employ 
the more advanced techniques of blind signal separation for similar purposes. But I 
would not be surprised if most EKG recording devices sold today still use this traditional 
approach.  

 
 
6.2.4 Beamforming 
 
I will only briefly mention the fourth traditional application area of adaptive filters. If one has 
an array of M omnidirectional antennas, at which a mixture of M radio signals xi arrives, all of 
the same frequency but coming from different directions, it is desirable in many 
telecommunication applications to pick out one of M incoming signals from all the others, say 
x1. This can be done by postprocessing the M antenna signals by a filter that basically cancels 
the interfering signals x2, ..., xM. What is different here as compared to the other applications 
of adaptive filters considered so far is that here the data vector x1, ..., xM used as input to the 
filter is not temporal but spatial. However, the mathematics remain the same. The name 
beamforming illustrates that by adaptation of its filter, the antenna array forms a "lobe" or 
"beam", that is an angular segment in the compass circle from which it effectively receives 
signals while suppressing signal input from directions outside the lobe.  
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6.3 Gradient descent for finding optimal weights in online adaptive tasks 
 
The solution of the Wiener-Hopf equation provides an offline algorithm to compute optimal 
weights from a fixed training time series. In practice, however, one often desires an online 
algorithm that incrementally improves the weights. Specifically this is the case when the 
system that one wishes to model is varying over time. Then, adaptive algorithms are needed. 
The terms "online" and "adaptive" have slightly different meanings. "Adaptive" refers to the 
circumstance that the target system is time-varying and the model has to track the target 
system. This is typically done by using online algorithms but could, in principle, be done with 
an offline algorithm, too – over time, one would have to collect training sequences into a 
memory, and recompute the model from scratch on new training sequences. "Online" refers to 
algorithms that adapt their weights incrementally using each new data point as it comes in 
while the filter is being used. That is, at every time n, a set of weights w(n) is computed, and 
typically w(n) ≠ w(n+1) . For adaptive system identification tasks, online methods are in most 
cases more natural, more elegant, computationally cheaper, and more precise. 
 
In this subsection we provide and introduction to the simplest kind of online algorithms. They 
rest on the idea of gradient descent: at each time n, go "downhill" on the performance surface 
a little bit in the steepest direction, just like a tired mountaineer. We will first treat this task 
from a theoretical perspective, assuming that the gradient is perfectly known (Subsection 
6.3.1), and then describe a practical algorithm that estimates this gradient online. This 
algorithm, variously known as the LMS-algorithm ("least mean square", this name is common 
in signal processing), as stochastic gradient descent (common in machine learning) or as the 
[Widrow-Hoff-] delta rule (in the biologically oriented neural network community). This 
multitude of names indicates that this algorithm has been re-discovered independently many 
times in different contexts, and it is certainly the simplest and likely the most widely used 
algorithm in adaptive signal processing. (I re-discovered it myself when I started to work my 
way into machine learning...) I lean on the treatment given in Farhang-Boroujeny, but any 
other book on neural networks, pattern recognition or adaptive signal processing will treat this 
subject, too. 
 
6.3.1 Principles of gradient descent on quadratic performance surfaces 
 
Further properties of the performance surface; normalized coordinates. Our goal in this 
section is to find online adaptive algorithms that incrementally adapt the weights w(n) such 
that the error decreases. Such algorithms (of which there are many) exploit the geometry of 
the performance surface. Therefore, next we investigate this geometric object more closely.  
 
First we use (6.6) and the Wiener-Hopf equation (6.10) to write in various ways the expected 
residual error ξmin that we are left with when we have found wopt: 
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Next we present an alternative version of the error function ξ. Observing that the paraboloid is 
centered on wopt, that is has "elevation" ξmin over the weight space, and that the shape of the 
paraboloid itself is determined by wTRw, we find that we can rewrite (6.6) as 
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where we introduced shifted weight coordinates v = w − wopt. Differentiating (6.16) w.r.t. v 
yields  
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From our discussion in Section 4.4 we obtain immediately the following insights. Since R is 
symmetric and positive semi-definite, we can write R = UTDU = UDU−1, where U contains a 
set of orthonormal real eigenvectors in its columns and D is a diagonal matrix containing the 
corresponding eigenvalues, which are likewise real, and non-negative. Furthermore, the 
eigenvectors ui of R lie on the central axes of the hyperellipsoid formed by the contour lines 
of the performance surface (see Fig. 6.2, red arrows). By left-multiplication of the shifted 
coordinates v = w − wopt with UT we get new normal coordinates vUv T=~ . The coordinate 
axes of the v~  system are in the direction of the eigenvectors of R, and equation (6.17) 
becomes 
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from which we get the second derivatives  
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that is, the eigenvalues of R are (up to a factor of 2) the curvatures of the performance surface 
in the direction of the central axes of the hyperparabeloid. We will shortly see that the most 
natural and simple adaptive learning algorithm, the LMS algorithm, depends in its efficiency 
critically on these curvatures.  
 
The basic formula for taking a small step downhill along the gradient, thereby adapting w(n) 
to w(n+1), is 
 
(6.20)  w(n+1) = w(n) – µ ∇ξ(w(n)),  
 
where µ is a stepsize parameter and ∇ξ(w(n)) is the gradient of the performance surface at 
point w(n). In typical cases, µ is set to values of 1/100 to 1/1000 – we will later learn to 
optimize this. We now analyze the convergence properties of the update rule (6.20). We will 
operate in the normal coordinates vUv T=~  (remember v = w − wopt and TU  was the matrix 
containing orthonormal eigenvectors of R; further recall that R = UTDU and D contains the 
eigenvalues λj of R on its diagonal). By some elementary transformations [use (6.18)] (6.20) 
turns into  
 
(6.21)  )(~)2()1(~ nn vDIv µ−=+ . 
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Because I – 2µD is diagonal, this can be split up into the components of v~ , yielding 
 
(6.22)  )(~)21()1(~ nvnv jjj µλ−=+   (j = 1, ..., M). 
 
This is a geometric sequence. If started in )0(~jv , one obtains 
 
(6.23)  )0(~)21()(~ j

n
jj vnv µλ−= . 

 
The sequence w(n) converges to wopt if )(~ nv j  converges to zero for all j. (6.23) implies that 
this happens if and only if 1|21| <µλ− j  for all j. These inequalities can be re-written as 

1211 <µλ−<− j  or equivalently, 
 
(6.24)  jλ<µ< /10 . 
 
Specifically, we must make sure that max/10 λ<µ< , where maxλ  is the largest eigenvalue of 
R. Depending on the size of µ, the convergence behavior of (6.23) can be grouped in four 
classes which may be referred to as overdamped, underdamped, and two types of unstable. 
Figure 6.11 illustrates how )(~ nv j  evolves in these four classes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.11: The development of )(~ nv j  [plotted in the y-axis] vs. n [x-axis]. The qualitative 
behaviour depends on the stepsize parameter µ. a. Overdamped case: )2/(10 jλ<µ< . b. 
Underdamped case: jj λ<µ<λ /1)2/(1 . c. Unstable with 0<µ  and d. unstable with 

µ<λ j/1 . All plots start with 1)0(~ =jv . 
 
We can find an explicit representation of w(n) if we observe that w(n) = wopt + v(n) = wopt + 

)(~
1

nv jj

M

j∑ =
u , where the uj are the orthonormal eigenvectors of R. Inserting (6.23) gives us 
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(6.25)  w(n) = wopt + n

jj

M

j jv )21()0(~
1

µλ−∑ =
u . 

 
This representation reveals that the convergence of w(n) toward wopt is governed by an 
additive overlay of M exponential terms, each of which describes convergence in the direction 
of the eigenvectors uj and is determined in its convergence speed by λj and the stepsize 
parameter µ. One speaks of the M modes of convergence with geometric ratio factors 

jµλ− 21 . If all eigenvalues are roughly equal, convergence rates are roughly identical in the 
M directions. If however two eigenvalues are very different, say 21 λ<<λ , and µ is small 
compared to the eigenvalues, then convergence in the direction of u1 will be much slower 
than in the direction of u2 (see Figure 6.12). 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.12: Two quite different modes of convergence (a.) vs. rather similar modes of 
convergence (b.). Plot shows contour lines of performance surface for two-dimensional 
weights w = (w1, w2). Violet dotted lines indicate some initial steps of weight evolution, 
starting from w(0). 
 
 
Next we turn to the question how the error ξ evolves over time. Recall from (6.16) that 

,min RvvT+ξ=ξ  which can be re-written as vDv ~~
min

T+ξ=ξ . Thus the error in the n-th 
iteration is  
 
(6.26)  ∑ =

µλ−λ+ξ=+ξ=ξ
M

j j
n

jj vnnn
1

22
minmin )0(~)21()(~)(~)( vDvT . 

 
For suitable µ (see (6.24)), ξ(n) converges to ξmin. Plotting ξ(n)  yields a graph known as 
learning curve. (6.26) reveals that the learning curve is the sum of M decreasing exponentials 
(plus ξmin). Figure 6.13 shows a three-mode learning curve for the case ξmin = 0, where in a. 
ξ(n) is plotted on a linar scale and in b. in a logarithmic scale. 
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Figure 6.13: a learning curve (case ξmin = 0) with three modes of convergence. 
 
 
Each of the terms n

j
2)21( µλ−  is characterized by a time constant τj according to  

 

(6.27)  j

n
n

j e τ
−

=µλ− 2)21(   
 
If µλ2  is close to zero, exp( µλ2 ) is close to 1+ µλ2  and thus ln(1− µλ2 ) ≈ − µλ2 . Using this 
approximation, solving (6.27) for τj yields for the j-th mode a time constant of  
 

(6.28)  
j

j µλ
≈τ
4
1 . 

 
That is, the convergence rate (i.e. the inverse of the time constant) of the j-th mode is 
proportional to λj for very small µ.  
 
However, this analysis is meaningless for larger µ. If we want to maximize the speed of 
convergence, we should use significantly larger µ, as we will presently see. As can be seen 
from Fig. 6.13 b., the final rate of convergence is dominated by the slowest mode of 
convergence, which is characterized by the geometrical ratio factor  
 
(6.29)  |}21||,21max{|},...,1|21max{| minmax µλ−µλ−==µλ− Mjj . 
 
In order to maximize convergence speed, the learning rate µ should be chosen such that (6.29) 
is minimized. Some elementary considerations reveal that this minimum is attained at 

|21||21| minmax µλ−=µλ− , which is equivalent to  
 

(6.30)  
maxmin

1
λ+λ

=µopt . 

 
For this optimal learning rate, min21 λµ− opt  is positive and max21 λµ− opt  is negative, 
corresponding to the overdamped and underdamped cases shown in Figure 6.11. However, the 
two modes converge at the same speed (and all other modes are faster). Concretely, the 
optimal speed of convergence is given by the geometric ratio facto 
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(6.31)  
1/
1/21

minmax

minmax
min +λλ

−λλ
=λµ−=β opt ,  

 
where the last term is found by substituting (6.30). This has a value between 0 and 1. There 
are two extreme cases: if minmax λ=λ , then β = 0 and we have convergence in a single step. As 
the ratio minmax /λλ  increases, β approaches 1 and the convergence slows down toward 
stillstand. The ratio minmax /λλ  thus plays a fundamental role in limiting the convergence 
speed of steepest descent algorithms. It is called the eigenvalue spread. 
 
The eigenvalue spread is closely related to the spectral properties of the input process x. We 
can only sketch the connection here. Recall that for a stationary stochastic process {x(n)}, 
φxx(k) = E[x(n) x(n−k)] is the autocorrelation function and Φxx(ω) = ∑

∞=

−∞=

ω−φ
k

k
ki

xx ek)(  is its 
power spectral density (or simply power spectrum or just spectrum). For each frequency –π ≤ 
ω < π, Φxx(ω) gives the squared contribution of that frequency (the energy of that frequency) 
to x. It can be shown (details in Farhang-Boroujeny p. 97ff) that  
 

(6.32)  
).(max

),(min

max

min

ωΦ≤λ

ωΦ≥λ

ω

ω

xx

xx
 

 
Thus, if x has a flat power spectrum (i.e., )(max)(min ωΦ≈ωΦ

ωω
xxxx ), then 1/ minmax ≈λλ  and 

we can expect fast convergence in steepest descent algorithms – and conversely, if x has a 
very uneven power distribution, steepest descent algorithms are likely to perform poorly. For 
this reason, it helps to speed up convergence if the input signal x is first passed through a 
whitening filter that flattens its power spectrum, before it is used as input to an adaptive filter. 
 
 
 
6.3.2 The LMS algorithm 
 
The update formula (6.20) for steepest gradient descent, w(n+1) = w(n) – µ ∇ξ(w(n)), is not 
useful in practice because the gradient ∇ξ(w(n)) is not known. Remember that ][ 2ε=ξ E  is 
the expected squared error of filter output y vs. teacher d. Given filter weights w(n), we need 
to estimate the expected squared error ξ(w(n)) of the filter output generated by the filter with 
weights w(n) vs. the teacher d. At first sight, what one needs to estimate an expected squared 
error is time – namely, to observe the ongoing filtering with weights w(n) for some time and 
then approximate ))](([))(( 2 nEn ww ε=ξ  by averaging over the errors seen in this 
observation interval. But we don't have this time – because we want to update w(n) at every 
time step n. One ruthless way out of this impasse is to just use the momentary squared error as 
an approximation to its expected value, that is, use 
 
(6.33)  ξ(w(n)) ≈ ε2(w(n)) = 2))()()(( nnnd xwT− . 
 
Using this most brutal possible approximation, the update formula (6.20) for steepest gradient 
descent becomes 
 
(6.34)  w(n+1) = w(n) – µ ∇ε2(w(n)), 
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We can compute ∇ε2(w(n)) as follows: 
 

(6.35)  

    

€ 

∇ε2(w(n)) = 2ε(w(n))∇ε(w(n)) =

= 2ε(w(n)) ∂ε(w(n))
∂w1


∂ε(w(n))
∂wM

 

 
 

 

 
 

T

= −2ε(w(n)) ∂y(n)
∂w1

∂y(n)
∂wM

 

 
 

 

 
 

T

[use ε(n) = d(n) − y(n)]

= −2ε(w(n)) x(n)x(n −M +1)[ ]T

= −2ε(n) x(n)

 

 
where in the last step we simplified the notation ε(w(n)) to ε(n). Inserting this into (6.34) 
gives 
 
(6.36)   
 
 
which is the weight update formula of the LMS algorithm. This formula can hardly be beaten 
in simplicity and computational efficiency! For completeness, here are all the computations 
needed to carry out one full step of online filtering & weight adaptation with the LMS 
algorithm: 
 

(4) read in input and compute output:  y(n) = wT(n) x(n), 
(4) compute current error:   ε(n) = d(n) – y(n), 
(4) compute weight update:   w(n+1) = w(n) + 2 µ ε(n) x(n). 

 
One fact about the LMS algorithm should always be kept in mind: being a stochastic version 
of steepest gradient descent, the LMS algorithm inherits the problems connected with the 
power spectrum of the input process x. It this power spectrum is very unevenly distributed, the 
LMS algorithm is likely not to work satisfactorily. (As an aside, in my working with neural 
networks, I tried out learning algorithms related to LMS. But the input signal to this learning 
algorithm had an eigenvalue spread of 1014 to 1016, so the beautifully simple LMS algorithm 
was entirely useless.) 
 

w(n+1) = w(n) + 2 µ ε(n) x(n), 
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Because of its eminent usefulness (if the input signal has a reasonably flat power spectrum), 
the LMS algorithm has been analysed in minute detail. We conclude this section by reporting 
the most important insights without mathematical derivations. At the same time we introduce 
some of the standard vocabulary used in the field of adaptive signal processing. 
 
We assume that x and d are stationary processes. The evolution w(n) of weights is now also a 
stochastic process, because the LMS weight update depends on the stochastic vector x(n). One 
interesting question is how fast the LMS algorithm converges in comparison with the ideal 
steepest gradient descent "algorithm" )(~)2()1(~ nn vDIv µ−=+  from (6.21). Because we now 
have a stochastic update, the vectors )(~ nv  become random variables and one can only speak 
about their expected value E[ )(~ nv ] at time n. [Intuitively, this value would be obtained if 
many (infinitely many in the limit) training runs ω of the adaptive filter would be carried out 
and in each of these runs, the value of )(~ nv  at time n would be taken, and an average would 
be formed over all these )(~ nv .]. The following can be shown (using some additional 
assumptions, namely, that µ is small and that the signal x has no substantial autocorrelation 
for time spans larger than M): 
 
(6.37)  )](~[)2()]1(~[ nEnE vDIv µ−=+ . 
 
Rather to our surprise, if the LMS algorithm is used, the weights converge – on average – as 
fast to the optimal weights as when the ideal algorithm (6.21) is employed. Figure 6.14 
depicts an overlay of the deterministic development of weights according to (6.21) (grayish 
pink line) with one run of the stochastic gradient descent according to the LMS algorithm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.14: Illustrating the similar performance on average of deterministic (pink) and 
stochastic gradient descent. 
 
The fact that on average the weights converge to the optimal weights (cf. (6.38)) by no means 
implies that )(nξ  converges to ξmin. To see why, assume that at some time n, the LMS 
algorithm actually would have found the correct optimal weights, that is, w(n) = wopt. What 
would happen next? Well, due to the random weight adjustment, these optimal weights would 
become misadjusted again in the next time step! So the best one can hope for asymptotically 
is that the LMS algorithms lets the weights w(n) jitter randomly in the vicinity of wopt. But 
this means that the effective best error that can be achieved by the LMS algorithm in the 
asymptotic limit is not ξmin but ξmin + ξexcess, where ξexcess comes from the random 
scintillations of the weight update. It is intuitively clear that ξexcess depends on the stepsize µ 
− the larger µ, the larger we expect ξexcess to become. The absolute size of the excess error 
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ξexcess is not so interesting as is the ratio  = ξexcess/ξmin, the relative size the excess error 
w.r.t. the minimal error. The quantity   is called the misadjustment and describes what 
fraction of the residual error ξmin + ξexcess can be attributed to the random oscillations 
effected by the stochastic weight update [i.e., ξexcess], and what fraction is inevitably due to 
inherent limitations of the filter itself [i.e., ξmin]. Notice that ξexcess can in principle be brought 
to zero by tuning down µ to zero – however, that would be at odds with the objective of fast 
convergence.  
 
Under some assumptions (notably, small ) and using some approximations (cf. Farhang-
Boroujeny, Section 6.3), the misadjustment can be approximated by  
 
(6.39)    ≈ µ trace(R),  
 
where the trace of a matrix is the sum of its diagonal elements. The misadjustment is thus 
proportional to the stepsize and can be steered by setting the latter, if trace(R) is known. 
Fortunately, trace(R) can be estimated online from the sequence x(n) simply and robustly 
[how? – easy exercise].  
 
This is an important insight if one wishes to track a nonstationary system adaptively while 
maintaining a given misadjustment. In this situation, one commits oneself to a fixed level of 
misadjustment, maintains an online estimate of trace(R), and uses µ =  / trace(R).  
 
Another issue that one has always to be concerned about in online adaptive signal processing 
is stability. We have seen in the treatment of the ideal case (Section 6.3.1) that the stepsize µ 
must not exceed 1/ maxλ  in order to guarantee convergence. But this result does not directly 
carry over to our stochastic version of gradient descent, because it does not take into account 
the stochastic jitter of the gradient descent, which is intuitively likely to be harmful for 
convergence. Furthermore, the value of maxλ  cannot be estimated robustly from few data 
points in a practical situation. Using again middle-league maths and several approximations, 
in the book of Farhang-Boroujeny the following upper bound for µ is derived:   
 
(6.40)  µ  ≤ 1 / (3 trace(R)) 
 
If this bound is respected, the LMS algorithm converges stably.  
 
In practical applications, one often wishes to achieve an initial convergence that is as fast as 
possible: this can be done by using µ close to the stabilty boundary from (6.40). After some 
time, when a reasonable degree of convergence has been attained, one wishes to optimize the 
mismatch; then one switches into a control mode where µ is adapted dynamically according to 
(6.39). 
 
The LMS algorithm is since 40 years the workhorse of adaptive signal processing and 
numerous refinements and variants have been developed. Here are some: 
 
4) An even simpler stochastic gradient descent algorithm than LMS uses only the sign of the 

error in the update, i.e. uses w(n+1) = w(n) + 2 µ sign(ε(n)) x(n). If µ is a power of 2, this 
algorithm does not need a multiplication (a shift does it then) and is suitable for very high 
throughput hardware implementations. There exist yet other "sign-simplified" versions of 
LMS [cf. Farhang-Boroujeny p. 169] 
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5) Online stepsize adaptation: at every update use a locally adapted stepsize µ(n) ≈ 1/(xT(n) 
x(n)). This is called "Normalized LMS" or "NLMS". In practice this pure NLMS is apt to 
run into stability problems; a safer version is µ(n) ≈ µ0/[xT(n) x(n) + ψ], where µ0 and ψ 
are hand-tuned constants [Farhang-B. p. 172]. In my own experience, normalized LMS 
sometimes works wonders in comparison with standard LMS. 

6) Include a whitening mechanism into the update equation: w(n+1) = w(n) + 2 µ R−1 ε(n) 
x(n). This "Newton-LMS" algorithm has a single mode of convergence, but a problem is 
to obtain a good estimate of R−1. [Farhang-B. p. 210] 

7) Block implementations: for very long filters (say, M > 10,000) and high update rates, even 
LMS may become too slow. Various computationally efficient "block LMS" algorithms 
have been designed in which the input stream is partitioned into blocks, which are 
processed in the frequency domain and yield weight updates after every block only 
["block LMS", cf. Farhang-B. p. 247ff]. 

 
To conclude this section, it should be said that besides LMS algorithms there is another major 
class of online adaptive algorithms for tapped delay line filters, namely, recursive least 
squares (RLS) filters. RLS algorithms are not steepest gradient-descent algorithms; in fact, 
the background metaphor of RLS is not to minimize ξ but to minimize the error ζ(n) = 

∑ =
−

n

i
iyid

1
2))()(( , so the performance surface we know from LMS plays no role for RLS. 

The main advantages and disadvantages of LMS vs. RLS are: 
 
6) LMS has computational cost O(M), where M is filter length; RLS has O(M2). Also the 

space complexity of RLS is an issue for long filters because it is O(M2).  
7) LMS is numerically robust, RLS is plagued by numerical stability problems.  
8) RLS has a single mode of convergence and converges faster than LMS, much faster when 

the input signal is highly coloured. 
9) RLS is more complicated than LMS and thus more difficult to implement.  
10) In applications where fast tracking of highly nonstationary systems is required, LMS may 

have better tracking performance than RLS.  
 
The RLS class of algorithms has been boosted by the development of fast RLS algorithms 
which reach a linear time complexity in the order of O(20 M) [Farhang-B. Section 13]. 
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7 A closer look at the bias-variance dilemma 
 
In this short section we will give a formal treatment of the bias-variance theme. First we will 
see how the relatively young statistical learning theory8 (SLT) addresses this problem. Then 
we will take a more traditional stance and see how the generalization error of any learning 
method is made of two components, the approximation error (squared "bias") and an 
estimation error  ("variance"). The approximation error captures how close the best possible 
model in some model class comes to the target function; the variance measures how strongly 
the learnt models adapt themselves to the random variations of individual training data sets. I 
use material from Section 9.1 of the Bishop book and from the texts indicated in the 
footnotes.  
 
We consider the following situation of learning a regression model. We are given a 
probability space (Ω, F, P), a random variable X with values x in k and a random variable D 
with values d in . Pairs (X(ω), D(ω)) = (x, d) are argument-value pairs of some stochastic 
function which we want to learn from such pairs. From an eagle's perspective, the task of 
statistical learning is to estimate a function f̂  (the model that we learn) which provides the 
smallest possible value of the average error R that we make when we use functions f to predict 
d from x,  
 
(7.1)  R(f) = ∫ ∫

Ω ℜ×ℜ

×−=ωω−ω
k

ddPdfdPDXf DX ),())(()())())((( 22 xx  

 
R(f) is called the risk in statistical learning theory. The risk can be interpreted as a 
generalization error or expected test error. It is not possible to use (7.1) for minimizing the 
risk because the joint distribution PX×D is unknown. All that is available for learning is a 
finite sample of N instances of pairs Data = ((xi, di))i = 1,...,N  –  well known to us as training 
data. A straightforward way to estimate f̂  is to minimize the training error Remp(f), which is 
called empirical risk in statistical learning theory:  
 

(7.2)  Remp(f) = ∑
=

−
N

i
ii df

N 1

2))((1 x  

 
We know from all our experience that a brute-force minimization of Remp(f) is likely to 
succeed perfectly, yielding a model f̂  that has zero empirical risk – but generalizes poorly 
because we just (over)fitted the training data. SLT is a rigorous mathematical account of this 
situation. One main result gives bounds on the risk that connect the sample size N to the 
model complexity of f (for the time being, think of model complexity as the number of 
parameters available to tune f).  
 
SLT assumes that models f are selected (by learning) from some family – for instance, the 
family of linear neural networks, the family of linear neural networks with k neurons, or 
whatever. Formally, such a family of potential models is written as (fα)α∈Λ. The risk of a 

                                                
8  Recommended textbook: Vladimir N. Vapnik, The Nature of Statistical Learning Theory (Second Edition). 
Springer Verlag 1999

2
. Recommended introductory paper (online via IRC): V. N. Vapnik, An Overview of 

Statistical Learning Theory. IEEE Transactions on Neural Networks 10(5), 1999 
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particular function fα from such a family is also written as R(α), the empirical risk as Remp(α). 
A fundamental idea in SLT is to characterise such a family of candidate functions by their 
"expressiveness", giving a single characteristic quantity that captures how "rich" the family 
(fα)α∈Λ is. There are several such characteristics, but the most widely used is the Vapnik-
Chervonenkis(VC)-dimension. Here is the definition of the VC dimension for a family of 
functions, for two cases: when the functions are used for binary classification tasks and when 
they are used for regression tasks.  
 
Definition 7.1 (VC dimension for indicator functions). Let (fα)α∈Λ be a family of indicator 
functions (that is, 0-1-valued functions) on some vector space V. Then the VC-dimension of 
(fα)α∈Λ is the maximal number h of vectors z1, ..., zh that can be shattered by functions from 
(fα)α∈Λ, that is, for each of the 2h possible ways of assigning the vectors to two classes C1 and 
C2, there exists one function from the family that assigns a value of 0 to the vectors in C1 and 
a value of 1 to the vectors in C2. If any number of vectors can be shattered, h = ∞.  
 
Definition 7.2 (VC dimension for real-valued functions). Let (fα)α∈Λ be a family of real-
valued functions on some vector space V. Consider the family of indicator functions 
(Iα,β) α∈Λ, β∈Ñ obtained from (fα)α∈Λ by putting Iα,β(x) = 0 if fα(x) − β < 0, else 1. Then the 
VC-dimension h of (fα)α∈Λ is the VC-dimension of (Iα,β) α∈Λ, β∈Ñ.  
 
Example 1. If (fα)α∈Λ is the family of lines in the plane [more precisely, the family of 
indicator functions that are 0 on one side of a line], then h = 3, because 3 points in the plane 
can be separated into all possible two-class partitions by lines (Fig. 7.1 left) whereas this is 
not possible for 4 points (Fig. 7.1 right).  
 
 
 
 
 
 
 
 
 
 
Figure 7.1: Three points z1, z2, z3 can be shattered in the plane by lines, but with four points 
there are always two (here: z2 and z3) that cannot be separated from the other two by lines.  
 
Example 2. Let H be the Heaviside step function (recall: H(x) = 0 if x < 0, else 1). Consider 
the set of linear indicator functions  
 

(7.3)  fα((x1,...,xk)) = 







α+α∑

=
0

1

k

i
ii xH  

 
on k. This set of functions has VC dimension h = n+1. 
 
Example 3. The VC dimension of the set of linear functions  
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(7.4)  fα((x1,...,xk)) = 0
1

α+α∑
=

k

i
ii x  

 
on k also has VC dimension h = n+1.  
 
Note that in these examples, the number of free parameters α0,..., αk equals the VC-
dimension, in accordance with our old intuition that the complexity, or expressiveness, of a 
class of models scales with the number of tuneable parameters. In general, however, this 
correspondence need not hold:  
 
Example 3. Let Λ be the set 1{0,1}* of all binary strings starting with a 1, interpreted as 
integer numbers written in base 2. For α ∈ Λ, consider the function fα:  → {0,1} defined by 
 

(7.5)  fα(x) =  
1a   withstarts/ ofremainder   theif1,

0a   withstarts 2) base (in/ ofremainder   theif,0





α

α

x
x

 

 
With this set of indicator functions, we can shatter k points z1 = 10, z2 = 100, ..., zk = 2k, (in 
binary representation), for any k. To see why, consider an example where k = 4 and we want 
to find an indicator function that assigns z1, z2 and z4 to class 2, z3 to class 1. We choose α = 
1011 and find α/z1 = 101.1, α/z2 = 10.11, α/z3 = 1.011, α/z4 = 0.1011, that is, fα(z1) = fα(z2) 
fα(z4) = 1 and fα(z3) = 0. It becomes clear from this example how we just exploit a binary shift 
operation to code arbitrary class memberships. Because this works for any k, the VC 
dimension of this family is infinite – although we only have a single free parameter, α. 
 
The VC dimension is called called the capacity of a family of models. An important 
contribution of SLT is that by the VC dimension / capacity it has found a rigorous and 
productive method to quantify what we have earlier in the lecture called the complexity (or 
expressiveness) of a class of models, and what we intuitively related to the number of 
tuneable parameters. One lesson of SLT is that the sheer number of free parameters in a 
model family is not always an appropriate measure of the family's modelling capacity.  
 
Equipped with the capacity h, we can now state a fundamental result of SLT, which gives an 
upper bound on the total risk R(α): 
 
Theorem 7.1 (structural risk minimization principle9). The total risk R(α) is bounded by  
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with a probability of at least 1−η, where the confidence term φ is defined by  
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9 given here as presented in B. Schölkopf, Support Vector Learning, GMD-Bericht Nr. 287, R. Oldenbourg 
Verlag 1997 
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Here, N is the size of the training data set and h is the VC-dimension of the family (fα)α∈Λ. 
 
The bound in (7.6) deserves some comment. It is intended as a guide in situations where we 
have small training samples, where "small" means that the ratio N/h is small, say, N/h < 20. In 
this condition, the confidence term increases with h. If we wish to control the risk we can 
adjust two quantities, the empirical risk and the confidence term. The empirical risk becomes 
smaller when we fit our training data better – which we can achieve by increasing h, that is, 
use more complex models. However, by increasing h at the same time we increase the 
confidence term. Thus we fare best at some compromise value of h. 
 
Concretely, SLT proposes to do the following. Instead of considering a single family (fα)α∈Λ, 
a sequence of families (fnα)α∈Λn is considered, such that the corresponding capacities hn form 
an increasing sequence h1 ≤ h2 ≤  ... ≤ hn ≤ ... . This could, for instance, be achieved by 
considering families of neural networks with increasing numbers of neurons. The capacity is 
used as a control parameter to optimize the final risk, that is, to minimize the generalization 
error. One considers the sum of the empirical risk and the confidence term, according to (7.6), 
and selects that hi which makes this minimal. Figure 7.2 shows the error curves.  
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.2 Optimal model capacity as a compromise between conflicting demands of small 
training error vs. small confidence term.  
 
This principle for defining and finding an optimal tradeoff between small training error and a 
small confidence term is called the principle of structural risk minimization in SLT. It can be 
regarded as one way to deal with the bias-variance dilemma. SLT offers numerous concrete 
techniques for various types of learning problems to implement the principle of structural risk 
minimization. The most conspicuous contribution of SLT is, however, that it gives a 
theoretical foundation for support vector machines, a relatively recent technique for learning 
classification functions. From a SLT perspective, support vector machines are distinguished 
by the fact that they have a huge number of tuneable parameters but a small VC dimension 
(just the contrary of our binary shift example 3 from above!). The huge number of tuneable 
parameters brings with it a small training error, which is however not bought at the expense of 
a bad generalization error, because the confidence term can be kept small due to the small h.   
 
After this glimpse on SLT we re-address the bias-variance dilemma from a more traditional 
angle. We will finally explain the origin of the term "bias-variance"! 
 
Without proof we note the following, intuitively plausible fact. Among all functions f that we 
may consider, the risk R(f) = ∫ ×− ),())(( 2 ddPdf DX xx  is minimized by the function  

 

h 

error 

training error Remp(α) 

confidence term  

bound on test error R(α)  

optimal h 
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(7.8)  fminrisk(x) = EP[D | X = x] = ,)(|∫
ℜ

= ddPd XD x  

 
that is, the expected value of d under condition x. Here PD|X=x is the conditional distribution 
of d under hypothesis x. We will use shorthand x|d  for EP [D | X = x]. Note that x|d  is 

just a function of x. We use subscript P in EP to indicate that the expectation is computed 
w.r.t. a conditional probability measure that is derived from the probability space (Ω, F, P). 
 
Let us analyse the learning situation. Statistically, a learning algorithm is an estimator that 
gets Data = ((xi, di))i = 1,...,N  as input and returns an estimate f̂ . We can consider this 
estimator as a random variable from a probability space (Ω', F', P'), whose elements ω' are 
events of drawing a sample ((xi, di))i = 1,...,N, so we should correctly write ((xi, di))i = 1,...,N (ω') 
or ((xi(ω'), di(ω')))i = 1,...,N. The estimates f̂  are also random variables over this probability 
space, and we should correctly write f̂ (ω') to denote the function obtained from learning, and 
f̂ (ω')(x) to denote the value on argument x of this function. 

 
Now let us fix some x and ask by how much f̂ (x) deviates, on average and in the sqared 
error sense, from the theoretical optimal function x|d . This expected error is 
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We can learn more about this error if we re-write ( f̂ (x) − x|d )2 as follows: 
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If we now take the expectation EP' on both sides, we see that the third term on the r.h.s. 
vanishes and we get 
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The two components of this error are conventionally named the bias and the variance 
contribution to the error EP'[( f̂ (x) − x|d )2]. The bias measures how on average the 

learning result f̂ (x) differs from the optimal value x|d . The bias measures how strongly 
the average learning result deviates from the optimal value; thus is indicates a systematic error 
component. The variance measures how strongly the learning results f̂ (x) vary around their 
mean EP'[( f̂ (x)]; thus this is an indication of how strongly the particular training data sets 
induce variations on the learning result. Note that the bias and variance shown in (7.11) are 
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functions of x. By integrating over x, one can obtain the average values for the bias and 
variance: 
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8 Multilayer feedforward networks 
 
We saw in Section 5 that single-layer neural networks can only compute linear decision 
boundaries (unless they are equipped with preprocessing filters). In this section we will 
introduce multi-layer neural networks. We will first discuss their representational capacity 
and then describe a famous gradient-descent learning algorithm for weight-optimization in 
such networks, the backpropagation algorithm. I lean heavily on Section 4 of the Bishop 
book. 
 
8.1 Structure and representational capacity of multilayer networks 
 
One way to boost the power of our single-layer networks from Section 5 is to add more 
"hidden" layers of neurons between the layer of input neurons and the layer of output neurons. 
Fig. 7.1 shows such a general layered architecture.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8.1: Schema of a multi-layer network with k−1 hidden layers of neurons. Layers of 
neurons are numbered 0, ..., k+1, where layer 0 contains the input units and layer k+1 the 
output units. The number of input units is L0, of output units Lk, and of units in hidden layer m 
is Lm. The connection weight between the j-th unit in layer m and the i-th unit in layer m+1 is 
denoted by wij

m. The activation of the i-th unit in layer m is xi
m (for m = 0 this is an input 

value, for m = k+1 an output value). In this figure, the units with activations x0
0, ..., x0

k-1 are 
dummy inputs responsible for feeding a bias term into the next upper layer of units.  
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In "network talk", one speaks of a single-layer network when there is a single layer of 
connection weights, that is, when we have a linear network as we saw in Section 5. 
Correspondingly, a two-layer network has two layers of connections and one layer of 
"hidden" units between the input and output layer of units.  
 
The network architecture shown in Fig. 8.1 has an orderly layered structure. It is also possible 
to extend the powers of single-layer networks by adding more units in a "disordered" way 
without a clear layer topology. However, this is rarely done. Layered networks of the kind 
shown in the Figure are also often called multi-layer perceptrons (MLPs).  
 
From a mathematical perspective, a MLP implements a function y = fMLP(u), where 

T),,( 00
1 0Lxx …=u  is the vector of inputs to the network and T),,( 1

k
L

k
kxx …=y  is the output 

vector. The network computes y by passing the input u through its internal layers. To make 
this formal, first consider the circumstance that both in training and in exploitation we will 
use the network for many different inputs, which we denote by u(n), where n is an index 
marking different exemplars of input, not time. Then y(n) is the output obtained on that input, 
xi

m(n) are the internal activations, etc.  
 
Formally, a k-layer MLP has the following components. The activation of input units is just 
the input, with the first input unit (index 0) set up as a dummy to contribute a constant bias 
input to the next higher layer: 
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The activations of the dummy units x0

m(n) [where 1 ≤ m ≤ k−1] is always fixed at 1. The 
activation xi

m(n) of the i-th non-dummy unit in a non-input unit layer m (where i, m ≥ 1) is 
computed from the activations of the next lower layer by 
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Thus, the activation xi

m(n) is computed by first taking a linear combination of the activations 
of the units from one layer below, and passing this through the unit's activation function gm. 
(also called output function). The activation function may change across layers. We will 
consider here cases where gm is a sigmoid function for hidden layers of units. The activation 
function of the output layer may be a sigmoid too; but sometimes it is more convenient to use 
linear activation functions on the output units. If one uses sigmoids on the output layer, one 
can only implement functions whose value range is within [0 1] (for the logistic sigmoid) or 
within [–1 1] (for the tanh sigmoid). If one uses linear output units, the implementable 
function range is unbounded.  
 
Typical choices for sigmoid g are  
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Figure 8.2 shows these two. Note that g2 differs from g1 only through linear pre- and 
postprocessing transformations. Specifically, it holds that g2(a) = 2 g1(2a) – 1. Thus, any 
network that uses g2 as an activation function for hidden units can be replaced by an 
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equivalent network using g1 but having different weights. Empirically it is often found that 
networks set up with the tanh sigmoid exhibit faster convergence in training algorithms than 
when the logistic sigmoid is used. 
 

  
 
Figure 8.2: The two most commonly used sigmoids. Blue: tanh, green: the logistic 1/(1+e-a).  
 
The weights wij

m are trainable in an MLP. The objective is to find weights such that for a 
given set of training input-output data,  
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the network outputs T))(,),(()( 1 nxnxn k

L
k

k…=y  become a good approximation of the teacher 
output d(n) in the sense of a small training sum of squared errors: 
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The following two facts explain why MLPs have become so popular in the last thirty years: 
 
• Any smooth function f: L0

 → Lk

 from the unit hypercube to Lk

 can be approximated 
arbitrarily well by two-layer MLPs with linear output units (universal approximation 
property). 

• There exists an relatively efficient learning algorithm to find weights that represent a local 
minimum of SEtrain. 

 
Taken together, these facts recommend MLPs as powerful and computationally sufficiently 
efficient black-box modelling devices for nonlinear function approximation and classification 
tasks. 
 
We will outline a simple proof of the universal approximation property. We consider the case 
of f being a mapping from the two-dimensional unit square to . We know that f can be 
Fourier-approximated with arbitrarily small sum-of-squares error by 
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(8.6) f(x1, x2) ≈  
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where αs(x1) and βs(x1) are functions of x1, and we used elementary trigonometric identies 
like cos(α)cos(β) = 1/2 cos(α + β) + 1/2 cos(α – β) and substitutions zst = tx1 + sx2 and z'st = 
tx1 − sx2 to show that f(x1, x2) can be approximated by a linear combination of trignonometric 
functions sin or cos of linear combinations of the arguments x1, x2. Now consider any one of 
these trigonometric terms, for instance cos(zst). It can itself be approximated to arbitrary 
precision (in the mean squared distance sense) on [zstmin, zstmax] by a superposition of unit step 
functions H (recall: this is the Heaviside step function H(x) = 0 if x < 0, else 1): 
 

(8.7) cos(zst) ≈ cos(zstmin) + )())cos()(cos(
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where zstmin = z0 < z1 < ... < zK = zstmax is some sequence of intermediate arguments. 
 
Note finally that the Heaviside function can be approximated arbitrarily well by the logistic 
sigmoid, by linear scaling of the argument of this sigmoid.  
 
Taking all this together, we can approximate f(x1, x2) to arbitrary accuracy by a two-layer 
MLP, when we 
 

5. use the first weight layer to transform the input x1, x2 into the linear transform 
variables substitutions zst = tx1 + sx2 and z'st = tx1 − sx2, 

6. use (8.7) to approximate cos(zst) by the combined output of K+1 hidden units,  
7. use (8.6) to approximate f(x1, x2) as the output from the output layer of units. 

 
The core of this proof idea is that we can transform a product of trigonometric functions, e.g. 
cos(α)cos(β), into a linear combination of single trigonometric functions. This is also possible 
for longer products of trigonometric functions, e.g. it holds that cos(α)cos(β)cos(γ) = 
1/4[cos(α + β − γ)+ cos(−α + β + γ) + cos(α− β + γ) + cos(α + β + γ)], etc. Thus the idea of 
this proof carries over to higher-dimensional input.  
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Numerous mathematical articles on the representational power of MLPs have appeared in the 
early 90-ies, showing that MLPs can approximate smooth, differentiable functions arbitrarily 
well, including their derivatives, in various norms for measuring the distance between 
network output and the correct target functions. These results have been important to establish 
the reputation of MLPs as universal approximation machines. However, such results are of 
little practical importance, because the network solutions that these theorems find for a given 
approximation task are typically very generous w.r.t. the size of the networks. Practical 
learning algorithms typically find much smaller networks for the same required 
approximation accuracy.  
 
Little is known about the minimal size of a network that is required for a given degree of 
approximation in a given task, or about the best structure of the network (e.g., number of 
hidden layers). Three-layer networks are often preferred over the two-layer networks that are 
theoretically sufficient. Experience, personal taste and patience are asked for from the MLP 
designer! 
 
A much cited result by Barron10 gives the following bound on the risk of a two-layer MLP 
fMLP that is trained to approximate a function (with one-dimensional target domain) y = f(u): 
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where L1 is the number of hidden neurons, N is the size of training data, d is the dimension of 
the input space (that is, d = L0− 1), and Cf is a certain spectral measure of complexity of the 
function f which is to be approximated. The first term in (8.8) is a bound on the (squared) bias 
(cf. Eq. (7.12)) while the second term is a bound on the variance. Note that the number of 
adjustable weights is O(L1d). A consequence of (8.8), also obtained by Barron in the same 
paper, gives a bound on the risk that is obtained when the network size L1 is optimized for 
minimal risk depending on the training sample size N. The risk is then  
 
(8.9)  R(fMLP) ≤ O(Cf ((d/N) log N)1/2) 
 
The bound (8.9) states that the rate of risk convergence with optimally selected network sizes, 
as a function of sample size is of order (d/N)1/2 (times a logarithmic factor), where the 
exponent 1/2 is independent on the input dimension d.  
 
The traditional way to construct approximations to nonlinear functions is by a linear 
combination of a fixed set of n basis functions (e.g. polynomials in Taylor expansions, 
multinomials in Volterra expansions, or sines in Fourier expansions). Putting learning aside, 
and considering the ideal case where the linear combination is set to yield the minimal risk, 
Barron11 showed that there are functions in class Cf where the risk is at least 
 

                                                
10 Andrew R. Barron, Approximation and Estimation Bounds for Artificial Neural Networks, Machine Learning 
14 (1994), 115-133 
11 Barron, A. R., Universal Approximation Bounds for Superpositions of a Sigmoidal Function, IEEE Trans. Inf. 
Theory 39(3), 1993, 930-945 
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where κ is a universal constant. This indicates the presence of a learning-independent version 
of the curse of dimensionality, because the risk scales exponentially with d. In contrast, for  2-
layer MLPs the corresponding ideal risk for a model with n hidden units is (Barron 1994) 
 

(8.11)  R(best n-hidden-unit MLP) 
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If one looks at the ratio of the convergence rates w.r.t. n of (8.10) and (8.11) for fixed d, i.e. at 
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one sees that this is (up to a constant K) approximately equal to n/d for not too small d. That 
is, if one wishes to approximate f better and better by increasing the number of basis functions 
(in (8.10)) or the number of hidden units (in (8.11)), this race for better risk is won by the 
neural network approach – the risk ratio between the two approaches grows roughly linearly 
with n. The underlying reason for this superiority of MLPs over fixed basis functions 
combinations is that the MLP can shape the functions represented by the hidden units, which 
then are linearly combined into the output layer. With linear combinations of fixed basis 
functions, one cannot adapt to the particulars of the given target function f.  
 
Another result by Koiran and Sontag12 that also adresses the risk convergence of MLPs, but 
from the perspective of statistical learning theory, states that for MLPs with at least one 
hidden layer of units and logistic sigmoid activation functions, the VC dimension is h = 
O(|W|2), where |W| is the total number of adjustable weights. If we insert this into the 
expression of the confidence term (cf. Eq. (7.7)) in the SLT risk bound, we get  
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Both (8.8) and (8.13) reveal a linearly bounded relationship between the number of adjustable 
weights and the generalization error of MLPs, which is described through the variance term in 
(8.8) and through the confidence term in (8.13). Thus, for MLPs, our rather vague intuition 
that "the danger of overfitting grows with the number of adjustable parameters" is here 
justified. 
 
8.2 Training MLPs with the backpropagation algorithm 
 

                                                
12 Koiran, P. and E.D. Sontag, Neural networks with quadratic VC dimension, in: Advances in Neural 
Information Processing Systems (NIPS), vol. 8, MIT Press (1996). Cited after: S. Haykin, Neural Networks: A 
Comprehensive Foundation, Second Edition. Prentice-Hall 1999 (page 97). 
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Because MLPs are nonlinear functions with a large number of adjustable variables (the 
weights), a closed-form solution (like the Wiener-Hopf equation for linear systems) for the 
weights that give the smallest training error is not available. Instead, one uses iterative 
gradient-descent methods like we know them from adaptive linear combiners. However, now 
the performance surface has no longer the simple shape of a bowl with a unique minimum. 
Rather you should think of it as a rugged landscape with many local minima. If one starts the 
gradient descent from a particular set of starting weights, one ends up in the nearest local 
minimum – which may or may not give a training error close to the possible minimal error. 
We will discuss later how to deal with this situation.  
 
The gradient of the training error w.r.t. the weights is a vector made from the partial 
derivatives of the training error w.r.t. the weights. These are (compare (8.5)): 
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where m = 1, ..., k and j = 0, ..., Lm-1 and i = 1, ..., Lm. Note that for computing this gradient 
for a single iteration step "downhill", we have to use the entire training data set! However, 
because  
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we only need to compute the gradient on single instances of the training data and may then 
sum up these values. Once we have solved the problem of computing (8.15), we obtain a 
weight update algorithm through 
 

(8.16)  m
ij

m
ij

m
ij w

Ewwnew
∂

∂
γ−= , 

 
where γ is a small learning rate. Naive implementations for computing the derivatives 

m
ijwnE ∂∂ /)(  for all weights need O(W2) operations, where W is the number of weights. 

Considering that for a single gradient-downhill-step, we need N O(W2) operations, and that 
both N and W can easily be of the order of 1000, naive implementations quickly run out of 
steam. The backpropagation algorithm is a computationally efficient method to evaluate 

m
ijwnE ∂∂ /)(  at cost O(W). Only with this algorithm MLPs became widely useful. The 

backpropagation algorithm was made popular in a paper by Rumelhart, Hinton and 
Williams13. It appeard in 1986 in a famous two-volume collection of articles that laid the 
foundations of what today can be considered mainstream neural network techniques. The 
algorithm had precursors in work by Werbos14 and Parker15. We now derive this algorithm. 
 

                                                
13 Rumelhart, D.E., G.E. Hinton, R.J. Williams (1986): Learning internal representations by error propagation. In 
D.E. Rumelhart, J.L. McClelland, and the PDP Research Group (eds.), Parallel Distributed Processing: 
Explorations in the Microstructure of Cognition, Vol. 1: Foundations, pp. 318-362. Cambridge, MA: MIT Press 
14 Werbos, P.J. (1974): Beyond regression: new tools for prediction and analysis in the behavioural sciences. 
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The overall structure of the algorithm is as follows. The network is first initialized with 
randomly chosen (typically small) weights. Then the backprop algorithm is used iteratively. 
At each iteration, all weights are updated, going "downhill" the performance surface a small 
step, using the information from all training samples. Each such iteration is called an epoch. 
The procedure terminates if the output error falls under a pre-set threshold, or if the error 
improvement per step falls under another pre-set threshold, or if the number of epochs reaches 
a pre-set maximum.  
 
Now we describe what happens in one epoch. At the beginning, weights wm

ij are given from 
the previous epoch. From (8.15) we see that we need to consider only a single training 
sample, n. In order to compute all m

ijwnE ∂∂ /)( , the first step is to present the input pattern 
u(n) to the network and compute its output y(n). This is called the forward pass. In the 
forward pass, for each unit we compute the activation xm

i; and in order to obtain this 
activation, we also compute the following quantity: 
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which is sometimes referred to as the potential or the internal state of the unit. Applying the 
chain rule we have 
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Define 
 

(8.19)  
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δi
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∂E(n)
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Using (8.17), we can write 
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Inserting (8.19) and (8.20) into (8.18), we get 
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Thus, in order to calculate the derivatives, we only need to compute the values of m

iδ  for each 
hidden and output unit. For output units, this is straightforward. From the definition (8.19), 
we have 
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To evaluate the m

iδ  for the hidden units, we again make use of the chain rule, 
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which is justified by the fact that the only path by which m

ia  can affect E(n) is through the 
potentials 1+m

la  of the next higher layer, that is, E(n) is a function of the 1+m
la . If we now 

substitute (8.19) into (8.23) and observe (8.17), we get 
 

(8.24)  
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This formula describes how the m

iδ  in a hidden layer can be computed by "back-propagating" 
the 1+δml  from the next higher layer. The formula can be used to compute all m

iδ , starting from 
the output layer (where (8.22) is used) as a basis, and then working backwards through the 
network in the backward pass of the algorithm to compute the m

iδ  using the values already 
found in the next higher layer.  
 
If the logistic sigmoid g1 is used for the gm, the computation of g1' ( m

ia (n)) takes a particularly 
simple form, observing that for this sigmoid 
 
(8.25)  

€ 

g1'(a) = g1(a)(1− g1(a)) ,  
 
which leads to 

€ 

gm '(ai
m (n)) = xi

m (1− xi
m ). 

 
Although simple in principle, and readily implemented, using the backprop algorithm 
appropriately is something of an art. Here is only place to point out some difficulties: 
 
• The stepsize γ in (8.16) must be chosen sufficiently small in order to avoid instabilities. 

But it also should be set as large as possible to speed up the convergence. It is however 
not possible to provide an analytical treatment of how to set the stepsize optimally. 
Generally, one uses larger stepsizes in early epochs.  

• Gradient descent on nonlinear surfaces may sometimes be very slow in areas where the 
gradient is small in some directions. By consequence, the backpropagation algorithm may 
sometimes need in the order of thousand(s) iterations to settle near a local minimum.  

• Like all gradient-descent techniques on error surfaces, backpropagation finds only a local 
error minimum. This problem can be addressed by various measures, e.g. adding noise 
during training (simulated annealing approaches) to avoid getting stuck in poor minima, or 
by repeating the entire learning from different initial weight settings, or by using task-
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specific prior information to start from an already plausible set of weights. All of these 
counter-measures (except the last one) are computationally expensive. Some authors claim 
that the local minimum problem is overrated.  

• Finally, finding a network structure (number of units, number of layers) that is appropriate 
for a given task is not trivial. A decent amount of experimentation and cross-validation 
exploration may be needed.  

 
These difficulties are not unique to MLPs trained by the backpropagation algorithm. The 
same problems surface with all methods for learning nonlinear regression models; they are a 
consequence of nonlinearity. The field of estimating nonlinear systems is difficult and rich in 
problems and techniques, it requires a lot of experience, and it has great importance for 
practical applications. By the way, our own brain is in many ways an exceedingly good 
learning apparatus for nonlinear (dynamical) systems, but nobody comes anywhere close to 
understanding how it functions. 
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9. Recurrent neural networks 
 
This section is a slightly revised version of: H. Jaeger, Tutorial on training recurrent neural 
networks, covering BPPT, RTRL, EKF and the "echo state network approach, GMD Report 
159, GMD – German National Research Institute for Information Technology, Sankt 
Augustin, 2002. 
 
9.1 First impressions 
 
9.1.1 Recurrent vs. Feedforward networks 
 
There are two major types of neural networks, feedforward and recurrent. As we have seen in 
the previous section, in feedforward networks, activation is "piped" through the network from 
input units to output units (from left to right in left drawing in Fig. 9.1): 
 
 
 
 
 
  
 
 
 
 
Figure 9.1: Typical structure of a feedforward network (left) and a recurrent network (right). 
 
For the sake of contrast, here are some characteristic properties of feedforward networks: 
 

 Typically, activation is fed forward from input to output through "hidden layers" (as in 
MLPs), though many other architectures exist. 

 Mathematically, they implement static input-output mappings (functions). 
 Basic theoretical result: MLPs can approximate arbitrary (term needs some 

qualification) nonlinear maps with arbitrary precision ("universal approximation 
property"). 

 Most popular supervised training algorithm: backpropagation algorithm. 
 Huge literature, 95 % of neural network publications concern feedforward nets (my 

estimate). 
 Have proven useful in many practical applications as approximators of nonlinear 

functions and as pattern classificators. 
 
By contrast, a recurrent neural network (RNN) has (at least one) cyclic path of synaptic 
connections. Basic characteristics:  
 

 Virtually all biological neural networks are recurrent. 
 Mathematically, RNNs implement dynamical systems. While feedforward networks 

are used with "static" data (input-output pairs), RNNs are always used with time series 
data (signals in, signals out). 
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 Basic theoretical result: RNNs can approximate arbitrary (term needs some 
qualification) dynamical systems with arbitrary precision ("universal approximation 
property"). 

 Several types of training algorithms are known, no clear winner. 
 Theoretical and practical difficulties by and large have prevented practical 

applications so far. 
 Not covered in most neuroinformatics textbooks, absent from engineering textbooks. 
 

Types of tasks for which RNNs can, in principle, be used: 
 

 system identification and inverse system identification, 
 filtering and prediction , 
 dynamic pattern classification, 
 stochastic sequence modelling, 
 associative memory, 
 data compression. 

 
Some relevant application areas: 
 

 telecommunication, 
 control of chemical plants, 
 control of engines and generators, 
 fault monitoring, biomedical diagnostics and monitoring, 
 speech recognition, 
 robotics, toys and edutainment, 
 video data analysis, 
 man-machine interfaces. 

 
9.1.2 Time series data 
 
At first glance, there is no big difference in the kind of training data that we use with RNNs 
vs. with feedforward networks. The training samples still essentially look like (xi, di)i = 1,...,N, 
only in the context of RNNs we will use a slightly other convention, namely use u to denote 
inputs, n to denote the sample index, and x(n), d(n) to denote the n-th sample item: 
 
(9.1) Training data: (u(n), d(n))n = 1,...,N 
 
The reason for using this notation is to agree with the conventions in signal processing and 
control, where the symbol u is typically reserved for inputs, and – because one always deals 
with time series data – one writes u(n), d(n) to indicate that the input and teacher values are 
functions of time n. 
 
9.1.3 Formal description of RNNs 
 
Exactly like in feedforward networks, the elementary building blocks of a RNN are neurons 
(we will often use the term units) connected by synaptic links (connections) whose synaptic 
strength is coded by a weight. One typically distinguishes input units, internal (or hidden) 
units, and output units. At a given time, a unit has an activation.We denote the activations of 
input units by u(n), of internal units by x(n), of output units by y(n). Sometimes we ignore the 
input/internal/output distinction and then use x(n) in a metonymical fashion.  
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Figure 9.2: A typology of RNN models (incomplete). 
 
There are many types of formal RNN models (see Fig. 9.2). Discrete-time models are 
mathematically cast as maps iterated over discrete time steps n = 1, 2, 3, ... . Continuous-time 
models are defined through differential equations whose solutions are defined over a 
continous time t. Especially for purposes of biological modeling, continuous dynamical 
models can be quite involved and describe activation signals on the level of individual action 
potentials (spikes). Often the model incorporates a specification of a spatial topology, most 
often of a 2D surface where units are locally connected in retina-like structures.  
 
In this tutorial we will only consider a particular kind of discrete-time models without spatial 
organization. Our model consists of K input units with an activation (column) vector  
 
(9.2)   

€ 

u(n) = (u1(n),…,uK (n))
T ,  

 
of N internal units with an activation vector 
 
(9.3)   

€ 

x(n) = (x1(n),…,xN (n))
T ,  

 
and of L output units with an activation vector 
 
(9.4)   

€ 

y(n) = (y1(n),…,yL (n))
T , 

 
The input / internal / output connection weights are collected in N x K / N x N / L x (K+N) 
weight matrices 
 
(9.5) 

€ 

W in = (wij
in ), W = (wij ), Wout = (wij

out ). 
 
The output units may optionally project back to internal units with connections whose weights 
are collected in a N x L backprojection weight matrix 
 
(9.6) 

€ 

Wback = (wij
back ). 
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Figure 9.3: Our basic RNN architecture. Shaded arrows indicate optional connections. Dotted 
arrows mark connections which are trained in the "echo state network" approach (in other 
approaches, all connections can be trained).  
 
 
A zero weight value can be interpreted as "no connection". Note that output units may have 
connections not only from internal units but also (often) from input units and (rarely) from 
output units.  
 
The activation of internal units is updated according to  
 
(9.7) 

€ 

x(n +1) = f(W inu(n +1) +Wx(n) +Wbacky(n)),  
 
where u(n+1) is the externally given input, and f denotes the component-wise application of 
the individual unit's transfer function, f (also known as activation function, unit output 
function, or squashing function). We will mostly use the sigmoid function f = tanh but 
sometimes also consider linear networks with f = 1. The output is computed according to 
 
(9.8) 

€ 

y(n +1) = f out (Wout (u(n +1),x(n +1)),  
 
where (u(n+1),x(n+1),y(n)) denotes the concatenated vector made from input, internal, and 
output activation vectors. We will use output transfer functions fout = tanh or fout = 1; in the 
latter case we have linear output units. 
 
9.1.4 Example: a little timer network  
 
Consider the input-output task of timing. The input signal has two components. The first 
component u1(n) is 0 most of the time, but sometimes jumps to 1. The second input u2(n) can 
take values between 0.1 and 1.0 in increments of 0.1, and assumes a new (random) of these 
values each time u1(n) jumps to 1. The desired output is 0.5 for 10 · u2(n) time steps after 
u1(n) was 1, else is 0. This amounts to implementing a timer: u1(n) gives the "go" signal for 
the timer, u2(n) gives the desired duration.  
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Figure 9.4: Schema of the timer network. 
 
The following figure shows traces of input and output generated by a RNN trained on this 
task according to the ESN approach: 
 

    
 
Figure 1.7: Performance of a RNN trained on the timer task. Solid line in last graph: desired 
(teacher) output. Dotted line: network output. 
 
Clearly this task requires that the RNN must act as a memory: it has to retain information 
about the "go" signal for several time steps. This is possible because the internal recurrent 
connections let the "go" signal "reverberate" in the internal units' activations. Generally, tasks 
requiring some form of memory are candidates for RNN modeling.  
 
 

9.2 Standard training techniques for RNNs 
 
During the 1990’s, several methods for supervised training of RNNs have been explored, 
which today already might be considered "classics". All of these rely on gradient descent 
methods for training error minimization. Since 2000, an altogether different approach to RNN 
training was found, which will be presented later. In this subsection we review the most 
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important "classical" trianing methods: backpropagation through time (BPTT), real-time 
recurrent learning (RTRL), and extended Kalman filtering based techniques (EKF). BPTT is 
probably the most widely used, RTRL is the mathematically most straightforward, and EKF is 
(arguably) the technique among the classics that gives best results – if used by experts. 
 
 
9.2.1 Backpropagation revisited 
 
BPTT is an adaptation of the well-known backpropagation training method known from 
feedforward networks.  
 
We start with a recap of this notation, as introduced in section 8.1. We consider a multi-layer 
perceptron (MLP) with k hidden layers of neurons.Together with the layer of input units and 
the layer of output units this gives k+2 layers of units altogether, which we number by 0, ..., 
k+1 (as in figure 8.1). The number of input units is L0, of output units Lk+1, and of units in 
hidden layer m is Lm. The weight of the j-th unit in layer m and the i-th unit in layer m+1 is 
denoted by wij

m. The activation of the i-th unit in layer m is xi
m (for m = 0 this is an input 

value, for m = k+1 an output value).  
 
The training data for a feedforward network training task consist of T input-output (vector-
valued) data pairs  
 
(9.9) 

€ 

u(n) = (x1
0(n),...,x

L0
0 (n))T , d(n) = (d1

k+1(n),...,d
Lk+1
k+1 (n))T , 

 
where n denotes training instance, not time. The activation of non-input units is computed 
according to  
 
(9.10) 

€ 

xi
m+1(n) = f ( wij

m

j=1,...,N m

∑ x j (n)). 

 
(Standardly one also has bias terms, which we omit here). Presented with teacher input u(t), 
the previous update equation is used to compute activations of units in subsequent hidden 
layers, until a network response  
 
(9.11)   

€ 

y(n) = (x1
k+1(n),…,xL

k+1(n))' 
 
is obtained in the output layer. The objective of training is to find a set of network weights 
such that the summed squared error 
 
(9.12) 

€ 

E = d(n) − y(n)
n=1,...,T
∑

2
= E(n)

n=1,...,T
∑  

 
is minimized. This is done by incrementally changing the weights along the direction of the 
error gradient w.r.t. weights 
 

(9.13) 

€ 

∂E
∂wij

m =
∂E(n)
∂wij

m
t=1,...T
∑  

 
using a (small) learning rate γ: 
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(9.14) 

€ 

new wij
m = wij

m − γ
∂E
∂wij

m . 

 
This is the formula used in batch learning mode, where new weights are computed after 
presenting all training samples. One such pass through all samples is called an epoch. Before 
the first epoch, weights are initialized, typically to small random numbers. A variant is 
incremental learning, where weights are changed after presentation of individual training 
samples: 
 

(9.15) 

€ 

new wij
m = wij

m − γ
∂E(n)
∂wij

m . 

 

The central subtask in this method is the computation of the error gradients 

€ 

∂E(n)
∂wij

m , which is 

affected by the backpropagation algorithm which we described in Section 8.2. 
 
 
9.2.2. Backpropagation through time 
 
The feedforward backpropagation algorithm cannot be directly transferred to RNNs because 
the error backpropagation pass presupposes that the connections between units induce a cycle-
free ordering. The solution of the BPTT approach is to "unfold" the recurrent network in time, 
by stacking identical copies of the RNN, and redirecting connections within the network to 
obtain connections between subsequent copies. This gives a feedforward network, which is 
amenable to the backpropagation algorithm. 
 

 
Figure 9.6: Schema of the basic idea of BPTT. A: the original RNN. B: The feedforward 
network obtained from it. The case of single-channel input and output is shown. 
 
The weights wij

in, wij, wij
out, wij

back are identical in/between all copies. The teacher data 
consists now of a single input-output time series  
 
(9.16)    

€ 

u(n) = (u1 (n),…,uK (n))' , d(n) = (d1 (n),…,dL (n))' n =1,…T . 
 
The forward pass of one training epoch consists in updating the stacked network, starting 
from the first copy and working upwards through the stack. At each copy (= time) n input 
u(n) is read in, then the internal state x(n) is computed from u(n), x(n-1) [and from y(n-1) if 
nonzero wij

back exist], and finally the current copy's output y(n) is computed.  
 



 126 

The error to be minimized is again (like in (9.12)) 
 
(9.17) 

€ 

E = d(n) − y(n)
n=1,...,T
∑

2
= E(n)

n=1,...,T
∑ , 

 
but the meaning of n has changed from "training instance" to "time". The algorithm is a 
straightforward, albeit notationally complicated, adaptation of the feedforward algorithm: 
 
 
Input: current weights wij, training time series. 
 
Output: new weights. 
 
Computation steps: 
 
1. 

Forward pass: as described above.  
2. 

Compute, by proceeding backward through n = T,...,1, for each time n and unit 
activation xi(n), yj(n) the error propagation term di(n)  
 

(9.18) 

€ 

δ j (T) = (d j (T) − y j (T))
∂f (u)
∂u u= z j (T )

 

 
for the output units of time layer T and 
 

(9.19) 

€ 

δi (T) = δ j (T)w ji
out

j=1

L

∑
 

 
 
 

 

 
 
 

∂f (u)
∂u u= zi (n )

 

 
for internal units xi(T) at time layer T and 
 

(9.20 

€ 

δ j (n) = (d j (n) − y j (n))+ δi (n +1)wij
back

i=1

N

∑
 

 
 

 

 
 
∂f (u)
∂u u= z j (n )

 

 
for the output units of earlier layers, and  
 

(9.21) 

€ 

δi (n) = δ j (n +1)w ji
j=1

N

∑ + δ j (n)w ji
out

j=1

L

∑
 

 
 
 

 

 
 
 

∂f (u)
∂u u= zi (n )

 

 
for internal units xi(n) at earlier times, where zi(n) again is the potential of the 
corresponding unit.  

 
3.  

Adjust the connection weights according to 
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(2.22) 

€ 

new wij = wij + γ δi (n) x j (n −1)
n=1

T

∑ [use x j (n −1) = 0 for n =1]

new wij
in = wij

in + γ δi (n)u j (n)
n=1

T

∑

new wij
out = wij

out + γ ×

δi (n)u j (n), if j refers to input unit
n=1

T

∑

δi (n) x j (n −1), if j refers to hidden unit
n=1

T

∑

 

 

 
 
 

 

 
 
 

new wij
back = wij

back + γ δi (n) y j (n −1)
n=1

T

∑ [use y j (n −1) = 0 for n =1]

 

 
Warning: programming errors are easily made but not easily perceived when they degrade 
performance only slightly. 
 
The remarks concerning slow convergence made for standard backpropagation carry over to 
BPTT. The computational complexity of one epoch is O(T N2), where N is number of internal 
units. Several thousands of epochs are typically required.  
 
A variant of this algorithm is to use the teacher output 

€ 

d(n)  in the computation of activations 
in layer n+1 in the forward pass. This is known as teacher forcing. Teacher forcing typically 
speeds up convergence, or even be necessary to achieve convergence at all, but when the 
trained network is exploited, it may exhibit instability. A general rule when to use teacher 
forcing cannot be given.  
 
A drawback of this "batch" BPTT is that the entire teacher time series must be used. This 
precludes applications where online adaptation is required. The solution is to truncate the past 
history and use, at time n, only a finite history  
 
(9.23)    

€ 

u(n − p),u(n − p +1),…,u(n) ,d(n − p),d(n − p +1),…,d(n)  
 
as training data. Since the error backpropagation terms d need to be computed only once for 
each new time slice, the complexity is O(N2) per time step. A potential drawback of such 
truncated BPPT (or p-BPTT) is that memory effects exceeding a duration p cannot be 
captured by the model. Anyway, BPTT generally has difficulties capturing long-lifed memory 
effects, because backpropagated error gradient information tends to "dilute" exponentially 
over time. A frequently stated opinion is that memory spans longer than 10 to 20 time steps 
are hard to achieve. 
 
Repeated execution of training epochs shift a complex nonlinear dynamical system (the 
network) slowly through parameter (weight) space. Therefore, bifurcations are necessarily 
encountered when the starting weights induce a qualitatively different dynamical behavior 
than task requires. Near such bifurcations, the gradient information may become essentially 
useless, dramatically slowing down convergence. The error may even suddenly grow in the 
vicinity of such critical points, due to crossing bifurcation boundaries. Unlike feedforward 
backpropagation, BPTT is not guaranteed to converge to a local error minimum. This 
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difficulty cannot arise with feedforward networks, because they realize functions, not 
dynamical systems.   
 
All in all, it is far from trivial to achieve good results with BPTT, and much experimentation 
(and processor time) may be required before a satisfactory result is achieved.  
 
Because of limited processing time, BPTT is typically used with small networks sizes in the 
order of 3 to 20 units. Larger networks may require many hours of computation on current 
hardware.  
 
 

9.2.3. Real-time recurrent learning 

 
Real-time recurrent learning (RTRL) is a gradient-descent method which computes the exact 
error gradient at every time step. It is therefore suitable for online learning tasks. I basically 
quote the description of RTRL given in Doya (199516). The most cited early description of 
RTRL is Williams & Zipser (198917).  
 
The effect of weight change on the network dynamics can be seen by simply differentiating 
the network dynamics equations (9.7) and (9.8) by its weights. For convenience, activations of 
all units (whether input, internal, or output) are enumerated and denoted by vi and all weights 
are denoted by wkl, with i = 1,...,N denoting internal units, i = N+1,...,N+L  denoting output 
units, and i = N+L+1,...,N+L+K  denoting input units. The derivative of an internal or output 
unit w.r.t. a weight wkl is given by 
 

(9.24) 
  

€ 

∂vi(n +1)
∂wkl

= ′ f (ai(n)) ( wij

∂v j (n)
∂wkl

) + δikvl (n)
j=1

n

∑
 

 
 
 

 

 
 
 

i =1,…,N + L , 

 
where k, l ≤ N + L + K, aii(n) is again the unit's potential (as in (8.14)), but δik here denotes 
Kronecker's delta (δik =1 if i = k and 0 otherwise). The term δik vl(n) represents an explicit 
effect of the weight wkl onto the unit k, and the sum term represents an implicit effect onto all 
the units due to network dynamics. 
 
Equation (9.24) for each internal or output unit constitutes an N+L-dimensional discrete-time 
linear dynamical system with time-varying coefficients, where  
 

(9.25)   
  

€ 

∂v1
∂wkl

,…,∂vN +L

∂wkl

 

 
 

 

 
  

 
is taken as a dynamical variable. Since the initial state of the network is independent of the 
connection weights, we can initialize (9.24) by  

(9.26) 

€ 

∂vi(0)
∂wkl

= 0 . 

                                                
16 Doya, K. (1992), Bifurcations in the learning of recurrent neural networks. Proceedings of 1992 IEEE Int. Symp. On 
Circuits and Systems vol. 6, 1992, 2777-2780 
17 Williams, R.J. and D. Zipser (1989) A learning algorithm for continually running fully recurrent neural networks. Neural 
Computation 1, 1989, 270-280 
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Thus we can compute (9.25) forward in time by iterating equation (9.24) simultaneously with 
the network dynamics (9.7) and (9.8). From this solution, we can calculate the error gradient 
(for the error given in (9.12)) by the chain rule as follows: 
 

(9.27) 

€ 

∂E
∂wkl

= 2 (vi(n) − di(n))
i=N

N +L

∑
n=1

T

∑ ∂vi(n)
∂wkl

. 

 
A standard batch gradient descent algorithm is to accumulate the error gradient by equation 
(9.27) and update each weight after a complete epoch of presenting all training data by 
 

(9.28) 

€ 

new wkl = wkl − γ
∂E
∂wkl

, 

where γ is is a learning rate. An alternative update scheme is the gradient descent of current 
output error at each time step,  
 

(9.29) 

€ 

wkl (n +1) = wkl (n) − γ (vi(n) − di(n))
i=1

L

∑ ∂vi(n)
∂wkl

. 

Note that we assumed wkl is a constant, not a dynamical variable, in deriving (9.27), so we 
have to keep the learning rate small enough. (9.29) is referred to as real-time recurrent 
learning.  
 
RTRL is mathematically transparent and in principle suitable for online training. However, 
the computational cost is O((N+L)4) for each update step, because we have to solve the 
(N+L)-dimensional system (9.24) for each of the weights. This high computational cost 
makes RTRL useful for online adaptation only when very small networks suffice.  
 

9.2.4. Higher-order gradient descent techniques 
 
Just a little note: Pure gradient-descent techniques for optimization generally suffer from slow 
convergence when the curvature of the error surface is different in different directions. In that 
situation, on the one hand the learning rate must be chosen small to avoid instability in the 
directions of high curvature, but on the other hand, this small learning rate might lead to 
unacceptably slow convergence in the directions of low curvature. A general remedy is to 
incorporate curvature information into the gradient descent process. This requires the 
calculation of the second-order derivatives, for which several approximative techniques have 
been proposed in the context of recurrent neural networks. These calculations are expensive, 
but can accelerate convergence especially near an optimum where the error surface can be 
reasonably approximated by a quadratic function. Dos Santos & von Zuben (200018) and 
Schraudolph (200219) provide references, discussion, and propose approximation techniques 
which are faster than naive calculations.  
 
 

                                                
18 Dos Santos, E.P. and von Zuben, F.J. (2000) Efficient second-order learning algorithms for discrete-time 
recurrent neural networks. In: Medsker, L.R. and Jain, L.C. (eds), Recurrent Neural Networsk: Design and 
Applications, 2000, 47-75. CRC Press: Boca Raton, Florida 
19 Schraudolph, N. (2002). Fast curvature matrix-vector products for second-order gradient descent. To appear 
in Neural Computation. Manuscript online at http://www.icos.ethz.ch/~schraudo/pubs/#mvp. 
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9.2.5 Extended Kalman-filtering approaches 
 
9.2.5.1 The extended Kalman filter 
 
The extended Kalman filter (EKF) is a state estimation technique for nonlinear systems 
derived by linearizing the well-known linear-systems Kalman filter around the current state 
estimate. We consider a simple special case, a time-discrete system with additive input and no 
observation noise: 
 

(9.30) 

€ 

x(n +1) = f(x(n))+ q(n)
d(n) = hn (x(n))

, 

 
where x(n) is the system's internal state vector, f is the system's state update function (linear in 
original Kalman filters), q(n) is external input to the system (an uncorrelated Gaussian white 
noise process, can also be considered as process noise), d(n) is the system's output, and hn is a 
time-dependent observation function (also linear in the original Kalman filter). At time n = 0, 
the system state x(0) is guessed by a multidimensional normal distribution with mean 

€ 

ˆ x (0) 
and covariance matrix P(0). The system is observed until time n through d(0),..., d(n). The 
task addressed by the extended Kalman filter is to give an estimate 

€ 

ˆ x (n +1) of the true state 
x(n+1), given the initial state guess and all previous output observations. This task is solved 
by the following two time update and three measurement update computations: 
 

(9.31) 

€ 

ˆ x * (n) = F( ˆ x (n))
P * (n) = F(n)P(n −1)F(n)t + Q(n)

 

 

(9.32)  

€ 

K(n) = P * (n)H(n)[H(n)tP * (n)H(n)]−1

ˆ x (n +1) = ˆ x * (n) + K(n)ξ(n)
P(n +1) = P * (n) −K(n)H(n)tP * (n)

 

 
where we roughly follow the notation in Singhal and Wu (1989)20, who first applied extended 
Kalman filtering to (feedforward) network weight estimation. Here F(n) and H(n) are the 
Jacobians  
 

(9.33) 

€ 

F(n) =
∂f (x)
∂x x= ˆ x (n )

, H(n) =
∂hn (x)
∂x x= ˆ x (n )

 

 
of the components of f, hn with respect to the state variables, evaluated at the previous state 
estimate; 

€ 

ξ(n) = d(n) −hn ( ˆ x (n))  

€ 

ξ(n) = d(n) −hn ( ˆ x (n))

€ 

ξ(n) is the error (difference between 
observed output and output calculated from state estimate 

€ 

ˆ x (n)), P(n) is an estimate of the 
conditional error covariance matrix E[ξξ | d(0),..., d(n)]; Q(n) is the (diagonal) covariance 
matrix of the process noise, and the time updates 

€ 

ˆ x * (n),P * (n) of state estimate and state 
error covariance estimate are obtained from extrapolating the previous estimates with the 
known dynamics f.  
 

                                                
20 Singhal, S. and L. Wu (1989), Training multilayer perceptrons with the extended Kalman algorithm. In D.S. 
Touretzky (ed.), Advances in Neural Information Processing Systems 1, 1989, 133-140. San Mateo, CA: Morgan 
Kaufmann 
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The basic idea of Kalman filtering is to first update 

€ 

ˆ x (n),P(n)  to preliminary guesses 

€ 

ˆ x * (n),P * (n) by extrapolating from their previous values, applying the known dynamics in 
the time update steps (9.31), and then adjusting these preliminary guesses by incorporating the 
information contained in d(n) – this information enters the measurement update in the form of 
ξ(n), and is accumulated in the Kalman gain K(n). 
 
In the case of classical (linear, stationary) Kalman filtering, F(n) and H(n) constant, and the 
state estimates converge to the true conditional mean state E[x(n) | d(0),..., d(n)]. For 
nonlinear f, hn, this is not generally true, and the use of extended Kalman filters leads only to 
locally optimal state estimates.  
 
9.2.5.2 Applying EKF to RNN weight estimation 
 
Assume that there exists a RNN which perfectly reproduces the input-output time series of the 
training data 
 
(9.34)   

€ 

u(n) = (u1 (n),…,uK (n))
t , d(n) = (d1 (n),…,dL (n))

t n =1,…T  
 
where the input / internal / output / backprojection connection weights are as usual collected 
in N x K / N x N / L x (K+N+L) / N x L  weight matrices 
 
(9.35) 

€ 

W in = (wij
in ), W = (wij ), Wout = (wij

out ), Wback = (wij
back ) . 

 
In this subsection, we will not distinguish between all these different types of weights and 
refer to all of them by a weight vector w.  
 
In order to apply EKF to the task of estimating optimal weights of a RNN, we interpret the 
weights w of the perfect RNN as the state of a dynamical system. From a bird's eye 
perspective, the output d(n) of the RNN is a function h of the weights and input up to n: 
 
(9.36)  

€ 

d(n) = h(w,u(0),...,u(n))  
 
where we assume that the transient effects of the initial network state have died out. The 
inputs can be integrated into the output function h, rendering it a time-dependent function hn. 
We further assume that the network update contains some process noise, which we add to the 
weights (!) in the form of a Gaussian uncorrelated noise q(n). This gives the following version 
of (9.30) for the dynamics of the perfect RNN: 
 

(9.37) 

€ 

w(n +1) = w(n) + q(n)
d(n) = hn (x(n))

 

 
Except for noisy shifts induced by process noise, the state "dynamics" of this system is static, 
and the input u(n) to the network is not entered in the state update equation, but is hidden in 
the time-dependence of the observation function. This takes some mental effort to swallow! 
 
The network training task now takes the form of estimating the (static, perfect) state w(n) 
from an initial guess  and the sequence of outputs d(0),..., d(n). The error covariance 
matrix P(0) is initialized as a diagonal matrix with large diagonal components, e.g. 100.  
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The simpler form of (9.37) over (9.30) leads to some simplifications of the EKF recursions 
(9.31) and (9.32): because the system state (= weight!) dynamics is now trivial, the time 
update steps become unnecessary. The measurement updates become 
 

(9.38) 

€ 

K(n) = P(n)H(n)[H(n)tP(n)H(n)]−1

ˆ w (n +1) = ˆ w (n) + K(n)ξ(n)
P(n +1) = P(n) −K(n)H(n)tP(n) + Q(n)

 

 
A learning rate η (small at the beginning [!] of learning to compensate for initially bad 
estimates of P(n)) can be introduced into the Kalman gain update equation: 
 
(9.39) 

€ 

K(n) = P(n)H(n)[(1/η)I+H(n)tP(n)H(n)]−1, 
 
which is essentially the formulation given in Puskorius and Feldkamp (1994)21.  
 
Inserting process noise q(n) into EKF has been claimed to improve the algorithm's numerical 
stability, and to avoid getting stuck in poor local minima (Puskorius and Feldkamp 1994).  
 
EKF is a second-order gradient descent algorithm, in that it uses curvature information of the 
(squared) error surface. As a consequence of exploiting curvature, for linear noise-free 
systems the Kalman filter can converge in a single step. We demonstrate this by a super-
simple feedforward network example. Consider the single-input, single-output network which 
connects the input unit with the output unit by a connection with weight w, without any 
internal unit  
 

(9.40) 

€ 

w(n +1) = w(n)
d(n) = wu(n)

 

 
We inspect the running EKF (in the version of (9.38)) at some time n, where it has reached an 
estimate 

€ 

ˆ w (n). Observing that the Jacobian H(n) is simply dwu(n)/dw = u(n), the next 
estimated state is 
 

(9.41)  

€ 

ˆ w (n +1) = ˆ w (n) +K(n)ξ(n) = ˆ w (n) +
1

u(n)
(wu(n) − ˆ w u(n)) = w . 

 
The EKF is claimed in the literature to exhibit fast convergence, which should have become 
plausible from this example at least for cases where the current estimate 

€ 

ˆ w (n)  is already close 
to the correct value, such that the linearisation yields a good approximation to the true system.  
 
EKF requires the derivatives H(n) of the network outputs w.r.t. the weights evaluated at the 
current weight estimate. These derivatives can be exactly computed as in the RTRL 
algorithm, at cost O(N4). This is too expensive but for small networks. Alternatively, one can 
resort to truncated BPTT, use a "stacked" version of (9.37) which describes a finite sequence 
of outputs instead of a single output, and obtain approximations to H(n) by a procedure 
analogous to (9.18) – (9.21). Two variants of this approach are detailed out in Feldkamp et al. 
(1998)22. The cost here is O(pN2), where p is the truncation depth.  

                                                
21 Puskorius, G.V. and L. A. Feldkamp (1994) Neurocontrol of nonlinear dynamical systems with Kalman filter 
trained recurrent networks. IEEE Transactions on Neural Networks 5(2), 1994, 279-297 
22 Feldkamp, L. A., Prokhorov, D., Eagen, C.F., and F. Yuan (1998) Enhanced multistream Kalman filter 
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Apart from the calculation of H(n), the most expensive operation in EKF is the update of 
P(n), which requires O(LN2) computations. By setting up the network architecture with 
suitably decoupled subnetworks, one can achieve a block-diagonal P(n), with considerable 
reduction in computations (Feldkamp et al. 1998).  
 
As far as I have an overview, it seems to me that currently the best results in RNN training are 
achieved with EKF, using truncated BPTT for estimating H(n), demonstrated especially in 
many remarkable achievements from Lee Feldkamp's research group (see references). As with 
BPTT and RTRL, the eventual success and quality of EKF training depends very much on 
professional experience, which guides the appropriate selection of network architecture, 
learning rates, the subtelties of gradient calculations, presentation of input (e.g., windowing 
techniques), etc.  
 
The methods presented so far – BPTT, RTRL, and EKF training – are all gradient-descent-
based. A unifying framework for these techniques (and some others) has been given in Atiya 
and Parlos(200023). They also introduced another learning rule, which combines and 
gerneralizes insights from BPTT, RTRL, and EKF, now frequently referred to as the Atiya- 
Parlos learning rule. 
 

9.3 Echo state networks 

9.3.1 First example: a sinewave generator 
 
In this subsection I informally demonstrate the principles of echo state networks (ESN) by 
showing how to train a RNN to generate a sinewave. 
 
The desired sinewave is given by d(n) = 1/2 sin(n/4). The task of generating such a signal 
involves no input, so we want a RNN without any input units and a single output unit which 
after training produces d(n). The teacher signal is a 300-step sequence of d(n).  
 
We start by constructing a recurrent network with 20 units, whose internal connection weights 
W are set to random values. We will refer to this network as the "dynamical reservoir" (DR). 
The internal weights W will not be changed in the training described later in this subsection. 
The network's units are standard sigmoid units, as in Eq. (1.6), with a transfer function f = 
tanh. 
 
A randomly constructed RNN, such as our DR, might develop oscillatory or even chaotic 
acitivity even in the absence of external excitation. We do not want this to occur: The ESN 
approach needs a DR which is damped, in the sense that if the network is started from an 
arbitrary state x(0), the subsequent network states converge to the zero state. This can be 
achieved by a proper global scaling of W: the smaller the weights of W, the stronger the 
damping. We assume that we have scaled W such that we have a DR with modest damping. 
Fig. 9.7 shows traces of the 20 units of our DR when it was started from a random initial state 
x(0). The desired damping is clearly visible. 
 
                                                                                                                                                   
training for recurrent networks. In: J.A.K. Suykens and J. Vandewalle (ed.), Nonlinear modeling: advanced 
black-box techniques, 1998, 29-53. Boston: Kluwer 
23 Atiya, A.F. and Parlos, A.G. (2000), New Results on Recurrent Network Training: Unifying the Algorithms 
and Accelerating Convergence, IEEE Trans. Neural Networks 11(3), 697-709 
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Figure 9.7. The damped dynamics of our dynamical reservoir.  
 
 
We add a single output unit to this DR. This output unit features connections that project back 
into the DR. These backprojections are given random weights Wback, which are also fixed do 
not change during subsequent training. We use a linear output unit in this example, i.e. fout = 
id. 
 
The only connections which are changed during learning are the weights Wout from the DR to 
the output unit. These weights are not defined (nor are they used) during training. Figure 6.2 
shows the network prepared for training.  
 
 

 
 
Figure 9.8: Schematic setup of ESN for training a sinewave generator. 
 
The training is done in two stages, sampling and weight computation.  
 
Sampling. During the sampling stage, the teacher signal is written into the output unit for 
times n = 1,....,300. (Writing the desired output into the output units during training is often 
called teacher forcing). The network is started at time n = 1 with an arbitrary starting state; we 
use the zero state for starting but that is just an arbitrary decision. The teacher signal d(n) is 
pumped into the DR through the backprojection connections Wback and thereby excites an 
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activation dynamics within the DR. Figure 9.9 shows what happens inside the DR for 
sampling time steps n = 101,...,150.  
 

 
 
Figure 9.9. The dynamics within the DR induced by teacher-forcing the sinewave d(n) in the 
output unit. 50-step traces of the 20 internal DR units and of the teacher signal (last plot) are 
shown.  
 
We can make two important observations: 
 

 The activation patterns within the DR are all periodic signals of the same period length 
as the driving teacher d(n).  

 The activation patterns within the DR are different from each other.  
 
During the sampling period, the internal states x(n) = (x1(n),...,x20(n)) for n = 101, ..., 300 are 
collected into the rows of a state-collecting matrix M of size 200x20. At the same time, the 
teacher outputs d(n) are collected into the rows of a matrix T of size 200x1.  
 
We do not collect information from times n = 1, ..., 100, because the network's dynamics is 
initially partly determined by the network's arbitrary starting state. By time n = 100, we can 
safely assume that the effects of the arbitrary starting state have died out and that the network 
states are a pure reflection of the teacher-forced d(n), as is manifest in Fig. 9.9. 
 
Weight computation. We now compute 20 output weights wi

out for our linear output unit y(n) 
such that the teacher time series d(n) is approximated as a linear combination of the internal 
activation time series xi(n) by   
 

(9.42) 

€ 

d(n) ≈ y(n) = wi
out xi(n)

i=1

20

∑ . 

 
More specifically, we compute the weights wi

out such that the mean squared training error  



 136 

 

(9.43) 

€ 

MSE train =1/200 (d(n) − y(n))2
n=101

300

∑ =1/200 (d(n) − wi
out xi(n)

i=1

20

∑ )2
n=101

300

∑  

 
is minimized.  
 
From a mathematical point of view, this is a linear regression task: compute regression 
weights wi

out for a regression of d(n) on the network states xi(n). [n = 101, ..., 300].   
 
From an intuitive-geometrical point of view, this means combining the 20 internal signals 
seen in Fig. 9.9 such that the resulting combination best approximates the last (teacher) signal 
seen in the same figure.  
 
From an algorithmical point of view, this offline computation of regression weights boils 
down to the computation of a pseudoinverse: The desired weights which minimize MSEtrain 
are obtained by multiplying the pseudoinverse of M with T (we have derived this method for 
computing linear regression weights already in section 4.5, equation (4.51)!): 
 
(9.44) 

€ 

Wout =M+T 
 
In our example, the training error computed by (9.43) with optimal output weights obtained 
by (9.44) was found to be MSEtrain.= 1.2e–13.  
 
The computed output weights are implemented in the network, which is then ready for use. 
 
Exploitation. After the learnt output weights were written into the output connections, the 
network was run for another 50 steps, continuing from the last training network state x(300), 
but now with teacher forcing switched off. The output y(n) was now generated by the trained 
network all on its own [n = 301, ..., 350]. The test error 
 

(9.45) 

€ 

MSE test =1/50 (d(n) − y(n))2
n= 301

350

∑  

 
was found to be MSEtest.= 5.6e–12. This is greater than the training error, but still very small. 
The network has learnt to generate the desired sinewave very precisely. An intuitive 
explanation of this precision would go as follows: 
 

 The sinewave y(n) at the output unit evokes periodic signals xi(n) inside the DR whose 
period length is identical to that of the output sine.  

 These periodic signals make a kind of "basis" of signals from which the target y(n) is 
combined. This "basis" is optimally "pre-adapted" to the target in the sense of identical 
period length. This pre-adaptation is a natural consequence of the fact that the "basis" 
signals xi(n) have been induced by the target itself, via the feedback projections.  

 
So, in a sense, the task [to combine y(n) from xi(n)] is solved by means [the xi(n)] which have 
been formed by the very task [by the backprojection of y(n) into the DR]. Or said in intuitive 
terms, the target signal y(n) is re-constituted from its own echos xi(n)! 
 
An immediate question concerns the stability of the solution. One may rightfully wonder 
whether the error in testing phase, small as it was in the first 50 steps, will not grow over time 
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and finally render the network's global oscillation unstable. That is, we might suspect that the 
precise continuation of the sine output after the training is due to the fact that we start testing 
from state x(300), which was produced by teacher forcing. However, this is not usually the 
case. Most networks trained according to the prescription given here can be started from 
almost any arbitrary nonzero starting state and will lock into the desired sinewave. Figure 
9.10 shows an example. In mathematical terms, the trained network is a dynamical system 
with a single attractor, and this attractor is the desired oscillation. However, the strong 
stability observed in this example is a pleasant side-effect ot the simplicity of the sinewave 
generating task. When the tasks become more difficult, the stability of the trained dynamics is 
indeed a critical issue for ESN training.  
 

 
 
Figure 9.10: Starting the trained network from a random starting state. Plot shows first 50 
outputs. The network quickly settles into the desired sinewave oscillation.  
 

9.3.2 Second Example: a tuneable sinewave generator 
 
We now make the sinewave generation task more difficult by demanding that the sinewave be 
adjustable in frequency. The training data now consists of an input signal u(n), which sets the 
desired frequency, and an output d(n), which is a sinewave whose frequency follows the input 
u(n). Figure 9.11 shows the resulting network architecture and a short sequence of teacher 
input and output.  
 
 
 
 
 
 
 
 
 
 
Figure 9.11: Setup of tuneable sinewave generator task. Trainable connections appear as 
dotted red arrows, fixed connections as solid black arrows.  
 
Because the task is now more difficult, we use a larger DR with 100 units. In the sampling 
period, the network is driven by the teacher data. This time, this involves both inputting the 
slow signal u(n), and teacher-forcing the desired output d(n). We inspect the resulting 
activation patterns of internal units and find that they reflect, combine, and modify both u(n) 
and d(n) (Figure 9.12).  
 



 138 

 
 
Figure 9.12: Traces of some internal DR units during the sampling period in the tuneable 
frequency generation task.  
 
In this example we use a sigmoid output unit. In order to make that work, during sampling we 
collect into T not the raw desired output d(n) but the transfer-inverted version tanh-1(d(n)). 
We also use a longer training sequence of 1200 steps of which we discard the first 200 steps 
as initial transient. The training error which we minimize concerns the tanh-inverted 
quantities: 
 
(9.46)
 

€ 

MSE train =1/1000 (tanh−1 d(n) − tanh−1 y(n))2
n= 201

1000

∑ =1/1000 (tanh−1 d(n) − wi
out xi(n)

i=1

100

∑ )2
n201

1000

∑  

 
This is achieved, as previously, by computing 

€ 

Wout =M+T. The training error was found to be 
8.1e-6, and the test error on the first 50 steps after inserting the computed output weights was 
0.0006. Again, the trained network stably locks into the desired type of dynamics even from a 
random starting state, as displayed in Figure 9.13. 
 

 
 
Figure 9.13 Starting the trained generator from a random starting state.  
 
Stability of the trained network was not as easy to achieve here as in the previous example. In 
fact, a trick was used which was found empirically to foster stable solutions. The trick is to 
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insert some noise into the network during sampling. That is, during sampling, the network 
was updated according to the following variant of (9.7): 
 
(9.47) 

€ 

x(n +1) = f(W inu(n +1) +Wx(n) +Wbacky(n) + ν(n)), 
 
where ν(n) is a small white noise vector of size N. 
 
 
9.3.3 Mathematics of echo states 
 
In the two introductory examples, we rather vaguely said that the DR should exhibit a 
"damped" dynamics. We now describe in a rigorous way what kind of "damping" is required 
to make the ESN approach work, namely, that the DR must have echo states.  
 
The key to understanding ESN training is the concept of echo states. Having echo states (or 
not having them) is a property of the network prior to training, that is, a property of the weight 
matrices Win, W, and (optionally, if they exist) Wback. The property is also relative to the type 
of training data: the same untrained network may have echo states for certain training data but 
not for others. We therefore require that the training input vectors u(n) come from a compact 
interval U and the training output vectors d(n) from a compact interval D. We first give the 
mathematical definition of echo states and then provide an intuitive interpretation. 

 
Definition 9.1 (echo states). Assume an untrained network with weights Win, W, and Wback is 
driven by teacher input u(n) and teacher-forced by teacher output d(n) from compact intervals 
U and D. The network (Win, W, Wback) has echo states w.r.t. U and D, if for every left-infinite 
input/output sequence (u(n), d(n)), where n = ..., -2,-1,0, and for all state sequences x(n), x'(n) 
compatible with the teacher sequence, i.e. with 

 

(9.48) 

€ 

x(n +1) = f(W inu(n +1) +Wx(n) +Wbackd(n))
x'(n +1) = f(W inu(n +1) +Wx'(n) +Wbackd(n))

 

 
it holds that x(n) = x'(n) for all n ≤ 0.  

 
Intuitively, the echo state property says, "if the network has been run for a very long time 
[from minus infinity time in the definition], the current network state is uniquely determined 
by the history of the input and the (teacher-forced) output". An equivalent way of stating this 
is to say that for every internal signal xi(n) there exists an echo function ei which maps 
input/output histories to the current state: 
 

(9.49) 
    

€ 

ei : (U ×D)− → 

....,(u(−1),d(−2)),(u(0),d(−1))( ) xi(0)
 

 
We often say, somewhat loosely, that a (trained) network (Win, W, Wout, Wback) is an echo 
state network if its untrained "core" (Win, W, Wback) has the echo state property w.r.t. 
input/output from any compact interval U ×D.  
 
Several conditions have been shown to be equivalent to echo states. We provide one for 
illustration. 
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Definition 9.2 (uniformly state contracting). With the same assumptions as in Def. 9.1, the 
network (Win, W, Wback) is uniformly state contracting w.r.t. U and D, if there exists a null 
sequence (δn)n  ≥ 1, such that for all right-infinite input/output sequences (u(n), d(n-1)) є U x D, 
where n = 0,1,2,... and for all starting states x(0), x'(0) and for all n > 0 it holds that  
│x(n) - x'(n)│< δn , where x(n) [resp. x'(n)] is the network state at time n obtained when the 
network is driven by (u(n), d(n-1)) up to time n after having been started in x(0), [resp. in 
x'(0)]. 
 
Intuitively, the state forgetting property says that the effects on initial network state wash out 
over time. Note that there is some subtelty involved here in that the null sequence used in the 
definition depends on the the input/output sequence.  
 
The echo state property is connected to algebraic properties of the weight matrix W. 
Unfortunately, there is no known necessary and sufficient algebraic condition which allows 
one to decide, given (Win, W, Wback), whether the network has the echo state property. We 
quote here from Jaeger (200124) a sufficient condition for the non-existence of echo states.  
 
Proposition 9.1 Assume an untrained network (Win, W, Wback) with state update according to 
(9.7) and with transfer functions tanh. Let W have a spectral radius |λmax| > 1, where |λmax| is 
the largest absolute value of an eigenvector of W. Then the network has no echo states with 
respect to any input/output interval U x D containing the zero input/output (0, 0).  
 
At face value, this proposition is not helpful for finding echo state networks. However, in 
practice it was consistently found that when the condition noted in Proposition 9.1 is not 
satisfied, i.e. when the spectral radius of the weight matrix is smaller than unity, we do have 
an echo state network.  
 
Note that in Proposition 9.1 the input and backprojection weights are not used for the claims. 
It seems that these weights are irrelevant for the echo state property. In practice, it is found 
that they can be freely chosen without affecting the echo state property. Again, a 
mathematical analysis of these observations remains to be done.  
 
For practical purposes, the following procedure (also used in the conjecture) seems to 
guarantee echo state networks: 
 

 Randomly generate an internal weight matrix W0.  
 Normalize W0 to a matrix W1 with unit spectral radius by putting W1 =1/|λmax| W0, 

where |λmax| is the spectral radius of W0. 
 Scale W1 to W = α W1, where α < 1, whereby W has a spectral radius of   α. 
 Then, the untrained network (Win, W, Wback) is (or more precisely, has always been 

found to be) an echo state network, regardless of how Win, Wback are chosen. 
 
The diligent choice of the spectral radius α of the DR weight matrix is of crucial importance 
for the eventual success of ESN training. This is because α is intimately connected to the 
intrinsic timescale of the dynamics of the DR state. Small α means that one has a fast DR, 
large α (i.e., close to unity) means that one has a slow DR. The intrinsic timescale of the task 
should match the DR timescale. For example, if one wishes to train a sine generator as in the 

                                                
24 H. Jaeger (2001), The "echo state" approach to analysing and training recurrent neural networks. GMD 
Report 148, GMD - German National Research Institute for Computer Science, 2001, 
http://www.faculty.iubremen.de/hjaeger/pubs/EchoStatesTechRep.pdf 
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example of Subsection 9.3.1, one should use a small α for fast sinewaves and a large α  for 
slow sinewaves.  
 
Note that the DR timescale seems to depend exponentially on 1 - α so e.g. settings of α = 0.99, 
0.98, 0.97 will yield an exponential speedup of DR timescale, not a linear one. However, 
these remarks rest only on empirical observations; a rigorous mathematical investigation 
remains to be carried out. An illustrative example for a fast task is given in Jaeger (2001, 
Section 4.2), where very fast "switching"-type of dynamics was trained with a DR whose 
spectral radius was set to 0.44, which is quite small considering the exponential nature of time 
scale dependence on α. The sinewave generator and the tuneable sinewave generator from 
above both used a DR with α =  0.8.  
 
Figure 9.14 gives a plot of the training log error log(MSEtrain) of the sinewave generator 
training task considered in Section 9.3.1 obtained with different settings of α. It is evident that 
a proper setting of this parameter is crucial for the quality of the resulting generator network.  
 

  
 
Figure 9.14: log10(MSEtrain) vs. spectral radius of the DR weight matrix for the sinewave 
generator experiment from Section 9.3.1. 
 
 
9.3.4 Training echo state networks: algorithm 
 
With the solid grasp on the echo state concept, we can now give a complete description of 
training ESNs for a given task. In this description we assume that the output unit(s) are 
sigmoid units; we further assume that there are output-to-DR feedback connections. This is 
the most comprehensive version of the algorithm. Often one will use simpler versions, e.g. 
linear output units; no output-to-DR feedback connections; or even systems without input 
(such as the pure sinewave generator). In such cases, the algorithm presented below has to be 
adapted in obvious ways.  
 
Given: A training input/output sequence (u(1), d(1)), ..., (u(T), d(T)).  
 
Wanted: A trained ESN (Win, W, Wback, Wout) whose output y(n) approximates the teacher 
output d(n), when the ESN is driven by the training input u(n).  
 
Notes: 
 

 We can merely expect that the trained ESN approximates the teacher output well after 
initial transient dynamics have washed out, which are invoked by the (untrained, 
arbitrary) network starting state. Therefore, more precisely what we want is that the 
trained ESN approximates the teacher output for times n = T0, ..., T, where T0 > 1. 
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Depending on network size and intrinsic timescale, typical ranges for T0 are 10 (for 
small, fast nets) to 500 (for large, slow nets).  

 What we actually want is not primarily a good approximation of the teacher output, 
but more importantly, a good approximation of testing output data from independent 
test data sets generated by the same (unknown) system which also generated the 
teacher data. In practice this means that we have to use cross-validation methods to 
optimize our model capacity.  

 
Step 1. Procure an untrained DR network (Win, W, Wback) which has the echo state property, 
and whose internal units exhibit mutually interestingly different dynamics when excited.  
 
This step involves many heuristics. The way I proceed most often involves the following 
substeps. 
 

 Randomly generate an internal weight matrix W0.  
 Normalize W0 to a matrix W1 with unit spectral radius by putting W1 =1/|λmax| W0, 

where |λmax| is the spectral radius of W0. Standard mathematical packages for matrix 
operations all include routines to determine the eigenvalues of a matrix, so this is a 
straightforward thing.  

 Scale W1 to W = α W1, where α < 1, whereby W obtains a spectral radius of   α. 
 Randomly generate input weights Win and output backpropagation weights Wback. 

Then, the untrained network (Win, W, Wback) is (or more honestly, has always been 
found to be) an echo state network, regardless of how Win, Wback are chosen. 

 
Notes: 
 

 The matrix W0 should be sparse, a simple method to encourage a rich variety of 
dynamics of different internal units. Furthermore, the weights should be roughly 
equilibrated, i.e. the mean value of weights should be about zero. I usually draw 
nonzero weights from a uniform distribution over [– 1, 1], or I set nonzero weights 
randomly to –1 or 1.  

 The size N of W0 should reflect both the length T of training data, and the difficulty of 
the task. As a rule of thumb, N should not exceed an order of magnitude of T/10 to T/2 
(the more deterministic/low-noise the training data, the closer to T/2 can N be chosen). 
This is a simple precaution against overfitting. Furthermore, more difficult tasks 
require larger N.  

 The setting of α is crucial for subsequent model performance. It should be small for 
fast teacher dynamics and large for slow teacher dynamics, according to the 
observations made above in Section 9.3.3. Typically, α needs to be hand-tuned by 
trying out several settings.  

 The absolute size of input weights Win is also of some importance. Large absolute Win 
imply that the network is strongly driven by input, small absolute values mean that the 
network state is only slightly excited around the DR's resting (zero) state. In the latter 
case, the network units operate around the linear central part of the sigmoid, i.e. one 
obtains a network with an almost linear dynamics. Larger Win drive the internal units 
closer to the saturation of the sigmoid, which results in a more nonlinear behavior of 
the resulting model. In the extreme, when Win becomes very large, the internal units 
will be driven into an almost pure – 1 / +1 valued, binary dynamics. If one has severyl 
inputs, one can at this point steer their relative impact on the reservoir dynamics by 
scaling the input weights individually for the different inputs. For instance, low-
amplitude inputs can be emphasized by upscaling their input weights; noisy or not 
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very relevant inputs can be depreciated by downscaling their input weights. Again, 
manual adjustment and repeated learning trials will often be required to find the 
taskappropriate 

 Similar remarks hold for the absolute size of weights in Wback.  
 More often than not, the training error can be improved by adding a bias input whose 

value is frozen to 1. Again, its impact on the reservoir dynamics needs to be adjusted 
by scaling the corresponding input weights. 
 

Step 2. Sample network training dynamics.  
 
This is a mechanical step, which involves no heuristics. It involves the following operations: 
 

 Initialize the network state arbitrarily, e.g. to zero state x(0) = 0.  
 Drive the network by the training data, for times n = 0, ..., T, by presenting the teacher 

input u(n), and by teacher-forcing the teacher output d(n-1), by computing  
 

(9.50) 

€ 

x(n +1) = f(W inu(n +1) +Wx(n) +Wbackd(n))  
 

 At time n = 0, where d(n) is not defined, use d(n) = 0.  
 For each time larger or equal than an initial washout time T0, collect the concatenated 

input and network state 

€ 

(u(n),x(n))T  as a new row into a state collecting matrix M. In 
the end, one has obtained a state collecting matrix of size (T – T0 +1 ) x (K + N ).  

 Similarly, for each time larger or equal to T0, collect the sigmoid-inverted teacher 
output tanh-1d(n) row-wise into a teacher collection matrix T, to end up with a teacher 
collecting matrix T of size (T – T0 +1 ) x L. 

 
Note: Be careful to collect into M and T the vectors u(n), x(n) and tanh-1d(n), not u(n), x(n) 
and tanh-1d(n-1)! 
 
Step 3: Compute output weights. 
 

 Concretely, multiply the pseudoinverse of M with T, to obtain a (K + N ) x L sized 
matrix (Wout)T whose i-th column contains the output weights from all network 
units to the i -th output unit: 

 
(9.51) 

€ 

(Wout )T =M−1T . 
 

Every programming package of numerical linear algebra has optimized procedures 
for computing pseudoinverses. 

 Transpose (Wout)T to Wout in order to obtain the desired output weight matrix. 
 
Step 4: Exploitation. 
 
The network (Win, W, Wback, Wout) is now ready for use. It can be driven by novel input 
sequences u(n), using the update equations (9.7) and (9.8), which we repeat here for 
convenience: 
 
(9.52)  

€ 

x(n +1) = f(W inu(n +1) +Wx(n) +Wbacky(n)),  
(9.53)  

€ 

y(n +1) = f out (Wout (u(n +1),x(n +1),y(n)). 
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If stability problems are encountered when using the trained network, it very often helps to 
add some small noise during sampling, i.e. to use an update equation  
 
(9.54)  

€ 

x(n +1) = f(W inu(n +1) +Wx(n) +Wbackd(n) + ν(n)), 
 
where ν(n) is a small uniform white noise term (typical sizes 0.0001 to 0.01). The rationale 
behind this is explained in Jaeger 2001.  
 
 
9.3.5 Why echo states? 
 
Why must the DR have the echo state property to make the approach work?  
 
From the perspective of systems engineering, the (unknown) system's dynamics is governed 
by an update equation of the form  
 
(9.55)  

€ 

d(n) = e(u(n),u(n −1),...,d(n −1),d(n − 2)), 
 
where e is a (possibly highly complex, nonlinear) function of the previous inputs and system 
outputs. (9.55) is the most general possible way of describing a deterministic, stationary 
system. In engineering problems, one typically considers simpler versions, for example, 
where e is linear and has only finitely many arguments (i.e., the system has finite memory). 
Here we will however consider the fully general version (9.55).   
 
The task of finding a black-box model for an unknown system (9.55) amounts to finding a 
good approximation to the system function e. We will assume an ESN with linear output units 
to facilitate notation. Then, the network output of the trained network is a linear combination 
of the network states, which in turn are governed by the echo functions, see (9.49). We 
observe the following connection between (9.55) and (9.49): 
 

(9.56) 

€ 

e(u(n),u(n −1),...,d(n −1),d(n − 2)) =

= d(n)
≈ y(n)

= wi
out∑ xi(n)

= wi
outei (u(n),u(n −1),...,y(n −1),y(n − 2))∑

 

 
It becomes clear from this equation how the desired approximation of the system function e 
can be interpreted as a linear combination of echo functions ei. This transparent 
interpretatation of the system approximation task directly relies on the interpretation of 
network states as echo states. The arguments of e and ei are identical in nature: both are 
collections of previous inputs and system (or network, respectively) outputs. Without echo 
states, one could neither mathematically understand the relationship between network output 
and original system output, nor would the training algorithm work.  
 
9.3.6  Liquid state machines 
 
An approach very similar to the ESN approach has been independently explored by Wolfgang 
Maass et al. at Graz Technical University. It is called the "liquid state machine" (LSM) 
approach. Like in ESNs, large recurrent neural networks are conceived as a reservoir (called 
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"liquid" there) of interesting excitable dynamics, which can be tapped by trainable readout 
mechanisms. LSMs compare with ESNs as follows: 
 

 LSM research focuses on modeling dynamical and representational phenomena in 
biological neural networks, whereas ESN research is aimed more at engineering 
applications. 

 The "liquid" network in LSMs is typically made from biologically more adequate, 
spiking neuron models, whereas ESNs "reservoirs" are typically made up from simple 
sigmoid units.  

 LSM research considers a variety of readout mechanisms, including trained 
feedforward networks, whereas ESNs typically make do with a single layer of readout 
units.  

 
An introduction to LSMs and links to publications can be found at http://www.lsm.tugraz.at/.  
 
 

9.3.7 Short term memory in ESNs 

 
Many time-series processing tasks involve some form of short term memory (STM). By short-
term memory we understand the property of some input-output systems, where the current 
output y(n) depends on earlier values u(n-k) of the input and/or earlier values y(n-k) of the 
output itself. This is obvious, for instance, in speech processing. Engineering tasks like 
suppressing echos in telephone channels or the control of chemical plants with attenuated 
chemical reactions require system models with short-term memory capabilities. 
 
We saw in Section 9.3.3 that the DR unit's activations xi(n) can be understood in terms of 
echo functions ei which maps input/output histories to the current state. We repeat the 
corresponding Equation (9.49) here for convenience: 
 

(9.57) 
    

€ 

ei : (U ×D)− → 

…,(u(−1),d(−2)),(u(0),d(−1))( ) xi(0)
 

 
The question which we will now investigate more closely is how many of the previous 
inputs/output arguments (u(n-k), y(n-k-1)) are actually relevant for the echo function? or 
asked in other words, how long is the effective short-term memory of an ESN? 
 
A good intiuitive grasp on this issue is important for successful practical work with ESNs 
because as we will see, with a suitable setup of the DR, one can control to some extent the 
short-term memory characteristics of the resulting ESN model.  
 
We will provide here only an intuitive introduction; for a more detailed treatment consult the 
technical report devoted to short-term memory (Jaeger 2001a).  
 
9.3.9 First example: training an ESN as a delay line 
 
Much insight into the STM of ESNs can be gained when we train ESNs on a pure STM task. 
We consider an ESN with a single input channel and many output channels. The input u(n) is 
a white noise signal generated by sampling at each time independently from a uniform 
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distribution over [–0.5, 0.5]. We consider delays k = 1, 2, ... . For each delay k, we train a 
separate output unit with the training signal dk(n) = u(n-k). We do not equip our network with 
feedback connections from the output units to the DR, so all output units can be trained 
simultaneously and independently from each each other. Figure 9.15 depicts the setup of the 
network.  
 

 
 
Figure 9.15: Setup of delay learning task. 
 
Concretely, we use a 20-unit DR with a connectivity of 15%, that is, 15% of the entries of the 
weight matrix W are non-null. The non-null weights were sampled randomly from a uniform 
distribution over [–1,1], and the resulting weigth matrix was rescaled to a spectral radius of α 
= 0.8, as described in Section 9.3.3. The input weights were put to values of –0.1 or +0.1 with 
equal probability. We trained 4 output units with delays of k = 4, 8, 16, 20. The training was 
done over 300 time steps, of which the first 100 were discarded to wash out initial transients. 
On test data, the trained network showed testing mean square errors of MSEtest.= 0.0000047, 
0.00070, 0.040, 0.12 for the four trained delays. Figure 9.16 (upper diagrams) shows an 
overlay of the correct delayed signals (solid line) with the trained network output.  
 

 

 
 
Figure 9.16: Results of training delays k = 4, 8, 16, 20 with a 20-unit DR. Top row: input 
weights of size –0.1 or +0.1, bottom row: input weights sized –0.001 or +0.001. 
 
When the same experiment is redone with the same DR, but with much smaller input weights 
set to random values of –0.001 or +0.001, the performance greatly improves: testing errors 
MSEtest.= 0.000035, 0.000038, 0.000034, 0.0063 are now obtained.  
 
Three fundamental observations can be gleaned from this simple example: 
 

 The network can master the delay learning task, which implies that the current 
network state x(n) retains extractable information about previous inputs u(n-k).  

 The longer the delay, the poorer the delay learning performance. 
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 The smaller the input weights, the better the performance. 
 
 
9.3.10 Theoretical insights on short term memory 
 
I now report some theoretical findings (from Jaeger 2001a), which explain the observations 
made in the previous subsection.  
 
First, we need a precise version of the intuitive notion of "network performance for learning 
the k-delay task". We consider the correlation coefficient r(u(n-k), yk(n)) between the correct 
delayed signal u(n-k) and the network ouput yk(n) of the unit trained on the delay k. It ranges 
between –1 and 1. By squaring it, we obtain a quantity called in statistics the determination 
coefficient r2(u(n-k), yk(n)). It ranges between 0 and 1. A value of 1 indicates perfect 
correlation between correct signal and network output,k a value of 0 indicates complete loss 
of correlation. (In statistical terms, the determination coefficient gives the proportion of 
variance in one signal explained by the other). Perfect recall of the k –delayed signal thus 
would be indicated by r2(u(n-k), yk(n)) = 1, complete failure by r2(u(n-k), yk(n)) = 0.  
 
Next, we define the overall delay recalling performance of a network, as the sum of this 
coefficient over all delays. We define the memory capacity MC of a network by 
 

(9.58) 

€ 

MC = r2(u(n − k),yk (n))
k=1

∞

∑  

 
Without proof, we cite (from Jaeger 2001a) some fundamental results concerning the memory 
capacity of ESNs: 
 
Proposition 9.2. In a network whose DR has N nodes, MC ≤ N. That is, the maximal possible 
memory capacity is bounded by DR size.  
 
Proposition 9.3. In a linear network with N nodes, generically MC = N. That is, a linear 
network will generically reach maximal network capacity. Notes: (i) a linear network is a 
network whose internal units have a linear transfer function, i.e. f = id. (ii) "Generically" 
means: if we randomly construct such a network, it will have the desired property with 
probability one.  
 
Proposition 9.4. In a linear network, long delays can never be learnt better than short delays 
("monotonic forgetting") 
 
 
When we plot the determination coefficient against the delay, we obtain the forgetting curves 
of an ESN. Figure 9.17 shows some forgetting curves obtained from various 400-unit ESNs.  
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Figure 9.17: Forgetting curves of various 400-unit networks. A: randomly created linear DR. 
B: randomly created sigmoid DR. C: like A, but with noisy state update of DR. D: almost 
unitary weight matrix, linear update. E: same as D, but with noisy state update. F: same as D, 
but with spectral radius α = 0.999. Mind the different scalings of the x-axis! 
 
The forgetting curves in Figure 9.17 exhibit some interesting phenomena:  
 

 According to theorem 9.3, the forgetting curve in curve A should reflect a memory 
capacity of 400 (= network size). That is, the area under the curve should be 400. 
However, we find an area (= memory capacity) of about 120 only. This is due to 
rounding errors in the network update. The longer the delay, the more severe the effect 
of accumulated rounding errors, which reduce the effectively achievable memory 
capacity.  

 The curve B was generated with a DR made from the same weight matrix as in A, but 
this time, the standard sigmoid transfer function tanh was used for network update. 
Compared to A, we observe a drop in memory capacity. It is a general empirical 
observation that the more nonlinear a network, the lower its memory capacity. This 
also explains the finding from Section 9.3.9, namely, that the STM of a network is 
improved when the input weights are made very small. Very small input weights make 
the input drive the network only minimally around its zero resting state. Around the 
zero state, the sigmoids are almost linear. Thus, small input weights yield an almost 
linear network dynamics, which is good for its memory capacity.  

 Curve C was generated like A, but the (linear) network was updated with a small noise 
term added to the states. As can be expected, this decreases the memory capacity. 
What is worth mentioning is that the effect is quite strong. An introductory discussion 
can be found in Jaeger (2001a).  

 The forgetting curve D comes close to the theoretical optimum of MC = 400. The trick 
was to use an almost unitary weight matrix, again with linear DR units. Intuitively, 
this means that a network state x(n), which carries the information about the current 
input, "revolves" around the state space ℝN without interaction with succeeding states, 
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for N update steps. There is more about this in Jaeger (2001a) and Bertschinger 
(2002)25. 

 The forgetting curve E was obtained from the same linear unitary network as D, but 
noise was added to state update. The corruption of memory capacity is less dramatic as 
in curve C. 

 Finally, the forgetting curve F was obtained by scaling the (linear, unitary) network 
from D to a spectral radius α = 0.999. This leads to long-term "reverberations" of 
input. On the one hand, this yields a forgetting curve with a long tail – in fact, it 
extends far beyond the value of the network size, N = 400. On the other hand, 
"reverberations" of long-time past inputs still occupying the present network state lead 
to poor recall of even the immediately past input: the forgetting curve is only about 0.5 
right at the beginning. The area under the forgetting curve, however, comes close to 
the theoretical optimum of 400.  

 
For practical purposes, when one needs ESNs with long STM effects, on can resort to a 
combination of the following approaches: 
 

 Use large DRs. This is the most efficient and generally applicable method, but it 
requires sufficiently large training data sets.  

 Use small input weights, to work in the almost linear working range of the network. 
This might conflict with nonlinear task characteristics. 

 Use linear update for the DR. Again, might conflict with nonlinear task characteristics. 
 Use specially prepared DRs with almost unitary weight matrices. 
 Use a spectral radius α close to 1. This would work only with "slow" tasks (for 

instance, it would not work if one wants to have fast oscillating dynamics with long 
STM effects).  

 
 

9.3.11 Tricks of the trade 
 
The basic idea of ESNs for black-box-modeling can be condensed into the following 
statement:  
 
"Use an excitable system [the DR] to give a high-dimensional dynamical representation of the 
task input dynamics and/or output dynamics, and extract from this reservoir of task-related 
dynamics a suitable combination to make up the desired target signal."   
 
Obviously, the success of the modeling task depends crucially on the nature of the excited 
dynamics – it should be adapted to the task at hand. For instance, if the target signal is slow, 
the excited dynamics should be slow, too. If the target signal is very nonlinear, the excited 
dynamics should be very nonlinear, too. If the target signal involves long short-term memory, 
so should the excited dynamics. And so forth.  
 
Successful application of the ESN approach, then, involves a good judgement on important 
characteristics of the dynamics excited inside the DR. Such judgement can only grow with the 
experimenter's personal experience. However, a number of general practical hints can be 
given which will facilitate this learning process. All hints refer to standard sigmoid networks.  
                                                
25 N. Bertschinger (2002), Kurzzeitspeicher ohne stabile Zustände in rückgekoppelten neuronalen Netzen. 
Diplomarbeit, Informatik VII, RWTH Aachen, 2002 (in German) 
http://www.igi.tugraz.at/nilsb/publications/DABertschinger.pdf  



 150 

 
Plot internal states 

 
Since the dynamics within the DR is so essential for the task, you should always visually 
inspect it. Plot some of the internal units xi(n) during sampling and/or testing. These plots can 
be very revealing about the cause of failure. If things don't go well, you will frequently 
observe in these plots one or two of the following misbehaviors: 
 

 Fast oscillations. In tasks where you don't want fast oscillations, this observation 
indicates a too large spectral radius of the weight matrix W, and/or too large values of 
the output feedback weights (if they exist). Remedy: scale them down. 

 Almost saturated network states. Sometimes you will observe that the DR units 
almost always take extreme values near 1 or –1. This is caused by a large impact of 
incoming signals (input and/or output feedback). It is only desirable when you want to 
achieve some almost binary, "switching" type of target dynamics. Otherwise it's 
harmful. Remedy: scale down the input and/or output feedback weights.  

 
Plot output weights 

 
You should always inspect the output weights obtained from the learning procedure. The 
easiest way to do this is to plot them. They should not become too large. Reasonable absolute 
values are not greater than, say, 50. If the learnt output weights are in the order of 1000 and 
larger, one should attempt to bring them down to smaller ranges. Very small values, by 
contrast, do not indicate anything bad.  
 
When judging the size of output weights, however, you should put them into relation with the 
range of DR states. If the DR is only minimally excited (let's say, DR unit activations in the 
range of 0.005 – this would for instance make sense in almost linear tasks with long-term 
memory characteristics), and if the desired output has a range up to 0.5, then output weights 
have to be around 100 just in order to scale up from the internal state range to the output 
range.  
 
If after factoring out the range-adaptation effect just mentioned, the output weights still seem 
unreasonably large, you have an indication that the DR's dynamics is somehow badly adapted 
to your learning task. This is because large output weights imply that the generated output 
signal exploits subtle differences between the DR unit's dynamics, but does not exploit the 
"first order" phenomena inside the DR (a more mathematical treatment of large output 
weights can be found in Jaeger (2001a)).  
 
It is not easy to suggest remedies against too large output weights, because they are an 
indication that the DR is generally poorly matched with the task. You should consider large 
output values as a symptom, not as the cause of a problem. Good doctors do not cure the 
symptoms, but try to address the cause.  
 
Large output values will occur only in high-precision tasks, where the training material is 
mathematical in origin and intrinsically very accurate. Empirical training data will mostly 
contain some random noise component, which will lead to reasonably scaled output weights 
anyway. Adding noise during training is a safe method to scale output weights down, but is 
likely to impair the desired accuracy as well. 
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Find a good spectral radius 
 
The single most important knob to tune an ESN is the spectral radius of the DR weight 
matrix. The general rule: for fast, short-memory tasks use small α, for slow, long-memory 
tasks use large α. Manual experimentation will be necessary in most cases. One does not have 
to care about finding the precise best value for α , however. The range of optimal settings is 
relatively broad, so if an ESN works well with α = 0.8, it can also be expected to work well 
with α = 0.7 and with α = 0.85. The closer you get to 1, the smaller the region of optimality.  
 

Find an appropriate model size 
 
Generally, with larger DR one can learn more complex dynamics, or learn a given dynamics 
with greater accuracy. However, beware of overfitting: if the model is too powerful (i.e. the 
DR too large), irrelevant statistical fluctuations in the training data will be learnt by the 
model. That leads to poor generalization on test data. Try increasing network sizes until 
performance on test data deteriorates.  
 
The problem of overfitting is particularly important when you train on empirical, noisy data. 
It is not theoretically quite clear (at least not to me) whether the concept of overfitting also 
carries over to non-statistical, deterministic, 100%-precisely defined training tasks, for 
example training a chaotic attractor described by a differential equation (as in Jaeger 2001). 
The best results I obtained in that task were achieved with a 1000-unit network trained on 
2000 data points, which means that 1000 parameters were estimated from 2000 data points. 
For empirical, statistical tasks, this would normally lead to overfitting (a rule of thumb in 
statistical learning is to have at least 10 data points per estimated parameter).   
 

Add noise during sampling 
 
When you are training an ESN with output feedback from accurate (mathematical, noise-free) 
training data, stability of the trained network is often difficult to achieve. A method that works 
wonders is to inject noise into the DR update during sampling, as described in Section 9.3.2, 
Eqn. (9.47). It is not clearly understood why this works. Attempts at an explanation are made 
in Jaeger (2001); Bertschinger (2002) provides a more extensive analysis.  
 
In tasks with empirical, noisy training data, noise insertion does not a priori make sense. Nor 
is it required when there are no output feedback connections.  
 
There is one situation, however, where noise insertion might make sense even with empirical 
data and without output feedback connections. That is when the learnt model overfits data, 
which is revealed by a small training and a large test error. In this condition, injection of extra 
noise works as a regularizer in the sense of statistical learning theory. The training error will 
increase, but the test error will go down. However, a more appropriate way to avoid 
overfitting is to use smaller networks. 
 

Use an extra bias input 
 
When the desired output has a mean value that departs from zero, it is a good idea to invest an 
extra input unit and feed it with a constant value ("bias") during training and testing. This bias 
input will immediately enable the training to set the trained output to the correct mean value.  
 



 152 

A relatively large bias input will shift many internal units towards one of the extremer outer 
ranges of their sigmoids; this might be advisable when you want to achieve a strongly 
nonlinear behavior. 
 
Sometimes you do not want to affect the DR strongly by the bias input. In such cases, use a 
small value for the bias input (for instance, a value of 0.01), or connect the bias only to the 
output (i.e., put all bias-to-DR connections to zero). 
 

Beware of symmetric input 
 
Standard sigmoid networks with the tanh sigmoid are "symmetric" devices in the sense that 
when an input sequence u(n) gives an output sequence y(n), then the input sequence –u(n) will 
yield an output sequence – y(n). For instance, you can never train an ESN to produce an 
output y(n) = u(n)2 from an input u(n) which takes negative and positive values. There are two 
simple methods to succeed in "asymmetric" tasks: 
 

 Feed in an extra constant bias input. This will effectively render the DR an 
unsymmetric device.  

 Shift the input. Instead of using the original input signal, use a shifted version which 
only takes positive sign.  

 
The symmetric-input fallacy comes in many disguises and is often not easy to recognize. 
Generally be cautious when the input signal has a range that is roughly symmetrical around 
zero. It almost never harms to shift it into an asymmetrical range. Nor does a small bias input 
usually harm.  
 

Shift and scale input 
 
You are free to transform the input into any value range [a, b] by scaling and/or shifting it. A 
rule I work with: the more nonlinear the task, the more extravagantly I shift the input range. 
For instance, in a difficult nonlinear system identification task (30th order NARMA system) I 
once got best models with an input range [a, b] = [3, 3.5]. The apparent reason is that shifting 
the input far away from zero made the DR work in a highly nonlinear range of its sigmoid 
units.  
 

Blackbox modeling generals 
 
Be aware of the fact that ESN is a blackbox modeling technique. This means that you cannot 
expect good results on test data which operate in a working range that was never visited 
during training. Or to put it the other way round, make sure that your training data visit all the 
working conditions that you will later meet when using the trained model.  
 
This is sometimes not easy to satisfy with nonlinear systems. For instance, a typical approach 
to obtain training data is to drive the empirical system with white noise input. This approach 
is well-motivated with linear systems, where white noise input in training data generally 
reveals the most about the system to be identified. However, this may not be the case with 
nonlinear systems! By contrast, what typically happens is that white noise input keeps the 
nonlinear system in a small subregion of its working range. When the system (the original 
system or the trained model) is later driven with more orderly input (for instance, slowly 
changing input), it will be driven into a quite different working range. A black-box model 
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trained from data with white noise input will be unable to work well in another working 
range.  
 
On the other hand, one should also not cover in the training data more portions of the working 
range than will be met in testing / exploitation. Much of the modeling capacity of you model 
will then be used up to model those working regions which are later irrelevant. As a 
consequence, the model accuracy in the relevant working regions will be poorer.  
 
The golden rule is: use basically the same kind of input during training as you will later 
encounter in testing / exploitation, but make the training input a bit more varied than you 
expect the input in the exploitation phase. 
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10 Hidden Markov Models and the EM Learning Algorithm 
 

10.1 Introduction 
 
In this section we will learn about how models of discrete-valued stochastic processes can be 
learnt from data. Think of a "discrete-valued stochastic process" simply as some mechanism 
that generates random symbol sequences – for instance, sequences of dice throws (the 
symbols would then be 1,...,6) or ASCII texts (the symbols then would be the ASCII symbols) 
or amino acid sequences. Our learning task will be the following: given a (long) observed 
sequence x(0) x(1) x(2)... generated by an unknown generating mechanism, learn from this 
sample string a model  that then can replace the original generator. The model can be used 
in various way, for instance to generate new sequences (useful for running simulations), or to 
predict a given sequence into the future, or to classify sequences, and many more.  
 
Specifically, we will consider a type of models known as hidden Markov models (HMMs). 
HMMs have important applications. Here is a choice:  
 
• Virtually every speech recognition system is made from HMMs.  
• HMMs are becoming more and more the standard tool for biosequence analysis.  
• In communications engineering, HMMs are used to predict subchannel load in order to 

optimize throughput.  
• In robotics, an input-output version of HMMs, called partially observable Markov 

decision processes (POMDPs) is a standard type of "world model" that enables a robot to 
predict the consequences of its actions.  

 
HMMs are quite powerful – very complicated processes can be modelled by them, and 
especially, processes that have a memory. A process is said to have memory when the 
probabilities of future observations x(n + 1) x(n + 2)... depend not only on the current 
observation x(n) but also on previous observations x(n – 1), x(n – 2) ... . English texts are 
processes with a very strong memory component: if you only know that x(n) = e, and you 
would be asked how this process continues, you could hardly make a guess. But if you know 
that x(n– 21) ... x(n– 1) x(n)  = my_mother_and_my_fathe, then there is an 
overwhelming probability that x(n + 1) = r.  
 
HMMs are equipped with a learning algorithm called the EM-algorithm, or more specifically, 
with a particular subtype of the EM-algorithm called the Baum-Welch algorithm. EM 
algorithms are a large family of learning algorithms with applications in many fields of 
statistics and machine learning. We will learn both the general EM principle and the specific 
Baum-Welch variety that is tailored to HMMs.  
 
Although hidden Markov processes have been known and investigated in mathematical 
statistics since at least 50 years, they became popular in applications only in the early 90-ies. 
In a small number of years, the field of automated speech recognition was completely taken 
over by HMM techniques. The trigger for the surge of popularity of HMMs was a tutorial text 
written by L. R. Rabiner in 1989, which is still one of the main teaching texts on HMMs and 
is cited in almost every article on HMMs. An electronic version of this tutorial can be found 
at http://minds.jacobs-
university.de/sites/default/files/uploads/teaching/share/RabinerTutorialHMM.pdf. 
 



 155 

Hidden Markov processes generalize Markov processes (also called Markov chains), and we 
first must understand this simpler kind of stochastic process.  
 
A Markov chain describes random sequences from a finite set S = {q1, ..., qm} of states. The 
evolution of such sequences is governed by a simple probabilistic law: if at some time n the 
process has generated a state qi, then the next generated state is chosen from S with fixed 
conditional probabilities P(Xn+1 = qj | Xn = qi) that depend only on qi (we denote by Xn the 
random variable that returns the state at time n). Two convenient ways to represent these 
conditional probabilities are the transition graph and the transition matrix.  
 
Example 10.1. Here is a simple Markov process with states S = {q1, q2}  represented by its 
transition graph (left) and transition matrix (right): 
 
 
 
 
 
 
Figure 10.1 A very simple Markov chain. 
 
In words, this processed is characterized by the following facts: 
 

• If the current state is q1, then the next state is q1 with probability 0.6 and q2 with 
probability 0.4. 

• If the current state is q2, then the next state is q1 with probability 1.0 and q2 with 
probability 0.0. 

 
More formally, the transition matrix for an m-state Markov chain is  
 
(10.1)  M = (pij)i,j =1,...,m = (P(Xn+1 = qj | Xn = qi))i,j =1,...,m   
 
It should be clear that the probability labels of all arcs that leave a state node in the graph sum 
to 1, and that the rows of a transition matrix are non-negative and each sum to 1. Matrices 
with this property are also called stochastic matrices or Markov matrices. Since a Markov 
matrix only specifies probabilities of next states given a previous state, in order to specify a 
stochastic process one must additionally know the probabilities of the first state. This is a 
probability vector w0 = (P(X0 = q1), ..., P(X0 = qm))T. A pair (M, w0) uniquely specifies a 
Markov chain. If you are given (M, w0), you can generate random sequences as follows: 
 

1. Choose the first state according to the probabilities in w0. 
2. If the n-th state you have generated is qi, choose the (n+1)th state according to the 

probabilities you find in the i-th row of M.  
 
The probability of a sequence qi0 qi1 ... qiN-1 is the product of the individual transition 
probabilites involved, times the starting probability of qi0: 
 
 
 
 

q1 q2 
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1.0 

0.0 0.6 

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 P(X0 = qi0, ..., XN-1 = qiN-1) =  
  = P(XN-1 = qiN-1| XN-2 = qiN-2) ... P(X1 = qi1| X0 = qi0) P(X0 = qi0) 

(10.2)  = P(X0 = qi0) ∏
−

=

1

1

N

n
 P(Xn = qin| Xn-1 = qin-1) 

  = P(X0 = qi0) ∏
−

=

1

1

N

n
 pin-1 in 

 
Eq. (10.2) is the fundamental equation for Markov chains. If for some process Eq. (10.2) 
holds, it is a Markov chain and vice versa.  
 
Note that Markov chains have no memory. The probabilities of the next state choices depend 
only on the current state, not on any that came before.  
 
A note on a rigorous probability-theoretic treatment of stochastic processes (which we don't 
do). Mathematically, a stochastic process (with disrete time n = 0, 1, 2, ...) is a sequence of 
random variables (Xn)n = 1, 2, ... , where all the Xi share the same observation space E (in our 
Markov chain example, E = S is the finite set of states). The intuitive interpretation of Xi is to 
consider it as the observation of the process at time i. Each ω ∈ Ω is corresponds to one 
realization of the process, that is, the sequence (Xn(ω))n = 1, 2, ... ∈ Ε  is an observed path, or 
time series, of the process.  
 
It is always technically possible to identify the underlying probability space Ω  with the set of 
all paths, that is, one may assume Ω = S∞. That this representation of Ω is always possible is 
the essence of a quite nontrivial theorem due to Kolmogorov. If one were 100% correct, one 
would write P(X0(ω)= qi0, ...,  XN-1(ω) = qiN-1) instead of P(X0 = qi0, ..., XN-1 = qiN-1). But 
instead of being 100% correct, one is rather more often 50% sloppy and writes simply P(qi0 ... 
qiN-1) instead of P(X0 = qi0, ..., XN-1 = qiN-1). 
 
 

10.3 Hidden Markov Processes 
 
Intuitive description. A hidden Markov model (HMM) [or hidden Markov process] is a 
generating mechanism for stochastic symbol sequences that consists of two cascaded 
stochastic mechanisms. First there is a Markov chain with a state set S = {q1, ..., qm} and 
associated starting and transition probabilities. However, the states qi are not observable – 
when the Markov chain "runs", its states are hidden. Instead, a state qi "emits", when the chain 
passes through that state, an observable symbol from another alphabet Σ = {a1, ..., ak} 
according to a probability distribution P(aj| qi) that is characteristic (and fixed) for that state. 
Our example 10.1 turns into a HMM if we equip it with such observables: 
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Example 10.2. This transition graph represents a HMM made from the Markov chain from 
Example 10.1, with observables Σ = {a, b}: 
 
 
 
 
 
 
 
 
 
Figure 10.2 The Markov chain from Figure 10.1 emitting observable symbols from its states. 
 
 
The symbol sequences that are generated by HMMs are sequences from the alphabet of 
observables, Σ, not from the set of states, S. So the HMM from Example 10.2 would generate 
strings like abbaab... .  
 
One intuitive interpretation of HMM processes is that the emitted observables are noisy 
measurements of their states.  
 
Here is the formal definition: 
 
Definition 10.1  A hidden Markov model is a quintuple H = (S, Σ, M, E, w0), where S = {q1, 
..., qm} is a finite non-empty set of hidden states, Σ = {a1, ..., ak} is an alphabet of 
observables, M is an m × m  stochastic matrix of state transition probabilities, E is an m × k 
matrix of emission probabilities, and w0 is an m-dimensional probability vector, the starting 
vector. The rows of E must be probability vectors.  
 
Note: the emission matrix E contains in its i-th row the emission probabilities for the k 
symbols from Σ, that is,  
 
(10.3)  E = (eij)i =1,...,m; j = 1,..,k  = (P(aj| qi))i =1,...,m; j = 1,..,k  . 
 
An HMM H = (S, Σ, M, E, w0) describes two stochastic processes (Xi)i ∈ , (Yi)i ∈ . The first 
process describes the Markov chain through the states S according to the Markov transition 
matrix M – that is, the random variables Xi take values in S, and the index i is interpreted as a 
discrete time. The other process, (Yi)i ∈ , takes values in Σ and describes the sequence of 
observable symbols. Formally, the joint probability that the process (Xi) goes through a state 
sequence qi0 qi1 ... qiN-1 while the observed symbols are aj0 aj1 ... ajN-1, is determined by:  
 

P(X0 = qi0, ..., XN-1 = qiN-1, Y0 = aj0, ..., YN-1 = ajN-1) =  

= P(Y0 = aj0 | X0 = qi0) P(X0 = qi0) ∏
−

=

1

1

N

n
P(Yn = ajn | Xn = qin) P(Xn = qin| Xn-1 = qin-1) 

(10.4)  = ei0 j0 w0 i0∏
−

=

1

1

N

n
 ein jn pin-1 in. 
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One often illustrates the interplay between the "hidden" Markov process (Xi) and the 
observable process (Yi) graphically in the following way (see Figure 10.3).  
 
 
 
 
 
 
 
 
 
 
Figure 10.3 A graphical representation of the statistical (in-)dependencies prevailing in an 
HMM 
 
 
Each random variable is represented by a node in a directed graph, which are connected by 
links in a specific way. In such (directed) graphical models some random variable X is 
statistically independent from all its non-descendants26, given its parents27. Thus, for instance, 
the graph structure of Figure 10.3 tells us that the random variable Xn+1 is independent of Xn-1, 
given Xn – that is, P(Xn+1 | Xn,  Xn-1) = P(Xn+1 | Xn). Or, it would also tell us that Xn+1 is 
independent of Yn, given Xn. Do not confound graphical representations like in Figure 10.3 
(where graph nodes are random variables) with transition graphs as in Figure 10.2 (where 
nodes are states, that is, values of random variables)! both are quite common, but have a very 
different interpretation.  
 
The observable process Y0, Y1, Y2, ... is a process with memory! This is at first counter-
intuitive, because the underlying hidden process is a Markov chain and has no memory. But 
recall that for a process Y0, Y1, Y2, ... having no memory means that we don't gain any 
additional information about future probabilities of Yn+1, Yn+2, ... if we learn about previous 
observations Yn–1, Yn–2, ... : all possible information about the future is given with Yn. But this 
is not the case with HMMs. We can indeed give a better estimate of the future distribution of 
Yn+1, Yn+2, ... if we are informed about the outcome of Yn–1, Yn–2, .... The reason is that if we 
learn about Yn–1, Yn–2, ..., then we implicitly gain knowledge about the current hidden state Xn, 
which in turn sharpens our predictions about the observable future.  
 
Here is a simple demonstration of the memory effect. Consider the following HMM: 
 
 
 
 
 
 
 
 
 
                                                
26 The descendants of a node k in a directed graph are all nodes that can be reached by iteratively traversing 
outgoing links from k in forward direction. 
27 The parents of a node k in a directed graph are all nodes from which a single link leads to k. 

Xn-1 Xn Xn+1 Xn+2 

Yn-1 Yn Yn+1 Yn+2 

. . . . . . 

P(a| q1) = 1 
 q1 q2 

1.0 

q3 1.0 1.0 

P(a| q2) = 1 
 

P(b| q3) = 1 
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This HMM cycles (deterministically) through the states q1, q2, q3 while emitting (likewise 
deterministically) symbols a, a, b. If one observes a single "a", then the next symbol to be 
observed can either be an a or a b.  If one however observes one symbol before the "a", then 
the next symbol becomes fully determined. For instance, observing "ba" allows one to infer 
that the next symbol must be an "a" – the b that came before the a provided this additional 
information, which is another way of stating that there is memory in this process.  
 
This memory effect may on a grander scale also be illustrated with our example from the 
Introduction. Assume that the text string that starts with my_mother_and was generated by 
a human brain, and assume furthermore that the workings of that brain can be described by a 
Markov chain (with a very large state number). Any physicist worth his/her salt would 
subscribe to that view. We (= the readers of the string) don't have access to that Markov 
chain, it is hidden to us. So the text string my_mother_and... can be considered as a 
sequence of observables that was emitted from the hidden brain state sequence. Now if we, 
the readers, only know that Y27 = e, we can't infer much about the text producing brain's state, 
and our predictions about the continuation of the sequence after this e are accordingly vague. 
If however we learn about the previous portion of the sequence, 
my_mother_and_my_fathe, then we learn a lot about the underlying brain state (this 
brain is currently reasoning about his/her parents), and this helps us (together with general 
knowledge about English) to predict with almost certainty that the next symbol will be r. 
 
Equation (10.4) is not really useful, because it makes explicit use of the hidden state 
sequence, which is typically not known in HMM processes. In real-life applications, all one 
has is a sequence of observations aj0 aj1 ... ajN-1. Several questions are of interest: 
 
1. Given aj0 aj1 ... ajN-1, what is the most probable state sequence?  
2. Given aj0 aj1 ... ajN-1, what is the probability of this sequence?  
3. Given aj0 aj1 ... ajN-1 and a time n ≤ N – 1, what is the probability that the hidden state 

at time n is qi? 
 
There are standard algorithms that provide answers to these basic questions, which we will 
now treat in turn. Formally, the first question is to find that state sequence qi'0 qi'1 ... qi'N-1 that 
is the most probable, given the sequence of observations: 
 
(10.5) qi'0 qi'1 ... qi'N-1 = 

10 ...
maxarg

−Nii qq
 P(X0 = qi0, ..., XN-1 = qiN-1 | Y0 = aj0, ..., YN-1 = ajN-1). 

 
This maximally probable state sequence is called the Viterbi sequence. It can be obtained 
from the observed sequence aj0 aj1 ... ajN-1 by the Viterbi algorithm, a straightforward 
dynamic programming algorithm. It runs as follows. Let vk(l) be the probability of the most 
probable state/observation sequence up to time l that ends in state qk with observation ajl, that 
is,  
 
(10.6)  vk(l)  =  

€ 

max
qi0 ...qil−1

P(X0 = qi0, ..., Xl-1 = qil-1, Xl = qk, Y0 = aj0, ..., Yl = ajl). 
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For the (l+1)th time step, these probabilities can be computed from the ones from time l by 
 
(10.7)  vk' (l+1) = ek' jl+1 

k
max (vk(l) pkk'). 

 
The initialization is given by 
 
(10.8)    vk (0) = ek j0 P(X0 = qk). 
 
After we have computed all vk (N – 1), we can infer that the index i'N-1 of the last state of the 
Viterbi sequence is  
 
(10.9)  i'N-1 = 

k
maxarg  vk (N – 1).  

 
The earlier states of the Viterbi sequence can be found by state backtracking: if we know that 
the l-th state of the Viterbi sequence has index i'l, then the (l – 1)th state can be found by 
 
(10.10)  i'l-1 = 

k
maxarg  vk (l – 1) pki'l.  

 
 
Now we answer the second standard question. The correct probability P(aj0 ... ajN-1) can 
obviously be obtained by 

 
(10.11)   P(aj0 ... ajN-1)     = ∑

∈
−

N
Nii Sqq 10 ...

 P(qi0  ... qiN-1, aj0 ... ajN-1). 

 
But this requires a sum over exponentially (in N) many paths which is infeasible. A feasible 
method is provided by another dynamic programming algorithm that resembles the Viterbi 
algorithm but has a sum instead of a max operation. We define fk(l) to be the probability that 
aj0 aj1 ... ajl is observed on any state sequence that ends in qk, that is,  
 
(10.12)   fk(l) = P(Xl = qk, Y0 = aj0, ..., Yl = ajl). 
 
The recursion then is 
 
(10.13)  fk' (l+1) = ek' jl+1 ∑

k
fk(l) pkk'. 

 
and the initialization is again 
 
(10.14)   fk (0) = ek j0 P(X0 = qk). 
 
 
Having computed the fk (N – 1)  [for k = 1,..., m], the desired probability of an observed 
sequence can be obtained by 
 
(10.15)   P(Y0 = aj0, ..., YN-1 = ajN-1) = ∑

k
 fk (N – 1) 



 161 

 
This algorithm is known as the forward algorithm to compute probabilities of observed 
sequences in HMM processes. Its computational time complexity is O(N |S|2).  
 
Without proof (easy exercise!) we mention that there is a convenient matrix representation for 
the forward algorithm, which lends itself to transparent implementations. To this end, for each 
observable aj ∈ Σ, define an m × m diagonal matrix Oj which contains the emission 
probabilities eij of observing aj in states i = 1, ..., m on its diagonal. Define Tj = MT Oj. Let 1m  
be the all-ones vector (1, ..., 1)T of size m. Then it holds that  
 
(10.16)   P(Y0 = aj0, ..., YN-1 = ajN-1) = 1m

T TjN-1 … Tj0 w0. 
 
The third basic task is to infer from an observation sequence aj0 aj1 ... ajN-1 the hidden state 
probability at some time l, that is,  
 
(10.17)   P(Xl = qk | aj0 ... ajN-1). 
 
Examples where this question is of interest: 
 
1. If we inspect a genome sequence at a particular location, do we happen to meet what is 

called a "CpG-island", that is, a batch within the sequence that due to certain chemical 
stabilization effects has a different nucleic acid statistics than ordinary DNA? 

2. If we analyze a speech signal, did the speaker intend to utter an "a" at a particular 
place? (that is the crucial question that has to be answered in any speech-to-text 
recognizer, e.g. in automated dictation systems). 

3. In communication systems with noisy channels, at the receiving end one obtains a 
noisy and/or coded signal Yn from which the receiver wants to recover the denoised and/or 
decoded "source signal" Xn such that each recovered 

€ 

ˆ X n  is the most probable one, given 
the entire signal Y0 ... YN-1. 

  
While the forward algorithm can be used to compute 
 
(10.18)  P(Xl = qk | aj0 ...ajl)  =  P(Xl = qk, aj0 ...ajl) / P(aj0 ...ajl) 
 
this does not help, because it only gives us a clue about hidden state probabilities using the 
observable information up to time n. In this situation we employ a mirror version of the 
forward algorithm, called the backward algorithm, to obtain the probability to see ajl+1 ajl+2 ... 
ajN-1 if the hidden process is in state qk at time l: 
 
(10.19)   bk(l)  =  P(Yl+1 = ajl+1, ..., YN-1 = ajN-1 | Xl = qk), 
 
which can then be combined with (10.12) to get (10.17).  bk(l) can be computed recursively by 
 
(10.20)   bk'(l – 1)  =  ∑

k
 pk'k.ekil  bk(l),  

and the initialization is 
 
(10.21)   bk(N – 1) = 1. 
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We now combine (10.19) with (10.12): 
 
(10.22)  P(Xl = qk | aj0 ...ajN-1)   =  
  =  P(qk, aj0 ...ajN-1) / P(aj0 ...ajN-1) 
  =  P-1(aj0 ...ajN-1) P(qk, aj0 ...ajl) P(ajl+1 ...ajN-1 | qk, aj0 ...ajl) 
  =  P-1(aj0 ...ajN-1) P(qk, aj0 ...ajl) P(ajl+1 ...ajN-1 | qk) 
  =  P-1(aj0 ...ajN-1) fk(l) bk(l). 
 
Seen from an abstract perspective, the posterior distribution P(Xl = qk | aj0 ...ajN-1) can be 
used to de-noise or even decode a signal aj0 ...ajN-1. 
 
Notice that a direct implementation of 10.22 on a digital computer is prone to run into 
numerical underflow problems. While P(Xl = qk | aj0 ...ajN-1) will be a number of reasonable 
size (not underflowing machine precision), P(aj0 ...ajN-1), fk(l), and bk(l) are likely too small to 
be accurately represented. To avoid this, practical implementations of 10.22 make use of 
dynamic rescaling schemes, where the intermediate quantities that arise during the iterative 
computations of these quantities are magnified by rescaling factors when needed. In the end, 
all these rescaling factors cancel out and a rescaled version of the quotient P-1(aj0 ...ajN-1) fk(l) 
bk(l) can be reliably evaluated. The Rabiner tutorial describes such a rescaling scheme. In 
ready-made toolboxes for HMMs these rescalings are integrated (at least they should be) and 
you don't have to think about them.  
 

10.4 The expectation-maximization (EM) algorithm 
 
The "EM algorithm" is not really an algorithm but rather a general recipe to construct 
algorithms for maximum likelihood estimators in situations where one has observable (= 
training) data Y that depend on unobservable (hidden) quantities X. The EM principle was first 
described in 1977 by Dempster, Laird and Rubin28 and can be considered a landmark 
discovery in statistics. Here I first give an abstract account of the general principle and then 
describe the specific version that is used for HMM learning, called the Baum-Welch 
algorithm. I roughly follow the exposition given in a paper by Sam Roweis and Zoubin 
Ghahramani, A unifying review of linear Gaussian models29, which also covers other versions 
of EM for other machine learning problems. I use however another notation than these and I 
supply more detail. 
 
The general situation is the following. Let Y be (a vector of) observable random variables 
over a probability space (Ω, F, P) and let X be a vector of hidden random variables over the 
same space. Let the observation spaces of X and Y be EX and EY, respectively. In our HMM 
example, we would have Y = Y0, ..., YN-1  and X = X0, ..., XN-1, and EX = SN and EY = ΣN, 
                                                
28 Dempster, A.P. , Laird, N.M. and Rubin, D.B. (1977). Maximum likelihood from incomplete data via the EM 
algorithm (with discussion). Journal of the Royal Statistical Society series B 39, 1-38. Cited more than 12,500 
times in the ISI citation index – I know no other paper that even comes close 
29 Roweis, S. and Ghahramani, Z., (1999) A unifying review of linear Gaussian models. Neural Computation 
11(2), 305-345. Online copy at http://minds.jacobs-
university.de/sites/default/files/uploads/teaching/share/1616_RoweisGhahramani99.pdf  
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respectively. Let θ be a set of parameters describing a model for the joint distribution PX,Y(θ) 
of X and Y. In the HMM example, θ would consist of all the parameters of a HMM, that is, θ 
= (M, E, w0). Now let D be a sample of the observable variables Y – in our example, D would 
be a sequence aj0 ...ajN-1. The objective of an EM algorithm is to determine θ such that the 
likelihood 
 
(10.23)   L(θ) = P(D | θ) 
 
is maximized. This is equivalent to finding θ such that the log likelihood 
 
(10.24)   (θ) = log P(D | θ) 
 
becomes maximal. The difficulty we are facing is that the probability P(D | θ) depends 
implicitly on the values that the hidden variables take – as becomes clear from Eq. 10.11. Let 
X and Y have the pdf p(X, Y) w.r.t. the uniform distribution over EX × EY. Then we can re-
write (10.24) as 
 
(10.25)    (θ) = log P(D | θ) = log ∫ θ

XE

dDXp x)|,( , 

 
that is, P(D | θ) is computed by marginalization w.r.t. X. Now let Q(X) be any pdf over the 
hidden variables. Then we can obtain a lower bound on  (θ) by  
 
(10.26)  log ∫ θ xdDXp )|,(   =  

  =  log ∫
θ xd

XQ
DXpXQ
)(
)|,()(  

  ≥  ∫
θ xd

XQ
DXpXQ
)(
)|,(log)(  

(10.27)  =  

€ 

Q(X)log p(X,D |θ) dx∫ − Q(X)logQ(X) dx∫  

  =  (Q, θ),  
 
where the inequality is an instance of the Jensen inequality for expectations of random 
variables: 
 
(10.28)   E[q ° X] ≤ q (E[X])  for any concave function q. 
 
Note: the log is a concave function! – and the expectation we use is 

∫= xdXQXZXZE )()()]([ .  

Aside. There is an interesting connection between (10.27) and statistical physics, which I want 
to mention at this point for the ones who want to dig below the surface (not needed in the 
remainder of these LNs). If we define the possible joint values (x, d) of (X, D) as microstates 
of a thermodynamical system, then the energy of such a microstate is – log p(x, d | θ), and the 
expectation under Q of the energy of microstates is 

€ 

− Q(X)log p(X,D |θ) dx∫ , i.e. the 

negative of the first term in (10.27). The second term in (10.27), 

€ 

− Q(X)logQ(X) dx∫ , is the 
entropy of Q.  
 



 164 

 
EM algorithms maximize (Q, θ), by alternatingly maximizing  (Q, θ) w.r.t. Q and θ, 
starting from an initial good parameter guess θ0. That is, the following two operations are 
carried out in a seesaw fashion: 
 
(10.29)  E(xpectation) step:  Qk+1 = 

Q
maxarg   (Q, θk) 

(10.30)  M(aximization) step:  θk+1 = 
θ
maxarg   (Qk+1, θ) 

 
The maximum in the E-step is obtained when Q is the conditional distribution of X: 
 
(10.31)   Qk+1 = p(X | D, θk),  
 
because then it holds that  (Qk+1, θk) = (θk): 
 
(10.32)   (p(X | D, θk), θk)  = 
 =  ∫∫ θθ−θθ xx dDXpDXpdDXpDXp kkkk ),|(log),|()|,(log),|(  

 =  ∫∫ θθ=
θ

θ
θ xx dDpDXpd

DXp
DXpDXp kk

k

k
k )|(log),|(

),|(
)|,(log),|(  

 =  ∫∫ θ
θ

θ
=θ

θ

θ xx dDXp
Dp
DpdDp

Dp
DXp

k
k

k
k

k

k )|,(
),(
)|(log)|(log

),(
)|,(  

 =  log p(D | θk) = (θk). 
 
The maximum in the M-step is obtained if the first term in (10.27) is maximized, because the 
second term does not depend on θk: 
 
(10.33)   θk+1  = 

θ
maxarg ∫ θ+ xdDXpXQk )|,(log)(1  

    = 
θ
maxarg ∫ θθ xdDXpDXp k )|,(log),|(  

 
How the M-step is concretely computed depends on the particular kind of model. Because we 
have  = (θn) before each M-step, and the E-step does not change θn, and  cannot decrease 
in an EM-double-step, the sequence  (θ0),  (θ1),  (θ2) ... monotonously grows toward a 
supremum. The computation is stopped when  (θn) =  (θn+1), or more realistically, when a 
predefined number of iterations is reached or when the growth rate falls below a 
predetermined threshold. The last parameter set θ that was computed is taken as the outcome 
of the EM algorithm.  
 
It must be emphasized that EM algorithms steer toward a local maximum of the likelihood. If 
started from another θ0, another final parameter set may be found. Here is a summary of the 
EM principle: 
 

E-step: estimate the distribution p(X | D, θn) of the hidden variables, given a 
preliminary model θn and data D.  
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M-step: use the (preliminary, approximate) knowledge of the distribution p(X | D, θn) 
of the hidden variables to obtain a maximum likelihood estimate of θn+1.  

 

10.5 The EM algorithm for HMMs, "Baum-Welch" algorithm 
 
We proceed to give a concrete instantiation of the EM principle for HMM learning, the 
"Baum-Welch" algorithm. There are other EM variants for HMM estimation, but the Baum-
Welch algorithm seems to be the most widely used.  
 
Let D = aj0 ...ajN-1 be an observed sequence. Furthermore, assume that the number m of 
hidden states is known. Note: in reality, m is rarely known. Coming up with a good guess for 
m is not trivial, and typically boils down to trying out various choices of m, comparing the 
quality of the resulting models (after EM estimation of parameters) with cross-validation 
schemes – expensive! 
 
The first thing to do is to "guess" a reasonable starter set θ0 of transition, emission, and start 
state probabilities. A typical choice (in the absence of prior information about the model) is to 
use the uniform distribution with some noise on it.  
 
Now we treat the E-step. That is, we have some preliminary estimated set θn of HMM 
parameters. From the knowledge of D and θn we have to derive the joint distribution     
p(X0, ..., XN-1 | D, θn). Actually for the later use in the M-step we will not need the full 
information of p(X0, ..., XN-1 | D, θn) but can make do with the distributions p(Xl | D, θn) and 
p(Xl, Xl+1 | D, θn). Working our way towards these distributions we first note that from the 
forward and backward algorithms we can get the following probabilities: 
 
(10.34)   fk

(n+1)(l) = P(Xl = qk, aj0 ... ajl  | θn) and 
 
(10.35)   bk

(n+1)(l)  =  P(ajl+1 ... ajN-1  | Xl = qk, θn)  and 
 
(10.36)    P(D | θn) = ∑

k
 fk

(n+1) (N – 1). 

 
Using these we can compute P(Xl = qk, Xl+1 = qk' | D, θn) =: ξkk'

(n+1)(l)   by 
 

(10.37)   ξkk'
(n+1)(l)   =  

€ 

fk
(n+1)(l) pkk'

(n ) ek ' jl+1
(n ) bk '

(n+1)(l +1)
P(D |θn )

 

 
Note that )(

'
)(
' 1
, n

jk
n
kk l
ep

+
 are part of θn. Furthermore, from (10.17) we know how to compute 

 
(10.38)   γk

(n+1)(l)   = P(Xl = qk | aj0 ... ajN-1). 
 
With the ξkk'

(n+1)(l) and γk
(n+1)(l) we have extracted all that we need to know about the 

distribution of the hidden variables and proceed to the M-step. In that step we derive a new 
maximum likelihood estimate for θn+1 from ξkk'

(n+1)(l), γk
(n+1)(l) and D. This happens through 
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the following self-explaining re-estimation formulas. For the m components of the starting 
distribution w0 we can take  
 
(10.39)   P(X0 = qk)

(n+1) = γk
(n+1) (0). 

 
The transition probabilities are re-estimated by 
  

(10.40)   pkk'
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Finally, the emission probabilities are re-estimated through  
 

(10.41)   ekj
(n+1)   =  

k

jk

q
aq
  throughpasses of nr. expected
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This finishes the M-step.  
 

10.6 How to compare models for stochastic processes 
 
When estimating HMMs (or any other kind of stochastic sequence model, for that matter) 
from data, one needs a way to compare the quality of different models, for instance in cross-
validation schemes. A standard way of doing so is to use the log likelihood of the model on 
the training data (caution! overfitting!) or on test data (better! in cross-validation schemes, test 
data are taken from withheld portions of the training data). Concretely, assume first that the 
true model is known. Call it θtrue. Let D = ajl+1 ... ajN-1be the available data for quality 
checking. Then, the model θtrue should enable you to compute the log probability of D as  
 
(10.42)  LLtrue = log P(D | θtrue) 
 
In the case of HMMs, LLtrue can be conveniently computed with the matrix version of the 
forward algorithm 10.16, as follows:  
 

1. Initialize LLtrue = 0.  
2. for l = 0 to N-1 do 

a. compute vl  = Tjl wl  (notice that for l = 0, w0 is given as part of the model) 
b. update LLtrue = LLtrue + log 1m

T vl 
c. if l < N-1, put wl+1 = vl / 1m

T vl 
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3. return LLtrue. 
  
It's a good exercise to work out for yourself why this algorithm indeed computes LLtrue. 
 
Now, if you have another model θcheck besides the true one, you can likewise compute  
LLcheck = log P(D | θcheck). It is a fact which we mention without proof that always 
 
(10.43)  LLcheck ≤  LLtrue . 
 
 (Well, this is almost true... for short test sequences D, the check model θcheck may spuriously 
give higher LLcheck than LLtrue occasionally due to random fluctuations in D; when D grows 
bigger this will become increasingly improbable). This gives you a way to assess the quality 
of your model: the closer it comes to LLtrue, the better it is – and it's optimal, namely 
equivalent to the true model, when equality is obtained.  
 
Usually however one does not have access to the true model LLtrue. Then, this procedure can 
still be used to compare two check models θ1

check  and  θ2
check: if θ1

check ≤ θ2
check, the second 

model is the better one, and vice versa. You don't know how close you are to the optimal 
model, but at least you know whether your models get better or worse.  
 

10.7 Miscellaneous Remarks on HMMs 
 
Good news: The Baum-Welch algorithm for HMMs is numerically robust, easy to use, and 
the only choice for training HMMs. Here are some not so good news:  
This algorithm can become computationally expensive. It needs time O(N |S|2) per iteration, 

and in the order of 100 iterations are typically needed. For large N (e.g. in speech 
processing, N easily reaches 100,000) and large |S| (again, may reach half a million in 
speech processing) this induces minutes or even hours of training time, which render 
HMMs awkward for adaptive applications (e.g. re-training on the spot for new speakers). 
State-of-the art HMM-based learning algorithms don't use the raw Baum-Welch method 
however, but exploit numerous tricks to reduce computation time (and at the same time 
introduce Bayesian priors for better data exploitation, for instance by prescribing pairwise 
equality of many of the parameters to be learnt).  

Only a local optimum is guaranteed by EM. To make things worse, for complex HMMs 
(having many states) the likelihood landscape is very rugged, and one may easily land in a 
globally very subobtimal local optimum. The literature claims that this is not a real 
problem, but in my own experience I have found that even 3-dimensional HMMs can 
easily (and repeatedly) get stuck in very bad "optima". To overcome this impasse, one can 
use extra search methods (e.g., simulated annealing or restarting from different initial 
guesses of θ0) that however multiply the computation time.  

It is not immediately clear from a training sample what an appropriate model size (= number 
of states) is. This may force one to add yet another level of computational superstructure, 
namely, searching for an optimal model size (negotiating for a good compromise in the 
bias-variance dilemma).  

 
One partial remedy to computational complexity is to use the Viterbi approximation to the 
Baum-Welch algorithm. In this "cheap" version of EM for HMM estimation, the E-step 
simply computes the Viterbi state sequence.  
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In spite of these difficulties and challenges, HMM + Baum-Welch is essentially the only 
available option for learning complex stochastic systems of the "speech or other information-
bearing symbol sequence" flavour. The art and technology of HMM design and learning is far 
advanced, and various public-domain implementations are available. The one that I use was 
developed in Matlab by Kevin Murphy from MIT and can be downloaded from 
http://www.cs.ubc.ca/~murphyk/Software/HMM/hmm.html, where also a good choice of 
tutorial links is provided (this HMM toolbox requires several other public-domain Matlab 
toolboxes to be installed, as indicated on that webpage. You can download all of them 
bundled together with Kevin Murphy's HMM toolbox in a single zip file from 
http://minds.jacobs-university.de/sites/default/files/uploads/teaching/share/HMM.zip.  
 
We have assumed in our treatment of HMM + Baum-Welch that the training sample consists 
of a single (long) sequence. In many applications, the training material consists instead in 
many short or medium-long sequences (for instance for single-word recognition in speech 
processing or in biosequence modeling). The Baum-Welch algorithm, as presented above, can 
be immediately adapted to that kind of training material.  
 
One important way to reduce training time and at the same time to insert prior information 
intot the HMM that is to be learnt, is to prescribe the structure of the transition graph of the 
underlying Markov chain. That is, one specifies the number of states and also which state 
transitions are forbidden (frozen at a zero transition probability). This is of special importance 
in speech processing and biosequence modelling. A typical hand-coded transition graph for a 
HMM that models the utterance of a particular target word might look like in Figure 10.4. 
 
 
 
 
 
 
 
 
 
 
 
Figure 10.4 A state transition graph for a (finite) Markov chain, as could be obtained in 
modelling a short vocal utterance. 
 
Many variants of HMMs have been explored together with variants of the EM learning 
algorithm. A good overview of basic variants is given in Rabiner's tutorial paper. They 
include:  
 
HMMs that don't just emit from their state symbols from a finite alphabet but instead 

continuous-valued quantities according to a pdf associated with each state,  
HMMs that emit observable events not from states, but from transitions,  
HMMs that allow the hidden process to stay in a state for a stochastic time (and repeatedly 

emit observables from that state during that time) that is specified by additional model 
parameters.  

 
Finally, I want to point out that HMMs are specific members of a far greater class of 
stochastic models, termed Bayesian Networks or – even more generally still – Graphical 
Models. Graphical models present stochastic models of complex pieces of reality, especially 

 

q1 q2 q3 q4 q5 q6 q7 q8 
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in applications of diagnostic reasoning (medical expert systems, production line surveillance 
systems, fault monitoring systems), decision support systems, and image processing (where 
the random variables correspond to pixels). Such models often comprise thousands or even 
millions of random variables, whose joint distribution provides the most complete and 
profound possible description of a modelled piece of reality. However, joint distributions of 
very many variables cannot be in general learnt from data (curse of dimensionality!), and even 
if they could be, there is no general way even just to represent such joint distributions (how 
would you represent a complicated, empirical function over 1000?). Graphical models (and 
their subspecies, Bayesian Networks) exploit that in systems comprising thousands of random 
variables, most of them are conditionally pairwise independent, a circumstance that can be 
described by graphs whose nodes are the random variables – just as we did for HMMs in 
Figure 10.3. Combining advanced graph algorithms and techniques from nonlinear stochastic 
optimization, using fast computers it becomes in fact feasible to handle modelling tasks of 
enormous calibre. I give an introduction to graphical models is given in the companion lecture 
to this Machine Learning course, "Algorithmical and Statistical Modelling".  
 
 


