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1 Human Versus Machine Learning

Humans learn. Animals learn. Societies learn. Machines learn. It looks like
“learning” were a universal phenomenon and all we had to do is to develop a solid
scientific theory of “learning”, turn that into algorithms and then let “learning”
run on computers. Wrong wrong wrong. Human learning is very different from
animal learning (and amoebas learn different things in different ways than chim-
panzees), societal learning is quite another thing as human or animal learning, and
machine learning is as different from any of the former as cars are from horses.

Human learning is incredibly scintillating and elusive. It is as complex and
impossible to be fully understood as you can’t fully understand yourself. Think
of all the things you can do, all of your body motions from tying your shoes to
playing the guitar; thoughts you can think from “aaagrhhh!” to “I think therefore
I am”; achievements personal, social, academic; all the things you can remember
including your first kiss and what you did 20 seconds ago (you started reading this
paragraph, in case you forgot); your plans for tomorrow and the next 40 years;
well, just everything about you — and almost everything of that wild collection
is the result of a fabulous mixing learning of some kind with other miracles and
wonders of life. To fully understand human learning, a scientist would have to
integrate at least the following fields and phenomena:

body, brain, sensor & motor architecture · physiology and neurophysi-
ology · body growth · brain development · motion control · exploration,
curiosity, play · creativity · social interaction · drill and exercise and
rote learning · reward and punishment, pleasure and pain · the universe,
the earth, the atmosphere, water, food, caves· evolution · dreaming · re-
membering · forgetting · aging · other people, living · other people, long
dead · machines, tools, buildings, toys· words and sentences· concepts
and meanings · letters and books and schools · traditions . . .

Recent spectacular advances in machine learning may have nurtured the im-
pression that machines come already somewhat close. Specifically, neural net-
works with many cascaded internal processing stages (so-called deep networks)
have been trained to solve problems that were considered close to impossible only
a few years back. A showcase example is automated image caption (technical
report: Kiros et al. (2014)). At a website of one of the “deep learning” pio-
neers, Geoffrey Hinton from the University of Toronto, you can find stunning
examples of caption phrases that have been automatically generated by a neural
network which was given a photographic image as input (check out the static demo
at http://www.cs.toronto.edu/∼nitish/nips2014demo). Figure 1 shows some
screenshots. Other fascinating examples of deep learning are face recognition (e.g.,
Parkhi et al. (2915)), online text translation (e.g., Bahdanau et al. (2015)), infer-
ring a Turing machine (almost) from input-output examples (Graves, 2016), or
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playing the game of Go at and beyond the level of human grand-masters (Silver et
al, 2016).

So, apparently machine learning algorithms come close to human performance
in several tasks or even surpass humans, and these performance achievements have
been learnt by the algorithms, — thus, machines today can learn like humans??!?
The answer is NO. ML researchers are highly aware of this. Outside ML however,
naive beholders (from the popular press, politics, or other sciences) often conclude
that since learning machines can perform similar feats as humans, they also learn
like humans. It takes some effort to argue why this is not so (read Edelman (2015)
for a refutation from the perspective of cognitive psychology). I cannot embark
on this fascinating discussion at this point. Very roughly speaking, it’s the same
story again as with chess-playing algorithms: the best chess programs win against
the best human chess players, but not by fair means — chess programs are based
on larger amounts of data (recorded chess matches) than humans can memorize,
and chess programs can do vastly more computational operations per second than
a human can do. Brute force wins over human brains at some point when there is
enough data and processing speed. Beyond that brute force component, computer
chess programs are just clever graph search algorithms. Similarly, the celebrated
ML demos rely on brute force. Their force is however not burnt on graph search
as in classical AI algorithms, but it is used to represent and estimate complex
probability distributions. Progress has accelerated in the last few years because
increasingly large training datasets have become available and technically manage-
able, and fast enough computing systems (concretely, GPU clusters) have become
cheap enough for university research teams.

This is not to say that powerful ML “just” means large datasets and fast ma-
chines. These are necessary but not sufficient. In addition to these technological
preconditions, also numerous algorithmical refinements and theoretical insights in
the area of statistical modeling had to be developed. Some of these algorithmi-
cal/theoretical concepts will be presented in the remainder of this course.

Take-home message: The astonishing learning feats of today’s ML are based
on statistical modeling techniques, raw processing power and a lot of a researcher’s
personal experience and trial-and-error optimization. It’s technology and maths,
not psychology. Dismiss any romantic ideas about ML. ML is stuff for sober
engineers. But they are allowed to become very excited about that stuff, and that
stuff can move mountains.

2 ML as Modeling Probability Distributions

In this section I want to explain, still on a largely informal level, that large parts
of ML can be understood as the art of estimating probability distributions from
data. I will also use this occasion to highlight some typical challenges that ML
projects often face.
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Figure 1: Three screenshots from the neural-network based image caption demo
at http://www.cs.toronto.edu/∼nitish/nips2014demo.
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2.1 Introducing TICS: a recent highlight example of ma-
chine learning

I will use the demo task highlighted in Figure 1 as an example. Let us follow the
sacred tradition of ML and first introduce an acronym that is not understandable
to outsiders: TICS = the Toronto Image Caption System.

After training, TICS, at first sight, implements a function: test image in,
caption (and tags) out. If one looks closer, the output however is not just a
single caption phrase, but a list of several captions (“generated captions” in the
screenshots in Figure 1). In fact, TICS not only just outputs a list of caption
suggestions, but this list is rank-ordered by probability: captions that TICS thinks
are more probable are placed higher in the list. Indeed TICS computes a relative
probability value for each suggested caption. This probability value is not shown
in the screenshots.

Let us make this more formal. TICS captions are based on a finite vocabu-
lary of English words (and their grammatical inflection forms, like “try”, “tried”,
“trying” etc) that the system designers fixed at design time. For simplicity let
us assume that this vocabulary contains 10,000 words (that would be a typical
size for today’s ML systems that handle simple natural language texts; I did not
find the vocabulary size documented in the scientific report). Let us furthermore
assume for even more simplicity that the length of captions that TICS can gen-
erate is bounded, say to a maximum of 20 words. This means that there are
N = 10, 00020 + 10, 00019 + . . . + 10, 000 different possible word sequences. Let
C = {s1, . . . , sN} denote the set of these sequences — the set of potential captions.
C is a very large set. When TICS (after training) is run on an input test image
xtest, the system implicitly uses a learnt probability distribution over C to return
the five word sequences that have the highest probability.

Some technical-mathematical remarks are in place at this point. C is a fi-
nite set (though large). Therefore, a probability distribution P over C is, math-
ematically speaking, just an N -dimensional probability vector, that is, a vector
(P (s1), . . . , P (sN)) satisfying (i) P (si) ≥ 0 for all 1 ≤ i ≤ N and (ii)

∑
i P (si) = 1,

where P (si) is the probability of the sequence si. Simple as this set-up looks, it
harbors two problems.

Problem 1 : Since N is huge, the total probability mass of 1 necessarily must
be distributed over the N components si in very tiny portions. If you want to code
these probabilities on your digital computer, numerical underflow will occur: most
probabilities P (si) will be smaller than the numerical precision of your computer
and thus become represented as zero. Solution 1 : use log probabilities instead
of raw probabilities. That is, instead of storing P (si), store log P (si). In fact, it
is common practice in ML formalisms and ML programming to work with “log-
probs” instead of with the raw probilities. Solution 2 : don’t calculate probabilities
at all. For practical use, it is not the probabilities per se but the ratios of proba-
bilities that are important. For instance, it is enough for figure caption generation
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to know that the most probable caption candidate is 3 times as probable as the
second-best, which in turn is 1.3 times more probable than the third, etc. In fact
many ML algorithms do not calculate or output raw or log probabilites but only
probability ratios.

Problem 2 : It is impossible to completely compute a vector of N numbers
when N is as large as in TICS — memory overflow and time overflow prevent
this. Solution: the TICS algorithm must be set up in a clever way such that it
can find the most probable candidate (and its next-best companions) without first
computing all probabilities and then selecting the highest. This can be a tricky
affair.

Back to our main business of outlining the probability story behind TICS. We
have seen that in essence (though technical realisation may differ), TICS upon
input of a test image xtest computes a probability distribution on C. For different
test images xk, xl these distributions over candidate captions will differ: if the
image xk shows a flying bird, the caption bird in the sky will receive a higher
probability than the caption car on a highway; for xl showing a car on a road
the second caption will get a higher probability. Thus, TICS has to compute
conditional probabilities P (Caption = si |Picture = xj) of captions si given input
pictures xj.

Conditional probabilities abound in ML. One could even say that (almost) ev-
ery probability that arises in real-world modeling tasks is a conditional probability,
since (almost) all interesting modeling tasks aim at elucidating how probabilities
of some effects vary when causes are changing. That is, the most interesting prob-
abilities encountered in applications look like P (Effect = y |Cause = x). In our
case, the causes are input images and the effects are figure captions.

At this point - don’t read on unless you have (re-)familiarized yourself with
the concept of conditional and joint probabilities. You find a short rehearsal in
Appendix A.

2.2 From discrete to continuous probability distributions

You will have heard buzzwords like “big data” or “deep learning”, highlighting
current developments in data analytics and machine learning. A characteristic of
these developments is that very large datasets are being analyzed. This has become
possible only in the last few years due to technological advances (availability of
large datasets, cloud computing, large RAM’s, use of GPUs) and the development
of novel ML algorithms that can cope with large datasets. The TICS demo is a
good example. Often the data that one wishes to process come in a mix of discrete
and continuous formats. Again TICS is a good example:

• Images are continuous-valued data. More specifically, an RGB image that
has K pixels can be formally seen as a real-valued vector of size 3K, where
each value in this vector is the red, green or blue intensity of one of the
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image’s pixels. If the image is merely 600 × 800 pixel sized (small for to-
day’s standards), this alread turns an image into a 3∗600∗800 = 1, 440, 000
dimensional vector. Assuming that color intensities are coded as reals be-
tween 0 and 1, the “image space” in which mathematical formalism places
images is the hypercube I = [0, 1]1,440,000. A LARGE! dimension indeed, and
quite a different animal from the typically 2- or 3-dimensional vectors you
encountered in mathematics classes.

• Bounded-length captions made from a finite vocabulary form a finite set and
hence are, mathematically speaking, discrete data. However, the number of
possible different data points is astronomical. Again, such a very large (yet
finite) set is quite a different animal than the pocket-sized finite sets that
have been drawn on the blackboard by your math teacher in set theory
classes.

Similarly, in other typical “big data” or “deep learning” applications, when
data are discrete, they usually come in sets of very large size. For practical reasons
(limited processing times and limited computer memory space) one cannot easily
handle such sets.

Another difficulty with discrete data arises when they have to be combined
with continuous data. The machinery behind TICS, for instance, has to combine
information about images (continuous) with information about word sequences
(discrete) in order to produce meaningful results.

On the other hand, when one works with purely continuous data spaces, the
existence of very many data points does not present headaches. Mathematically,
continuous data spaces are typically set up as vector spaces. A vector space con-
tains infinitely many possible data points from the outset, and the mathematics
of vector spaces is just made to deal with infinite point sets – for instance, lines,
subspaces, and objects called manifolds that we’ll inspect soon.

Thus, a standard strategy in modern machine learning (especially in deep learn-
ing) is to transform any discrete data that one has to deal with, into vector data
at the beginning of a day’s work. Such a discrete-to-continuous transformation
can be done in many ways, and which method one uses depends on the task at
hand. Here are two examples:

• A simple case: assume the discrete data are records of “yes/no” answers
given in some questionnaire. A discrete data point is then a list of N
“yes/no” alternatives, where N is the number of questions in the question-
naire. This can be turned into a real vector by just replacing “yes” by the
number 1.00 and “no” by the number 0.00, leading to a binary numerical
vector in x ∈ RN . Similarly, any symbolic data record can be transformed
into a numerical vector format by replacing symbols with numbers according
to a look-up table.
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• A more advanced case: In TICS, each word wi from the used caption vo-
cabulary was transformed into an 300-dimensional vector vi ∈ R300. The
tricky part is how this transformation wi 7→ vi was computed. The guiding
idea is to find a mapping that encodes semantic similarity. For instance,
code vectors v, v′ for words w = airplane and w′ = aircraft should be similar,
wheras the code vector v′′ for w′′ = rose should be dissimilar to both v and
v′. Similarity of vectors can be quantified conveniently by metric distance,
so the goal is to find vectors v, v′, v′′ in this example that have small dis-
tance ‖v − v′‖ and large distances ‖v − v′′‖, ‖v′ − v′′‖. This was achieved
in a preprocessing stage where semantic similarity of two words w,w′ was
assessed by measuring how often they occur in similar locations in phrase
contexts. To this end, large collections of English texts were processed, col-
lecting statistics about similar sub-phrases in those texts that differed only
in the two words whose similarity one wished to assess (plus, there was an-
other trick: can you think of an important improvement of this basic idea?).
Check out Mikolov et al. (2013) for a standard reference on this technique –
this paper has been (Google-scholar) cited more than 3,000 times in merely
three years!

I emphasize that while a discrete-to-continuous transformation is often done, it
is not always done. One can also go the other way: unify formalism and algorithms
by making everything discrete. The simplest method for discretizing continuous
vector data vi ∈ Rn is binning : The region D ⊆ Rn in which the observed vectors vi

fall is partitioned into a finite number of hypercube subregions D = H1∪̇ . . . ∪̇HK

(where ∪̇ denotes disjoint union). A continuous vector falling into the hypercube
Hi is then transformed to the integer i (and integers are discrete objects).

Generally speaking, the continuous vs. discrete data representation choice leads
to a landmark divide in machine learning techniques. Continuous data are the typi-
cal choice for neural network based techniques, where the background mathematics
is linear algebra and calculus. On the other hand, discrete data formats are often
processed with algorithms that are based on logic calculi and/or graph-oriented
statistical methods, so-called graphical models.

At any rate, for the remainder of this introductory section, we’ll be looking at
vector data only.

2.3 A curse

In order to output the five highest-probability captions c1, . . . , c5 given an in-
put image x, the TICS system must compare conditional probabilities of the
kind P (Caption = c | Image = x). Since we have agreed to work with vector
data, these probability comparisons are actually comparisons between pdf’s, not
probability values, so more correctly, TICS must compare pdf values of the kind
fCaption|Image(c |x). Recall (see Appendix A) that these conditional pdf’s are the
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Figure 2: Two images and their annotations from the training data set. Taken
from Young et al. (2014).

quotients

fCaption|Image(c |x) =
fCaption,Image(c, x)

fImage(x)
,

TICS must be able to compute – explicitly or implicitly – the joint probability
density fCaption,Image(c, x) and the marginal pdf fImage(x). We will now take a closer
look at the latter.

So, let us address the question of describing a pdf in the image space I =
[0, 1]1,440,000.

In order to visualize the following arguments, let us dramatically simplify the
story. Assume that the image space I were only two-dimensional, that is, assume
I = [0, 1]2 instead of I = [0, 1]1,440,000 (a two-dimensional image vector would
correspond to a two-pixel grayscale “image”). Thus, images are just points in the
2-dimensional unit square. Assume furthermore that the training set only consists
of the two images shown in Figure 2. Then the training data can be visualized as
in Figure 3.

Now consider a test image xtest presented to TICS (red cross in Figure 3). For
concreteness assume that this test image is the harbor scene picture from Figure
1. The task for TICS is to generate some captions for this test image xtest. The
only information that TICS can use to solve this task is the training dataset.

How on earth should that be possible? The images from the training dataset
(the businessman and the butcher images) seem unrelated to the harbor image.
How should TICS learn anything useful from those different pictures to bring
to bear on the test image caption finding task? To use a core technical term
from machine learning: how on earth should TICS be able to generalize from the
training data to test data?

You might think that TICS should work as follows to solve this task. In order
to generate meaningful captions for xtest, TICS should search through the training
data, find training images xi that are “similar” to xtest, then generate captions
that are somehow interpolations between the known training captions for those
similar-to-xtest training images.
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x1 

x2 

1 

1 

Grey haired man in black... 
A graying man in a suit... 
A businessman ... 
A man in a yellow tie... 
A man with a yellow tie... 

A butcher cutting... 
A green-shirted man with ... 
A man at work, butchering... 
A man in a green t-shirt and... 
Two men work in... 

C 

I 

?? 

Figure 3: Training data for TICS (highly simplified). The image dataspace I is
the N -dimensional unit hypercube (here N = 2, shown in light blue
shading), the two training images are points in this space (blue crosses
indicating our 2-image demo training dataset), and the associated 5
captions per image are elements of a word sequence space C (indicated
by greenish cloud). The test image is marked by an orange cross.

In Figure 3 this strategy wouldn’t work because there are no apparent “close-
by” training images for the test image xtest. So you might suspect that this
trimmed-down caricature with a 2-dimensional image space and only two training
examples is an unfair rendering of the actual situation. But for the full-size TICS
system the situation is even far worse than this visualization suggests. This is
because the actual image space is 1,440,000-dimensional, but there are only 30,000
training images. There are 1,440,000 / 30,000 = 48 times more dimensions than
data points! In our caricature this ratio is much better: 2 dimensions, 2 images —
as many images as dimensions. Thus, the actual TICS training data are very thinly
spread over the image data space I (much more thinly than in the caricature).
Even worse: the longest diagonal in the 1,440,000-dimensional unit hypercube
has a length of

√
1440000 = 1200. Not only can the training images “cover”

only a subspace in I whose dimension is a mere 1/48-th of the embedding space
dimension, but training images will be metrically spaced far apart from each other.
We will not dig deeper into the geometry of high-dimensional metric spaces at
this point (humans can’t really image such spaces, all our intuitions are confined
to 3-dimensional spaces). The message that I want to bring home here: The
training images are exceedingly thinly spread over the data space I, they have
large distances from each other, and a test image will likewise typically have a
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large distance from all of the training images. TICS wouldn’t be able to detect
“similar” training examples for xtest simply because there aren’t any — at least,
if “similarity” is expressed in terms of metric closeness in data space.

In spite of all these apparent impossibilities, TICS works. How has the im-
possible been rendered possible? Answer: by a clever combination of differential
geometry and statistics. I will now attempt to give an intuitive account of the
geometrical statistics (or statistical geometry) underlying TICS. The picture that
will emerge is by and large the current mainstream view on the nature of high-
dimensional statistical modeling held in the “deep learning” subfield of ML.

Before we start, I need to sketch a concept from analytical geometry, manifolds.
Consider the n-dimensional real vector space Rn (for our TICS, this would be I
with n being 1440000). Let m ≤ n be a positive integer not larger than n. An m-
dimensional manifold M is a subset of Rn which locally can be smoothly mapped
to Rm, that is, at each point of M one can smoothly map a neighborhood of that
point to the m-dimensional Euclidean coordinate system (Figure 4A).

1-dimensional manifolds are just lines embedded in some higher-dimensional Rn

(Figure 4B), 2-dimensional manifolds are surfaces, etc. Manifolds can be wildly
curved, knotted (as in Figure 4C), or fragmented (as in Figure 4B). Humans
cannot visually imagine manifolds of dimension greater than 2.

Back to TICS. A key to why machine learning is not impossible is the fact that
n-dimensional data points generated by real-world data generating environments
typically lie on an m-dimensional submanifold embedded in Rn. In our case of
images, n = 1440000, but the TICS system actually is set up in a way that forces
the images to lie on a m = 4096 dimensional manifold embedded in I. Compared
to the raw data space dimension n = 1440000, this is a dramatically much lower-
dimensional space. However, the 4096-dimensional manifold is curled and curved
into the embedding space in an exceedingly complicated way (Figure 4C only gives
a very faint impression of the unwieldy shape of real-world data manifolds).

The reason why real-world data vectors typically lie on relatively low-dimensional
manifolds is that the real world is full of rules and regularities and symmetries and
constraints. These regularities reduce the degrees of freedom by which real-world
data vectors can vary. In the case of image vectors, for instance, some of these
constraints would be

• neighboring pixels tend to have similar color,

• sudden changes in color tend to follow line segments,

• in a part of an image showing a face there will be a portion of that part that
shows a nose,

• trees have many similar leaves,

• ... (you get the idea)
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C B 

Figure 4: A An m-dimensional manifold can be locally “charted” by a bijective
mapping to a neighborhood of the origin in Rm. Example shows a curved
manifold of dimension m = 2 embedded in R3. B Some examples of 1-
dimensional manifolds embedded in R2 (each color corresponds to one
manifold — manifolds need not be connected). C A more wildly curved
2-dimensional manifold in R3 (the manifold is the surface of this strange
body).

The next beneficial circumstance that helps to make TICS work is that there
are more training data points than dimensions of the data manifold. Concretely
in TICS there are about 30,000 caption-labelled images in the Flickr dataset that
constituted the main training information. This relative abundance of training
points enabled TICS to trace out the curled-up geometry of the m = 4096 di-
mensional target manifold – at least, approximately, and in some regions. Figure
5A shows how curved manifolds can be identified by a sufficient number of data
points. In fact, when TICS was trained, another 70,000 images (without captions)
were used in addition to the core Flickr dataset just for detecting the “image
manifold”.

But, real-world data contain random noise components and will not exactly
fall on the manifold that one wishes to determine (schematic in Figure 5B). De-
termining the manifold thus implicitly requires the learning system to model the
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A B 

Figure 5: A When there are “enough” data points on a manifold available and
when one assumes suitable smoothness criteria, a manifold can be de-
termined (“learnt”) from the datapoints (idealized schematic). B Real-
world data are always randomly scattered around the ideal manifold.

probability distribution of data points.
(Sneak preview: We will later learn about feedforward neural networks, also

often called multilayer perceptrons (MLPs). TICS uses such an MLP network to
learn the manifold from training images. Such MLPs consist of a stack of layers of
“neurons”, where the lowest layer receives the input and the highest layer returns
the output. In the TICS MLP, the input layer functions like a retina and has
1440000 neurons which code the pixel-color-channel values of the input image. The
output layer has 4096 neurons whose activation values span a 4096-dimensional
coordinate system, analog to the 2-dimensional coordinate system from Figure
4A.)

Summing up what we have seen so far: TICS contains an image processing
submodule (an MLP) which transforms an input image x into a point fx in a
4096-dimensional coordinate system. The transformed point fx is called a feature
vector representing x, and the 4096-dimensional coordinate system is called feature
space F . In geometrical terms, this transformation from raw images x to feature
vectors fx achieves two important objectives:

• a dimension reduction from 1440000 to 4096 (factor of 350), which leads to
a much better coverage density of the low-dimensional feature space with
feature vectors, compared to the thin scattering of raw images in image
space;

• an “un-curling”, or “flattening-out” of the 4096-dimensional manifold. In the
original 1440000-dimensional image space, this manifold is highly “curled”,
whereas the final 4096-dimensional feature representation can be considered
as a “flat” coordinate system. The word “flat” should not be understood
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in the same way as we perceive a tabletop surface as being flat. Rather
more abstractly, it means that images that should get similar captions have
a small metrical distance on this manifold and vice versa.

f1 

f2 

Grey haired man in black... 
A graying man in a suit... 
A businessman ... 
A man in a yellow tie... 
A man with a yellow tie... 

A butcher cutting... 
A green-shirted man with ... 
A man at work, butchering... 
A man in a green t-shirt and... 
Two men work in... 

C 

F 

Figure 6: The lower-dimensional feature space F is more densely covered by train-
ing image feature representations fx, compared to the thinly spread-out
population of raw images x in the original image space I. Each of the
training image feature vectors fx is associated with a set of 5 captions
in C (only two are shown). Orange cross: a test image. Orange blobs:
neighborhoods of test image in feature space and in caption space.

Figure 6 attempts to visualize this situation. TICS is now in a much better
condition to solve the caption-generating problem. Intuitively speaking, the rela-
tively dense coverage of feature vectors fx in F makes it possible to meaningfully
interpolate between them. A test image feature vector ftest (orange in Figure 6)
can now be meaningfully related to “neighboring” training images fx, and cap-
tions for ftest can be obtained by “interpolating” between the captions of those
neighbors (light orange areas in Figure 6).

The technical details of how this “interpolating” is done are beyond the scope of
this course. I can only give a simplified outline. Mathematically, TICS has to learn
a family of conditional distributions {p(Caption = c | Image = x) |x is a real-world image}.
Note that we only need to learn caption-generation for images taken from the real
world, not for arbitrary vectors xnonsense ∈ [0, 1]1440000. Only those real-world im-
ages lie on (or close to) our 4096-dimensional manifold in I, and only for real-world
images the feature transformation makes sense.

16



A core component of the TICS machine is thus a dimension reduction mod-
ule. This module reduces the 1440000-dimensional picture input vector to feature
vector which is only 4096-dimensional. All caption-relevant information in the
raw picture is condensed into 4096 numbers which constitute this feature vector.
The transformation from 1440000-dimensional raw input to a 4096-dimensional
encoding of the picture’s “essential meaning” is achieved by a deep neural net-
work whose input layer has 1440000 units and whose output layer has only 4096
units. Much of the power and mystic of deep learning concerns the art to design
and train such networks. After this dimension reduction, another submodule of
TICS is trained to transform the 4096-dimensional feature vector into the caption
hypotheses. In many deep learning architectures, this post-processing submodule
which transforms a low-dimensional feature vector to the desired output is itself
realized by a neural network, or by additional neural processing layers on top of
the dimension-reducing subnetwork. Often however this post-processing module is
more complex than just a few more neural layers. In TICS, the post-processing of
the 4096-dimensional feature vector fx utilizes the combined action of a so-called
recurrent neural network, an elementary grammar model, and a vector-space based
coding of word meaning, all of which are trained from data.

The TICS paper of Kiros et al. (2014) gives no account of the total number of
parameters that need to be estimated by a training procedure for TICS, nor an
account of the computer runtime required by the training algorithm. Similar state-
of-the-art neural-network based models typically have several hundred thousands
of parameters and the training time is in the order of a few days on GPU hardware
or medium-sized PC clusters.

TICS exemplifies the current state of the art in machine learning. It also
highlights some challenges and phenomena that permeate almost every corner of
ML, and which give ML its characteristic “flavor”:

High-dimensional data require dimension reduction. Many ML applications
deal with images, texts, speech, video, time series, institutional data repos-
itories which are high-dimensional. As we have seen, high-dimensional data
points are by necessity thinly spread in their data space. This makes a head-
on direct modeling of their distribution all but impossible, and dimension
reduction techniques are an important topic in ML. In TICS this dimen-
sion reduction was effected for the image part of the data by the manifold
learning; for the caption part several mechanisms (not reported here) were
combined.

The core of ML is estimating and representing distributions. Almost all
ML applications deal with data that have a random component. The degree
of randomness in image caption generation is somehow intermediate; stock
price modeling is infested by extreme randomness; control of car engines is
almost, but not quite, deterministic. A well-trained ML system will nec-
essarily incorporate a model of the data distribution. In many applications
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this model is implicit (probabilities are not always explicitly computed when
the trained model is put to work). ML methods differ widely in how, con-
cretely, these distributions are mathematically-algorithmically represented.
In TICS two neural networks plus some other formalisms were combined.
For the design and analysis of ML systems, probability theory and statistics
are key.

Good models are smoother than reality — but how much smoother is best?
We have seen in TICS that the super-curled-up distribution of images in
image space was flattened to a distribution of feature vectors in a 4096-
dimensional feature space. This space was low-dimensional enough to be
“covered” by the available training data points, enabling some sort of inter-
polation for test images. If a larger set of training data had been available,
a feature space of dimension higher than 4096 could have been “covered”,
resulting in a more detailed model. Similarly, with fewer training points,
only a smaller-size model could have been estimated. In any case, the ob-
tained models (distributions) are simpler than the real distribution. Finding
the right model size (in TICS: 4096 for the image representation part) is of
paramount importance for optimal outcomes. Closely related to the issue
of model size is the issue of smoothing the model. The technical term is
regularization. Figure 5B visualizes that the image manifold learnt by TICS
“smoothes out” the training data points. We will learn much more about
this later in this course.

ML is data hungry almost without limits. Given that ML is about real-world
modeling and that the real world is almost unboundedly complex, and con-
sidering what I just said about smoothing, it is clear that more data will give
more detailed models and hence better application performance. An impor-
tant enabling factor for the recent successes of ML was the sheer availability
of very large training datasets (plus, the hardware to process it). Further
progress along this line can be expected.

3 The Dimensions of Machine Learning

ML as a field which perceives itself as a field is relatively young (say, 30 years);
it is interdisciplinary and has historical and methodological connections to neu-
roscience, cognitive science, linguistics, mathematical statistics, AI, signal pro-
cessing and control, and pattern recognition (the latter is traditional academic
subdiscipline of computer science); it uses mathematical methods from statistics
(of course), information theory, systems theory (in the sense of signal processing
and control), dynamical systems (in the mathematical sense), mathematical logic
and numerical mathematics; and it has a very wide span of application types.
This diversity in traditions, methods and applications makes it difficult to study
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“Machine Learning”. Any given textbook, even if it is very thick, will render the
individual author’s specific view and knowledge of the field and be partially blind
to other perspectives. This is quite different from other areas in CS, say for exam-
ple formal languages / theory of computation / computational complexity where
a standard body of themes with a widely shared standard repertoire of methods
and some standard textbooks cleanly define the field.

I have a brother, Manfred Jaeger, who is a machine learning professor at Aal-
borg university (http://people.cs.aau.dk/∼jaeger/). We naturally often talk
with each other, but never about ML because I wouldn’t understand what he is
doing and vice versa. We have never met at scientific conferences because we
attend different ones, and we publish in different journals.

The leading metaphors of ML have changed over the few decades of the field’s
existence. The main shift, as I see it, was from “cognitive modeling” to “statistical
modeling”. In the 1970-1980ies, a main research motif/metaphor in ML (which was
hardly named like that then) was to mimic human learning on computers, which
connected ML to AI, cognitive science and neuroscience. While these connections
persist to the day, the mainstream self-perception of the field today is to view
it very soberly as the craft of estimating complex probability distributions with
efficient algorithms and powerful computers.

There is no established division of ML into subfields. My personal map of ML
divides it into four main segments with distinct academic communities, research
goals and methods:

Segment 1: Theoretical ML. Here one asks what are the fundamental possi-
bilities and limitations of inferring knowledge from observation data. This
is the most abstract and “pure maths” strand of ML. There are cross-
connections to the theory of computational complexity. Practical applica-
bility of results and efficient algorithms are secondary. Check out https:

//en.wikipedia.org/wiki/Computational learning theory and https:

//en.wikipedia.org/wiki/Statistical learning theory for an impres-
sion of this line of research.

Segment 2: Symbolic-logic learning, data mining. Here the goal is to infer
symbolic knowledge from data, to extract logical rules from data, to infer
facts about the real world expressed in fragments of first-order logic or other
logic formalisms. The descriptive data structures distilled from raw data
are AI knowledge bases, relational databases, or other types of symbolic
data collections, in each case enriched with probabilistic information. Neu-
ral networks are rarely used. A main motif is that these resulting models be
human-understandable and directly useful for human end-users. Key terms
are “knowledge discovery”, “data mining”, or “automated knowledge base
construction”. This is the area of my brother’s research. Check out https:
//en.wikipedia.org/wiki/Data mining or https://en.wikipedia.org/

wiki/Inductive logic programming or https://suchanek.name/work/publications/
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sigmodrec2013akbc.pdf for getting the flavor. This is an application-driven
field, with applications e.g. in bioinformatics, drug discovery, web mining,
document analysis, decision support systems.

A beautiful case study is the PaleoDeepDive project described in Peters et al.
(2014). This large-scale project aimed at making paleontological knowledge
easily searchable and more realiable. Palaeontology is the science of extinct
animal species. Its “raw data” are fossil bones. It is obviously difficult to
reliably classify a collection of freshly excavated bones as belonging to a
particular species – first, because one usually only has a few bone fragments
instead of a complete skeleton, and second because extinct species are not
known in the first place. The field is plagued by misclassifications and ter-
minological uncertainties – often a newly found set of bones is believed to
belong to a newly discovered species, for which a new name is created, al-
though in reality other fossil findings already named differently belong to the
same species. In the PaleoDeepDive project, the web was crawled to retrieve
virtually all scientific documents relating to paleontology which were in pdf
format – including a large number of such documents that had been pub-
lished in pre-digital times and were just image scans. Then, using optical
character recognition and image analysis methods at the front end, these
documents were made machine readable, including information contained in
tables and images. Then, unsupervised, logic-based methods were used to
identify suspects for double naming of the same species, and also the oppo-
site: single names for distinct species – an important contribution to purge
the evolutionary tree of the animal kingdom.

Segment 3: Signal and pattern modeling. This is the most diverse sector in
my private partition of ML and it is difficult to characterize it globally. The
basic attitude here is one of quantitative-numerical blackbox modeling. Our
TICS demo would go here. The raw data are mostly numerical (like physical
measurement timeseries, audio signals, images and video). When they are
symbolic (texts in particular), one of the first processing steps typically
encodes symbols to some numerical vector format. Neural networks are
widely used and there are some connections to computational neuroscience.
The general goal is to distil from raw data a numerical representation (often
implicit) of the data distribution which lends itself to efficient application
purposes, like pattern classification, time series prediction, motor control to
name a few. Human-user interpretability of the distribution representation
is not important. Like Segment 2, this field is decidedly application-driven.
Under the catchterm “deep learning” a subfield of this area has received a
lot of attention recently.

Segment 4: Agent modeling and reinforcement learning. The overarching
goal here is to model entire intelligent agents — humans, animals, robots,
software agents — that behave purposefully in complex dynamical envi-
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ronments. Besides learning, themes like motor control, sensor processing,
decision making, motivation, knowledge representation, communication are
investigated. An important kind of learning that is relevant for agents is
reinforcement learning — that is, an agent is optimizing its action-decision-
making in a lifetime history based on reward and punishment signals. The
outcome of research often is agent architectures : complex, multi-module
“box-and-wiring diagrams” for autonomous intelligent systems. This is likely
the most interdisciplinary corner of ML, with strong connections to cognitive
science, the cognitive neurosciences, AI, robotics, artificial life, ethology, and
philosophy.

It is hard to judge how “big” these four segments are in mutual comparison.
Surely Segment 1 receives much less funding and is pursued by substantially fewer
researchers than segments 2 and 3. In this material sense, segments 2 and 3 are
both “big”. Segment 4 is bigger than Segment 1 but smaller than 2 or 3. My own
research lies in 3 and 4. In this course I focus on the third segment — you should
be aware that you only get a partial glimpse of ML.

A common subdivision of ML, partly orthogonal to my private 4-section par-
tition, is based on three fundamental abstractions of learning tasks:

Supervised learning. Training data are “labelled pairs” (xn, yn), where x is
some kind of “input” and y is some kind of “target output” or “desired /
correct output”. TICS is a typical example, where the x are images and
the y are captions. The learning objective is to obtain a mechanism which,
when fed with new test inputs xtest, returns outputs ytest that generalize in
a meaningful way from the training sample. The underlying mathematical
task is to estimate the joint distribution PX,Y or the conditional distributions
PY |X from the training sample (check the end of Appendix A for a brief
explanation of this notation). The learnt input-output mechanism is “good”
to the extent that upon input xtest it generates outputs that are distributed
according to the true conditional distribution P (Y = y | X = xtest), just
as we have seen in the TICS demo. Typical and important special cases of
supervised learning are pattern classification (the y are correct class labels for
the input patterns x), timeseries prediction (the y are correct continuations
of initial timeseries x), and system identification (this is an application type
in control engineering and signal processing, where the x are input signals
fed to some system and the y are measurements/observables indicative of
the reactions of the system to the given input). Segment 3 from my private
segmentation of ML is the typical stage for supervised learning.

Unsupervised learning. Training data are just data points xn and the train-
ing objective is to learn an estimate of the distribution PX . In our TICS
demo we saw a special variant of this in the image distribution submodule,
where the distribution PImage of images in image space was represented in
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the form of a lower-dimensional manifold. Unsupervised learning can be-
come very challenging when data points are high-dimensional and/or when
the distribution has a complex shape. Simple tables or pdfs are then useless
representation formats, and part of the art of unsupervised learning is to
develop manageable representation formats in the first place. Unsupervised
learning is closely related to data compression and dimension reduction: one
usually desires a representation of PX which is lower-dimensional, or sim-
pler in some sense, than the original data format. Abstractly speaking, data
compression is possible to the extent that the learning system can discover
regularities / rules / symmetries / redundancies in the raw training data.
Unsupervised learning thus needs (or leads to) some sort of “insight” into the
generating mechanism for x. Discovery of underlying rules and regularities
is the typical goal for data mining applications, hence unsupervised learning
is the main mode for Segment 2 from my private dissection of ML.

Reinforcement learning. The set-up for reinforcement learning (RL) is quite
distinct from the above two. It is always related to an agent that can choose
between different actions which in turn change the state of the environment
the agent is in, and furthermore the agent may or may not receive rewards
in certain environment states. RL thus involves at least the following three
types of random variables:

• action random variables A,

• world state random variables S,

• reward random variables R.

In most cases the agent is modeled as a stochastic process: a temporal se-
quence of actions A1, A2, . . . leads to a sequence of world states S1, S2, . . .,
which are associated with rewards R1, R2, . . .. The objective of RL is to
learn a strategy (called policy in RL) for choosing actions that maximize
the reward accumulated over time. Mathematically, a policy is a condi-
tional distribution of the kind P (An = an |, S1 = s1, . . . , Sn−1 = sn−1; A1 =
a1, . . . , An−1 = an−1), that is, the next action is chosen on the basis of the
“lifetime experience” of previous actions and the resulting world states. RL
is naturally connected to my Segment 4. Furthermore there are strong ties
to neuroscience, because neuroscientists have reason to believe that individ-
ual neurons in a brain can adapt their functioning on the basis of neural or
hormonal reward signals. Last but not least, RL has intimate mathematical
connections to a classical subfield of control engineering called optimal con-
trol, where the (engineering) objective is to steer some system in a way that
some long-term objective is optimized. A celebrated example is to steer an
interplanetary missile from earth to some other planet such that fuel con-
sumption is minimized. Actions here are navigation maneuvres, the (nega-
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tive) reward is fuel consumption, the world state is the missile’s position in
interplanetary space.

The distinction between supervised and unsupervised learning is not clear-
cut. Training tasks that are globally supervised (like TICS) may benefit from, or
plainly require, unsupervised learning subroutines for transforming raw data into
meaningfully compressed formats (like we saw in TICS). Conversely, globally un-
supervised training mechanisms may contain supervised subroutines where inter-
mediate “targets” y are introduced by the learning system. Furthermore, today’s
advanced ML applications often make use of semi-supervised training schemes. In
such approaches, the original task is supervised: learn some input-output model
from labelled data (xn, yn). This learning task may strongly benefit from including
additional unlabelled input training points x̃m, helping to distil a more detailed
model of the input distribution PX than would be possible on the basis of only
the original xn data. Again, TICS is an example: the data engineers who trained
TICS used 70K un-captioned images in addition to the 30K captioned images to
identify that 4096-dimensional manifold more accurately.

Also, reinforcement learning is not independent of supervised and unsuper-
vised learning. A good RL scheme often involves supervised or unsupervised
learning subroutines. For instance, an agent trying to find a good policy will
benefit from data compression (= unsupervised learning) when the world states
are high-dimensional; and an agent will be more capable of choosing good actions
if it possesses an input-output model (= supervised learning) of the environment
— inputs are actions, outputs are next states.

4 Learning to classify patterns

The bread and butter machine learning application is pattern classification, which
is closely connected to pattern recognition. In fact, before the term “machine
learning” came into general use, the term “pattern recognition” stood in its place:
in the 1970-ies there were university chairs, conferences, journals that had this
term in their naming (some still exist). In pattern classification, the objective is
to assign a correct class label to an input pattern. Here is a small choice of typical
pattern recognition applications:
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task name input patterns labels
optical character
recognition

grayscale images showing a charac-
ter from some alphabet

a, ..., z, 1, ..., 9 etc.

speech recogni-
tion

microphone audiosignals words from a given
vocabulary

fault diagnosis recorded sensor data from a techni-
cal device, e.g. car or wind turbine
or even a complete power grid

type and cause of
malfunction

medical diagnosis patient symptoms and laboratory
data

name of possible
illness causing the
symptoms

The labels must come from a finite set – they are discrete data. The input
patterns can be virtually any kind of data, continuous (like images) or discrete
(like patient symptoms written down by a doctor) or a mixture, or even complex
data structures like labelled trees.

There is a subtle difference between what is usually meant by pattern classi-
fication vs. recognition. The former is just what it says: pattern in, class label
out. The latter is more involved and typically includes mechanisms to localize
an instance of a class within a pattern, which furthermore requires to segment
the raw input data. For instance, visual scene analysis is a pattern recognition
tasks where the input is a camera picture of a scene, and the desired output is
a list of named objects together with their localizations in the picture, and the
object’s shape boundaries. The TICS demo involves some visual scene analysis as
a subfunctionality.

We will now leave TICS behind – too complicated – and introduce a far simpler,
yet not trivial pattern classfication task, which we will use as our demo object for a
while. It is an optical character recognition (OCR) task where the input patterns
are 15 × 16 pixel grayscale images of handwritten digits 0 – 9, normalized in size
and aspect ratio to fill the image panel. The data come from a benchmark dataset
donated by Robert Duin, orginally retrieved from http://ftp.ics.uci.edu/

pub/ml-repos/machine-learning-databases/mfeat/mfeat-pix, now also lo-
cally copied to http://minds.jacobs-university.de/sites/default/files/

uploads/teaching/share/DigitsBasicRoutines.zip — this zip-file contains the
original data and documentation, plus a few pieces of Matlab code for importing
the data into Matlab and visualizing them. Duin and coworkers used this dataset
in a study where they compared numerous ML methods for pattern classification
(Kittler et al., 1998). Figure 7 gives an impression of these digit images.

Technically speaking, the elements of this sample are two-dimensional arrays of
size 15× 16, or more mathematically viewed, vectors xi of length 240. The values
of the vector components indicate greyscale values. They are integers ranging
from 0 to 6. There are 200 instances of each digit, leading to a total sample size
of 2000. These instances are ordered, that is the first 200 elements of the dataset
are “0” images, the next 200 elements are “1” images, etc.
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Figure 7: Some examples from the digits benchmark dataset.

In the coming weeks we will describe various ways how a classifier can be
learnt (or trained) from these data. A classifier in our case is a computer program
which upon input of a digit test image x outputs, in the simplest case, a single
class label from the set {0, . . . , 9}. More advanced classifiers would output not
just their “best guess” but a hypothesis vector h(x) ∈ (R≥0)10 containing degrees
of “belief” for the ten candidate labels. If one normalizes h(x) to sum to 1, it can
be interpreted (with due caution) as a probability vector.

In the early times of optical character recognition, such classifiers were hand-
designed by engineers, who used their knowledge about the geometry of line seg-
ments in number pictures to create a cascade of optical filters in order to assemble
a multi-module OCR system. This approach was prevailing until the 1980-ies (my
personal impression). However, it did not work well – the messiness of real-life
handwriting just defies clean reverse engineering. Today, OCR systems are not
hand-designed, but learnt from example data using methods of ML.

The two main players in the ML game to train a pattern classifier are (i)
training data, and (ii) a learning algorithm.

The training data consist of a collection (xtrain
i , ytrain

i )i=1,...,N of already classified
pattern – label pairs, called a labelled sample. In our case, the xi are image vectors
from our digits dataset, and the yi are the correct class labels (they are given
together with the images in Duin’s dataset).

The learning algorithm gets the training data as input and outputs a classifier
C. A learning algorithm transforms sample data into an algorithm!

After the classifier C has been trained, it is shipped to end-users who then feed
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it with new test patterns xtest
j , trusting that upon input of a test pattern C will

output the correct label (or a good hypothesis vector).
Importantly, – veeeery importantly, – the test patterns are not contained in the

training sample. A learning algorithm is useful to the extent that it can generalize
well from the given training data to new test data. We will soon learn to appreciate
that all the magic, and all the pain, of machine learning culminates in the question
how to design learning algorithms that generalize well.

Since we don’t have easy access to fresh test data formatted in the same way
as the images in our dataset, we pretend that only half of the 2000 images are our
training dataset. The remaining half we pretend are given to us only after training
the classifier, and we can use them for testing the generalization capabilities of
our classifiers.

Following the original publication Kittler et al. (1998), we thus split our dataset
into two halves, using the first half (taking the first 100 instances of each digit
class) for training and the second half for testing. Thus, concretely, our training
data is a labelled sample

(xtrain
i , ytrain

i )i=1,...,1000

and our test data is (xtest
j , ytest

j )j=1,...,1000.
I said in the previous section that machine learning algorithms often are de-

signed as all-continuous or as all-discrete devices. In pattern classification tasks,
discrete-flavored classification algorithms often take the form of decision trees.
We will not dig deeper into discrete-flavored algorithms in this lecture, but since
decision trees are widely used in data mining I will give them a glimpse in passing.

A decision tree (or more specifically, a classification tree) is a classification
algorithm whose structure can be visualized as a tree. Figure 8 gives an example
for a (binary) classification tree for classifying fruit. A (binary) classification tree
classifies by entering the top node with an input pattern, then checking some
binary attribute of that pattern. The yes/no outcome of that attribute question
leads one step down in the tree. At this next node, again a binary attribute test is
carried out, etc., until a leaf node is hit, which contains the desired class label. The
core challenge for training such classification trees from a labelled training sample
is to identify the attribute questions that give the most reliable and compact
classification tree. A big advantage of classifiers based on classification trees is
that once a test case input pattern has been classified, the decision path through
the tree makes it understandable to the human user why the classification was
made – the classifier is interpretable. In contrast, neural network based classifiers,
which we will be getting to know in this lecture, are not interpretable.

If you are interested to learn about decision trees in more detail, check out the
slideset indicated in the caption of Figure 8 or read the decision tree section in
the classical, super well-written textbook Mitchell (1997).

In a continuous-algorithm scenario, a classification algorithm usually is built
around a decision function. If patterns are vectors x ∈ Rn, and if there are k
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Figure 8: A binary classification tree. (Image taken from http://www.cse.

msu.edu/∼cse802/DecisionTrees.pdf, a slideset of a pattern anal-
ysis course from Anil K. Jain at Michigan State University. Lo-
cal copy of slides: http://minds.jacobs-university.de/sites/

default/files/uploads/teaching/share/DecisionTrees.pdf)

classes, then a decision function is a function

D : Rn → Rk. (1)

Such a decision function is the main outcome of a learning algorithm. A decision
function can be a very complex algorithm, for instance a neural network. If a new
test pattern xtest ∈ Rn comes in, it is fed to D, resulting in a hypothesis vector
h(xtest) = (h1, . . . , hk)

′ ∈ Rk. In a final postprocessing step, this hypothesis vector
is

1. either turned into a single “best guess” outcome, by returning the index i of
the maximal hi in the hypothesis vector, or

2. the hypothesis vector is transformed into a probability vector, which contains
“belief” values for the classification.

There is a general standard method known by every machine learning engineer
to transform any k-dimensional vector h ∈ Rk into a probability vector, called the
softmax function:

Softmax : Rk → Rk, (h1, . . . , hk)
′ 7→ (s1, . . . , sk)

′,

where si =
eα hi∑

j=1,...,k eα hj
. (2)
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The parameter α > 0 modulates the “sharpness” of the softmax function.
Small values of α lead toward uniformly distributed softmax outcomes, large values
emphasize the larger values in the argument vector h (Figure 9).

Figure 9: Softmax visualization. A 5-dimensional vector (red barchart) is submit-
ted to the softmax with α = 0.2, 1, 5 (from left to right, blue).

We now consider (and answer) the question which decision functions are “good”
or even optimal. The natural quality criterion for a classification algorithm is that
it should yield as few misclassifications on test patterns as possible. We now
make this formal, and embark on our first serious exploration into the statistical
foundations of machine learning.

Let us first fix some notation. Let us denote the space from which patterns
can be taken as P. Since we are focussing on continuous data, typically P ⊆
Rn (remember: in our TICS intro example we had P = [0, 1]1440000 and in our
handwritten digit example P = [0, 1]240). The class labels come from a finite set
C = {c1, . . . , ck}. We furthermore introduce a random variable X for the patterns
and another RV Y for the labels.

Our starting point is the true joint distribution of patterns and labels. This
joint distribution is given by all the probabilities of the kind

P (X ∈ A, Y = ci), (3)

where A is some subvolume of P and ci ∈ C. The subvolumes A can be n-
dimensional hypercubes within P, but they also can be arbitrarily shaped “volume
bodies”, for instance balls or donuts or whatever. We write PX,Y for this distribu-
tion. Note that the probabilities P (X ∈ A, Y = ci) are numbers between 0 and 1,
while the entire distribution PX,Y can be understood as the collection of all such
probabilities. (Probability theory would give us a rigorous formal-axiomatic way
to characterize the nature of this strange object, PX,Y , but that is beyond the
scope of this lecture. For us it is enough to view PX,Y as the totality of all the
concrete probabilities of the kind (3).)

The joint distribution PX,Y is our “ground truth” – it is the real-world statisti-
cal distribution of pattern-label pairs of the kind we are interested in. In the digits
example, it would be the distribution of pairs of handwritten digits (preprocessed
into the shape shown in Figure 7), and a human-expert provided digit label. Test

28



digit images would be randomly “drawn” from this distribution. Note that the
ground truth distribution PX,Y cannot be precisely known – it is a real-world dis-
tribution and we have no full control of it. The best we can do is to estimate this
distribution from training data, as we will see further below.

A decision function D : P → Rk separates the pattern space P into k disjoint
decision regions R1, . . . , Rk by

Ri = {x ∈ P |D(x) = (h1, . . . , hk)
′ is maximal in the ith component}. (4)

(I use notation v′ to denote the transpose of a vector or matrix v.) A test pattern
xtest is classified via d as class i if it falls into the decision region Ri. On the
boundaries between two adjoining decision regions i and j, the hypothesis vector
has (at least) two maximal entries that have identical values hi = hj.

Now we are prepared to analyze and answer our original question, namely which
decision functions yield the lowest possible number of misclassifications. Since two
decision functions yield identical classifications if and only if their decision regions
are the same, we will focus our attention on these regions and reformulate our
question: which decision regions yield the lowest rate of misclassifications, or
expressed in its mirror version, which decision regions give the highest probability
of correct classifications?

Let fi be the pdf for the conditional distribution PX |Y =ci
. It is called the

class-conditional distribution.
The probability to obtain a correct classification for a random test pattern,

when the decision regions are Ri, is equal to
∑k

i=1 P (X ∈ Ri, Y = ci). Rewriting
this expression using the pdfs of the class conditional distributions gives

k∑
i=1

P (X ∈ Ri, Y = ci) =

=
k∑

i=1

P (X ∈ Ri |Y = ci) P (Y = ci)

=
k∑

i=1

P (Y = ci)

∫
Ri

fi(x) dx

=
k∑

i=1

∫
Ri

P (Y = ci) fi(x) dx. (5)

Note that the integral is taken over a region that possibly has curved boundaries,
and the integration variable x is a vector. The boundaries between the decision
regions are called decision boundaries. For patterns x that lie exactly on such
boundaries, two or more classifications are equally probable. For instance, the
digit pattern shown in the last but third column in the second row in Figure 7
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would likely be classified by humans as a “1” or “4” class pattern with roughly
the same probability; this pattern would lie close to a decision boundary.

The expression (5) obviously becomes maximal if the decision regions are given
by

Ri = {x ∈ P | i = argmax
j

P (Y = cj) fj(x)}. (6)

Take a look at Appendix B if you are unfamiliar with the argmax operator.
Thus we have found a decision function which is optimal in the sense that it

maximizes the probability of correct classifications: namely

Dopt : P → Rk, x 7→

 P (Y = c1) f1(x)
...

P (Y = ck) fk(x)

 . (7)

This is not the only optimal decision function. If τ : R → R is any strictly
monotonic growing function, then

τ ◦Dopt : P → Rk, x 7→

 τ(P (Y = c1) f1(x))
...

τ(P (Y = ck) fk(x))


leaves the decision regions unchanged and hence gives the same classification re-
sults as dopt.

A learning algorithm that finds the optimal decision function (or some func-
tion approximating it) must learn (implicitly or explicitly) the class-conditional
distributions PX |Y =ci

and the class probabilities P (Y = ci).
The class probabilities are also called the class priors. Figures 10 and 11 visu-

alizes optimal decision regions and decision boundaries. In higher dimensions, the
geometric shapes of decision regions can become exceedingly complex, fragmented
and “folded into one another” — disentangling them during a learning process is
one of the eternal challenges of ML.

Back to our digits classification example. The best results obtained by Kittler
et al. (1998) had a misclassification rate of a little worse than 0.02 (that is, 2
percent) on the test set. Presumably today’s more advanced ML methods would
lead to better results. You’ll later be asked to try your skills on this dataset in a
homework exercise. If you reach 5% that will be very good.

5 The Curse of Dimensionality and Feature Ex-

traction

We have briefly met this infamous curse in Section 2.3: image vectors from training
data were unimaginably thinly spread in the pattern space P (called I in Section
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P 

P(Y = c1) f1(x) 

P(Y = c3) f3(x) 

P(Y = c2) f2(x) 

R2 R3 R1 

Figure 10: Optimal decision regions Ri. A case with a one-dimensional pattern
space P and k = 3 classes is shown. Broken lines indicate decision
boundaries. Decision regions need not be connected!

2). This “dilution of training example density” gets worse by a degree that is
exponential in the pattern space dimension. Generally speaking, learning models
(of whatever kind and for whatever purpose) from data usually benefits from, or
even plainly requires, an estimation of the distribution of input patterns.

Estimating a distribution PX for high-dimensional RVs X is both a very fre-
quent (sub)task in ML, and it is intrinsically difficult to the extent that it seems
almost impossible. That’s the curse of dimensionality.

A common antidote to this poison is to use feature extraction in order to achieve
a dimension reduction.

Formally, a feature is a function f : P → R which computes a scalar character-
istic of patterns. If one bundles together m such features f1, . . . , fm one obtains
a feature map (f1, . . . , fm)′ =: f : P → Rm which maps patterns to feature vec-
tors. It is very typical, almost universal, for ML systems to include an initial
data processing stage where raw, high-dimensional input patterns are first pro-
jected from their original pattern space P to a lower-dimensional feature space.
In TICS, for example, a neural network was trained in a clever way to reduce the
1,440,000-dimensional raw input patterns to a 4,096-dimensional feature vector.

The ultimate quality of the learning system clearly depends on a good choice
of features. Unfortunately there does not exist a unique or universal method to
identify “good” features. Depending on the learning task and the nature of the
data, different kinds of features work best. Accordingly, ML research has come up
with a rich repertoire of feature extraction methods.

On an intuitive level, a “good” set of features {f1, . . . , fm} should satisfy some
natural conditions:

• The number m of features should be small — after all, one of the reasons
for using features is dimension reduction.
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Figure 11: Optimal decision regions example for 2-dimensional patterns coming

in three classes. The three “hills” are the functions P (Y = ck) fi(x).

• Each feature fi should be relevant for the task at hand. For example, when
the task is to distinguish helicopter images from winged aircraft photos (a
2-class classification task), the brightness of the background sky would be
an irrelevant feature; but the binary feature “has wings” would be extremely
relevant.

• There should be little redundancy — each used feature should contribute
some information that the others don’t.

• A general intuition about features is that they should be rather cheap and
easy to compute at the front end where the ML systems meets the raw data.
The “has wings” feature for helicopter vs. winged aircraft classification ba-
sically amounts to actually solving the task and presumably is neither cheap
nor easy to compute. Such highly informative, complex features are some-
times called high-level features ; they are usually computed on the basis of
more elementary, low-level features. Often features are computed stage-wise,
low-level features first (directly from data), then stage by stage more com-
plex, more directly task-solving features are built by combining the lower-
level ones. Feature hierarchies are often found in ML systems. Example:
in face recognition from photos, low-level features might extract coordinates
of isolated black dots from the photo (candidates for the pupils of the per-
son’s eyes); intermediate features might give distance ratios between eyes,
nose-tip, center-of-mouth; high-level features might indicate gender or age.

To sharpen our intuitions about features, let us hand-design some features of
our digit images which might do good service for digit classification. We assume
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that the n = 240-dimensional image vectors x have been normalized to a real-
valued pixel value range in [0, 1] with 0 = white and 1 = black.

Mean brightness. f1(x) = 1′n x /n (1n is the vector of n ones). This is just the
mean brightness of all pixels. Might be useful e.g. for distinguishing “1”
images from “8” images because we might suspect that for drawing an “8”
one needs more black ink than for drawing a “1”. Cheap to compute but
not very class-differentiating.

Radiality. An image x is assigned a value f2(x) = 1 if and only if two conditions
are met: (i) the center horizontal pixel line crossing the image from left to
right has a sequence of pixels that changes from black to white to black; (ii)
same for the center vertical pixel line. If this double condition is not met, the
image is assigned a feature value of f2(x) = 0. f2 thus has only two possible
values; it is called a binary feature. We might suspect that only the “0”
images have this property. This would be a slightly less cheap-to-compute
feature compared to f1 but more informative about classes.

Prototype matching. For each of the 10 classes cj, define a prototype vector πj

as the mean image vector of all 100 training samples of that class: πj =
1/100

∑
x is training image of class j x. Then define 10 features f j

3 by match with

these prototype vectors: f j
3 (x) = π′j x. We might hope that f j

3 has a high
value for patterns of class j and low values for other patterns.

Hand-designing features can be quite effective. Generally speaking, human
insight on the side of the data engineer is a success factor for ML systems that
can hardly be over-rated. In fact, the classical ML approach to speech recognition
was for two decades relying on low-level acoustic features that had been hand-
designed by insightful phonologists. The MP3 sound coding format is based on
features that reflect characteristics of the human auditory system. Many of the
first functional computer vision and optical character recognition systems relied
heavily on visual feature hierarchies which grew from the joint efforts of signal
processing engineers and cognitive neuroscience experts.

However, since hand-designing good features means good insight on the side of
the engineer, and good engineers are rare and have little time, the practice of ML
today relies much more on features that are obtained from learning algorithms.
Numerous methods exist. In the following two subsections we will inspect two
particularly simple and wide-spread methods for the automated construction of
features, K-means clustering and principal component analysis.

5.1 Vector quantization with K-means clustering

Vector quantization is a general strategy to obtain a meaningful low-dimensional
feature representation of high-dimensional data points. The idea is illustrated
in Figure 13. A collection of training data points (xi)i=1,...,N ∈ Rn is grouped
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by some geometric method into clusters C1, . . . , CK of points that in some way
“belong together” in each cluster – for instance, they lie close to each other. Each
cluster Ci is then represented by a codebook vector ci, for instance the vector
pointing to the center of gravity of the cluster.

The codebook vectors can be used in various ways to compress n-dimensional
test data points xtest into lower-dimensional formats. The classical method, which
also motivates naming the ci “codebook” vectors, is to represent xtest simply by
the index i of the codebook vector ci which lies closest to xtest, that is, which has
the minimal distance αi = ‖xtest − ci‖. This method is clearly very economical
and it is widely used in data compression and data transmission.

Another way to employ the distances αi for dimension reduction is to represent
xtest by the distance vector (α1, . . . , αK)′. When K � n, the dimension reduction
is substantial. The vector (α1, . . . , αK)′ can be considered a feature vector.

!1 

c1 

c3 

c2 

xtest 
!2 

!3 

C2 C3 

C1 

Figure 12: Vector quantization (schematic): within a training set of data points
(blue crosses), a spatial grouping into clusters Ci is detected and each
group becomes represented by a codebook vectors ci (blue arrows). The
figure shows three groups. A test data point (red cross) is then coded
in terms of the distances αi of that point to the codebook vectors.

There are many ways how the intuition of a cluster as a collection of points
that “belong together” can be made precise. Formal specifications of “belonging
together” and algorithms to group training data points into clusters can become
very involved when one admits curved boundaries of clusters. Clustering methods
are an ever-evolving research field. We will only consider the method which ar-
guably is the simplest, most intuitive, fastest, and most widely used one: K-means
clustering.
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We can be brief, because K-means clustering is almost self-explaining. The
rationale for defining clusters is “points within a cluster should have small metric
distance to each other, points in different clusters should have large distance from
each other”. The procedure runs like this:

Given: a training data set (xi)i=1,...,N ∈ Rn, and a number K of clusters that one
maximally wishes to obtain.
Initialization: randomly assign the training points to K sets Sj (j = 1, . . . , K).
Repeat: For each set Sj, compute the mean µj = |Sj|−1

∑
x∈Sj

x. Create new

sets S ′
j by putting each data point xi into that set S ′

j where ‖xi−µj‖ is minimal. If
some S ′

j remains empty, dismiss it and reduce K to K ′ by subtractring the number
of dismissed empty sets (this happens rarely). Put Sj = S ′

j (for the nonempty sets)
and K = K ′.
Termination: Stop when in one iteration the sets remain unchanged.

It can be shown that at each iteration, the error quantity

J =
K∑

j=1

∑
x∈Sj

‖x− µj‖2 (8)

will not increase. The algorithm typically converges quickly and works well in
practice. It finds a local minimum or saddle point of J . The final clusters Sj

may depend on the random initialization. The clusters are bounded by straight-
line boundaries; each cluster forms a Voronoi cell. K-means cannot find clusters
defined by curved boundaries. Figure 13 shows an example of a clustering run
using K-means.

K-means clustering and other clustering methods have many uses besides di-
mension reduction. Clustering can also be seen as a stand-alone technique of
unsupervised learning. The detected clusters and their corresponding codebook
vectors are of interest in their own regard. They reveal a basic structuring of a set
of patterns {xi} into subsets of mutually “similar” patterns. These clusters may
be further analyzed individually, given meaningful names and helping a human
data analyst to make useful sense of the original unstructured data cloud. For
instance, when the patterns {xi} are customer profiles, finding a good grouping
into subgroups may help to design targetted marketing strategies.

5.2 Principal component analysis

Like clustering, principal component analysis (PCA) is a basic data analysis tech-
nique that has many uses besides dimension reduction. But we will here focus on
this use.

Generally speaking, a good dimension reduction method, that is, a good feature
map f : Rn → Rm, should preserve much information contained in the high-
dimensional patterns x ∈ Rn and encode it robustly in the feature vectors y = f(x).
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Figure 13: Running K-means with K = 3 on two-dimensional training points.
Thick dots mark cluster means µj, lines mark cluster boundaries.
The algorithm terminates after three iterations, whose boundaries are
shown in light gray, dark gray, red. (Picture taken from Chapter 10 of
the textbook Duda et al. (2001)).

But, what does it mean to “preserve information”? A clever answer is this: a
feature representation f(x) preserves information about x to the extent that x
can be reconstructed from f(x). That is, we wish to have a decoding function
d : Rm → Rn which leads back from the feature vector encoding f(x) to x, that is
we wish to achieve

x ≈ d ◦ f(x)

And here comes a fact of empowerment: when f and d are confined to linear
functions and when the similarity x ≈ d ◦ f(x) is measured by mean square er-
ror, the optimal solution for f and d can be easily and cheaply computed by a
method that is known since the early days of statistics, principal component analy-
sis (PCA). It was first found, in 1901, by Karl Pearson, one of the fathers of mod-
ern mathematical statistics. The same idea has been independently re-discovered
under many other names in other fields and for a variety of purposes (check out
https://en.wikipedia.org/wiki/Principal component analysis for the his-
tory). Because of its simplicity, analytical transparency, modest computational
cost, and numerical robustness PCA is widely used — it is the first-choice de-
fault method for dimension reduction that is tried almost by reflex, before more
elaborate methods are maybe considered.

PCA is best explained alongside with a visualization (Figure 14). Assume the
patterns are 3-dimensional vectors, and assume we are given a sample of N = 200
raw patterns x1, . . . , x200. We will go through the steps of a PCA to reduce the
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dimension from n = 3 to m = 2.

u1 

A B C 

D E 

u1 u1 

u1 u1 

u2 u2 

u2 u2 

u3 

u3 

Figure 14: Visualization of PCA. A. Centered data points and the first principal
component vector u1 (blue). The origin of R3 is marked by a red
cross. B. Projecting all points to the orthogonal subspace of u1 and
computing the second PC u2 (green). C. Situation after all three PCs
have been determined. D. Summary visualization: the original data
cloud with the three PCs and an ellipsoid aligned with the PCs whose
main axes are scaled to the standard deviations of the data points in
the respective axis direction. E. A new dimension-reduced coordinate
system obtained by the projection of data on the subspace Um spanned
by the m first PCs (here: the first two).

The first step in PCA is to center the training patterns xi, that is, subtract their
mean µ = 1/N

∑
i xi from each pattern, obtaining centered patterns x̄i = xi − µ.

The centered patterns form a point cloud in Rn whose center of gravity is the
origin (see Figure 14A).

This point cloud will usually not be perfectly spherically shaped, but instead
extend in some directions more than in others. “Directions” in Rn are character-
ized by unit-norm “direction” vectors u ∈ Rn. The distance of a point x̄i from the
origin in the direction of u is given by the projection of x̄i on u, that is, the inner
product u′ x̄i (see Figure 15).

The “extension” of a centered point cloud {x̄i} in a direction u is defined to be
the mean squared distance to the origin of the points x̄i in the direction of u. The
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Figure 15: Projecting a point x̄i on a direction vector u: the inner product u′ x̄i

is the distance of x̄i from the origin along the direction given by u.

direction of the largest extension of the point cloud is hence the direction vector
given by

u1 = argmax
u, ‖u‖=1

1/N
∑

i

(u′ x̄i)
2. (9)

Notice that since the cloud x̄i is centered, the mean of all u′ x̄i is zero, and hence
the number 1/N

∑
i(u

′ x̄i)
2 is the variance of the numbers u′ x̄i.

Inspecting Figure 14A, one sees how u1 points in the “longest” direction of the
pattern cloud. The vector u1 is called the first principal component (PC) of the
centered point cloud.

Next step: project patterns on the (n − 1)-dimensional linear subspace of Rn

that is orthogonal to u1 (Figure 14B). That is, map pattern points x̄ to x̄∗ =
x̄ − (u′1 x̄) · u1. Within this “flattened” pattern cloud, again find the direction
vector of greatest variance

u2 = argmax
u,‖u‖=1

1/N
∑

i

(u′ x̄∗i )
2

and call it the second PC of the centered pattern sample. From this procedure it
is clear that u1 and u2 are orthogonal, because u2 lies in the orthogonal subspace
of u1.

Now repeat this procedure: In iteration k, the k-th PC uk is constructed by
projecting pattern points to the linear subspace that is orthogonal to the already
computed PCs u1, . . . , uk−1, and uk is obtained as the unit-length vector pointing
in the “longest” direction of the current (n − k + 1)-dimensional pattern point
distribution. This can be repeated until n PCs u1, . . . , un have been determined.
They form an orthonormal coordinate system of Rn. Figure 14C shows this situ-
ation, and Figure 14D visualizes the PCs plotted into the original data cloud.

Now define features fk (where 1 ≤ k ≤ n) by

fk : Rn → R, x 7→ u′k x̄, (10)
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that is, fk(x̄) is the projection component of x̄ on uk. Since the n PCs form an
orthonormal coordinate system, any point x ∈ Rn can be perfectly reconstructed
from its feature values by

x = µ +
∑

k=1,...,n

fk(x) uk. (11)

The PCs and the corresponding features fk can be used for dimension reduction
as follows. We select the first (“leading”) PCs u1, . . . , um up to some index m.
Then we obtain a feature map

f : Rn → Rm, x 7→ (f1(x), . . . , fm(x))′. (12)

At the beginning of this section I spoke of a decoding function d : Rm → Rn

which should recover the original patterns x from their feature vectors f(x). In
our PCA story, this decoding function is given by

d : (f1(x), . . . , fm(x))′ 7→ µ +
m∑

k=1

fk(x) uk. (13)

How “good” is this dimension reduction, that is, how similar are the original
patterns xi to their reconstructions d ◦ f(xi)?

If dissimilarity of two patterns x1, x2 ∈ Rn is measured in the square error
sense by

δ(x1, x2) := ‖x1 − x2‖2,

a full answer can be given. Let

σ2
k = 1/N

∑
i

fk(xi)
2

denote the variance of the feature values fk(xi) (notice that the mean of the fk(xi),
taken over all patterns, is zero, so σ2

k is indeed their variance). Then the mean
square distance between patterns and their reconstructions is

1/N
∑

i

‖xi − d ◦ f(xi)‖2 =
n∑

k=m+1

σ2
k. (14)

A derivation of this result is given in Appendix C.
Equation (14) gives an absolute value for dissimilarity. For applications (and

theoretical insight) however the relative amount of dissimilarity compared to the
mean variance of patterns is more instructive. It is given by

1/N
∑

i ‖xi − d ◦ f(xi)‖2

1/N
∑

i ‖x̄i‖2
=

∑n
k=m+1 σ2

k∑n
k=1 σ2

k

. (15)
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Real-world patterns often exhibit a rapid (roughly exponential) decay of the
feature variances as their index k grows. The ratio (15) then is very small compared
to the mean size E[‖X̄‖2] of patterns, that is, only very little information is lost
by reducing the dimension from n to m via PCA. Our visualization from Figure
14 is not doing justice to the amount of compression savings that is often possible.
Typical real-world data clouds in Rn are often very “flat” in the vast majority of
directions in Rn and these directions can all be zeroed without much damage by
the PCA projection.

5.3 Mathematical properties of PCA and an algorithm to
compute PCs

The key to analysing and computing PCA is the (n × n)-dimensional covariance
matrix C = 1/N

∑
i x̄i x̄

′
i, which can be easily obtained from the centered training

data matrix X̄ = [x̄1, . . . , x̄N ] by C = 1/N X̄ X̄ ′. C is very directly related to
PCA by the following facts:

1. The PCs u1, . . . , un form a set of orthonormal, real eigenvectors of C.

2. The feature variances σ2
1, . . . , σ

2
n are the eigenvalues of these eigenvectors.

A derivation of these facts can be found in my (graduate) online ML lecture notes,
Section 4.4.1 (http://minds.jacobs-university.de/sites/default/files/uploads/
teaching/lectureNotes/LN ML Fall11.pdf). Thus, the principal component
vectors uk and their associated data variances σ2

k can be directly gleaned from
C.

Computing a set of unit-norm eigenvectors and eigenvalues from C can be most
conveniently done by computing the singular value decomposition (SVD) of V .
Later in this course we will take a closer look at SVDs. Algorithms for computing
SVDs of arbitrary matrices are shipped with all numerical or statistical mathe-
matics software packages, like Matlab, R, or Python with numpy. At this point let
it suffice to say that every covariance matrix C is a so-called positive semi-definite
matrix. These matrices have many nice properties. Specifically, their eigenvectors
are orthogonal and real, and their eigenvalues are real and nonnegative.

In general, when an SVD algorithm is run on an n-dimensional positive semi-
definite matrix R, it returns a factorization

R = U Σ U ′,

where U is an n×n matrix whose columns are the normed orthogonal eigenvectors
u1, . . . , un of R and where Σ is an n×n diagonal matrix which has the eigenvalues
λ1, . . . , λn on its diagonal. They are usually arranged in descending order. Thus,
computing the SVD of C = U Σ U ′ directly gives us the desired PC vectors uk,
lined up in U , and the variances σ2

k, which appear as the eigenvalues of C, collected
in Σ.

40

http://minds.jacobs-university.de/sites/default/files/uploads/teaching/lectureNotes/LN_ML_Fall11.pdf
http://minds.jacobs-university.de/sites/default/files/uploads/teaching/lectureNotes/LN_ML_Fall11.pdf


This enables a convenient control of the goodness of similarity that one wants
to ensure. For example, if one wishes to preserve 98% of the variance information
from the original patterns, one can use the r.h.s. of (15) to determine the “cutoff”
m such that the ratio in this equation is about 0.02.

5.4 Summary of PCA based dimension reduction proce-
dure

Data. A set (xi)i=1,...,N of n-dimensional pattern vectors.

Result. An n dimensional mean pattern vector µ and m principal component
vectors arranged column-wise in an n×m sized matrix Um.

Procedure.

Step 1. Compute the pattern mean µ and center the patterns to obtain
a centered pattern matrix X̄ = [x̄1, . . . , x̄N ].

Step 2. Compute the SVD U Σ U ′ of C = 1/N X̄X̄ ′ and keep from U
only the first m columns, making for a n×m sized matrix Um.

Usage for compression. In order to compress a new n-dimensional pattern
to a m dimensional feature vector f(x), compute f(x) = U ′

m x̄.

Usage for uncompression (decoding). In order to approximately restore
x from its feature vector f(x), compute xrestored = µ + Um f(x). Equiva-
lently, in a more compact notation, compute xrestored = [Um, µ] [f(x); 1],
where I am using the Matlab-inspired notation [u; v] for concatenating a
vector u with a vector v.

5.5 Eigendigits

For a demonstration of dimension reduction by PCA, consider the “3” digit images.
After reshaping the images into 240-dimensional grayscale vectors and centering
and computing the PCA on the basis of the N = 100 training examples, we
obtain 240 PCs uk associated with the same number of variances σ2

k. Only the
first 99 of these variances are nonzero (because the 100 image vectors xi span
a 100-dimensional subspace in R240; after centering the x̄i however span only a
99-dimensional subspace – why? homework exercise! – thus the matrix C =
1/N X̄ X̄ ′ has rank at most the rank of X̄, which is 99), thus only the first 99 PCs
are useable. Figure 16 shows some of these eigenvectors ui rendered as 15 × 16
grayscale images. It is customary to call such PC re-visualizations eigenimages, in
our case “eigendigits”. (If you have some spare time, do a Google image search for
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“eigenfaces” and you will find weird-looking visualizations of PC vectors obtained
from PCA carried out on face pictures.)

Figure 16: Visualization of a PCA computed from the “3” training images. Top
left panel shows the mean µ, the next 7 panels (row-wise) show the first
7 PCs. Third row shows PCs 20–23, last row PCs 96-99. Grayscale
values have been automatically scaled per panel such that they spread
from pure white to pure black; they do not indicate absolute values of
the components of PC vectors.

Figure 17 shows the variances σ̂2
i of the first 99 PCs. You can see the rapid

(roughly exponential) decay. Aiming for a dissimilarity ratio (Equation 15) of 0.1
gives a value of m = 32. Figure 18 shows the reconstructions of some “3” patterns
from the first m PC features using (13).

5.6 Interim Summary: Dimension Reduction as First Stage
in Classification Systems

We have seen that the core of a classification system is a decision function d : Rn →
Rk which upon input of an n-dimensional pattern x returns a hypothesis vector

42



0 20 40 60 80 100
1.5

1

0.5

0

0.5

1

1.5

2
log10 PC variances

Figure 17: The (log10 of) variances of the PC features on the “3” training exam-
ples.

D(x) = (h1, . . . , hk)
′ which encodes the “degree of belief” that the classifier puts

on the k classification options. The hypothesis vector can be further processed
in simple but instructive ways. The most basic use of it is to identify the maxi-
mal value in it and returning its corresponding class index as “the” classification
result. Often it is used, in a slightly more sophisticated way, to rank-order the
classification options, by declaring which is the “most likely”, the “second most
likely”, etc. classification outcome. Finally, one can normalize it into a probabil-
ity vector which is interpreted as probabilities of the k classification alternatives.
This should be done with due caution because only very few machine learning
procedures yield decision functions that can be converted to probabilities in a
statistically meaningful way (for experts: Roweis and Ghahramani (1999) give a
unified review of such systems).

We have furthermore seen that a good decision function – one that generalizes
well to test data – must be informed by the underlying joint distribution of patterns
and their class labels (Equation 7). Learning a classification system from training
data thus inevitably leads to the problem of estimating the underlying distribution
from the training data sample. Learning algorithms in most cases do not explicitly
compute a representation of this distribution – they do not usually have a substep
in which a pdf or the like is generated. But they must have some kind of implicit
encoding of that distribution.

When patterns x are high-dimensional, the curse of dimensionality strikes: it
is inherently difficult to estimate a distribution from data points that are scattered
unimaginably thinly in the possible data value space.

Therefore, classification systems are very often structured as two-stage pro-
cessing systems. In a first stage, the high-dimensional raw input patterns x ∈ Rn

are condensed into a much lower-dimensional feature vector f(x) ∈ Rm, where
m � n.

A feature representation f(x) of a pattern x should preserve much information
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Figure 18: Reconstructions of digit “3” images from the first m = 32 features,
corresponding to a re-constitution of 90% of the original image vari-
ance. First row: 4 original images from the training set. Second row:
their reconstructions. Third row: 4 original images from the test set.
Last row: their reconstruction.

contained in x which is relevant for solving the task at hand – here, classification.
At the same time, task-irrelevant information in x should not be present in f(x)
any more. A good feature mapping f should act as a data cleaning as well as a
data compression operator.

We have discussed three standard methods for obtaining useful feature maps:

• Hand-made features are valuable for inserting human insight into the clas-
sifier. If the human experimenter has a good insight into what features of
patterns are relevant for classification, and if these features can be com-
puted from the raw patterns in an efficient way, this is a promising way to
go. Many object recognition systems in robotics and medical data analy-
sis are still partly or entirely based on hand-made features, although in the
“deep learning” field there is a trend to replace them by automatically learnt
features.

• Clustering methods identify K accumulation areas in the training data point
cloud and represent them by K codebook vectors. A new test pattern can
then be represented by a K-dimensional feature vector which contains the
metric distances of the test pattern to the codebook vectors. Often the

44



clusters can be identified with the pattern classes that one wishes to find: it
is reasonable to assume that patterns belonging to the same class are lying
closer together to each other than to patterns of other classes. If there are k
classes and the clustering has identified K = k clusters, the metric distance
vector should be highly informative about the correct classification of the
test pattern.

We have seen only the most basic clustering method, called K-means cluster-
ing. It has some limitations, because it can only describe shapes of clusters
that are determined by linear separating hyperplanes. Detecting curved
shapes of clusters needs more advanced clustering techniques.

But even with plain K-means clustering one can do better than using K = k
clusters. When one uses a number K > k of clusters which is greater than
the number of classes, the point subclouds that correspond to a class ci are
further subdivided into subclasses. This may lead to better classification
results.

• Computing a PCA of the training pattern sample, keeping only a few leading
PC vectors u1, . . . , um and defining features to be the projections of a test
pattern on these few PCs (Equation 10) gives a feature vector f(x) from
which x can be reconstructed with a predetermined level of accuracy. PC
based features thus preserve information about the original pattern in a
transparent and mathematically analysable way.

I mention that one may also decide to not do any feature extraction and work
with the original patterns. This can be seen as the identity “feature map” f : Rn →
Rn, x 7→ x (thus m = n). Working with raw patterns has become a hallmark of
modern “deep learning” algorithms.

Feature maps based on clustering and PCA are obtained by unsupervised learn-
ing algorithms: in order to carry out K-means clustering or PCA, only the training
patterns but not their labels are used. Learning features by unsupervised methods
is a common strategy in ML. It has pros and cons:

• Pro: These methods are universally applicable to any kind of vector patterns.
One does not have to “think” a lot about using them because they are task-
independent.

• Con: Unsupervised learning methods for feature learning are not informed
by the task at hand. One would think that features that are ultimately
useful for classification are not necessarily the same features that are good
for other purposes, e.g. for time series prediction or noise filtering. Hence
one has reason to doubt that they are the best features one could get for a
specific task. In fact, modern machine learning methods have found ways to
learn features that are directly optimized for the task at hand. Toward the
end of this course we will see how neural networks can do that.
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6 Using Linear Regression to Learn a Decision

Function

Reducing the dimension of raw patterns x ∈ Rn to lower-dimensional feature
vectors f(x) ∈ Rm is only the first step in training a classification system. We
obviously also need a mechanism to transform the feature vectors f(x) into a
hypothesis vector h(x) ∈ Rk, where k is the number of classes.

6.1 Classification seen as function approximation

One way to go would be to follow the lesson of Section 4 and attempt to learn
the pdf’s fi of the conditional distributions PX |Y =ci

and the class probabilities
P (Y = ci), which would in principle enable us to obtain optimal decision func-
tions (compare Equation 7). However, even finding a mathematical formalism by
which one can represent such complex high-dimensional pdf’s in the first place,
is difficult — let alone estimating the parameters of this mathematical formalism
from training data.

Fortunately there is a way to learn a decision function that is more convenient
than going the full way over the underlying probability distributions. Here is an
outline of the main steps of this strategy:

Problem statement. Given: a training data set consisting of labelled pairs
(xi, yi)i=1,...,N , where xi ∈ Rn and yi ∈ {c1, . . . , ck}. After feature extrac-
tion, these data are transformed to a dimension-reduced training data set
consisting of labelled pairs (fi, yi)i=1,...,N , where fi ∈ Rm (we write fi for
f(xi)). Wanted: A decision function d : Rm → Rk which returns “good”
class hypothesis vectors. We write D for a decision function acting on raw
patterns x and d for a decision function acting on the feature vectors f . All
we have in our hands to construct such a decision function is the training
data (fi, yi) — we are in a situation of supervised learning.

Turn class labels into indicator vectors. Represent the symbolic class labels
ci by binary vectors zi of size k which are zero everywhere except at position
i where they are set to 1 — class indicator vectors. For instance, the second
label c2 in a k = 4 sized class label set becomes z2 = (0100)′. The “labels”
are now numerical vectors. The training data set becomes (fi, zi)i=1,...,N ,
where zi ∈ Rk.

Turn classification learning into a function approximation problem. At this
point a clever idea can be played out. We want a decision function d : Rm →
Rk. Our indicator-vector based format (fi, zi) of training data already has
the right dimensions: (fi, zi) ∈ Rm×Rk. We now use this version of training
data directly to search for a function d : Rm → Rk which is optimized to
return the correct class indicator vectors zi upon input of fi, that is, we try
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to find a function d which yields d(fi) ≈ zi for all training patterns. If we
can find such a function, it can be used directly as a decision function!

The desired similarity d(fi) ≈ zi can be measured in various ways. The most
traditional and at the same time the computationally cheapest and simplest
measure of similarity is the squared distance. That is, we want to find a
function d which on average makes ‖d(fi)− zi‖2 as small as possible:

dopt = argmin
d∈D

N∑
i=1

‖d(fi)− zi‖2, (16)

that is, d is the least mean square error solution that attempts to map
training feature vectors to their respective class indicator vectors.

Notice that we search for the minimizing function d within a set D of admis-
sible candidate functions. It would be impossible to search for an optimal
dopt within a candidate space of “all” functions d : Rm → Rk.

6.2 Take it easy – make it linear

This is the big picture. It can (and must) be made concrete by specifying the
class D of functions in which one searches for an optimal dopt. At this stage of
the course we choose the simplest nontrivial option: we search within the linear
functions. A linear function d : Rm → Rk is just a k × m sized matrix W . We
thus arrive at the following linear version of (16):

Wopt = argmin
W∈Rk×m

N∑
i=1

‖W fi − zi‖2. (17)

The solution Wopt can be computed by a straightforward procedure known as
linear regression. Before we delve into this theme, I describe a final little twist
that is standardly inserted into the picture, namely, adding a bias.

Linear functions have the property that they map the zero vector to the zero
vector. That is, for a feature vector fi = 0 we would necessarily obtain an all-zero
class indicator vector W fi = 0. But this will clearly be wrong if the training
data contain feature vectors fi that are zero, or approximately zero. For this and
other reasons one prefers to use for D not the basic vanilla linear functions, but a
generalized kind of linear functions known as affine functions. An affine function
d : Rm → Rk is a linear function plus a constant offset,

d(fi) = W fi + b,

where b ∈ Rk is a constant bias vector from (this use of the word “bias” is unrelated
to the “bias” concept known in statistics). There is an elegant trick to include
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bias vectors in the linear regression algorithm. Using the Matlab-inspired notation
[u; v] for concatenating a vector u with a vector v, it is easy to see that

W fi + b = [W b] [fi; 1].

Thus one automatically is led into the search space of affine functions if instead
of using the original feature vectors fi one uses extended feature vectors [fi; 1]
obtained by padding the original feature vector with a 1 at its end. Another way
to effect the same thing is to always use a feature mapping f : Rn → Rm whose last
feature fm is the constant mapping fm(x) ≡ 1. This trick is standardly employed.
Assuming such feature maps containing the constant-1 feature, we can use the
convenient search space of linear maps, solve (17) and be done.

We now derive a solution formula for the minimization problem (17). Most
textbooks start from the observation that the objective function

∑N
i=1 ‖W fi−zi‖2

which one wishes to minimize is a quadratic function in the weights W and then
one uses calculus to find the minimum of this quadratic function by setting its
partial derivatives to zero. I will present another derivation which does not need
calculus and better reveals the underlying geometry of the problem.

We start by observing that
∑N

i=1 ‖W fi − zi‖2 =
∑N

i=1

∑k
l=1(w

′
l fi − zi(l))

2,
where w′

l is the l-th row in W and zi(l) is the l-th component in zi. Since each row
w′

l from W affects only the l-th component in the inner summation, minimizing the
objective in (17) amounts to minimizing individually the l summands

∑N
i=1 (w′

l fi−
zi(l))

2. Here the target values zi(l) are just scalars, not vectors. In order to simplify
notation, we henceforth consider a scalar version of (17),

wopt = argmin
w∈Rm

N∑
i=1

(w′ fi − zi)
2. (18)

It is helpful to first get an intuitive geometric impression of the situation.
Figure 19 Top shows a case where there are N = 10 patterns and m = 4 features.
In this diagram, the 10 values of each of the four features fj are rendered as a line.
Similarly the 10 targets zi are drawn as a line connecting 10 points. The linear
combination of the four “feature lines” which gives the best approximation to y is
shown in orange.

The key to really understand linear regression is to realize that the N values
fj(x1), . . . , fj(xN) of a feature fj can be regarded as a vector ϕj in RN . Similarly,
the N target values z1, . . . , zN can be combined into an N -dimensional vector z.

Using these N -dimensional vectors as a point of departure, geometric insight
gives us a nice clue how wopt should be computed. To admit a visualization, we
consider for illustration purposes a case where we have only N = 3 patterns,
and where we extract only m = 2 features f1, f2. The latter give two N = 3
dimensional vectors ϕ1, ϕ2 (Figure 19 Bottom). The target values z1, z2, z3 are
combined in a 3-dimensional vector z.

Notice that in machine learning, one should always have more data points
than features, that is, N > m. A rule of thumb is to have at least ten times
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more datapoints than features. The standard situation is thus that we have fewer
vectors ϕj than dimensions = N . The vectors ϕj thus span an m-dimensional
subspace in RN (shaded area in Figure 19 Bottom).

Notice that the objective function
∑N

i=1 (w′ fi − zi)
2 from (18) is equal to

‖(
∑m

j=1 wj ϕj)− z‖2 (easy exercise – do it!), which turns (18) into

wopt = argmin
w∈Rm

‖(
m∑

j=1

wj ϕj)− z‖2, (19)

where we used w = (w1, . . . , wm)′ We now take another look at the graphics in
19 Bottom. Equation 19 tells us that we have to find the linear combination∑m

j=1 wj ϕj which comes closest to y. Any linear combination
∑m

j=1 wj ϕj is a
vector which lies in the linear subspace F spanned by ϕ1, . . . , ϕm (shaded area
in the figure). The linear combination which is closest to z apparently is the
projection of z on that subspace. This is the essence of linear regression!

We may assume that the vectors ϕ1, . . . , ϕm are linearly independent. If they
would be linearly dependent, we could drop as many from them as is needed to
reach a linearly independent set, which would not change F and the achievable
linear combination vectors.

All that remains is to compute which linear combination of ϕ1, . . . , ϕm is equal
to the projection of z on F . Let us call this projection zopt.

The rest is just mechanical linear algebra.
Let Φ = (ϕ1, . . . , ϕm) be the N ×m sized matrix whose columns are formed

by the N -dimensional vectors ϕj. Then Φ Φ′ is a positive semi-definite matrix
of size N × N with a singular value decomposition Φ Φ′ = UN ΣN U ′

N . Since the
rank of Φ is m < N , only the first m singular values in ΣN are nonzero. Let
U = (u1, . . . , um) be the N ×m matrix made from the first m columns in UN , and
let Σ be the m ×m diagonal matrix containing the m nonzero singular values of
ΣN on its diagonal. Then

Φ Φ′ = U Σ U ′. (20)

This is sometimes called the compact SVD. Notice that the columns uj of U form
an orthonormal basis of F (blue arrows in Figure 19 Bottom).

Using the coordinate system given by u1, . . . , um, we can rewrite each ϕj as

ϕj =
m∑

l=1

(u′l ϕj) ul = UU ′ϕj, (21)

where we introduced U = (u1, . . . , um). Similarly, the projection zopt of z on F is

zopt =
m∑

l=1

(u′l y) ul = UU ′z, (22)

But also zopt = Φ wopt. From (21) we get Φ = UU ′Φ, which in combination
with (22) turns zopt = Φ wopt into

UU ′ z = UU ′Φ wopt.
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Figure 19: Two visualizations of linear regression. Top. This visualization shows
a case where there are N = 10 patterns, each represented by m = 4
feature values f1(xi), . . . , f4(xi) (green circles). The feature f4 is a
constant-1 bias feature. The ten feature values f1(x1), . . . , f1(x10) form
a 10-dimensional vector ϕ1, indicated by a connecting line. Similarly
the other features can be regarded as a 10-dimensional vector each, as
can be the ten target values z1, . . . , z10 which give a vector z (shown
in red). The linear combination [ϕ1 ϕ2 ϕ3 ϕ4] wopt which gives the best
approximation to z in the least mean square error sense is shown in or-
ange. Bottom. The diagram shows a case where there the number of
features is m = 2 and there are N = 3 sample patterns x1, x2, x3 in the
training set. The three values f1(x1), f1(x2), f1(x3) of the first feature
give a three dimensional vector ϕ1, and the three values of the second
feature give ϕ2 (green). These two vectors span a 2-dimensional sub-
space F in RN = R3, shown in green shading. The three target values
z1, z2, z3 similarly make for a vector z (red). The linear combination
zopt = w1 ϕ1 + w2 ϕ2 which has the smallest distance to z is given by
the projection of z on this plane (shown in orange). The vectors u1, u2

shown in blue is a pair of orthonormal basis vectors which span the
same subspace that is spanned by ϕ1, ϕ2.
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A weight vector wopt solves this equation if it solves

U ′ z = U ′Φ wopt. (23)

It remains to find a weight vector wopt which satisfies (23). I claim that wopt =
(Φ′Φ)−1 Φ′ z does the trick, that is, U ′ z = U ′Φ (Φ′Φ)−1 Φ′ z holds.

To see this, first observe that Φ′Φ is nonsingular, thus (Φ′Φ)−1 is defined.
Furthermore, observe that U ′z and U ′Φ (Φ′Φ)−1 Φ′ z are m-dimensional vectors,
and that the N ×m matrix UΣ has rank m. Therefore,

U ′ z = U ′Φ (Φ′Φ)−1 Φ′ z ⇐⇒ UΣU ′ z = UΣU ′Φ (Φ′Φ)−1 Φ′ z. (24)

Replacing UΣU ′ by Φ Φ′ (compare Equation 20) turns the right equation in
(24) into Φ Φ′ z = Φ Φ′Φ (Φ′Φ)−1 Φ′ z, which is obviously true. Therefore, wopt =
(Φ′Φ)−1 Φ′ z solves our scalar optimization problem (19).

Returning to the original version of the linear regression problem (17) with
vector targets zi ∈ Rk, it is easy to see that we obtain an optimal k ×m weight
matrix Wopt by

W ′
opt = (Φ′Φ)−1 Φ′ Z, (25)

where Z = (zi(j))i=1,...,N ; j=1,...,m is a matrix which collects all the target vectors
zi row-wise. We summarize our findings in a comprehensive algorithm:

Data. A set (f(xi), zi)i=1,...,N of m-dimensional feature vectors f(xi) and
k-dimensional target vectors zi.

Result. A k ×m dimensional weight matrix Wopt which solves the linear
regression objective from Equation 17.

Step 1. Sort the feature vectors row-wise into an N ×m matrix Φ and the
targets into an N × k matrix Z.

Step 2. Compute the result by W ′
opt = (Φ′Φ)−1 Φ′ Z.

Some further remarks:

• For an a×b sized matrix A, where a ≥ b and A has rank b, the matrix A+ :=
(A′A)−1 A′ is called the (left) pseudo-inverse of A. It satisfies A+ A = Ib×b.
It is often also written as A†.

• Computing the inversion (Φ′Φ)−1 may suffer from numerical instability when
Φ′Φ is close to singular; and it fails altogether when it is singular. A quick
fix is to always add a small multiple of the m × m identity matrix before
inverting, that is, replace (25) by

W ′
opt = (Φ′Φ + α2 Im×m)−1 Φ′ Z. (26)
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This is called ridge regression. We will soon see that ridge regression not
only helps to circumvent numerical issues, but also offers a solution to the
fundamental problem of overfitting.

• Without the ridge regression trick, there is another way to circumvent nu-
merical issues that may arise from badly conditioned Φ′Φ. First compute the
SVD Φ′Φ = V DV ′. Then invert all nonzero diagonal values in D, obtaining
a matrix D†. Then compute W ′

opt = V D† V ′ Φ′ Z.

This still gives optimal weights. Computing such V D† V ′ Φ′ is the basic
procedure that is used in Matlab and other numerical programming packages
when the built-in pseudoinverse function is called. In Matlab, you would
compute linear regression weights in a numerically stable way by W optimal

= (pinv(Phi) * Z)’.

6.3 Interim summary: the worksuite of a pattern classifi-
cation project

We have now everything in place to design complete learning algorithms for pattern
classification. Here is how:

Training data. Given: a set (xtrain
i , ytrain

i )i=1,...,N of labelled patterns, where xtrain
i ∈

Rn and ytrain
i ∈ {c1, . . . , ck}.

Fundamental assumption. The training data have been randomly sampled from
a real-world joint distribution PX,Y of patterns and labels. Test patterns are
sampled from the same distribution.

Objective. From the training data, learn a decision function D : Rn → Rk

which upon input of test patterns xtest returns a decision vector D(xtest) =
(h1, . . . , hk). If the largest element in (h1, . . . , hk) is used to make a classifi-
cation decision, these decisions should yield a low misclassification rate.

Stage 1: extract features. If the patterns x are high-dimensional – where “high-
dimensional” can start to show its teeth already when n is greater than
10 – it is advisable to convert them into lower-dimensional feature vectors
f(x) ∈ Rm. There is a large arsenal of techniques for feature extraction. We
took a look at hand-made features, features obtained from clustering, and
PCA based features. Determining the latter two kinds of features is in itself
an (unsupervised) machine learning problem.

Stage 2: train a feature-based decision function d : Rm → Rk. This is where
the label information from the training data is exploited. There is again a
large choice of methods for training decision functions. We only treated lin-
ear regression. A typical way to obtain the target values for linear regression
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in classification learning is to transform the class labels into binary class in-
dicator vectors. Linear regression combined with this coding of classes has
the advantage of being cheap to compute and easy to understand. With
well-designed features it can work extremely well.

A final note. If one uses PCA for feature extraction and linear regression for
computing the decision function, the overall classification algorithm D : Rn → Rk

is just an affine linear mapping. This is because, firstly, the reduction from raw
input patterns x to feature vectors f(x) is an affine linear map (exercise: show
how the centering operation can be captured by an affine map). This is followed,
secondly, by another affine linear mapping, namely the linear regression mapping.
The concatenation of an affine linear map with another affine linear map yields an
affine linear map again. Thus, altogether, D : Rn → Rk is an affine linear map,
which can be encoded in a single k × (n + 1) sized matrix whose last column is a
bias vector (recommendable exercise: work out how this matrix is obtained from
the mean pattern µ, the PC vector matrix Um, and the regression weight matrix
W ). This means that the PCA + linear regression combo can only give us decision
regions which have linear hyperplane boundaries. This will very likely not be the
best possible classificator for digit images.

7 The bias-variance dilemma

We have seen that high dimensionality is a fundamental problem in modeling
probability distributions – the curse of dimensionality. This curse is only one of
two eternal fundamental problems in machine learning and statistics. The other
eternal nemesis is the problem of overfitting versus underfitting data – the more
educated term for the same is the bias-variance dilemma. I will use again the
digits classification task as a demonstrator.

7.1 Training and testing errors

Let us take a closer look at what happens when we proceed as outlined in Section
6.3, using PCA projections to reduce the n = 240 original dimensions of the digit
pics xi to m-dimensional PC feature vectors fi, then use linear regression to obtain
a linear decision function d : Rm → Rk. Of each of the 200 images per class given
in the public domain data set, we take the first N = 100 for training and the
remaining 100 ones for testing.

The quality of the linear regression solution d can be quantified in several ways
(using the notation from Section 6):

1. The training mean square error MSEtrain = 1/N
∑N

i=1 ‖ztrain
i − d(f train

i )‖2.

2. The testing mean square error MSEtest = 1/N
∑N

i=1 ‖ztest
i − d(f test

i )‖2.
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3. The training misclassification rate

%train = 1/N |{i | maxInd d(f train
i ) 6= ctrain

i }|,

where maxInd v picks the index of the maximal element in a vector v.

4. The testing misclassification rate

%test = 1/N |{i | maxIndd(f test
i ) 6= ctest

i }|

Figure 20 shows these diagnostics for all possible choices of the number m =
1, . . . , 240 of PC features used. This plot visualizes one of the most important
issues in (supervised) machine learning and deserves a number of comments.
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Figure 20: Dashed: Train (blue) and test (red) MSE obtained for m = 1, . . . , 240
PCs. Solid: Train (blue) and test (red) misclassification rates. Y-axis
is logarithmic base 10.

• As m increases (the x-axis in the plot), the number of parameters in the
corresponding linear regression weight matrices Wopt grows by 10 ·m. More
model parameters means more degree of freedoms, more “flexible” models.
With greater m, models can increasingly better solve the learning equation
(17). This is evident from the monontonous decrease of the train MSE plot.
The training misclassification rate also decreases persistently except for a
jitter that is due to the fact that we optimized models only indirectly for
low misclassification.
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• The analog performance curves for the testing MSE and misclassification
first exhibit a decrease, followed by an increasing tail. The testing misclas-
sification rate is minimal for m = 34.

• This “first decrease, then increase” behavior of testing MSE (or classification
rate) is always observed in supervised learning tasks when models are com-
pared that have been trained with procedures that admit increasing degrees
of data fitting flexibility. In our digit example, this increase in flexibility
was afforded by growing numbers of PC features, which in turn gave the
final linear regression a richer repertoire of feature values to combine into
the hypothesis vectors.

• The increasing tail of testing MSE (or classification rate) is the hallmark
of overfitting. When the learning algorithm admits too much flexibility, the
resulting model can fit itself not only to what is “regular” in the training
data, but also to the random fluctuations in the training data. Intuitively
and geometrically speaking, a learning algorithm that can shape many de-
grees of freedom in its learnt models allows the models to “fold in curls and
wiggles to accomodate the random whims of the training data”. But then,
the random curls and wiggles of the learnt model will be at odds with fresh
testing data.

7.2 The menace of overfitting

This attempt of a geometric-intuitive explanation of why a too flexible model runs
danger of poor test performance is admittedly hand-waving. ML research has in-
vented a great variety of model types for supervised learning of classification and
other tasks, and how exactly overfitting (mis-)functions in each of these model
types will need a separate geometrical analysis. Because overfitting is such a fun-
damental challenge in machine learning, I illustrate its geometrical manifestations
with three synthetic examples.

7.2.1 Example 1: polynomial curve-fitting

This example is the standard textbook example for demonstrating overfitting. Let
us consider a one-dimensional input, one-dimensional output regression task of the
kind where the training data are of form (xi, yi) ∈ R × R. Assume that there is
some systematic relationship y = f(x) that we want to recover from the training
data. We consider a simple artificial case where the xi range in [0, 1] and the
to-be-discovered true functional relationship is y = sin(2 π x). The training data,
however, contain a noise component, that is, yi = sin(2 π xi)+νi, where νi is drawn
from a normal distribution with zero mean and standard deviation σ. Figure 21
shows a training sample (xi, yi)i=1,...,11, where N = 11 xi are chosen equidistantly.

We now want to solve the task of learning a good approximation for f from the
training data (xi, yi) by applying polynomial curve fitting, an elementary technique
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Figure 21: An example of training data (red squares) obtained from a noisy ob-
servation of an underlying “correct” function sin(2 π x) (dashed blue
line).

you might be surprised to meet here as a case of machine learning. Consider an
m-th order polynomial

p(x) = w0 + w1x + · · ·+ wmxm. (27)

We want to approximate the function given to us via the training sample by
a polynomial, that is, we want to find (“learn”) a polynomial p(x) such that
p(xi) ≈ yi. More precisely, we want to minimize the mean square error on the
training data

MSEtrain =
1

N

N∑
i=1

(p(xi)− yi)
2.

At this moment we don’t bother how this task is solved computationally but
simply rely on the Matlab function polyfit which does exactly this job for us:
given data points (xi, yi) and polynomial order m, find the monomial coefficients
wj that minimize this MSE. Figure 22 shows the polynomials found in this way
for M = 1, 3, 10.

If we compute the MSE’s for the three orders m = 1, 3, 10, we get MSEtrain =
0.4852, 0.0703, 0.0000. Some observations:

• If we increase the order m, we get increasingly lower MSEtrain.

• For m = 1, we get a linear polynomial, which apparently does not represent
our original sine function well (underfitting).

• For m = 3, we get a polynomial that hits our target sine apparently quite
well.

• For m = 10, we get a polynomial that perfectly matches the training data,
but apparently misses the target sine function (overfitting).
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Figure 22: Fitting polynomials (green lines) for polynomial orders 1, 3, 10 (from
left to right).

The modelling flexibility is here defined through the polynomial order m. If it
is too small, the models are too inflexible and underfit ; if it is too large, we see
overfitting.

7.2.2 Example 2: pdf estimation

Let us consider the task of estimating a 2-dimensional pdf over the unit square
from 6 training data points {xi}i=1,...,6, where each xi is in [0, 1] × [0, 1]. This is
an elementary unsupervised learning task the likes of which frequently occur as a
subtask in more involved learning tasks, but which is of interest in its own right
too. Figure 23 shows three pdfs which were obtained from three different learning
runs with models of increasing flexibility (I don’t explain the modeling method
here — for the ones who know about it: simple Gaussian Parzen-window models
where the degree of admitted flexibility was tuned by kernel width). Again we
encounter the fingerprints of under/overfitting: the low-flexibility model seems too
“unbending” to resolve any structure in the training point cloud (underfitting),
the high-flexibility model is so volatile that it can accomodate each individual
training point (presumably overfitting).

7.2.3 Example 3: learning a decision boundary

Figure 24 shows a schematic of a classification learning task where the training
patterns are points in R2 and come in two classes. When the trained model is
too inflexible (left panel), the decision boundary is confined to be a straight line,
presumably underfitting. When the flexibility is too large, each individual training
point can be “lasso-ed” by a sling of the decision boundary, presumably overfitting.
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Figure 23: Estimating a pdf from 6 data points. Model flexibility grows from left
to right. Note the different scalings of the z-axis: the integral of the
pdf is 1.

!

Figure 24: Learning a decision boundary for a 2-class classification task of 2-
dimensional patterns (marked by black “x” and red “o”).

7.2.4 Interim summary

The three examples stem from different learning tasks (function approximation,
pdf learning, classification learning), and correspondingly the overfitting problem
manifests itself in different “geometrical” ways. But the flavor is the same in all
cases. The model flexibility determines how “wiggly” the geometry of the learnt
model can become. Very large flexibility ultimately admits to adapt the model
to each individual training point. This leads to small, even zero, training error;
but it is disastrous for generalization to new test data points. Very low flexibility
can hardly adapt to the structure of the training data at all, likewise leading to
poor test performance (and poor training performance too). Some intermediate
flexibility strikes the best possible balance.

Properly speaking, flexibility is not a characteristic of a single model, but of a
learning algorithm. If one uses the term precisely, one should speak, for example,
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of “the flexibility of the procedure to train a third-order polynomial function”, or
of “the flexibility of the PCA-based linear regression learning scheme which uses
m PCA features”.

I introduced this way of speaking about “flexibility” ad hoc. In statistics
and machine learning textbooks you will hardly find this term. Instead, specific
methods to measure and tune the flexibility of a learning algorithm have their
specific names, and it is these names that you will find in the literature. The
most famous among them is model capacity. This concept has been developed
in a field now called statistical learning theory and (not only) I consider it a
highlight of modern ML theory. We will however not treat it in this lecture, since
it is not an easy concept and it needs to be spelled out in different versions for
different types of learning tasks and algorithms. Check out en.wikipedia.org/

wiki/Vapnik-Chervonenkis theory if you want to get an impression. Instead,
in Sections 7.4 and 7.6 I will present two simpler methods for handling modeling
flexibility which, while they lack the analytical beauty and depth of the model
capacity concept, are immensely useful in practice.

I emphasize that finding the right flexibility for a learning algorithm is ab-so-lu-
te-ly crucial for good performance of ML algorithms. Our little visual examples do
not do justice to the dismal effects that overfitting may have in real-life learning
tasks where a high dimension of patterns is combined with a small number of
training examples — which is a situation faced very often by ML engineers in
practical applications.

7.3 An abstract view on supervised learning

Before I continue with the discussion of modeling flexibility, it is helpful to in-
troduce some standard theoretical concepts and terminology. Before you start
reading this section, make sure that you understand the difference between the
expectation of a random variable and the sample mean (explained in Appendix
D).

In supervised learning scenarios, one starts from a training sample of the form
(xi, yi)i=1,...,N , which is drawn from a joint distribution PX,Y of two random vari-
ables X and Y . So far, we have focussed on pattern classification tasks, where
the xi were “patterns” and the yi were class labels. But supervised learning tasks
occur in many other variants, too. For instance, in time series prediction tasks,
the xi may be observations of a time series up to the current time, and the yi would
be the continuations of that time series into the future. Or, in general function
approximation tasks, the xi are arguments to an (unknown, random) function and
the yi are the results returned by that function. An example of a function approxi-
mation task which is both important and difficult is text translation: the xi would
be sentences in a source language, say English, and the yi would be translations
of these sentences in a target language, say French. In this subsection we will
take an abstract view and just consider any kind of supervised learning based on
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a training sample (xi, yi)i=1,...,N . We then call the xi the arguments and the yi the
targets of the learning task. The target RV Y is also sometimes referred to as the
teacher variable.

The argument and target variables each come with their specific data value
space – a set of possible values that the RVs X and Y may take. For instance,
in our digit classification example, the data value space for X was R240 (or more
constrained, [0, 1]240) and the data value space for Y was the set of class labels
{0, 1, . . . , 9}. After the extraction of m features and turning the class labels to
class indicator vectors, the original picture–label pairs (xi, yi) turned into pairs
(fi, zi) with data value spaces Rm, Rk respectively. In English-French sentence
translation tasks, the data value spaces of the argument variables X would be a
(mathematical representation of a) set of English and French sentences. We now
abstract away from such concrete data value spaces and write EX , EY for the data
value spaces of X and Y .

Generally speaking, the aim of a supervised learning task is to derive from
the training sample a function D : EX → EY . We called this function a decision
function earlier in these lecture notes, and indeed that is the term which is used
in abstract statistical learning theory.

The decision function D obtained by a learning algorithm should be optimized
toward some objective. This objective arises from the specific goals that one pur-
sues. For instance, in pattern classification one may wish to minimize the number
of misclassifications; or in function approximation one may wish to minimize the
square error; or in credit risk prediction a bank may wish to minimize the finan-
cial loss resulting from failed loans. Abstracting away from such particulars, one
introduces the concept of a loss function. A loss function is a function

L : EY × EY → R≥0. (28)

The idea is that a loss function measures the “cost” of a mismatch between
the target values y and the values D(x) returned by a decision function. Higher
cost means lower quality of D. We have met two concrete loss functions so far:

• A loss that counts misclassifications in pattern classification: when the de-
cision function returns a class label, define

L(D(x), y) =

{
0, if D(x) = y
1, if D(x) 6= y

(29)

This loss was used in our derivation of optimial decision regions, compare
Equation 7.

• A loss that penalizes quadratic errors of vector-valued targets:

L(D(x), y) = ‖D(x)− y‖2. (30)

This loss is often just called “quadratic loss”. We used it as a basis for
deriving the linear regression based classifier in Section 6.
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The decision function D is the outcome of a learning algorithm, which in turn
is informed by a sample (xi, yi)i=1,...,N . Learning algorithms should minimize the
expected loss, that is, a good learning algorithm should yield a decision function
D whose risk

R(D) = E[L(D(X), Y )] (31)

is small. The expectation here is taken with respect to the true underlying joint
distribution PX,Y . For example, in a case where X and Y are numerical RVs and
their joint distribution is described by a pdf f , the risk of a decision function D
would be given by R(D) =

∫
EX×EY

L((D(x), y) f(x, y) d(x, y). However, the true
distribution is unknown. The mission to find a decision function D which mini-
mizes (31) is, in fact, hopeless. The only access to PX,Y that the learning algorithm
affords is the scattered reflection of PX,Y in the training sample (xi, yi)i=1,...,N .

A natural escape from this impasse is to tune a learning algorithm such that
instead of attempting to minimize the risk (31) it tries to minimize the empirical
risk

Remp(d) = 1/N
N∑

i=1

L(d(xi), yi), (32)

which is just the mean loss calculated over the training examples. Minimizing this
empirical risk is an achievable goal, and a host of optimization algorithms for all
kinds of supervised learning tasks exist which do exactly this, that is, they find

Dopt = argmin
D∈D

1/N
N∑

i=1

L(D(xi), yi). (33)

We already saw one example: linear regression is the learning algorithm which, for
numerical X, Y , among the candidate set D of all affine linear decision functions
finds the one that minimizes the quadratic empirical loss.

The empirical risk is often – especially in numerical function approximation
tasks – also referred to as training error, and the risk as (expected) testing error.

While minimizing the empirical loss is a natural way of coping with the impos-
sibility of minimizing the risk, it may lead to decision functions which combine a
low empirical risk with a high risk. This is the the ugly face of overfitting which
I highlighted in the previous Subsection 7.2. In extreme cases, one may learn
a decision function which has zero empirical risk and yet has a extremely large
expected testing error which makes it absolutely useless.

There is no easy or general solution for this conundrum. It has spurred statis-
ticians and mathematicians to develop a rich body of theories which analyze the
relationships between risk and empirical risk, and suggest insightful strategies to
manage as well as one can in order to keep the risk within provable bounds. These
theories, sometimes referred to as statistical learning theory (or better, theories),
are mathematically demanding and beyond the scope of this lecture. If you are in
a hardcore mood and if you have some background in probability theory, you can
inspect parts 2 and 3 of lecture notes of the “Principles of Statistical Modeling”
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course at minds.jacobs-university.de/teaching/PSMFall2016. You will find
that the definitions of loss and risk given there are more involved than what I
presented above, but the somewhat simplified version that I gave here is often
used in introductory textbooks to machine learning.

7.4 Tuning learning flexibility through model class size

Back to business. From what we saw in Sections 7.1 and 7.2 it appears that in
order to achieve a low testing error (that is, a low risk) it is crucial to determine
an appropriate modelling flexibility. We introduced this theme only informally in
that section. Let us re-consider two examples to get a clearer picture:

• In the digits classification example (Section 7.1, Figure 20), we found that
the number m of principal component features that were extracted from
the raw image vectors was decisive for the testing error. When m was too
small, the resulting models were too simple to distinguish properly between
different digit image classes (underfitting). When m was too large, overfitting
resulted. Fixing a particular m determines the class D of candidate decision
functions within which the empirical risk (33) is minimized. Specifically,
using a fixed m meant that the optimial decision function D was selected
from the set Dm which contains all decision functions which first extract m
principal component features, then combine those feature values linearly into
the hypothesis vectors. It is clear that Dm−1 is contained in Dm, because
decision functions that only combine the first m − 1 principal component
features into the hypothesis vector can be regarded as special cases of decision
functions that combine m principal component features into the hypothesis
vector, namely those whose combination weight for the m-th feature is zero.

• In the polynomial curve fitting example from Section 7.2.1, the model pa-
rameters were the monomial coefficients w0, . . . , wm (compare Equation 27).
After fixing the polynomial order m, optimal decision functions p(x) were
selected from the set Dm = {p : R → R | p(x) =

∑m
j=0 wj xj}. Again it is

clear that Dm−1 is contained in Dm.

A note on terminology: I use the words “decision function” and “model” as
synonyms, meaning the (classification) algorithm D which results from a learn-
ing procedure. The word “decision function” is standard in statistics, the word
“model” is more popular in machine learning. I also remark that in statistics,
the term “statistical model” means something entirely different which we will not
discuss here – just be aware of that in case you read a textbook of statistics.

Generalizing from our two examples, we are now in a position to draw a pre-
cise picture of what it may mean to consider learning algorithms of “increasing
flexibility”. A model class inclusion sequence is a sequence D1 ⊂ D2 ⊂ . . . ⊂ DL

of sets of candidate models. Since there are more candidate models in classes that
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appear later in the sequence, “higher” model classes have more possibilities to
fit the training data, thus the optimal model within class Dm+1 can achieve an
empirical risk that is at least as low as the optimal model in class Dm, but usually
has a properly lower risk – and is closer to overfitting.

There are many ways how one can set up a sequence of learning algorithms
which pick their respective optimal models from such a model class inclusion se-
quence. In most cases – such as in our two examples – this will just mean to admit
larger models with more tuneable parameters for “higher” classes.

From now on we assume that a class inclusion sequence D1 ⊂ . . . ⊂ DL is
given. We furthermore assume we have a loss function L and are in possession of
a learning algorithm which for every class Dm can solve the optimization problem
of minimizing the empirical risk

Dopt m = argmin
D∈Dm

1/N
N∑

i=1

L(D(xi), yi). (34)

So... how can we find the best model class mopt which gives us the best risk
– note: not the best empirical risk? Or stated in more basic terms, which model
class will give us the smallest expected test error? Expressed formally, how can
we find

mopt = argmin
m

R(Dopt m)? (35)

7.5 Finding the right modeling flexibility by cross-validation

Statistical learning theory has come up with a few analytical methods to approxi-
mately solve (35). But these methods are based on additional assumptions which
are neither easy to verify nor often granted. By far the most widely used method to
determine an (almost) optimal model class is a rather simple scheme called cross-
validation. Cross-validation is a generic method which does not need analytical
insight into the particulars of the learning task at hand. Its main disadvantage is
that it may be computationally expensive.

Here is the basic idea of cross-validation.
In order to determine whether a given model is under- or overfitting, one would

need to run it on test data that are “new” and not contained in the training data.
This would allow one to get a hold on the red curves in Figure 20.

However, at model training time only the training data are available.
The idea of cross-validation is to artificially split the training data set S =

(xi, yi)i=1,...,N into two subsets T = (xi, yi)i∈I and V = (x′i, y
′
i)i∈I′ . These two

subsets are then pretended to be a ”training” and a ”testing” dataset. In the
context of cross-validation, the second set is called a validation set. Data in
T is used to train optimal models Dopt m from D1, . . . ,DL, in turn. The test
generalization performance on “new” data is then tested on the validation set, for
each m = 1, . . . , L. It is determined which model Dopt m performs best on the
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validation data. Its class index m is then taken to be the sought solution mopt to
(35). After this screening of model classes for the best test performance, a model
within the found optimal class is then finally trained on the original complete
training data set S.

This whole procedure is called cross-validation. Notice that nothing has been
said so far about how to split S into T and V . This is not a trivial question: how
should S be best partitioned?

A clever way to answer this question is to split S into many subsets Sj of
equal size (j = 1, ..., K). Then carry out K complete screening runs via cross
validation, where in the j-th run the subset Sj is withheld as a validation set,
and the remaining K − 1 sets joined together make for a training set. After these
K runs, average the validation errors in order to find mopt. This is called K-fold
cross-validation. Here is the procedure in detail:
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Givens. A set (xi, yi)i=1,...,N of training data, and a loss function L.
Setup. Procure a model class inclusion sequence D1 ⊂ . . . ⊂ DL ranging from

highly constrained models D1 which will likely underfit to very flexible,
large models DL which will likely overfit.

Result. A model Dmopt that was trained within the presumably optimal class
Dmopt – neither underfitting nor overfitting.

Step 1. Split the training data into K disjoint subsets Sj = (xi, yi)i∈Ij
of

equal size N ′ = N/K.
Step 2. Repeat for j = 1, . . . , K:

Step 2.1 Designate Sj as validation set Vj and the union of the other
Sj′ as training set Tj.

Step 2.2 Repeat for m = 1, . . . , L:

Step 2.2.1 Within the class Dm, compute the optimal model

Dopt m j = argmin
D∈Dm

1/|Tj|
∑

(xi,yi)∈Tj

L(D(xi), yi).

Step 2.2.2 Test Dopt m j on the current validation set Vj by com-
puting the validation risk

Rval
m j = 1/N ′

∑
(xi,yi)∈Vj

L(Dopt m j(xi), yi).

Step 3. For m = 1, . . . , L average the K validation risks obtained from the
“folds” carried out for this class, obtaining

Rval
m = 1/K

∑
j=1,...,K

Rval
m j.

Step 4. Find the optimal class by looking for that m which minimizes the
averaged validation risk:

mopt = argmin
m

Rval
m .

Step 5. Compute Dmopt using the complete original training data set:

Dmopt = argmin
D∈Dmopt

1/N
∑

i=1,...,N

L(D(xi), yi).

This procedure contains two nested loops and looks expensive. For economy,
one starts with the low-end class and expands it stepwise, assessing the general-
ization quality through cross-validation for each class m, until the validation risk
starts to rise. The class reached at that point is likely to be about the right one.
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The best assessment of the optimal class is achieved when the original training
data set is split into singleton subsets – that is, each Sj contains just a single
training example. This is called leave-one-out cross-validation. It looks like a
horribly expensive procedure, but yet it may be advisable when one has only a
small training data set, which incurs a particularly large danger of ending up with
poorly generalizing models when a wrong model class size was used.

K-fold cross validation is widely used – it is a factual standard procedure
in supervised learning tasks when the computational cost of learning a model is
affordable.

7.6 Using regularization for tuning modeling flexibility

There are several methods to endow a learning algorithm with variable degrees of
flexibility. One such method was described in Section 7.4: in order to increase the
flexibility of a learning algorithm, increase the number of adjustable parameters —
said more simply, bigger models are more flexible. In this section I present a quite
different approach, which however is equally simple, practical, and in widespread
use. It is called model regularization.

When one uses regularization to vary the modeling flexibility, one does not
vary the model class size at all. Instead, one varies the minimization task (33).

The basic geometric intuition behind modeling flexibility is that low-flexibility
models should be “smooth”, “more linear”, “flatter”, admitting only “soft curva-
tures” in fitting data; whereas high-flexibility models can yield “peaky”, “rugged”,
“sharply twisted” curves (see again Figures 22, 23, 24).

When one uses model regularization, one fixes a single model structure and size
with a fixed number of trainable parameters. Structure and size of the considered
model should be rich and large enough to be able to overfit the available training
data. For instance, in our evergreen digit classification task one would altogether
dismiss the dimension reduction through PCA (which has the same effect as using
the maximum number m = 240 of PC components) and directly use the raw
picture vectors (padded by a constant 1 component to enable affine linear maps)
as argument vectors for a training a linear regression decision function. Or, in
polynomial curve-fitting, one would fix a polynomial order that clearly is too large
for the expected kind of true curve.

This baseline model type is characterized by a set of trainable parameters.
In our example of digit classification through linear regression from raw images
these traineable parameters are the elements of the regression weight matrix; in
polynomial curve fitting these parameters are the monomial coefficients. Following
the traditional notation in the machine learning literature we denote this collection
of trainable parameters by θ. This is a vector that has as many components as
there are trainable parameters in the chosen baseline model. We assume that we
have M tuneable parameters, that is θ ∈ RM .

Such a high-flexibility baseline model type would inevitably lead to overfitting
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when an “optimal” model would be learnt using the basic learning equation (33)
which I repeat here for convenience:

Dopt = argmin
D∈D

1/N
N∑

i=1

L(D(xi), yi).

In order to downregulate the exaggerated flexibility of this baseline learning
algorithm, one adds a regularization term (also known as penalty term, or simply
regularizer) to the loss function. A regularization term is a cost function R :
RM → R≥0 which penalizes model parameters θ that code models with a high
degree of geometrical “wiggliness”.

The design of a useful penality term is up to the data engineer’s ingenuity.
A good penalty term should, of course, assign high penalty values to parameter
vectors θ which represent “wiggly” models; but furthermore it should be easy to
compute and blend well with the algorithm used for empirical risk minimization.

Two examples of such regularizers:

1. In the polynomial fit task from Section 7.2.1 one might consider as a base-
line all 10th order polynomials but penalize the “oscillations” seen in the
right panel of Figure 22, that is, penalize such 10th order polynomials that
exhibit strong oscillations. The degree of “oscillativity” can be measured,
for instance, by the integral over the (square of the) second derivative of the
polynomial p,

R(θ) = R((w0, . . . , w10)) =

∫ 1

0

(
d2 p(x)

dx2

)2

dx.

Investing a little calculus exercise, it can be seen that this integral can be
resolved into a quadratic form R(θ) = θ′ C θ where C is an 11 × 11 sized
positive semi-definite matrix. That format is more convenient to use than
the original integral version.

2. A popular regularizer that often works well is just the squared sum of all
model parameters,

R(θ) =
∑
w∈θ

w2.

This regularizer favors models with small absolute parameters, which often
amounts to “geometrically soft” models. This regularizer is popular among
other reasons because it supports simple algorithmic solutions for minimiz-
ing risk functions that contain it. It is also called the L2-norm regularizer
because it measures the (squared) L2-norm of the parameter vector θ.

Once one has decided on a regularizer, one simply adds it to the empirical risk
function. This means to replace (33) by

Dopt = argmin
D∈D

(
1/N

N∑
i=1

L(D(xi), yi) + α2 R(θD)

)
. (36)
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where θD is the collection of parameter values in the candidate model D.
Computing a solution to this minimization task means to find a set of param-

eters which simultaneously minimizes the original risk and the penalty term. The
factor α2 in (36) controls how strongly one wishes the regularization to impact on
the solution. Increasing α means decreasing the model capacity. For α2 = 0 one
returns to the original un-regularized risk (which would likely mean overfitting).
For α2 → ∞ the regularization term entirely dominates the model optimization
and one gets a model which does not care anymore about the training data but
instead only is tuned to have minimal penalty. In case of the L2 norm regularizer
this means that all model parameters are zero – the ultimate wiggle-free model;
one should indeed say the model is dead.

Returning once again to our eternal overfitting diagram in Figure 20, the in-
crease in model flexibility (going from left to right on the x-axis) is realized by a
decrease in the tradeoff parameter α2. On the left side of the diagram one finds
the training / testing errors obtained from regularized learning runs with large α2,
on the right side the ones with small α2.

Using regularizers to vary model flexibility is often computationally more con-
venient than using different model sizes, because one does not have to tamper
with differently structured models. One selects a baseline model type with a very
large (unregularized) flexibility, which typically means to select a big model with
many parameters (maybe hundreds of thousands). Then one starts a sequence
of training trials where in the first trials one uses a strong regularization (large
α2), which is subsequently decreased in each training trial. In each trial one uses
(K-fold or simple) cross-validation to assess the generalization qualities on a val-
idation dataset. The validation risk will initially shrink from trial to trial, then
start to grow again. At that turning point one has found the best α2.

7.7 Ridge regression

Let us briefly take a fresh look at linear regression, now in the light of general
supervised learning and regularization. Recall from Section 6 that the learning
task solved by linear regression is to find

wopt = argmin
w∈Rn

N∑
i=1

(w′ xi − yi)
2, (37)

where (xi, yi)i=1,...,N is a set of training data with xi ∈ Rn, yi ∈ R. Like any other
supervised learning algorithm, linear regression may lead to overfitting solutions
wopt. It is always advisable to control the flexibility of linear regression with an
L2 norm regularizer, that is, instead of solving (37) go for

wopt = argmin
w∈Rn

((
N∑

i=1

(w′ xi − yi)
2

)
+ α2 ‖w‖2

)
(38)
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and find the best regularization coefficient α2 by cross-validation. The optimiza-
tion problem (38) admits a closed-form solution, namely the ridge regression for-
mula that we have already met in Equation 26. Rewriting it a little to make it
match with the current general scenario, here it is again:

w′
opt = (X X ′ + α2 In×n)−1 X Y, (39)

where X = [x1, . . . , xN ] and Y = (y1, . . . , yN)′.
In Section 6 I motivated to use the ridge regression formula because it warrants

numerical stability. Now we see that a more fundamental reason to prefer ridge
regression over the basic kind of regression (37) is that it implements L2 norm
regularization. The usefulness of ridge regression as an allround simple baseline
tool for supervised learning tasks can hardly be overrated.

7.8 Why it is called the bias-variance dilemma

We have seen that a careful adjustment of the flexibility of a supervised learning
algorithm is needed to find the sweet spot between underfitting and overfitting.
A more educated way to express this condition is to speak of the bias-variance
tradeoff, also known as bias-variance dilemma. In this subsection I want to unravel
the root cause of the under/overfitting phenomenon in a little more mathematical
detail. We will find that it can be explained in terms of a bias and a variance term
in the expected error of estimated models.

Again I start from a training data set (xi, yi)i=1,...,N drawn from a joint distri-
bution PX,Y , with xi ∈ Rn, yi ∈ R. Based on these training data I consider the
learning task to find a decision function D : Rn → R which has a low quadratic
risk

R(D) = EX,Y [(D(X)− Y )2], (40)

where the notation EX,Y indicates that the expectation is taken with respect to the
joint distribution of X and Y . We assume that we are using some fixed learning
algorithm A which, if it is given a training sample (xi, yi)i=1,...,N , estimates a

model D̂. The learning algorithm A can be anything, good or bad, clever or
stupid, overfitting or underfitting; it may be close to perfect or just be always
returning the same model without taking the training sample into account – we
don’t make any assumptions about it.

The next consideration leads us to the heart of the matter, but it is not trivial.
In mathematical terms, the learning algorithm A is just a function which takes a
training sample (xi, yi)i=1,...,N as input and returns a model D̂. Importantly, if we
would run A repeatedly, but using freshly sampled training data (xi, yi)i=1,...,N in

each run, then the returned models D̂ would be varying from trial to trial – because
the input samples (xi, yi)i=1,...,N are different in different trials. Applying these

varying D̂ to some fixed x ∈ Rn, the resulting values D̂(x) would show a random
behavior too. The distribution of these variable values D̂(x) is a distribution
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over R. This distribution is determined by the distribution PX,Y (and the chosen
learning algorithm A and the training sample size), because the random variation
of the models D̂ is determined by the variation of the training samples, that is, by
PX,Y . A good statistician could give us a formal derivation of the distribution of

D̂(x) from PX,Y and knowledge of A, but we don’t need that for our purposes here.
The only insight that we need to take home at this point is that the distribution
of D̂(x) has an expectation which is ultimately determined by PX,Y , so we are

justified to write E[D̂(x)].
Understanding this point is the key to understanding the inner nature of un-

der/overfitting.
If you feel that you have made friends with this E[D̂(x)] object, we can proceed.

The rest is easy compared to this first conceptual clarification.
Without proof I note the following, intuitively plausible fact. Among all deci-

sion functions (from any candidate space D), the quadratic risk (40) is minimized
by the function

∆(x) = EY |X=x[Y |X = x], (41)

that is, by the expectation of Y given x. This function ∆ : Rn → R, x 7→ E[Y |X =
x] is the gold standard for minimizing the quadratic risk; no learning algorithm
can give a better result than this. Unfortunately, of course, ∆ remains unknown
because the underlying true distribution PX,Y cannot be exactly known.

Now fix some x and ask by how much D̂(x) deviates, on average and in the
squared error sense, from the optimal value ∆(x). This expected squared error is

E[(D̂(x)−∆(x))2].

We can learn more about this error if we re-write (D̂(x)−∆(x))2 as follows:

(D̂(x)−∆(x))2 = (D̂(x)− E[D̂(x)] + E[D̂(x)]−∆(x))2

= (D̂(x)− E[D̂(x)])2 + (E[D̂(x)]−∆(x))2

+2 (D̂(x)− E[D̂(x)]) (E[D̂(x)]−∆(x)). (42)

Now observe that

E
[
(D̂(x)− E[D̂(x)]) (EX,Y [D̂(x)]−∆(x))

]
= 0, (43)

because the second factor (E[D̂(x)]−∆(x)) is a constant, hence

E
[
(D̂(x)− E[D̂(x)]) (EX,Y [D̂(x)]−∆(x))

]
=

= E
[
D̂(x)− EX,Y [D̂(x)]

]
(EX,Y [D̂(x)]−∆(x)),

and

E
[
D̂(x)− E[D̂(x)]

]
= E[D̂(x)]− E[E[D̂(x)]]

= E[D̂(x)]− E[D̂(x)]

= 0.
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Inserting (43) into (42) and taking the expectation on both sides (42) of finally
gives us

E[(D̂(x)−∆(x))2] =

=
(
E[D̂(x)]−∆(x)

)2

︸ ︷︷ ︸
(squared) bias

+ E

[(
D̂(x)− E[D̂(x)]

)2
]

︸ ︷︷ ︸
variance

. (44)

The two components of this error are conventionally named the bias and the
variance contribution to the expected squared mismatch E[(D̂(x) − ∆(x))2] be-
tween the learnt-model decision values D̂(x) and the optimal decision value ∆(x).
The bias measures how strongly the average learning result deviates from the
optimal value; thus is indicates a systematic error component. The variance mea-
sures how strongly the learning results D̂(x) vary around their expected value
EX,Y [D̂(x)]; this is an indication of how strongly the particular training data sets
induce variations on the learning result.

When the model flexibility is too low (underfitting), the bias term dominates
the expected modeling error; when the flexibility is too high (overfitting), the
variance term is the main source of mismatch. This is why the underfitting versus
overfitting challenge is also called the bias-variance tradeoff (or dilemma).

8 A first view of neural networks: the Multilayer

Perceptron

Artificial neural networks (ANNs) are employed in two major scientific domains:

• In computational neuroscience, ANNs are investigated as mathematical ab-
stractions and computer simulation models of biological neural systems.
These models aim at biological plausibility and serve as a research vehicle
to better understand information processing in real brains.

• In machine learning, ANNs are used for creating complex information pro-
cessing architectures whose function can be shaped by training from training
sample data. The goal here is to solve complex learning tasks in a data en-
gineering spirit, aiming at models that combine good generalization with
highly nonlinear data transformations.

Historically, these two branches of ANN research had been united. The com-
mon ancestor of all ANNs, the perceptron of Rosenblatt (1958), was a computa-
tional model of optical character recognition (as we would say today) which was
explicitly inspired by design motifs imported from the human visual system (check
out Wikipedia on “perceptron”). In the decades since the two branches diverged
further and further from each other, despite repeated and persistent attempts to
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re-unite them. Today most ANN research in machine learning has lost all con-
nections to biological origins. In this course we only consider ANNs in machine
learning.

Even if we only look at machine learning, ANNs come in many kinds and
variations. The common denominator for most (but not all) ANNs in ML can be
summarized as follows.

• An ANN is composed of a (large) number of interconnected processing units.
These processing units are called “neurons” or just “units”. Each such unit
typically can perform only a very limited computational operation, for in-
stance applying a fixed nonlinear function to the sum of its inputs.

• The units of an ANN are connected to each other by links called “synaptic
connections” (an echo of the historical past) or just “connections” or “links”.

• Each of the links is weighted with a parameter called “synaptic weight”,
“connection weight”, or just “weight” of the link. Thus, in total an ANN
can be represented as an edge-labelled graph whose nodes are the neurons
and whose vertices are the links, labelled with their weights. The structure of
an ANN with M units can thus be represented by its M×M sized connection
weight matrix W , where the entry W (i, j) = wij is the weight on the link
leading from unit j to unit i. When wij = 0, then unit j has no connection
to unit i. The nonzero elements in W therefore determine the network’s
connection topology.

• At any given moment while an ANN is performing a computation, the units
each have a real-valued activation. In an ANN with M units, all of these
activations together are combined into an state vector x ∈ RM .

• The state vector is computed or updated according to a state update function
f , which (re-)computes the network state x(t) at computation timestep t
based on external input u(t) and/or its previous state x(t − 1). The state
update depends on the connection weights, so we may write x(t + 1) =
f(x(t), u(t), W ).

• The state update function is almost always local : the activation xi(t + 1)
of unit i depends only on the activations xj(t) of units j that “feed into” i,
that is where wij 6= 0.

• The global algorithmical functionality of an ANN results from the combined
local interactions between interconnected units. Very complex functionalities
may thus arise from the structured local interaction between large numbers
of simple processing units. This is, in a way, analog to Boolean circuits –
and indeed some ANNs can be mapped on Boolean circuits.
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• The global functionality of an ANN is determined by the connection weights
W . Absolutely drastic changes in functionality can be achieved by changing
the nonzero weights in W . For instance, an ANN with a given topology (that
is, fixed zeros in W ) can serve as a recognizer of handwritten digits with some
Wα, and can serve as a recognizer of facial expressions with another Wβ!

• The hallmark of ANNs is that the global functionality is learnt from training
data. In typical learning procedures, the weight matrix W is iteratively
changed, starting from a random initial W0. In a sequence of learning steps,
W0 is incrementally adjusted with small changes in each step, leading to a
sequence of weights W1, W2, . . ., up to some learning time point T when WT

is taken to be good enough.

This basic scenario allows for an immense spectrum of different ANNs, which
can be set up for tasks as diverse as dimension reduction and data compression,
approximate solving of NP-hard optimization problems, time series prediction,
nonlinear control, game playing, dynamical pattern generation and many more.

In this course I give an introduction to a particular kind of ANNs called feed-
foward neural networks, or often also – for historical reasons – multilayer percep-
trons (MLPs).

MLPs are used for the supervised learning of vectorial input-output tasks. In
such tasks the training sample is of the kind (ui, yi)i=1,...,N , where u ∈ Rn, y ∈ Rk,
drawn from a joint distribution PU,Y . (Note that here the notation departs from
the one used in earlier sections: I now use u instead of x to denote input patterns, in
order to avoid confusion with the network states x.) The MLP is trained to produce
outputs y ∈ Rk upon inputs u ∈ Rn in a way that this input-output mapping is
similar to the relationships ui 7→ yi found in the training data. Similarity is
measured by a suitable loss function.

Tasks of this kind – which we have already studied in previous sections – are
generally called function approximation tasks or regression tasks. It is fair to say
that MLPs and their variations are the most widely used workhorse tool in machine
learning when it comes to learning nonlinear function approximation models.

An MLP is a neural network structured equipped with n input units and k
output units. An n-dimensional input pattern u can be sent to the input units,
then the MLP does some interesting internal processing, at the end of which the
k-dimensional result vector of the computation can be read from the k output
units. An MLP N with n input units and k output units thus instantiates a
function N : Rn → Rk. Since this function is shaped by the synaptic connection
weights W , one could also write NW : Rn → Rk if one wishes to emphasize the
dependance of N ’s functionality on its weights.

The learning task is defined by a loss function L : Rk×Rk → R≥0. As we have
seen before, a common choice for L is the quadratic loss L(N (u), y) = ‖N (u)−y‖2,
but other loss functions can also be used. Given the loss function, the goal of
training an MLP is to find a weight matrix Wopt which minimizes the empirical
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loss, that is

Wopt = argmin
W

N∑
i=1

L(NW (ui), yi). (45)

“Function approximation” sounds dire and technical, but many kinds of learn-
ing problems can be framed as function approximation learning. Here are some
examples:

Pattern recognition: inputs u are vectorized representations of any kind of “pat-
terns”, for example images, soundfiles, stock market time series. Outputs y
are indicator vectors of the classes that are to be recognized.

Time series prediction: inputs are vector encodings of a past history of a temporal
process, outputs are vector encodings of future observations of the process.

Denoising, restoration and pattern completion: inputs are patterns that are cor-
rupted by noise or other distortions, outputs are cleaned-up or repaired or
completed versions of the same patterns.

Data compression: Inputs are high-dimensional patterns, outputs are low-dimensional
encodings which can be restored to the original patterns using a decoding
MLP. The encoding and decoding MLPs are trained together.

Process control: In control tasks the objective is to send control inputs to a tech-
nological system (called “plant” in control engineering) such that the system
performs in a desired way. The algorithm which computes the control inputs
is called a “controller”. Control tasks range in difficulty from almost trivial
(like controlling a heater valve such that the room temperature is steered to
a desired value) to almost impossible (like operating hundreds of valves and
heaters and coolers and whatnots in a chemical factory such that the chemi-
cal production process is regulated to optimal quality and yield). The MLP
instantiates the controller. Its inputs are settings for the desired plant be-
havior, plus optionally observation data from the current plant performance.
The outputs are the control inputs which are sent to the plant.

This list should convince you that “function approximation” is a worthwhile
topic indeed, and spending effort on learning how to properly handle MLPs is a
good personal investment for any engineer or data analyst.

8.1 MLP structure

Figure 25 gives a schematic of the architecture of an MLP. It consists of several
layers of units. Layers are numbered 0, . . . , K, where layer 0 is comprised of the
input units and layer K of the output units. The number of units in layer m is
Lm. The units of two successive layers are connected in an all-to-all fashion by
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synaptic links (arrows in Figure 25). The link from unit j in layer m− 1 to unit
i in layer m has a weight wm

ij ∈ R. The layer 0 is the input layer and the layer
K is the output layer. The intermediate layers are called hidden layers. When an
MLP is used for a computation, the i-th unit in layer m will have an activation
xm

i ∈ R.

input 
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neurons 

last hidden 
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   1             x1
0                    x2
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!!. . .         . . .   . . . 

K K K 

K K K 

Figure 25: Schema of an MLP with K − 1 hidden layers of neurons.

From a mathematical perspective, an MLP N implements a function N :
RL0 → RLK . Using the MLP and its layered structure, this function N (u) of an
argument u ∈ RL0 is computed by a sequence of transformations as follows:

1. The activations x0
j of the input layer are set to the component values of the

L0-dimensional input vector u.

2. For m < K, assume that the activations xm−1
j of units in layer m − 1 have

already been computed (or have been externally set to the input values, in
the case of m−1 = 0). Then the activation xm

i is computed from the formula

xm
i = σ

(
Lm−1∑
j=1

wm
ij xm−1

j + wm
i0

)
. (46)
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That is, xm
i is obtained from linearly combining the activations of the lower

layer with combination weights wm
ij , then adding the bias wm

i0 ∈ R, then
wrapping the obtained sum with the activation function σ. The activation
function is a nonlinear, “S-shaped” function which I explain in more detail
below. It is customary to interpret the bias wm

i0 as the weight of a synaptic
link from a special bias unit in layer m − 1 which always has a constant
activation of 1 (as shown in Figure 25).

Equation 46 can be more conveniently written in matrix form. Let xm =
(xm

1 , . . . , xm
Lm)′ be the activation vector in layer m, let wm = (wm

10, . . . , w
m
Lm0)

′

be the vector of bias weights, and let Wm = (wm
ij )i=1,...,Lm; j=1,...,Lm−1 be the

connection weight matrix for links between layers m− 1 and m. Then (46)
becomes

xm = σ
(
Wm xm−1 + wm

)
, (47)

where the activation function σ is applied component-wise to the activation
vector.

3. The LK-dimensional activation vector y of the output layer m = K are
computed from the activations of the pre-output layer m = K − 1 by

y = xK = WK xK−1 + wK , (48)

that is, in the same way as it was done in the other layers except that no
activation function is applied. The output activation vector y is the result
y = N (u).

The activation function σ is traditionally either the hyperbolic tangent (tanh)
function or the logistic sigmoid given by σ(a) = 1/(1 + exp(−a)). Figure 26 gives
plots of these two S-shaped functions. Functions of such shape are often called
sigmoids. There are two grand reasons for applying sigmoids:

• Historically, neural networks were conceived as abstractions of biological
neural systems. The electrical activation of a biological neuron is bounded.
Applying the tanh bounds the activations of MLP “neurons” to the interval
[−1, 1] and the logistic sigmoid to [0, 1]. This can be regarded as an abstract
model of a biological property.

• Sigmoids introduce nonlinearity into the function fMLP. Without these sig-
moids, fMLP would boil down to a cascade of affine linear transformations,
hence in total would be merely an affine linear function. No nonlinear func-
tion could be learnt by such a linear MLP.

In the area of “deep learning” a drastically simplified “sigmoid” is often used,
the rectifier function defined by r(a) = 0 for a < 0 and r(a) = a for a ≥ 0. The
rectifier has a little less pleasing mathematical properties compared to the classical
sigmoids but can be computed much more cheaply. This is of great value in deep
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learning scenarios where the neural networks and the training samples both are
often very large and the training process requires very many evaluations of the
sigmoid.

3 2 1 0 1 2 3
1

0.5

0

0.5

1

Figure 26: The tanh (blue), the logistic sigmoid (green), and the rectifier function
(red).

In intuitive terms, the operation of an MLP can be summarized as follows.
After an input vector u is written into the input units, a “wave of activation”
sweeps forward through the layers of the network. The activation vector xm in
each layer m is directly triggered by the activations xm−1 according to (47). The
data transformation from xm−1 to xm is a relatively “mild” one: just an affine linear
map Wm xm−1 +wm followed by a wrapping with the sigmoid σ. But when several
such “mild” transformations are applied in sequence, very complex “foldings” of
the input vector u can be effected. Also the term “feedforward neural network”
becomes clear: the activation wave spreads in a single sweep unidirectionally from
the input units to the output units.

8.2 Universal approximation and “deep” networks

One reason for the popularity of MLPs is that they can approximate arbitrary
functions f : Rn → Rk very well. Numerous results on the approximation qualities
of MLPs have been published in the early 1990-ies. Such theorems have the
following general format:

Theorem (schematic). Let F be a certain class of functions f : Rn → Rk.
Then for any f ∈ F and any ε > 0 there exists an multilayer perceptron N with
one hidden layer such that ‖f −N‖ < ε.

Such theorems differ with respect to the classes F of functions that are approx-
imated and with respect to the norms ‖ · ‖ that measure the mismatch between
two functions. All practically relevant functions belong to classes that are covered

77



by such approximation theorems. In a summary fashion it is claimed that MLPs
are universal function approximators. Again, don’t let yourself be misled by the
dryness of the word “function approximator”. Concretely the universal function
approximation property of MLPs would spell out, for example, to the (proven)
statement that any task of classifying pictures can be solved to any degree of
perfection by a suitable MLP.

The proofs for such theorems are typically constructive: for some target func-
tion f and tolerance ε they explicitly construct an MLP N such that ‖f −
N‖ < ε. However, these constructions have little practical value because the
constructed MLPs N are far too large for any practical implementation. You
can find more details concerning such approximation theorems and related results
in my ML lecture notes http://minds.jacobs-university.de/sites/default/
files/uploads/teaching/lectureNotes/LN ML Fall11.pdf, Section 8.1.

Even when the function f that one wants to train into an MLP is very complex
(highly nonlinear and with many “folds”), it can be in principle approximated with
1-hidden-layer MLPs. However, when one employs MLPs that have many hidden
layers, the required overall size of the MLP (quantified by total number of weights)
is dramatically reduced (Bengio and LeCun, 2007). Even for super-complex target
functions f (like photographic image caption generation), MLPs of feasible size
exist when enough layers are used (one of the subnetworks in the TICS system
described in Section 2.1 used 17 hidden layers). This is the basic insight and
motivation to consider deep networks, which is just another word for “many hidden
layers”. Unfortunately it is not at all easy to train deep networks. Traditional
learning algorithms had made non-deep (“shallow”) MLPs popular since the 1980-
ies. But these shallow MLPs could only cope with relatively well-behaved and
simple learning tasks. Attempts to scale up to larger numbers of hidden layers
and more complex data sets largely failed, due to numerical instabilities, too slow
convergence, or poor model quality. Since about 2006 an accumulation of clever
“tricks of the trade” plus the availability of powerful (GPU-based) yet affordable
computing hardware have overcome these hurdles. This area of training deep
neural networks is now one of the most thriving fields of ML and has become
widely known under the catch-term deep learning.

8.3 Training an MLP: general set-up

Starting from a training sample S = (ui, yi)i=1,...,N (where u ∈ Rn, y ∈ Rk), a basic
training procedure for an MLP N goes like follows.

1. Fix an MLP structure. Decide how many hidden layers the MLP shall have,
how many units each layer shall have, and what sigmoid is used. This
initial fixing of a particular architecture is nontrivial and will be largely
guided by the engineer’s experience, or just trial and error search (based on
cross-validation experimentation). The structure should be rich enough that
data overfitting becomes possible. After the architecture is set, training the
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MLP boils down to determine all the weights wm
ij in the chosen architecture.

Lumping all these weights together in a parameter vector θ, a given choice
of weights gives a particular MLP with the chosen structure which in turn
instantiates a function Nθ.

2. Fix an empirical risk function with a suitable regularizer. The task of
training an MLP from a sample S is framed as an optimization task, where
the goal is to find a function Nθ which minimizes an empirical risk function

Remp(Nθ) =
∑

i=1,...,N

L(Nθ(ui), yi) (49)

based on the chosed loss function L. A convenient choice is the quadratic
loss, equipped with the L2 norm regularizer

Remp
α (Nθ) =

1

N

∑
i=1,...,N

‖yi −Nθ(ui)‖2 + α2 ‖θ‖2. (50)

Here I used subscript α in Remp
α (Nθ) to indicate that this risk is modulated

by a regularizer weighted with α2. This risk is popular mainly because it
leads to simple computations and it often leads to good or at least very
useful models N . Experienced ML engineers often employ other functions,
but we will not further investigate this issue here.

3. Find weights θ which minimize the chosen risk function E. Abstractly
speaking, an MLP training algorithm attempts to solve the minimization
problem

θ̂c = argmin
θ

Remp
c (Nθ) (51)

at least approximately. A concrete method to solve (51) is outlined in the
next Subsections 8.4 and 8.5 — the famous backpropagation algorithm. This
algorithm is almost always used for MLP training. It is an iterative procedure
which leads to a sequence of models θ

(0)
c , θ

(1)
c , θ

(2)
c , . . . with decreasing risks

Remp(N
θ
(0)
c

) > Remp(N
θ
(1)
c

) > Remp(N
θ
(2)
c

) > . . .. One stops these iterations
when further decreases fall below some predetermined threshold, or when
one runs out of allotted processing time, or when a validation error starts
to increase (see next step 4). The last computed θ

(t)
c is returned as the final

model estimate θ̂c.

4. Use cross-validation to ensure a good bias-variance tradeoff. Be aware
that efforts for minimizing the training error Remp(Nθ) open the doors for
overfitting. Steps 1. — 3. above should be embedded in a cross-validation
scheme and iteratively be repeated until a lowest validation error is found.
Cross-validation schemes imply that models of increasing flexibility are trained
and tested. In earlier sections we met to ways how model flexibility can be
tuned:
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1. Use increasingly large MLPs (more layers or more neurons in the layers).
Fix the regularization parameter α in (50) once and for all (possibly to
α = 0, that is, no regularization).

2. Use a unchanging structure for your MLP with a size large enough to
admit overfitting, and make use of the regularization parameter α in
your risk function (50). Start with a large α, solve (51), test the model
θ̂α by computing the average loss on validation data. Increase model
flexibility by decreasing α and repeat. The validation loss should first
decrease and then increase again (compare, – again! – Figure 20). Stop
when the validation loss starts to increase again.

Another method to prevent overfitting is early stopping. In this method, the
MLP structure is again chosen to be so large that overfitting becomes easily
possible. The regularization coefficient α is frozen at some fixed value (pos-
sibly zero). The backpropagation iterations at each iteration t are combined

with tests of the models θ
(t)
α on some validation data. When the valida-

tion error starts to grow, the backpropagation optimization iterations are
stopped and the current model is taken as the final model. Early stopping
is the method of choice in deep learning scenarios, because here a single run
of step 3 is typically very expensive and one cannot afford repetitions of it.

8.4 Model optimization by gradient descent: general prin-
ciple

We are faced with a training sample S, parametrized models Nθ, and an empirical
risk function Remp(Nθ) that we wish to minimize. There is a standard strategy to
tackle the minimization problem (51), namely, iterative optimization by gradient
descent. This strategy can always be tried when the risk function is differentiable
with respect to parameters θ. All error functions that one uses for MLPs have this
property. (Except if one uses the rectifier sigmoid; it may lead to non-differentiable
situations when the argument of this sigmoid is exactly zero – but this situation
occurs with probability close to zero, and if it occurs nonetheless, one can use
an arbitrary value for the undefined derivative. Since these situations occur so
extremely rarely, the impact of that arbitrary value on the overall optimization
search is negligible.)

The general scheme of a gradient-descent optimization goes like this:

1. Fix an initial model θ(0). This needs an educated guess. A widely used strat-
egy is to set all parameters w

(0)
i ∈ θ(0) to small random values. Remark: For

training deep neural networks this is not good enough — the deep learning
field actually got kickstarted by a clever method for finding a good initial
model (Hinton and Salakuthdinov, 2006).
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For convenience of notation we group all parameters w
(0)
i ∈ θ(0) in a vector of

size L = |θ| and identify θ(0) with this vector, i.e. we represent the parameters

as θ(0) = (w
(0)
1 , . . . , w

(0)
L )′.

2. For each wi ∈ θ, compute the partial derivative of the risk function with
respect to wi at the position θ(0):

∂Remp(Nθ(0))

∂wi

(52)

and assemble all of these partials into a row vector

∇Remp(Nθ(0)) =

(
∂Remp(Nθ(0))

∂w1

, . . . ,
∂Remp(Nθ(0))

∂wL

)
.

This vector is called the gradient of the risk Remp(Nθ(0)) at the point θ(0).
The gradient can be understood as a direction vector in parameter space
Θ. It marks the direction of steepest increase of Remp(Nθ(0)) at the point
θ(0) ∈ Θ.

3. Update θ(0) by moving a little bit in the direction of steepest decrease of the
error:

θ(1) = θ(0) − λ(1) ∇Remp(Nθ(0)). (53)

The control parameter λ(1) > 0 is called stepsize or learning rate or adapta-
tion rate.

4. Iterate steps 2. and 3. This gives a sequence of model estimates θ(n) =
θ(n−1) − λ(n) ∇Remp(Nθ(n−1)). Each θ(n) should give a slightly smaller risk
than θ(n−1) because the gradient at each step was designed to show just
exactly the parameter change direction that reduces the risk most strongly.

5. Stop the iterations when some predetermined termination criterion is met.
For instance, one may stop when the gradient vector has shrunken close
to the zero vector, that is when ‖∇Remp(Nθ(n−1))‖ falls below some small,
predetermined threshold. Or one may invoke an early stopping method —
then in each iteration n, the current model θ(n) is tested on some validation
dataset and one stops when the validation error starts to grow.

Fixing appropriate stepsizes λ(n) is a delicate affair. If set too small, there is
little progress in each iteration and the overall optimization process is slowed down.
If too big, the adaptation process becomes instable (the risk function then may
jump upwards instead of decreasing steadily). Novel, clever methods for online
adjustment of stepsize have been one of the enabling factors for deep learning. For
shallow MLPs typical stepsizes that can be fixed without much thinking are in the
order from 0.001 to 0.01.
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Figure 27: Gradient descent visualized as “ball rolling down the slope” in an error
landscape. For explanation see text.

The risk function Remp(Nθ) can be seen as a performance landscape (also called
error landscape because often the risk is a mean square error value) over the
parameter space Θ when Remp(Nθ) is thought of as an “elevation” over points
θ. Figure 27 visualizes a schematic error landscape over a 2-parameter space
Θ = {w1, w2}.

In a physical metaphor, gradient descent can be understood as a “ball rolling
down the slope of the error landscape until it is trapped in a trough”. The negative
gradient is the direction of steepest descent. The train of black dots in Figure 27
marks a sequence of models θ(0), θ(1), . . . that would be computed by the gradient
descent procedure. It is obvious from this visualization that the final model θ(n)

will be located at the bottom of the trough that is adjacent to the guessed starting
position θ(0). If the first guess would be different (blue dots in the figure), the
iterations might move to another, and possibly better (that is, lower) trough.
Gradient descent methods can only find local minima of the risk function!

It is clear that the quality of the final estimate θ(n) crucially depends on the
initial guess θ(0). In principle, one could attempt to find the global optimum by
exhaustive grid search: compute the gradient descent solution from all initial θ(0)

that grid-cover all of Θ. This is infeasible for any realistic-sized Θ. In today’s deep
learning, the strategy to take the sting out of the local optima problem is to use
very large networks (which allow overfitting) together with clever regularization
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methods (which prevent overfitting). Then from almost every halfway reasonable
initialization θ(0) the gradient descent could be continued into an overfitting mode
if not early-stopped. In deep learning the challenge is not to get stuck in a local
optimum with a too high value of the empirical risk, but to ensure good model
generalization properties at the empirical risk that one decides to (early) stop at.

8.5 The backpropagation algorithm

Let us take a closer look at the empirical risk (49). Its gradient can be written as
a sum

∇Remp(Nθ) = ∇

(
1

N

∑
i=1,...,N

L(Nθ(ui), yi)

)
=

1

N

∑
i=1,...,N

∇L(Nθ(ui), yi),

and this is also how it is actually computed: for each training data example
(ui, yi), the gradient ∇L(Nθ(ui), yi) is evaluated and the obtained N gradients are
averaged.

This means that at every gradient descent iteration θ(n) → θ(n+1), all training
data points have to be visited individually. In MLP parlance, such a sweep through
all data points is called an epoch. In the neural network literature one finds
statements like “the training was done for 120 epochs”, which means that 120
average gradients were computed, and for each of these computations, N gradients
for individual training example points (ui, yi) were computed.

When training samples are large — as they should be — one epoch can clearly
be (too) expensive. Therefore one often takes resort to “minibatch” training,
where for each gradient descent iteration only a subset of the total sample S is
used.

The backpropagation algorithm — or “backprop” for short — or even just
“BP” for even shorter — is a subroutine in the gradient descent game. It is a par-
ticular algorithmic scheme for calculating the gradient ∇L(Nθ(ui), yi) for a single
data point (ui, yi). You know from calculus courses that computing derivatives of
a function is a mechanical thing where certain derivation rules have to be applied
in a natural sequence. However, when one computes a gradient ∇L(Nθ(ui), yi) for
an MLP in this mechanically straightforward fashion, one earns a cost of O(L2).
When the number L of network weights is large (a few hundreds for small MLPs
used for simple tasks, and easily half a million for deep networks applied to serious
real-life modeling problems), this cost O(L2) is too high for practical exploits. The
backprop algorithm is a clever scheme for computing and storing certain auxiliary
quantities which cuts down the cost from O(L2) to O(L).

Here is how backprop works.

1. Given: an MLP Nθ with parameters (that is, weights) θ which have either
been randomly fixed (at the beginning of training, before the first epoch) or
which are the result from the previous epoch.
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2. Wanted: the gradient ∇L(Nθ(u), y), where (u, y) is one of the training data
pairs. Notice that when a training example (u, y) is fixed, L(Nθ(u), y) can
be regarded as a function from parameter space RL to the nonnegative reals
(as in Figure 27). That is, for every network weight wm

ij (including the bias
weights wm

i0 , see Equation 46) we wish to calculate

∂L(Nθ(u), y)

∂wm
ij

. (54)

This is what the BP algorithm does.

3. BP works in two stages. In the first stage, called the forward pass, the
network Nθ is presented with the input u and the output ŷ = Nθ(u) is
computed using the “forward” formulas (47) and (48). During this forward
pass, for each unit xm

i which is not a bias unit and not an input unit (that
is, m ≥ 1 and i 6= 0) the quantity

am
i =

∑
j=0,...,Lm−1

wm
ij xm−1

j (55)

is computed – this is sometimes referred to as the potential of unit xm
i , that

is its internal state before it is passed through the sigmoid.

4. A little math in between. Applying the chain rule of calculus we have

∂L(Nθ(u), y)

∂wm
ij

=
∂L(Nθ(u), y)

∂am
i

∂am
i

∂wm
ij

. (56)

Define

δm
i =

∂L(Nθ(u), y)

∂am
i

. (57)

Using (55) we find
∂am

i

∂wm
ij

= xm−1
j . (58)

Combining (57) with (58) we get

∂L(Nθ(u), y)

∂wm
ij

= δm
i xm−1

j . (59)

Thus, in order to calculate the desired derivatives (54), we only need to
compute the values of δm

i for each hidden and output unit.

5. Computing the δ’s for output units. For output units xK
i we did not use a

sigmoid, see (48). The potentials aK
i are thus identical to the output values

ŷi and we obtain

δK
i =

L(Nθ(u), y)

∂yi

. (60)
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This quantity is thus just the partial derivative of the loss with respect to
the i-th output, which is usually simple to compute. For the quadratic loss
L(Nθ(u), y) = ‖Nθ(u)− y‖2, for instance, we get

δK
i =

∂‖Nθ(u)− y‖2

∂yi

=
∂‖ŷ − y‖2

∂yi

=
∂(ŷi − yi)

2

∂yi

= 2 (yi − ŷi). (61)

6. Computing the δ’s for hidden units. In order to compute δm
i for 1 ≤ m < K

we again make use of the chain rule. We find

δm
i =

∂L(Nθ(u), y)

∂am
i

=
∑

l=1,...,Lm+1

∂L(Nθ(u), y)

∂am+1
l

∂am+1
l

∂am
i

, (62)

which is justified by the fact that the only path by which am
i can affect

L(Nθ(u), y) is through the potentials am+1
l of the next higher layer. If we

substitute (57) into (62) and observe (55) we get

δm
i =

∑
l=1,...,Lm+1

δm+1
l

∂am+1
l

∂am
i

=
∑

l=1,...,Lm+1

δm+1
l

∂
∑

j=0,...,Lm wm+1
lj σ(am

j )

∂am
i

=
∑

l=1,...,Lm+1

δm+1
l

∂ wm+1
li σ(am

i )

∂am
i

= σ′(am
i )

∑
l=1,...,Lm+1

δm+1
l wm+1

li . (63)

This formula describes how the δm
i in a hidden layer can be computed by

“back-propagating” the δm+1
l from the next higher layer. The formula can

be used to compute all δ’s, starting from the output layer (where (60) is
used or, in the case of a quadratic loss, Equation 61), and then working
backwards through the network in the backward pass of the algorithm.

When the logistic sigmoid σ(a) = 1/(1 + exp(−a) is used, the computation
of the derivative σ′(am

i ) takes a particularly simple form, observing that for
this sigmoid σ′(a) = σ(a) (1− σ(a)), which leads to

σ′(am
i ) = xm

i (1− xm
i ).

Although simple in principle, and readily implemented, using the backprop
algorithm appropriately is something of an art. Here is only place to hint at some
difficulties:
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• The stepsize λ in (53) must be chosen sufficiently small in order to avoid
instabilities. But it also should be set as large as possible to speed up the
convergence. It is however not possible to provide an analytical treatment
of how to set the stepsize optimally. Generally one uses larger stepsizes in
early epochs.

• Gradient descent on nonlinear performance landscapes may sometimes be
very slow in areas where the gradient is small in some directions.

• Gradient-descent techniques on performance landscapes can only find a local
minimum of the risk function. This problem can be addressed by various
measures, all of which are computationally expensive. Some authors claim
that the local minimum problem is overrated.

• Finally, finding a network structure (number of units, number of layers) that
is appropriate for a given task is not trivial. A decent amount of experimen-
tation and cross-validation exploration may be needed.

The backpropagation “trick” to speed up gradient calculations in layered sys-
tems has been independently discovered several times and in a diversity of con-
texts, not only in neural network or machine learning research. Schmidhuber
(2015), Section 5.5, provides a historical overview. In its specific versions for neu-
ral networks, backpropagation apparently was first described by Paul Werbos in
his 1974 PhD thesis, but remained unappreciated until it was re-described in a
widely read collection volume on neural networks (Rumelhart et al., 1986). From
that point onwards, backpropagation in MLPs developed into what today is likely
the most widely used model in machine learning.

A truly beautiful visualization of MLP training has been pointed out to me by
Rubin Dellialisi: playground.tensorflow.org/.

Simple gradient descent, as described above, is cheaply computed but may take
long to converge. A number of refined “second order” gradient descent methods
have been developed which need fewer epochs to converge, but where each epoch
takes longer to compute. The main alternatives are nicely sketched and compared
at https://www.neuraldesigner.com/blog/5 algorithms to train a neural

network (retrieved May 2017, local copy at http://minds.jacobs-university.
de/sites/default/files/uploads/teaching/share/NNalgs.zip).

Appendix

A Joint, conditional and marginal probabilities

Note. This little section is only a quick memory refresher of some of the most
basic concepts of probability. It does not replace a textbook chapter!
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We first consider the case of two observations of some part of reality that have
discrete values. For instance, an online shop creating customer profiles may record
from their customers their age and gender (among very many other items). The
marketing optimizers of that shop are not interested in the exact age but only in
age brackets, say a1 = at most 10 years old, a2 = 11 − 20 years, a3 = 21 − 30
years, a4 = older than 30. Gender is roughly categorized into the possibilities
g1 = f, g2 = m, g3 = o. From their customer data the marketing guys estimate the
following probability table:

P (X = gi, Y = aj) a1 a2 a3 a4

g1 0.005 0.3 0.2 0.04
g2 0.005 0.15 0.15 0.04
g3 0.0 0.05 0.05 0.01

(64)

The cell (i, j) in this 3× 4 table contains the probability that a customer with
gender gi falls into the age bracket aj. This is the joint probability of the two
observation values gi and aj. Notice that all the numbers in the table sum to 1.

The mathematical tool to formally describe a category of an observable value is
a random variable (RV). We typically use symbols X, Y, Z, . . . for RVs in abstract
mathematical formulas. When we deal with concrete applications, we may also use
“telling names” for RVs. For instance, in Table (64), instead of P (X = gi, Y =
aj) we could have written P (Gender = gi, Age = aj). Here we have two such
observation categories: gender and age bracket, and hence we use two RVs X
and Y for gender and age, respectively. In order to specify, for example, that
female customers in the age bracket 11-20 occur with a probability of 0.3 in the
shop’s customer reservoir (the second entry in the top line of the table), we write
P (X = g1, Y = a2) = 0.3.

Some more info bits of concepts and terminology connected with RVs. You
should consider a RV as the mathematical counterpart of a procedure or apparatus
to make observations or measurements. For instance, the real-world counterpart of
the Gender RV could be an electronic questionnaire posted by the online shop, or
more precisely, the “what is your age?” box on that questionnaire, plus the whole
internet infrastructure needed to send the information entered by the customer
back to the company’s webserver. Or in a very different example (measuring
the speed of a car and showing it to the driver on the speedometer) the real-
world counterpart of a RV Speed would be the total on-board circuitry in a car,
comprising the wheel rotation sensor, the processing DSP microchip, and the
display at the dashboard.

A RV always comes with a set of possible outcomes. This set is called the
sample space of the RV, and I usually denote it with the symbol S. Mathematically,
a sample space is a set. The sample space for the Gender RV would be the set
S = {m, f, o}. The sample space for Age that we used in the table above was S =
{{0, 1, . . . , 10}, {11, . . . , 20}, {21, . . . , 30}, {31, 32, . . .}}. For car speed measuring
we might opt for S = R≥0, the set of non-negative reals. A sample space can be
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larger than the set of measurement values that are realistically possible, but it
must contain at least all the possible values.

Back to our table and the information it contains. If we are interested only in
the age distribution of customers, ignoring the gender aspects, we sum the entries
in each age column and get the marginal probabilities of the RV Y . Formally, we
compute

P (Y = aj) =
∑

i=1,2,3

P (X = gi, Y = aj).

Similarly, we get the marginal distribution of the gender variable by summing
along the rows. The two resulting marginal distributions are indicated in the table
(65).

a1 a2 a3 a4

g1 0.005 0.3 0.2 0.04 0.545
g2 0.005 0.15 0.15 0.04 0.345
g3 0.0 0.05 0.05 0.01 0.110

0.01 0.5 0.4 0.09

(65)

Notice that the marginal probabilities of age 0.01, 0.5, 0.4, 0.09 sum to 1, as do
the gender marginal probabilities.

Finally, the conditional probability P (X = gi |Y = aj) that a customer has
gender gi given that the age bracket is aj is computed through dividing the joint
probabilities in column j by the sum of all values in this column:

P (X = gi |Y = aj) =
P (X = gi, Y = aj)

P (Y = aj)
. (66)

There are two equivalent versions of this formula:

P (X = gi, Y = aj) = P (X = gi |Y = aj)P (Y = aj) (67)

and

P (Y = aj) =
P (X = gi, Y = aj)

P (X = gi |Y = aj)
, (68)

demonstrating that each of the three quantities (joint, conditional, marginal
probability) can be expressed by the respective two others. If you memorize one
of these formulas – I recommend the second one – you have memorized the very
key to master “probability arithmetics” and will never get lost when manipulating
probability formulas.

Joint, conditional, and marginal probabilities are also defined when there are
more than two categories of observations. For instance, the online shop marketing
people also record how much a customer spends on average, and formalize this by
a third random variable, say Z. The values that Z can take are spending brackets,
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say s1 = less than 5 Euros to s20 = more than 5000 Euros. The joint probability
values P (X = gi, Y = aj, Z = sk) would be arranged in a 3-dimensional array
sized 3× 4× 20, and again all values in this array together sum to 1. Now there
are different arrangements for conditional and marginal probabilities, for instance
P (Z = sk |X = gi, Y = aj) is the probability that among the group of customers
with gender gi and age aj, a person spends an amount in the range sk. Or P (Z =
sk, Y = aj |X = gi) is the probability that in the gender group gi a person is aged
aj and spends sk. As a last example, the probabilities P (X = gi, Z = sj) are the
marginal probabilities obtained by summing away the Y variable:

P (X = gi, Z = sj) =
∑

k=1,2,3,4

P (X = gi, Y = ak, Z = sj) (69)

So far I have described cases where all kinds of observations were discrete, that
is, they (i.e. all RVs) yield values from a finite set – for instance the three gender
values or the four age brackets. Equally often one faces continuous random values
which arise from observations that yield real numbers – for instance, measuring
the body height or the weight of a person. Since each such RV can give infinitely
many different observation outcomes, their probabilities cannot be represented in
a table or array. Instead, one uses probability density functions (pdf’s) to write
down and compute probability values.

Let’s start with a single RV, say H = Body Height. Since body heights are
non-negative and, say, never larger than 3 m, the distribution of body heights
within some reference population can be represented by a pdf f : [0, 3] → R≥0

which maps the interval [0, 3] of possible values to the nonnegative reals (Figure
28). We will be using subscripts to make it clear which RV a pdf refers to, so the
pdf describing the distribution of body height will be written fH .

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

H (body height)

pd
f

Figure 28: A hypothetical distribution of human body sizes in some reference
population, represented by a pdf.

A pdf for the distribution of a continuous RV X can be used to calculate the
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probability that this RV takes values within a particular interval, by integrating
the pdf over that interval. For instance, the probability that a measurement of
body height comes out between 1.5 and 2.0 meters is obtained by

P (H ∈ [1.5, 2.0]) =

∫ 2.0

1.5

fH(x)dx, (70)

see the shaded area in Figure 28. Some comments:

• A probability density function is actually defined to be a function which
allows one to compute probabilities of value intervals as in Equation 70. For
a given continuous RV X over the reals there is exactly one function fX

which has this property, the pdf for X. (This is not quite true. There exist
also continuous-valued RVs whose distribution is so complex that it cannot
be captured by a pdf, but we will not meet with such phenomena in this
lecture. Furthermore, a given pdf can be altered on isolated points – which
come from what is called a null set in probability theory – and still be a pdf
for the same distribution. But again, we will not be concerned with such
subtelties in this lecture.)

• As a consequence, any pdf f : R → R≥0 has the property that it integrates
to 1, that is,

∫∞
−∞ f(x)dx = 1.

• Be aware that the values f(x) of a pdf are not probabilities! Pdf’s turn into
probabilities only through integration over intervals.

• Values f(x) can be greater than 1 (as in Figure 28), again indicating that
they cannot be taken as probabilities.

Joint distributions of two continuous RVs X, Y can be captured by a pdf fX,Y :
R2 → R≥0. Figure 29 shows an example. Again, the pdf fX,Y of a bivariate
continuous distribution must integrate to 1 and be non-negative; and conversely,
every such function is the pdf of a continuous distribution of two RV’s.

Continuing on this track, the joint distribution of k continuous-valued RVs
X1, . . . , Xk, where the possible values of each Xi are bounded to lie between ai

and bi can be described by a unique pdf function fX1,...,Xk
: Rk → R≥0 which

integrates to 1, i.e. ∫ b1

a1

. . .

∫ bk

ak

f(x1, . . . , xk) dxk . . . dx1,

where also the cases ai = −∞ and bi = ∞ are possible. A more compact notation
for the same integral is ∫

D

f(x) dx,
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Figure 29: An exemplary joint distribution of two continuous-valued RVs X, Y ,
represented by its pdf.

where D denotes the k-dimensional “box” [a1, b1]× . . .× [ak, bk] and x denotes vec-
tors in Rk. Mathematicians speak of k-dimensional intervals instead of “boxes”.
The set of points S = {x ∈ Rk | fX1,...,Xk

> 0} is called the support of the distri-
bution. Obviously S ⊆ D.

In analogy to the 1-dim case from Figure 28, probabilities are obtained from
a k-dimensional pdf fX1,...,Xk

by integrating over sub-intervals. For such a k-
dimensional subinterval [r1, s1] × . . . × [rk, sk] ⊆ [a1, b1] × . . . × [ak, bk], we get its
probability by

P (X1 ∈ [r1, s1], . . . , Xk ∈ [rk, sk]) =

∫ s1

r1

. . .

∫ sk

rk

f(x1, . . . , xk) dxk . . . dx1. (71)

In essentially the same way as we did for discrete distributions, the pdf’s of
marginal distributions are obtained by integrating away the RV’s that one wishes
to expel. In analogy to (69), for instance, one would get

fX1,X3(x1, x3) =

∫ b2

a2

fX1,X2,X3(x1, x2, x3) dx2. (72)

And finally, pdf’s of conditional distributions are obtained through dividing
joint pdfs by marginal pdfs. Such conditional pdfs are used to calculate that some
RVs fall into a certain multidimensional interval given that some other RVs take
specific values. We only inspect a simple case analog to (66) where we want to
calculate the probability that X falls into a range [a, b] given that Y is known to
be c, that is, we want to evaluate the probability P (X ∈ [a, b] |Y = c), using pdfs.
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We can obtain this probability from the joint pdf fX,Y and the marginal pdf fY

by

P (X ∈ [a, b] |Y = c) =

∫ b

a
fX,Y (x, c) dx

fY (c)
. (73)

The r.h.s. expression
∫ b

a
fX,Y (x, c) dx / fY (c) is a function of x, parametrized

by c. This function is a pdf, denoted by fX |Y =c, and defined by

fX |Y =c(x) =

∫ b

a
fX,Y (x, c) dx

fY (c)
. (74)

Let me illustrate this with a concrete example. An electronics engineer is test-
ing a device which transforms voltages V into currents I. In order to empirically
measure the behavior of this device (an electronics engineer would say, in order
to “characterize” the device), the engineer carries out a sequence of measurement
trials where he first sets the input voltage V to a specific value, say V = 0.0. Then
he (or she) measures the resulting current many times, in order to get an idea of
the stochastic spread of the current. In mathematical terms, the engineer wants to
get an idea of the pdf fI |V =0.0. The engineer then carries on, setting the voltage
to other values c1, c2, ..., measuring resulting currents in each case, and getting
ideas of the conditional pdfs fI |V =ci

. For understanding the characteristics of this
device, the engineer needs to know all of these pdfs.

More generally speaking, conditional distributions inform a scientist about
cause-effect relationships. The conditioning variables are causes, the conditioned
variables describe effects. In experimental and empirical research, the causes are
under the control of an experimenter and can (and have to) be set to specific values
in order to assess the statistics of the effects – which are not under the control of
the experimenter.

In this appendix (and in the lecture) I present only two ways of representing
probability distributions: discrete ones by finite probability tables or probabil-
ity tables; continuous ones by pdfs. These are the most elementary formats of
representing probability distributions. There are many others which ML experts
readily command on. This large and varied universe of concrete representations
of probability distributions is tied together by an abstract mathematical theory
of the probability distributions themselves, independent of particular representa-
tions. This theory is called probability theory. It is not an easy theory and we
don’t attempt an introduction to it. If you are mathematically minded, then you
can get (among other things) an introduction to probability theory in the graduate
lecture “Principles of Statistical Modeling” – you can register for this course as a
3rd year specialization course. At this point I only highlight two core facts from
probability theory:

• A main object of study in probability theory are distributions. They are
abstractly and axiomatically defined and analyzed, without reference to par-
ticular representations (such as tables or pdfs).
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• A probability distribution always comes together with random variables. We
write PX for the distribution of a RV X, PX,Y for the joint distribution of
two RVs X, Y , and PX |Y for the conditional distribution (a very difficult
concept since it is actually a family of distributions) of X given Y .

B The argmax operator

Let ϕ : D → R be some function from some domain D to the reals. Then

argmax
a

ϕ(a)

is that d ∈ D for which ϕ(d) is maximal among all values of ϕ on D. If there are
several arguments a for which ϕ gives the same maximal value, – that is, ϕ does
not have a unique maximum –, or if ϕ has no maximum at all, then the argmax
is undefined.

For example, in the expression argmax
j

P (Y = cj) fj(x) (see Equation (6))

the domain D is the set of classes D = {1, . . . , k} and the function ϕ takes its
arguments i to the real numbers P (Y = cj) fj(x).

C Derivation of Equation 14

1/N
∑

i

‖xi − d ◦ f(xi)‖2 =

= 1/N
∑

i

‖x̄i −
m∑

k=1

(x̄′i uk) uk‖2

= 1/N
∑

i

‖
n∑

k=1

(x̄′i uk) uk −
m∑

k=1

(x̄′i uk) uk‖2

= 1/N
∑

i

‖
n∑

k=m+1

(x̄′i uk) uk‖2

= 1/N
∑

i

n∑
k=m+1

(x̄′i uk)
2 =

n∑
k=m+1

1/N
∑

i

(x̄′i uk)
2

=
n∑

k=m+1

σ2
k.
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D Expectation, variance, covariance, and corre-

lation of numerical random variables

Recall that a random variable is the mathematical model of an observation /
measurement / recording procedure by which one can “sample” observations from
that piece of reality that one wishes to model. We usually denote RVs by capital
roman letters like X, Y or the like. For example, a data engineer of an internet
shop who wants to get a statistical model of its (potential) customers might record
the gender and age and spending of shop visitors – this would be formally captured
by three random variables G, A, S. A random variable always comes together with
a data value space. This is the set of values that might be delivered by the random
variable. For instance, the data value space of the gender RV G could be cast as
{m, f, o} – a symbolic (and finite) set. A reasonable data value space for the age
random variable A would be the set of integers between 0 and 200 – assuming
that no customer will be older than 200 years and that age is measured in integers
(years). Finally, a reasonable data value space for the spending RV S could be
just the real numbers R.

Note that in the A and S examples, the data value spaces that I proposed
look very generous. We would not really expect that some customer is 200 years
old, nor would we think that ever a customer spends 101000 Euros – although both
values are included in the data value space. The important thing about a data
value space is that it must contain all the values that might be returned by the
RV; but it may also contain values that will never be observed in practice.

Every mathematical set can serve as a data value space. We just saw symbolic,
integer, and real data value spaces. Real data value spaces are used whenever one is
dealing with an observation procedure that returns numerical values. Real-valued
RVs are of great practical importance, and they allow many insightful statistical
analyses that are not defined for non-numerical RVs. The most important analyt-
ical characteristics of real RVs are expectation, variance, and covariance, which I
will now present in turn.

For the remainder of this appendix section we will be considering random
variables X whose data value space is Rn — that is, observation procedures which
return scalars (case n = 1) or vectors. We will furthermore assume that the
distributions of all RVs X under consideration will be represented by pdf’s fX :
Rn → R≥0. (In mathematical probability theory, more general numerical data
value spaces are considered, as well as distributions that have no pdf — but we
will focus on this basic scenario of real-valued RVs with pdfs).

The expectation of a RV X with data value space Rn and pdf fX is defined as

E[X] =

∫
Rn

x fX(x) dx, (75)
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where the integral is written in a common shorthand for∫ ∞

x1=−∞
. . .

∫ ∞

xn=−∞
(x1, . . . , xn)′ fX((x1, . . . , xn)) dxn . . . dx1.

The expectation of a RV X can be intuitively understood as the “average”
value that is delivered when the observation procedure X would be carried out
infinitely often. The crucial thing to understand about the expectation is that it
does not depend on a sample, – it does not depend on specific data.

In contrast, whenever in machine learning we base some learning algorithm
on a (numerical) training sample (xi, yi)i=1,...,N drawn from the joint distribution
PX,Y of two RVs X, Y , we may compute the average value of the xi by

mean({x1, . . . , xN}) = 1/N
N∑

i=1

xi,

but this sample mean is NOT the expectation of X. If we would have used another
random sample, we would most likely have obtained another sample mean. In
contrast, the expectation E[X] of X is defined not on the basis of a finite, random
sample of X, but it is defined by averaging over the true underlying distribution.

Since in practice we will not have access to the true pdf fX , the expectation
of a RV X cannot usually be determined in full precision. The best one can do is
to estimate it from observed sample data. The sample mean is an estimator for
the expectation of a numerical RV X. Marking estimated quantities by a “hat”
accent, we may write

Ê[X] = 1/N
N∑

i=1

xi.

A random variable X is centered if its expectation is zero. By subtracting the
expectation one gets a centered RV. In these lecture notes I use the bar notation
to mark centered RVs:

X̄ := X − E[X].

The variance of a scalar RV with data value space R is the expected squared
deviation from the expectation

σ2(X) = E[X̄2], (76)

which in terms of the pdf fX̄ of X̄ can be written as

σ2(X) =

∫
R

x2 fX̄(x) dx.

Like the expectation, the variance is an intrinsic property of an observation
procedure X and the part of the real world where the measurements may be
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taken from — it is independent of a concrete sample. A natural way to estimate
the variance of X from a sample (xi)i=1,...,N is

σ̂2({x1, . . . , xN}) = 1/N
N∑

i=1

(
xi − 1/N

N∑
j=1

xj

)2

,

but in fact this estimator is not the best possible – on average (across different
samples) it underestimates the true variance. If one wishes to have an estimator
that is unbiased, that is, which on average across different samples gives the correct
variance, one must use

σ̂2({x1, . . . , xN}) = 1/(N − 1)
N∑

i=1

(
xi − 1/N

N∑
j=1

xj

)2

instead. The Wikipedia article on “Variance”, section “Population variance and
sample variance” points out a number of other pitfalls and corrections that one
should consider when one estimates variance from samples.

The square root of the variance of X, σ(X) =
√

σ2(X), is called the standard
deviation of X.

The covariance between two real-valued scalar random variables X, Y is defined
as

Cov(X, Y ) = E[X̄ Ȳ ], (77)

which in terms of a pdf fX̄ Ȳ for the joint distribution for the centered RVs spells
out to

Cov(X, Y ) =

∫
R×R

x y fX̄ Ȳ ((x, y)′) dx dy.

An unbiased estimate of the covariance, based on a sample (xi, yi)i=1,...,N is given
by

Ĉov((xi, yi)i=1,...,N) = 1/(N − 1)

(
xi − 1/N

∑
i

xi

)(
yi − 1/N

∑
i

yi

)
.

Finally, let us inspect the correlation of two scalar RVs X, Y . Here we have to
be careful because this term is used differently in different fields. In statistics, the
correlation is defined as

Corr(X, Y ) =
Cov(X, Y )

σ(X) σ(Y )
. (78)

It is easy to show that −1 ≤ Corr(X, Y ) ≤ 1. The correlation in the understanding
of statistics can be regarded as a normalized covariance. It has a value of 1 if X
and Y are identical up to some positive scaling factor, it has a value of −1 if X
and Y are identical up to some negative scaling factor. When Corr(X, Y ) = 0, X
and Y are said to be uncorrelated.
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The quantity Corr(X, Y ) is also referred to as (population) Pearson’s correla-
tion coefficient, and is often denoted by the greek letter %(X, Y ) = Corr(X, Y ).

In the signal processing literature (for instance in my favorite textbook Farhang-
Boroujeny (1998)), the term “correlation” is sometimes used in quite a different
way, denoting the quantity

E[X Y ],

that is, simply the expectation of the product of the uncentered RVs X and Y .
Just be careful when you read terms like “correlation” or “cross-correlation” or
“cross-correlation matrix” and make sure that your understanding of the term is
the same as the respective author’s.

There are some basic rules for doing calculations with expectations and covari-
ance which one should know:

1. Expectation is a linear operator:

E[α X + β Y ] = α E[X] + β E[Y ],

where α X is the RV obtained from X by scaling observations with a factor
α.

2. Expectation is idempotent:

E[E[X]] = E[X].

3.
Cov(X, Y ) = E[X Y ]− E[X] E[Y ].
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