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Overview 

Session 1: What is "Machine Learning", and what is it not? Examples 
and non-examples 

Session 2: The core of ML: modeling probability distributions 

Session 3: Feedforward neural networks: structure 

Session 4: Feedforward neural networks: training procedures 

Session 5: Deep Learning: the beauty and power of brute force 
(striking examples)  

Session 6: A bouquet of other ML stuff 
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A	  deep	  impact	  
 
 
 

• General approximation theorems say: given a training data set (xi, yi)i = 1,...,N , a 
cost function like the MSEtrain, and an arbitrarily small cost target value C > 0, 
then there exists a 2-layer MLP (that is, 2 layers of adaptive synaptic connections, 
but only a single layer of hidden units) which achieves this small cost.  

• These low-cost (highly accurate) 2-layer MLPs however require an extremely 
large number of hidden units. The intuitive reason for this: such 2-layer MLPs 
approximate the performance landscape by modeling every "pixel" in the input 
space individually with a few dedicated hidden processing units. For high 
resolution modeling, many pixels are needed; similarly, for high-dimensional 
input the number of required "pixels" explodes according to the curse of 
dimensionality.  

• A nice property of 2-layer MLPs: Backpropagation algorithm functions well; 
many of the difficulties listed in the previous session are not an issue.  

• Therefore, for a long time (mid-1980's until about 2010), 2-layer MLPs 
(sometimes 3-layer MLPs) were the only ones used routinely by end-user 
engineers.  

• This implies, reversing the above arguments, that only relatively simple and/or 
low-accuracy modeling problems could be successfully handled by routine end-
users.  

• Only very few, highly specialized academic research groups also investigated 
many-layer MLPs in the years until about 2006.  

Spread or fold 

•  General approximation theorems say: arbitrarily 
small costs (small error, high accuracy) can be 
obtained already with 2-layer MLPs the have a 
single layer of processing units ("shallow" MLPs, 
left).  
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deep MLP 

•  Same small cost can also be 
achieved with a deep (many 
layers) MLP that has 
exponentially fewer units in 
total (top). 

http://www.lecker.de 
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• It was intuitively evident to every researcher in ML that many-layer MLPs, in 
principle, should be preferred over 2-layer MLPs when the modeling tasks 
become complex. There are two inherent advantages of such "deep" MLPs: 

o For a given targetted accuracy, 2-layer MLPs need exponentially more 
units than "deep" MLPs. In practice this excludes 2-layer MLPs from 
solving complex modeling tasks. 

o Deep MLPs have intrinsically better properties with respect to 
overfitting.  

• But the difficulties with deep MLPs are enormous and proved insurmountable 
(except for one or two highly specialized research groups in highly specific 
modeling tasks) for a long time: 

o Due to the extremly "contorted", irregular geometry of the 
performance landscape in such deep MLPs, the backprop algorithm 
would either run dead ("vanishing gradient") on the way or become 
numerically unstable ("exploding gradient").  

o "Guessing" a good initial model becomes superbly difficult. Again due 
to the very "rugged" performance landscape, any naïve guess for an 
initial model would place it next to a local minimum of high cost; 
"going downhill" in the performance landscape would converge to a 
very suboptimal solution.  

• 2006 was a "turn of the tide" year: 
o Geoffrey Hinton and Ruslan Salakuthdinov published a paper in 

Science, "Reducing the Dimensionality of Data with Neural 
Networks", which gave a (very nontrivial and expensive) solution to 
the initialization problem for backprop-training of many-layer MLPs.  

o Yoshua Bengio and Yann LeCun wrote a long paper (preprints 
available 2006, final publication 2007), "Scaling Learning Algorithms 
towards AI", which for the first time gave a clean line of arguments 
why and in what sense many-layer MLPs are superior to 2-layer 
MLPs. These arguments were partly analytical, partly intuitive, – but 
compelling. 

o The term "deep" to denote neural networks with many layers appears 
to have become firmly established in this year.  

• It wasn't coincidental that these landmark papers were written by Hinton, Bengio, 
and LeCun. Hinton and LeCun are pioneers of the backpropagation algorithm, 
Bengio is a machine learning superforce, and the three of them operate from 
close-by locations (Toronto, Montreal, and New York), enabling close contacts 
and exchanges of group member.  

• Today, Hinton has become Distinguished Researcher of Google, LeCun has 
become Director of a newly created AI Research Institute funded by Facebook, 
meaning in both cases very large-scale funding to their groups (and reduced 
academic presence). A deep learning startup called DeepMind, founded by 
Hinton, has been acquired by Google for about 500 Mio USD.  

• Some years after the initial deep learning ignition, Andrew Ng, robotics and ML 
researcher (and co-founder of Coursera) entered the DL field. After a Google 
intermezzo he joined Baidu (= "Chinese Google") as Chief Scientist, directing 
Baidu's Silicon Valley research center.  

•  Only Bengio still runs free in the wild, wild world of academia, resisting the 
temptations of big money... 
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• In the 1990's and early 2000's, Yann LeCun (Courant Institute of Mathematics, 
New York) was by and large the only ML researcher who persistently designed 
many-layer neural networks, christianed LeNet 1, LeNet 2, ... 

• LeCun was a pioneer of the original backprop algorithm and refined it in many 
ways over the years. A role model for tenacity in scientific research. 

• The LeNet family of NNs are called convolutional networks. This is a particular, 
highly pre-structured architecture, with a particular dedication to image 
classification.   

• Convolutional networks are characterised by alternating convolutional and 
subsampling layers. 

• A convolutional layer is "pre-wired" to learn a given small number of local 
geometric features and detect them anywhere in the input image (translation 
invariance).  

• For every spatial feature, a convolutional layer has a separate "neural sheet" 
whose processing units represent the local presence of that particular feature. 
These "neural sheets" are called maps in convolutional network parlance. If, for 
instance, a convolutional layer should represent the three features "local dot 
pattern", "local diagonal line segment", "local patch of color blue", there would be 
altogether three maps in that layer.   

• Subsampling locally averages over the convolutional-layer activations, reducing 
the number of units.  

• The convolutional and subsampling layers, after training, implement a hierarchical 
feature extraction cascade. The number of features typically grows along the layer 
hierarchy, the spatial resolution shrinks.  

• These layers are followed by "normal" MLP layers, and enventually by a 
specialized "readout" layer that transforms the high-level feature representation 
into the classification output (a hypothesis vector).  

LeNet 1, 2, ... 

•  Yann LeCun, in a solitary way, designed deep NNs throughout the years: LeNet 1, 
LeNet 2, ... till the present day 

•  "Convolutional networks": architectures specialized for digit / letter / image recognition 
tasks 

•  Early industrial applications in cheque reading 

•  Deviates from "pure" MLPs in many ways, has different kinds of processing layers that 
perform feature extraction, spatial shifts, averaging, classical MLP, specialized readout 
layer 

•  But still, the entire system is trained by backprop-enabled gradient descent 

Figure shows LeNet 5,  
from LeCun, Bottou, Bengio, Haffner 1998 

4 



 4 

• While the architecture of a LeNet has heterogenous types of processing layers, the 
entire system can still be trained by backprop (if this is done expertly). 

• Convolutional networks marked the state of the art in NN based image 
classification for 15 years and still are a commonly used template for designing 
today's "deep learning" neural networks in image classification tasks (and other 
tasks too).  

 
 

• Training data were difficult (at that time) due to textured background and objects 
shown in different perspectives. They were easy in the sense that there were only 
5 types of objects, and they were all centered in the images and of similar size.  

• The first convolutional layer in (this instance of) LeNet 7 had 8 maps which 
computed 8 spatial features (4 shown). These features were "discovered" by the 
backprop training and therefore do not necessarily correspond to local image 
characteristics that can be intuitively named by humans.  

• The subsampling steps are not trained. In a hardwired way, in these steps the 
activations of 4 x 4-sized tiles in the convolutional sheets are averaged, giving a 
reduction of the number of processing units by a factor of 16 (in the first 
subsampling after the first convolution), and from 3 x 3 tiles in the next 
subsampling.  

• The image on the slide omits a third convolution stage with 100 maps, with no 
subsampling. 

• The output layer has 5 units whose activations correspond to hypothesis 
strengthes. In the shown example, the unit coding for "plane" lights up = high 
activity value = high confidence that the input is a plane.  

 

State of the art before the deep explosion: LeNet 7, 2004 

Training data:  

•  291,000 images of toy 
objects centered on textured 
background 

•  Objects viewed in different 
perspectives 

•  5 classes: animals, humans, 
planes, trucks, cars 

LeCun et al (2004), Learning Methods for Generic Object Recognition with Invariance to Pose and Lighting  
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Figure 2. Some of the 291,600 examples from the jittered-textured training set (top 4 rows), and from
the jittered-cluttered training set (bottom 4 rows). (left camera images).

squared). Fortunately, following [13], we can compute the
principal direction of a centered cloud of points (xi) by
finding two cluster centroids that are symmetric with re-
spect to the origin: we must find a vector u that mini-

mizes
∑

i
min

(

(xi − u)2, (xi + u)2
)

. A quick solution is
obtained with online (stochastic) algorithms as discussed in
[2] in the context of the K-Means algorithm. Repeated ap-
plications of this method, with projections on the comple-
mentary space spanned by the previously obtained direc-
tions, yield the first 100 principal components in a few CPU
hours. The first 29 components thus obtained (the left cam-
era portion) are shown in figure 3. The first 95 principal
components were used in the experiments.

3.2. K-Nearest Neighbors (with Euclidean Dis-
tance)

Because running the K-Nearest Neighbors algorithm
with 24,300 reference images in dimension 18,432 is pro-
hibitively expensive, we precomputed the distances of
a few representative images Ak to all the other refer-
ence images Xi. By triangular inequality, the distances be-
tween a query image X and all the reference image Xi is
bounded below by Maxk |d(X, Ak) − d(Ak, Xi)|. These
can be used to choose which distances should be com-

puted first, and to avoid computing distances that are
known to be higher than those of the currently selected ref-
erence points [17]. Experiments were conducted for val-
ues of K up to 18, but the best results were obtained for
K = 1. We also applied K-NN to the 95-dimensional
PCA-derived feature vectors.

3.3. Pairwise Support Vector Machine (SVM)

We applied the SVM method with Gaussian kernels
to the raw images of the normalized-uniform dataset, but
failed to obtain convergence in manageable time due to
the overwhelming dimension, the number of training sam-
ples, and the task complexity. We resorted to using the 95-
dimensional, PCA-derived feature vectors, as well as sub-
sampled, monocular versions of the images at 48×48 pixels
and 32×32 resolutions.
Ten SVMs were independently trained to classify one

class versus one other class (pairwise classifiers). This
greatly reduces the number of samples that must be ex-
amined by each SVM over the more traditional approach
of classifying one class versus all others. During test-
ing, the sample is sent to all 10 classifiers. Each classifier
“votes” for one of its attributed categories. The cate-
gory with the largest number of votes wins. The num-
ber of support vectors per classifier were between 800 and

Figure 5. Internal state of the Convolutional
Network for an image pair from the jittered-
textured dataset. From left to right: input (left
and right images), C1, S2, C3, S4, and out-
put. layer C5 was omitted. The 4 topmost fea-
ture maps of C1 and S2 are monocular, while
the 4 bottom ones are binocular.

Figure 6. Examples from the jittered-cluttered
test set with labels produced by the binocular
convolutional net (line 6.0). The labels above
each image indicate the system’s first choice
and second choice (“junk” means no object
was found). If the first choice is erroneous,
the correct class label is displayed in brack-
ets. This is a typical set of examples where
most confusions occur between trucks and
cars.

[20] C. Schmid and R. Mohr. Local grayvalue invariants for
image retrieval. IEEE Trans. Patt. Anal. Mach. Intell.,
19(5):530–535, May 1997.

[21] H. Schneiderman and T. Kanade. A statistical method for 3d
object detection applied to faces and cars. In CVPR, IEEE,
2000.

[22] A. Selinger, R. Nelson. “Appearance-Based Object Recogni-
tion Using Multiple Views,”CVPR, IEEE, 2001.

[23] S. Ullman, M. Vidal-Naquet, and E. Sali. “Visual features of
intermediate complexity and their use in classifi cation”, Na-
ture Neuroscience, 5(7), 2002.

[24] R. Vaillant, C. Monrocq, and Y. LeCun. Original approach
for the localisation of objects in images. IEE Proc. on Vision,
Image, and Signal Proc., 141(4):245–250, August 1994.

[25] P. Viola, M. Jones. Rapid Object Detection using a Boosted
Cascade of Simple Features. CVPR, IEEE, 2001.

[26] M. Weber, M. Welling, and P. Perona. Towards automatic
discovery of object categories. In CVPR, IEEE 2000.

test input 
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pair) 

4 sheets 
(of 8) of 
first conv. 
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sampled 
4x4 

some sheets 
(of 24) of 2nd 
conv. layer  

sub- 
sampled 
3x3 

output: 
hypothesis 
vector 
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• Go visit the interactive website deeplearning.cs.toronto.edu and play 
with it yourself!  

• Task: find tags for input pictures.  
• I could not find a publication that describes this particular online demo, so I can 

only guess it was trained on a large tagged image repository like (parts of) Flickr, 
using a deep convolutional network with many layers (say, 10-20).  

• Compared to LeNet 7: 
o Nr of classes (tags) has increased from 5 to thousands 
o Training and testing images are not laboratory-made and standardized, 

but come "from the wild" 
• It's not as perfect as this slide suggests, as you will find out if you upload your 

own pictures. If your picture contains unconventional objects, they (obviously) 
won't be tagged in a meaningful way. The trained system does not understand 
reality but captures "only" the statistics of the training sample. If new test pictures 
fall outside that statistical range, the network cannot come up with appropriate 
outputs.  

 

State of deep art, Hinton 
website demo, 2014 

6 
deeplearning.cs.toronto.edu 

Example Images: click to classify &
retrieve!

Enter an
image URL

 Classify!

Retrieve!

Upload an
image

Browse… No file selected.

 Classify!

Retrieve!

Recent Searches: Reset

()

Please help us improve results by clicking on check or X marks,

thanks!

34%

19%

13%

12%

9%

3%

3%

1%

Possible tags:

 killer whale, killer

 tiger shark, Galeocerdo cuvieri

 scuba diver

 snorkel

 coral reef

 oxygen mask

 electric ray, crampfish

 hammerhead, hammerhead shark

Similar Images:
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... even more stunning ... 

7 
deeplearning.cs.toronto.edu Training data: 30,000 annotated Flickr pics 

...performing: tagging & commenting... 

8 
deeplearning.cs.toronto.edu 
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• Another online demo from deeplearning.cs.toronto.edu . 
• Task is to tag images, and in addition create a 1-sentence descriptive phrase.  
• Here I think I spotted a paper that describes this system: R. Kiros, R. 

Salakhutdinov, R. S. Zemel (Nov 2014), Unifying Visual-Semantic Embeddings 
with Multimodal Neural Language Models, http://arxiv.org/abs/1411.2539  

• If that paper describes what's behind the demo, it was trained on 30,000 annotated 
Flickr pictures. 

... ... 

9 
deeplearning.cs.toronto.edu 

Flickr image annotation experiments: comments 
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•  Task: generate tags and captions for Flickr pics 

•  Combines two modalities: visual and linguistic 

•  Complex architecture with 2 different interacting network types 

•  one of them a 19-layer convolutional network (for image 
processing functionality),  

•  the other a recurrent neural network (for text generation) 

•  Training: still done with backprop 
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• The task of transforming an image into a text string has structural similarities with 
translation, where one text string in language A is transformed into a text string in 
language B. The authors re-used many ideas from existing text translation 
systems.  

• The annotation text output can be seen as a time series (text is read/generated in 
temporal order from left to right). Such temporal tasks are typically solved by a 
variant of neural networks called recurrent neural networks (RNNs). In RNNs, 
connection pathways don't "feed forward" in a single direction, but "cycle back" 
inside the network. This allows network activation to "reverberate", endowing the 
network itself with a temporal dynamics. RNNs are in many ways more difficult 
to train than feedforward networks, but there are variants of backprop that can 
handle this situation. Technically speaking, RNNs can be re-formulated as 
feedforward networks of "infinite depth" – time itself creates an incessant 
sequence of layers.  

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

The deep learning explosion 
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•  Since 2013, and especially since 2014, performance and variety of 
NN models explodes 

•  Successes in extremely demanding tasks, for example: 

•   online translation 

•  read historical hand-written documents 

•  "inventing" text, including entire webpages on the html level 

•  learning computer programs from example computations, e.g. 
programs that sort lists 

•  New results come in too fast for classical journals, use fast-
reviewing conferences or arXiv instead 

•  Massive funding through Google, Microsoft, Facebook, and less 
widely known but almost as large microchip manufacturing 
companies 

•  A veritable frenzy in the ML community 
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• Deep Learning currently has an overwhelming coverage in the tech media, 
outshining all other research directions in ML. Its impact as an advertisment for 
ML cannot be over-estimated. But in fact, the majority of ML researchers do not 
do deep learning – among other reasons, because they can't (the required 
resources and specialized expertise are hard to pull together). But there are also 
other, better reasons why other strands of ML deserve (or need) to be pursued 
further: 

o DL has almost nothing to say about human/biological learning. 
Backprop is inherently biologically implausible (even impossible). 

o DL in its current formats is, in a way, too complex and expensive for 
wide-spread use. The stellar demos of 2014 could only be achieved by 
singular efforts of singularly experienced experts in superbly funded 
environments.  

o Deep learning architectures are so complex and individual that a 
mathematical analysis – in other words, scientific understanding – is 
out of reach. DL thrives on heuristics (extremely clever and refined!) 
and brute force computational power.   

o The world of machine learning (and its partner discipline, 
computational neuroscience) has been producing amazing 
breakthrough insights, unrelated to backprop or even unrelated to 
neural networks, at a rate of (my estimate) one revolutionary insight / 
year since a decade or two. ML in general is a wide, wide field and 
extremely productive. Don't reduce it to deep learning, stay tuned for 
surprise marvels of other kinds.   

The dynamite mix 
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Three ingredients 

1.  a team of experienced backproppers who know the tricks of the 
trade w.r.t. 

•  architecture design 

•  model initialization 

•  regularization 

•  stepsize control  

2.  high-performing computing infrastructure 

•  large PC cluster (e.g., 16,000 cores) or a GPU farm (today's 
standard) 

•  a flexible, comprehensive SW development environment (e.g., 
http://deeplearning.net/software/theano/ ) 

3.  very large training datasets 

The fabulous results emerge from a small number (order of 5) of leading 
research groups, with intense cross-lab collaboration and exchange of 
people and ideas. 



 1 

Machine	  Learning	  Module	  in	  GenICT	  2:	  Handout	  4	  	  

Learning:	  hide-‐and-‐seek	  in	  performance	  landscapes	  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Basic set-up 
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•  Given: training data sample D = (xi, yi)i = 1,...,N 

•  Assumption: there exists a function g such that yi = g(xi) + ! 

•  The "noise term" + ! denotes the circumstance that the function 
values yi in the training data are corrupted by random fluctuations 

•  Wanted: a machine learning model of g, for instance a MLP that 
approximates g.  

•  The ML model is a statistical estimate of g, often written as !. 

•  To get this machinery working, we first need a way to quantify the 
approximation quality of the estimate !. 

Measuring approximation quality, given a training sample 
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•  Given: training data sample D = (xi, yi)i = 1,...,N, assumption          
yi = g(xi) + !, and an estimate !. 

•  Question: how should we measure "approximation quality" of !? 

•  Answer: by a cost function (also known as error function or 
objective function) 

•  A widely used cost function: mean square error (MSE). 

•  If the yi are 1-dimensional (just numbers), the MSE incurred by ! is 
given by 

•  Because the mean error is computed over the training sample, it is 
also called the training error or training MSE. 

•  If the yi are n-dimensional vectors, the MSEtrain is taken to be the 
average component-wise MSE.  

! 

MSE train ( ˆ g ) =
1
N

yi " ˆ g (x i)( )2

i=1

N

#
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• In Session 2 I said that ML always implies statistical modeling. The statistics 
aspect enters the game in function learning from training input-output records    
(xi, yi)i = 1,...,N through two circumstances:  

1. The training instances have been randomly sampled,  
2. the training target output values yi contain a random noise component. 

• Thus, in the background of professional ML modeling, there is always the 
humming sound of professionally applied statistics. We largely ignore this aspect 
here.  

• In some application scenarios, the function approximation task not only demands 
to find an approximation ĝ for the assumed underlying "true" function g, but 
furthermore also a model of the noise component ν. In the simplest case, this 
would be a standard deviation or variance.  

• If the yi are n-dimensional vectors, the training MSE is concretely computed as 

 
 

 
where v[j] denotes the j-th component of a vector v.  

• A more mathematically elegant notation for the same quantity is 
 

 
• Besides the mean square error, there are other cost functions in frequent use. The 

MSE is popular because it leads to relatively simple computations, and because it 
is statistically appropriate if the noise term ν is Gaussian noise (normally 
distributed noise).  

 

 
 

€ 

MSE train ( ˆ g ) =
1

N n
y i[ j]− ˆ g (x i)[ j]( )2

j=1

n

∑
i=1

N

∑

€ 

MSE train ( ˆ g ) =
1
N

y i − ˆ g (x i)
2

i=1

N

∑

Minimizing the cost by searching in parameter space 
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•  Given: training data sample D = (xi, yi)i = 1,...,N. 
•  Wanted: an MLP M computing a input-output function !, such that we get 

a small   

•  Routine procedure (and notation): 

1.  We decide on the structure of the MLP. This means to fix the 
number and sizes of the weight matrices Wi+1,i. 

(only input and output dimension are given by task, number of layers and 
their sizes must be decided by experimenter) 

2.  Call all the matrix elements, lumped together, the parameter set ! = 
{!1, !2,  ...} 

3.  The to-be-trained MLP M, and hence !, then is fully determined by 
!. We write !(!).  

4.  "Training" the MLP then just boils down to "find parameters ! such 
that MSEtrain becomes minimal". 

! 

MSE train ( ˆ g ) =
1
N

yi " ˆ g (x i)( )2

i=1

N

#
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• The first step in the routine procedure, "decide on the structure of the MLP", is 
where the human engineer's experience and judgement enter the game. ML 
learning algorithms usually do not search for the best type or structure of the 
model. It is (typically) the humen expert who rubs his/her nose and muses: "well, I 
think I will use a feedforward neural network (and not some other kind of ML 
tool) and I will set it up with 3 hidden processing layers made of 100 units each".  

• Deciding on the type of a ML model is harder than it may seem. While in this 
lecture I present only one model type (standard MLPs), there exist hundreds or 
even thousands of different model types, or learning architectures as they are also 
called. Almost every publication in this field proposes a new architecture variant.  

• It is indeed in principle possible to also (try to) optimize the model structure (like 
number and size of layers) by automated search procedures, but these procedures 
tend to be overly expensive and also not as good as human insight. 

• In an MLP, the parameter set θ is the collection of all the connection weight 
parameters of the network. It's a more convenient notation than writing down all 
the involved connection matrices Wi,i+1. Notation ĝ(θ)  is a convenient shorthand 
for "the MLP that has the parameters θ and tries to approximate g" 

• Step 4, "find parameters θ that minimize the training error" is of course the tough 
part in this enterprise. How could one possibly find the "right" values for a million 
of such parameters? 

 
 

 

• Image on this slide shows a parameter space that has only two parameters. Try to 
imagine such a cost landscape over 1 Mio parameters...  

 

 
 

 

Performance landscape 

!1 

• 
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•  Think of the cost as a "height" over "parameter coordinates". One speaks of 
"landscapes" (e.g. cost landscape, error landscape, or performance landscape) 

•  A particular model !(!) is given by a location (coordinate point) in this landscape. 
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!2 

Cost, e.g., 
MSEtrain 

best ! 

•  Optimal (lowest-cost, most accurate) models = locations of minimal elevation   
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Performance landscape in a contour plot 

!1 

•  In a contour plot visualization, the cost landscape is represented by elevation 
lines, like in hiking maps. 

•  Contour plots of error landscapes are intuitive for explaining the learning process 
in an MLP.  
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!2 

best ! 

red lines: high cost, 
bad models 

blue lines: low cost, 
good models 
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Learning a model by gradient descent optimization 

!1 

Iterative learning procedure 

1.  Guess initial (random) model !(0). 
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!2 !(0) 

2.  Compute direction where landscape 
slope goes "downhill" most steeply: the 
[negative] gradient of the landscape at 
the location !(0). 

3.  Go a little step in that direction to new 
location (model) !(1). 

!(1) 

4.  Iterate steps 2 and 3, obtaining a 
sequence of models !(2),    

!(2) !(3) 

!(3),... 
5.  Continue until model sequence !(n-1), 

!(n), !(n+1),... settles in a "trough", that 
is, a minimum of the landscape.  

6.  Stop when this process has "run dead": 
gradient becomes zero, no further 
advances. The final model !best is the 
result of the learning procedure. 

!best 
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• For the mathematically inclined ones: formally, the gradient of a 1-dimensional 
function f: Rn → R, f(x1, ..., xn) = y, is the vector made of the partial derivatives of 
f w.r.t. its arguments: 

€ 

grad( f ) =
∂f
∂x1
,..., ∂f

∂xn

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

It can be understood as an "arrow" that points in the direction where f increases 
most strongly (and the negative gradient, which is used in MLP training, points in 
the most strongly decreasing direction). The length of the gradient vector 
signifies the steepness of ascent. If f is rather "flat" at some point f(x), the 
gradient vector is very short. This is the root cause for two problems. The 
problem of slow convergence (see slide 10), also known as "vanishing gradient" 
problem, arises in "rather flat" areas of the performance landscape. Conversely, 
numerical instabilities may arise in "steep" areas where large gradients make the 
interations take (too) big adaptation jumps.  

• The celebrated backpropagation algorithm (often called just "backprop" or "BP") 
is not a complete NN training algorithm, but only a subroutine needed to compute 
the gradients. The entire training procedure involves many more items:  

o architecture selection (nr of layers, size of layers, type of processing 
units, ...),  

o model initialization (guessing the starting model),  
o programming the entire update loop, including monitoring schemes for 

the evolution of the cost function and installing termination criteria, 
o a number of control schemes to optimize the choice of adaptation 

stepsizes, escape routines if the process apparently gets stuck on the 
way, etc. 
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1
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5

The famous backpropagation algorithm 

!1 

•  Obviously crucial: computing the 
gradient.  

9 

!2 

•  Not a lightweight problem: 

•  Gradient depends on cost function 

•  cost function depends on all 
training examples ... 

•  ... and on all the (millions...) of 
network parameters! 

!best 
! 

MSE train ( ˆ g ) =
1
N

yi " ˆ g (x i)( )2

i=1

N

#

•  Standard algorithms for computing 
gradients exist but are too expensive. 

•  The backpropagation algorithm provides 
a clever computational shortcut. 

(Re-)discovered in the early 1980's, the backprop algorithm made MLP training 
feasible. It catapulted neural networks forward, ending a 15-year stalling of NN 
research.   



 6 

• The number of iterations that are needed until a satisfactory degree of 
convergence toward an optimal model is reached may easily be hundreds – or just 
a few dozens. It's unpredictable. 

• In principle, the gradient is defined with respect to all training data, because the 
cost function is defined with respect to all training data. Thus, in principle, every 
incremental parameter update requires to "visit" all training data. This becomes 
infeasible for large training samples. Then one selects a smaller-sized subsample 
(called minibatch) from the complete training data set for each adaptation step. In 
an extreme version, called stochastic gradient descent, one chooses only a single 
training example per update step. That is computationally cheap but "jittery".  

• The gradient descent iterations need some additional control mechanism to unfold 
stably and swiftly. In particular, the adaptation stepsize ("how far should the 
adaptation progress in the direction of the current gradient") should be carefully 
and dynamically adjusted.  

• The 2-dimensional contour plots shown on the slides are misleadingly clean and 
simple. In reality, they are not 2-dimensional but super-high-dimensional, and the 
landscape is extremely "rugged", with a wild multitude of ridges, peaks, valleys, 
whirls and troughs. The worst thing is that the steepnesses encountered in such a 
landscape typically span many orders of magnitude, ranging from almost 
horizontal planes to almost vertical abysses. The image on slide 6 gives a faint 
impression.  

• Application-oriented end-users of MLP modeling can find many ready-made 
toolboxes online, allowing them to run an MLP learning "out of the box". 
However, the results are more often than not quite poor – typically without the 
end-user being aware of that. The most frequent mistake made by "naïve" end-
users is to overfit the training data. They then obtain a trained MLP that fits the 
training data very nicely (and the end-user believes all is fine as can be), but on 
new test data in exploitation situations, the model performs poorly.  

• Despite these problems, MLP training based on backprop has matured into the 
arguably most flexible and powerful modeling method available for blackbox 
modeling today.  
 

  
 

 
 

 
 

 
 

 
 

 
 

0 1 2 3 4 5
0

1

2

3

4

5

Still, not a piece of cake 

A zoo of difficulties 

10 

!best 

!(0) 

•  Local optima: method finds only the 
"nearest-by" cost minimum. Globally best 
model may be missed. Choice of initial 
model is a real issue!  

!'(0) 

•  Convergence toward optimum may be 
extremely slow ("vanishing gradient" 
problem) 

•  Numerical instabilities may arise. 

•  Overfitting of training data: the eternal 
nemesis of ML. Requires clever 
regularization schemes.  

•  Network architecture needs to be 
skillfully determined.  

•  Complex tasks require large models, large 
training data samples: long computation 
times! (can be weeks on supercomputing 
clusters) 

MLP training can be done by non-
experts for simple, small-scale 
problems. 

For large-scale modeling tasks, 
dedicated expert knowledge is 
needed.  
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Summary 

11 

•  Given: training data D = (xi, yi)i = 1,...,N, a cost function (like MSE), and 
an MLP structure (number and sizes of processing layers). 

•  Training the MLP means to find parameters ! that minimize the cost 
("make model fit the training data most accurately").  

•  Training procedure: 

1.  guess initial model !(0), 

2.  iteratively improve its cost, slightly moving parameters in a 
"cost downhill" direction in each interation step, 

3.  continue until a minimum cost ("trough" in the cost landscape) 
is reached.  

•  Critical enabler: the backprop algorithm for computing the 
"downhill" direction (gradient) cheaply 

•  Still not trivial: architecture design alternatives, still computationally 
expensive, local optima, numerical instabilities, model initialization, 
regularization   



 1 

Gen	  ICT	  2,	  ML	  module:	  handout	  3	  

Artificial	  neural	  networks:	  some	  history	  
 
 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

The Perceptron -- forefather of all artificial neural 
networks (ANNs) 

•  Developed by the US (neuro-)psychologist Frank Rosenblatt at the 
Cornell Aeronautical Laboratory 

•  Most cited early paper: "The Perceptron: a probabilistic model for 
information storage and organization in the brain", Psych. Review 
Vol 65 Nr 6, 1958"

•  Contemporary with beginnings of Artificial Intelligence"
•  Has all the standard features of the ANNs of today:"

–  A specific task (letter image classification)"
–  A biologically oriented "architecture" of interconnected, abstracted 

neural processing elements"
–  A probabilistic approach"
–  A learning algorithm"
–  A mathematical analysis"
–  A state-of-the-art computer implementation "

3 

The Perceptron's task: binary pattern classification 

•  Rosenblatt used high-contrast, clean input patterns, for example 
B&W images of letters A, B, C, ...   

•  Letters were read by 20 x 20 photocell array, giving 400-dim 
records 

•  Same task as we considered before in this lecture! 

•  Rosenblatt was a cognitive neuroscientist. Research motivation 
was mixture of understanding real brains and building brain-like 
machines 

4 
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• Rosenblatt developed a series of perceptron implementations whose details differ. 
Slide 5 shows the schematic of one of them. 

• Rosenblatt adopted some design principles that were known/hypothesized from 
human brains.  

• A perceptron mimicks the brain's processing route from the retina to higher brain 
regions where recognition supposedly takes place.  

Input "retina" 

Picture taken from Kanal (2001) 

"Associator" units:  
•  randomly connected to (few) 

retina cells 
•  can compute arbitrary 

Boolean functions 
("predicates") of their inputs 

Trainable connection 
weigths 

(One of) the classical 
Perceptron architecture(s) 

"Response" unit:  
•  Computes binary function f of 

input  

•  Typical choice: threshold unit 

"0" 

"1" 
 f 

! 

a j y j"

! 

f (u) =
0, if u + b < 0
1, if u + b " 0
# 
$ 
% 

bias 
5 

The Mark 1 perceptron  
Pattern input: brightly lit 

B/W patterns taken by 
an array of 20 x 20 

photocells 

Synaptic 
wiring 

Adaptive weights 
realized by motor-driven 

potentiometers 
(all images from Bishop 2006, 

Chapter 4.1) 
6 
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• Information is passed in one direction from the simulated retina forward through 
processing layers. Specifically, there are no "feedback" processing paths back 
from higher processing layers to lower ones. This is the defining criterion for 
feedforward neural networks.  

• Information propagates forward through the system through numerous distributed 
processing units which mirror biological neurons (or clusters of neurons, or brain 
regions).  

• Retina "cells" assume real-valued activation valued corresponding to light 
intensities.  

• In the perceptron, higher-layer processing units only take binary activation values 
("on"/"off", or "excited"/"quiet", or simply 0 / 1) 

• Information is propagated along synaptic connection links. These connections 
have different strengthes, also called weights (think of them as wires that can have 
different resistances). 

• The learning is effected by adapting the connection weights, just like one believes  
learning in brains is effected. 

• The structure of the perceptron was relatively simple (today's neural networks are 
much more complex). Specifically, there was only one layer of connections with 
adaptive weights. Today we would call this a single-layer NN.  

• The first processing layer consisted of processing units which were each randomly 
connected to a few retina cells and would compute a random binary function of 
the retina cell's activations. We have learnt to consider these "associator units" as 
(random) feature extractors.  

• In the next processing stage, the activations of the associator units are simply 
summed. Importantly, before summing these activation values are weighted by the 
synaptic strengths.  

• In the final processing stage, the weighted sum of associator activations is passed 
through a binary threshold function ("response unit" in Rosenblatt's Perceptron 
parlance).  

• Everything in this architecture is hardwired and fixed except the weights of 
connections between associator units and the summation unit. Those weights are 
trainable.  

• First implementations by Rosenblatt on an IBM 704 programmable digital 
computer at the Cornell Aeronautical Laboratory.  

• Rosenblatt went on to build an analog hardware implementation, the Mark 1 
Perceptron. His rationale is very interesting: 

"As the number of connections in the network increases, ... the burden on a 
conventional digital computer soon becomes excessive, and it is anticipated that 
some of the models now under consideration may require actual construction 
before their capabilities can be fully explored. [...] The results of these [digital] 
programs, therefore, should be interpreted as indicating performances which 
might be expected from an "ideal" ... system, and not necessarily as representative 
of any particular engineering design. A Mark I perceptron, ... is expected to 
provide data on the performance of an actual physical system, which should be 
useful for comparative study." (Rosenblatt 1960) 

• Today all practically used NNs are implemented on digital computers, like 
Rosenblatt's first realization on the IBM 704.  

• However, there are current efforts (pushed among others by the large chip-
manufacturing companies) to implement NNs on analog VLSI (Very Large-Scale 
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Integrated) microchips, much in agreement with Rosenblatt's rationale to build a 
non-digital, all-analog-hardware Perceptron. 

 
 

 

• It is common in mathematical notation (but not universally adopted) to write 
vectors as boldface lowercase symbols, like w for a weight vector. Note that by 
default a vector is assumed to be a column vector. To turn it into a row vector, we 
have to transpose it, for which a common notation is w'. The transpose operation 
flips the orientation of a vector. Example: 

                             

€ 

w =

0.2
1.0
0
3.1

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

, w'= 0.2 1.0 0 3.1( ), (w')'=

0.2
1.0
0
3.1

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

 

• If two vectors w, x of the same dimension are given, for instance 

€ 

w =

0.2
1.0
0
3.1

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

, x =

0
2.0
1.0
30.2

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

, 

a common operation is to compute the inner product of w and x, written as 

€ 

w'x = 0.2 1.0 0 3.1( )

0
2.0
1.0
30.2

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

= 0.2*0 +1.0*2.0 + 0*1.0 + 3.1* 30.2. 

Perceptron training, overview 

Notation. Let a perceptron have k adaptive connection weights. We 
collect them in a k-dimensional weight vector w. Let furthermore the 
k activation values of the associator units upon presentation of an 
image record xi be assembled in a k-dimensional activation vector 
xi*.  Then the output of the perceptron is given by  

! 

yi = f (w'x i*).

7 

Learning task. Given 
•  a perceptron with k adaptive connection weights, 
•  a training sample                          of N labelled training 

instances, where di  !  {0,1},  
find connection weights w such that the perceptron outputs the 
correct labels, that is 

! 

(x i,di)i=1,...,N

! 

di = f (w'x i*) for all i =1,...,N.
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• In our Peceptron, assume we have k associator units. Their output (given an input 
pattern xi presented to the retina) can be written as a k-dimensional vector xi*. Let 
the k connection weights sitting on the synaptic links between the associator units 
and the summation unit be noted as w. Then the value of the summation unit 
(upon presentation of pattern xi) is w' xi*, and the final Perceptron output in the 
response unit is f(w' xi*).  

• The Perceptron outputs either the number 0 or the number 1. It can only perform a 
binary classification task where it has to distinguish two input types. The class 
labels are coded to be 0 or 1, for instance "healthy" = 0; "anaemic" = 1.  

• The Perceptron did not output a hypothesis vector of class probabilities (like 
modern NNs do) but merely a strict class decision.  

 

 
 

 
 

 
 

 
 

 
 

 
 

 

 

 
 

 
 

 
 

 
 

 
 

 

The perceptron learning rule 

The learning task is solved by the following weight adaptation process: 

•  Present the training instances xi   to the perceptron in turn. 
•  Upon input xi in the n-th adaptation step, where the current perceptron 

weights are w(n), compare the perceptron's output with the desired 
output di. 

•  Adapt weights w(n – 1) from previous step to get new weights w(n) by 
the following rule: 

Case 1: di = f (w'(n – 1) xi*), that is, correct classification of n-th training 
record with old weights w(n). Then, no change: w(n) = w(n – 1). 

Case 2a: di  = 1 ! 0 = f (w'(n – 1) xi*), false classification of class-1 
sample as class-0. Then adapt w(n) = w(n – 1) + xi*. 

Case 2b: di = 0 ! 1 = f (w'(n – 1) xi*), false classification of class-0 
sample as class-1. Then adapt w(n) = w(n – 1) – xi*. 

8 

The perceptron learning rule, comments 

•  If the perceptron is in principle capable of solving the given classification 
task, the learning rule will converge to a successful set of weights. 

•  It is an example of supervised learning: the correct (desired) outputs are 
available at training time.  

•  It is an example of an iterative weight adaptation rule. Weights are 
adapted incrementally,  improving (hopefully) the performance at every 
update step.  

9 
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• Hype waves have occurred several times in the history of Artificial Intelligence 
and Machine Learning. One that I remember well because I was doing my Phd 
during that phase was the hype surrounding expert systems in the late 1980's, early 
1990's. Expert system startups popped up like mushrooms and sold expert system 
development SW at fantasy prices, and graduate programs centered on them were 
created. Then it became clear that human experts could not easily be replaced by 
machines and the hype deflated. Today expert system maths and programming 

The hype 

A sniplet from the New York Times ("New Navy Device Learns by 
Doing", NYT July 8, 1958), after a press conference held by Rosenblatt 
at the US Office of Naval Research on July 7, 1958 (cited after 
Olazaran 1996): 

10 

The shattering 
1969: Marvin Minsky and Seymour Papert, pioneers of (symbolic) AI, 
publish Perceptrons.  
In this book they point out, among other things, that the XOR function 
cannot be learnt by perceptrons. 

Consequence: NNs became disreputable and neural network research 
fell into a sleep for more than a decade. 

11 

The XOR function as a 
classification task 

input records desired output 
(0,0) 0 
(0,1) 1 
(1,0) 1 
(1,1) 0 
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techniques are just one tool among others in the standard repertoire of AI 
programming, and they aren't called expert systems any more.  

• The current screaming madness about deep learning may actually be not just 
another hype. A remarkable difference to earlier hypes: it actually functions, 
comes close to human performance, and it is started to become economically 
exploited in a large-scale way by Google, Microsoft et al. 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 

 
 

 
 

 
 

 
 

 
 

 
 

 

1986, -- 17 years later... 
Neural networks reappear with a 
flourish: 
Rumelhart, D.E. and McClelland, 
J.L. (eds.): Parallel Distributed 
Processing: Explorations in the 
Microstructure of Cognition. Vol 1, 
MIT Press (still in print!)  
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 1969: Minsky and Papert 
point out the obvious. 
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The PDP bible 

•  An edited collection of (long, 
foundational, landmark) articles 

•  One chapter (by Rumelhart, 
Hinton, Williams) the 
backpropagation learning algorithm 
for NNs is introduced 

•  This algorithm unleashes the 
powers of NNs.  

13 
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• Already before the publication of the PDP book, neural network research had been 
resumed in an inconspicuous but tenacious manner.  

• Partly the renaissance of NN research came from theoretical physics who applied 
their mathematical methods to models of associative memory in neural networks,  
and was at first unrelated to machine learning.  

• There have always been several motivations and subcommunities in NN research, 
among them the following: 

o Machine learning researchers wanted to create practically useful 
blackbox models. 

o Theoretical physicists (some employed in neuroscience departments) 
wanted to understand basic (and hopefully, simple-to-state) principles 
of information processing in neural systems (example: 
http://en.wikipedia.org/wiki/Hopfield_network) 

o Neuroscientists proper wanted to understand how, exactly, information 
is processed in concrete, complex biological brain systems which were 
modeled at considerable biological detail. 

o Cognitive scientists, linguists and AI researchers wanted abstract 
models of "conceptual-level", "higher", "intelligent" information 
processing at the symbolic level (school of connectionism, 
http://en.wikipedia.org/wiki/Connectionism). The PDP bible largely 
came from that community. 

• In this course we deal only with the first strand of work, and within that, only with 
feedforward neural networks. 

The backpropagation algorithm: impact 

•  Like the Perceptron learning rule, it's an iterative adaptation scheme 
for neural networks. 

•  It works for many learning tasks (not only classification), and for a 
large variety of network architectures.  

•  In principle, every learning task becomes solvable (though 
computations may become expensive, or numerically difficult). 
Example: online language translation.  

•  Soon after the PDP book, the "backprop" + NN grew into a standard 
method for modeling nonlinear real-world systems. The complexity of 
tasks that were solved grew slowly over the years. 

•  Since a few years, achievable performance levels have been 
exploding.  The good-oldfashioned "backprop" + NN  combination is 
now called deep learning.  

•  We will learn about all this in the remainder of this course.  

14 
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Multilayer	  perceptrons:	  structure	  
 

• Multilayer perceptrons (MLPs) have evolved (quickly) from the original 
perceptron.  

• On the one hand, they are simpler: all processing units are of the same type (in the 
perceptron, there were several different types) 

• On the other hand, they are (much) more general and powerful. 
• The connection to biology is only a faint echo. MLPs are mainly taken as 

computational tools for ML applications.  
• Other common name: feedforward neural networks. 

 

MLP - outline 

•  Multilayer perceptrons (MLPs) differ from the original perceptron in 4 
important ways: 

1.  they have several layers of adaptive synaptic connections 

2.  all synaptic connections have adaptive weights 

3.  the processing units output continuous activations 

4.  there can be many output units 

16 
•  An MLP is a general, numerical input-to-output transformation device.   

input 
units 

output 
units 

"hidden" units 

MLP – some general characteristics and notation 

•  n0 input units read-in a record u of n0 numerical (real-valued) numbers. 

•  The input "activation" values are fed forward through some layers of 
hidden units, until activations arrive at the nL output units, yielding an nL-
dimensional output vector y. 

•  It is customary to count layers of connections, not of units. An L-layer 
MLP has L connection layers, and L-1 hidden layers of units.  

•  The activations of units hidden layers 1, 2, ... are collected in hidden 
state vectors x1, x2,...  of  dimensions n1, n2, ...  

17 

u ! !n0  y ! !nL  

x1 ! !n1    x2 ! !n2 

Shown: an      
L = 3 layer 
MLP 
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• The mathematical symbol Rk denotes the k-dimensional Euclidean space. R1 is 
just the real line, R2 is the 2-dimensional Cartesion coordinate system, and R3 is 
the familiar 3-dimensional "space". For larger dimensions k we lack geometric 
intuition. Seen as sets, R1 is the set of all real numbers, R2 is the set of all pairs of 
real numbers – or equivalently, of all 2-dimensional real-valued vectors, etc.  

• In practically used MLPs, the dimensions of the input layer, the hidden layers, and 
the output layer vary largely. They can grow quite large or be very small. 
Examples: 

o MLPs processing image input need as many input units as the images 
have pixels (times 3 if the image is in color).  

o State-of-the-art MLPs for complex tasks in pattern recognition have 
hidden layer sizes in the range of a few to many hundreds.  

o In speech recognition networks, output units produce probability 
hypotheses about which word has been uttered. There must be as many 
output units as the considered lexicon has words. For continuous large-
vocabulary speech recognition, this may mean 10,000 – 50,000 output 
units.  

 

 

• A weight matrix Wi+1,i of size ni+1 × ni has ni columns and ni+1 rows. The matrix 
element sitting in row k and column l is denoted by Wi,i+1(k, l).  

• Storing all of the structure information of an MLP means to store all the weight 
matrices. This may lead to big data chunks. Consider a 3-layer MLP with 1000 
units in each layer. This MLP needs 3 * 1000 * 1000 = 3 Mio parameters to be 
fully specified.  

MLP – more characteristics and notation 

•  All connections are weighted (and weights can be adapted in learning). 
Weights are real numbers and can be positive or negative or zero. 

•  Usually there is total connectivity between two layers: if feeding layer 
has ni units and receiving layer has ni+1 units,  there are ni ni+1 
connection weights between these two layers.  

•  The weights between layers i and i+1 are collected in a weight matrix 
Wi+1,i of size ni+1 !  ni.  

•  The first weights W1,0 are sometimes called input weights, the last 
weights WL,L-1  output weights.  18 

u " !n0  y " !nL  

x1 " !n1    x2 " !n2 

W0,1 W1,2 W2,3 
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• The full math formulas for these activation functions are 

 
 

 
• The two are closely related (each is a linear transform of the other), and which one 

is used is very much a matter of taste. € 

σ(s) =
1

1+ e−s

€ 

tanh(s) =
es − e−s

es + e−s

MLP – what happens in a processing unit? 

•  The activation y of a unit is computed in two steps: 

1.  compute the connection-weighted sum of activations of units that 
feed into the unit, 

2.  pass this weighted sum through an activation function f : 

•  Conveniently and more generally written in matrix notation for an 
entire layer: 

19 

w1 
w2 
w3 

x1 

x2 

x3 

y 

Shown: a processing 
unit with activation y 
which receives input 
from three units with 
activations x1, x2, x3 
along connections with 
weights w1, w2, w3.  

! 

y = f (w1x1 + w2x2 + w3x3)

! 

x i+1 = f (W i+1,i x i)

The activation function f 

•  In MLPs, the activation function f is traditionally taken to be one of the 
following two:  

20 

w1 

w2 

w3 

x1 

x2 

x3 

! 

y = f (w1x1 + w2x2 + w3x3)

-3 0 3 -1   

-0.5 

0    

0.5 

1    

f(s) 

s 

1.  the logistic sigmoid !"

  or 

2.  the tanh (tangens 
hyperbolicus) 

!"

   

 tanh 
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• The activation functions σ and tanh both have "sigmoid" ("S-shaped") form. Both 
are symmetric around s = 0, and saturate  for very large negative or positive 
arguments. The logistic sigmoid has a value range between 0 and +1, the tanh 
between –1 and +1. One also says that the activation functions squash their 
summed input into the respective value range.  

• In the last two years or so, another activation function has been increasingly often 
used in "deep learning" approaches, the rectifier function: 

€ 

r(s) =
s, if s > 0

0, if s ≤ 0 
⎧ 
⎨ 
⎩ 

 

The rectifier function has less pleasing mathematical properties than the logistic 
sigmoid or the tanh, but it (and its derivative) can be computed much more 
cheaply. This becomes an important aspect when the MLPs are very large.  

• The logistic sigmoid has a biological interpretation. The idea is that the activation 
(interpreted as firing frequency) of a biological neuron cannot be negative, and is 
bounded from above when the neuron saturates. The entire biological processing 
done by a unit (a neuron) is modeled as a two-stage process where the neuron's 
potential (voltage level of the cell body) is determined by the summed activation 
of all incoming synaptic feeds, and then from this potential the neuron generates a 
series of electric pulses (it "fires spikes") whose frequency is understood to give 
the activation x.  

• For certain mathematical and practical reasons, the output units often have an 
activation function that differs from the activation functions of the hidden units. A 
frequent choice is to drop the activation function entirely for the output layer 
units; their activations then are just the weighted-summed activations of the last 
hidden layer.  

Multilayer	  perceptrons:	  function	  
• It is important that the activation functions are nonlinear. If they were linear, the 

MLP as a whole would collapse to a linear transformation and could be replaced 
by an equivalent single-layer perceptron. That is why the activation function is 
sometimes simply called the nonlinearity.  

 

 
 

 
 

 
 

 
 

 
 

 

Kneading input records 

22 

u ! !n0  y ! !nL  

! 

x i+1 = f (W i+1,i x i)

•  An input record u is iteratively 
transformed into a sequence x1, x2,.. 
of hidden state vectors, and finally 
into the output y. 
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•  Each transformation step can be 
viewed as an "overlay, fold and 
squash" operation.  

•  Very complex u ! y  
transformations become possible. 
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• In fact, the general approximation theorem holds even if only two-layer MLPs are 
admitted. However, approximating complex functions by only two-layer MLPs 
leads to inordinately large MLPs. In practice, approximating complex functions 
mandates MLPs with many layers – so called deep networks.  

• To get an idea what a "very complex function" might be, think of a function that 
takes 500 x 500 pixel photographic images as input and as output returns a vector 
made of 10,000 integers, corresponding to how many objects out of a choice of 
10,000 object types are visible in the image.  

• The general approximation theorem (of which there are many variants and 
different proofs) requires a formal way to measure the similarity of two functions 
g1, g2. This can be done in various ways. A popular choice is to use the mean 
squared distance. For the simplest case of one-dimensional functions mapping the 
unit inverval [0,1] to R, that is g1, g2: [0, 1] →  R, the mean squared distance is  

€ 

approx− error(g1, g2) = (g1(x) − g2(x))
2dx

0

1

∫   

 

MLPs compute functions – any functions 

23 

u ! !n0  y ! !nL  

•  Any input record u of the right dimension can be fed into an MLP, 
yielding an output y. 

•  Thus, an MLP M simply instantiates a function gM: !n0 ! !nL. 

•  Theorem ("general approximation property"): any function g: !n0 ! !nL 
can be approximated with arbitrarily small approximation error by some 
MLP.  

•  That is, given g and an admissible approximation error level !, there 
exists an MLP M such that 

    approx-error(g, gM)  < !. 
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Classification as function approximation 

24 

•  Earlier in this lecture we considered classification tasks.  

•  For example, inputs were grayscale value vectors coding 15 x 16 pixel 
images of digits, outputs were hypothesis vectors containing 
probabilities for the 10 digit classes. 

•  Solving this classification task means just to find a good function           
g: !240 ! !10. 

•  Classification is just a special case of function approximation.  

•  Function approximation tasks are often referred to as regression tasks.  

Summary 

25 

•  Neural networks have a 50-year history and were pioneered by 
Rosenblatt whose Perceptron aimed a modeling biological image 
classification. 

•  In today's ML world, multi-layer perceptrons are the "workhorses" 
for function approximation tasks.  

•  MLPs nonlinearly and stagewise transform input records into 
arbitrarily transfigured outputs. They are general approximators for 
numerical functions g: !n0 ! !nL .   

•  Coming next: How to actually find an MLP that approximates a 
given target function – the learning part of this story.  
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Handout	  2:	  Machine	  learning	  as	  modeling	  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
• There is an almost dogmatic way of how research in the natural sciences should 

be carried out: 
 

1. Delineate a coherent set of real-life phenomena (for example: motion of 
stellar bodies (Newton), mating behavior of ravens (ethology)...). 

What's that mean, a "model"? 

•  A (scientific or engineering) model is a 
formal representation of some 
coherent collection of real-life 
phenomena. 

3 

http://www.redicecreations.com/article.php?id=18006 

! 

F =G m1 m2

r2

•  A formal representation can be more or 
less "formal", e.g. 

•   mathematical formulas (physics)  
•  simulation algorithms (engineering, 

computer games) 
•  plain-English definitions and 

descriptions of mechanisms (sociology, 
psychology).  

The classical modeling cycle of science 

piece of reality 

4 

! 

F =G m1 m2

r2

observation 
procedures 

https://people.rit.edu/andpph/  
text-new

ton-right-w
rong.htm

l  

observation data 

detect  
regularities 

model 
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2. Define measurement procedures for some aspects of these phenomena, and 
give scientific names to these measurables (e.g. mass, velocity or mating 
call). 

3. Observe / measure these phenomena under systematically varied conditions, 
obtaining empirical observation data. 

4. Generate hypotheses about regularities in these data ("laws", "symmetries", 
"rules"...) 

5. Formalize these regularities in a suitable formalism (or at least, in precise 
plain English).  

6. The formal specification of the regularities is a model.  

7. While the model should accurately describe regularities in the available data, 
this does not prove the model is "true". Reality might not be captured by the 
model even though the currently available data agree with the model. The 
classical example is the model of classical mechanics which goes back to 
Newton's era. It agreed with available data for 2 centuries, but then this model 
was challenged on theoretical grounds (relativity theory) and refined 
measurement techniques yielded data (at high velocities and/or large 
interstellar distances) which did not agree with the model of classical 
mechanics.  

8. Expressed in a nutshell: a scientific model of a piece of reality can never be 
proven correct. It can only be falsified by new data. 

9. A model should be as succinct (simple) as possible: "Occam's razor" 
http://en.wikipedia.org/wiki/Occam%27s_razor . It should reduce the 
variability of phenomena/data by distilling underlying mechanisms that give 
rise to the variability. It should explain reality.  

10. The standard scientific method uses models to make predictions about the 
outcomes of future experiments and tests the model against the outcome of 
those. If new data from new experiments don't agree with the current model, it 
has to be modified / extended / refined.  

 

• Finding a "suitable formalism" that is capable to represent the assumed 
regularities is not always easy. In the case of Newton, first an entire branch of 
mathematics had to be created – calculus – before the stipulated regularities could 
be appropriately formalized. Progress in ML very much hinges on developing new 
mathematical formalisms, too.  

• This standard paradigm of the empirical scientific method is widely accepted but 
has not remained unchallenged. The further one goes away from physics, the more 
problems arise. In psychology and the social sciences, the standard paradigm is 
only partially dominating, and the historical sciences function entirely differently.  

• Check out http://en.wikipedia.org/wiki/Scientific_method if you want to learn 
more about the big picture.  
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• The models in ML are construed in a different way.  
• Like in the scientific method, ML models are designed to capture the variability in 

observational data, by exploiting regularities / symmetries / redundancies.  
• Unlike in the scientfic method, ML models (usually) do not aim at explaining 

reality. All they need to achieve is to describe the data. Expressed in false 
modesty, ML models just have to be good at data fitting.  

• Because a good ML model doesn't need to explain reality, just describe data, ML 
models don't need to be simple or transparent or intelligible. They just must be 
accurate. Thus, while scientific models are typically expressed in the form of 1-
liner mathematical laws, an ML model may take the shape of a computer 
algorithm that has millions of parameters.  

• But even ML models must hold strong in the face of tests. But the tests are 
different from the tests that scientific models are subjected to. In the scientific 
method, tests are experiments that try to extract novel behavior from reality – that 
is, a scientific experiment instantiates a novel observation procedure. Tests for 
ML models, in contrast, are carried out on new data that are obtained from reality 
re-using the same observation procedure as were used for the training data.  

The modeling cycle of ML 

piece of reality 

5 

! 

V = fmodel(D)

observation 
procedures 

https://people.rit.edu/andpph/  
text-new

ton-right-w
rong.htm

l  

observation data 

detect  
regularities in 
training data 

model 

test 
model on 
more data 
(test data) 
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• Examples: 

Scientific method  Machine learning 

The scientific model of classical 
mechanics was originally derived from 
planetary body motion. Later (allegedly) 
tested against falling apples (still holds) 
and particles in ring accelerators (fails). 

A ML model of planetary motion would 
extract from celestial observation tables a 
formula describing the planet's orbits. It 
would be tested only against further data 
from planetary motion.  

A scientific model of a chemical reaction 
and its dependance on pressure, 
temperature and concentrations can be 
induced from laboratory observations. 
The model can later be used to design and 
control chemical manufacturing plants – 
and a variety of those.   

A ML model useful for controlling a 
chemical manufacturing plant has to be 
learnt from data from that very plant, and 
can only be used for that single plant (or 
clones).  

A scientific model of speech utterances is 
close to impossible to obtain because the 
mechanism underlying this phenomenon 
are so vastly complex – involving a brain, 
the vocal tract, a linguistic community, 
and sound physics. No insightfully 
simple-enough "law" seems possible.  

A ML model for human speech is trained 
on speech recordings made from 
hundreds of speakers. It is then tested 
against recordings of other speakers. If 
the variety of the speaker population used 
for training was large enough, the model 
will perform well on test data. 

 
• In a nutshell:  

o Scientific models should be small and simple, and they should 
generalize to phenomena observed in new ways.  

o ML models may be large and complex, and they should generalize to 
new data obtained in the same way as the training data. 

 
 

6 

Blackbox modeling 

•  ML models are 
(typically) blackbox 
models.  

•  A blackbox model just 
describes data, not 
underlying data-
generating 
mechanisms.  

•  In contrast, analytical 
models aim at 
capturing underlying 
mechanisms.  
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• Blackbox models seem inherently weaker than analytical models. Why bother 
about them? 

o When the systems one wants to model are very complex, analytical 
models are practically impossible to get.  

o Analytical modeling requires insight from a modeler. Blackbox 
modeling can be done, in principle, by automated routines: ML 
learning algorithms.  

• Most but not all of ML is about blackbox modeling. Sometimes however even in 
ML one wants to have interpretable models – models that help to understand the 
modelled reality. This usually leads to using logic-based representation 
formalisms. The model takes the form of a collection of human-readable facts and 
rules. Two important approaches in ML that aim in this direction are fuzzy logic 
and inductive logic programming (both have Wikipedia entries). We will not 
consider these in this lecture.  

 

ML	  models	  as	  probability	  distributions	  
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

Randomness everywhere 
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http://www.wirelesscommunication.nl/reference/chaptr04/speech.htm 

200 400 600 800 1000 
0.35 
0.45 0.5 

200 400 600 800 1000 0.35 0.4 0.45 0.5 

handwritten, normalized digits "0" and "1"  

speech signal  

robot wheel speed measurements 

•  Real-life data are always 
"noisy", have some random 
components 

•  Main source of randomness: 
ignorance.  
•  Data are generated by the 

interplay of a very large 
number of mechanisms, but 
are observed only by a 
small number of 
measurables ! loss of 
information ! apparent 
randomness.   

•  Practically useful ML models 
must model the random 
variability and the regularities 
in the data.  

http://ftp.ics.uci.edu/pub/ml-repos/ 
machine-learning-databases/mfeat/mfeat-pix 
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• We will concentrate on pattern classification tasks from now on. This is the most 
widely encountered application type of ML, and all basic themes and challenges 
of ML can be demonstrated with it.  

• "Patterns" can be virtually anything: 
o Images 
o Videos 
o Sound recordings 
o Customer profiles 
o Texts 
o etc. 

• In a classification task, one assumes that the patterns come from a finite number 
M of classes. Examples: 

Patterns Classes M 

Digit pictures "0", ..., "9" 10 

Single-word 
recordings 

All words from a lexicon 10,000 – 100,000 

Customer profiles "creditworthy", "not creditworthy" 2 

 

Classifying means assigning class probabilities 

9 

input patterns 

trained 
classifier 

Pattern classification task, 
general specification: 

•  Input patterns can come from 
M classes (M = 10 for digit 
recognition) 

•  "Classifying" an input pattern 
p means to assign class 
probabilities 

•  Result of classifying p is a 
size-M probability vector 
containing class probabilities    
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Measurables, records 

10 

Measurable: A measurable is a property of a real-world system that can be assigned 
values through some observation procedure. Examples: 

real-world property possible values value data type 

gender "male", "female" symbolic 

nr of children 0, 1, 2, 3, ... integer, "discrete" 

velocity 0.0 -- Vmax real, "continuous" 

Record: A record is a collection of observation values obtained from an instance of a 
system. Think of records as rows in an Excel table. Examples: 

instance measurables taken record record type dimension 

Paul (gender, nr of children) ("male", 2) mixed symbolic & 
integer 

2 

a falling 
apple 

(velocity, weight, 
distance to ground) 

(4.23, 125.4, 
1.21) 

real 3 

Samples, labelled samples 

11 

Sample: A sample is a collection of records. Think of a sample as an entire Excel 
table. Example: 

instance measurable 
1: gender 

measurable 
2: nr of 
children 

Paul "male" 2 

Vivian "female" 0 

Stephen "male" 1 

... ... ... 

Labelled sample: A labelled sample is sample where each record in addition has a 
class label. Example of a sample with M = 2 classes "happy" and "unhappy": 

instance gender nr children class 
label 

Paul "male" 2 "happy" 

Vivian "female" 0 "happy" 

Stephen "male" 1 "unhappy" 

... ... ... ... 
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• The collection of records in a samples should be collected "at random". In 
statistics one speaks of a "random sample". In empirical psychology and opinion 
research, a great effort goes into assuring that a sample taken for a scientific study 
is indeed random (and not "biased").  

• In formal notation, a labelled sample with N records is written as 

   

€ 

(x i,di)i=1,...,N  

where the xi denote the records and the di the class labels.  

• We use boldface lowercase symbols like x to denote vectors. I chose letter "d" for 
the labels in allusion to "desired" output values.  

 
 

 
 

 
 

 
 

 
 

 
 

 

Digit pics as records in a sample 
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a single digit image (instance) 

a sample of size 100 

•  Our digit images are a 15 x 16 pixel 
images, where each pixel has a grayscale 
value ranging in the real interval [0, 1]. 

•  There are 240 pixels in total. 
•  Each pixel is a measurable, with possible 

values in [0, 1]. 
•  A digit image thus is a real-valued record of 

dimension 240.  
•  In math terms, such a record is a real-

valued vector of dimension 240. 
•  The possible class labels are "0" ... "9", 

there are M = 10 classes.  
•  Taking (preprocessed) photos of 

handwritten digits from randomly picked 
letter addresses, and labelling them with 
the correctly identified classes, gives a 
labelled sample                         , say of size 
100.   

•  The xi are vectors of dimension 240.     

! 

(x i,di)i=1,...,100

Before we deal with digit classification, let's briefly 
check out a simpler task 

erythrocyte count 

case count 

"anaemic" 

"healthy" 

Task: classify patients into 
"anaemic" vs. "healthy" 

•  only measurable: erythrocyte 
count (1-dimensional records) 

•  value range of measurable: 
integers 0 – 10,000 

•  a labelled sample of 400 
patients (instances)  

•  each xi is a single number 
(erythrocyte count), each di is 
either "anaemic" or "healthy" 

•  labelled sample can be 
visualized by 2-color histogram 

•  For visualization, the xi values 
were binned into bins 
comprising a value range of 
300 

! 

(xi,di)i=1,...,400

13 
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• Step 1, "approximate histogram counts by smooth curves" is the point where ML 
algorithms must be used. It is not at all straightforward in general to find such 
nicely fitting but smooth curves! 

• There are many ways how such fitting curves can be mathematically represented. 
Different ML techniques build on different formalisms for representing such 
curves. Examples of formalisms: 

o The curves can be represented by simple formulas. A very widespread 
formula is to combine the desired curve by adding weighted Gaussian 
"bell-shaped" curves. This gives mixture of Gaussians representations: 

 

€ 

fi(x) = α j
1

σ j 2πj=1

K

∑ exp − 1
2
x −µ j

σ j

⎛ 

⎝ 
⎜ ⎜ 
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⎠ 
⎟ ⎟ 

2⎛ 

⎝ 

⎜ 
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⎟ 
⎟ 

 

where x is the measurement value (here we only consider 1-
dimensional records),  fi is the function that represents the fitting curve 
for class i training instances. The curve is made from summing K 
different Gaussian bell-curves which are centered at the mean values µj 
and have standard deviations (= width of the bell shape) σj. These 
curve components are added up with weights αj. Usually one requires 
that the αj sum to a value of 1. Then the function fi has an area of 1 
underneath it and it becomes a probability density function (pdf). 
Mixtures of Gaussians have many pleasant mathematical properties, 
and well-understood learning algorithms for finding best-fitting such 
fi(x) given data frequency counts (histograms) are available.  

o The curves can also become realized through complex representations 
called neural networks. We will get to know them better later in this 
lecture.  

"Training" a patient classifier 

•  Step 1: approximate the 
two histograms by smooth 
curves  

•  That's it! model is ready 
for use.  

erythrocyte count 

"anaemic" 

"healthy" 

training sample (labelled, shown here 
by coloring) 

14 



 10 

 

• Once the fitting curves (= "the model") are available, they can be exploited on 
new incoming data records ("test cases") for classification. All that needs to be 
done to obtain a class hypothesis vector for a new record xtest is to compute the M 
class-conditional values f1(xtest), ..., fM(xtest), normalize them to sum to 1, and one 
has obtained the classification hypothesis vector.  

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

Using the trained patient classifier 

erythrocyte count 

"anaemic" 

"healthy" 
15 

•  Step 2: Normalize these class-
conditional scores to unit sum: 

 (38, 8) ! (38, 8) / (38 + 8)  

                   " (.83, .17) 

•  A new patient arrives with an 
erythrocyte count of 3000. 

•  Step 1: find the frequency 
score values in the smooth 
curves for the two classes 
(here: 38 and 8) 38 

8 

•  (.83, .17) is a probability vector: 
the result of the  classification 
of the new patient.  

Over- and underfitting 

•  All the "learning" was done in finding the "smoothed" fitting curves. But 
how should the fitting be done "correctly"?  

too smooth, too 
regular and 
symmetric? 

underfitting?? 

16 

just about right? but if 
so, -- why?? 

too jittery, too close to 
training data? 
overfitting?? 
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• The problem of over- vs. underfitting is the nemesis of ML. In our patient 
classification example, it doesn't seem too frightening, but when data get more 
complex, the nastiness of this issue explodes and becomes absolutely critical for 
the success vs. failure of a ML modeling attempt.  

• Another name for the over- vs. underfitting problem is bias-variance dilemma. 
This name comes from a deeper mathematical analysis of the overfitting 
challenge. In intuitive terms,  

o "bias" means prior assumptions about the smoothness of the fitting 
curves. If during the learning (= curve fitting) the learning algorithm 
has been designed to favor smooth fitting curves, these assumptions 
become moulded into the finally resulting solution – it is biased toward 
smoothness.  

o "Variance" comes from fitting training data scores. The more the 
learning algorithm lacks smoothness assumptions, the more the fitting 
curves cling to the exact training data values. If the learning were to be 
repeated with a new set of training data, an unbiased (unsmoothed) 
solution would replicate the new random jitter in the new dataset. That 
is, in repeated triaining runs (using new training data each time), the 
obtained solutions would be highly varying one from the other.  

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
• Unfortunately, one can only visualize fitting curve landscapes for record 

dimensions 1 and 2. For higher-dimensional data records, our visual 
imagination is lost. In fact, higher-dimensional "landscapes" have many un-
intuitive properties and our low-dimensional intuitions tend to misguide us in 
important ways.  

• Specifically, returning to the digits example, we have no good geometric 
intuitions about "landscapes" over 240-dimensional data spaces! 

Fitting curves in higher dimensions 

•  The patient example had 1-dimensional records. That's quite untypical. 

•  Usually training data records xi are higher-dimensional. 

•  The data fitting curves become "landscapes" over n-dimensional data 
spaces.  

17 

three fitting curves 
(corresponding to 
three classes) over 
a 2-dimensional 
data space.  

record  
dimension 1 

record  
dimension 2 

instance 
frequency 
count 
dimension 
(normalized) 
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The	  curse	  of	  dimensionality	  
 

 
 

• "Curse of dimensionality" is indeed a technical term in ML and will be understood 
by everybody in the field.  

• In a nutshell, this curse means: if data records are high-dimensional, the example 
points will be spread out over the high-dimensional data space unimaginably 
thinly. Most "voxels" in the abstract data space will not be "hit" by a training data 
point. One does not get anything resembling a "histogram". Fitting a "density 
curve" to such highly scattered, essentially isolated data points becomes a real 
problem. 

• This is why machine learning engineers always want from their customers more 
training data. They can never get enough of them!  

• Current amazing successes in ML (more about this later) arise, among other 
reasons, from the circumstance that with the most recent internet and database 
technologies, very large training datasets have become available. For instance, 
state-of-the-art ML models of English text are trained on all of Wikipedia.  

• Still, even with the largest manageable training datasets, the curse of 
dimensionality is only slightly mitigated, not resolved.  

 

Back to the digits classification task... 

Training a classifier as before in 
the patients example... 

1.  Bin the x-data. 

•  original x-data: [0,1]240 
•   binning: partition [0,1]240 into 

"voxels" of side length l. 

2.  Compute histogram (bin count) of 
training sample. 

3.  Aaarrrghhh!!!! 

•  There are (1/l)240 many bins! 

•  Almost all bin counts will be zero! 

•  How to estimate density curves 
from a few 1-counts in a vast 
space of zero bins??? 

Curse of dimensionality 

For high-dimensional (here dim = 
240) training data it is impossible to 
naively estimate densities, because 
data points are scattered 
unimaginably thinly (exponentially in 
dimension) in data space.  

19 

visualization of our 240-dimensional 
records 
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• Techniques for dimension reduction play a large role in ML.  
• They are naturally related to data compression methods which are relevant in 

other fields too.  
• Abstractly, reducing high-dimensional data vectors xi into low-dimensional data 

vectors xi* means to apply a dimension-reducing function F: xi* = F(xi).  
• The curse of dimensionality and the overfitting problem are related (though not 

the same thing). The higher-dimensional the data records and the more thinly 
scattered the training data points, the more one is likely to overfit the data.  

 
 

Three ways to fight the curse of dimensionality 

1.  Get more training data.  

•  Is not always possible, is expensive, helps a little,  and 
doesn't resolve the root cause of the problem. 

20 

2.  Reduce the dimension of data records.  

•  You may think of this as "data preprocessing".  

•  Don't use the raw data as input for the classifier, but first 
compress the high-dim raw data records into a low-dim 
transform (examples next slide).    

3.  "Regularize" the model learning.  

•  You may think of this as "implement curve smoothing" (more 
on slide 22) 

•  Regularization at the same time helps against overfitting, and 
is most often discussed in that context.  

Data dimension reduction by feature extraction 

•  A raw digit record is a vector x of 240 
grayscale values. 

•  An individual pixel value carries little 
information about the digit class. 

•  Idea of preprocessing by feature extraction: 
distil from the 240-dim vectors new quantities 
("features") that are instructive about the digit 
classification.  

21 

Examples 

•  Feature F1(x) : mean grayscale value of all image pixels 

•  Feature F2(x) :  = 1 if the center of the image is white else = 0 

•  Feature F3(x) :  degree of "overlap" of x with a clean prototype instance 
of a "0". 

•  Formally a feature is a function F: !240 !  !. 

•  Using m features Fi in combination transforms the 240-dim record x to a 
merely m-dim feature vector x* = (F1(x), ..., Fm(x))    
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• Transforming high-dim records xi into low-dim feature vectors xi* is a widely 
used approach to combat the curse of dimensionality.  

• The extracted features can be viewed as another, "quality-improved", "insightful", 
"informative" kind of measurables.  

• Many early applications of ML techniques used "hand-designed" features that 
were informed by human expert insight. In particular this was true for early digit 
and text recognition software, for speech recognition systems, and object 
recognition from photos applications.  

• Today, effective features are often discovered in automated ways without human 
intervention and their discovery becomes part of the machine learning modeling 
process.  

 

 

• The importance of regularization can't be over-emphasized. 
• Current breakthrough successes of ML hinged on (among other factors) on new 

clever regularization methods.  

Regularization 

D
uda, H

art &
 S

tork  
ftp://ftp.w

iley.com
/public/sci_tech_m

ed/pattern/) 
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•  A vast field, crucial for ML performance, here we only get a glimpse. 

•  Example: fitting a "probability landscape" over 5 scattered 2-
dimensional records:  

strong regularization medium regularization weak regularization 

•  The strength of regularization can be adjusted continuously.  

•  Determining the best degree of regularization is typically done by 
trial-and-error (expensive!) 
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Human	  vs.	  Machine	  learning	  	  
 
 
 

• Image recognition is a major application domain of ML 
• Example applications:  

o Text recognition (recognizing written letters and words, document 
reading) 

o Organizing large collections of photos (e.g. Google photo collections 
for registered users) 

o Robotics: classify navigation obstacles or graspable objects from video 
input 

o Medical: classify tissue from microscopic slice images as tumor vs. 
non-tumor 

o Military: detecting and identifying tanks in aerial or satellite photos 
• Features come in an unbounded variety, new feature types can always be defined 

"on the fly" by ML algorithms. Standard types of low-level features: 
o Lines and gratings 
o Colors 
o Textures 
o Brightness 
o Orientations (of lines or gratings) 
o Localization (where in the image is something) 
o Simple shapes (circles, dots, crosses...) 

• Features come in hierarchies. From low-level features one may compose, on the 
next higher level of a feature hierarchy, for instance parts-of-object features, like 

o Hands (part of humans) 
o Eyes (part of faces) 
o Tyres (part of cars)... 

 
 

How machines see 

Typical task: determine object of given class (e.g., victory sign "V" or 
arms of a clock) in image 

Processing:  extract characteristic "features" (textures, lines, areas, ...) 
and classify image based on the information 

Learning:  

•  find out what "features" exist and are important and how they should be 
combined 

•  learn by going through large numbers of already classified examples 
4 
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• Human vision is determined by a large number of factors. It is not a simple, 
single-purpose "algorithm". Some co-determinants that need to be understood if 
one wants a full picture of human vision:  

o body growth, brain development 
o motion control 
o exploration, curiosity, play 
o creativity 
o social interaction 
o drill and exercise and rote learning 
o reward and punishment, pleasure and pain 
o evolution 
o dreaming 
o remembering and forgetting 
o ... 

 
• A scientific study of human vision is inherently multidisciplinary. For a full 

picture one would have to factor in external conditions like 
o the universe, the earth, the atmosphere, water, food, caves (physics, 

geology, ecology...) 
o body, brain, sensor & motor architecture (biology) 
o physiology and neurophysiology (neuroscience) 
o evolution (evolution theory) 
o other people, living (sociology, psychology) 
o other people, long dead, and their traditions (history) 
o machines, tools, buildings, toys (engineering) 
o words and sentences (linguistics) 
o concepts and meanings (philosophy, cognitive science) 
o letters and books and schools (pedagogics) 

 

How humans see... 

Image taken from: 
www.addaclevenger.org/show/tophat.jpg  

How many people are on this picture? 

How many people are within 200 meters 
of this man? 

How does the hat smell? 

What's this? 

Where is all the edge and contour 
detection gone...?  

5 
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• Human learning and information processing arise from, and affect, the entire 
human system at all times: it's just life. 

• Machine learning is a set of specific data engineering techniques for designing 
task-specific algorithms.  

• Machine learning is immensely more constrained than human learning 
• On most but not all tasks, machine learning/information processing is still inferior 

to human performance 
• Machines may outperform humans on tasks in certain aspects and under certain 

conditions: 
o Speed: reading cheques at a rate of hundreds per second 
o Size of input data: finding traces of rare nuclear reactions in Gigabytes 

of recorded data from physics experiments 
o Accuracy: recognition rates better than human performance if 

recognizing algorithm could be "trained" on super-humanly vast 
training data sets 

• Machine pattern recognition falls far short of human performance with respect to 
flexibility, multi-purposeness, context sensitivity, attention control, ... anything 
that's beyond a clear-cut, single-purpose task setting 

 

Human Information 
Processing   
•  As many different "tasks" as 

there are moments in life 
•  Information processing and 

learning: almost same thing 
("one cannot step into the 
same river twice", 
Heraclites) 

•  A few specific tasks, mainly 
object detection and 
classification 

•  Processing and learning are 
typically separated ("learning 
phase" vs. "exploitation 
phase") 

Machine Information 
Processing 

w(n+1) = w(n) + 2      (n) x(n) 

P. A. Renoir, Le bal au Moulin de la Galette 
http://www.lannaronca.it/Renoir%2001%20p.htm 

! 

" #
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A	  Little	  ML	  Zoo:	  Examples	  	  	  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
• The most widespread kind of ML applications are in pattern recognition, also 

called pattern classification.  
• A recognizer (or classifier) is a computational procedure that receives patterns as 

inputs and returns class hypotheses.  
 
 

Image classification: the archetypical ML application 

9 
courtesy Planet GmbH www.planet.de 

The learning in machine learning 

10 

? 

•                is a classifyer algorithm C. Input: photos of post parcels, output: address 
in clear text 

•  C is exceedingly complex. It is a formula that contains millions of parameters. 

•  Impossible to design C "by hand" or by some mathematical analytical 
method.  

•  C has to be trained. C has to learn how to classify address photos. 
•  C learns from training examples: pairs (photoi, addressi) = (xi, di) 

Start: create a 
random initial C0 
with millions of 
randomly set 
parameters. 

Iterate: present to Cn an address 
photo xn. Output will be poor. 
Adjust parameters slightly such 
that output comes a little closer to 
target xn: get Cn+1.    

Stop when 
performance is 
satisfactory or max 
learning time 
reached.  
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• Examples:  
 

Patterns Classes 
Pictures of digits "1", "2", ..., "0" 
Pictures of faces Person identification, e.g. name 
Spoken words (microphone 
signals) 

Recognized words, e.g. "turn left", "stop" 

Records of bank account 
holder data 

Creditworthyness judgement, e.g. "will pay 
back loan with probability > 90%", "will pay 
back loan with probability < 90%".  

 
• Classification tasks can be arbitrarily complex and require arbitrarily complex and 

large computer programs (algorithms). 
• Training such classifiers requires labelled training samples consisting of correctly 

classified pairs (pattern, class label).  
• The classifier is trained by gradually improving its performance, presenting it with 

labelled training examples iteratively. 
• State-of-the-art handwriting recognizers have millions of parameters, need 

millions of training examples, and the training time can take some weeks on high-
performing computing clusters (e.g. 1000 16-core PCs).  

• This is a case of supervised training. "Supervised" refers to the fact that correct 
outputs are given to the learning system: its training progress is "supervised". The 
correct output labels are also sometimes called teacher data. 

 
 

• In engineering and signal processing, the most basic kind of learning task is 
system identification. Some physical system is given which transforms some input 
signal x into some output signal y. In system identification one tries to re-create 
("learn", "adapt") an artificial system – a computer program – which replicates the 

11 

The basic engineering application: system identification 

system 
identification: 
principle 

unknown 
system 

model 
system 

+ 

- 

x 

noise  

 ! y 

 y 

dummy 
earth 

- 
x 

p1 

vibrator / 
exploder 

 ! y 

A micro 

p2 

p3 
noise 

a. Physical setup 

    y 

b. Analysis of impulse response  r 

r 

time 
0 

due to path p1 
    due to path p2 
       due to path p3 

application: ground structure exploration for oil prospecting 



 7 

same input-output behavior. This system model then can be used for numerous 
goals. Examples: 

o Model the earth atmosphere (for climate change analysis and weather 
forecast). Input is sunshine energy, output is weather dynamics.  

o Model financial markets. Goals are obvious. 
o Model a robot body. Input: voltages to motors, output: limb motion. A 

prerequisite for robot motion control.  
o Model geological structures. Input: sound waves, output: sound waves 

obtained at a distant location. Such sound-in, sound-out models are 
highly informative about underground structures. A standard tool in 
geological prospecting.  

• In the engineering / signal processing domain, systems are always temporal and 
operate in time. A signal is by definition (in engineering) a time series.  

• In signal processing, such temporal input-output systems are also called filters or 
transducers.  

• Methods for system identification have been developed a long time before the 
advent of modern, computer-based machine learning.  

• Methods of ML are being adopted slowly by engineers and signal processing 
people. One reason for their reluctance: classical engineering methods for system 
identification are linear and can be mathematically fully analysed. Provable 
criteria for correctness, accuracy and stability can be given. In contrast, high-
performing ML procedures are typically nonlinear and their complexity defies 
mathematical analysis. While they (might) perform better, no mathematical 
guarantees can be given that/how they will perform in critical application 
circumstances. But such guarantees are often desirable (think of safety-critical 
applications like airplane autopilots).  

• System identification is also a supervised learning task: the correct system output 
is available to the learning system at training time.  

 
 

12 

Channel equalization 

channel  
C 

!"

- 

!noise 

s equalizer 
C-1 

. 

. 
known reference 
signal s* 

continuation 

initialization 

s'  ! s 
adaptive  
channel  
equalization 

•  A crucial component in every mobile or stationary communication device! 
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• Channel equalization is a signal processing task of prime practical importance. 
Scenario: a signal s is transmitted over a channel C, and received as a distorted 
signal s'. The distortions can be severe. For example, a WLAN signal s is sent 
through a channel C consisting of the transmitter electronics (which adds some 
slight nonlinear distortions), the airspace (which adds a truly massive mixture of 
"echos" resulting from electromagnetic wave reflections), and the receiver 
electronics. The received s' is a distorted version of s (you wouldn't believe how 
badly it can be messed up). A channel equalizer (or channel inverter) is a device 
(= a computer algorithm running on your WLAN receiver) whose task is to 
transform the distorted s' back to the clean signal s as well as possible.  

• Channel equalization "inverts" the channel and is sometimes also called inverse 
system identification.  

• One way to train an equalizer is by supervised training: the desired (teacher) 
output is just the input s to the channel.  

• Things get difficult when the channel is quickly changing and the channel inverter 
has to re-adapt itself equally quickly. This is the situation in mobile phone 
applications: if you move with your cellphone, the channel (the aerial pathway 
from the transmitter to your phone) is changing all the time – in fact, quite 
dramatically. To make things worse, the input signal s is not known – it is the 
ever-changing, unpredictable phone message that you want to receive. Solution: in 
short intervals (a few milliseconds) a previously fixed and known reference signal 
s* is transmitted and used to re-adapt the equalizer.  

 
 
 

• Signal de-noising is another signal processing task of great practical importance.  
• If the de-noiser would know the clean signal, denoising would be trivial. Turning 

this thought a little, training a de-noiser amounts to learning as much as possible 
about the characteristics of the clean signal. This knowledge can then be used to 
"subtract" noise (= everything that doesn't fit the clean signal model).  

Denoising an audiosignal with a classical technique 

denoising 
filter 

signal  
source 

s + n0 

filter  
output 

y 

-!
s 

noise 
source 

n0 

n1 

denoised signal 
s' 

filter 0 

filter 1 

+!

How it works: 

Teacher output: s'!

Denoising filter learns to predict s', 
using noise version n1 as input 

"Learning" is simple linear regression !

It can only predict noise part in s'!!

Applications: 

A classical method of linear signal 
processing, used, e.g., in  

•  cleaning EKG signals 

•  monitoring pre-birth child heartbeat 

•  airplane cockpit communication!

13 
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• The de-noising scheme shown on the slide belongs to the classical repertoire of 
linear signal processing and has been known since at least 60 years. One of the 
first applications was recording "readable" EKG signals.  

• Today much more refined methods are available which use ML methods. Key 
words are blind source separation and independent component analysis. The idea 
is that if you receive a mixture of signals (e.g. speech signal + noise, or speaker1 
+ speaker2 + speaker3 [the cocktail party speech understanding problem], if one 
may assume that the mixture components are statistically indepdent, then one can 
de-mix them. Check out 
http://en.wikipedia.org/wiki/Independent_component_analysis  for theory and 
http://research.ics.aalto.fi/ica/cocktail/cocktail_en.cgi  for an audio demo.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

More application types, just random highlights 

Time series prediction 
•  financial time series 
•  local weather development 

(important for short-term power 
yield prediction in windmill farms) 

•  predicting the consequences of 
action (robot action planning) 
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Temporal pattern generation 
•  generating motions of robots and 

game characters 

System control 
(= provide steering input to a 

system that you want to control) 
•  steering (or auto-piloting) engines 

and vehicles 
•  controlling chemical production 

plants 

Fault monitoring 
•  monitor power grids or power plants 
•  monitor any technological device 
•  driver sleep detection  

Commercially most relevant applications (my guess) 
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•  Customer profiling 
•  Ad placement optimization 
•  Financial timeseries prediction 
•  Control and monitoring of large technological systems (production 

plants, energy grids, internet) 
•  Computer games 

Societally most relevant applications (my guess) 

•  Surveillance (communication scanning, face recognition, traffic 
monitoring) 

•  Military (autonomous missiles and drones, satellite data 
interpretation, battlefield robotics) 

•  Speech and language technology 
•    


