
 1

General Information and Communication Technology
1

Course Number 320211

Jacobs University Bremen

Herbert Jaeger

Second module of this course:

Boolean logic

and

Some elements of computational complexity

 2

1 Boolean logic

1.1 What it is and what it is good for in CS

There are two views on Boolean logic (BL) which are relevant for CS. In informal
terms they can be described as follows:

1. In digital computers, information is coded and processed just by "zeros" and
"ones" – concretely, by certain voltages in the electronic circuitry which are
switching (veeeery fast!) between values of 0 Volt (corresponding to "zero")
and some system-specific positive voltage V+, for instance V+ = 5 Volts
(corresponding to "one"). V+ = 5 Volts was a standard in old digital circuits of
the first personal computers, today the voltages are mostly lower. You know
that much of the computation in a computer is done in a particular microchip
called the central processing unit (CPU). The CPU contains thousands (or
millions) of transistor-based electronic mini-circuits called logic gates. At the
output end of such a gate one can measure a voltage which is approximately
either 0 or V+. The specs of a computer contain a statement like "CPU speed is
2.5 GHz". GHz stands for Giga-Hertz, a measure of frequency. 1 Hertz means
a frequency of "1 event per second", 2.5 GHz means "2.5 × 109 events per
second". This means that 2.5 × 109 times in a second, all the gates may switch
their output voltage from 0 to V+ or vice versa (or stay on the same level).
Boolean logic is the elementary mathematical formalism to describe (and
design) such super-complex, super-fast switching circuits. And it's clear that
one absolutely needs some mathematical theory here: it would be plainly
impossible to describe, design or "program" such hugely complex systems
without a suitable mathematical abstraction of all the things that may happen
when one wires together zillions of little gating circuits. Boolean logic is thus
the theory of the "low end" of computation where it is closest to hardware, of
its "micro-mechanics". BL here describes how complex switching circuits
(e.g., entire CPUs) can be decomposed into, or built from, some elementary
logic gates.

2. But Boolean logic is also the mathematical theory which forms the basis of
what one might call the "highest" end of computation: Artificial Intelligence.
A chess-playing computer, or a robot control program, must be able to "think
logically": if I move this pawn one forward, my opponent may beat my queen
in two moves, or in order to place that cup on the table, I [the robot] must first
grasp it with my gripper. In its elementary versions, such logical thinking is
about ascertaining facts and planning the consequences of actions – factual
statements may change from True to False or vice versa (or their truth
value may stay the same) after an action. On this high level of knowledge
processing, the "zeros" and "ones" of Boolean logic turn into True or
False. BL here describes how complex logical arguments (e.g., a robot
planning to assemble a car from parts) can become decomposed into, or
composed from, a sequence of elementary logical arguments.

So, in sum, Boolean logic is the mathematical framework for describing anything that
is binary, that is, anything which can have only two values – for instance 0 and V+, or

 3

False and True. In textbooks which explain BL one finds mostly two notations for
these two events. They are either denoted by "0" and "1", or by "F" and "T". I will use
the first convention.

These two values are called truth values in BL. This terminology comes from the
"high-end" view on BL: a factual statement (a proposition) can be either True or
False. Sometimes BL is also called propositional logic.

In this course I present the basic concepts of Boolean logic in some detail. If you want
a more comprehensive but also more compressed treatment I can recommend the first
chapters in the following textbook:

Uwe Schoening: Logic for Computer Scientists (Progress in Computer Science and
Applied Logic, Vol 8), (Birkhauser). The IRC has some copies of this book: QA9
.S363 1989. You don't need to consult that book however, this handout is enough.

1.2 Elementary Boolean operations

BL describes objects which can take one of two values, or switch between these two
values. In the "low-end" electronic circuit use of BL, these objects are the outputs of
the logic gate circuits, which can take the values 0 or V+. In the "high-end" Artificial
Intelligence use of BL, these objects are propositions, which can be True or False.
In the mathematical formalism of BL, which abstracts away from the final concrete
use, these objects are called Boolean variables. We use the symbols X1, X2, X3, ... for
Boolean variables. The set X = {X1, X2, X3, ... } is the set of all Boolean variables –
there are no others besides these. Sometimes, however, for convenience (when we are
tired of writing subscript indices) we will also use X, Y, Z, ... to denote Boolean
variables. Be aware that this is a only a convenience thing: even if we write Y, we
actually mean one of the X1, X2, X3, Abstractly speaking, a Boolean variable X is a
formal object which can have the value 0 or the value 1.

Example: When analyzing a complex electronic circuit, an electronic contact point
(the output end of a logical gate circuit embedded in the complex circuit) where we
can currently measure a voltage (and obtain a measurement of 0 or V+) can be
formalized as a Boolean variable Xi, taking Boolean values 0 or 1.

Example: When a robot inspects its environment, planning an action sequence, a
proposition like the cup is on the table can currently be true or false. Again, this
proposition can be formalized as a Boolean variable Xi which can take Boolean values
0 or 1.

Whether a Boolean variable is currently taking the value 0 or the value 1 is expressed
through an interpretation (also called truth value assignment). Formally, an
interpretation is a function

 (1) : D → {0, 1},

where D is a subset of X (in any real application we will not need all the infinitely
many X1, X2, X3, ... but only a finite subset of them).

 4

Example: In a CPU with 10000 gates we will choose D = {X1, X2, ... , X10000} and if
we measure the 10000 voltages at some time t, we have an interpretation t where
t(Xi) = 0 if the voltage measured at the i-th gate is 0 and t(Xi) = 1 if the voltage
measured at the i-th gate is V+.

Example: our table-setting robot may have to think about 20 different situational
circumstances like the cup is on the floor, the cup is held by the gripper, the gripper is
positioned above the table etc., which can be modelled by D = {X1, X2, ... , X20}. In
any concrete situation S, every one of these 20 propositions is either true or false. If
the proposition Xi is true in situation S we would have S(Xi) = 1.

The main purpose of Boolean logic is to describe (or design) interdependencies
between Boolean variables.

Example: a particular electronic gate with output Xi in a CPU may get two input
signals Xj, Xk from two other gates. The gate Xi responds lawfully to these inputs. For
instance, the gate Xi may be constructed such that whenever at least one of the two
feeding signals is V+, then the output of Xi is V+, too. We will formalize this in
Boolean logic as "if t(Xj) = 1 OR t(Xk) = 1, then t(Xi) = 1" (this holds for any
interpretation t). Since this holds for all interpretations, we can also write Xi = Xj OR
Xk.

Example: in our little robot world, the gripper may be designed such that it is either
opened or closed. Then if X1 ≡ the gripper is opened and X2 ≡ the gripper is closed,
we could describe that the two propositions are mutually exclusive as X1 = NOT X2.

Traditionally (a tradition that goes back to ancient Greece!) one uses three elementary
operations as building blocks for BL: the AND, OR, and NOT operations. Let us
consider AND first. AND describes that a Boolean variable Z depends on two other
Boolean variables X, Y such that Z is 1 if and only if both X AND Y are 1. Using the
customary symbol ∧ for AND, this is specified in a truth table as follows:

X Y Z =

X ∧ Y
0
0
1
1

0
1
0
1

0
0
0
1

The AND operation can be regarded as a function which assigns to every pair (x, y) of
truth values a new truth value z = x ∧ y. Notice that we use lowercase letters x, y, ... to
denote truth values and uppercase letters X, Y, ... to denote the variables that can take
those values. In mathematical terminology, the set of such pairs of values from {0, 1}
is called the cross product of {0, 1} with itself, written as {0, 1} × {0, 1}. The AND
operation can thus mathematically be understood as a function from truth value pairs
to truth values:

(2) ∧: {0, 1} × {0, 1} → {0, 1},

 5

with the values for each argument pair given in the table above.

Notice that each row in the truth table corresponds to an interpretation. For instance,
the first row in the table above corresponds to the interpretation
firstrow: {X, Y} → {0, 1}, which maps X to 0 and Y to 0. That is, firstrow(X) = 0 and
firstrow(Y) = 0.

Similarly, the OR operation (denoted by ∨) has the intuitive interpretation "Z is 1 if
and only if at least one of X or Y is 1", as detailed in the truth table

X Y Z =

X ∨ Y
0
0
1
1

0
1
0
1

0
1
1
1

Again, OR can be seen as a function of the type ∨: {0, 1} × {0, 1} → {0, 1}.

Finally, the NOT operation flips truth values, turning 1 into 0 and vice versa. Using
the traditional symbol ¬ for NOT, this turns out to be a function of the type
¬: {0, 1} → {0, 1} with the following truth table:

X Z = ¬X
0
1

1
0

These are the three Boolean functions which are standardly used in mathematics and
logic as basic building blocks for Boolean logic. The AND, OR, and NOT functions
are also known as conjunction, disjunction, and negation, respectively.

Some other elementary Boolean functions are of interest too, either because they
correspond to intuitive logic operations or because they are often hard-wired as
elementary logic gates in microchips. Here are some examples:

The implication ("if – then"), symbolized by →:

X Y Z = X→Y
0
0
1
1

0
1
0
1

1
1
0
1

This logical implication seems often a little counter-intuitive to logic beginners.
Consider the claim if cats are dogs, then the sun shines. For ordinary mortals, this
makes little sense. However, for logicians this not only makes sense, but it is true:
cats are not dogs, so the precondition cats are dogs is false (i.e., it is 0). Then

 6

regardless of whether the sun shines or not (that is regardless of whether
(the sun shines) = 0 or = 1), the truth table returns 1. A logical implication (→)
statement is only false if its precondition is true, but the consequence that it asserts is
false.

The logical equivalence ("if and only if"), symbolized by ↔:

X Y Z = X↔Y
0
0
1
1

0
1
0
1

1
0
0
1

The exclusive or ("either-or"), abbreviated XOR:

X Y Z =

XOR(X,Y)
0
0
1
1

0
1
0
1

0
1
1
0

The not-AND operation, abbreviated NAND:

X Y Z =

NAND(X,Y)
0
0
1
1

0
1
0
1

1
1
1
0

The NAND operator is also called Sheffer stroke and is sometimes represented by the
symbol ↑.

Altogether there are 24 = 16 different Boolean functions which transform pairs of
truth values into truth values (why?). Not all of them have names or are standardly
hard-wired in microchips or are used in AI applications of logic. You can find an
instructive overview at http://en.wikipedia.org/wiki/Logic_gate.

1.3 Composite Boolean functions and Boolean expressions

Our elementary Boolean functions ¬, ∧, ∨ can be composed to give more complex
functions. A simple example is

(3) ϕ (X, Y) := ¬ (X ∧ Y).

Here we defined a new function ϕ: {0, 1} × {0, 1} → {0, 1} by the composite
operation "first compute the AND of X and Y, then apply the NOT on what you got

 7

from the AND". When you think about it you will find that ϕ is the NAND function.
We generally use Greek letters ϕ, ψ,... to denote Boolean functions.

Here is a more involved example:

(4) ψ (X, Y, Z) := (¬ (X ∧ Y) ∨ (Z ∧ Y)).

This function assigns a truth value to every triple of truth values, that is, this ψ is of
the type ψ: {0, 1} × {0, 1} × {0, 1} → {0, 1}, for which we also write
ψ: {0, 1}3 → {0, 1}. The truth table for this ψ looks like this:

X Y Z V =

ψ (X, Y, Z)
0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

1
...

I only filled the result for the first combination of arguments X = Y = Z = 0. I
computed it by computing partial results "from the inside outwards". Concretely, I
first computed (X ∧ Y) = (0 ∧ 0) = 0 and (Z ∧ Y) = (0 ∧ 0) = 0. Then I applied the NOT
on the result of first subformula: ¬ (X ∧ Y) = ¬0 = 1. Then I applied the OR on the two
subformulas ¬ (X ∧ Y) and (Z ∧ Y): (¬ (X ∧ Y) ∨ (Z ∧ Y)) = 1 ∨ 0 = 1. Filling in the
remaining rows is left as an exercise.

Abstracting from these examples, we define Boolean functions in general as follows:

Definition 1.1 A Boolean function ϕ is any function of the type ϕ: {0, 1}k → {0, 1},
where k ≥ 0.

This deserves some comments. When k = 1, a Boolean function assigns truth values to
truth values (like the NOT function). When k = 2, 3, ... it assigns truth values to pairs,
triples, ... of truth values. The number k of arguments is called the arity of the
function. What about the arity k = 0? Well, for mathematicians this is not
extraordinary. A Boolean function with arity k = 0 function assigns truth values to...
nothing! That is, it depends on nothing and simply returns a truth value. There are two
such functions, one always returning 0 and the other always returning 1. We simply
identify these two arity-0 functions with the truth value constants 0 and 1.

It is easy to see that the truth table of a Boolean function with arity k has 2k rows. As k
increases, truth tables clearly become an infeasible way to specify Boolean functions.
Specifically, consider a CPU chip. It has k input wires (called "pins" by the chip
people) and m output pins. Let us model the k input pins by k Boolean variables X1,
X2, ... , Xk. If we fix one of the m output pins, calling it Z, and ignore the other outputs,

 8

the chip realizes in hardware a Boolean function χ: {0, 1}k → {0, 1}. In real CPU
chips, k can easily be as large as 128. The truth table for the chip (only considering a
single output pin) would have 2128 rows, in the order of the number of atoms in the
universe. Chip designers need more efficient methods to specify Boolean functions
than by way of truth tables...

... but that seems within reach. Consider again the ψ function from above. We
actually specified it in two ways: first, by equation (4), and second, by the truth table.
The first way of specifying it clearly is more compact. Formulas like (4) are the
preferred way to specify Boolean functions, not truth tables. We now give a formal
definition of a these important and helpful objects. The definition uses a common
trick in theoretical CS and proceeds by induction.

Definition 1.2 (Boolean formulas, also known as Boolean expressions).

Basis of inductive definition:

1a. Every Boolean variable Xi is a Boolean formula.
1b. The two Boolean constants 0 and 1 are Boolean formulas.

Induction step:

2a. If ϕ and ψ are Boolean formulas, then (ϕ ∧ψ) is a Boolean formula.
2b. If ϕ and ψ are Boolean formulas, then (ϕ ∨ψ) is a Boolean formula.
2c. If ϕ is a Boolean formula, then ¬ϕ is a Boolean formula.

Again we are relaxed about what we may use as Boolean variables. While in theory
only X1, X2, ... qualify for step 1a, in practice we also use X, Y,

This is all we need to verify whether a particular writeup of symbols qualifies as a
Boolean formula. Consider again the example (¬ (X ∧ Y) ∨ (Z ∧ Y)). This symbol
string can be ascertained to be a valid Boolean formula by going step-wise from the
inside to the outside:

• X, Y, Z are Boolean formulas (note our relaxed attitude w.r.t. Boolean variables)

by rule 1a.
• (X ∧ Y) and (Z ∧ Y) are Boolean formulas by rule 2a.
• ¬ (X ∧ Y) is a Boolean formula by rule 2c.
• Hence, (¬ (X ∧ Y) ∨ (Z ∧ Y)) is a correctly written Boolean formula by rule 2b.

The rigorous Definition 1.2 uses lots of brackets to make the nested structure of a
Boolean formula clear. In practice one uses some bracket-saving conventions to have
fewer of them, preventing bracket cluttering. The most important convention is to
write (X ∧ Y ∧ Z) instead of (X ∧ (Y ∧ Z)), or (X ∨ Y ∨ Z ∨ W) for (X ∨ (Y ∨ (Z ∨ W))),
etc (repeated ∧'s or repeated ∨'s may be merged).

Furthermore, because logical implication and equivalence occur frequently in
applications, by convention one may write in shortcut notation

 9

(5) (X→Y) for (¬ X ∨ Y) and
(6) (X↔Y) for ((¬ X ∨ Y) ∧ (¬ Y ∨ X)).

Now we know how we may write down Boolean formulas, and we know it precisely.
In CS/math terminology, we have fixed the syntax of Boolean formulas. In a sense,
Definition 1.2 could be called the grammar of Boolean formulas. I said above that
Boolean formulas are compact tools for specifying Boolean functions. When I first
introduced Boolean formulas for specifying Boolean functions in the example from
equation (4) above, I used plain English to explain by an intuitive argument how that
formula ψ (X, Y, Z) = (¬ (X ∧ Y) ∨ (Z ∧ Y)) gives rise to a truth table. We proceed to
make this connection precise. The following definition specifies precisely, again in an
inductive way, what is the Boolean function associated with a Boolean formula. The
definition thus defines what a Boolean formula "means", or "denotes", – it is the
definition of the semantics of Boolean formulas.

Definition 1.3 (Semantics of Boolean formulas). Let D ⊆ X be a set of Boolean
variables and : D → {0, 1} an interpretation. Let Φ(D) be the set of all Boolean
formulas which contain only Boolean variables that are in D. We define a generalized
version of an interpretation *: Φ(D) → {0, 1} again by induction, repeating the
syntactical construction of Boolean formulas:

Basis of inductive definition:

1a. For every Boolean variable X ∈ D, *(X) = (X).
1b. For the two Boolean constants 0 and 1, we set *(0) = 0 and *(1) = 1.

Induction step:

2a. If ϕ and ψ are in Φ(D), then

€

* (ϕ ∧ψ)() =
1 if * (ϕ) =1 and * (ψ) =1
0, all other cases
⎧
⎨
⎩

2b. If ϕ and ψ are in Φ(D), then

€

* (ϕ ∨ψ)() =
1 if * (ϕ) =1 or * (ψ) =1
0, all other cases
⎧
⎨
⎩

2c. If ϕ is in Φ(D), then

€

* ¬ϕ() =
1 if * (ϕ) = 0
0 if * (ϕ) =1

⎧
⎨
⎩

Because this generalized interpretation * is the same as  on the Boolean variables
X ∈ D, we say that * extends  from the domain D to the domain Φ(D). Following
the standard practice in the field, we will henceforth re-use the symbol  for the
generalized interpretation too, that is, we understand : Φ(D) → {0, 1} as the natural
extension of the original : D → {0, 1} to the larger domain Φ(D). Furthermore,

 10

because the set D of variables in use will usually be clear from the context, we mostly
will not specify it explicitly.

There is another customary slack in terminology which I would like to point out.
Strictly speaking, we have introduced Boolean formulas in Definition 1.2 as mere
strings of symbols. The formula (¬ (X ∧ Y) ∨ (Z ∧ Y)) is just that – a string made of
bracket symbols, variable symbols, and the logical connective symbols ¬, ∧, ∨. On
the other hand, Definition 1.3 directly assigns a Boolean function to every such
formula. By an abuse of terminology and notation, we don't use a different notation
for the function obtained from the formula (¬ (X ∧ Y) ∨ (Z ∧ Y)). We would simply say
things like "the function (¬ (X ∧ Y) ∨ (Z ∧ Y))", although strictly speaking, (¬ (X ∧ Y)
∨ (Z ∧ Y)) isn't a function but a formula, that is a symbol string denoting a function by
virtue of Definition 1.3. And when we use the symbols ϕ, ψ, etc., we may refer to
formulas or to functions.

1.4 First steps toward Boolean logic

"Logic" is a very ancient theme indeed. Even in antiquity, hundreds of years before
the Western calendar started counting years at 0, Greek philosophers contemplated
the truth or falsity of propositions and started to spell out rules for correct logical
thinking. From those ancient times, a number of logical concepts have survived to the
present day, and they are still relevant for the foundations of mathematical logic,
theoretical CS and Artificial Intelligence. Two of these venerable concepts are
tautologies and contradictions.

In modern Boolean parlance, a tautology is a Boolean formula which is always true,
and a contradiction is never true. Before we give the precise definition, we introduce a
little helper notion:

Definition 1.4 (adapted interpretations). An interpretation : D → {0, 1} is adapted
to a Boolean formula ϕ if all Boolean variables that occur in ϕ are contained in D.

In other words, interpretations adapted to ϕ provide truth value assignments for all
variables in ϕ.

Definition 1.5 (tautologies and contradictions). A Boolean formula ϕ is a tautology if
for all interpretations  which are adapted to ϕ it holds that (ϕ) = 1. A Boolean
formula ϕ is a contradiction if for all interpretations  which are adapted to ϕ it holds
that (ϕ) = 0.

The classical example for a tautology is

(7) (X ∨ ¬X)

and the classical example for a contradiction is

(8) (X ∧ ¬X).

 11

But also very complex formulas with many Boolean variables can be tautologies or
contradictions. One way to find out whether a given Boolean formula ϕ is a tautology
or contradiction would be to compute the complete truth table of ϕ. Recall that each
row in the truth table corresponds to one of the possible interpretations of the
variables in ϕ. Recall furthermore that if ϕ contains k Boolean variables, the truth
table has 2k many rows – its size "explodes" with growing k and very soon it becomes
practically impossible to compute this HUGE table. Unfortunately there is no known
general procedure to find out whether a given ϕ is a tautology/contradiction which is
less costly than computing the entire truth table. In fact, logicians have reason to
believe that no faster method exists (but that is an unproven conjecture!).

Here are two elementary and (I would say) obvious facts relating to tautologies and
contradictions:

• For any Boolean expression ϕ, (ϕ ∨ ¬ϕ) is a tautology and (ϕ ∧ ¬ϕ) is a

contradiction.
• If ϕ is a tautology, then ¬ϕ is a contradiction and vice versa.

The following definition introduces a concept which later will turn out to lie at the
core of "correct logical reasoning". I introduce it at this early stage because it is
related to tautologies/contradictions.

Definition 1.6 (satisfying a Boolean formula). An interpretation  which is adapted to
a Boolean formula ϕ is said to satisfy the formula ϕ if (ϕ) = 1. A formula ϕ is called
satisfiable if there exists an interpretation which satisfies ϕ.

If you think about it, you will find that the following two are equivalent
characterizations of satisfiability:

• A Boolean formula is satisfiable iff its truth table contains at least one row that

results in 1.
• A Boolean formula is satisfiable iff it is not a contradiction.

Here I used the abbreviation "iff" for "if and only if".

Another basic notion is the equivalence of two formulas:

Definition 1.7 (equivalence of Boolean formulas). Let ϕ, ψ be two Boolean formulas.
Then ϕ is equivalent to ψ, written ϕ ≡ ψ, if for all interpretations  which are adapted
both to ϕ and ψ it holds that (ϕ) = (ψ).

Examples:

• (X ∨ Y) ≡ (Y ∨ X)
• (X ∨ Y) ≡ (Y ∨ X) ∧ (Z ∨ ¬Z)

The second example shows that two equivalent formulas need not contain the same
set of variables.

 12

There are numerous "laws" of Boolean logic which are stated as equivalences. Here is
a choice:

Proposition 1. For any Boolean formulas ϕ, ψ, χ the following equivalences hold:

1. (ϕ ∧ ϕ) ≡ ϕ and (ϕ ∨ ϕ) ≡ ϕ ("idempotency")

2. (ϕ ∧ ψ) ≡ (ψ ∧ ϕ) and (ϕ ∨ ψ) ≡ (ψ ∨ ϕ) ("commutativity")

3. ((ϕ ∧ ψ) ∧ χ) ≡ (ϕ ∧ (ψ ∧ χ)) and ((ϕ ∨ ψ) ∨ χ) ≡ (ϕ ∨ (ψ ∨ χ))
 ("associativity")

4. (ϕ ∧ (ψ ∨ χ)) ≡ (ψ ∧ ϕ) ∨ (ψ ∧ χ) and (ϕ ∨ (ψ ∧ χ)) ≡ (ψ ∨ ϕ) ∧ (ψ ∨ χ)
 ("distributivity")

5. ¬¬ϕ ≡ ϕ ("double negation")

6. ¬(ϕ ∧ ψ) ≡ (¬ϕ ∨ ¬ψ) and ¬(ϕ ∨ ψ) ≡ (¬ϕ ∧ ¬ψ) ("de Morgan's law")

Each of these laws can be proven by writing down the corresponding truth table. I
illustrate this for the first of the two de Morgan's laws:

ϕ ψ ¬ϕ ¬ψ (ϕ ∧ ψ) ¬(ϕ ∧ ψ) (¬ϕ ∨ ¬ψ)
0
0
1
1

0
1
0
1

1
1
0
0

1
0
1
0

0
0
0
1

1
1
1
0

1
1
1
0

The two last columns marked in bold font are identical, showing equivalence of
¬(ϕ ∧ ψ) and (¬ϕ ∨ ¬ψ).

Such equivalence laws can be used, among other things, to "calculate" with logics,
executing stepwise transformations from a starting formula to some target formula,
where each step applies one such equivalence law. This is similar to algebraic
calculations where a starting formula is stepwise transformed to a target formula.
Designing automated routines to transform starting formulas into target formulas is a
practically important topic for AI applications, but we will not further pursue this
theme of "automated reasoning" in this course.

1.5 Normal forms of Boolean formulas

Boolean formulas can be structured in very complex, highly nested ways – consider,
for instance the monster

(((X1 ∧ ¬X4) ∧ (X2 ∨ X1)) ∨ ¬((X6 ∧ X100) ∨ 0 ∨ ¬((X3 ∨ ¬X4 ∨ X2) ∨ ((X1 ∧ ¬X4) ∨ (X2 ∧ ¬X9 ∧ X1)))))

This is a syntactically correct formula but I dare say you would have difficulties
"understanding" it – and likewise, a computer program processing this formula would
have difficulties disentangling it. Fortunately, every Boolean formula is equivalent to
a Boolean formula which has a very simple and transparent structure. Such simple,
standardized structures are called normal forms of Boolean formulas. They are

 13

absolutely instrumental for any practical (human or computer-driven) work with
Boolean logic. I will describe in some detail the so-called conjunctive normal form
(CNF) and briefly hint out another normal form called disjunctive normal form
(DNF).

To prepare the grounds for normal forms, the following notion is helpful:

Definition 1.8 (literals). A literal is a Boolean formula that has one of the forms Xi,
¬Xi, 0, 1, ¬0, or ¬1. That is, a literal is just a Boolean variable or a constant, or its
negation. The literals Xi, 0, 1 are called positive literals and ¬Xi, ¬0, ¬1 are called
negative literals. We write Li for any literal.

Definition 1.9 (CNF). A Boolean formula is said to be in conjunctive normal form if
it is a conjunction of disjunctions of literals.

Example: (X2 ∨ ¬X2 ∨ X3) ∧ X1 ∧ (¬X2 ∨ ¬X3 ∨ 0) is a conjunction of the
disjunctions (X2 ∨ ¬X2 ∨ X3), X1, and (¬X2 ∨ ¬X5 ∨ 0).

Example: X1 is in CNF, too. This is the effect of the mathematical way of thinking
about conjunctions and disjunctions: an isolated Boolean formula ϕ is considered to
be a conjunction (you could say, a conjunction with itself); it is also considered to be
a disjunction (with itself). So X1 can be considered a conjunction of a disjunction
(smile).

The practically important convenience feature about formulas in CNF is that such
formulas are "shallow" – they don't have nested bracketing levels.

Proposition 2. Every Boolean formula ϕ is equivalent to a Boolean formula χ in
CNF.

Proof. We don't usually go through proofs in this lecture, but here I make an
exception. First, because Proposition 2 is important, and second, because the proof is
instructive – the method used to prove this proposition is used in theoretical CS in
many places. The proof method is called "proof by induction over the structure of
Boolean expressions". We repeat the inductive make-up of the syntax of Boolean
formulas from Definition 1.2 as follows. I will not give the fully abstract proof but
illustrate the important steps by examples.

Basis of induction:

1a. Let ϕ = Xi be a Boolean formula that just consists of a single Boolean variable.

Then ϕ is in CNF according to what I said above about "isolated" formulas.
Putting χ = ϕ gives us the (trivial) CNF of ϕ.

1b. Case ϕ = 0 or ϕ = 1: similar.

Induction step:

 14

2a. Assume that ϕ = (χ1 ∧ χ2) is a conjunction of two formulas χ1, χ2 which (by
induction) we may assume to be in CNF already. Then simply by dropping
brackets we see that ϕ is in CNF too. Illustration by example: Let for instance
χ1 = (X ∧ (¬Y ∨ 0)) and χ2 = ((¬X ∨ Z) ∧ (Y ∨ W)). Then
ϕ = (χ1 ∧ χ2) = ((X ∧ (¬Y ∨ 0)) ∧ ((¬X ∨ Z) ∧ (Y ∨ W)))
 = (X ∧ (¬Y ∨ 0) ∧ (¬Y ∨ Z) ∧ (Y ∨ W))

 =: χ.

2b. Assume that ϕ = (χ1 ∨ χ2) is a disjunction of two formulas χ1, χ2 which are in

CNF already. By a repeated application of distributivity we can transform
(χ1 ∨ χ2) into a CNF formula. Example: Let for instance χ1 = X ∧ (¬Y ∨ 0) and
χ2 = (¬X ∨ Z) ∧ W. Then we apply distributivity several times as follows:

 ϕ = (X ∧ (¬Y ∨ 0)) ∨ ((¬X ∨ Z) ∧ W)

 = (X ∨ ((¬X ∨ Z) ∧ W)) ∧ ((¬Y ∨ 0) ∨ ((¬X ∨ Z) ∧ W))
 = (X ∨ ¬X ∨ Z) ∧ (X ∨ W) ∧ (¬Y ∨ 0 ∨ ¬X ∨ Z) ∧ (¬Y ∨ 0 ∨ W)

which is in CNF.

2c. Assume that ϕ = ¬χ is a negation of a formula χ which by induction assumption

is in CNF. By applications of de Morgan's rule, double negation and distributivity
we can transform ¬χ into a CNF formula. Example: let χ = (¬X ∨ Z) ∧ W. Then

ϕ = ¬((¬X ∨ Z) ∧ W)
 = ¬(¬X ∨ Z) ∨ ¬W [de Morgan]
 = (¬¬X ∧ ¬Z) ∨ ¬W [de Morgan again]
 = (X ∧ ¬Z) ∨ ¬W [double negation]
 = (X ∨ ¬W) ∧ (¬Z ∨ ¬W) [distributivity]

 where the last line is a formula in CNF.

With a little additional formalism it can be shown that these transformations, which I
here demonstrated only in examples, are always possible. We have thus shown that
every Boolean formula can be transformed into a formula in CNF.

For completeness I mention the "mirror" version of CNF, the disjunctive normal
form: a Boolean formula is in DNF if it is a disjunction of conjunctions of literals. For
example, (X2 ∧ ¬X2 ∧ X3) ∨ X1 ∨ (¬X2 ∧ ¬X3 ∧ 0) is in DNF. Every Boolean formula
can be transformed into an equivalent formula in DNF.

CNFs can be used to demonstrate that every Boolean function can be represented by a
Boolean expression. I illustrate this important fact with an example. Any Boolean
function is fully specified by its truth value table. Consider for example the following
arbitrary Boolean function ϕ: {0, 1}3 → {0,1} given by this truth table:

X Y Z ϕ (X, Y, Z)

 15

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

1
0
0
1
1
0
1
0

We will now create a Boolean formula for the function ϕ. The CNF helps us to do so.
In order to find a Boolean formula χ in CNF for this language, we inspect all rows in
the table that result in a 0. The first of these rows is the second row in the table, (X, Y,
Z) = (0, 0, 1). In order to make sure that our to-be-constructed formula χ evaluates to
0 when X =0, Y = 0, Z = 1, we add a disjunction to χ which ensures exactly this:
(X ∨ Y ∨ ¬Z) (think about it!). Doing this for all rows which have a 0 on the right
hand side in the table gives us

χ = (X ∨ Y ∨ ¬Z) ∧ (X ∨ ¬Y ∨ Z) ∧ (¬X ∨ Y ∨ ¬Z) ∧ (¬X ∨ ¬Y ∨ ¬Z).

The fact that every Boolean function can be represented by a Boolean formula could
also be stated as "every Boolean function can be obtained by a (possibly nested)
composition of the elementary functions AND, OR, NOT". These three functions are
a universal "basis" for constructing all other Boolean functions.

The NAND (also known as the Sheffer stroke, written ↑) is, surprisingly a stand-alone
universal operation: AND, OR, NOT can all be expressed in terms of ↑, hence any
Boolean function can be constructed from ↑ alone. This renders the NAND gate
particularly important for the physical realization of digital microchips.

1.6 An interim summary, and universality of AND, OR, NOT

Here is a collection of take-home facts that we have collected so far:

• Boolean functions are defined to be "binary" functions from ϕ: {0, 1}k→ {0,1}.
• A Boolean function of arity k can be specified by a truth table with 2k rows.
• Boolean formulas are inductively constructed by creating compound formulas

from given ones using the logical connective symbols ¬, ∧, ∨, starting the process
from the Boolean variables Xi and the truth value constants 0 and 1.

• A Boolean formula specifies a Boolean function, and every Boolean function can
be represented by a Boolean formula, even by a Boolean formula in CNF.

Note that in the make-up of Boolean formulas we only used the elementary Boolean
functions AND, OR and NOT. These three functions AND, OR, NOT are a universal
basis for constructing all Boolean functions.

Other choices of elementary Boolean functions are possible which yield a universal
basis. Electrical engineers typically design their binary electronic switching circuits

 16

not from AND, OR, NOT but from other elementary "gates" because other gates are
easier to create from electronic devices (like transistors) than AND, OR, NOT.
However, the textbook theory of Boolean logic usually chooses AND, OR, NOT
because these three operations are closest to "natural" human logic. The ancient Greek
philosophers as well as contemporary mathematicians think in terms of AND, OR,
NOT and not in terms of logical operations like NAND and the like.

1.7 Boolean circuits

So far we have met two ways of specifying Boolean functions: truth tables and
Boolean formulas. By a little twist on the latter we get a third way, Boolean circuits.
This is a representation format that is closer to electronic circuits than tables or
formulas. A Boolean circuit in a sense just "unfolds" a Boolean formula (which is a
one-dimensional string of symbols) into 2 dimensions. This is best explained with an
example. Consider the Boolean formula

(9) ϕ = (X ∧ (¬Y ∨ 0)) ∨ (¬X ∨ Z)

In its inductive construction, it is composed from its subformulas

0, X, Y, Z, ¬Y, ¬X, (¬Y ∨ 0), (¬X ∨ Z), (X ∧ (¬Y ∨ 0)), (X ∧ (¬Y ∨ 0)) ∨ (¬X ∨ Z)

where in good math spirit we call the entire formula a "subformula" too. A Boolean
circuit is a graphical representation of all the subformulas, which are now called
gates. Depending on whether the subformula is "atomic" (a constant or a single
Boolean variable) or whether it is "composite" (made from other subformulas by use
of ¬, ∧, ∨), the gates are called input gates (for atomic subformulas) or logic gates
(for composite subformulas). Logic gates come in three sorts: ∧-gates, ∨-gates and
¬-gates. Gates are drawn as circles, and the composition relationships between them
as arrows. The formula (9) becomes "exploded" into the following diagram:

You could interpret this as an electronic circuit which has four inputs (X, Y, Z, 0) of
which the last is always equal to 0 and the first three can be fed with 0's or 1's.
Formally input patterns are interpretations : {X, Y, Z} → {0, 1}. The circuit has a

 17

binary output which corresponds to (ϕ) – check again Definition 1.3 to make sure
you understand this claim.

Here is a formal definition:

Definition 1.10 (Boolean circuits). A Boolean circuit (or simply circuit) is a finite
directed graph whose nodes i are of sort si ∈ {0, 1, ¬, ∧, ∨, X1, X2, X3, ...}. Nodes are
called gates. The indegree (= number of ingoing edges) of a gate is 0 for gates of sort
0, 1 or Xi; 1 for gates of sort ¬ and 2 for gates of sort ∧ or ∨. Gates are numbered such
that if (i, j) is an edge, then i < j. Gates of sort Xi or 0 or 1 are input gates. The gate
with largest index n is the output gate of the circuit.
Students of Electrical Engineering actually build such digital switching circuits from
electronic components in their first-year labs. Digital microchips can in general and
with some abstraction effort be regarded as Boolean circuits. The main differences
between real microchips and Boolean circuits are the following:

• A microchip usually has more than one output pin. Formally, such systems realize

multi-valued Boolean functions ϕ: {0, 1}k →{0, 1}m. Note that a multi-valued
Boolean function ϕ: {0, 1}k →{0, 1}m can be understood as a set of m single-
valued Boolean functions ϕi: {0, 1}k →{0, 1}, one such ϕi for each of the m
outputs of the circuit.

• As I already mentioned, physical transistor-based microchips typcially use other
elementary Boolean functions than AND, OR, NOT for their gate nodes because
those other functions are easier to realize with semiconductor elements.

• A microchip may have additional electronic subsystems that provide infrastructure
to the "logic" parts, like clocks, voltage stabilizers etc.

1.8 Further steps toward Boolean logic

In this final section I want to provide a glimpse on the "high-end" side of Booleanism,
namely AI-style applications in intelligent reasoning.

The main and eternal type of question that intelligent reasoning is facing is to find out
whether some conclusion follows logically from some premises. One could say
without too much simplification that logical reasoning is all about "If ... then ..."
arguments. Here are some examples:

• The most classical, venerable example which has been discussed already by

ancient Greek philosophers is the following argument: If all men are mortal and
Socrates is a man, then Socrates is mortal. The Greek philosophers compiled a set
of about 20 such arguments, called syllogisms. A classical syllogism has two
premises and one conclusion. Here are two examples of syllogisms, expressed in
an abstract form:
If all B are C, and all A are B, then all A are C. (For instance, If all humans are
mortal and all Greeks are human, then all Greeks are mortal.)
If some B are not C, and all A are B, then some A are not C (e.g., If some cats
have no tails and all cats are mammals, then some mammals have no tails).

 18

Check out http://en.wikipedia.org/wiki/Syllogism if you want to learn more about
these ancient roots of logic.

• In mathematical textbooks (and in the minds of mathematicians) the core item of
interest are theorems. A mathematical theorem is always of the form If premises
A1, ..., and Ak hold, then conclusion Z holds. The necessary premises are not
always listed explicitly in the theorem's statement; often they tacitly include
premises and definitions which are understood in the context where the theorem is
stated. For example, I stated our Proposition 1 above as follows:

For any Boolean formulas ϕ, ψ, χ the following equivalences hold: (ϕ ∧ ϕ) ≡ ϕ
and (ϕ ∨ ϕ) ≡ ϕ , ...

If I would have stated this theorem in a fully spelled-out version, its premise
would have been very long and would have included all of the preceding
definitions. It would then have looked something like:

If ϕ, ψ, χ are Boolean formulas and a Boolean formula is either a Boolean
constant or a Boolean variable or can be obtained from a Boolean formula by an
iterated application of the operations ¬, ∧, ∨, and a Boolean constant is either 0
or 1, and the ¬ operations are unary and the operations ∧, ∨ are binary, and ...
and ... and... [essentially repeating all of the definitions introduced before], then
(ϕ ∧ ϕ) ≡ ϕ and (ϕ ∨ ϕ) ≡ ϕ , ...

• An AI-empowered autonomous mobile robot incessantly has to plan its next
actions. Many implementations of high-level robot planning systems are based on
logical reasoning. Such logic-based planning algorithms execute reasoning steps
of the kind

If in the current situation facts F1, ... and Fm hold, and if I [the robot] now make
this action A, then the situation will change such that fact E holds.

Concrete example: If the cup is on the floor and I lift it on the table, then the cup
will be on the table.

Abstracting from these examples, it turns out that one of the main tasks for
philosophers, mathematicians, AI programmers and AI programs is to decide whether
a given argument of the kind

If premises P1 and ... and Pm hold, then conclusion C holds

is true. The premises Pi and the conclusion C will be expressed in some logic
formalism (of which there are many), the simplest of which is Boolean logic. So the
question that we will consider in the remainder of this section is whether a Boolean
formula of the structure

(10) (ϕ1 ∧ … ∧ ϕm) → ψ

is true, that is, whether it is a tautology. Deciding whether formulas of this kind are
tautologies lies at the heart of logical reasoning!

 19

Remember that a tautology is a Boolean formula whose truth table has only 1's in the
result column. The brute-force way to check (10) for being a tautology would be to
compute its truth table and find out whether all results are 1. When (10) has many
Boolean variables in it, this is practically impossible because the truth table would be
larger than the universe. Therefore, one proceeds indirectly and first re-formulates the
problem in a clever way.

A Boolean formula τ is a tautology iff ¬τ is a contradiction. A Boolean formula is a
contradiction iff is not satisfiable. Thus in order to to check whether (10) is a
tautology we may equally well check whether ¬((ϕ1 ∧ … ∧ ϕm) → ψ) is
unsatisfiable. If we find it is unsatisfiable, then (10) is proven to be a tautology.

Inspecting the truth table for the logical implication → reveals that (ϕ → ψ) is
equivalent to ¬(ϕ ∧ ¬ψ). Hence, ((ϕ1 ∧ … ∧ ϕm) → ψ) is equivalent to
¬(ϕ1 ∧ … ∧ ϕm ∧ ¬ψ), and by double negation, ¬((ϕ1 ∧ … ∧ ϕm) → ψ) is equivalent
to (ϕ1 ∧ … ∧ ϕm ∧ ¬ψ). Therefore, in order to to check whether (10) is a tautology
we may equally well check whether

(11) (ϕ1 ∧ … ∧ ϕm ∧ ¬ψ)

is satisfiable. If we find it is, then (10) is not a tautology: we have disproven the claim
(ϕ1 ∧ … ∧ ϕm) → ψ.

There are a number of reasons why one proceeds in this indirect way of trying to find
out whether (11) is satisfiable, instead of trying to find out directly whether (10) is a
tautology:

• One (often) does not have to compute the entire truth table of (11). Once one has

found a single line in that table with a result of 1, (11) has been shown to be
satisfiable and hence (10) is disproven – end of procedure.

• The formula (11) has a homogeneous structure: it is a single conjunction. If one
transforms the elements ϕ1, …, ϕm, ¬ψ, each into CNF, the entire formula is in
CNF. Often the premises ϕ1, …, ϕm will already be in CNF, so the computational
cost is small. Then one can invoke clever algorithms which are specifically
designed to search for interpretations  which satisfy a CNF formula.

In fact, much research has gone into sophisticated algorithms that decide whether a
Boolean function in CNF is satisfiable. Entire books and scientific workshops are
devoted to this theme. Because this question is of such a fundamental importance for
CS, I devote an explicit definition to it:

Definition 1.11 (satisfiability problem). The satisfiability problem in theoretical CS,
abbreviated standardly by SAT, is the following computational problem: given as
input a Boolean formula in CNF, compute as output a "yes" or "no" response
according to whether the input formula is satisfiable or not.

 20

In the worst case, finding out whether a Boolean formula in CNF is satisfiable
amounts to computing the entire truth table. In practice, this worst case often does not
strike and cleverly designed algorithms find "yes" or "no" answers much earlier. It is
decidedly the most famous open problem in CS – and possibly in mathematics in
general – whether some (as yet undiscovered) algorithm exists which can decide the
SAT problem always faster than by computing the entire truth table. Check out
http://en.wikipedia.org/wiki/Boolean_satisfiability_problem to read more. If you can
find an algorithm which always is faster than computing the entire truth table, or if
conversely you can prove that no such algorithm exists, then you will be the most
famous mathematician of the decade if not the century, and you will have secured a
one Million Dollar prize – you will have solved what is known as the N = NP
problem (http://en.wikipedia.org/wiki/Millennium_Prize_Problems).

2 Some elements of computational complexity

In the preceding subsection 1.9 I made informal statements concerning the "speed" of
certain computations. I said, for instance, "... an algorithm which always is faster than
computing the entire truth table…". Questions relating to the "speed" of a
computation, or its "cost", or "effort" or the like, are of natural importance for CS.
Some computations of great practical importance apparently require a large
computational effort. A good example is weather prediction. Predicting the weather
amounts to simulate the atmospheric dynamics of the entire planet. These simulations
are done on supercomputers – in fact, national weather agencies maintain some of the
largest existing computing facilities. And the computer scientists and mathematicians
(!) employed there are naturally interested to find ways to speed up their
computations. Another example where speed matters, which may be closer to your
everyday experience, is internet search. Google started its epochal rise by a clever,
innovative algorithm to rank pages that match the search keywords. Obviously this
algorithm had to be fast as lightning! Have you ever thought that it comes close to a
miracle that you get the results from a Google query so fast, even though this
somehow must require comparing billions of webpages?

The importance of computational efficiency has been clear from the beginnings of
modern CS. It has given rise to an entire subfield of theoretical CS called complexity
theory. This is one of the most difficult and complex themes in theoretical CS. In a
nutshell, the core question in complexity theory is If I have an algorithm A which
computes the problem P in time T, is there another algorithm B which solves the same
problem in less time? Other measures of computational cost besides time are also of
interest, in particular the amount of memory space that is claimed by a given
algorithm, but here I will only consider time complexity. In this course we cannot dig
deep into complexity theory, but I want to outline some basic concepts.

First thing – how is the "time" needed for a computation measured? It cannot be
reasonably measured in seconds – because with computers getting faster every year,
the time measures would become a moving target. One wants a measure of "time" that
is independent of a concrete computer.

The standard answer to finding a measure of computation time which is independent
of concrete computing hardware is to define an abstract computing device which is as

 21

simple as possible (to admit a transparent mathematical formalization) yet as powerful
as any other computer (to be relevant at all). This "elementary abstract total-power
computer" is the Turing machine (TM). It is called a "machine" but in fact it is a
mathematical concept. I will not give the mathematical definition but instead provide
a intuitive sketch by way of a diagram, pretending that the TM were a mechanical
device and not a mathematical abstraction.

A TM consists of three main components:

• A "control unit" (think of a CPU) which is a simple switching device (much like a

Boolean circuit) which can switch between a finite number of states.

• A "memory tape" which is a right-infinite linear array of cells. Each cell can be
empty or hold a 1 or a 0 symbol (other and more symbols can be used too but
zeros and ones suffice). This is the Turing machine's "working memory".

• A read-write head which can move along the memory tape. When it is positioned
over a cell (it can "see" only one cell at a time) it can read the symbol, and it can
write a new symbol into the cell, replacing the previous one if the cell was not
empty.

Like modern digital computers, a TM has a working cycle which is repeated again and
again. A working cycle consists of the following substeps:

1. Read the symbol that is currently under the read/write head (or read "empty").

2. Depending on the current state of the control unit and the symbol that has been
read, do the following three things:

a. switch the control unit to the next cycle's state,

 @ + 1 0 1 1 1 + + +
...

control unit
with states

tape
memory

movable
read/write head

 22

b. write a symbol in the currently seen cell,
c. move the head one step to the left or to the right (or remain on the same

cell).

A run of a TM is a sequence of such working cycles which is obtained as follows:

1. At the beginning of a run, the control unit is in a specially designated starting

state, and the read/write head is positioned at the leftmost tape cell.
2. At the beginning of a run, the "user" has written in input word into some cells,

starting from the left end of the tape. An input word is just a finite sequence of 0's
and 1's. To the right of the input words all tape cells are initially empty. Note that
in theoretical CS, a "word" is the technical term for any finite sequence of
symbols from some given alphabet.

3. From this starting configuration, the working cycle updates are activated. The TM
starts "running", executing one working cycle after the other. In this process, the
control unit passes through a sequence of states, the read/write head moves back
and forth on the tape, reading/erasing/printing new symbols as it moves along.

4. One of the states of the control unit is called the halting state. If at the end of
some working cycle the control unit is led into that state, the run stops. (And if the
halting state is not entered, the run does never stop...! you know this behavior
from your computer when it "freezes" – in fact it most likely did not "freeze" but
entered an un-interruptible infinite loop of non-terminating actions.)

5. After the run has stopped, whatever is currently written on the tape is considered
as the output word of that run.

This model of a TM can be enriched by convenience features. The most common of
these add-on features is to endow the TM with more than a single memory tape.
Multi-tape TMs often are granted a specific tape that is used exclusively for feeding
the input word, and another special tape dedicated to write the output on. Such multi-
tape TMs can't solve other or more computational tasks than single-tape TMs can, but
they make it easier to design concrete TMs that can master a given computational
task.

These simple "machines" can be mathematically proven to be capable of computing
the same input-output functions as any digital computer. Therefore it is no loss of
generality if one builds the formal theory of computation on the fundaments of just
these TMs. In fact, the two fundamental branches of theoretical computer science,
which investigate the twin questions

• of which input-output functions can be computed at all, regardless of cost (theory

of computability), and

• and among the input-output functions which can be computed at all, which of
them can be computed how fast (theory of complexity),

both build on TMs as the standard, fundamental, mathematical model of a computer.

 23

The TM also serves as the standard model of an algorithm. While you likely have an
intuitive grasp of this concept as a "computational procedure", the concept of a TM
affords us with a rigorous, precise definition of this central item of CS. "Algorithms"
can be identified with TMs:

Thus, an algorithm (in the sense how this concept is understood in theoretical CS) is a
formal mechanism (typically a TM) which computes a word-input, word-output
function. The input words are the symbol sequences that are written on the TM (input)
tape at the beginning of a run, the corresponding output words are what is left on the
(output) tape when the TM enters the halting state.

Example. Computing the square function f(n) = n2 of integers n: in order to frame this
formally as a formal TM-based algorithm, one needs to devise a way to code the input
integer n as a word string of 0's and 1's. The natural way to do this is to use the binary
representation of integers (about which you have learnt in the first part of this lecture).
A TM computing this function must be designed in such a way that

1. On each input word (i.e. on every input sequence of 0's and 1's coding n) the
TM embarks on a run that after a finite number of working cycles actually
enters the halting state, and

2. at halting time, on the tape there is a single connected sequence of 0's and 1's
(with no empty cells in between) which is the binary representation of n2.

Many different TMs can be devised which obey these specifications – there are many
different algorithms to compute the square function.

Example. Checking whether a Boolean formula ϕ in CNF is satisfiable. Again, in
order to frame this formally as an algorithm, one first needs to fix a way to code
Boolean formulas as binary words, in order to make them "inputtable" for a TM.
There are many coding schemes that do this. For instance, one can first write down ϕ
in human-readable style as we did in Section 1, giving a symbol string in the standard
ASCII symbol set. Then one can replace each ASCII symbol in this string by its 7-bit
binary representation, yielding a binary word that uniquely codes ϕ. One furthermore
needs a way to code the desired outcome of a satisfiability check as a binary word.
The two possible outcomes are "yes" (ϕ is satisfiable) and "no" (it's not). One could,
for instance, declare that an output word "1" means "yes" and an output word "0"
means "no". Like in the case of computing the square function, one must design a
concrete TM (= design a concrete algorithm) which

1. On each input word (i.e. on every input sequence of 0's and 1's coding a
Boolean expression ϕ) the TM embarks on a run that after a finite number of
working cycles enters the halting state, and

Algorithm = Turing machine

 24

2. at halting time, on the (output) tape there is a single non-empty cell which
holds a 1 if ϕ is satisfiable and a 0 if not.

Again, there are many different TMs (= algorithms) which solve this task.

If you want to learn more about TMs, visit the well-written Wikipedia article
https://en.wikipedia.org/wiki/Turing_machine. It is kind of funny to see a TM do its
work. The read/write head moves left and right on its tape like crazy and prints and
erases 0's and 1's (or other symbols), and the tape inscription can grow very large.
There are numerous browser-runnable visualizations of these busy devices on the
web, for instance at http://morphett.info/turing/turing.html (load the "primality test"
TM!)

Now we are equipped to tackle the main question of this chapter, time complexity.
Having TMs at our disposal, we now can measure the time needed by an algorithm
for computing a function: it is simply the number of TM update cycles that a run takes
before the TM halts. For a mathematical analysis of TM runtimes, we make this
(halfway) precise:

Definition 2.1 (measuring TM runtime). Let M be a TM with a tape alphabet {0, 1}.
Let f: A → B be some function from some countable set A = {a1, a2, ...} to some
arbitrary set B. Let  be a coding function which translates every ai ∈ A into a unique
binary codeword (ai). Let  be a decoding function which translates every binary
word to some element of B ∪ {}. Then we define the following items:

1. M computes f if for every ai ∈ A, when M is started with (ai) on its (input)
tape, M executes a finite number l of updates cycles, then enters the halting
state, and the binary word w which is then on the (output) tape satisfies
f(ai) = (w).

2. If M computes f, the number of l of update cycles before halting when M is
started on input (ai) is called the runtime of M on input (ai). It is denoted
by l = T(M, , ai).

In this definition, the image domain of the decoding function  was set to B ∪ {}.
The special value  would be returned by  for those binary words which are not
useful outputs of the TM.

Example. In the square function example, f: N → N, n # n2 is the ordinary square
function on the natural numbers. The coding function  transforms each n ∈ N to its
binary representation string, and the decoding  retransforms binary representations
of natural numbers back to the corresponding n ∈ N.

Example. In the satisfiability check task, we have

f: {set of all Boolean expressions ϕ} → {"yes", "no"}.

 25

The coding  transforms every Boolean expression ϕ to a binary codestring. The
decoding  maps the word 1 to "yes", the word 0 to "no", and any other binary word
to .

Now let us take a closer look at the runtimes in the square function example. A
natural strategy for designing a TM that computes this function would be to mimick
on the TM the paper-and-pencil procedure for computing products that you know
from elementary school. For example, in order to compute 52, where 5 in binary is
written as 101, you would write down a scheme like

 101*101

(12) 101
 000
 101

 11001

The bulk of this writeup is contained in the middle part. Let L = length((n)) be the
length of the codeword of the argument n. In our example (12) we have L = 3. The
scheme (12) requests to write down L2 0's and 1's in that middle part. The length of
the final output string (here 11001) is at most 2L. Altogether you have to write down
L2 + 2L symbols (or one less if the length of the output word is 2L–1). Without going
into details, I state here that this elementary-school scheme can be mimicked quite
closely on a 3-tape TM Msquare. The TM needs some extra head moves (which invoke
extra working cycles) for "administrative overhead", like moving the read-write head
back to the beginning of a tape inscription when a substep of the scheme (12) has
been completed. If one counts all the necessary cycles one finds that one can design a
TM which needs no more than 3(Ln

2 + 2Ln) + 2 for any input of length Ln =
length((n)). Expressed formally, our TM needs at most time

(13) T(Msquare, , n) ≤ 3 * (Ln

2 + 2Ln) + 2.

Designing a TM that solves the satisfiability check problem is much more involved
and I will refrain from doing this exercise in any detail. If one mimicks the "naive"
procedure of computing the entire truth table, one will end up with some TM MSAT
that needs at most a number of working cycles which is exponential in the size Lϕ =
length((ϕ)):

(14) T(MSAT, , ϕ) ≤ 2α Lϕ ,

where α is some constant that depends on the concrete detail of the TM design. The
reason for this exponential runtime is the sheer size of the truth table which grows
exponentially with the number of Boolean variables in ϕ.

Here are two observations which constitute the basis for how computation runtimes
are handled in theoretical CS:

 26

1. The runtimes reported in (13) and (14) are upper bounds. We are not
interested in the exact number of working cycles.

2. The runtimes are measured (or more precisely, the bounds are stated) as a
function of the lengthes L of the input words. Different inputs which have the
same length are treated identically with respect to their induced runtimes.

Furthermore, details don't matter. If we have a concrete TM M which computes f, then
usually it is possible by some fine-tuning to improve the runtime of M a little. But we
are not really interested in whether, for instance, T(Msquare, , n) ≤ 3 * (Ln

2 + 2Ln) + 2
or whether T(Msquare, , n) ≤ 2.5 * (Ln

2 + 1.75 * Ln) + 4. In fact, there exist generally
applicable tuning methods for speeding up a TM by any constant factor – this is the
linear speedup theorem:

Proposition 2.1 (linear speedup). If for some TM M which computes some function f
with input coding  we have T(M, , ai) ≤ γ(Lai), then for any speedup factort s ≥ 0
one can design another TM M' whose runtime is bounded by

T(M', , ai) ≤ sγ(Lai) + Lai.

This is actually not a deep theorem – the sped-up TM M' can be redesigned from M
by admitting M to process entire blocks of symbols on its tape in a single working
cycle, which leads to a new tape alphabet that has "block symbols".

In fact, an analog of the linear speedup theorem is effective in real digital computers.
You may have heard of "32-bit" or "64-bit" CPUs. A 64-bit CPU processes "block
symbols" which are binary strings of length 64 in single working cycles and is thereby
twice as fast (needs half the number of working cycles) than a 32-bit CPU to carry out
the same computation.

Because of the possibility of linear speedup, it is in many ways uninteresting to
distinguish computation speeds which differ from each other only by a constant
factor. To account for this indifference, a notation for specifying functions "up to
some factor" has been introduced and is widely used in theoretical CS: the Landau
big-O notation:

Definition 2.2 (Landau Big-O notation). Let f, g: N → N be two functions from the
natural numbers to the natural numbers. Then we write f = O(g) if for some real-
valued constant c > 0, and some n0 ∈ N, it holds that

(15) for all n ≥ n0: f(n) ≤ c g(n).

In words, f = O(g) means that f(n) is "ultimately" (for n sufficiently large) bounded by
g(n) up to a factor c.

http://en.wikipedia.org/wiki/Big_O_notation gives a much fuller account if you are
interested.

Examples:

 27

• 3 * (Ln

2 + 2Ln) + 2 = O(Ln
2). Comment: the "growth rate" of 3 * (Ln

2 + 2Ln) + 2
is ultimately dominated up to a factor by the quadratic term.

• More generally, if f(n) = ak n
k + ... + a1 n + a0 is a polynomial of degree k, then

f(n) = O(nk). Comment: the growth rate of any polynomial is ultimately
determined by its highest-order term.

• For any polynomial order k and any exponential growth rate α > 0, nk = O(2 α n).
Comment: any exponential function ultimately outgrows any polynomial. For
instance, n1000 < (2 0.0001 * n) if n is sufficiently large!

We have seen that the square function can be computed in polynomial runtime O(Ln

2)
and the Boolean satisfiability problem can be decided in exponential runtime O(2α Lϕ).
It is not known whether the Boolean satisfiability problem can be decided in
polynomial runtime (most researchers believe it can't). Computational tasks that need
exponential runtime are considered to be practically intractable. When input lengthes
L grow, the required runtime quickly "explodes". In contrast, polynomial runtimes are
in general considered tractable.

For many real-life problems, only exponential-time algorithms are known (and in
most cases one suspects that polynomial-time algorithms don't exist). Specifically,
this occurs very often for problems that have a combinatorial optimization flavor, for
example

• Given a set of machines and raw products and desired end products, find a

temporal schedule of passing raw and intermediate products to machines such that
the overall production time is minimized (a case of scheduling or queuing
problems).

• Given a set of axioms and premises and a desired conclusion, find a mathematical
proof which derives the conclusion from the axioms and premises (automated
theorem-proving)

• Given an electronic circuit diagram, find a concrete physical microchip layout that
minimizes wiring length, or the number of necessary wire crossings (which are
difficult/expensive to realize in hardware) (chip configuration)

In such situations, which abound, algorithm designers usually must resort to either
simplifying the original task until it becomes computationally tractable, or be satisfied
with approximate algorithms which most of the time return results that are close to
the optimum.

