
 1

Formal Languages and Logics

Jacobs University Bremen
Herbert Jaeger

Course Number 320211

Lecture Notes

Version from Oct 18, 2017

 2

1. Introduction

1.1 What these lecture notes are and aren't

This lecture covers material that is relatively simple, extremely useful, superbly described in a
number of textbooks, and taught in almost precisely the same way in hundreds of university
courses. It would not make much sense to re-invent the wheel and re-design this lecture to
make it different from the standards. Thus I will follow closely the classical textbook of
Hopcroft, Motwani, and Ullman for the first part (automata and formal languages) and,
somewhat more freely, the book of Schoening in the second half (logics). Both books are
available at the IRC. These books are not required reading; the lecture notes that I prepare are
a fully self-sustained reference for the course. However, I would recommend to purchase a
personal copy of these books all the same for additional and backup reading because these are
highly standard reference books that a computer scientist is likely to need again later in
her/his professional life, and they are more detailed than this lecture or these lecture notes.

There are several sets of course slides and lecture notes available on the Web which are
derived from the Hopcroft/Motwani/Ullman book. At http://www-
db.stanford.edu/~ullman/ialc/win00/win00.html, you will find lecture notes prepared by
Jeffrey Ullman himself.

Given the highly standardized nature of the material and the availablity of so many good
textbooks and online lecture notes, these lecture notes of mine do not claim originality. In
fact, many of the examples I use are taken from the Hopcroft/Motwani/Ullman book, and I
will not explicitly mention this in the text. I also occasionally copy from the ACS1 lecture
notes written by Andreas Jacoby in Spring 2002, without giving the reference. The main
purpose of these (fully self-contained) lecture notes is to make the purchase of a textbook
unnecessary and to establish a reference of what contents will be asked for in the exams.

1.2 What automata and formal languages are and are good for

The first part of this lecture will be concerned with formal languages. One of the most
convenient and most widely used ways to specify a formal language is through automata. In
this first introduction, we will give an informal sketch of the most simple type of an
automaton, which will in turn give you a first idea of what a formal language is.

What are "automata"? They are mathematical formalisms that can be interpreted intuitively as
simple computational machines.

What do they "do"? Typically they process "words", that is, finite symbol sequences.

Example: The simplest kind of automaton is a finite automaton (FA). Physically, think of a
FA as a device that can switch between a finite number of different states (they might be
realised electronically or mechanically), with the switching events being triggered by symbols
that are read in into the FA. More abstractly, such a FA can be represented by a directed
graph, whose nodes ("vertices") correspond to the states. They are connected by arrows which
are labelled by the symbols that the FA can process. Fig. 1.1 gives a simple example (from the
Hopcroft book):

 3

Fig. 1.1:A graph representation of a finite automaton. It has 4 states q0, q1, q2, q3, of which q0
is both the starting state (indicated by "start" arrow) and the final accepting state (indicated by
double circle).

The FA from Fig. 1.1 starts in the starting state q0. It now reads in a word made from symbols
{0,1}, for instance the word "0110". The symbols are read in one by one. Each newly read-in
symbol induces a state transition according to the transition arrows' labels. Thus, the word
0110 takes the FA through the state sequence q0, q2, q3, q2, q0. Because the last state in this
sequence is q0, the accepting state, the FA accepts the input 0110. It would reject any input
word that does not drive it through a state sequence ending in the accepting state. For
instance, the word 10 would bring the FA to q3, which is not an accepting state, the word 10
would be rejected. The set of words accepted by this FA is the language of this automaton.
(Can you describe this language in intuitive terms?)

This is just an informal first contact to give an idea of the "flavour" of automata. We will later
re-introduce FAs rigorously, and learn about more complicated (and more powerful) automata
types. Here are some characteristic features of the theory of automata and languages:

• The task of automata is to accept/reject input words.
• Thus, an automaton defines a formal language, that is, the set of accepted words.
• Finite automata are the most simple automata.
• More complicated automata can be derived from FA by adding further mechanisms,

for instance a stack memory (then you get "pushdown automata") or a tape memory
(then you get "Turing machines"), or one can associate output actions with states (then
one gets input-output-devices), or one can introduce randomness (then one gets non-
deterministic or probabilistic automata)

• The basic use of automata is as algorithms that "decide" languages, that is, for any
query word carry out a computation (run the automaton on that word) whose result is a
yes – no answer (via accept – reject) whether the query word belongs to the language.

• The theory of automata and formal languages investigates how certain classes of
formal languages correspond to certain types of automata.

Applications of the theory of automata and formal languages:

• Computer science:
o Syntax checking of computer programs, lexical analysis of computer programs
o Software for scanning large bodies of text (e.g., web page collections) for key

words or key patterns

 4

• Mechanical and electrical engineering: Design and implement control devices in
mechano-electrical machines, from laundering machines to cellphones to nuclear
power plants (control chips often implement tens to hundreds to thousands of FAs –
note that the basic forking of labelled arrows leaving a FA state has the logical
structure of a case distinction)

• Chemistry, biochemistry: Models of chemical reaction chains, folding states of
enzymes.

• Information theory, theoretical physics: measuring the complexity of measurement
series

• Cognitive science, robotics: modeling and implementing decision-making ("action
selection") sequences

All in all, automata models and formal languages provide one of the most basic and most
widely useful tools that computer science and mathematics offers, comparable to elementary
calculus or elementary linear algebra.

1.3 What a logic is and is good for

What is a "logic"? A mathematical language that can describe non-mathematical and
mathematical facts in mathematical "propositions".

What can you "do" with a logic? You can formally derive ("deduce") new propositions from
ones that you already have, thereby answering interesting questions about the reality you are
describing.

You already know a simple kind of logic, Boolean logic. Boolean logic is quite restricted in
its descriptive possibilities, you can only point to complete real-life facts and claim that they
are false or true. In this lecture we will be concerned with another logic, first order logic
(FOL). FOL can describe the internal structure of real-life facts; FOL can name individual
things, actions, properties. A famous example, which is in fact as old as it appears, is
illustrated in Fig. 1.2.

Important points:

• FOL can point to objects (Socrates), properties (human, mortal), actions (not in this

example)
• Using FOL, one can describe almost anything one wants; FOL is a very expressive logic.

For instance, FOL is powerful enough to capture all of mathematics (within a certain set-
theoretic framework) – in contrast, with Boolean logic you could not express
mathematical statements as simple as "1 + 1 = 2".

• Within the world of logics, one can derive new propositions (the conclusions, here: mortal
Socrates) from given ones (the premises, here: "x (human x ® mortal x) and human
Socrates). Such derivations are mathematical proofs. (the ß in Fig. 1.2.).

• If a logic is correct, the conclusions one can prove are true (= hold in the real world)
whenever the premises are true. This is a miraculous fact – think about it!

 5

Fig. 1.2: The miracle of logics: Purely formal derivations are true in the real world!

Applications of Boolean logic:

• In basic EE & CS: for all binary switching systems, -- that is, for pretty much all of
digital electronics from simple logical gate arrays to DSP chips to complete
computers.

• In Artificial Intelligence (AI): some real-world planning problems can be cast in
Boolean logic and solved mechanically by the rules of Boolean logic. In the advanced
lecture on Computation and Complexity (in your third year) you will learn that in fact,
Boolean logic is in a sense universal: every computational problem that can be solved
out by "trying out solutions" (technically, every problem that lies in class NP) can be
translated into an equivalent Boolean logic problem.

Applications of FOL:

• In basic CS: program verification
• In Artificial Intelligence: FOL is the basis of most AI systems, like expert systems,

high-level robot control systems, intelligent user interfaces, speech understanding
systems, etc.

• In database systems: deductive databases

∀ → (human mortal)x x x

mortal Socrates

human Socrates

World of Logics Real World

it's true!

it's true!

it be true --
it's proven!

must it's true!

∧

⇓

 6

1. 4 Basic textbooks (for additional and backup reading, not required):

Hopcroft, John E., Motwani, Rajeev, Ullman, Jeffrey D.: Introduction to Automata Theory,
Languages, and Computation (2nd Edition), 2 (Addison Wesley) IRC: QA267 .H56 2003

Schoening, Uwe: Logic for Computer Scientists (Progress in Computer Science and Applied
Logic, Vol 8), (Birkhauser) IRC: QA9 .S363 1989

Michal Walicki: Introduction to Logic. Online lecture notes, obtainable from the author's
website at http://www.ii.uib.no/~michal/ . This is a nicely written introduction to
propositional and predicate logic, apparently intended for math students, but well-explained.
It contains an interesting historical introduction section. I put a copy at http://minds.jacobs-
university.de/sites/default/files/uploads/teaching/share/IntroToLogicWalicki.pdf.

Part 1: Formal languages

2. Basic notions and two different kinds of infinity

An alphabet S is a finite nonempty set of symbols, for instance S = {0, 1} or
 S = {ai | i = 1, ..., n}.

A word w over S is a finite sequence of symbols from S. e denotes the empty word. For two
words w and v, wv is the concatenated word. For a word w and a symbol x, wx is the word w
with x appended at the end; xw is w with x prepended. | w | is the length of w, | e | = 0.
Furthermore, we use the following notations for certain sets of words:

1. Sk: set of all words over S of length k.
2. S0 = { e}
3. S+ = S1 È S2 È S3 È ..., the set of all non-empty words over S.
4. S* = S0 È S+, the set of all words over S.

Any subset L of S* is a language over S. If you want to emphasize that you are dealing with
the abstract theory of such languages, say "formal language" instead of just "language".

Since by definition, the alphabet S is finite, we can enumerate all words over S. That is, we
can order all words by sorting them in a right-infinite sequence. This ordering can be done in
many ways, but the most standard ordering is the alphabetical enumeration. For instance, for
the binary alphabet S = {0, 1}, the set S* of all words over S is sorted by alphabetical
enumeration like this:

e, 0, 1, 00, 01, 10, 11, 000, 001, ...

In the general case of a generic alphabet S = {ai | i = 1, ..., n}, the alphabetical enumeration
of S*is achieved as follows. Assume that the symbols from S are ordered, e.g. by their

 7

indices: in S = {ai | i = 1, ..., n}, ai comes before aj if i < j (just as the letters of the English
alphabet are ordered, with "a" first and "z" last). Then enumerate S* via

e, a1, a2, ..., an, a1a1, a1a2, ..., a1an, a2a1, anan, a1a1a1, a1a1a2, ...

Any set is called countable if it has at most as many elements as there are natural numbers. In
mathematical rigor, a set S is defined to be countable if there exists an injective map i: S → N
(remember: a map f: A → B from a set A to a set B is called injective if for every b Î B there
exists at most one a Î A such that f(a) = b). The set {0, 1}* can be seen to be countable by
understanding the alphabetical enumeration as a map from i: {0, 1}* → N:

{0, 1}* : e, 0, 1, 00, 01, 10, 11, 000, 001, ...
map i : ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
N : 0 1 2 3 4 5 6 7 8 ...

Finite sets are always countable. But there are also many sets that are infinite and countable –-
one calls such sets infinite(ly) countable. {0, 1}* is an example. Another example of a
countable infinite set is N itself, or the set of all even integers.

So the set of all languages over S splits into two subsets, as in the following diagram:

Any subset of a countable set is countable. Therefore the following implication follows:

S* is infinite countable Þ any language over S is countable.

This is a good moment to briefly explain how "sizes" of sets are handled mathematically. The
technical term for the size of a set S is called its cardinality. It is denoted by vertical bars: | S |
is the cardinality of S. For finite sets, the cardinality is just the number of its elements, for
instance | {a, b, c} | = 3. The cardinality of infinite sets is measured by so-called cardinal
numbers, an advanced concept of set theory that we will not further explore. But there is a
workaround which is good enough for us. We will characterize cardinalities of infinite sets by
equating them with the cardinality of known infinite sets. In particular, | S | = | N | means that
S has the same cardinality as the set of natural numbers ("infinitely countable"); | S | = | R |
means that S has the same size as the set of the reals. In general, a statement of the form | A | =
| B | means that A has the same cardinality as B. The rigorous definition for "same cardinality"
goes like this:

Definition 2.1 Two sets A, B are said to have the same cardinality, written | A | = | B |, if there
exists a bijective map f: A → B.

Infinite cardinalities need some time to get used to. For instance, the set N = {0, 1, 2, ...} of
natural numbers has the same cardinality as the set E = {0, 2, 4, ...} of even natural numbers,

 8

that is, | N | = | E | – although maybe you would feel that there are twice as many naturals as
even naturals. Also with a little thinking you will find that there are as many rational numbers
as there are naturals: | N | = | Q |. (Recall that the rational numbers are the numbers that can be
written as a signed ratio of two natural numbers).

We now turn to a not-so-easy question: how many languages exist over S? There exist as
many languages over S as there exist subsets of S*. Because S* has as many elements as N
has, this boils down to the question of how many subsets N has. This question is easily
answered: N has as many subsets as there are real numbers between 0 and 1. This is because
every subset of N can be specified by a right-infinite binary string. For instance, the string
01100... would express a subset of N containing 2, 3,... but not 1, 4, 5,... . But every such
string also specifies a real number in the interval [0 1], if you think of the string as the binary
digit representation of a real number (prepend "0." to the string, for instance interpret the
string 01100... as the binary represented number 0.01100...). We skipped over a little technical
difficulty here: a string that ends in an infinite sequence of all 1's represents the same real
number as the same string with the trailing ones replaced by all 0's and the previous 0
switched to 1.

Remember that there exist as many real numbers altogether as there exist reals between 0 and
1. (This is so because the open unit interval can be mapped 1-1 to all of R). Summing up, we
find:

• R has as many elements as [0 1]
• [0 1] has as many elements as there are right-infinite binary strings
• There are as many right-infinite binary strings as there are subsets of N
• N has as many subsets as S* has
• There are as many subsets of S* as there are languages over S.

Altogether, there are | 2N | = | R | many languages over S. (2N is a mathematical way to denote
all right-infinite binary strings.) This is a huge number of languages... it is uncountable. There
is no way of enumerating all languages over S!

Examples of formal languages:

1. English (if English is cast as a formal language, what would be S, what would be L?
there are many reasonable choices! For instance, S might be the set of letters of the
English alphabet – but it might also be the set of English words. And L might be the
set of English words [makes sense if S is the standard English alphabet], but in
computational linguistics, L is more often taken to be the set of grammatically correct
English sentences, or even texts!) Remark: historically, one of the origins of the
theory of formal languages came from linguistics. Noam Chomsky (check him out on
wikipedia), linguist, philosopher, politician – one of the great intellectual figures of the
2nd half of the last century – developed the foundations of the formal language theory
in order to achieve a mathematically rigorous account of natural language grammars.

2. The set of syntactically correct programs of the programming language C
3. Æ, the empty language
4. { e}, the language containing the empty word (note that Æ ¹ { e})
5. The language {0n1n | n ³ 0}

 9

6. The language L which is equal to {1} if the Riemann hypothesis is true, else is equal
to {0}.

7. The language WINCHESS = {w | w codes a winning strategy for white in chess} (may be
the empty language! nobody knows). Remark. This and the previous example indicate
that complicated and deep problems can be cast as language decision problems. If we
possessed some algorithm to decide, for some word w, whether it codes a winning
strategy for chess, then (in principle, not accounting for computation times) we could
compute a winning strategy for white. How? One would “just” have to generate all
words w1, w2, … , and for each of them decide whether it is in this miracle language
WINCHESS. If a winning strategy exists at all, it corresponds to some word wi, and will
eventually be found … in due time…

8. The language Lf = {(x, y) | y = f(x)} over the alphabet S = {0,1,(,), ","}, where f is
some numerical function on the integers and x, y are binary strings representing
integers. Remark. Just as solving problems can be cast as language decision, so can
function computation. How? Well, in order to compute f(x) for some x, “simply”
generate all words (x, y1), (x, y2), … and decide for each of them whether it is in the
language Lf. For one (and only one) yi it will hold that yi = f(x), and this will be found.

A grand preview. The remarks in examples 7. and 8. indicate that deciding languages is a
very fundamental operation. This is indeed very true. In the course “Computability and
Complexity” you will learn to understand (and analyse) essentially everything that computers
can do as language decision problems.

3. Finite automata, regular expressions and regular languages

In the beginning of this course we will investigate a particularly simple class of formal
languages, the regular languages. They are a subclass of the context-free languages, which
are a subclass of the context-sensitive languages, which are included in the recursive
languages, which are a subclass of the recursively enumerable languages, ... that's about it.
There are several ways to define and analyse regular languages. One of them is to describe
them through finite automata like the one we have met in the Introduction.

3.1 Finite automata

Aside: if M, K are sets, then M ´ K = {(m, k) | m Î M, k Î K} denotes the set of all pairs of
elements of M and K.

Def. 3.1 A deterministic finite automaton (DFA) (or simply a finite automaton for short) A
is a quintuple A = (Q, S, d, q0, F), where Q = {q0, q1, ..., qn} is a finite set of states, S is the
alphabet of input symbols, d: Q ´ S ® Q is the transition function, q0 is the start state, and F
Í Q is the set of accepting states.

Examples 3.1. A convenient format to depict DFAs graphically is their transition graph.
States are denoted by circles (the vertices of the graph), d makes for labelled arrows (labels =
symbols from S which determine the state transitions), the starting state is distinguished by a
"start" arrow, and all accepting states are marked by a double circle (there may be none!). In

 10

the Introduction we already saw a state transition diagram. Here are three more (for all, S =
{0,1}):

The DFA (i) accepts no word, (ii) accepts all words, and (iii) accepts exactly the word 01. In
the design of (iii) a standard trick was used: state q3 serves as a "dead" state from which there
is no escape – all "unwanted" word continuations are channelled into this dead state. Such
dead states may be omitted from a transition graph, that is, (iii) could also be rendered like

Thus, the characteristic property of transition graphs of DFAs is that for every state and
symbol there is at most one arrow leaving that state with that symbol.

Def. 3.2 Let A = (Q, S, d, q0, F) be a DFA. Define the extended transition function

 by induction over words through and
. Use notation d(q, w) for .

Def. 3.3 A DFA A accepts a word w if d(q0, w) Î F. If d(q0, w) Ï F, the word is rejected.
The set of words L(A) = {w Î S* | A accepts w} is the language accepted by A. Any language
that is the language accepted by some DFA is a regular language. The set of all regular
languages is denoted by !"#.

Another convenient representation, in tabular form (for use in computers, if you wish to
simulate a DFA on your machine) is the transition table, which contains in its rows a tabular
form of d. Format: the left column lists all states, the right columns indicate into which next
state the DFA is taken by reading in a symbol. The starting state is singled out by an arrow,
the accepting states are marked by a *.

q0 (i)
Start

0,1 q0 (ii)
Start

0,1

q0

(iii)

Start

0,1

q1 q2
0

0,1

1

q3

0 1

q0 (iii') Start q1 q2
0 1

 11

Example 3.2. of a transition table (right panel, for our introductory DFA):

Notation: it is sometimes convenient to write (q, x, p) to denote d(q,x) = p, and call (q, x, p) a
transition. In other words, the transition function d is interpreted as the set d = {(q, x, p) |
d(q,x) = p}, that is, by an edge-labelled graph.

Aside: if M is a set, then Pot(M) denotes the power set of M, the set of all subsets of M. For a
finite set M of size n, Pot(M) has size 2n.

Def. 3.4 A nondeterministic finite automaton (NFA) is defined like a DFA, except that the
transition function reads d: Q ´ S ® Pot(Q), that is, assigns a subset of Q to each state-
symbol pair. Note that d(q,a) = Æ is perfectly possible, that is, a transition from state q
triggered by a symbol a may lead nowhere.

Def. 3.5 The extended transition function for a NFA is defined
inductively through

and

.

Again, we use the notation d(q, w) for .

Def. 3.6 A NFA A accepts a word w if d(q0, w) Ç F ¹ Æ. The language L(A) of a NFA is the
set of all words accepted by A.

Example 3.3. The following NFA accepts all the words that end with 01. Note that there are
two "0" arrows leaving q0, which would be forbidden in a DFA.

Intuitively, a NFA accepts a word w if there exists some state sequence that (on input of w)
ends in an accepting state. Note that NFAs are (i) good for human design: it is typically much
easier to write down an NFA for a given language than a DFA, but (ii) NFAs are bad for
computer implementations because of the non-determinism: if a computer program would
have to emulate an NFA, the program wouldn't know which transition options it should take
when a non-deterministic situation is encountered. Fortunately, it is possible to automatically

0 1
® q0* q2 q1

q1 q3 q0
q2 q0 q3
q3 q1 q2

q0 Start q1 q2
0

0,1

1

 12

transform any (maybe human-specified) NFA into an equivalent (computer-runnable) DFA.
This construction is the underlying idea used in the proof of the following proposition.

Proposition 3.1. The languages accepted by DFAs are the languages accepted by NFAs.

Proof, general comment: This proposition is of the form "set A equals set B". Almost
invariably, when proving statements of this form, one shows two things: (i) A Í B, and
(ii) B Í A.

Proof, main idea: (i) Showing that the set of languages accepted by DFAs is a subset of the
set of languages accepted by NFAs is trivial, because DFAs are NFAs (the definition of
NFAs is a generalization of the definition of DFAs). The difficult part is to show (ii) that the
set of languages accepted by NFAs is a subset of the set of languages accepted by DFAs. For
this one has to start with some NFA A = (QN, S, dN, q0N, FN) and construct from it a DFA A' =
(QD, S, dD, q0D, FD) that accepts the same language. The crucial idea is to take as the states of
A' all subsets of states of A, that is, put QD = Pot(QN) ("subset construction"). Further details:
put q0D = { q0N }, FD = {S Í QN | S Ç FN ¹ Æ}, and for all S Î QD = Pot(QN), x Î S,

(3.1) dD (S, x) = .

Proof, example: The subset construction will become immediately plausible through an
example. We take the NFA from example 3.3, redrawn here for convenience:

And here is the corresponding NFA obtained from the subset construction:

Notes:

1. The states qi that occur inside the state circles of the subset DFA are from the

nondeterministic NFA, therefore they should more correctly be written qiN. The N
subscript is omitted for readability.

2. According to q0D = { q0N }, the start state is the one that contains (as a set) only q0N.
3. The accepting states of the subset DFA are all subsets of NFA states that contain some

accepting state of the NFA (here this is only q2N), according to
FD = {S Í QN | S Ç FN ¹ Æ}.

4. To illustrate how it is determined which arrows leave a given state of the DFA, let us
consider the state S = {q0N, q2N }, and apply the rule dD (S, x) = . For x =

q0 Start q1 q2
0

0,1

1

Æ

Start

0 1
{q0} {q1} {q2}

{q0, q1} {q0, q2} {q1, q2} {q0, q1, q2}

0

1

0

1 1

0

 13

0, we have to check to which NFA states one can go from either q0N or q2N. We find that
we can reach q0N and q1N from q0N and no other state from q2N. Therefore, what we can
reach altogether is {q0N, q1N}. This yields the "0" arrow from {q0N, q2N } to {q0N, q1N} in
the diagram. Similarly, the "1" arrow is determined by considering what states we can
reach in the NFA from either q0N or q2N. From q0N a 1 leads to q0N and from q2N a 1 leads
nowhere, so we determine in the DFA a "1" arrow from {q0N, q2N } to {q0N}.

5. Seen strictly, in a DFA for every state q and every symbol x there must be an arrow
labelled with x leaving q. For instance, from {q1N, q2N} we get the dotted arrows marked
in the diagram. However, the state S = {q1N, q2N} cannot be reached from the starting
state in the subset DFA. Generally, in the diagram I omitted all such irrelevant transitions
that cannot be reached from the start state, which leads to the numerous seemingly
"orphan" states in the diagram.

Proof, formal: The formal proof has to show that the language accepted by our subset DFA is
the same language as the one accepted by the original NFA. We proceed by induction on the
length of words. This is a very common type of proof in the theory of formal languages, and I
suggest that you digest this proof thoroughly. We show for every word w that

(3.2) .

[Be careful that you understand this formula. is the set of NFA states that can be
reached from the starting state via w. is the single state of the DFA that is deter-
ministically reached from the DFA starting state via w. However, due to the subset construct-
ion, this single DFA state corresponds to a set of NFA states – namely, to .]
[Furthermore, make sure that you understand that if we have shown (3.2), then we are done.
Because, w is accepted by the NFA Û contains some accepting state Û

 is an accepting state Û w is accepted by the DFA.]
Induction basis: |w| = 0, i.e., w = e. Then = {q0N} = .
Induction step: assume that (3.2) has been shown for all |w| £ n. Let v = wx be a word of
length n +1. Then , which by induction is equal to

, which by (3.1) is equal to ·

The exponential blowup of number of states through the subset construction may become
necessary in some cases: there are NFA A with n states where the smallest equivalent DFA
needs 2n states. An example that comes close in badness is the language {w Î {0,1}* | |w| ³ n
and the n-th symbol from the last is a 1}. However, in many practical examples a DFA
equivalent to a given NFA has about the same number of states.

Example 3.4. A common task in text processing is to collect from a text occurrences of some
keywords. Assume that you want to browse a text for keywords web and ebay. If you set out
on the task of writing such a keyword recognizer naively, you may easily end up with an
unecessarily costly algorithm. Using DFAs and NFAs, there is a way to detect keywords in a
very fast way. We will now learn how one can systematically construct DFAs that read in a
stream of symbols such that whenever one of a set of keywords has been read, the DFA is in
an accepting state. It is easy to design an NFA for the web-and-ebay-task:

 14

However, this being a nondeterministic device, it does not lend itself directly for use as an
automated keyword search algorithm. Happily, we can transform NFAs of this type into an
equivalent DFA that has the same number of states (note that we can certainly transform it to
some equivalent DFA by the subset construction). Here is the recipe (only for the case where
the keywords start with different symbols; the general case needs some adjustments that you
can find in the HMU book):

1. The NFA start state q0 becomes the DFA start state {q0}, as usual.
2. For every other NFA state p create a DFA state that consists of q0, p and possibly

some others. These others are determined as follows. Suppose p is reachable in the
NFA via a word a1a2...am. Then include into the corresponding DFA state every other
NFA state that can be reached in the NFA through any suffix ajaj+1...am of a1a2...am.

3. The accepting DFA states are the ones that correspond to the accepting states of the
NFA.

4. Determine the transitions as in the subset construction.

Comment: This DFA is the one that one would obtain from the subset construction, weeding
out all inaccessible DFA states. The 4-step procedure above is a cheap shortcut to the subset
construction which works for NFAs of the "word branching" kind as in the web-and-ebay-
task. See the transition graph of the resulting DFA:

1

2 3 4

5 6 7 8

S w
e b

e

b a y
Start

1

12 135 146

15 16 17 18

S-e-w

w

e b

e

b a y

Start

S-a-e-w S-b-e-w
w w

S-e-w

w

w
w

w

e

e e

S-b-e-w

S-a-e-w

e e e

S-a-e-w
S-e-w

w a

 15

If you sit and think this over for a while, you will find that and how this principle functions.
The DFA obtained can be turned into an algorithm by implementing its transition table. When
reading in a text, at each symbol only one line of this transition table has to be evaluated;
whenever one of the keywords has been completed, the DFA will be in an accepting state.
Note that in this application, the DFA reads in an endless stream and not, like in our standard
usage, finite words.

This construction is one member of the large family of string search algorithms, which come
in many variants and many of which involve the construction of DFAs. Check out
http://en.wikipedia.org/wiki/String_searching_algorithm if you want to get an overview
impression.

For a human designer, NFAs are mostly easier to design than DFAs because they have fewer
restrictions. By a further generalisation we arrive from NFAs at e-NFAs, which are again
even more convenient for hand-design.

Def. 3.7 A nondeterministic finite automaton with e-transitions (e-NFA) is defined like a
NFA, except that the transition function reads d: Q ´ (S È {e}) ® 2Q, that is, from each state
q one can "jump" to other states without reading in a symbol.

Example 3.5. Here is an e-NFA1 designed to accept decimal numbers with an optional + or –
sign and an optional decimal point, such that either the digit string before the point or after it
may be empty (if a decimal point is written), but not both:

Defining the extended transition function needs to take care of the possibility that e-transitions
may follow each other in a line in the transition graph, such that one can "tunnel" from the
beginning of an e-chain to its end in a single step of the extended transition function. To
accomodate this circumstance, one has to consider the transitive closure of e-transitions, i.e.,
intuitively, "e-chains". Technically, we do not introduce e-chains but the e-closure of a state.
The e-closure ECLOSE(q) of a state q is {q} joined with the set of states accessible from q
through any sequence of e-transitions:

Def. 3.8 Let q be a state in an e-NFA. Then ECLOSE(q) is the smallest set of states satisfying
(i) q Î ECLOSE(q) and (ii) if p Î ECLOSE(q) and d(p,e) = r, then r Î ECLOSE(q).

Def. 3.9 The extended transition function for an e-NFA is inductively
defined through ECLOSE(q) and

1 Mostly taken from the Hopcroft et al book, with improvements suggested by Razvan Pascanu.

q0 Start q1

0,...,9

., e

q2 q3

q4

e,+,-

0,...,9

0,...,9

0,...,9

.,e

 16

ECLOSE(q''). Again, you may use

the sloppy notation d(q, w) for .

Def. 3.10 A e-NFA A accepts a word w if d(q0, w) Ç F ¹ Æ. The language L(A) of a NFA is
the set of all words accepted by A.

Proposition 3.2. The set of languages accepted by DFAs is the set of languages accepted by
e-NFAs.

Proof, main idea: Essentially, repeat the subset construction from the proof of Prop. 3.1:
QD = Pot(QE), q0D = ECLOSE(q0E), FD = {S Î QD | S Ç FE ¹ Æ}, and for all S Î QD, x Î S,

 dD (S, x) = ECLOSE(q'E).

By induction on the length of words w show that for all words. ·

Thinkie. Example 3.4 showed how to construct an „online detector“ for a finite set of words,
that is, for any finite language. It is also possible to create a similar „online detector“ for any
regular language. That is, if L = L(A) for some DFA A, it is possible to construct a
deterministic transition machine which, when reading in a (possibly infinite) symbol sequence
a1 a2 ..., passes through an accepting state at time n whenever a suffix of the input sequence a1
a2 ... an is in L(A). Hint: use e-transitions to transform A into an „e-transition-online detector“,
then transform this into a DFA.

The automata presented so far are very simple machines: They accept a word over S as input
and either accept it or reject it, i.e., their output is “Yes” or “No”. Often these automata are
simply called “acceptors” to distinguish them from more complicated automata that output
more than just Yes or No.2

There are two important classes of such automata with output: Moore and Mealy automata.
Both have a translation function t instead of final states. Their function is to translate words
over S to words over O, instead of accepting/rejecting words over S:

Def. 3.11. Moore and Mealy DFA are tuples (Q, S, O, d, q0, t) where Q, S, d and q0 are as
for DFAs, O is the output alphabet and t is a translation function

t: Q ® O (Moore-DFA)
t: Q ´ S ® O (Mealy-DFA).

The difference between Moore and Mealy automata is that in a Moore-DFA the output only
depends on the current state whereas in a Mealy-DFA it also depends on the current input.
The extended transition function of Moore and Mealy DFAs is defined in the same way as for
DFAs without output.

Corresponding to the extended transition function, the extended translation functions are
defined as follows:

2 The following part about Moore and Mealy machines is taken from a version of this script written by Florian
Rabe.

 17

Def. 3.12. The extended translation function : Q ´ S* ® O* is defined by induction on
the input word:

 (q, e) = e and
 (q, wx) = (q, w) t(d(q, wx)) (Moore-DFA) or
 (q, wx) = (q, w) t(d(q, w), x) (Mealy-DFA).

Moore and Mealy machines give rise to word-to-word translations T: ® O* by putting T(w) =

(q0, w).

Moore and Mealy machines are equivalent in the sense that any word-to-word translation T:
S* ® O* which can be realized by a Moore machine can also be realized by a Mealy
machine, and vice versa (mildly challenging exercise!).

Different textbooks may have slight differences in defining Moore / Mealy machines. For
instance, one also finds variants of Moore machines where the extended transition function is
defined from the induction basis condition (q, e) = t(q).

3.2 Regular expressions

Regular expressions (for short, regexps, singular: regex) provide an alternative way to define
the regular languages. The idea behind regexps is to construct the regular languages by
language-construction operations. The general format of a language-construction operator C
is L = C(L1,..., Ln), that is, such an operator takes some argument languages L1,..., Ln and
transforms them into a target language L. To obtain the regular languages, we need three such
operators:

1. The union of two languages, C(L1, L2) = L1 È L2;
2. the concatenation of two languages: C(L1, L2) = L1L2 = {w1w2 | w1 Î L1, w2 Î L2};
3. the closure (or "star", or "Kleene closure") of a language L:

C(L) = L* = , where L0 = {e}, L1 = L, and Li = LL...L (i copies) for i > 1.

That is, L* contains all words that are concatenations of words of L (including the
empty concatenations e).

The regular languages are all the languages that one can obtain through iterated (nested)
applications of these constructors, starting from some very simple basis languages. The
notation used to describe both these basis languages and the nested applications of our
constructors is regular expressions. They are defined together with the languages they denote:

Def. 3.13. (Regular expressions and their denoted languages). Let S be an alphabet. A regular
expression E over S denotes a language L(E) over S. The syntax of regular expressions is
defined inductively together with the languages they denote:

€

ˆ τ

€

ˆ τ

€

ˆ τ

€

ˆ τ

€

ˆ τ

€

ˆ τ

€

ˆ τ

€

ˆ τ

 18

1. The constants e and Æ are regular expressions, with L(e) = { e} and L(Æ) = Æ.
2. For each a Î S, a is a regular expression, with L(a) = {a}.
3. If E and F are regular expressions, then (E + F) is a regular expression, with

L((E + F)) = L(E) È L(F).
4. If E and F are regular expressions, then (EF) is a regular expression, with

L((EF)) = L(E) L(F).
5. If E is a regular expression, then (E*) is a regular expression, with L((E*)) = (L(E))*.

An extension of regexps is regular expressions with language variables. The set of language
variables is L = { Li | i = 1, 2, 3, ...}. A S-interpretation of the language variables is a
mapping I: L ® Pot(S*), that is, every language variable is assigned to some (not necessarily
regular) language over S. If a regex E contains language variables, the language denoted by
the regex depends on the S-interpretation. We then speak of the language denoted by the
regex relative to the S-interpretation, and write LI(E). If we replace the basis rules 1. and 2. by
the following:

1'. the constant Æ is a regular expression, with L(Æ) = Æ,
2'. for every language variable Li, and S-interpretation I, Li is a regular expression, with

LI(Li) = I(Li),

we speak of regular expressions with language variables.

Precedence rules for saving parentheses: * has highest precedence, then concatention, then +.

Notes

1. The rules 1 and 2 provide the basis languages over S.
2. We distinguish between the empty language Æ and the regex Æ that denotes it. The latter

is in boldface (hard to see, I admit – on my computer screen the difference is clear, but in
my printouts, there is no difference). Likewise, e (boldface) is the regex denoting the
language {e} and a is the regex denoting the singleton language {a}.

3. Our definition of regexps and the languages they denote is our first encounter with a very
common way of handling things in the theory of languages, the theory of computation,
and logics. Namely, one simultaneously introduces a syntax of certain formulae and their
semantics, that is, what the formulae denote. A clean syntax-semantics distinction is one
of the healthiest and most powerful things to have – we'll learn to appreciate this fully in
the logic part of this lecture.

4. Our definition is inductive. We start with some basis expressions (and what they denote)
and introduce further rules that allow us to build new expressions (and things they denote)
from already given parts.

5. The syntax of regular expressions varies. Other authors and books and programming
languages often use other syntaxes.

6. Regexps with language variables may denote languages that are not regular, depending on
the S-interpretation.

7. UNIX has a much extended syntax that contains many additional convenience features
(see http://www.grymoire.com/Unix/Regular.html for a nice little tutorial). The expressive
power (what languages can be denoted) is however not increased by the additional
syntactical features. A possible source of confusion is that what we called regular
expressions is actually called a "pattern" or "search pattern" in the UNIX world; what they
call "regular expressions" is a mixture of search patterns and wrapup command syntax that

 19

tells UNIX what you want to do with the search patterns (e.g., use them to replace hits
found by the search pattern with something else). Here are some (not all) components of
UNIX search pattern syntax:

• . wildchart for regexp s1+ s2+ ... + sm, where S = {s1, ..., sm} is the UNIX symbol

set (except the end-of-line symbol). The UNIX search pattern " . " thus just
denotes any single symbol.

• [a1 a2 ... an] for regex a1+ a2+ ... + an.
• [A – Z] for ASCII symbols with codenumbers from A to Z. Example: [\- \+ \. 0–9]

matches any symbol from the collection -, +, ., 0, 1, ..., 9. Note that the backslash
must be used if one wants to refer to a symbol that has a special function in the
UNIX regex syntax: \. denotes the symbol " . ", whereas . (without backslash)
denotes any symbol.

• [^a1 a2 ... an] matches any symbol except a1 a2 ... an.
• | for our regex operator +
• ? means "zero or one of". R? in UNIX is same as the regex e + R
• + means "at least one of". R+ in UNIX is same as the regex RR*
• {n} "n of". R{5} is same as RRRRR.
• {min, max} "at most max, at least min of". R{2,4} is same as RR + RRR + RRRR.

Example 3.6. Here are two regexps denoting the language of all alternating 01 strings:

1. (01)* + (10)* + 0(10)* + 1(01)*
2. (e+1)(01)*(e+0)

Note that here we use bracket saving conventions and are sloppy by not writing the 0 and 1
and e symbols in boldface (which would have been the proper way). This sloppyness is
common practice.

We claimed that the languages denoted by regexps are the regular languages (which we
defined through DFAs in Subsection 3.1). Now we prove this fact. Again, we have the
situation that we want to prove equality of two sets (the set $ of languages denoted by
regexps and the set % of regular languages). Thus, we must prove two directions of inclusion:
$ Í % and % Í $. We put this into two separate propositions, starting with the second
inclusion.

Proposition 3.3: For each e-NFA A, there is a regex E with L(A) = L(E).

Idea of proof: We work with a generalized version of e-NFA, where transition arrows can be
labelled by regexps. In such generalized NFAs, a transition from one state to another along an
arc labelled by a regex E occurs whenever a string is read in that is from L(E). A path along
arcs labelled by regexps E1, ..., Ek corresponds to reading in any word from the language
L(E1...Ek). The language accepted by such an automaton is the set of words w which lies in
some language of the form L(E1...Ek), where E1, ..., Ek are labels of a path from the starting
state to some accepting state. Note that the e-NFA A from which we start can be considered a
generalized NFA: e-arcs in the original A can be considered to be labelled by the regex e, a-
arcs can be considered to be labelled by regex a. Assume that A has only one accepting state.
We describe a method whereby we can transform any generalized NFA (that has more than

 20

two states and only one accepting state) into an equivalent generalized NFA that has one state
less (and one accepting state). Using this method, we can stepwise transform A into a
generalized NFA A' that has only one or two states. If we have that, we can directly give a
regex for the language accepted by A'. If A has more than one accepting states, say q1, ..., qn,
we consider n copies Ai of A where in the i-th copy only qi is accepting. The language
accepted by the original A is the union of the languages accepted by the Ai. We then get n
regexps for the languages of the Ai, which by applying the + constructor give the desired
regex for the language of A.

Proof (sketch)..We skip the exercise to formally introduce generalized NFAs and proceed
directly to describing the method for reducing the number of states in a generalized NFA B
(which has only one accepting state) by one. Let s be a state in B that is neither the starting
nor the accepting state. We want to eliminate s. Let q1,...,qk be the predecessors of s and p1, ...,
pm its successors. (qi is called a predecessor if there is an arc from qi to s; pj is called a
successor if there is an arc from s to pj. Some qi may coincide with some pj, but that is of no
concern.) The figure below (left) shows the generic situation for s waiting to be eliminated.
(Note that in a generalized NFA we can assume without loss of generality that between any
two states q and p, there is at most one arc – because if there were several, labelled with
different regexps, then we could merge them and label the merged arc with the "+" of all the
previous regexps.)

The right diagram in the figure shows the situation after eliminating s. All pathways from the
qi to the pj (the Rij in the original diagram) have been augmented by the possible transitions
that went through s. It is clear that the generalized NFA B' obtained by deleting s in this
manner accepts the same language.

Starting from one of the Ai (remember: that's the original e-NFA with only the i-th accepting
state left declared as accepting, and re-interpreted as generalized NFA), by repeated state
elimination we arrive at either a two-state generalized NFA Ai* (case A) with the accepting
state different from the starting state, or a one-state generalized NFA Ai* (right, case B) where
the accepting and starting state coincide.

q1

pm

S

p1

s

qk

Q1

Qk

P1

Pm

R1m

R11

Rkm

Rk1

.

.

.

.

.

.

q1

pm

p1

qk

R11+ Q1S* P1

.

.

.

.

.

.

R1m+ Q1S* Pm

Rk1+ QkS* P1

Rkm+ QkS* Pm

case C

Start Start

R R

S

U T case B case A

 21

In case A, the regex Ei = (R + SU*T)* SU* obviously denotes the language accepted by Ai*.
In case B, we can put Ei = R*. Altogether we have found a regex Ei denoting the language
accepted by Ai.

Finally, the regex denoting the language accepted by our original e-NFA A is described by E1
+ ... + En. ·

Note: if A has more than one accepting state, we don't have to duplicate all the work for all the
reductions of the Ai. We can economize by deleting from A1 first all those states that are not
accepting in A, and use the intermediate reduced generalized NFA as a starting point for
reducing the A2,..., Ak.

Proposition 3.4: for every regex F, there is an e-NFA accepting L(F). This e-NFA can be
constructed such that it has a single accepting state, no arcs leading back into the start state
and no arcs out of the accepting state.

Idea of proof: re-implement the rules 1-5 of the inductive definition of regexps (Def. 3.13) in
e-NFA "hardware". For the basis rules 1 and 2, directly provide equivalent e-NFAs. For the
constructive rules 3-5, describe methods to build more complex e-NFAs from already given
ones.

Proof, sketch: The figure below gives three e-NFAs for the empty language denoted by Æ,
for the language {e} denoted by e, and for the singleton language denoted by a (from left to
right):

The next figure shows how from e-NFAs for regexps R and S one can build an e-NFAs for
R+S (left), for RS (right upper) and for R* (right lower):

The graphics should be self-explaining. ·

e a

R

S

R S

R

e

e

e

e

e

e e

e

e

 22

3.3 Algebraic laws for regular expressions

For any regex, there exist infinitely many different ones that denote the same language
(consider a trivial example like a, a + a, a + a + a , ... – these are obviously equivalent.) It is
desirable to perform transformations on regexps, for instance in order to simplify a regex or to
show that two regexps are equivalent (transform one into the other). Such "algebraic"
transformation rules serve the same purposes as say, the ordinary algebraic transformation
rules or the rules that you know from transforming set theoretic or Boolean expressions. Here
is a collection of them:

Proposition 3.5 (algebraic laws for regexps): Define two regexps E, F to be equivalent,
written E = F, if L(E) = L(F). The following algebraic laws hold for equivalence of regexps:

1. E + F = F + E and (E + F) + G = E + (F + G) [communtativity and associativity for union]
2. Æ + E = E + Æ = E [identity law for union]
3. S* + E = E + S* = S* [annihilator law for union]
4. (EF)G = E(FG) [associativity for concatenation]
5. eE = Ee = E [identity law for concatenation]
6. ÆE = EÆ = Æ [annihilator law for concatenation]
7. E(F + G) = EF + EG and (F + G)E = FE + GE [distributive law]
8. E + E = E [idempotence law for union]
9. E** = E* and Æ* = e and e* = e and EE* = E*E = E+ and E+ + e = E* [various laws

concerning closure]

Proof: All these statements can easily be proven, using the standard approach for proving
equality of sets: show set inclusion in both directions. As an example, we prove the first
equality in 7. First we show that L(E(F + G)) Í L(EF + EG). Let w Î L(E(F + G)). Then w =
uv, with u Î L(E) and v Î L(F + G), that is, v Î L(F) [case 1] or v Î L(G) [case 2]. Case 1
implies that w = uv Î L(EF), case 2 implies w Î L(EG). So we have w Î L(EF) or w Î
L(EG), that is, w Î L(EF) È L(EG), that is, w Î L(EF + EG). Secondly we show that L(EF +
EG) Í L(E(F + G)). If w Î L(EF + EG), then w Î L(EF) or w Î L(EG). That is, w = uv with
v Î L(F) or v Î L(G). This implies that w = uv with v Î L(F+G), from which we conclude w
Î L(E(F + G)). ·

So far, we have only investigated regexps that contained no language variables. Regexps with
language variables can denote languages that are not regular if the languages denoted by the
language variables are not regular. Trivial example: if the language denoted by the language
variable L1 is not regular, then L1 is itself a regex (with language variables) which trivially
denotes a non-regular language. Things become more interesting when we consider more
complicated regexps E, E' with language variables. First we define what it means for two such
expressions to be equivalent:

Definition 3.14 (equivalence of regexps with language variables). Let E, E' be two regexps
with at most language variables L1, ..., Ln (that is, E and E' may contain these variables, but
don't have to). Fix some alphabet S. Then E and E' are S-equivalent, written E = S E', if for all
S-interpretations I, the languages denoted by E and E' relative to I are identical, that is, if
LI(E) = LI(E').

 23

S-equivalence of regexps E, E' with language variables can be reduced to equivalence of
ordinary regexps through the following proposition:

Proposition 3.6 (characterizing the languages denoted by regexps with language variables
through ordinary regular languages): Let E be a regex with at most language variables
L1, ..., Lm. Let I be a S-interpretation. Let S' = {a1, ..., am} be an alphabet disjoint from S. Let
C be the regex over S' that we obtain from E by replacing each occurrence of Li with symbol
ai (i = 1, ..., m). Then the following two statements hold:

1. Every word w Î LI(E) can be written as w = w1...wk, where k depends on w and each wj

(j = 1, ..., k) is from the language Lij = I(Lij) (ij Î {1, ..., m}), such that, if we replace each
subword wj by aij, the word ai1... aik is in L(C).

2. Conversely, if ai1 ... aik Î L(C), then for any substitution aij ® wj (j = 1, ..., k), where wj Î
Lij, we have w1 ...wk Î L(E).

Example 3.7. (for part 1.) Let S = {0,1}. Let E = L1+L2L1. Then C = a1+a2a1. We consider
an interpretation I that assigns L1 and L2 to the following two languages:

 I: L1 # L(0*) L2 # L(1(01)*)

One word w Î LI(E) is, for instance, w = 10100. Why is w Î LI(E)? Well, it can be segmented
as w = w1w2 = 101|00, where w1 = 101 Î LI(L2) and w2 = 00 Î LI(L1), so

w = w1w2 Î LI(L2L1) Í LI(L1+L2L1) = LI(E).

Now we apply part 1 of the proposition. We replace w1 by a2 (because w1 Î LI(L2)) and w2 by
a1 (because w2 Î LI(L1)). The statement of part 1 tells us that a2a1 Î L(C) = L(a1+a2a1),
which is apparently not a "deep" insight. Actually, this proposition is very shallow – its
unwieldiness results from the care one has to invest in getting the indexing notation right.

Proof of 1. The proof is an example of a standard proof technique in the theory of formal
languages, namely, by induction over the structure of regexps. We first show that the
statement holds for elementary regexps with langage variables derived by the basis rules 1', 2'
(induction basis) and then proceed to show that the statement carries over from constitutents
of regexps to more complex regexps derived by the construction rules 3, 4, 5 from Definition
3.13.

Basis:

1. Rule 1': E = Æ. The statement's premise is void and thereby the statement true.
2. Rule 2': E = L1. Let w Î LI(E), that is, w Î I(L1). We put w = w1 and get C = a1. Then

a1 Î L(C).

Induction: we treat only rule 3 as an example. Assume that E = (E' + E''), and let w Î LI(E),
that is, w Î LI(E') or w Î LI(E''). Let C' and C'' be the regexps over S' obtained for E' and E''
by substitution of language variables with symbols from S'. In the case w Î LI(E'), we know

 24

by induction that w can be written as w = w1' ...wk', where each wj' (j = 1, ..., k) is from the
language Lij = I(Lij) (ij Î {1, ..., m}), such that, if we replace each subword wj' by aij', the
word ai1'... aik' is in L(C') and therefore also in L(C') È L(C'') = L(C' + C''). Similarly, if w
Î LI(E''), we can find w = w1'' ...wl'', such that the substitute ai1'' ... ail'' is in L(C'') and thus
in L(C' + C''). But (C' + C'') is the the regex over S È S' that we obtain from (E' + E'') by
replacing each occurrence of Li with symbol ai (i = 1, ..., m), and thus we are done.

The proof of 2. is carried out in a similar fashion. ·

Corollary 3.7 Let S be an alphabet with at least two symbols and let E, E' be two regexps
with at most language variables L1, ..., Lm. Let C, C' be the substitute ordinary regexps
defined as in proposition 3.6. Then E = S E' iff L(C) = L(C').

Proof. "if": Let L(C) = L(C'). Let I be a S-interpretation. By Proposition 3.6 (1), let w1...wk
Î LI(E) such that ai1... aik Î L(C) = L(C'). By Proposition 3.6 (2), w1 ...wk Î LI(E'). Thus,
LI(E) Í LI(E'). By a symmetric argument, we also get LI(E') Í LI(E) and thus LI(E) = LI(E').
Since I was chosen arbitrarily, we find E = S E'.
"only if": This is the only not-altogether-boring part in all of this ado about E’s and C’s. Let
E = S E'. Let ai1 ... aik Î L(C). Because S has at least two symbols, we can code the S' symbols
a1, ..., am by uniquely identifying words v1, ..., vm Î Sk for some k. Consider an interpretation
I* that assigns to every language variable Li the language {vi}. Then by Proposition 3.6 (2), w
= vi1 ... vik Î LI*(E). The unique segmentation of w into subwords from the languages Li is w
= vi1 ... vik. Because E = S E', we have w Î LI*(E') and thus by Proposition 3.6 (1) and the
uniqueness of the segmentation we obtain ai1 ... aik Î L(C'). Thus, L(C) Í L(C'). By
symmetry, L(C') Í L(C) and therefore L(C) = L(C').·

Example 3.8. Test whether L1+L2L1 = S (L1+L2) L1. Our strategy gives us C = a1+a2a1 and
C' = (a1+a2)a1. We see immediately that a1 Î L(C) but Ï L(C'), and thus the Corollary tells
us that L1+L2L1 ¹ S (L1+L2) L1.

3.4 The pumping lemma for regular languages

The pumping lemma condenses a simple observation about DFAs into an immensely useful
statement about a certain syntactical property that all regular languages have. Its main use is
to show that some given language is not regular, by showing that the language in question
does not have this property.

Proposition 3.8 (pumping lemma): Let L be a regular language. Then there exists a constant n
(depending on L), such that "w Î L, |w| ³ n, we can find a partition w = xyz, such that (1) y ¹
e, (2) |xy| £ n, and (3) "k ³ 0, xykz Î L. In intuitive terms, every word w from L that exceeds
n in length can be "pumped" by replicating an inner part, such that the "pumped-up" words
are also in L.

 25

Proof: Because L is regular, there exists some DFA A = (Q, S, d, q0, F) that accepts L. Let A
have n states. Observe that in an accepting run of any word w = x1x2...xk of length at least n, at
least one state (maybe the start state) must have been visited twice after xn has been read. Let
p be this state and let xixi+1...xj be the subword before which the run went through p and after
which it went through p, that is, (p, xixi+1...xj) = p. Put x = x1x2...xi-1 and y = xixi+1...xj. It is
clear that the statement holds. ·

Example 3.9. The language L = {0m1m | m ³ 0} is not regular. Show this by the pumping
lemma as follows. Assume that L is regular. Let n be the "pumping lemma constant" assured
by the pumping lemma. Consider the word w = 0n1n. By the lemma, it can be split into w =
xyz, with |xy| £ n, that is, xy is made only from 0's. By the lemma, y is non-empty, say it is 0k,
k > 0. Again by the lemma, also 0n+k1n Î L would follow, contradiction.

Example 3.10. The language {w Î {0,1,(,)} | the occurrences of "(" and ")" in w are
balanced} is not regular. This can be shown as in the previous example (pump the word (n)n to
obtain the contradiction).

Note. Generally speaking, any language whose words need some counting-and-remembering-
counts scheme is not regular. Counting parentheses for balancing is an important example.
The intuitive reason is that DFAs cannot maintain a "count" – they simply have no memory
where they could store the count of the opened parentheses. As a consequence, programming
languages (that is, the formal languages whose words are well-formed programs of some type,
e.g. C) are not regular, because all programming languages need to count parentheses.

A consequence of the pumping lemma is that we can decide whether a regular language (that
is given to us by a DFA) is empty, finite, or infinite:

Proposition 3.9. For a DFA A, it is decidable whether L(A) is (i) non-empty, or (ii) infinite.

Proof. First determine a "pumping constant" n from the DFA (take n to be the number of
states of A).

(i) We claim that L(A) is (i) non-empty iff A accepts a word of length < n (and you can check
them all with by exhaustive search). "if" is obvious. "only if": Suppose A accepts a non-empty
language. Let w be an accepted word that has shortest length among all accepted words. Then
|w| < n, for if |w| ³ n, then by the pumping lemma w = xyz such that y ¹ e and xz Î L(A),
contradicting the assumption that w was shortest possible.

(ii) We claim that L(A) is infinite iff A accepts a word w of length l, where n £ l < 2n (and you
can check all such w by exhaustive search). "if": w of length l can be pumped to infinitely
many pumped-up versions, all in L(A), by the pumping lemma. "only if": Assume that L(A) is
infinite. Then there exists some word w Î L(A) of length |w| ³ n. If |w| < 2n, we are done. In
the case |w| ³ 2n, using the PL we split w into w = xyz, with 1£ |y| £ n, such that xy Î L(A).
We have thus reduced the length of w by some length L between 1 and n. As long as the
shortened word xy still has length ³ 2n, we can repeat this shortening by lengths between 1
and N. Clearly after a finite number of such shortenings, we obtain a word in L(A) whose
length L satisfies n £ L < 2n. ·

 26

3.5 Closure properties for regular languages

We now consider closure properties for regular languages. Generally, a closure property is of
the form "if L and M are regular and K is constructed from L and M by some constructor C,
then K is also regular". We say, the regular languages are closed under C. First we collect
some elementary closure properties.

Proposition 3.10. Let L and M be regular languages over S. Then, the following languages
are also regular:

(1) L È M,
(2) L Ç M,
(3) Lc [= S* \ L],
(4) L \ M,
(5) LR = {x1...xn | xn...x1 Î L}, %% superscript R stands for "reverse"
(6) L*,
(7) LM.

Proof: (1), (6), (7) follow from regular expressions and their equivalence to regular
languages.
(3) can be shown by exchanging accepting with non-accepting states in a DFA accepting L.
(2) follows from (1) and (3) by the set-theoretic rule L Ç M = (Lc È Mc) c.
(4) follows from (1) and (2) by the set-theoretic rule L \ M = (L Ç Mc).
(5) can be shown by a straightforward induction over the structure of regular expressions. ·

Definition 3.15 (homomorphisms and inverse homomorphisms on words).

1. Let S1, S2 be two alphabets. A homomorphism h is any function h: S1 ® S2*. Such h

induces another function (also called h) from S1* to S2*, by putting h(e) = e and h(x1...xn)
= h(x1)... h(xn). For L Í S1*, h(L) = {h(w) Î S2* | w Î L}.

2. Let h: S1 ® S2* be a homomorphism. Then the inverse homomorphism is a function
h-1: S2* ® Pot(S1*) defined by w Î h-1(v) iff h(w) = v. For M Í S2*,

h-1(M) = .

Proposition 3.11. (closure of regular languages under homomorphisms and inverse
homomorphisms). Let h: S1 ® S2* be a homomorphism. Then

1. if L Í S1* is regular, so is h(L),
2. if M Í S2* is regular, so is h-1(M).

Proof. (1) Replace in an e-NFA accepting L each symbol label xi by h(xi) to obtain a
generalized e-NFA accepting h(L) [revisit proof of Proposition 3.3 for the notion of a
generalized e-NFA]. (2) Let A be a DFA accepting M Í S2*. Re-use A except for the

 27

transition function dA, to create a DFA B accepting h-1(M), by putting dB(q, x) = A(q,h(x)).
Then B accepts w iff A accepts h(w), that is, B accepts h-1(M). ·

3.6 The Myhill-Nerode theorem and minimization of DFAs; decision
properties of regular languages

So far, we have characterized the regular languages through a variety of automata, and
through regular expressions. In this subsection we learn about yet another way of
characterizing them – through abstract algebraic properties. The proof of the central theorem
(Myhill-Nerode) will provide us with the insights necessary to transform some DFA in an
equivalent DFA with the smallest possible number of states.
Recall: a binary relation R on a set X is an equivalence relation iff (1) R is reflexive, that is
xRx for all x Î X; (2) R is symmetric, that is, xRy Þ yRx for all x, y Î X; (3) R is transitive,
that is, xRy and yRz Þ xRz for all x, y, z Î X. An equivalence relation R on X partitions X
into subsets Xi (where i Î I) called the equivalence classes of R, defined by (1) for all i Î I,
for all x, y Î Xi, it holds that xRy, (2) for all i,j Î I, i ¹ j, for all x Î Xi, y Î Xj, it holds that not
xRy. The number | I | of equivalence classes is the index of R. If C Í X is an equivalence class
containing x, we call x a representative of C and write C = [x]R.

Definition 3.16. An equivalence relation R on S* is right invariant if for all u, v, w Î S*, it
holds that uRv Þ uwRvw.

Definition 3.17. Let A be a DFA with starting state q0. Define a binary relation RA on S* by
uRAv iff d(q0, u) = d(q0, v). This is clearly an equivalence relation.

Obviously RA is right-invariant, has finite index, and L(A) is the union of some of the
equivalence classes of RA (namely those classes [v]RA for which d(q0, v) leads into an
accepting state). This insight is considerably refined in the following theorem.

Proposition 3.12 (The Myhill-Nerode theorem; algebraic characterization of regular
languages). Let L Í S* be a language. The following three statements are equivalent:

1. L Í S* is regular, that is, L = L(A) for some DFA A.
2. L is the union of some of the equivalence classes of a right-invariant equivalence relation

R on S* of finite index.
3. The equivalence relation RL on S* defined by:

uRLv iff for all w Î S*: uw Î L Û vw Î L.

is of finite index.

The proof of this proposition involves the construction of minimal automata, which is an
important technique in its own right.

Proof: 1. Þ 2: We saw that already.
2. Þ 3: We show that any equivalence relation R satisfying 2. is a refinement of RL, that is,
every equivalence class of R is entirely contained in some equivalence class of RL. Thus the

 28

index of RL cannot be greater than the index of R and therefore is finite. Assume uRv. Since R
is right invariant, for every w in S* we have uwRvw. If uw Î L, then by 2. vw Î L and vice
versa. Therefore uRLv, so R is a refinement of uRLv. The figure below illustrates an
equivalence relation R being a refinement of an equivalence relation RL.

3. Þ 1: We first show that RL is right invariant. Suppose that uRLv. For any y Î S* we must
show that uyRLvy, that is, for any z Î S*, uyz Î L Û vyz Î L. But this follows from the
definition of RL in 3., if we put w = yz.
We now construct a DFA AMN accepting L. The trick is to use as states the equivalence
classes of RL (of which there is only a finite number!). So AMN = (Q, S, q0, d, F) = ({[w]RL | w
Î S*}, S, q0, dMN, FMN). We put

I. q0 = [e]RL,
II. for all w Î S*, a Î S: dMN([w]RL, a) = [wa]RL,
III. FMN = {[u]RL | u Î L}.

We first have to show that this is well-defined. First we show that the definition of dMN is
independent of the choice of representative w of the equivalence class [w]RL. So we have to
show that if wRLv, then [wa]RL = dMN ([w]RL, a) = dMN ([v]RL, a) = [va]RL. But if wRLv, then
waRLva because RL is right-invariant, therefore [wa]RL = [va]RL. So dMN is well-defined.

Next we show that the definition of FMN is independent of the choice of representative u of
the equivalence class [u]RL, that is, if u Î L and v Î [u]RL, then v Î L. This follows from 3. if
we put w = e.

Finally we have to show that L = L(AMN). This follows from MN ([e]RL, w) = [w]RL (an easy
induction over |w|) and III.

Example 3.11. Here is an example that illustrates the Myhill-Nerode theorem. Let L be the
language 0*10*, that is, all words over {0,1} that contain exactly one 1. L is accepted, for
instance, by the DFA A shown in the following figure.

RL

R

 29

This DFA A yields a right-invariant equivalence relation RA as follows. RA has six equivalent
classes corresponding to the states of A. These equivalence classes each contain the words that
lead from the starting state into that class. By visual inspection and a little thinking, we find
that the six word sets (= languages) leading into the six states are the following:

Ca = (00)* Cb = (00)*0 Cc = (00)*1
Cd = (00)*01 Ce = 0*100* Cf = 0*10*1(0+1)*

L is the union of Cc, Cd and Ce (underlined).

If one thinks a little about the nature of L (i.e., being all words with exactly one 1), one finds
that the relation RL for L has wRLv if and only if either

w and v have no 1's [= equivalence class D1],
w and v each have one 1 [= equivalence class D2], or
w and v each have more than one 1 [= equivalence class D3].

The classes Ci refine the classes Dj by D1 = Ca È Cb, D2 = Cc È Cd È Ce, and D3 = Cf.

We may denote the three equivalence classes of RL by D1 = [e]RL= 0*, D2 = [1]RL= 0*10*,
D3 = [11]RL= 0*10*1(0+1)*. The DFA AMN we get according to the construction in the proof
of the Myhill-Nerode theorem is the following:

The Myhill-Nerode theorem implies that there is an essentially unique minimal DFA for a
given regular language:

Proposition 3.13. If A, B are DFAs accepting L and A and B both have minimal number of
states (that is, no other DFA accepting L has fewer states), then A is identical to B up to trivial

a

e

c

b

d

f

0

0 start

0,1 0

0
0

1 1

1

1

1

start

0

[e]RL
[1]RL [11]RL

0 0,1

1 1

 30

renaming of states, that is, A is isomorphic to B. Thus it makes sense to speak of the minimal
DFA for L. The minimal DFA for L is the DFA AMN described in the proof of the Myhill-
Nerode theorem.

Proof. In the proof of the Myhill-Nerode theorem we saw (in 2. Þ 3) that any DFA accepting
L creates, via its states, an equivalence relation that is a refinement of RL. Thus the DFA AMN
has minimal state number. We show that any other DFA B for L with the same number of
states as AMN is isomorphic to AMN. We show how the states of B can be identified with the
states of AMN. Let q be a state of B. There must some w Î L such that dB(q0, w) = q, because
otherwise q would be inaccessible and could be removed from B, contradicting minimality of
B. Identify q with the state [w]RL of AMN. This identification does not depend on w: if v is
another word such that dB(q0, v) = q, and we identify q with [v]RL, then [v]RL = [w]RL because
obviously wRLv. Using this identification of states between B and AMN, it is straightforward to
see that also the transitions between corresponding states must correspond 1—1. ·

The Myhill-Nerode theorem and Proposition 3.13 tell us that there exists an essentially unique
minimal DFA, but don't inform us about how we can effectively transform any DFA into its
minimal-state form. This gap is closed by the following

"Table-filling" algorithm to transform some DFA A = (Q, S, d, q0, F) into the minimal-state
DFA AMN = ({[w]RL | w Î S*}, S, dMN, [e]RL, FMN).

Preliminaries. (i) On the states Q define an equivalence relation by p º q iff for all w Î S*,
(p, w) Î F Û (q, w) Î F. Call p and q distinguishable if not p º q.
(ii) Remove from A all inaccessible states, if they exist.

Step 1: For all pairs (p, q) of different p, q from Q, determine whether they are
distinguishable, by the table-filling method. This is an iterative method. In iteration 1, mark
all pairs (p, q) as distinguishable where p is accepting and q is not, or vice versa. In iteration
n, mark any previously unmarked pair (p, q) as distinguishable if you find a symbol a Î S,
such that for some previously found pair (p', q') of distinguishable states you observe d(p, a) =
p' and d(q, a) = q' (or same with p', q' exchanged). Stop if an iteration does not yield new
pairs of distinguishables.

Interpretation of step 1: p, q are distinguishable iff they can be reached by words that are
not equivalent w.r.t. RL and therefore give rise to different states in AMN. If they are not
distinguishable, they can simply be joined within A, and a union of pairwise indistinguishable
states makes a state in AMN.

Step 2: Construct AMN as follows. Define states [q]º as the º equivalence classes found in
step 1, where q is some representative A-state for the equivalence class. Let v be a word that
leads into q. Rewrite [q]º as [v]RL and take it as a state of AMN. Establish dMN by putting
dMN([v]RL, a) = [va]RL, where [va]RL corresponds to the equivalence class [(q0, va)]º. Put
FMN = {[v]RL | (q0, v) Î F}. ·

 31

It can be easily shown that this method works correctly, that is, step 1 indeed constructs RL
from A. The computational cost is dominated by step 1. A careful implementation (see HMU
p. 159) needs O(|Q|2) pair checks altogether.

Example 3.12. Consider again the DFA from example 3.11, which I present again for
convenience (left):

The table on the right marks the state pairs found distinguishable in the first round of table
filling by x1, and in the second (and last) round by x2. From that table we see that there are
three classes of mutually indistinguishable states: [a]º = {a, b} = [e]RL, [c]º = {c,d,e} = [1]RL,
and [f]º = {f} = [11]RL. Carrying out step 2 gives the familiar minimal DFA:

Our ability to effectively construct a (unique) minimal DFA from any given DFA leads to a
conceptually simple method for deciding whether two regular languages (described by
automata or regexps) are the same:

Proposition 3.14 (decidability of sameness of regular languages): Given given two regular
languages L, M (specified by DFAs, NFAs, e-NFAs or regexps) it is decidable whether L = M.

Proof: First construct DFAs AL and AM for L and M (we know how to derive DFAs from
NFAs or e-NFAs by subset constructions, and we know how to obtain an e-NFA from a
regex). Then minimize the DFAs AL and AM, obtaining ALmin and AMmin. Then check whether
ALmin and AMmin are identical (up to renaming of states). ·

Corollary 3.15: If L, L1, ..., Ln, M are regular languages given by DFAs, NFAs, e-NFAs or
regexps, then it is decidable whether

1. L = Æ,
2. w Î L (for any word w),
3. L Í M,

a

e

c

b

d

f

0

0 Start

0,1 0

0
0

1 1

1
1

1
a b c d e

b

c

d

e

f x1 x1 x1

x1 x1
x1 x1
x1 x1

x2 x2

start

0

[e]RL
[1]RL [11]RL

0 0,1

1 1

 32

4. f(L1, ..., Ln) = M, where f is some effective function that maps n regular languages to
regular languages, that is, f takes descriptions of L1, ..., Ln in terms of automata or regexps
and returns an automaton or regex.

Proof: 1. is a special case of Proposition 3.14. It can also decided by an application of the
pumping lemma: it implies that if A is an k-state DFA for L, then L = Æ iff A does not accept
any word of length < k. Furthermore, it can be decided by checking whether in A some
accepting state is reachable from the starting state.
2. is also a special case of Proposition 3.14: decide whether {w} Ç L = {w}. Of course, a
faster decision process is to check whether a DFA A for L accepts w.
3. is another special case of Proposition 3.14: decide whether L Ç M = L. (Use Proposition
3.10 to derive a DFA for L Ç M.)
4. is yet another special case of Proposition 3.14.

Note. You might find the claims of this corollary rather trivial. However, we will soon learn
about classes of languages where it is not at all easy (or even possible) to decide, for instance,
whether L = Æ.

Things you must absolutely remember about regular languages until you retire, die, or
quit computer science:

1. Regular languages can be defined concretely by various finite automata, regular

expressions, and abstractly by the Myhill-Nerode theorem.
2. All concrete characterizations can effectively be transformed into each other.
3. Computer implementations often use DFAs to represent regular languages.
4. Regular languages are closed under a large variety of operations.
5. The pumping lemma helps to check whether some language is not regular.
6. Each regular language has a unique minimal DFA.
7. The unique minimal DFA can be effectively constructed, based on insights from the

Myhill-Nerode theorem.
8. Unique minimal DFAs for regular languages are a case of a unique normal form

representation. Whenever in mathematics some mathematical object has a unique
normal form representation, a powerful theory with strong decidability results emerges.

 33

4. Context-free languages and their grammars

Regular languages are very simple. The good side of this simplicity is that these languages are
easy to analyze (e.g. in terms of closure or decidability properties). The downside is that many
formal languages of practical interest are not regular – especially, programming languages.
We saw that regular languages cannot "count" within words – therefore, any (programming)
language that needs some counting/bookkeeping, e.g. for matching parentheses, cannot be
regular. In this section we will generalize regular languages such that they include a
"counting" mechanism, arriving at the context-free languages (CFLs). CFLs can be described
by a generalization of DFAs, pushdown automata. However, this is not the most commonly
used format to specify CFLs, so we will defer pushdown automata for a while. We start our
treatment of CFLs by showing how they can be specified through grammars.

4.1 Basic definitions

Example 4.1. You are already familar with grammars for specifying programming languages
from the General CS lecture. The grammars that you saw (likely in "Backus-Naur" notation)
are actually grammars for context-free languages; and the grammars themselves are context-
free grammars (CFGs). Here is a CFG for a toy programming language (the functional
language L5 from http://www.csse.monash.edu.au/~lloyd/tildeFP/Lambda/Ch/), a parse tree
for a simple word (= program) from that language, and the word itself at the bottom.

Fig. 4.1: A portion of a context-free grammar (rules for <ident> and <letter> are omitted),
a parse tree, and its "yield".

 34

Definition 4.1. (CFG) A context-free grammar (CFG) is a quadruple G = (V, T, P, S), where

1. V is a finite set of variables (also called nonterminals),
2. T is a finite set of terminals (or terminal symbols, corresponding to the alphabet S in

the world of regular languages),
3. S Î V is a start symbol, and
4. P is a finite set of productions (also rules), each of the form A ® a, where A is a

variable and a is a word from (V + T)* (that is, a string of variables and/or terminals,
possibly the empty string e). A is called the head and a the body of the rule.

Shorthand notation for several rules A ® ai with same head A: A ® a1 | a2 | ... | an.

Notational conventions: use

A, B, ... for variables,
a, b, ..., 0, 1, ..., +, -, ... (,),... for terminals,
u, v, w, x, y, z for strings of terminals,
X, Y, ... for symbols that are either variables or terminals,
a, b, ... for strings containing variables and/or terminals.

If one has a string a made from terminals and variables, and one applies one production to
one of the variables, obtaining a string b, one has derived b from a via the grammar. This
concept and its transitive closure are now formally introduced:

Definition 4.2. (derivations and sentential forms) For a CFG G = (V, T, P, S), define a binary
relation

ÞG Í (V + T)* ´ (V + T)*

by a ÞG b iff a = a1 A a2 and b = a1g a2, where a1, a2 Î (V + T)* and A ® g Î P.

That is, a ÞG b iff a single variable in a is replaced by a string according to a rule from P.
Define

Þ*G Í (V + T)* ´ (V + T)*

by a Þ*G b iff there exists a sequence g1, g2,..., gn, such that n ³ 1, a = g1, b = gn, and
gi ÞG gi+1 for i < n.

Note that this includes a Þ*G a as a special case (n = 1). If G is understood, write a Þ b
instead of a ÞG b. If a Þ*G b by g1, g2,..., gn, then b can be derived from a, and a = g1 ÞG
g2 ÞG ..., ÞG gn = b is a derivation of b from a.

Any string a that can be derived from the start symbol S is called a sentential form.

Definition 4.3 (languages of variables and CFGs). For a CFG G = (V, T, P, S) and a variable
A Î V, let L(A) = {w Î T* | A Þ*G w} be the language of A. If A = S is the start symbol, L(S)
is the language of G. If L Í T* is a language of a CFG, we say that L is a context-free
language, or CFL.

 35

Definition 4.4 (leftmost / rightmost derivations). A derivation a = g1 ÞG g2 ÞG ..., ÞG gn =
b is a leftmost (rightmost) derivation, if in each step the leftmost (rightmost, respectively)
variable in a string gi is replaced by a rule to yield gi+1. We write a Þ*lm b (a Þ*rm b,
respectively) if there exists a leftmost (rightmost) derivation of b from a.

Example 4.2. (for a derivation). Consider the CFG with V = {E, I} and T = {a, b, 0,1,+,*,(,)},
where E is the start symbol, represented by the following rules:

1. E Þ I
2. E Þ E + E
3. E Þ E * E
4. E Þ (E)
5. I Þ a
6. I Þ b
7. I Þ Ia
8. I Þ Ib
9. I Þ I0
10. I Þ I1

This CFG describes simple arithmetic expressions ("E") made up from identifiers ("I"). A
derivation for instance a * (a + b00) is:

E Þ
 Þ E * E
 Þ E * (E)
 Þ E * (E + E)
 Þ E * (E + I)
 Þ* I * (I + I)
 Þ I * (I + I0)
 Þ I * (I + I00)
 Þ I * (I + b00)
 Þ* a * (a + b00),

where at two places we put two identical Þ derivations into a single Þ*.

Definition 4.5 (parse trees and their yields). Let G = (V, T, P, S) be a CFG. An ordered tree3 t
whose nodes are labelled with symbols from V È T È {e} is a parse tree of G, if

1. each interior node and the root node is labelled with a variable symbol,
2. each leaf node is labelled with a variable, a terminal, or e,
3. if an interior or the start node is labelled with A and its children with X1, ..., Xn (from left

to right), then A Þ X1...Xn is a production from P.

The yield of a parse tree is the word obtained by reading all its leaf symbols, from left to right
(see example in Fig. 4.1). Note: the yield of a parse tree may contain variables.

3 A tree is ordered if for each nonterminal node, there is an order defined on its children – that is, we can read the
children "from left to right".

 36

Parse trees are the most intuitive and "visually complete" form to represent derivations.
Furthermore, they are the basic format in which the results of parsing programs are stored for
subsequent use by compilers and interpreters. Each derivation leads to a parse tree in a natural
way, and parse trees can be read as leftmost (or rightmost) derivations if they are traversed in
an appropriate way. These elementary insights are collected in the following proposition:

Proposition 4.1. Given a CFG G, a variable A and a word a of terminals and/or variables, the
following are equivalent:

1) A Þ* a,
2) A Þ*lm a,
3) A Þ*rm a,
4) there is a parse tree with root A and yield a.

Proof: 2. Þ 1. and 3. Þ 1. are trivial. We sketch 1. Þ 4. and 4. Þ 2. (4. Þ 3. is
symmetrical).

"1. Þ 4.": Given an n-step derivation A Þ* a, where the i-th step is ai ÞG bi with
ai = a1

i
 Ai a2

i and bi = a1
i gi a2

i, construct parse trees ti for the sentential form bi obtained
after the i-th step of the derivation, by induction on the length of derivations. Basis: Put t1 as
the tree consisting only of root node A and leaves from string b1. It is clear that t1 is a parse
tree with yield b1. Induction: Assume that ti is a parse tree for the sentential form bi obtained
after the i-th step of the derivation. Consider the i+1-th derivation bi = ai+1 ÞG bi+1 with
ai+1 = a1

i+1
 Ai+1 a2

i+1 and bi+1 = a1
i+1 gi+1 a2

i+1. By induction, ai+1 is the yield of ti. That
is, the (|a1

i+1|+1)-th leaf node is labelled by Ai+1. Attach | gi+1| children labelled by the
symbols from gi+1 to that node to obtain ti+1. Clearly, ti+1 is a parse tree for bi+1.

"4. Þ 2.": Go through the variable nodes of the parse tree in a left-first, depth-first fashion
and obtain a leftmost derivation. ·

4.2 Ambiguity in CFGs

Consider the two parse trees of the string a + a * a obtained using the grammar from example
4.2, shown in Fig. 4.2. The two trees are different, and represent two different binding-level
structures: the left tree corresponds to a reading (a + (a * a)), the right tree to ((a + a) * a).
(You should be familiar with the fact that nested list structures correspond 1-1 to ordered
trees!). If used as an internal data structure for some arithmetic processor, the left parse tree
would represent that * binds more strongly than + (desirable), while the right tree would
imply that + binds more strongly than * (not desirable). It would be convenient (even
necessary) to have grammars that do not allow these kinds of ambiguity, and yield nested list
structures that are unique and correspond to the binding conventions made in the particular
application (for instance, * binds more strongly than + in arithemtics). Remember that parse
trees are the intermediate storage format (after parsing) of program code, and the order of
execution of nested subcommands is determined by the tree structure. It is therefore of
practical importance to ensure that the tree structure of parse trees does not violate the rules of
precedence of algebraic (and other) operations.

 37

Fig. 4.2: Trees with yield a + a * a, demonstrating ambiguity of the grammar of Example 4.2.

Definition 4.6 (ambiguity of a CFG): A CFG is ambiguous if there exists a word w Î T*
which has two different parse trees. A CFG is unambiguous if it is not ambiguous.

There is no general method to decide whether a CFG is ambiguous, and there is no general
method to remove ambiguity from a grammar. However, there are some tricks that one can try
to enforce non-ambiguity on a grammar.

There are many ways of how ambiguity can arise. In our little example, there are two ways in
which ambiguity becomes manifest:

1. Precedence of different operators is not captured in the grammar – as in the example of

Fig. 4.2.
2. Associative grouping of identical operators is ambiguous. For instance, we could derive

a + a + a in two ways, yielding parse trees similar to the ones in Fig. 4.2., corresponding
to groupings a + (a + a) and (a + a) + a.

These types of ambiguities are relevant for grammars of programming languages. They can be
removed, obtaining grammars that are unambiguous. The main trick is to introduce auxiliary
variables that code binding levels. For instance, if we introduce additional variables F (=
"factor") and T (= "additive term"), we get a grammar that is equivalent (in the sense of
describing the same language) to our grammar from Example 4.2., but is unambiguous:

Example 4.3: an unambiguous grammar for our little arithmetic expression grammar.

E ® T | E + T
T ® F | T * F
F ® I | (E)
I ® a | b | Ia | Ib | I0 | I1

Here is a (in fact, the) derivation for a + a * a with this unambiguous grammar:

E

E + E

E * E I

a I

a

I

a

E * E

E

E + E

I

a

I

a

I

a

 38

Here the use of additional variables renders the parse tree representation of precedence of
operators unique, and the fact that the two rules for introducing * and + can each be iterated
only in a leftmost fashion makes the parse tree representation of associative grouping
unambiguous (namely, left-associative). The fact that this grammar is unambiguous is not at
all obvious. The HMU book gives an intuitive-level justification of this claim (pp. 208-209).

We have seen that sometimes ambiguity can be removed from a grammar. In fact, the causes
of ambiguity that are present in programming languages are typically harmless and can be
removed. However, this is not generally possible – uncurably ambiguous CFLs exist.

Definition 4.7 (inherent ambiguity). A context-free language is inherently ambiguous if every
grammar for it is ambiguous.

Example 4.4: The following context-free language is inherently ambiguous:

L = {anbncmdm | n, m ³ 1} È {anbmcmdn | n, m ³ 1}

The obvious grammar for L is

S ® AB | C
A ® aAb | ab
B ® cBd | cd
C ® aCd | aDd
D ® bDc | bc

It uses separate sets of productions to generate the two kinds of strings in L. All words of the
form anbncndn have two different parse trees with this grammar, depending on whether the
word is generated starting with S ® AB or with S ® C. The proof that every grammar for this
language is ambiguous is involved. The HMU book gives a handwaving argument (p. 213).

4.3 Connection to regular languages

 39

It will take us a small effort only to show how the regular languages can be understood as a
(proper) subclass of the CFLs. We will impose a restriction (right-linearity) on grammars and
see that the languages derivable within this restricted class of grammars are the regular
languages.

Definition 4.8. A CFG is called right-linear if each production body has at most one variable,
and that is at the right end. That is, all productions are of the form A ® wB or A ® w, where
w is a word of terminals.

Proposition 4.2. Every right-linear CFG defines a regular language.

Proof. Idea: identify variables with nonaccepting states of a generalized e-NFA with arcs
labelled by the w from the productions of the grammar; add accepting states for each
production of the form A ® w; starting state corresponds to start symbol. Formally: for a
given right-linear CFG (V, T, P, S) define a generalized e-NFA (Q, S, d, q0, F), where

• Q = V È Q2 = V È {qp | p Î P, p is of form A ® w},
• d: Q ´ S* ® 2Q with B Î d(A, w) iff A ® wB Î P and qp Î d(A, w) iff p = A ® wÎ P,
• q0 = S,
• F = Q2.

It is straightforward to show that this generalized e-NFA accepts L(G). ·

Proposition 4.3. Every regular language L is the language of a right-linear CFG.

Idea of proof. Consider a DFA for L, identify states q of the DFA with variables Aq; identify
transitions d(q, a) = p with productions Aq ® aAp; add productions Aq ® a for all d(q, a) = p
where p is accepting; add production Aq0 ® e if starting state q0 is accepting; define Aq0 as
start symbol, where q0 is the starting state. ·
4.
An immediate consequence of this proposition is that every regular langage is context-free.
However, not every context-free language is regular:

Example 4.5. The language L = {w Î {0,1}* | w = wR, that is, w is a palindrome} is not
regular (Pumping lemma!). But L is the language of the context-free grammar G defined by
the productions S Þ e | 0 | 1 | 0S0 | 1S1. We show that w = wR iff w is in L(G).

" Þ": Induction over |w|. Basis: |w| £ 1. Then w = e or w = 0 or w = 1, which clearly are in
L(G). Induction: Assume all palindromes u, where | u | £ n, are in L(G). Consider a
palindrome w of length n+1. It must be of form 0u0 or 1u1, with u a palindrome of length
n-1. By induction hypothesis, u Î L(G), that is, S Þ* u. From this, in case w = 0u0 infer
derivation S Þ 0S0 Þ* 0u0 = w; case w = 1u1 is similar.

"Ü": Induction over the number of steps of a derivation (a trick to remember!). Basis: w can
be derived in a single step. Then w = e or w = 0 or w = 1, that is, w = wR. Induction: Suppose
all u that have derivations of length £ n are palindromes. Let w be derived in n+1 steps. Such
a derivation must have form S Þ 0S0 Þ* 0u0 = w or S Þ 1S1 Þ* 1u1 = w. Because u is
derived in n steps, it must be a palindrome. Therefore w is a palindrome, too.

 40

4.4 Grammars at their most powerful: XML, XSL etc.

Most likely, you have inspected the HTML source code of a webpage once in a while. The
most conspicuous feature of HTML code is the use of what one might call "labelled
parentheses" of the form <a> ... or <title> ... </title>. Such tags may be used in a nested
fashion, for instance _{ ... }.

HTML is only one member from a large and growing family of languages, all of which have
the same "feel" of HTML with labelled tags. They are known as XML languages (eXtensible
Markup Language). The XML FAQ at http://xml.silmaril.ie/ can serve as a nice introduction
and overview. The official XML site is http://xml.coverpages.org/xml.html; here you can find
information about history, standards, applications, and many more. The syntax of XML is
presented (in Backus-Naur format) at http://www.w3.org/TR/REC-xml.

Here is an excerpt of an non-HTML XML text:

Example 4.6: (Document metadata.) In Fall 2003 I used Acrobat Distiller to create the pdf's
from the Word versions of the exercise sheets for this lecture. When I opened such a pdf with
Acrobat, then cklicked on File -> Document Properties -> Document Metadata ->
View Source, I got the following text (here only a part of what you get is shown; the source
is exercise sheet 1 from Fall 2003):

<rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'
 xmlns:iX='http://ns.adobe.com/iX/1.0/'>

<rdf:Description about=''
 xmlns='http://ns.adobe.com/pdf/1.3/'
 xmlns:pdf='http://ns.adobe.com/pdf/1.3/'>
 <pdf:CreationDate>2004-09-08T16:14:07Z</pdf:CreationDate>
 <pdf:ModDate>2004-09-08T16:14:07Z</pdf:ModDate>
 <pdf:Producer>Acrobat Distiller 5.0 (Windows)</pdf:Producer>
 <pdf:Author>Herbert Jaeger</pdf:Author>
 <pdf:Creator>Acrobat PDFMaker 5.0 for Word</pdf:Creator>
 <pdf:Title>Exercises for ACS 1, Fall 2003</pdf:Title>
 </rdf:Description>

... some similar blocks omitted ...

 <rdf:Description about=''

xmlns='http://purl.org/dc/elements/1.1/'
 xmlns:dc='http://purl.org/dc/elements/1.1/'>
 <dc:creator>Herbert Jaeger</dc:creator>
 <dc:title>Exercises for ACS 1, Fall 2003</dc:title>
 </rdf:Description>

</rdf:RDF>

This is an excerpt from the document metadata which Acrobat Distiller saves along with each
pdf document it creates. (Today's Acrobat versions don't allow you to display the metadata in
raw text format; you can only inspect them through a GUI. The website
http://www.forensicswiki.org/wiki/Document_Metadata_Extraction contains links to
numerous tools to extract the document metadata from a variety of filetypes). It contains
various kinds of information about the creator of the document, its title, the software version
used in creating it and much more. Document metadata is useful for libraries, bookselling
companies, all kind of text databases, book search engines, and generally all institutions or
persons or programs that wish to get an overview of some set of books, documents, texts. The
important thing about this document metadata text is that it is not written in an arbitrary,

 41

Adobe-pdf-proprietary format. Document metadata only make sense if these metadata are
independent of the specific format of the text. The metadata that Word saves with each Word
document should be in the same format as the metadata that Amazon saves with each of its
book records, and again the same that the British library uses, etc.

The common standard for document metadata is the Resource Description Format
(RDF), which is chartered out at http://www.w3.org/RDF/. A CFG for RDF texts is given at
http://www.w3.org/TR/2014/REC-rdf-syntax-grammar-20140225/ (scroll down to Section 7).

Different groups of users/producers of text documents may have different desires about the
text metadata. For instance, for Acrobat-generated pdf texts it may be reasonable to save, in
addition to the general-purpose text metadata, some pdf-specific information – see the first
block in the above RDF document. Thus, different groups of users may wish to define, within
the RDF standards, a standard for their specific modules within a text metadata document. A
recommended way of doing so is to create a CFG that specifies the syntax of such modules,
and to make this CFG publicly available. In the world of XML, such grammars for particular
types of XML documents, or for particular modules within them, are called document type
definitions (DTD). A DTD is a CFG that specifies the structure of target documents.
Documents composed according to a DTD can then be automatically processed for different
purposes because they conform to a known grammar and are thereby parseable. Within the
XML world, a rigorous syntax for DTDs has been developed (check
http://www.w3.org/TR/REC-xml#NT-doctypedecl). We will learn more about DTDs and their
grammar further below. DTDs are not the only way to formally specify XML document types.
Other options are XML Schema (also known as XMD, "XML Schema Definition") – see
https://en.wikipedia.org/wiki/XML_Schema_%28W3C%29 – or Relax NG – see
https://en.wikipedia.org/wiki/RELAX_NG . All of these schema languages for XML are
themselves grammars that allow the user to define XML document types. While DTDs use
their own special grammar, XMD and Relax NG are specified themselves in an XML syntax.

The last block in the above document is a point in case. It conforms to the standards published
by the "Dublin Core Metadata" standard. This appears to have become the most widely used
text metadata standard for general library information uses. The DTD for Dublin Core
Metadata has been published on the website of the Dublin Core Metadata Initiative
(http://dublincore.org/about/) at http://dublincore.org/documents/2002/07/31/dcmes-xml/ .

Two basic concepts from the XML world should be explained at this point, namespaces and
URIs. If some user group decides to define some type of XML documents, maybe by creating
a DTD, they are free to choose the names of the tags to be used within their XML documents.
Other user groups may happen to decide to use the same names for their XML documents.
This would give rise to ambiguities when two XML texts of different sort are merged within a
single embracing XML document – which is actually what happend in our RDF example,
where one block conforms to an Acrobat XML standard and another to the Dublin Core
standard. To preclude name clashes, namespaces are used. A user group that defines some
XML text type (e.g., by publishing a DTD) also declares a "namespace" along with the DTD.
All tag key words introduced by that group are unique only within that namespace – other
XML document types defined by other groups have other namespaces. Namespaces are
uniquely identified by uniform resource identifiers, URIs. URIs look like URLs (uniform
resource locators), but does not necessarily point to any physical web location. In our RDF
example, there appear two URIs for namespaces http://ns.adobe.com/pdf/1.3/ and
http://purl.org/dc/elements/1.1/. Within XML documents, the fact that some block
adheres to some namespace is specified using the xmlns declarations that you find in our

 42

example. The syntactical similarity of URIs and URLs is certainly confusing. See
http://www.rpbourret.com/xml/NamespacesFAQ.htm for more.

Example 4.7: (didactic toy example for DTDs from the HMU book). In order to illustrate
DTDs, we present an artificial example from the HMU book. Scenario: computer vendors and
web-based computer marketplaces want to make computer specifications readable by all kinds
of application programs (databases, business calculation programs, website generators, ...). A
DTD "PcSpecs" is agreed. It might look as follows (syntax slightly simplified):

<!DOCTYPE PcSpecs [
 <!ELEMENT PCS (PC*)>
 <!ELEMENT PC (MODEL, PRICE, PROCESSOR, RAM, DISK+)>
 <!ELEMENT MODEL (\#PCDATA)>
 <!ELEMENT PRICE (\#PCDATA)>

<!ELEMENT PROCESSOR (MANF, MODEL, SPEED)>
 <!ELEMENT MANF (\#PCDATA)>
 <!ELEMENT MODEL (\#PCDATA)>
 <!ELEMENT SPEED (\#PCDATA)>

<!ELEMENT RAM (\#PCDATA)>
 <!ELEMENT DISK (HARDDISK | CD | DVD)>
 <!ELEMENT HARDDISK (MANF, MODEL, SIZE)>
 <!ELEMENT SIZE (\#PCDATA)>

<!ELEMENT CD (SPEED)>
 <!ELEMENT DVD (SPEED)>
]>

Notes:

1. General (simplified) form of a DTD:

<!DOCTYPE name-of-DTD [list of element definitions]>

2. Each element definition is a generalized CFG production of the form
<!ELEMENT element-name (body of rule)>,

where the head of the rule is a variable name ("element-name" in XML terminology), and
the body of the rule is a regular expression with a special Unix-like notation.

3. \#PCDATA (from "parsed character data") is an XML key word. It can be replaced in the
target documents specified by the DTD essentially by any character string. It is the only
terminal symbol in our example DTD.

 43

Here is a sample document written according to the specs of our DTD:

<PCS>
 <PC>
 <MODEL>4560<\MODEL>
 <PRICE>$2295<\PRICE>
 <PROCESSOR>
 <MANF>Intel<\MANF>
 <MODEL>Pentium<\MODEL>
 <SPEED>800Mhz<\SPEED>
 <\PROCESSOR>
 <RAM>256<\RAM>
 <DISK><HARDDISK>
 <MANF>Maxtor<\MANF>
 <MODEL>Diamond<\MODEL>
 <SIZE>30.5Gb<\SIZE>
 <\HARDDISK><\DISK>
 <DISK><CD>
 <SPEED>32x<\SPEED>
 <\CD><\DISK>
 <\PC>
 <PC>
 ...
 <\PC>
<\PCS>

Example 4.8: robot specification. This was my first real contact with the power of XML, and
I was introduced to it when I was working at the Fraunhofer Institute for Autonomous
Intelligent Systems (AIS) in a robotics group. In that group, many robots were designed, built,
and programmed, and changes in robot layout and control program occurred daily. A robot is
a complicated device, with many sensors, actuators, microprocessors and PC-like on-board
computers. Besides the robot itself, a simulation program was always needed to test the robot
control program in virtual reality, plus there was a detailed HTML-based documentation that
was absolutely necessary to enable different people to work on the same robot. The various
hardware, simulator and documentation components used a variety of programming
languages: C, C++, Java, HTML, plus some extra scripting languages for remote monitoring
protocols. There was only one way to keep all these various programs mutually consistent
through the frequent changes done by several people: use a single basic XML document as the
reference specification of the robot (including hardware configuration and control program),
and derive all the various target program code automatically from that XML master
blueprint4. This implies that in addition to the XML source document, there had to be
translation programs for translating the reference specification into the various target
programs. Writing these translation programs was only possible because the reference XML
specification adhered to a known, rigorous grammar.

Example 4.9: mathML is an XML document standard for representing mathematical
formulas for purposes of visualization and semantic processing. See
http://xml.coverpages.org/mathML.html for more details and ask Prof. Michael Kohlhase for
more detail, because he is responsible for organizing the mathML standards.

4 In fact, at AIS we did not use XML, because the robot development activities started when XML was not fully
established. Instead, we used a proprietary precursor/analogue of XML called APIECES – but if XML had been
available earlier, we would have used XML.

 44

Example 4.10: For some years, I used my own self-made content management system for my
Jacobs homepage (now I have migrated to the University's standard Drupal CMS). This self-
made system was based on an XML specification. There were several motivations. One was
portability: if at one time I would be leaving Jacobs, I would wish to re-launch my personal
webpages at my new place, re-using the content and only re-writing the layout. This
separation of contents from appearance is one of the main motives for many XML
applications: the contents is specified in an XML document, and the visual appearance is
created by passing the XML source through a filter that generates the desired looks. Another
reason is maintainability: the XML files that specify the contents of my pages are easier to
read and change than complete HTML files, and on top, I only have a single XML file for
each of the main parts that appear over and over again on all my pages. If, for instance, I
wished to add an item to the navigation menu, I would simply add an entry in my XML file
"leftmenu.xml", which looked like that:

<?xml version="1.0" encoding="ISO-8859-1"?>
<leftmenu>
 <item>
 <name>Welcome</name>
 <url>index.html</url>
 </item>
 <item>
 <name>Research</name>
 <url>research.html</url>
 </item>
 <item>
 <name>Teaching at Jacobs</name>
 <url>teaching.html</url>
 </item>
 <item>
 <name>Publications</name>
 <url>pubs.html</url>
 </item>
</leftmenu>

Note that I invented the tag identifiers (leftmenu, item, name, url) myself and
specifically for use in leftmenu.xml – if there would be many other users of this type of
document, I would cast the ad-hoc grammar that I use into a DTD and announce a namespace.
I had similar XML documents for the other recurring portions of my webpages, like
topbar.xml and navbar.xml.

In order to create the final HTML pages, I use a tool that is generally applicable for
transforming XML sources into target documents of any kind. This tool is XSLT (Extensible
Stylesheet Language Transformations), a programming language (itself adhering to XML
standards!) for writing filters that transform XML documents into target documents, like
HTML documents. Below is the XSLT file leftbar.xsl that I wrote in order to transform
leftbar.xml into the html code that appears within my html webpages. This XSLT file
contains some of the layout information that the ancient "IUB look" required (further layout
information is added by working in a CSS stylesheet, an aspect that I skip here). Here is my
leftbar.xsl:

 45

<?xml version="1.0" encoding="iso-8859-1"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns="http://www.w3.org/1999/xhtml" xmlns:xhtml="http://www.w3.org/1999/xhtml">

<xsl:output method="xml" indent="yes" omit-xml-declaration="yes" encoding="iso-8859-1"
 doctype-public="-//W3C//DTD XHTML 1.0 Strict//EN"
 doctype-system="{concat($prefix,'xhtml/xhtml1-strict.dtd'}"/>

 <xsl:template name="leftmenu">
 <table width="170" border="0" cellspacing="0" cellpadding="0">

 <xsl:for-each select="document('leftmenu.xml')/leftmenu/item">
 <tr>
 <td background="./pics/pixel.gif" height="30"

 width="14"/>
 <td background="./pics/pixel.gif" height="30"

 width="170">

 <xsl:value-of select="name"/>

 </td>
 </tr>
 </xsl:for-each>
 </table>
 </xsl:template>
</xsl:stylesheet>

There are a number of shareware, open-source XML editors and XSLT interpreters available.
XML really develops its powers only in conjunction with XSLT or other "executing"
software, which allows you to actually do something with your XML documents. By itself, an
XML documents is not executable:

"XML is not a programming language, so XML files don't `run' or `execute' . XML is a
markup specification language and XML files are data: they just sit there until you run a
program which displays them (like a browser) or does some work with them (like a converter
which writes the data in another format, or a database which reads the data), or modifies
them (like an editor). If you want to view or display an XML file, open it with an XML editor
or an XML browser." [from http://xml.coverpages.org/FAQv21-200201.html]

If you want to learn more about XSLT and XLM, I suggest you consult the online tutorials at
the website of the W3C (World-Wide Web Consortium, the "official" consortium working out
the standards for present and future Web-based technologies), e.g.
http://www.w3schools.com/xsl/default.asp .

Today there are tens of thousands of XML applications, some hundreds of exemplary ones are
exhibited at http://xml.coverpages.org/xml.html#applications (you should really visit this link,
it is impressive – and impressively disorganized!).

XML is a subset of SGML. SGML is the Standard Generalized Markup Language – if you
have 198 Swiss Franks to spare, you can buy a copy of this Standards document at
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=16387 –,
the international standard for defining descriptions of the structure of different types of
electronic document. There is an SGML FAQ at
http://lamp.man.deakin.edu.au/sgml/sgmlfaq.txt; the SGML Web pages are at
http://xml.coverpages.org/.

Example 4.11. In the past, Microsoft Office programs (Word, Excel, Powerpoint) have been
created and saved in a MS proprietary binary format (.doc, .xls, .ppt). Since some years, MS
has changed this to an XML-based format (you recognize these by the file extensions .docx,
.xlsx, .pptx). By default, MS office programs save XML files in compressed formats, so you

 46

don't see the XML ASCII if you load them into an editor, for example into emacs. You may
however use the option "Save as XML document" in MS office applications, then the save file
will be human-readable XML ASCII (open in an editor like emacs to see it; opening it in MS
Word will not show the XML source but the rendered document).

4.5 Context-free languages and their automata

Executive summary. The automata that accept CFLs are pushdown automata (PDAs).
Essentially, they are NFA's equipped with an additional simple stack memory. Because they
are non-deterministic, they cannot be used for compilers. Introducing deterministic pushdown
automata (DPDAs), however, effectively reduces the set of recognizable languages.
Fortunately, programming languages and markup languages can be recognized by DPDAs.

A PDA is essentially an e-NFA augmented by a stack memory, i.e., a first-in, last-out
("FILA") device. The transitions of the e-NFA are additionally determined by the top stack
symbol, which is taken away. The action of a transition includes, as a side effect, the option to
"push down" a word on top of the stack.

The formal definition of PDAs works along familiar lines: first fix what parts make up a PDA
(the typical "n-tuple" definition we know from DFAs, NFAs etc.), then in some further
definitions describe how PDAs actually process symbols and accept languages.

Definition 4.9. (Pushdown automaton, PDA). A PDA is a 7-tuple P = (Q, S, G, d, q0, Z0, F),
where

• Q is a finite set of states,
• S is a finite set of input symbols (corresponding to the terminals T of CFGs),
• G is a finite stack alphabet,
• d: Q ´ (S È {e}) ´ G ® Pot0(Q ´ G*) is the transition function (Pot0 denotes the finite

subsets of a set: Pot0(A) = {B Í A | |B| < ¥},
• q0 Î Q is the start state,
• Z0 Î G is the start stack symbol,
• F Í Q is the set of accepting states.

Before we describe the processing principles of PDAs in formal terms, we'll see how they
work by inspecting a simple example. In each operating cycle, the PDA (in state q) reads an
input a (or e), also reads the top stack symbol X, and then uses the transition d(q, a, X) to
choose some next state q' and stack "push word" a from d(q, a, X) = {..., (q', a), ...}. If
d(q, a, X) is empty, the PDA halts in a dead end situation. Like with NFAs, an input word is
accepted if there exists some sequence of operations that reads the entire input and ends in an
accepting state.

The design of most professional-level software and documentations systems nowadays
includes at some point XML or SGML documents and document-type specifications. SGML /
XML plus XSLT is one of the most important working tools in applied computer science.

 47

Example 4.11. Consider the language LwwR = {wwR | w Î {0, 1}+}. It can be accepted by a
PDA with Q = {q0, q1, q2}, S = {0, 1}, G = {0, 1, Z0}, F = { q2}, and d containing the
following transitions:

1. d(q0, a, X) = {(q0, aX), (q1, aX)} for a = 0, 1 and X = 0, 1, Z0;
2. d(q1, a, a) = {(q1, e)} for a = 0, 1;
3. d(q1, e, Z0) = {(q2, Z0)}.

(For other arguments, d(q, a, X) = Æ. These need not be listed.) An accepting sequence of
transitions for input wwR = 0110 is shown in Fig. 4.3.

Start read 0 read 1 read 1 read 0 goto q2 and accept

Fig. 4.3. An accepting run of the PDA for LwwR.

Note that the PDA can simply delete the top stack symbol through transitions of the kind
d(q, a, X) = {..., (q', e), ...}.

The working principle behind this example is clear: while reading in the first half of wwR, a
"mirror image" of w is written into the stack; then when the second part wR is read, it is
matched against the stack, which is "eaten up" in the process. Note that after reading in w, the
PDA has to "guess" that it should switch into the "matching mode". Only if it switches mode
at the right time (after reading w), an altogether successful run can occur. But such a need to
guess correctly is the hallmark of acceptance by a nondeterministic automaton – we saw the
same occuring with NFAs.

Notational conventions for PDAs. We usally denote the following types of PDA symbols
with the following types of variable symbols:

• a, b, ... : input symbols
• q, p, ... : states
• w, u, ..., x, y, ...: input words
• X, Y, : stack symbols
• a, b, ... : stack words

q0

Z0

q0

0
Z0

 q1

0
Z0

1

 q1

Z0
0

 q1

Z0

 q2

Z0

Rule 1.,
first
option

Rule 1.,
second
option

Rule 2. Rule 2. Rule 3.
state

stack

 48

A graphical notation for PDAs. In a similar way as with DFAs, we can graphically represent
a PDA by a labelled state transition diagram. The arc labels a, X / a now contain an input
symbol a, the top stack symbol X, and the stack push word a. Here is our example PDA in
graphical format:

Figure 4.4. Graphical representation of the PDA from Example 4.11.

Now we go through the familiar routine of defining the workings of a PDA in rigorous terms.

Definition 4.10. (configuration of a PDA). A configuration (in the HMU book: instantaneous
description) of a PDA is triple (q, w, g), where

• q Î Q is the current state of the PDA,
• w Î S* is the remaining input word,
• g Î G* is the word of current stack contents (first symbol in g = top of stack).

A configuration contains a complete "snapshot" of a PDA processing an input word.

Definition 4.11. (move of a PDA) For a PDA P = (Q, S, G, d, q0, Z0, F), all q, q' Î Q,
a Î S È {e}, w Î S*, X Î G, and a, b Î G* define a binary relation ¢P on the set of
configurations by

 (q, aw, Xb) ¢P (q', w, ab) iff (q', a) Î d(q, a, X).

When (q, aw, Xb) ¢P (q', w, ab), we say that P may move from configuration (q, aw, Xb) to
configuration (q', w, ab) in a single step. Note that moves are non-deterministic: there may be
several, a single, or even no possible move(s) away from a current configuration (q, aw, Xb).
As usual, define by ¢P* the transitive closure of ¢P (that is, zero or any number of moves).
We drop the subscript P if the reference to P is clear.

Start
q0 q1 q2

0, Z0 / 0Z0
0, 0 / 00
0, 1 / 01
1, Z0 / 1Z0
1, 0 / 10
1, 1 / 11

0, 0 / e
1, 1 / e

e, Z0 / Z0

0, Z0 / 0Z0
0, 0 / 00
0, 1 / 01
1, Z0 / 1Z0
1, 0 / 10
1, 1 / 11

 49

The PDA run of Fig. 4.3 corresponds to this sequence of configurations:

(q0, 0110, Z0) ¢P (q0, 110, 0Z0) ¢P (q1, 10, 10Z0) ¢P (q1, 0, 0Z0) ¢P (q1, e, Z0) ¢P (q2, e, Z0)

or

(q0, 0110, Z0) ¢P* (q2, e, Z0).

Definition 4.12. (language accepted by a PDA). Let P = (Q, S, G, d, q0, Z0, F) be a PDA.
Then the language accepted by P by final state is

L(P) = {w Î S* | (q0, w, Z0) ¢P* (q, e, a), where q Î F and a Î G*}.

Definition 4.13. The language accepted by P by empty stack is
w

N(P) = {w Î S* | (q0, w, Z0) ¢P* (q, e, e), where q Î Q}.

For PDAs accepting a language by empty stack we also use the empty set as set of accepting
states, that is, write P = (Q, S, G, d, q0, Z0, Æ).

Note that the working principle of PDAs is nondeterministic. A word w is in N(P) if some
sequence of moves exists which leads from the initial configuration to a final state
configuration (or empty stack configuration).

Proposition 4.4. (equivalence of empty-stack and final-state accepting PDAs) A language L
is accepted by some PDA by empty stack iff it is accepted by some PDA by final state.

Sketch of proof of proposition 4.4:

"Þ": Let Pempty = (Q, S, G, d, q0, Z0, Æ) accept L by empty stack. Idea: construct PDA Pfinal
which accepts L by final state. Pfinal has an new stack start symbol X0. Pfinal essentially
"simulates" Pempty. Before the simulated Pempty starts, Pfinal pushes Pempty 's stack start symbol
Z0 on the stack, then starts the simulation of Pempty. Pfinal needs a new starting state p0 and a
new accepting state pf to achieve this, as well as a few extra transitions. As soon as Pempty
empties its stack, X0 becomes visible and Pfinal goes into accepting state. To achieve this, for
each state q of Q, a transition d(q, e, X0) = (pf, e) is added. See Fig. 4.5. for how this works.
Note that this sketch is not a proof – it's the idea behind a proof. A full proof can be found in
the HMU book.

Start

q0 pf
e, X0 / Z0 X0
 p0

Pempty e, X0 / e

e, X0 / e
 e, X0 / e

e, X0 / e

 50

Figure. 4.5: A final-state accepting PDA (complete figure) constructed from an empty-stack
accepting PDA Pempty (big oval).

"Ü": Let Pfinal = (Q, S, G, d, q0, Z0, F) accept L by final state. Idea: construct Pempty from
Pfinal by "wrapping" Pfinal into a PDA that empties the stack of Pfinal when Pfinal enters an
accepting state. Details in Figure 4.6. ·

Figure 4.6: An empty-stack accepting PDA (complete figure) constructed from a final-state
accepting PDA Pfinal (big oval).

Proposition 4.5. (equivalence of CFGs and PDAs). A language L is the language of some
CFG iff it is accepted by some PDA by empty stack.

Sketch of proof:

"Þ": Let L = L (G), where G = (V, T, P, S) is a CFG. Idea: construct a PDA Pempty that
simulates all leftmost derivations in G. Pempty has a single state q, word alphabet T, stack
alphabet V È T, starting state q (of course, because it's the only state), stack start symbol S.
Pempty has two types of transition rules. First type: a variable symbol A is on top of stack, and
a grammar rule A ® a exists in P. Then Pempty has a transition rule that takes away A from
the stack and replaces it by a. Second type: if Pempty sees a terminal symbol a on top of the
stack, and at the same time can read a as the next symbol in its input word, it may delete a
from the stack. Figure 4.7 shows Pempty.

Figure 4.7: A PDA that accepts a language given by a CFG by empty stack.

The proof needs now to be completed by showing that L(G) Í L(Pempty) [induction on steps
of a leftmost derivation] and L(Pempty) Í L(G) [induction on number of transition steps]. This
can be found in the HMU book, page 238-241.

Start

q0 p
e, X0 / Z0 X0
 p0

Pfinal

e, any / e

e, any / e

e, any / e

Start q

e, A / a for every A ® a Î P
a, a / e for every a Î T

 51

"Ü": Let L = N(Pempty), where Pempty = (Q, S, G, d, q0, Z0, Æ). We construct a grammar G =
(V, T, P, S) for L. Main idea: for grammar variables we use complex symbols of the form
[qXp], which denote the following condition: "if Pempty is in state q, and has X on top of its
stack, it can go through some sequence of transitions which effectively pop X off the stack,
after which it is in state p". Note that this sequence can be arbitrarily long and that during this
sequence, new stack symbols may be pushed on top of X; however, at some time, whatever
has been pushed on top of X will eventually be removed again, and X will finally be removed,
too. – In addition of these compound symbols, the grammar variable alphabet also will
include a special symbol S. Altogether, we put V = { [qXp] | q, p Î Q, X Î G} È {S} and T =
S, and prepare the set P of grammar rules as follows:

1. For all states p, P contains the rule S ® [q0Z0 p]. Comment: these rules describe
the condition "there exists a sequence of PDA transitions that bring it from the
starting configuration with q0 and Z0 to some state p, where the stack has been
emptied, indicating acceptance".

2. Let d(q, a, X) contain the pair (r, Y1Y2...Yk), where a Î S È {e} and k ³ 0.
[If k = 0, then (r, Y1Y2...Yk) = (r, e).]. Then for all sequences of states r1, r2, ..., rk
add the production

[qXrk] ® a[rY1r1] [r1Y2r2] ... [rk-1Ykrk].

[In the case k = 0 we add only [qXr] ® a.] This production says that one way to
pop X and being in state rk afterwards is to read a, then use some input and some
transitions to pop Y1, coming out in state r1, the use some more input and some
more transitions to pop Y2, coming out in state r2, etc., until finally Yk has been
popped and the entire sequence comes out in state rk.

The proof needs now to be completed by showing that L(G) Í L(Pempty) [induction on number
of leftmost derivations] and L(Pempty) Í L(G) [induction on number of transition steps]. This
can be found in the HMU book, page 242-244. ·

Our PDAs are non-deterministic devices and thus cannot work as an algorithm. In the world
of regular languages and their automata, the nondeterministic NFAs had their deterministic
equivalents (DFAs), which could be constructed from the NFAs by the subset construction. In
the world of CFLs, we can likewise define deterministic PDAs, which we call DPDAs. But
unfortunately, we lose some power. Not for every PDA there exists an equivalent DPDA. This
is an encounter with a very general fact: if one enhances the power of some representation
format – that is, if one generalizes some mathematical concept – some (tpyically nice)
properties of the more restricted concept are lost.

Definition 4.14. A PDA P = (Q, S, G, d, q0, Z0, F) is deterministic if the following two
conditions are met:

1. For all q Î Q, a Î S È {e}, X Î G: |d(q, a, X)| £ 1.
2. If for some a Î S, q Î Q, X Î G: |d(q, a, X)| = 1, then d(q, e, X) is empty.

We denote deterministic PDAs by the abbreviation DPDA.

 52

All regular languages have DPDAs. To see this, take a DFA A for a regular language L and
construct a DPDA P that has A as its control unit and simply does not use its stack. P accepts
L by final state.

Example 4.12. There exist context-free languages that have DPDAs but are not regular. An
example is L = {wcwR Î {0,1,c}* | w Î {0,1}*}. The pumping lemma easily shows that L is
not regular. Idea to construct a DPDA for L: while reading the first part w of an input word,
copy it into the stack. When encountering c, switch (deterministically!) into a mode that
reads-deletes the stack, comparing it to residual input wR.

Thus, the languages acceptable by DPDAs are a proper superset of the regular languages.

There exist context-free languages that have no DPDA. An example is L = {wwR | w Î
{0,1}*}. I found a proof in for this result in a classical paper by S. Ginsburg and S. Greibach5
.

With DPDAs, acceptance by empty stack is not equivalent to acceptance by final state. To see
this, consider the regular language 0*. It cannot be accepted by a DPDA by empty stack
because in order to accept e by empty stack, a DPDA must contain rules that on empty input
lead to some sequence of e-transitions that end in an empty stack. But the same PDA when
started on a nonempty word w, has to go through the same sequence of e-transitions initially
(this follows from condition 2 of the definition of DPDAs). But then it has emptied its stack
and cannot proceed even to read in just the first symbol of w. On the other hand, because 0* is
regular, there exists a DPDA that accepts 0* by final state.

Each context-free language that is accepted by a DPDA (by final state or empty stack) has an
unambiguous grammar (proof in HMU). Unfortunately, it is not true that the languages that
have an unambiguous grammar are the languages accepted by DPDAs. All in all, we find the
following proper inclusion hierarchy:

We witness that the world of CFLs is less transparent than the world of regular languages. We
find non-equivalence of deterministic vs. non-deterministic automata, ambiguous vs.
inherently ambiguous vs. unambiguous grammars (all non-decidable), and if we would
deepen the treatment of CFLs, we would find more such pitfalls. But despite their not-so-

5 Seymour Ginsburg, Sheila Greibach: Deterministic context free languages. Information and Control 9(6), 1966,
620-648

CFL

unambiguous
CFL

accepted by
DPDA by final
state

accepted by
DPDA by
empty stack

regular

 53

beautiful properties, CFLs are key for computer science, because programming languages fall
into this class; furthermore, DPDAs are important for building parsers of programming
languages, markup languages, database query languages, etc.

A more detailed treatment of DPDAs than can be found in the HMU book is given in the
slides of a lecture given by Martin Fränzle from Osnabrück University; you can find them
here: http://minds.jacobs-
university.de/sites/default/files/uploads/teaching/share/folien28.10.pdf (originally retrieved
from http://www.imm.dtu.dk/~mf/SprogModeller/folien28.10.pdf).

Historical note. The results reported in this section were all first found in the early 60ties,
often independently by several researchers simultaneously. References in HMU page 253.
The time was just ripe then.

4.6 Chomsky normal forms

This and the remaining subsections cover topics similar to the ones we treated for regular
languages: normal forms, pumping lemma, closure properties. We will see that CFLs are
more difficult to understand than regular languages, and have not as many "nice" properties.
We start by presenting one of the normal forms for CFGs, the Chomsky normal form (CNF).
A CFG will be said to be in Chomsky normal form, if all productions have the form A ® BC
or A ® a, that is, the head is replaced by two variables or by a single terminal.

Regular languages had a unique normal form representation: the minimal DFA. CFLs
unfortunately have nothing similar. The best we can do is to transform CFGs into a (not: the)
Chomsky normal form – for a given CFL, there may be several grammars in Chomsky normal
form.

Note that with productions of the kind A ® BC or A ® a one can never derive e. Therefore,
only CFGs for languages that do not contain e have CNFs. In the remainder of this subsection,
we will see that every such language has a grammar in CNF.

Assume that we have a context-free grammar G = (V, T, P, S), and that e Ï L(G). We arrive at
an equivalent grammar in Chomsky normal form through a series of simplification and
standardization steps: (1) eliminate e-productions, (2) eliminate unit productions of the form A
® B, (3) eliminate useless symbols, (4) finally transform what we have "distilled" so far into
a Chomsky normal form.

Step 1: eliminate e-productions

Proposition 4.6 (eliminating e-productions). Let G = (V, T, P, S) be a CFG. Then we obtain a
grammar G' = (V, T, P', S) with L(G') = L(G) \ {e} as the result of the following two steps:

1) Detect all nullable variables A. A variable is called nullable if A Þ*G e.
2) Initialize P' = �.
3) Consider in turn all productions A ® X1X2...Xk Î P, k ≥ 1, where Xi Î T È V. Let m of

the Xi be nullable variables. Note that no such production is of the form A ® e. For

 54

each of the possible 2m subset choices from the nullable Xi, create a new production
from A ® X1X2...Xk' where the chosen nullable Xi are deleted in the body, and put this
new production into P'. There is one exception: if m = k, do not put the production A
® e into P'. Note: the original production A ® X1X2...Xk is also included into P'. Do
this for all productions A ® X1X2...Xk Î P. Note: Productions A ® e Î P are thus not
present in P' any longer.

Proof of correctness: I would say it is obvious, but remember what I said in the lecture about
the dangers of the word "obvious". ·

Inductive algorithm for finding the nullable variables. Basis: all A where A ® e Î P are
nullable. Make NULL(1) the set of these A. Induction: Assume that a set NULL(n) of nullable
variables has been found in step n. Consider all productions A ® B1B2... Bl where all Bi are
nullable variables in NULL(n). Add such A to NULL(n) to obtain NULL(n+1). Termination:
stop when NULL(n) = NULL(n+1). – It remains to be shown that this algorithm is correct,
that is, the final NULL(n) is the set of nullable variables. It is obvious that NULL(n) only
contains nullable variables. To show that every nullable variable is in NULL(n), perform an
induction on the length of the shortest derivation A Þ*G e. ·

Step 2: eliminate unit productions

A production of the form A ® B, where A and B are grammar variables, is called a unit
production. They are not necessary for building grammars and can be eliminated from a given
grammar (although they may be useful, as for instance when we made our grammar for terms
unambiguous, see example 6.10).

Terminology needed: Let G = (V, T, P, S) be a CFG. If A Þ*G B, and all steps in this
derivation are unit productions, we call (A, B) a unit pair of G. Note that all (A, A) are unit
pairs.

Proposition 4.7 (eliminating unit productions). Let G = (V, T, P, S) be a CFG. Then we
obtain a grammar G' = (V, T, P', S) without unit productions if we carry out the following
three steps.

1. Find all unit pairs of G.
2. Initialize P' to P minus all unit productions.
3. For each unit pair (A, B), add to P' all productions of the form A ® a, where B ® a is a

non-unit production in P.

Then G' has no unit productions and L(G) = L(G').

Proof of correctness: It is clear that G' has no unit productions. L(G) = L(G') is "almost
obvious" if you think of parse trees. If w Î L(G), then there exists a parse tree for w. Branches
corresponding to sequences of unit productions A1 ®G A2 ®G ... ®G An ®G a with non-unit
outcome a in this tree can be cut short by the single-step production A1 ®G' a from P'. Thus
w Î L(G'). If conversely w Î L(G') and we consider a parse tree for w in G', then obviously
this parse tree can be turned into a parse tree for w w.r.t. G, if we replace all productions of
type A1 ®G' a, which are not in P, by sequences A1 ®G A2 ®G ... ®G An ®G a. Thus w Î
L(G). ·

 55

Inductive algorithm for finding all unit pairs in a grammar. Basis: Let PAIRS(1) be the
set of all pairs of the form (A, A). Induction: For all (A, B) in PAIRS(n) and all B ® C in P,
add (A, C) to PAIRS(n) to obtain PAIRS(n+1). Termination: stop when PAIRS(n) =
PAIRS(n+1).

It is clear that this algorithm yields exactly all unit pairs. ·

Step 3: eliminate useless symbols

We define a symbol X Î V È T to be useful if there exists a word w Î L(G) with a derivation
of the form S Þ* aXb Þ* w, where a, b Î (V È T)*. If X is not useful, it is useless.

Obviously, a symbol has to have two properties to be useful: it has to be generating and it has
to be reachable:

We say that X is generating if for some nonempty terminal word u, X Þ* u. Note that every
terminal symbol is generating by this definition. Notice furthermore that if S Þ* aXb Þ* w,
and X is a variable, then X Þ* u for some nonempty subword u of w because we have
eliminiated e-productions in an earlier step.

X is reachable if S Þ* aXb for some a, b Î (V È T)*.

Proposition 4.8 (eliminating useless symbols). Let G = (V, T, P, S) be a CFG, with L(G) ¹ Æ
and e � L(G). (Note that it can be decided whether L(G) ¹ Æ as a side-product of the
"Inductive algorithm for finding the generating symbols of a grammar G" presented further
below.) Let G1 = (V1, T1, P1, S) be the grammar we obtain in the following two steps:

1) Delete from G all nongenerating symbols and productions in which such symbols
occur, to obtain G2 = (V2, T2, P2, S). Note that S must be generating because of
L(G) ¹ Æ.

2) Eliminate from G2 all non-reachable symbols and productions in which such symbols
occur, to obtain G1.

Then G1 has no useless symbols and L(G1) = L(G).

Proof: We first show that G1 has no useless symbols. Suppose X Î V1 È T1. We know that
X Þ*G w for some w Î T* (mind that the subscript is G and not G1!). Because every symbol
in the derivation X Þ*G w is generating, we also know that X Þ*G2 w. Because X was not
eliminated in the second step, we know that for some a, b Î (V2 È T2)*, S Þ*G2 aXb.
Furthermore, every symbol used in this derivation is reachable, thus S Þ*G1 aXb.
Furthermore we know that every symbol in a is reachable in G2 (because of S Þ*G2 aXb)
and generating in G2 (because of a Î (V2 È T2)*). Therefore, for some terminal word x
Î T2*, a Þ*G2 x. All symbols used in the derivation a Þ*G2 x are also reachable in G2,
therefore a Þ*G1 x. Similarly, b Þ*G1 y for some y Î T2*. Assembling everything we get S
Þ*G1 aXb Þ*G1 xwy, and thus X is not useless in G1.

 56

Next (and finally) we must show L(G1) Í L(G) and L(G) Í L(G1). The first is trivially true,
because we stripped down G to obtain G1. The second is almost trivially true – because if S
Þ*G w, then every symbol used in this derivation is generating in G and therefore in G2, and
thus every symbol used in this derivation is reachable in G2 and therefore in G1. ·

To round up this story we need algorithms to find the generating and reachable symbols in a
grammar.

Inductive algorithm for finding the generating symbols of a grammar G. Basis: all
terminal symbols are generating by definition. Make GEN(1) the set of terminal symbols.
Induction: Assume that a set GEN(n) of generating symbols has been found in step n.
Consider all productions A ® a, where a contains only symbols from GEN(n). Add all
variables A that satisfy this requirement to GEN(n) to obtain GEN(n+1). Stop when GEN(n) =
GEN(n+1) and put GEN(G) = GEN(n).

Proof of correctness: To show that GEN contains exactly the generating symbols of G, show
that each symbol in GEN(G) is generating (easy) and that every generating symbol X of G is
in GEN(G) (induction on length of generations X Þ*G w). ·

Algorithm for finding the reachable symbols of a grammar G: Construct a directed graph
whose nodes are all the terminal and variable symbols of G. For every rule A ® a, for every
symbol X Î a, add an arc A ® X to the graph. Then compute the set of all graph nodes that
are reachable from S – a known graph algorithm. The nodes in this set correspond to the
reachable symbols.

Proof of correctness: obvious. ·

Note: These two steps must be carried out in this order – an example where the reverse order
fails can be found on page 256 in HMU.

We sum up our three "purification" steps:

Proposition 4.9 If G is a CFG for a language L that contains at least one word other than e,
then there is another CFG G' for the language L \ {e} that contains no e-productions, no unit
productions and no useless symbols.

Proof: Carry out the steps for eliminating e-productions, unit productions, and useless
symbols, in that order. After the first step, we have a grammar for L \ {e} that contains no e-
productions. If we then eliminate unit productions, we apparently don't re-introduce e-
productions, so afterwards we have a grammar for L \ {e} that contains no e-productions and
no unit productions. Finally, we eliminate useless symbols. As this method only eliminates
symbols and rules, never re-introducing anything, we end up with a grammar for L \ {e} that
contains no e-productions, no unit productions and no useless symbols. ·

Theorem 4.10. (Chomsky normal form). Let L be a nonempty language not containing e.
Then there exists a grammar G' for L whose productions are all in one of two simple forms,
namely

1. A ® BC, where B, C are variables, or

 57

2. A ® a, where a is a terminal symbol.

Furthermore, G' has no useless symbols. Such a grammar is said to be in Chomsky normal
form (CNF).

Proof. By proposition 4.9 we know that L has a grammar G that contains no e-productions, no
unit productions and no useless symbols. Thus, all productions in G are already of the desired
form A ® a or have a body of length 2 or more. We have to consider only the latter
productions. We transform them into sets of equivalent productions of type 1. or 2., in two
steps.

Step 1: arrange that all bodies of length 2 or more consist only of variables. This can be done
as follows. If a terminal a appears in some body, create a new variable Aa , replace all
occurrences of a in rule bodies by Aa, and introduce a new rule Aa ® a.

Step 2: break productions with all-variable bodies of length 3 or more into sequences of
productions of the form A ® BC. This can be done by introducing a new set of variables for
each such production. For instance, replace A ® BCDE by A ® BC1, C1 ® CD1, D1 ® DE.

Correctness: obvious. ·

Notes:

1. A given language may have different grammars, all in CNF! Thus, the Chomsky normal

form is not unique. This is bad news, because we saw earlier in this lecture that unique
normal forms (= minimal DFAs) for regular languages entailed numerous decidability
properties. We will soon see that in fact, many properties that can be decided for regular
languages are undecidable for context-free languages.

2. The CNF is useful in various ways. Among other usages, it lays the grounds for a
pumping lemma for CGL’s (section 4.7), and it yields a test for deciding whether a word
w is in a context-free language L (section 4.8).

3. There are other (non-unique) normal forms for context-free grammars. The most
important one is the Greibach normal form for nonempty languages not containing e. In a
grammar that is in Greibach normal form, all productions are of the form A ® aa, where
a is a terminal and a is a string of zero or more variables. The method to construct a
Greibach normal form grammar is more complex than constructing Chomsky normal
forms. One interesting consequence of the Greibach normal form is that in such
grammars, a word of length n has a derivation of length n, because each production
introduces exactly one terminal symbol.

4.7 The pumping lemma for CFLs
This subsection will be skipped in many years. It is included here for interested readers.

A preparatory insight: parse trees in CNF grammars are binary trees (except at the branch tips
where a unary branching leads into terminal leaves) and therefore the length of the longest
branch gives a bound on the length of the terminal word:

Proposition 4.11. In a parse tree t of a CNF grammar with yield w, where the length of the
longest path in t is n, it holds that |w| £ 2n-1. (Proof by induction over length of longest path in

 58

binary trees). Alternative statement: if the yield w of t has length |w| ³ 2n-1, then t must
contain a path of length at least n. ·

Proposition 4.12 (Pumping Lemma for CFLs). Let L be a CFL. Then there exists a constant n
such that every word w Î L with |w| ³ n can be written as w = xuyvz, with x, u, y, v, z Î T*
such that

1. |uyv| £ n,
2. |uv| ³ 1,
3. for all i ³ 0, xuiyviz Î L.

Proof (main idea): first prove for finite L (trivial – just choose n greater than the length of
longest word in L, statement of P.L. is trivially true). For infinite L, choose n = 2|V| and
consider a parse tree for a word w with |w| ³ n in some CNF grammar for L. The tree must
have a path p of length at least |V| + 1 according to proposition 4.11. On this path, at least one
variable A Î V must occur twice. The rest of the argument formalises the geometrical idea
that should become clear from Fig. 4.8. Note that the two dotted branches going downwards
in the tree from the first occurrence of A cannot both be empty, because a CNF does not
contain unit productions; therefore, u, v cannot both be empty. ·

Figure 4.8: parse trees for xyz and xuuyvvz derived from parse tree for xuyvz according to
pumping lemma for context-free languages.

The pumping lemma can be used to show that certain languages are not context-free.
Example: L = {ww | w is in {0,1}*} and L = {0n1n2n | n ³ 1} are not context-free.

There is a stronger version of the P.L., called Ogden's lemma:

Proposition 4.13 (Ogden's Lemma for CFLs). Let L be a CFL. Then there exists a constant n
such that in every word w Î L with |w| ³ n, we can first arbitrarily select n or more

S

 A

 A

 p
 x u

 y v
z

S

 A

 y
 x z

S

 A

 A

 p
 x u y z

 y

 A
u

u

v

v

a. b. c.

 59

distinguished positions, that is, n or more places within w. Then the word w can be written as
w = xuyvz, with x, u, y, v, z Î T* such that

1. uyv covers at most n distinguished positions,
2. uv covers at least one distinguished position,
3. for all i ³ 0, xuiyviz Î L.

The proof is actually the same as for the P.L., only that we pretend that the non-distinguished
positions are not there in the parse tree we are using for our argument. ·

With Ogden's lemma, one can prove more languages to be not context-free than with the P.L.,
or proofs become simpler. It's really helpful. For instance, the languages
{0i1j2k | k = max{i, j}} and {0i1i2j | j ¹ i} can be shown to be not context-free.

4.8 Some closure and decision properties of CFLs

Definition 4.15 (Substitution of symbols by languages).
1. Let S = {a1, ..., an} be an alphabet, and let S1, ..., Sn be alphabets and L1, ..., Ln languages

over these alphabets. We write Li = s(ai) = Lai [i = 1, ..., n] and say that Lai is the language
substituted for symbol ai by the substitution s.

2. If w Î S*, w = a1...am, then s(w) is the language of all words u of the form u = u1...um Î
(S1 È ... È Sn)*, that satisfy uj Î Laj [for j = 1, ..., m].

3. If L is a language over S, then s(L) = is the language obtained from L by the
substitution s.

Proposition 4.14 (Closure under substitution): If L is a context-free langage over S =
{a1, ..., an} and there is a substitution s where the substitution languages Lai are also context
free, then s(L) is context-free.

Idea of proof: combine a grammar for L and grammars for the languages Lai by first making
all the variable sets of all these grammars disjoint, then identify the terminals ai of the
grammar for L with the starting symbols Si of the grammars for the languages Lai. ·

Closure under substitution yields easy proofs for a number of other closure properties:

Proposition 4.15 (Some elementary closure properties of CFLs). The context-free languages
are closed under finite union, concatenation, Kleene star * and positive closure +, and
homomorphism.

Proof:

• Union: Let L1 and L2 be CFL's. Consider the CFL L = {1, 2} [!] over S = {1, 2}. Then

substitution s(1) = L1, s(2) = L2 does it.
• Concatenation: similar, use L = {12}.
• Kleene star *: similar, use L = {1}*.
• Positive closure +: similar, use L = {1}+.

 60

• Homomorphism: Let L be a CFL over S = {a1, ..., an} , and h: S ® (S')* a
homomorphism. Put s(ai) = {h(ai)}. Then h(L) = s(L).

Note that the last case (homomorphisms) demonstrates a close similarity between
homomorphisms of languages and substitution of symbols by languages. The only difference
is that we defined homomorphisms to have a single target alphabet, whereas the target
languages of "substitution of symbols by languages" may have different alphabets (not
necessarily disjoint). One could also say, "homomorphisms are substitutions of symbols by
languages where the target languages all have the same alphabet".

Proposition 4.16 (closure under reversal). The CFL's are closed under reversal. ·

Proof: reverse all bodies in rules of a grammar for a CFL to get a grammar for the reversed
language. ·

Proposition 4.17 The CFL's are not closed under intersection and complement.

Proof: Intersection: the pumping lemma for CFLs can be used to show that L = {0n1n2n | n
³ 1} is not context-free. However, the languages L1 = {0n1n2i | n ³ 1, i ³ 1} and L2 = {0i1n2n |
n ³ 1, i ³ 1} are context-free; they have simple grammars, for instance L1 is generated by S ®
AB, A ® 0A1 | 01, B ® 2B | 2. But L is the intersection of L1 with L2. Thus, if CFL's were
closed under intersection, L must be context-free, too, which it isn't; therefore the CFL's
cannot be closed under intersection. Complement: If the CFL's were closed under
complement, they would also be closed under intersection, because intersection can be
combined from complement and union. ·

Proposition 4.18 (Closure under intersection with a regular language). If L is a CFL and L' a
regular language, then L Ç L' is context-free.

Proof, idea: from a DFA A' for L' and a PDA A for L (accepting by final state) construct a
PDA B for L Ç L' (likewise accepting by final state) by simulating A' and A in parallel, that is,
B has product states (q',q), where q' are states of A' and q are states of A, and the transition
rules of B act on these two state components independently according to the transition rules
form A' and A (be a little careful here: we want a transition in the A' part only if in the A part a
new symbol – not e – is processed); the accepting states in B are the states (q',q) where both q'
and q are accepting in A' and A, respectively. ·

Next we turn to decision properties of CFLs. Decision problems for languages are of the
general form,

• given a formal specification of a language (for instance via a grammar or an automaton),

and
• given a language property (for instance, whether the language is empty or finite or

contains some special word),
• determine by a deterministic procedure whether the specified language has this property.

The usual way to go about such decision problems is to proceed in two steps:

1. transform the given formal specification into some normal form,

 61

2. use the normal form and a known algorithm that relies on this normal form to decide the
property in question.

For CFLs, we know how any PDA can be transformed into a PDA that accepts by empty
stack, how such a PDA can be transformed into a grammar, and grammars into Chomsky
normal form. Thus, every type of formal specification that we are used to can be ultimately
converted to CNF. For practical purposes, the runtime of conversion algorithms is of some
interest. The HMU book discusses the various conversions, describing conversion algorithms
of the following types and stating the time complexity:

• CFG to PDA that accepts by empty stack (complexity O(n), where n = description length

of grammar),
• final-state-accepting PDA to empty-stack-accepting PDA (O(n), where n = description

length of PDA),
• empty-stack-accepting PDA to final-state-accepting PDA (O(n), where n = description

length of PDA)
• empty-stack-accepting PDA to CFG (O(n3), where n = description length of PDA),
• CFG to CNF (O(n2), where n = description length of grammar).

Some (few) elementary properties of context-free languages are decidable. Here they are:

Proposition 4.19 It is decidable whether a CFL is empty.

A naive decision algorithm would first transform the given language specification into a
grammar (if it is not already in grammar form) and re-use the algorithm for finding the
generating symbols (cf. proof of Proposition 4.8) to find out whether the start symbol S is
generating. It is generating iff the language is non-empty. This naive algorithm has quadratic
worst-case time complexity; HMU (p. 296) gives a more sophisticated algorithm that needs
linear time. ·

Proposition 4.20 It is decidable whether a given word w is in a context-free language L.

This is an important decision task – considering that compilers should check whether the
program code they are about to process is syntactically correct.

A naive decision algorithm would first procure a CNF description of the language. Let |w| =
n. Any parse tree of w (if it has one) has exactly 2n – 1 non-leaf (variable) nodes. There are
only finitely many parse trees at all in the grammar with that number of internal nodes. One
may systematically generate them all and check whether one of them has yield w.
Unfortunately, this algorithm has exponential time complexity and is therefore impractical. ·

Because the membership decision task is of great practical importance, much work has been
invested into exploring efficient decision algorithms. One of the most famous algorithms
(famous because it came historically early and it is simple) is the CYK algorithm. It is named
after J. Cocke, D. Younger and T. Kasami who independently discovered it in the mid-60ties.

The CYK algorithm. Let a context-free language L be specified by a CNF grammar. Let w =
x1...xn be a word of length n whose membership in L has to be decided. In order to do this, for
this given word w construct a triangular table whose bottom line has length n, and whose
entries Xij are arranged as indicated in the following figure that gives an example where n = 4:

 62

 X14
 X13 X24
 X12 X23 X34
 X11 X22 X33 X44
 x1 x2 x3 x4

Each Xij is a set of grammar variables, such that A Î Xij iff A Þ* xixi+1...xj, that is, A can
generate the substring of w between (and including) positions i and j. Clearly w Î L iff S Î
X1n.

The sets Xij are constructed row-wise, bottom-up, inductively. Basis: In the first row, Xii must
contain all variables A such that A Þ* xi. Because the grammar is in CNF, this is equivalent
to A ® xi being a production in the grammar, which can be checked in constant time for each
Xij. Induction: assume that all rows up to some row k have been constructed. Let Xij be in row
k+1, that is, j – i + 1 = k +1. We compute Xij using the rows beneath it. Because our grammar
is in CNF, it holds that A Þ* xixi+1...xj iff there exists some l, with i £ l £ j, such that there
exists a production A ® BC, and B Þ* xi...xl and C Þ* xl+1...xj. In order to check for the
existence of such pairs B, C of variables, it suffices to inspect Xi'j' computed in lower rows.
Namely, for every l with i £ l £ j, consider all B in Xil; these are the B that can generate xi...xl.
Similarly, X(l+1)j contains all C with C Þ* xl+1...xj. Check for all pairs B, C with B Î Xil and
B Î X(l+1)j whether A ® BC is a production. This can be done in time proportional to j – i. ·

Since every Xij can be computed in time at most O(n), and there are n2/2 such Xij to compute,
the total time consumption of this algorithm is O(n3). Note that the grammar is fixed and
enters the estimation of the runtime only as a constant!

The CYK algorithm can be cast into a form that is based on matrix multiplications. Using
matrix multiplication algorithms whose cost is less than the O(n3) cost of the "naïve" matrix
multiplication, the cost of CYK can be reduced to about O(n2.38). This is however a result of
only theoretical value because the overhead hidden in the big-O is extremely large.

Example 4.13. Consider the CNF grammar

S ® AB | BC
A ® BA | a
B ® CC | b
C ® AB | a

To check whether baaba is in the language of this grammar, the table-filling algorithm
constructs the following table and finds that S is in the topmost table entry, thus baaba is in
the language:

 {S,A,C}
 {} {S,A,C}
 {} {B} {B}
 {S,A} {B} {S,C} {S,A}

 63

 {B} {A,C} {A,C} {B} {A,C}
 b a a b a

Proposition 4.21. It is decidable whether a context-free language L is finite.

A naive algorithm for checking finiteness would use the pumping lemma and the word
membership decidability. Let n be the pumping lemma constant. Decide whether L contains a
word of length l with n £ l < 2n. If yes, then L is infinite, because any such word can be
pumped to other words from L in an infinite number of ways. If no, L is finite. To see why,
assume L is infinite. Then let w be a word of length ³ 2n, such that there exists no shorter
word in L of length ³ 2n. By the pumping lemma, we can write w = xuyvz and we know that
xyz is in L, too. But the length of xyz is shorter than the length of w, thus, xyz must be shorter
than 2n. But xyz must also be longer than n due to the pumping lemma. Contradiction. ·

The properties of emptiness, finiteness, word membership are the main properties that can be
decided for CFLs. In contrast, the following properties cannot be decided:

• Is a CFG ambiguous?
• Is a CFG inherently ambiguous?
• Is the intersection of two CFLs empty?
• Are two CFGs generating the same language?
• Is a CFL equal to S*?

Proving these indecidabilities needs techniques that you may learn in the lecture
"Computability and Complexity".

5 Further types of formal languages

Grammars can be more general than the CFGs we are now familiar with. Here are two types
of grammars that are more general:

Definition 5.1: An unrestricted grammar is a 4-tuple G = (V, T, P, S), where V, T, S are as in
CFGs, but productions are of the form a ® b, where a, b Î (V + T)* are any strings of
variables and / or terminals. Derivations in an unrestricted grammar proceed by replacing a
substring a by a substring b in sentential forms provided a production a ® b exists in P.
More formally, for g1, g2 Î (V + T)* we have g1 ÞG g2 iff g1 = d1ad2, g2 = d1bd2, and
a ® b Î P.

Unrestricted grammars are also called type-0 grammars, semi-Thue systems, or phrase
structure grammars.

The languages that can be generated by unrestricted grammars are the languages that can be
generated by Turing machines (see lecture Computability and Complexity, next semester).
This is tantamount to saying that these languages are the ones that can be generated by any
computer program (on computers with infinite memory!). These languages are called the
recursively enumerable languages.

 64

The recursively enumerable languages form the largest class of languages that can be
generated by finite means (grammars, automata, etc. are finite mathematical structures). The
recursively enumerable languages have essentially no decidable properties. We will learn
much more about them in Computability and Complexity.

Definition 5.2: An context-sensitive grammar is a 4-tuple G = (V, T, P, S), where productions
are of the form a ® b, where a, b Î (V + T)* are any strings of variables and / or terminals,
and in addition to unrestricted grammars, we also have | a | £ | b |. Derivations are defined as
usual.

Context-sensitive grammars are clearly more restricted than unrestricted grammars. However,
they are extremely powerful and it is very difficult to find a language that is recursively
enumerable but not context-sensitive. Virtually every formal language that one can reasonably
invent is context-sensitive.

Unlike all types of languages considered so far, no natural automaton model for the context-
sensitive languages is known, apart from a slightly awkward modification of Turing machines
(restricting the length of the tape to a size proportional to the length of the input).

The context-sensitive grammars get their name from a normal form theorem stating that for
each context-sensitive grammar there is an equivalent grammar whose productions have the
form a1Aa2 ® a1ba2, where A is a variable. The strings a1 and a2 are called the context of
A. This also explains, finally, why the context-free languages are called context-free!

The context-sensitive grammars are mainly of historical interest because they appeared in the
Chomsky hierarchy of languages, which is made from the regular, context-free, context-
sensitive, and recursively enumerable languges. Originally this hierarchy was described by the
linguist Noam Chomsky as modelling (portions of) natural languages.

Modelling natural language. Chomsky's influence on linguistics can hardly be over-
estimated. His ideas have for many years determined the scientific view of a natural language
as a set of "syntactically well-formed sentences" generated by, and fully described by,
grammars. One could say, this perspective is normative, because it rests on the idea of
syntactical correctness. The Académie Française and the German Duden Verlag, for instance,
and other national institutions watching over the national language, would take this stance,
too.

But in more recent years (let's say, since 25 years or so), other scientific perspectives on
natural languages have emerged, which have widened the picture enormously. Here is a list of
what I perceive as the most important other scientific (and engineering) approaches to natural
languages.

Language as a stochastic process. Clearly, people when speaking make grammatical errors,
jump in their thoughts, pronounce words in different ways, etc., etc., in a strange mixture of
regularity and randomness. This calls for investigating the statistics of utterances, and
modeling language as stochastic sequence generation. As a main workhorse, the formalism of
hidden Markov models (HMMs) has established itself. It turned out that for computer-based
speech processing systems (for instance, dictating programs or spoken word recognizers), the
stochastic approach has been the most successful. For two decades (1990 – 2010), commercial
systems for speech recognition have been built almost exclusively on HMMs. In the last few
years however, HMM-based speech recognizers are becoming replaced by algorithms which

 65

are based on neural networks. These recognition systems likewise view language as a
stochastic process.

Language as carrier of information. All of the approaches mentioned so far, including the
grammar-based normative view, care little about the meaning of words, phrases and texts.
They are syntax oriented. But of course, one cannot understand language without an account
of semantics. The preferred mathematical tool for modelling this aspect is logic, which is all
about the interplay between syntax and semantics – as we shall see in the remainder of this
lecture. Computer-based systems for speech understanding (as opposed to mere recognition)
are therefore mostly based on some logic formalism. An example would be automated
translation systems – the source language message is first transformed into a logic-based
representation of its semantic contents, from which then a target language message is derived.
Note however that commercial automated translation systems (such as the one embedded in
Google) do not do a semantic analysis of their input sentences. Instead, they rely on stochastic
pattern matching (purely syntactic) and very large databases for training and retrieval of
ready-made translation templates. In the last few years (since 2013 to be more precise), such
"brute force" machine translation systems have been built on the basis of neural networks.

Modern scholarly linguistics is by and large a mixture of the grammar-based, logic-based, and
stochastic-process-based approaches.

Language as a nonlinear, self-organizing dynamical system. Certain aspects of spoken
language have a "dynamical" flavour, for instance intonation, rhythm, or singing. Such
aspects are most naturally captured by the mathematical tools of nonlinear dynamical systems
(ordinary and partial differential equations, artificial neural networks, coupled oscillators). It
turned out that this kind of mathematical models also is most useful when modeling the neural
dynamics in brains. Since language is undoubtedly produced by brains, there is a strong
"natural" motivation to take this approach. The nonlinear dynamics approach can also explain
in a very natural way certain phenomema of language learning in infants, for instance the
sudden emergence of mastering new skill levels. However, as of today, the research
programme of giving a comprehensive account of language in terms of dynamical systems
(neural networks in particular) has not advanced very far.

Language as a historically changing set of conventions. Languages develop over time; one
language may differentiate into new "descendent" languages, or become extinct, or altogether
new languages may emerge from almost nothing (e.g., when an island becomes populated by
people speaking many different native languages – then new Creole languages emerge in a
highly organized, surprisingly fast and predictable fashion). In order to analyse language
under this perspective, the relatively new field of evolutionary linguistics sees a language very
much like a biological species which adapts to new ecological niches, differentiating into new
species in the process. The main tool for this approach is computer simulations with artificial
languages, which under various simulated evolutionary "pressures" can be demonstrated to
develop new vocabularies and grammatical structures.

 66

Part 2: First-order predicate logic

Literature:

Uwe Schöning, Logic for Computer Scientists. Birkhäuser Verlag1989 (IRC: QA9 .S363
1989), Section 2. (Note: these ACS1 lecture notes are more detailed than the book).

H.-D. Ebbinghaus, J. Flum, W. Thomas, Mathematical logic. New York : Springer-Verlag,
1994 (IRC: QA9 .E2213 1994) (Note: this book is more detailed and more formal than these
lecture notes).

6 Motivation

FOL is the standard mathematical formalism to describe facts – mathematical facts or others.
Consider two examples, one from everyday life and one from mathematics:

Fact: FOL formula describing the fact:

"all humans are mortal" "x (Human x ® Mortal x)
 read: "for all x, if x is human, then x is mortal"

"every real number except 0 "x ((Real x Ù ¬(x = 0)) ® $ y (Real y Ù x . y = 1))
 has a multiplicative inverse" read: "for all x, if x is a real number and x is not equal to

0, then there exists an y, such that y is a real number and

x . y = 1"

Like propositional logic, FOL uses the logical connectives Ù, Ú and ¬ (and derived ones like
®). But compared to propositional logic, FOL has the following additional ingredients:

• In FOL one can talk about individual things and denote them by variables (like x or y)
or by constant symbols (like 1).

• In FOL one can talk about properties of things, like being human or a real number.
Such properties can be cast as formal symbols (e.g., Human or Mortal) and used in
formulas.

• In FOL one can talk about functions, like the multiplication ..
• In FOL one can state that something exists for which something holds, using

expressions of the sort $x (blah blah x blah blah), and one can claim that something is
true for all things, using "x (blah blah x blah blah). These are called existential and
universal statements, respectively.

However, one cannot say everything in FOL. For instance, one cannot make existential or all
statements about properties. It would be impossible to express in FOL: "I love all the qualities
you have". More mundanely, it is impossible to express in FOL some important mathematical
principles, for instance the principles of induction over natural numbers:

 67

(*) "P ((P0 Ù " n (Pn ® P(n+1))) ® " n (Pn))

read: "for all properties P, if 0 has it and if some n has it, then n+1 has it, too, then all n have
this property"

Statement (*) is an example of a second-order logic formula, where "second order" refers to
the possibility to make existential or all statements about properties.

In fact, mathematics knows very many (infinitely many in fact) "logics". Their main
difference lies in what they can express. Propositional logic is not very expressive, second-
order logic is extremely expressive, and FOL lies somewhere in between. This should remind
you of another hierarchy of expressiveness that by now you know very well: the Chomsky
hierarchy of languages. You might compare Boolean logic to regular languages (both are
about the simplest you can have), and FOL with the context-free languages (lying somewhere
in the middle and being very useful). It might therefore seem that FOL is just a compromise
and that there might be other nice compromise logics. However, that is not the case. FOL is a
superbly special logic. The goal of the remaining lectures in this semester is to give you a
thorough intuition about FOL and to make you appreciate the special role of FOL. For now,
let it suffice to indicate that the special nature of FOL makes it THE logic for a host of
applications:

• FOL is the language in which set theory is expressed. But set theory is the
foundational theory of all mathematics; every mathematical structure can be re-cast as
a set. Thus FOL is THE logic from which mathematics is buildt.

• FOL is the everyday language in maths. Except some rare cases (like the induction
principle), almost everything that is stated in mathematical textbooks is stated in FOL
(or some sloppy version thereof using words instead of symbols – but every
mathematician is able to cast his/her statements in fully formal FOL). Thus FOL is
THE logic for mathematicians.

• FOL is sufficient to express most practically relevant facts of real life. (You will rarely
be meta-reasoning about properties; you typically make statements about things, and
for all statements about things, FOL is enough). Thus, FOL is THE tool for Artificial
Intelligence (AI). AI tools like "expert systems" or "knowledge bases" are written in
variants of FOL. Check out Watson_(computer) and Cyc on Wikipedia to get an
impression of how very large-scale FOL-fuelled knowledge bases can equal, or
surpass, or be inferior to humans in interesting ways. Also take a look at
http://www.youtube.com/watch?v=WFR3lOm_xhE and
http://www.youtube.com/watch?v=d_yXV22O6n4 (links provided by Octavian
Nasui).

• FOL is at the basis of a programming style called logic programming, a kind of
declarative programming where a problem is "simply" described by FOL statements
and the work of finding out how to do the necessary computations for solving the
problem is left to the computer. The main language here is PROLOG. Logic
programming is a preferred programming style in computer linguistics, where natural
language input has to be processed both syntactically and semantically.

• Similarly, FOL is THE tool for other "knowledge-intensive" or "reasoning"
applications in computer science, for instance for program verification tools or certain
advanced databases (try Google on "deductive database"!).

 68

You will see that this widespread use of FOL is not just a historical coincidence, but arises
from some inbuilt properties of FOL which preciously single it out among all other logics.

7 Syntax and semantics of FOL

7.1 Syntax

The vocabulary of a FOL is adapted to particular domains. If you want to describe the world
of natural numbers, you will need symbols like +, -, 0, 1, <, etc.; if you describe the domain
of robot navigation, you will need symbols like goal, direction, landmark, etc. Depending on
the target domain, there are different FOL vocabularies, hence FOL comes in many
languages.

Definition 7.1. Each FOL language uses the following sorts of symbols:

1. Symbols which are shared by all FOL languages:
a. variables x1, x2, x3, ... (for convenience we will also use y, z, and others),
b. logical connectives Ù, Ú, ¬, ®, «,
c. quantifiers $ and ",
d. the identity symbol =, 6
e. brackets (and).

2. Domain-specific symbols:
a. for each n ³ 1, a set (possibly empty) of n-ary predicate symbols,
b. for each n ³ 1, a set (possibly empty) of n-ary function symbols,
c. a set (possibly empty) of constant symbols.

Notes:

• When one talks about the symbol set S of a FOL, one typcially refers only to the
collection of all its domain-specific symbols (the shared symbols are tacitly taken as
granted). These domain-specific symbols are also called the signature of a FOL
language.

• The symbol set S of a FOL language may be empty, finite, or infinite, even of arbitrary
cardinality (so you could name every real number by a constant symbol!). Thus it is
not called an "alphabet", because alphabets are by convention finite and non-empty.

• Another difference between logical symbols in S and the symbols we know from
alphabets is that for each symbol in S there is declared a type (predicate, function,
constant) and an arity, whereas the symbols we knew from formal language alphabets
had none of these properties. To sum up: "alphabets" are just finite non-empty sets of
different tokens, - that's it -, while a signature is a set (of arbitrary cardinality) of
tokens with specified types and arities.

• You should think of constant symbols as names of (pointers to) individual things, for
instance 0, my-laptop, Albert-Einstein.

• Unary predicate symbols denote properties of things, which the things may have or not
have. Examples: is-human, is-blue, is-prime, is-greater-than-zero.

6 Sometimes FOL is introduced without "=". If one wants to preclude misunderstandings, one may speak of
"FOL with equality" or "FOL without equality".

 69

• Binary predicate symbols denote relations between two things: for instance <, faster.
In the pure syntax of FOL, prefix notation without brackets is used, for instance < 1 3
or is-faster cheetah snail.

• Predicate symbols of higher arity denote higher-order relations, as for instance in lies-
between Vegesack Grohn Lesum.

• The scope of a relation symbol is implicitly understood because the arity of relation
symbols is given with the symbol. However, in everyday use infix notation is
common, e.g. 1 < 3, and in AI programming languages, bracketing is standard, for
instance faster(leopard, snail).

• The words "predicate" or "relation" can be used interchangeably. Often "predicate" is
used for unary relations, and "relation" for higher-arity ones, but this usage is not
mandatory.

• Similarly, an n-ary function symbol is used with its arguments in prefix notation and
without brackets in "pure" FOL, as in + 2 3 = 5. Again, you may use more convenient
conventions if you like.

If the symbol set S is finite, a FOL language is actually a context-free language and could be
specified by a grammar. However, this is not how FOL languages are specified in logics
textbooks. Besites S being possibly infinite or empty, one reason for not using grammars is
historical: the theory of FOL evolved in the decades around 1900, that is 50 years earlier than
formal languages. The other reason has something to do with the fact that a FOL language is
equipped with a semantics: the symbols mean something. The theory of formal languages, as
we learnt to know it in the first part of this lecture, is solely concerned with the syntax of a
formal language. In FOL languages, the additional aspects of semantics interact with the
syntax. Therefore, the syntactical structures of FOL languages are introduced in an inductive
fashion, together with the semantics.

In the theory of formal languages, the elements of a language are called words. We have
learnt that this usage of "word" must be distinguished from our everyday interpretation of the
word "word". For instance, the "words" of formal languages that specify programming
languages are complete computer programs. The "words" of formal languages used by
linguists to describe fragments of natural languages are utterances or texts. With FOL
languages, the "words" are expressions or formulas like

"x (Human x ® Mortal x), or just
Human x, or
lies-between Vegesack Grohn Lesum, or

"x ((Real x Ù ¬(x = 0)) ® $ y (Real y Ù x . y = 1)).

We start our systematic introduction of the syntax of FOL by defining certain subwords that
appear in the expressions from FOL languages. These subwords are called the terms of a FOL
language. Semantically, the terms are those subwords within FOL expressions that denote
individual things. We now define the syntax of terms, and then illustrate the semantics of
terms with two examples. A precise definition of the semantics will be given later.

Definition 7.2. (Syntax of FOL terms with symbols from S). Given a symbol set S, the terms
of the FOL language over S are defined inductively, as follows:

1. Each variable is an S-term.
2. Each constant from S is an S-term.

 70

3. If t0, ..., tn-1 are S-terms, and f is an n-ary function symbol from S, then f t0...tn-1 is an S-
term.

Remark. For a finite signature S, we might cast this definition as a CFG. For instance, let S =
{0, 1, +} where 0 and 1 are constant symbols and + is a binary function. Then we could
specify the S-terms by a CFG G = (V, T, P, t) where

V = {t, var, index}
T = {x, 0, 1, 0, 1, +}

and we have the productions

t ® var | 0 | 1 | + t t
var ® x 0 index | x 1 index
index ® 0 index | 1 index | e

Example 7.1. Let S contain the constant symbols Anne, Stephen, the unary function symbol
father-of, and the binary relation symbol is-the-father-of. Then the following are terms in
the FOL language over S:

• Anne [semantics: this points to a particular person]
• Stephen [semantics: this denotes another particular person]
• x0 [semantics: unspecified. Could be seen as a general "pointing device",

like a finger, that might point to anything you want to.]
• father-of Anne [denotes the father of Anne]
• father-of father-of Anne [denotes the grandfather of Anne]
• father-of x0 [denotes the father of somebody... we don't have this in natural

language. Again, pointing to any person with the finger and saying,
"the father of that one", would come close]

Note that the relation symbol is-father-of occurs nowhere in these examples. Terms cannot
contain relation symbols.

Example 7.2. Let S contain the constant symbol 0, the unary function s ("successor"
function) and the binary function +. With these symbols we can specify natural numbers in a
variety of ways. The following are examples of terms in the FOL language over S which
"point to" certain natural numbers:

• 0 [semantics: this symbol denotes the number 0]
• x1 [semantics: again, think of this as if you were pointing

to some natural number]
• s 0 [denotes the successor of 0, that is, 1]
• s s s 0 [denotes 3]
• + s 0 s s s 0 [denotes 4]
• + s 0 + s s s 0 s 0 [denotes 5]

Our definition of the syntax of FOL is finished by specifying how one can build expressions
from terms. Semantically, expressions are statements of facts. They can be true or false.
Again, after the definition we give some informal examples.

 71

Definition 7.3 (Syntax of S-expressions; FOL language over S) Given a symbol set S, the
expressions of the FOL language over S are defined inductively, as follows:

1. For S-terms t0 and t1, t0 = t1 is an S-expression.
2. For S-terms t0, ..., tn-1, and an n-ary relation symbol R, Rt0...tn-1 is an S-expression.
3. For an S-expression j, ¬ j is an S-expression.
4. For S-expressions j and y, (j Ù y), (j Ú y), (j ® y), (j « y) are S-expressions.
5. For an S-expression j and a variable x, $ x j and " x j are S-expressions.

The set of S-expressions is denoted by LS, that is, the first-order language over S.

Note: like in propositional logic, the implication ® and the equivalence « can be defined in
terms of Ù , Ú and ¬:

(j ® y) : Û ¬ (j Ù ¬y)
(j « y) : Û ((j Ù y) Ú (¬j Ù ¬y))

Including ® and « from the beginning is a matter of convenience.

Example 7.3 (= example 7.1, continued). The following are S-expressions:

• Anne = Stephen [semantics: this states that Anne is Stephen – a false statement!]
• ¬ Anne = Stephen [semantics: this states that Anne is not the same thing as Stephen

 – a true statement!]
• is-father-of Stephen Anne [semantics: this states that Stephen is the father

of Anne. Whether this is true or false depends on
who Stephen and Anne are]

• Stephen = father-of Anne [same semantics as previous expression!]
• Stephen = Stephen [semantics: a tautology! always true independent

of what individual is denoted by Stephen]
• $x x = father-of Anne [semantics: this claims that Anne has a father]
• "x (x = father-of Stephen ® ¬ father-of x = Stephen)

[this claims that Stephen cannot be his own grandfather]
• ("x x = father-of Stephen ® ¬ father-of x = Stephen)

[this is syntactically correct, but its semantics is weird. It claims that if
all individuals are Stephen's father, then whatever individual we may point
to, its father is not Stephen. Note that the last x occurring in this expression
is not "bound" by the "x; we would get a semantically equivalent expression
by writing
("x x = father-of Stephen ® ¬ father-of y = Stephen).
Although it makes no natural sense, the statement is true because
"x x = father-of Stephen is false.]

 72

Example 7.4 (= example 7.2, continued). The following are S-expressions:

• x = 0 [this states that the thing we are pointing to by x is the number 0.
This may be true or false, depending on what we are pointing at]

• "x ¬ x = s x [this says that no number is its own successor, which is true]
• "x (¬$y x = s y ® x = 0) [this says that 0 is the only number that is not

the successor of another number]

Note that the syntax of S-expressions is maximally economical w.r.t. brackets. One is
however allowed to add in extra brackets for better readability. For instance, instead of
"x ¬ x = s x one may also write "x (¬ x = s x) or "x (¬(x = s x)) or "x (¬(x = s (x))).

An important syntactical concept is that of the scope of quantifiers. For instance, in

"x (x = father-of Stephen ® ¬ father-of x = Stephen)

the last x lies in the scope of the all quantifier, whereas in

("x x = father-of Stephen ® ¬ father-of x = Stephen)

the last x does not fall in the scope of the quantifier. To make this precise, we define when
variables occur free (= not falling in the scope of any quantifier) vs. when they occur bound (
= falling in the scope of a quantifier).

Definition 7.4 (free occurrence of variables in S-expressions). We inductively define the set
free(j) of variables that occur free in an expression j. For any term t, let var(t) denote the
variables that occur in t. Then define

free(t0 = t1) = var(t0) È var(t1)
free(Rt0...tn-1) = var(t0) È ... È var(tn-1)
free(¬ j) = free(j)
free((j * y)) = free(j) È free(y) for * = Ù, Ú, ®, «
free($x j) = free(j) \ {x}
free("x j) = free(j) \ {x}

We say that x is bound by a quantifier in an expression "x j or $x j if x occurs free in j.

Note that a variable may occur free in some subexpressions of an expression and bound in
other subexpressions. For instance, in the expression

x + 1 = 2 Ù "x (x = 1 ® x > 0)

x occurs free in the first subexpression x + 1 = 2 and it occurs bound in the second
subexpression; by Def. 7.4, x occurs free in the complete expression.

S-expressions which do not contain free variables are called propositions. Intuitively, they
make verifiable statements about their topic domain, because without free variables, there is
no situation-specific "pointing to things" required for understanding the meaning of the
expression. For instance, the proposition

 73

" x ((Greek x Ù ¬ Socrates = x) ® wiser Socrates x)

claims (verifiably... if you have a good test for wiseness...) that Socrates is the wisest of all
Greeks.

7.2 Semantics of FOL

So far we have talked about the sematics of terms and expressions only in intuitive terms.
Now we will give a rigorous account of FOL semantics. That a rigorous account of semantics
is possible should wildly amaze you! – because, isn't the "stuff out there" about which one
might wish to talk in a FOL language informal, messy, – just "worldly"? It is no wonder that
it has taken philosophers and mathematicians more than 2000 years to figure out a convincing
account of the semantics of logics, and the now generally agreed picture has emerged only in
the first half of the last century. Landmark names connected with the devolpment of modern
mathematical logic are Gotthold Frege (1848-1925), David Hilbert (1862-1943), Bertrand
Russell (1872-1970), Kurt Gödel (1906-1978) and Alfred Tarski (1902-1983).

The only way to make the "stuff out there" accessible to a rigorous semantic analysis is to first
procure an abstract, mathematical version of such stuff. The stuff from which the world is
made – according to logicians and mathematicians – is sets.

The figure below tries to give an account of the three "kinds of world" involved in the game
of logics and semantics.

 74

Figure 7.1 Three kinds of "stuff": The magic triangle of semantics. You want a rigorous
semantic "meaning" relationship between logical expressions and the real things out there –
this is impossible, because the world out there is just not made from math stuff (although that
is open to philosophical dispute). So you first have to re-construct the world in the rigorous
formalism of set theory, then you can establish a rigorous semantic relationship between
logical expressions and the "set-things" in the reconstructed world. Believe it or not – it
works. [world picture from http://www.kim-mckellar.com/round-world-card.html]

It comes therefore as no surprise that modern logic could only blossom with the advent of
modern set theory. In fact, set theory and logics are twins – since about the beginning of the
last century they have been developed in close interaction, and good logicians must also be
good set theorists and vice versa. In this subsection we will get a glimpse of how the world (at
least the world of maths) can be construed as being made of sets.

In a first-order language we make statements about some given "domain of discourse", for
instance the Anne, Stephen and fathership questions, or about natural numbers, or about the
ancient community of Athens, or the environment of a mobile robot, or about any other

symbols from S,
S-terms,
S-expressions,
propositions... :
the "space" of logical
descriptions, e.g.

$x is-Sun x Ù Shines x

the "real world" with
all its physical and
immaterial real
things, feelings,
ideas and other
unthings...

the
informal
"meaning"
relation that
you chase
after

set-theoretic re-construction of the part
of the world you want to describe with
your S-theory:

{sun, cloud1, cloud2,...,
tree1, tree2,...},

where

sun = {atom1, atom2,...},
electromagnetic_coupling Í
sun ´ sun ´ R, ...

the rigorous
"meaning"
relation that
you get

the big modelling leap
that transforms the
"really real" things into
"mathematically real"
things – that is, sets.

 75

fraction of reality. We want to obtain a precise notion of how and when a FOL proposition is
true or false in the given domain. To that end, we first must formalize our vague notion of a
"domain". Mathematicians (and AI systems, for that matter) have a very simple view of what
they can be talking about. Essentially, a "domain of discourse" is a set (of all individual things
within that domain). Properties and functions are defined as suitable subsets. The formal name
for such a "domain of discourse" is S-structure.

Definition 7.5 (S-structures).

Let S be a set of predicate, function, and constant symbols. An S-structure $ is a non-empty
set A (called the domain or the carrier of $ - note that "domain" is here a technical term),
wherein the following conditions are declared:

1. For each constant symbol c of S, there is one fixed element of A, denoted by c$. For
instance, if we talk about the real numbers, our signature S will very likely contain the
constant symbol 1 [a formal symbol from our language], and 1 $ then is the real
number of unit size [a mathematical "thing"].

2. For each unary predicate symbol P of S, there is a (possibly empty) subset AP of A,
denoted by P$. For instance, when describing ancient Athens, is-dog$ is the set of all
dogs in Athens. That is, in predicate logic we adhere to the so-called extensional
interpretation of properties: a property "is" just the set of all things which have that
property. In AI parlance one also speaks of the class of things that have the property.

3. For each binary predicate symbol R of S, there is a (possibly empty) subset AP of A ´
A, denoted by R$. That is, R$ is a set of pairs in A. Again, note the extensional
perspective. For instance, when talking about the real numbers, <$ is the set of all
pairs (x, y) of real numbers where x < y. Predicates of higher arity are treated in a
similar fashion.

4. For each unary function symbol f of S, f$ is a unary function in A, that is, a function
that takes arguments and values from A. Technically, one can define such a function
again as a set of pairs: f$ = {(x, y) | f$ (x) = y}. Functions of higher arity are treated in
a similar fashion.

Instead of f$ one often writes fA etc. In many important examples of (mathematical)
structures, the signature S is finite. A convenient and much-used way to write down such a
structure is to put all its ingredients into a tuple, the domain first. For instance, the standard
structure of arithmetics is described using the symbol set Sar = {+, ×, 0, 1} and is denoted by

$ar = (N, + N, × N, 0 N, 1 N).

If we want to describe facts related to integers being smaller or larger than others, the
signature must be extended by < and the standard structure of arithmetics must be extended
by < N. We then have another symbol set S<

ar = {<, +, ×, 0, 1} and another structure

$<
ar = (N, < N, + N, × N, 0 N, 1 N).

You may have sometimes wondered why in mathematical texts new entities (for instance,
DFAs or grammars...) are introduced as "tuples". Now you know the answer: this is an echo
from the foundations of maths where the structures of interest are – ... just that: tuples.

Side remark: the grouping of sets into a tuple yields a new set; so tuples are sets. As a simple
example, consider two sets A and B. Then, by the construction rules for tuple sets, the 2-tuple

 76

(or "ordered pair") (A, B) is the set {{A}, {A, B}}. For instance, with A = {1}, B = {a, b} we
would get (A, B) = {{{1}}, {{1},{a, b}}}. Tuples of higher order are obtained by iteration,
e.g. the 3-tuple (A, B, C) is the nested pair
 ((A, B), C) = {{{{A}, {A, B}}}, {{{{A}, {A, B}}},{C}}}.

Note that using FOL forces us to fix the matters that we want to describe beforehand: we can
only argue "within" a signature S. If we want to extend it (for instance by starting to argue
about <), we have to begin from scratch and start anew with an extended signature and
structure. Previously obtained results of logical investigations carry over to the extended
structure only if the new elements do not interfere with the old ones and are just "add-ons".

Sometimes, however, a new symbol can be defined within a FOL language LS and a
particular S-structure, using the symbols from S. For instance, within LSar and $ar we may
define the constant symbol 2 by "x (x = 2 « x =1 + 1), and will find that the only element of
N in the structure $ar which satisfies this formula is the number 2. The structure (N, + N, × N,
0 N, 1N) is thus essentially the same as the structure (N, + N, × N, 0 N, 1N, 2N). Another example:
within LS<

ar and $<
ar the relation symbol ³ can be defined by "x "y (x ³ y « ¬ x < y). In

such cases, we need not change the structure when we start using the new symbol, because
wherever it is used it can be replaced by its definition. This is not always possible, of course.
For instance, when we start with S = {+} and $ = (Z, +Z), there exists no FOL S-expression
that could define the standard ordering relationship < on Z (a nontrivial result). The structure
(Z, +Z) is thus in a fundamental sense different from the structure (Z, < Z, + Z), at least as far
as definability within FOL is concerned.

Yet another, rather personal side remark. The fact that the use of logics to describe fractions
of reality is tied to an initial decision for a fixed symbol set makes it hard to use logics for
describing qualitative change. For instance, one cannot use logic to describe evolutionary
processes: as time passes on, new types of "things" (for instance, mammals) appear and old
ones (e.g., dinosaurs) disappear. If one has mathematically described the world of dinosaurs
as a structure, one cannot move the logical treatment forward in time: the new entities one
wants to integrate into the picture (mammals) interfere with the old ones (dinosaurs) in many
ways. This makes it very difficult to use logic to describe phenomena of learning,
development and growth!

Now we have two interesting things in our hands: 1., S-expressions, that is statements in a
formal language, and 2., S-structures, that is pieces of the world about which the S-
expressions could start to talk. What remains is to formalize what it means that an S-
expression "means something" in an S-structure.

We by now have an intuitive notion of what the symbols from S "mean" (namely, f "means" fA
etc.) We now turn to the question of what the variables in an S-expression might "mean". This
is the most technical part of FOL. Because variables are just that, vary-ables, there can be no
unique "meaning" of a variable. A variable can denote anything – we said earlier that we can
"point to" arbitrary things with a variable. Remember that technically we only admit variables
of the form x0, x1, ... (we used other symbols, like x or y, just for convenience).

Definition 7.6 (variable assignments). An assignment in an S-structure with domain A is a
mapping b: {x0, x1, ... } ® A.

 77

Intuitively, an assignment specifies to what things variables point. After an assignment is
given, variables work like constant symbols.

If we fix an assignment, we can interpret the (free) variables in S-expressions by the
assignees, and we can proceed further toward defining what S-expressions "mean". The
technical term for the combined interpretation of symbols from S and variables under a fixed
assignment is an S-interpretation:

Definition 7.7 (S-interpretations). An S-interpretation & is a pair ($, b), where $ is an S-
structure and b is an assignment.

Note that with $ we know how to interpret symbols from S and with b we know how to
interpret variables.

Often (namely, when we have to cope with variables unwantedly getting captured by
quantifiers) we will have to rename variables. Renaming variables must be done carefully,
because under a given assignment a variable is already "attached" to some element of A. To
deal with this, we need a technical tool for adjusting assignments in one variable. We
introduce the following notation:

Definition 7.8 (re-assignment of a single variable). Let b be an assignment, a Î A and x a

variable. By denote the assignment which acts like b on all variables except x, and

assigns x to a:

If & is ($, b), let & denote ($,).

An interpretation assigns individual things (or "individuals" for short) to constants and
variables. Constants and variables are the atomic versions of terms (compare Def. 7.2). We
make this formal and extend it to composite terms:

Definition 7.9 (interpretation of terms). Let & = ($, b) be an S-interpretation.

1. For each variable x, &(x) = b(x).
2. For each constant symbol c Î S, &(c) = c $.
3. For n-ary f Î S and S-terms t0, ..., tn-1, &(f t0...tn-1) = f$ (&(t0), ..., &(tn-1)).

Now we have everything prepared to define in rigorous terms what it means for some S-
expression j to "mean" something in an S-structure. The goal is to specify when a given j is
true and when it is false. The truth or falseness of some j is relative to a given interpretation,
because interpretations declare what the individual symbols occurring in j mean. Therefore,
j can be true or false only relative to an interpretation &. We say that & is a model of j, or
that & satisfies j, or that j holds in &, and write & £ j , if j is true relative to &.

 78

Technically, & £ j is defined by induction over the structure of j:

Definition 7.10 (model relation between an interpretation and an S-expression or a set of S-
expressions).

a. Let $ be an S-structure. For all & = ($, b) we define

 & £ t0 = t1 iff &(t0) = &(t1)
 & £ Rt0...tn-1 iff R$ &(t0) ... &(tn-1)
 [that is, in extensional view, (&(t0), ..., &(tn-1)) Î R$]
 & £ ¬ j iff not & £ j
 & £ (j Ù y) iff & £ j and & £ y

 & £ " x j iff for all a Î A, & £ j

 & £ $ x j iff for at least one a Î A, & £ j

This definition can be extended by clauses dealing with Ú, ®, and « in an obvious manner.

b. If F is a set of S-expressions (possibly empty or infinite), we write & £ F iff & £ j for all
j Î F.

Note that if j is a proposition, the model relation does not depend on the assignment, that is,
for &1 = ($, b1) and &2 = ($, b2), it holds that &1 £ j iff &2 £ j. That is, for propositions
j we may write $ £ j instead of & £ j.

By a final twist, the model relation (which describes how a mathematical object is described
by a formula) is turned into the entailment (or implication) relation (which describes how one
formula or set of formulas entails another formula). Because the connection between the
model and the entailment relation is so close, the same symbol £ is used for both. I give the
technical definition first and then some comments.

Definition 7.11 (entailment) Let F be a set (empty, finite, or infinite) of S-expressions and j
an S-expression. Then F entails j, written F £ j, iff every S-interpretation which is a model
of F is also a model of j. [More precisely: if every S-interpretation which is a model of every
y Î F, is also a model of j.]

Comment. Definition 7.11 puts in a nutshell what today's mathematics considers the essence
of mathematical truth. All mathematical statements are of the kind, "given F, it holds that j".
Here F usually comprises the set of assumptions that are provided as "givens" in the
statement of a mathematical theorem, plus all the axioms of the mathematical area in which
the theorem is embedded. j is a statement which one claims follows from F. The claim is
true, in the perspective of logics, if and only if F £ j. In intuitive terms, the essence of logical
entailment could be expressed by

 79

" j follows from F if all mathematical objects for which F holds are also correctly
described by j".

Note that logical entailment F £ j does not need the existence of a proof for j from F.
F £ j holds, or does not hold, regardless of whether somebody has or has not already found a
proof.

Logical entailment was first expressedly conceived in this way by Bernard Placidus Johann
Nepomuk Bolzano in 1837, but he was far ahead of his time and remained largely ignored.
Only after the formal appartus of formal logics was developed in the years 1880 – 1930, this
conception was re-distilled and made explicit by Alfred Tarski in his work The concept of
truth in formalized languages (original Polish publication 1933). Definition 7.11 is, in a
sense, the most important definition of all mathematics, – in a sense it is even the definition of
mathematics – because it describes what is a valid mathematical proof.

Mathematics is distinguished from other sciences, or even defined, by the fact that every
result of mathematics must be proven. Hence the standard structure of mathematical texts as a
succession of axioms, definitions, propositions, and proofs. This view on mathematics dates
back (at least) to ancient Greece. With eternal beauty this nature of mathematics was
displayed in Euclid's Elements (about 300 B.C.), a work which in 13 volumes developed a
rigorous axiomatic treatment of the geometry and arithmetics of its time. The original version
of this work is lost, but the book was traded down through history by copying and (starting in
the middle ages) translations and printed editions. It is still available in print. A commented
and animated online version is at http://aleph0.clarku.edu/~djoyce/java/elements/ .

 80

Figure: The first page of Euclid's Elements from the Latin edition by Campanus of Novara.
Published by Erhard Ratdolt in 1482. From
https://commons.wikimedia.org/wiki/Category:Elements_of_Euclid#/media/File:Euclid3a.gif

If you step back one bit further, you can think of F as a set of axioms, and the set of all j
which are entailed by F as the theory of F. For instance, take F as the axioms of group
theory, then all j with F £ j form the theory of groups. The systematic study of sets of
axioms and their theories form the subject matter of a very active modern branch of
mathematics called model theory. One main theme of model theory is to find out when a set F
of axioms uniquely (up to isomorphims) determines the structures which are models of F. It
turns out that many well-known sets of axioms do not uniquely specify structures. For
instance, there are "non-standard" models of the axioms of real numbers, which are not just
exotisms but give rise to an interesting and useful non-standard calculus. Another famous
example is that the classical axioms of geometry without the axiom of parallels ("two parallels
never meet") has models in which parallels meet and other models in which they don't, so this
particular axiom is independent of the others. Incidentally, as far as I know it is not clear
whether in our universe parallels do meet – this question (whether the universe is "open",
"closed", or "flat") still remains to be decided by astrophysics (?).

The next definition collects some basic semantical concepts of logics.

 81

Definition 7.12

1. An S-expression j is valid or a tautology if it always holds, that is, if Æ £ j. We also
write £ j in this case.

2. An S-expression j is invalid or a contradiction if it never holds, that is, for all
interpretations &, & £ j does not hold.

3. An S-expression j is satisfiable if there exists an interpretation & with & £ j.
4. Two S-expressions j and y are logically equivalent if j £ y and y £ j. This is also

written as j Û y.

For later use we note the following little fact:

Proposition 7.1: For all F and all j it holds that F £ j if F È { ¬j } is not satisfiable.

Proof: F £ j iff every interpretation & with & £ F is also a model of j
 iff there exists no interpretation & with & £ F which is not a model of j
 iff there exists no interpretation & which is a model of F È { ¬j }
 iff F È { ¬j } is not satisfiable.

At this point I squeeze in some helpful hints for the everyday work with " and $.

• " can be expressed by $ and vice versa: " x j Û ¬$ x ¬j and $ x j Û ¬" x ¬j.
$ and " are dual quantifiers.

• The all quantifier is mostly used to express statements of the form "All x which
satisfy j1(x) also satisfy j2(x) ... ", where j(x) is an S-expression with one free
variable, namely, x. Example: for "all humans are mortal", put j1(x) º is-human x
and j2(x) º is-mortal x. This type of statement invariably leads to expressions of the
form

"x (j1(x) ® j2(x)).

• Similarly, existential statements of the general form "there exists some x of sort j1(x)

which satisfies j2(x)" invariably leads to expressions of the form

 $x (j1(x) Ù j2(x)).

 82

8 A proof calculus for FOL

Logical entailment, that is F £ j, is a semantic concept, because it is defined using structures,
that is, the "semantic denotation" of F and j. Definition 7.11 tells us when a proof is correct,
but does not help us to construct a proof in the first place. The beauty and power of FOL lies
in the fact that there is also a mechanism for finding such proofs (if they exist). This
mechanism takes the form of a "calculus", that is a purely mechanical-syntactical scheme to
derive statements j from premises F.

There are several ways of how one can specify the "mechanics" of a calculus, and different
textbooks sometimes present different calculi. Here we present a specific kind of a calculus,
namely, one whose rules are sequent rules. For an illustration of how sequent rules look and
work, let's consider a type of argument that you often meet in proofs, namely, proving
something by contradiction. Assume that you have some premises j0, ..., jn-1, from which you
wish to deduce a consequence j. You assume that j does not hold, and derive a contradiction
from that assumption. This contradiction is revealed by that you can deduce some statement y
and also its negation ¬y under the assumption that j does not hold. You conclude that j must
hold. Formally, you may write this up in the following scheme of three sequences:

j0 ... jn-1 ¬j y
j0 ... jn-1 ¬j ¬y

j0 ... jn-1 j

Explanation:

1. Each sequence claims that the last expression in the sequence follows from the first
ones. For instance, the first sequence means, " y follows from j0, ..., jn-1, and ¬j",
and the last sequence means "j follows from j0, ..., jn-1".

2. The ensemble of all three sequences is a sequent rule.
• This sequent rule has two premises (the two lines above the bar) and one

consequence (the line below).
• The first premise is: "y follows from j0, ..., jn-1, and ¬j".
• The second premise is: "¬y follows from j0, ..., jn-1, and ¬j".

3. The consequence is: "j follows from j0, ..., jn-1".
4. That is, a sequent rule writes down premises (which are themselves claims that some

expression follows from others), then draws a line, and then writes down the
conclusion.

5. Each of the three lines is called a sequent. A sequent is a non-empty finite sequence of
S-expressions, where the (single) last expression is entailed by all the previous ones.
Note that this entailment "from left to right" within a sequent is the semantic
entailment that we studied in the previous section. Each sequent therefore can be
understood as a correct mathematical theorem!

In this way, numerous sequent rules can be written down which reflect basic types of
mathematical argumentation. Here comes a basic list of such sequent rules. We will later see
that these sequent rules are a complete set of rules, that is, every mathematical proof in FOL
can be carried out using only these rules.

 83

First we fix our notation: within a sequence, we may abbreviate a (possibly empty) starting
sequence of assumptions by G. In this way, our sequent rule from above can be more
concisely written as

G ¬j y
G ¬j ¬y

G j

There are other ways of specifying proof calculi for FOL, but we stick to sequent rules,
because they are rather close matches of the way how mathematicians of flesh and blood
actually work.

We now present all the rules of the FOL sequent calculus, discussing the first ones in more
detail and speeding up as we gain experience.

Antecedent rule (Ant)

G j
____ if G Í G '.
G ' j

Comment: this rules simply states that if you add more assumptions, you can't prove less.

A crucial property of a rule is its soundness: if we use that rule in a proof, the proof should be
sound, that is, the conclusion of the proof must follow from its premises. "Follow" here means
logical entailment. That is, we must convince ourselves that conclusions G' j yielded by the
Antecedent rule are indeed correct logical entailments, that is, we must show that G' £ j holds
if G £ j holds:

Proof of soundness of (Ant): Assume that G £ j. We must show that every model & of G' is
also a model of j. Let & be some model of G'. But if & is a model of G', then clearly & is also
a model of G, because G Í G'. Because of G £ j, & is a model of j.

Premise rule (Pre)

____ if j Î G.
G j

Comment: (Pre) says that any j follows from any set of assumptions which includes j.

Proof of soundness: clear.

Case distinction rule (Cas)

G y j
G ¬y j

G j

 84

Comment: this rule covers case distinction arguments: we conclude that j follows from G if it
follows from G in the two cases when we assume y and when we assume ¬y.

Proof of soundness: Assume that G È {y} £ j and G È {¬y} £ j. We have to show that
G £ j. Let & be any interpretation with & £ G (that is, & £ x for all x Î &). Either it holds
that & £ y or that & £ ¬y. In the first case, because of G È {y} £ j one obtains & £ j. In the
second case, one obtains & £ j because of G È {¬y} £ j.

Contradiction rule (Con)

G y
G ¬y

G j for any j.

Comment and sketch of proof of soundness: the two premises imply that G is contradictory,
that is, G has no model. Therefore, G £ j holds for every S-expression j.

Rule of introducing Ú in the antecedent (ÚAnt)

G j x
G y x

G (j Ú y) x

Comment: This rule says that if you can prove x using additional assumption j or using
additional assumption y, then you can prove x using the additional assumption (j Ú y).
Soundness proof is straightforward.

Rules of introducing Ú in the conclusion (ÚCon)

G j G j
(a) ________ (b) ________

G (j Ú y) G (y Ú j)

Comment: clear thing!

Rule of introducing $ in the conclusion ($Con)

G

G $x j

Comments:

 85

• denotes the S-expression j', wherein all free occurrences of x in j have been

replaced by the term t. The exact definition of requires some care, because one

must avoid that some variables in t are captured by quantifiers in j. This may require

variable renamings. We omit the technical treatment of defining in this lecture.

• This rule intuitively says that if we already have found an "example" t for x which
makes j follow from G, then also $x j follows from G.

• The proof of soundness requires the apparatus of defining and we skip it.

Rule of introducing $ in the assumption ($Ass)

G y

_________ if y does not occur free somewhere in G $xj y.
G $xj y

Comments: This rule is the most difficult to understand. Intuitively, the premise G

 y says that you have concluded y from G using an additional assumpution , that is,

using j with an "example" y used in j at the place of x. Because y occurs nowhere else in G or
y, nothing else is said about y at any other place in the proof and therefore nothing else can be
relevant than its sheer existence. This leads to the consequence G $xj y. The formal proof of
soundness is rather involved and needs the full apparatus of variable substitution.

Rule of reflexivity of = (=)

t = t

Needs no comment.

Substitution rule for equality (Sub)

G j

G x = t

Comment: if previously you have shown that j follows from G, you can conclude that

 follows from G if you additionally assume that x = t.

 86

This finishes the list of all rules of our sequent calculus for FOL. Here's the complete list for
your convenience:

 1

(Ant)

G j
____ if G Í G'.
G' j

(Pre)

____ if j Î G.
G j

(Cas)

G y j
G ¬y j

G j

(Con)

G y
G ¬y

G j for any j.

(ÚAnt)

G j x
G y x

G (j Ú y) x

(ÚCon)

G j G j
(a) ________ (b) ________

G (j Ú y) G (y Ú j)

for any y.

($Con)

G

G $x j

($Ass)

G y if y does not occur

_________ free in G $xj y.
G $xj y

(=)

t = t

(Sub)

G j

G x = t

Using this basic set of rules, other useful rules can be derived. As an example, we show how
the chain rule

(Chain)

G j
G j y

G y

can be derived. I first give the formal derivation and then explain it.

Formal derivation of the chain rule:

 86

1. G j Premise
2. G j y Premise
3. G ¬j j (Ant) applied to 1.
4. G ¬j ¬j (Pre)
5. G ¬j y (Con) applied to 3. and 4.
6. G y (Cas) applied to 2. and 5.

Explanations:

• Each line in a formal derivation is a sequence of S-expressions.
• Each line must be justified. Either it is introduced as a premise (lines 1. and 2.) or it is

derived by an application of one of our rules to previously written lines (remaining
lines).

• The last line is what one wants as a conclusion line for the derived rule, here, the chain
rule.

A crucial observation is that this formal derivation is a purely syntactical procedure which
works mechanically on symbol strings. We do not need to consider interpretations, models or
entailment to carry out such a formal derivation. It could be done by a machine which
wouldn't have to understand anything about what the formulae mean.

However, this purely syntactical derivation of the chain rule guarantees that the chain rule is
sound. Soundness is a semantic concept: it means that G £ y if G £ j and G È {j} £ y . The
soundness of the chain rule is inherited from the soundness of the rules (Ant), (Pre), (Con),
(Cas) that we used in the derivation.

After having derived a rule like the chain rule from the basic rules, we may use the derived
rules in further formal derivations. Dozens of other useful rules can be derived from our basic
rules, and any textbook on logics contains several pages of them. Here is another derived rule
which we will later use (can you explain in intuitive terms what this rule states?):

(DerivedRule2)

G "x j
_________ for any S-term t

G

The most important use of the rules of our sequent calculus (basic rules and derived rules) is
not to derive more rules, but to derive proofs of "useful" mathematical statements. We sketch
here an example from group theory.

First, we introduce the axioms of group theory as S-expressions. The basic concepts of group
theory are the neutral element, which we will denote by e, and the group operation, which we
denote by °. Thus, S ={e, °}, where e is a constant symbol and ° is a binary function symbol.
Here are the three axioms of elementary group theory, given as FOL S-expressions j1, j2, j3
(we use infix notation for better readability):

 87

j1: "x"y"z (x ° y) ° z = x ° (y ° z)
j2: "x x ° e = x
j3: "x$y x ° y = e

We now want to prove the existence of a left inverse from these axioms, that is, we want to
prove that

 {j1, j2, j3} £ "x$y y ° x = e.

Again, we proceed by writing down sequences in successive lines. The proof starts like
follows:

1. j1 j2 j3 "x x ° e = x (Pre)
2. j1 j2 j3 (y ° x)° e = y ° x (DerivedRule2) applied to 1. with t = y ° x
 ...

The proof now carries on for some 30 further lines which for illustration's sake are presented
at the end of this section (taken from the German version of the book of
Ebbinghaus/Flum/Thomas which is available at the IRC in the course materials for ACS 1).
Each line is justified by a premise-free rule like (Pre) that allows us to write down certain
lines, or by application of some rule to previously written down lines, as in the second line
above we applied (DerivedRule2) to the first line. At the end, a final rule application gives us
the desired conclusion

34. j1 j2 j3 "x$y y ° x = e.

We collect the essential points of this example in a definition of a formal proof:

Definition 8.1 (formal proofs, derivations)

(a) Let seq1, ..., seqn be a list of nonempty sequences of S-expressions, that is, seqi = j1 ... jki,
where ki > 0, and where every sequence seqi can be either derived by applying a basic or
derived rule to sequences that appear earlier in the list, or can be derived by applying a basic
or derived rule which has no antecedent (such as rules (Pre) and (=)). Let seqn = j1 ... jkn-1 y.
The we say, that y can be derived, or formally proven, from j1 ... jkn-1, and denote this fact by
{j1 ... jkn-1} ¢ y.

(b) Let F be a set (possibly empty or infinite) of S-expressions, and y an S-expression. Then
we say that y can be derived from F, if there exists a finite subset {j1 ... jk} Í F such that y
can be derived from j1 ... jk in the sense of part (a).

In textbooks on group theory, the proof for the existence of a left-inverse takes a few lines
only. Why do we need 30-something lines for our formal derivation? The reason is that in
ordinary mathematical proofs, many "obvious" logical details are just tacitly filled in by the
experienced intuition of human mathematicians. Formal proofs in FOL are much more
detailed. In fact, they are so detailed that they become hard to understand (and to create) by

 88

human readers exactly because they are so replete with detail. FOL proofs reveal just how
much logical fuel we humans pump into our proofs without being aware of it!

The positive aspect of the fact that FOL proofs contain every necessary detail is that machines
(algorithms) can carry out such formal derivations. Machines don't have intuition and
wouldn't know how to detect and omit "obvious" detail. Formal proof systems, like chess
playing algorithms, replace insight by speed and memory space. Large parts of mathematics
have been re-proven by proof algorithms which largely work like our sequent calculus, and it
has been claimed that interesting new theorems have been found using such mechanical
schemes. The problem with using automated proof systems to derive new theorems is that
most of the time, these systems prove theorems which are (of course) correct, but
uninteresting. If an automated proof generator happens to derive an "interesting" new
theorem, it is difficult to become aware of that fact. Imagine that you receive a printout with a
million true theorems of group theory, among which there is one which is both interesting and
new. How would you find it?

The main use of automated proof systems is not to let them run on the loose to discover
something, but to use them to verify a conjecture. That is, one already knows which
conclusion you want to see as the result of the machine's working; it is not difficult to detect
within a million formulae whether the one you are looking for is there.

One famous conjecture that has been proven with the assistance of an automated system is the
four-color problem. This long-standing conjecture states that you can colorize any "political
map" with only four colors such that no two adjacent nations get the same colour.
Mathematicians had found that this question boils down to a case distinction of olympic
measure: the problem dissociates into some 1000 different cases. A computer was
successfully used to prove the conjecture for these cases in turn, and its programmer rose to
fame.

More mundane uses of formal proof systems are in program verification. The task is, given a
computer program and a formal specification of its desired input-output behavior, show that
the program always outputs the desired outputs. The formal verification of computer
programs can be cast as a mathematical proof in FOL, and then handed over to a formal proof
system. This is altogether a difficult, tedious, and computationally expensive labour, but
numerous safety-critical applications require a formal program verification by law. Examples:
the programs used for

• controlling spacecraft and missiles,
• autopilots,
• controlling nuclear power plants,
• prostheses control,
• robot control in high-power manufacturing robots (which would easily do a lot of

damage when they go out of control),
• financial transactions,
• access systems (such as the transponder keys you use at Jacobs)

should be (and often are) verified.

Last, but not least, theorem proving algorithms are at the heart of the symbolic reasoning
systems designed in the field of Artificial Intelligence. They span a wide range from expert
systems, intelligent user interfaces, production line surveillance and fault monitoring systems,

 89

technical diagnosis systems, or speech understanding and translation systems. The largest,
most famous (and most debated) of such systems is the CYC project, which was started in
1984 by Douglas Lenat. CYC's ultimate aim is to code all of human common-sense reasoning
and everyday knowledge in a FOL-based format which allows to pose essentially arbitrary
queries to this huge knowledge base. You should not miss to take a look at this project (e.g.
visit its Wikipedia entry or the official homepage of the Cycorp company that today runs the
project). Another large-scale project with a similar flavor is Wolfram Alpha (also at
Wikipedia) – advertised by its creator as the predestined successor to Google.

Automated proof systems for FOL are typically not implemented using sequent calculi like
the one we presented here. The sequent calculus is good for being hand-used by
mathematicians, and it is good for an introductory lecture because its sequent rules are
intuitively related to everyday mathematical arguments. However, for purposes of automated
proofs carried out by computer programs, a rather different "calculus" is typically used, which
is based on the idea of resolution. You can learn more about this in the book by Uwe
Schöning (see course references), or you can try one of the many online courses for the
programming language Prolog (list of such tutorials:
http://www.freeprogrammingresources.com/prologtutr.html). Prolog and its many dialects is
the language for carrying out automated proofs. It is widely used in computational linguistics,
artificial intelligence, and software verification. Section 10 (not mandatory for the course) of
these lecture notes give a condensed intro to the mathematical foundations of resolution-based
theorem provers.

 90

Figure 8.1. The full deriviation of a simple group-theoretic fact (from
Ebbinghaus/Flum/Thomas, Einführung in die mathematische Logik (Introduction to
mathematical logic, english version available in the IRC).

 91

9 The big theorems for FOL

In this section we will finally learn why FOL is such a "singular beauty" among all logics. In
a nutshell, in FOL the semantic aspects (as expressed by £) are in perfect balance with the
syntactical aspects (expressed by ¢). In fact, in FOL, and essentially only in FOL, semantics
and syntax coincide. We first establish the easy direction of this equivalence:

Proposition 9.1 (soundness of FOL sequent calculus). If F ¢ j, then F £ j.

Proof: This is a direct consequence of the soundness of our derivation rules.

In simple words, the soundness of the FOL sequent calculus means that if we (or a machine)
carry out a mechanical proof in the syntactical sense of F ¢ j, then it is actually a sound proof
in the semantic sense of F £ j.

Soundness is a property that we will of course require from any logic and formal proof
system. There are hundreds of logics and associated proof systems; all are sound. By far the
more precious property of FOL and the sequent calculus is that also the other direction holds:
if some S-expression j is entailed by a set F of premises (that is if F £ j), then we can also
formally derive this fact, that is, F ¢ j. This is called the completeness property of FOL:

 Theorem 9.2 (completeness of FOL sequent calculus). If F £ j, then F ¢ j.

Completeness of FOL was first shown by Gödel (by whom else!); the proof given in today's
textbooks is due to Henkin. It is technically involved, but the basic idea is rather easy to grasp
and very illuminating. I will outline its basic idea.

We first need some elementary concepts that concern the relationship between satisfiability (a
semantic notion) and an anlog syntactic concept called consistency.

Definition 9.1 A set F of S-expressions is called inconsistent if there exists some j such that
F ¢ j and F ¢ ¬j. If F is not inconsistent, it is consistent.

Here are two basic observations concerning consistency:

• If F is inconsistent, then every S-expression y can be derived from it, that is F ¢ y for
all y. This is a consequence of rule (Con).

• The following two statements are equivalent: (1) F is consistent, and (2) there exists
an S-expression y which cannot be derived from F. Again, this can be shown
essentially by using (Con).

We will also need the following little fact:

Proposition 9.3. If not F ¢ j, then F È { ¬j } is consistent.

 92

Proof: Let not F ¢ j. Assume that F È { ¬j } is inconsistent. Then, for some suitable finite
G Í F, there exists a derivation of the sequence G ¬j j. Continuing the derivation from that
sequence, we find

 ...

G ¬j j
G j j (Pre)
G j (Cas) applied to previous two lines

that is, F ¢ j, a contradiction.

Next we mention a property of consistent F which establishes a link between semantics and
syntax:

Proposition 9.4: If F is satisfiable, then it is consistent.

Proof: Assume that F is inconsistent. Then for some j, F ¢ j and F ¢ ¬j. By soundness of
FOL, it holds that F £ j and F £ ¬j. Using the definition of £, (Def. 7.10, case "¬"), we may
conclude that F is not satisfiable.

Now we are prepared to take a glimpse at the proof of the completeness theorem. We
approach it sideways, by first showing that the statement of the completeness theorem follows
from another, more accessible statement:

 (*) Every consistent set F of S-expressions is satisfiable.

From (*) follows the completeness theorem, as follows. Assume that for some F, j the
completeness theorem does not hold, that is, F £ j but not F ¢ j. Consider the set F È {¬j}.
It is not satisfiable because of F £ j. On the other hand, F È {¬j} is consistent by Prop 9.3.
This contradicts (*). Therefore, from (*) the completeness theorem follows.

Thus, in order to prove the completeness theorem, it suffices to show that every consistent set
F is satisfiable. That is, given some F, we have to construct an interpretation ($, b) which is
a model of F, that is, ($, b) £ F. All that we have in our hands to construct such a model is F
itself. The natural trick to construct the model ($, b), then, is to construct it from the
components of F itself. The components of F are variable symbols, terms, subformulas and
formulas occurring somewhere in F. We have to assemble these components into a
mathematical structure which is a model of F. Here I can only demonstrate how this works
with a simplistic example:

Example (for constructing a model & = ($, b) of a given F). Let S = {c, P}, where c is a
constant symbol and P a unary predicate. Let F = {c = x1, Pc}. First we procure a carrier A of
our structure $. Basically, we take A to be the set of all variables and constant symbols. To
distinguish the roles of a symbol as an element of our structure carrier vs. its role as a symbol
within F, we use underscores to indicate when we consider the symbol as an element of our
carrier. So we start with a carrier A0 = {c, x1, x2,...}. This preliminary carrier A0 will
subsequently become modified to arrive at the final carrier A in the end. Our interpretation &
will map symbols and variables to their underscored correlates. Again we start with a
preliminary version &0 of &. We set &0 (c) = c, &0 (x1) = x1, &0 (x2) = x2, etc. However, this
does not completely work out, because the formula c = x1 requires that &0 (c) be the same

 93

individual as &0 (x1). The trick that helps here is to join c and x1 into a set {c, x1}. For the
sake of notational uniformity we also put the remaining variables into singleton sets. That
gives us A = {{c, x1}, {x2}, {x3}, ...} and &(c) = &(x1) = {c, x1}, &(x2) = {x2}, &(x3) = {x3},
etc. Finally, we declare the extension of P according to the formula Pc, that is, &(P) = {{c,
x1}}. It is clear that this & satisfies F.

[The general idea is to join all elements of A0, whose pairwise equality is implied by F, into
equivalence classes. If S also contains function symbols, A0 also contains all terms made from
constants and variables using functions. The condition that F is consistent is needed to show
that this kind of construction can actually be carried out in general. All the 12 basic rules of
the sequent calculus are needed to show that this construction can always be achieved – this
indicates that the full proof is tedious!].

Note the weird self-referentiality of this proof idea: the semantic "piece of mathematical
world" that we need to fix as a model is made from the very stuff that formulae are made of!
Logics is the art of not getting dizzy from shifting levels of descriptions until they meet!

By proving (*) we not only have shown the completeness theorem, but also the equivalence of
the concepts of satisfiability and consistency (the other direction was given in Proposition
9.4). We burn the following GREAT FACT into that part of our brain that thinks about logics:

One consequence of the completeness theorem is that if F is enumerable, then the set
F£ ={j | F £ j} of all of its entailments is enumerable (we earlier called this set the theory of
F). Notice that this statement is not trivially true, because the signature S may be
uncountable. Specifically, if F is finite, the theory of F is enumerable. Thus, in principle, we
could construct a Turing machine which would run infinitely long and generate on its output
tape a list of all theorems of group theory. This machine would systematically apply the basic
rules of the sequent calculus to the axioms of group theory and construct a complete
derivation tree of all theorems of group theory. Unfortunately, as mentioned earlier, most of
the derived "theorems" would be utterly uninteresting (for instance this machine would output
all the formulae x1 = x1, x2 = x2, ...).

However, it is not generally true that the theory F£ of some (even finite) F is decidable.
Given F and some candidate j, there is no general algorithm to decide whether F £ j. The
undecidability of FOL was first shown by Gödel (again!); modern textbooks use a different
and simpler proof which builds on the undecidability of the halting problem, a computational
task from the theory of computability which we will get to know intimately in the lecture
"Computability and Complexity".

The precious properties of FOL are not exhausted by the GREAT FACT. There are two other
fundamental properties of FOL which are straightforward consequences of what we have
already shown:

In FOL:
F ¢ j Û F £ j

F is consistent Û F is satisfiable

 94

Theorem 9.5 (Theorem of Löwenheim and Skolem). If F is satisfiable and countable, then F
has a countable model.

This is actually a corollary to the proof of the completeness theorem (note that we constructed
the carrier of our model from bits and pieces of F, so if there are only countably many such
bits and pieces, the model is also countable). In Section 10 we will get a closer view on the
construction of countable models. The importance of the theorem of Löwenheim and Skolem
lies in fact that countable models can (often) be "concretely" generated by some algorithm,
which enumerates the components of the model. In contrast, uncountable models always
contain items that cannot be individually described. Thus, in an abstract and admittedly
handwaving way, the theorem of Löwenheim and Skolem implies something like, "the
semantic underpinnings of FOL are within reach of efficient algorithmic methods". We will
see this much more clearly in Section 10.

Theorem 9.6 (Compactness theorem) F £ j iff there exists a finite F0 Í F with F0 £ j.

The compactness theorem is an immediate consequence of the definition of ¢.[remember: F
¢ j iff there exists a finite F0 Í F with F0 ¢ j] and the completeness theorem.

The properties expressed in Theorems 9.5 and 9.6 single out FOL among all logics. We have
seen earlier that logics can be [sometimes] ordered according to expressiveness: for instance,
second-order predicate calculus is more expressive than FOL, which in turn is more
expressive than propositional logic. Intuitively, a logic L is more expressive than another logic
L', if everything that can be said about mathematical structures within L' can also be
expressed within L. A deep insight about FOL is expressed in a theorem that was first shown
by Lindström in 1969: there exists no logic which is more expressive than FOL and which has
the properties of Theorems 9.5 and 9.6.

Specifically, second-order predicate calculus is a very ill-behaved logic. It is very much more
expressive than FOL, but has basically no properties that would make it amenable to
computational exploits. Of course it is not complete (this was first shown by – well, you guess
right!), not compact, and hasn't the Löwenheim-Skolem property.

This ends our all too brief introduction to FOL. Take home the following facts:

• There are many logics, which can be (partially) ordered according to their
expressiveness.

• Every logic has two fundamental aspects: semantics (how mathematical structures are
described) and syntax (how formal derivations are calculated).

• FOL together with the sequent calculus (or another type of proof calculus) is complete:
everything that is true semantically can also be formally derived, and vice versa:
 £ Û ¢ .

• FOL is the language of
- everyday maths
- metamathematics and set theory
- Artificial Intelligence
- program verification
- deductive databases

• FOL is the most expressive logic which still has the nice properties of completeness,
compactness, and the Löwenheim-Skolem property.

 95

• FOL is undecidable, so a mathematician's ingenuity cannot be completely replaced by
a machine.

 96

10 Herbrand theory – the basis for logic programming

The sequent calculus is a set of rules that one may apply to generate a result from some given
premises. It is not an algorithm. From an algorithm one would require that it runs
deterministically, that is, given the premises as input, one pushes a "run" button, and gets an
output after a finite time. The reason that the sequent calculus does not operate in a
deterministic-algorithmic way is that in the course of a derivation, when sequents seq1, seq2,
… , seqn have already been derived, there is usually a large choice of rules that one can apply
to create another sequent seqn+1. Turning the sequent calculus into an algorithm amounts to
specifying deterministic procedures to make this choice.

Note that also the grandmother of all calculi, "the" calculus (of derivatives and integrals), is a
set of rules without a deterministic prescription of how to use them.

In practical applications, one desires of course an algorithm, not only a calculus. For instance,
one would like to have the following:

• Mathematicians would like to have an automated theorem prover. This would be an

algorithm which gets as input a finite set F of FOL premises, plus a statement j, and the
desired output would be a derivation F ¢ j.

• Database designers would like to have a deductive database engine. The database would
be a finite (possibly large) set F of FOL statements (which taken together describe some
interesting piece of the world, e.g. the customers of an insurance company). A query to the
database would be some statement j, and the desired behaviour of the deduction engine
would be to generate a "yes" output if F ¢ j.

• Similarly, expert systems in Artificial Intelligence host a world model F which codes a
(large) set of facts and laws of some knowledge domain (e.g. hypertension in medicine).
In a typical case of using an expert system, the input has two components. The first
component is another set Ψ of formulae, which specify a specific situation (e.g., introduce
a new patient and describe his symptoms). The second component is again a query j, and
the desired output is again a "yes" if if F È Ψ ¢ j. For instance, j could code the
question, "does patient Peter have hypertension of degree 3 with a probability larger than
0.5".

Logic algorithms have indeed been developed for these and other application cases. They are
not based on the sequent calculus however. The reason why we have used the sequent
calculus in our introduction to the basics of FOL is that it is intuitive – it mimicks the way
how humans carry out logical arguments. The same cannot be said of the methods for the
mechanical verification of F £ j, which are used in "fielded" theorem provers, deductive
databases, expert systems etc. These methods are based on constructing models for sets of S-
expressions F, very much in the spirit of the construction we peeked at in our proof sketch of
the completeness theorem. These models are called Herbrand structures, after the French
mathematician Jacques Herbrand (1908 – 1931).

The general structure of mechanical proofs (that is, algorithms) of a claim j from a set of
premises F is as follows.

 97

1. Input: F, j. Desired output: "yes" if F £ j. If not F £ j, then the algorithm need not
terminate. (This is a consequence of the undecidability of FOL.)

2. We note that

F £ j
iff every model of F is a model of j
iff every model of F is not a model of ¬j
iff F �{¬j} is unsatisfiable.

In order to show that F £ j, it therefore suffices to show that F �{¬j} is unsatisfiable.

3. A set G of S-expressions is satisfiable iff it has a particular type of model, called Herbrand
model. Thus, in order to show that F £ j, it suffices to show that F �{¬j} has no
Herbrand model.

4. A Herbrand model of a set F �{¬j} can be constructed in a systematic way. If at some
point this construction fails, one can conclude that F �{¬j} is unsatisfiable, i.e., that
F £ j. The algorithm will then output "yes".

This short sketch of how Herbrand-based theorem-provers operate is admittedly sketchy. We
will now work out the details. In the remainder of this section I closely follow the treatment
given in the book by U. Schöning7, sections 2.2 and 2.4.

To begin with, I note that when FOL is used for practical applications, one usually employs a
version of FOL which is a little weaker than the version that we have been studying so far.
This difference is that this weaker version of FOL does not have the equality sign, "=", in its
syntax (and correspondingly, no sequent rules that refer to "="). In fact, in many textbooks on
logic, this FOL without equality is used as the standard version of FOL, and the extension by
"=" is explicitly called, first-order logic with equality, and denoted FOL=. There are some
philosophical / metamathematical issues connected to the question which version is
preferable, which we will not further delve into8. We simply note that in practical applications
one usually can make do without "=". For instance, the axioms of group theory, which we
formulated in the previous section as follows, using "=":

j1: "x"y"z (x ° y) ° z = x ° (y ° z)
j2: "x x ° e = x
j3: "x$y x ° y = e

can also be coded without "=", if we introduce a ternary predicate P and drop the function
symbol ° from our signature. The idea is that Pxyz stands for x ° y = z. Then we can express

7 Schoening, Uwe: Logic for Computer Scientists (Progress in Computer Science and Applied Logic, Vol 8),
(Birkhauser) IRC: QA9 .S363 1989
8 You can find a discussion in chapter 11 of Michal Walicki: Introduction to Logic. Online lecture notes,
obtainable from the author's website at http://www.ii.uib.no/~michal/ . Copy at http://minds.jacobs-
university.de/sites/default/files/uploads/teaching/share/IntroToLogicWalicki.pdf.

 98

associativity (j1), existence of right-neutral element (j2), and existence of right-inverse (j3),
as follows:

j1': "u"v"w"x"y"z ((Pxyu � Pyzv) → (Pxvw ↔ Puzw))
j2': "x Pxex
j3': "x$y Pxye

In the remainder of this section, we will use FOL without equality.

Equivalence w.r.t. satisfiability

The theorem provers that we are aiming at build on mechanisms that demonstrate that some
finite collection F of S-expressions is unsatisfiable. A finite set F of S-expressions is
equivalent to the single S-expression j that is the conjunction of all members of F. Thus, we
only need to design mechanisms that mechanically demonstrate the unsatisfiability of a single
S-expression j. We will introduce in the sequel some transformations that turn an S-
expression j into another S-expression j', which is satisfiable iff j is satisfiable. That is, the
transformation does not preserve logical equivalence, but only satisfiability – which is enough
for our purposes. We will call such transformations sat-equivalance transformations.

"Existentializing away" free variables

If j is an S-expression that contains free variables y1, …, yn , then j' = $y1 … $yn j has no
free variables and is satisfiably iff j is satisfiable (exercise!). "Existentializing away" free
variables is thus a sat-equivalence transformation.

Two simple normal forms.

To prepare the stage for a systematic, algorithmic treatment of FOL formulas, we introduce
some standardizations for their syntax.

Definition 10.1 An S-expression j is called cleaned if there is no variable that occurs in j
both free and bound, and if all quantifiers in j are connected to different variables.

Example. ("x$y (Pxfy � "y Qxy) � Rx) is not cleaned, but
("u$y (Pufy � "z Qxz) � Rx) is.

It should be clear that one can transform any S-expression into an equivalent one which is
clean, by renaming all variables which are bound by quantifiers to new variables, working
from the inside to the outside (e.g., in the example, first treat the "y Qxy before the outer
"x$y (Pxfy � "y Qxy)).

Definition 10.2. An S-expression is in prenex form if it has the structure

 Q1y1 Q2y2 ... Qnyn F,

where n ≥ 0, Qi � {", $}, and F is an S-expression that contains no quantifiers.

 99

Proposition 10.1 For every S-expression j there is an equivalent S-expression j' which is
cleaned and in prenex form.

It is easy to give a constructive proof, i.e. an algorithm to transform j to j' in a sequence of
steps, where every step preserves equivalence. We skip the details here and only remark that
this transformation rests on two main insights:

• A formula of the kind ¬Q1y1 Q2y2 ... Qnyn F is equivalent to , where
 if and if . This creates a mechanism to "trickle" negations

out of blocks of quantifiers.
• A formula of the kind is equivalent to

, where the variables are new and G' is created
from G by renaming bound occurrences of to . This equivalence affords a
mechanism to pull out quantifiers from conjunctions.

In the following we use the abbreviation CPF for "cleaned and in prenex form".

Skolemization, Skolem forms

The transformation that we now describe is called Skolemization, and the resulting j' will be
said to be in Skolem form or to be a Skolem formula (after Thoralf Albert Skolem (1887 -
1963), Norwegian mathematician who was productive in many fields of mathematics, but is
best known for landmark contributions to logics and set theory in the years after World War
1). Skolemization is a sat-equivalence transformation.

Here is the Skolemization algorithm.

input: An S-expression j in CPF.
while j contains an existential quantifier do
 begin
 Let j have the form , where χ is in CPF and n ≥ 0;
 Let f be a new n-ary function symbol (i.e., it is not in the signature S and
 was not used in this algorithm before);

 Assign j = , that is, drop the quantification and replace

 all occurrences of z in χ by the term ;
 end

Note that in this algorithm, when n = 0, f is a "0-ary" function symbol, which just means that
it is a constant symbol.

This procedure preserves satisfiability. Again we skip the formal proof (which can be found,
e.g., in the Schöning book), but illustrate with an example why this strange procedure
functions.

Consider the statement "every husband has a wife", which might be formalized as

 j: �x�y (Husband x → isWifeOf yx)

 100

Skolemization would turn this into

 j'': �x (Husband x → isWifeOf (fx)x),

where I have added an extra pair of brackets for readability. Now, assume that j has a model,
say $ = (A, HusbandA, isWifeOfA). Since $ £ j, for every h � HusbandA there is some wh �
A such that (wh, h) � isWifeOfA. Now define a new function fA on A such that for every h �
HusbandA, (f(h), h) � isWifeOfA (on a � HusbandA, f can be set to arbitrary values). Then the
extended structure $' = (A, HusbandA, isWifeOfA, fA) is a model of j'', which is thus
satisfiable. For the converse, assume that j'' has a model $' = (A, HusbandA, isWifeOfA, fA).
Because $' £ j'', for all h � HusbandA it holds that (f(h), h) � isWifeOfA, that is, for every
h � HusbandA there is some wh � A (namely, f(h)) such that (wh, h) � isWifeOfA. Thus, $' £
j', that is, j is satisfiable by a (Husband, isWifeOf, f)-structure, and therefore (because does
not contain f) by a (Husband, isWifeOf)-structure.

Purely intuitively speaking, Skolemization proceeds from "�x�y" to "for every x there is an y"
to "one can pick an y for every x" to "there is a picking function f that returns an y = f(x) for
every x" to "we can introduce a picking function fA in every model".

Note that if Skolemization is applied to a formula in CFP, then the resulting Skolem formula
is in CFP, too – that is, it has the form

that is, it consists of a block of universal quantifiers followed by a "body" j which is
quantifier-free.

Clause set form

Assume that j has no free variables, is in CFP, and is Skolemized. As a further
standardization step, which will turn out convenient for automated model constructions for j,
is to transform the body of j to conjunctive normal form (CNF), as we know it from
propositional logic. Notice that the body of j contains no quantifiers. The role of literals in
propositional logic is here taken by predications or negated predications .
We use the symbol L for such literals. Re-using the (constructive) proof of the analog fact
from propositional logic, it is straightforward to show that j can be transformed into an
equivalent j', whose body is in CNF, that is, j' has the form

j': .

Since we can assume that j' contains no free variables (due to the "existentializing away"
step), and since the order of a block of � quantifiers does not matter, and since the order of �
or � sequences does not matter either, all the information of j' is contained in its clause form:

j': .

 101

Example

Consider the expression

j1: .

Cleaning gives an equivalent

j2: .

Existentializing away the free variable z yields the sat-equivalent

j3: .

Bringing this into prenex form can be done, among others, by

j4: .

Skolemization yields

j5:

where a is a new 0-ary function symbol (i.e., a constant symbol!) and h is a new unary
function symbol. Bringing the body of j5 to CNF results in

j6:

which in clause form looks like this:

 .

This (the form of j6 or its clause form) is the standardarized format which we will henceforth
assume.

Herbrand universe and Herbrand structures and Herbrand models

The preparatory constructions carried out so far have brought us to a point where our original
target, "prove that F ¢ j", has been translated to "show that a formula ψ, which has no free
variables and is Skolemized, is unsatisfiable". (Recall: ψ has been obtained from F �{¬j}
and is satisfiable-equivalent to F �{¬j}.) As announced in the introductory remarks to this
section, this amounts to showing that ψ has no model of a particular kind called a Herbrand
model. We now proceed to describe Herbrand models of ψ.

Let S(ψ) be the set of all constant, function and predicate symbols in ψ. Note that ψ may
contain function and/or constant symbols that were not contained in the original signature of
F �{¬j} due to the Skolemization. Furthermore note that S is finite since ψ is finite. ψ may
have several, one or no Herbrand model, the latter case occuring iff ψ is not satisfiable. If ψ
has Herbrand models, these all share the same carrier, called the Herbrand universe of ψ:

 102

Definition 10.3 Let ψ be a formula which is Skolemized. Then, intuitively, the Herbrand
universe D(ψ) is the set of all variable-free terms which can be built from the constituents of
ψ. Formally, D(ψ) is defined to be the smallest set satisfying the following conditions:

1. All constant symbols occuring in ψ are in D(ψ). If D(ψ) contains no constant symbol,
choose a new constant symbol a and put it into D(ψ).

2. If f � S(ψ) is an n-ary function symbol, and t1, ..., tn � D(ψ), then the term ft1...tn is in
D(ψ).

Example. Consider the formulae

where P, Q are ternary relation symbols, f is a unary and g, h are binary function symbols, and
c, b are constant symbols. Then

For convenience, we introduce the following shorthand notation.
Let S(ψ) = {a1, ..., ak, f1, ..., fl, P1, ..., Pm}, where k, l, m ≥ 0 and the a, f, P's are constant
symbols, function symbols (of various arities) and predicate symbols (of various arities),
respectively. Then use $ = (A, S(ψ)A) as a shorthand for any S(ψ)-structure
(A, a1

A, ..., ak
A, f1

A, ..., fl
A, P1

A, ..., Pm
A).

Definition 10.4 Let ψ be a Skolem formula. Any S(ψ)-structure $ = (A, S(ψ)A) which satisfies

1. A = D(ψ),
2. for every n-ary f � S(ψ), for all t1, ..., tn � D(ψ) it holds that

is called a Herbrand structure for ψ.

Note that the carrier of a Herbrand structure, and the interpretation of all function symbols
(and thus of all constant symbols, seen as 0-ary function symbols) is fixed by definition.
Herbrand structures for ψ may differ from one another only in the interpretation of predicate
symbols. Note further that Herbrand universes and structures are defined for Skolem formulas
ψ, but it is not required that ψ has no free variables.

In Herbrand structures, the interpretation of terms from D(ψ) is the identity function: &(t) = t.
Don't proceed with reading before you have fully appreciated this fact.

For later use we note the following obvious (if one has understood the preceding two
definitions...) transfer lemma:

 & £ ψ iff & £ ψ

 103

for every t � D(ψ) and every interpretation & = ($, b) where $ is a Herbrand structure for

ψ. Here ψ denotes the formula that is obtained from ψ if all occurrences of the free variable

x (if any) have been replaced by t.

If ψ is a formula with no free variables, we call a Herbrand structure $ for ψ a Herbrand
model of ψ if $ £ ψ.

Here is the main result of this section, which lays the foundation for all modern algorithms for
automated theorem proving, and the programming language PROLOG. It essentially states that
if one wants to demonstrate the (non)existence of a model for some Skolem proposition, one
can restrict the quest to Herbrand models.

Theorem 10.2 Let ψ be a proposition (i.e., without free variables) in Skolem form. Then ψ is
satisfiable iff ψ has a Herbrand model.

Proof. "If": clear. "Only if": takes a little – but really only a little – effort. Let
$ = (A, S(ψ)A) be a model of ψ, and let &$ be the corresponding interpretation. If ψ does not
contain a constant symbol (special circumstance in definition 10.3), we extend $ by adding a
new constant symbol c, which is interpreted by an arbitrarily chosen a � A, i.e., cA = a. We
now give a Herbrand structure % = (B, S(ψ)B) = (D(ψ), S(ψ)B). The carrier is B = D(ψ) by
definition of a Herbrand structure. It remains to specify the interpretation of predicate
symbols. Let P � S(ψ) be an n-ary predicate symbol, and let t1, ..., tn � D(ψ). We put

 (t1, ..., tn) � PB :iff (&$(t1), …, &$(tn)) � PA.

We claim that % £ ψ. To show this, we prove a stronger statement: For every variable-free
Skolem formula χ which is made from the same symbols as ψ (i.e., S(χ) = S(ψ)), it holds that

 if $ £ χ, then % £ χ.

We prove this by induction on the number n of all-quantifiers in χ.

Induction basis n = 0: If χ has no all quantifiers (and hence no quantifiers at all), it
immediately follows from the definition of % that $ £ χ iff % £ χ.

Induction step: Let χ have n all-quantifiers, χ = �x ξ, where ξ contains only n – 1 all-
quantifiers. We can't apply the induction hypothesis on ξ directly because it may contain x

free. But since $ £ χ, and χ is Skolem, it holds that &$ £ ξ for all a � A. Specifically, this

holds for all a � A which are of the special form a = &$(t) for some t � D(χ). In other words,

for every t � D(χ) it holds that &$ £ ξ, hence &$ £ ξ , that is, $ £ ξ . By

induction hypothesis (note that ξ has no free variables), % £ ξ for every t � D(χ).

Applying the transfer lemma, this implies % £ ξ for every t � D(χ), that is (since the

carrier B of % consist exactly of all t � D(χ)), % £ �x ξ.

 104

Note. Herbrand models are obviously countable. The construction of such models yields the
basic tools for the proof of the fundamental theorem of Löwenheim-Skolem mentioned in
Section 9.

Herbrand expansions

We now take another important step toward practical algorithms for demonstrating that some
ψ has no (Herbrand) model. Namely, we transform the statement "ψ has a Herbrand model" to
an equivalent statement of the kind "a certain set of formulas of propositional logic has a
model" – this step will allow us to use computational methods, which originate in
propositional logic, to bring to bear on the problem of FOL satisfiability.

The key idea lies in the following definition.

Definition 10.5 Let ψ = be a Skolem formula without free variables. Then the
Herbrand expansion E(ψ) is the following set of variable-free formulas:

 E(ψ) = { | t1,..., tn � D(ψ)}.

E(ψ) is thus created by replacing the variables in χ with terms from the Herbrand universe
D(ψ), in all possible combinations.

Example. Consider ψ = , where P is a binary relation symbol, g is
a binary and f a unary function symbol and c a constant. Then the following are some
members of E(ψ):

At this point we establish a connection to propositional logic: We treat the atomic
subformulae (i.e., the predication statements of form) which occur in E(ψ) as
propositional variables, to which we may assign truth values. In the example, the atomic
subformulae are , , , , ... (in the textual order in which
they appear in the listing above). Assigning truth values to each of these means to (partially)
characterize the extension of P in a Herbrand structure. For instance, setting the truth value of
Pcc to 1 means that (c, c) � PA, or setting the truth value of to 0 means that

 105

(g(cc), f(c)) � PA. Using the notation &Boole for Boolean truth value interpreations, we would
write &Boole() = 1 or &Boole() = 0 to express this formally.

Interpreting atomic subformulae as Boolean variables, the Herbrand expansion can be seen as
a set of Boolean expressions in a natural way. The above listing would become

It turns out that the satisfiability of the FOL formula ψ is equivalent to the Boolean
satisfiability of the set of formulae E(ψ), understood as Boolean expressions:

Theorem 10.3 (Gödel, Herbrand, Skolem). Let ψ be a variable-free Skolem formula. Then ψ
is satisfiable iff E(ψ), understood as a set of Boolean expressions, is satisfiable in the sense of
propositional logic, that is, iff there is a truth value assignment to the atomic subexpressions
in E(ψ) which makes all formulae in E(ψ) true.

Proof. It suffices to show that ψ has a Herbrand model iff E(ψ), understood as a set of
Boolean expressions, is satisfiable. Let ψ = be a Skolem formula without free
variables. Then the following equivalences hold:

 there exists a Herbrand model $ for ψ
 iff there exists a Herbrand structure $ such that for all t1, ..., tn � D(ψ):

 $ £

 iff there exists a Herbrand structure $ such that for all ζ � E(ψ): $ £ ζ
 iff E(ψ) is satisfiable in the Boolean sense.

This theorem can be understood in the sense that one can represent the satisfiability
conditions of a FOL formula by a (typically infinite) set of Boolean expressions.

At this point we recall without proof a fundamental theorem of Boolean logic, the
compactness theorem for Boolean logic: A set Ψ of Boolean expressions is satisfiable iff
every finite subset of Ψ is satisfiable.

The converse of this theorem is that a set Ψ of Boolean expressions is unsatisfiable iff there
exists some finite subset of Ψ which is unsatisfiable.

Combining this with theorem 10.3, we get

Proposition 10.4 (Herbrand) A variable-free Skolem formula ψ is unsatisfiable iff there is a
finite subset of its Herbrand expansion E(ψ) which is unsatisfiable.

 106

The Gilmore algorithm

This proposition provides the key mechanism for all modern algorithms for theorem proving,
all modern "inference machines". In its most basic form, this is the Gilmore algorithm. This
algorithm takes as input a variable-free Skolem formula ψ and after a finite time returns "yes"
if ψ is unsatisfiable (if ψ is satisfiable, the Gilmore algorithm does not terminate). Let ζ1, ζ2, ...
be an effective enumeration of E(ψ).

Here it is:

input: a variable-free Skolem formula ψ = with ζ1, ζ2, ... being an
effective enumeration of E(ψ)
k = 0;
while ζ1 � ... � ζk is satisfiable ; this can be tested with any method
 ; from propositional logic, e.g. truth

; table checking
 k = k + 1;
end while;
output "yes"

This algorithm is inefficient in many respects and useful only for theoretical purposes.
However, it can be refined and constrained such that practically useful versions arise. These
refinements lead beyond the scope of this lecture and would be covered in a specialization
lecture on logic programming. Here I can only point out the most decisive refinement and the
most important constraint:

Refinement: Do not use "ground substitution" formulae from E(ψ) – where a ground
substitution is a substitution of all variables in ψ by variable-free "ground terms", as we did it
here – but proceed more defensively and substitute only as many variables in versions of ÷ as
are needed to cancel certain literals in a partially substituted clause representation of E(ψ).
This leads to unification mechanisms.

Constraint: A decisive constraint on ψ is to require that all clauses in the clause representation
of ψ are Horn clauses – you should remember from Gen CS 1 that satisfiability of
propositional Horn formulae can be tested efficiently. This constraint speeds up the test of
checking whether (a unification-based version of) ζ1 � ... � ζn is satisfiable. This constraint is
observed and exploited by the PROLOG programming language, which provides a direct way
for a user to code "F £ j ?" questions (queries) as program calls. The book of Schöning is by
and large an introduction to PROLOG.

 107

11 Take-home messages: the lecture in a nutshell

Take-home message, top level

• Automata and languages are simple, transparent, universally useful: the "small coin" of

computer science.
• Logics is deep, ancient, mystical – but technically not difficult – and very powerful: the

"royal palace" of computer science.
• A computer scientist who does not know about the basic concepts from these fields will

not be considered a computer scientist by his fellows.

Take-home message, middle level

• There are many ways to describe formal languages: automata, regular expressions (only

for regular languages), grammars (and there are yet others).
• Languages come in the Chomsky hierarchy: regular – context free – context-sensitive –

unrestricted. The higher in that hierarchy, the more expressive the languages, but also the
more difficult to analyze. Almost everything can be decided about regular languages, but
about unrestricted languages, almost nothing can be decided.

• For practical purposes, regular and context-free languages are most important. Regular
languages appear everywhere in programs, like other basic programming constructs or
data types (you need them for any interesting pattern matching). Context-free languages
are needed to describe, design and parse programming languages – and XML, the contents
technology of the coming decades.

• Standard tasks you encounter when working with languages in applications:
- pattern matching (searching patterns defined by regular expressions)
- word membership decision (trivial for regular languages, CYK algorithm and

derivatives thereof for general context-free languages, deterministic PDAs for
practically used programming languages)

- parsing (building a structured tree representation of an input word)
- translation (compiling, transforming XML documents into target code)

We only covered the first two, the others would typically be treated in a lecture on
"compilers and languages".

• Logics come in a hierarchy too, e.g. Boolean logic is less expressive than FOL than
second-order logic.

• There are always two aspects of a logics: syntax and semantics. The deep question about
any logical system (except Boolean logics which is too simplistic to make this interesting)
is the clarification of the relationship between syntax and semantics.

• The semantics is concerned with the question which "real" things are "meant" by a logical
expression. To make this analysis accessible to rigorous methods, the "real" things are
assumed to be sets. Thus, logics and set theory are twin disciplines.

• The interesting thing about syntax in logics is not parsing the structure of expressions, but
to develop calculi and other algorithms that can manipulate logical expressions in such a
way that proofs result – that is, that you can mechanically derive logically valid
consequences from given premises.

• In FOL, syntax and semantics coincide, that is, FOL is complete: £ Û ¢ .

 108

• However, FOL is not decidable: there is no general algorithm that can return a yes-or-no
answer to the question whether F £ j.

Take-home message, fine-grained level (exam checklist)

Note: here I list not all the things we treated in the lecture, only a (large) subset of the most
essential items. The listed things you really should know and master in the final exam. In
some years, not all of this material will be covered, and/or other material will be additionally
covered, depending on classroom dynamics. Thus, this list is not a 1-1 coverage of the final
exam topics; it is an condensed review of the backbone topics in these lecture.

• General definitions of symbols, words, languages; how many symbols an alphabet may

have, how many languages over an alphabet exist and how many words a language may
have (cardinality issues)

• Definition of DFA or NFA or e-NFA (collectively called "finite automata") and accepted
languages

• Represent finite automata by graph or table
• Construct finite automata for a given language
• Subset construction to transform NFA to DFA
• Definition of regexps (standard)
• Algebraic laws for regexps
• Regexps with language variables
• Transform regex to finite automaton and vice versa
• Applying pumping lemma to show that a given language is not regular: I expect

immaculate proofs here...
• Closure properties of regular languages
• Myhill-Nerode theorem and table-filling algorithm for obtaining minimal DFA
• Decidability properties of regular languages
• CFGs: definition; derivations; parse trees; language of a CFG
• Right-linear CFGs and regular languages
• Ambiguity
• The wonderful world of XML
• PDAs: definition; graphical notation; representing PDA by specifying d; language

accepted by PDA by final state or empty stack (without proof)
• Deterministic PDAs
• Chomsky normal form and how to transform a grammar to it
• Pumping lemma for CFLs
• Closure and decidability properties for CFLs; CYK algorithm
• Definition of unrestricted grammars and how they are used to derive words
• Syntax of FOL: inductive definition of terms and expressions; you should be able to write

syntactically 100% correct FOL expressions in the rigorous syntax
• Ability to express simple real-world or mathematical statements in FOL
• Free occurrence of variables; definition of what a proposition is
• S-structures: tuple representation and intuitive interpretation
• Variable assignment: definition
• S-interpretations
• The model and the entailment relation £: definition
• Ability to specify concrete S-structures that are or are not models of a given proposition

 109

• Satisfiability: definition
• dual nature of " and $
• Sequent rules: what a sequence means semantically, what an entire sequent rule means

semantically
• Correctness of sequent rules: definition and ability to show correctness for simple rules
• Role of our 11 base rules within FOL
• Formal proofs (derivations) in FOL: definition; ability to carry out such proofs in simple

cases
• Completeness theorem: statement and awareness of its importance
• Undecidability of FOL: statement and awareness of its importance

