
 1

Algorithmical and Statistical Modelling 

Lecture Notes 

Graduate Lecture

Jacobs University Bremen
Fall 2012

Herbert Jaeger

Course Number 320551

 

Created Aug 31, 2012 by copying the 2010 lecture notes
Sept 24, 2012: added explanatory paragraph in intro to sampling, some small edits in 4.1
Oct 2, 2012: some minor notation bugs edited in Gibbs sampler section
Oct 8, 2012: updated URLs in section 4.8.
Oct 11, 2012: improvements in the Mau et al evolutionary tree example
Nov 15, 2012: significant corrections in the simulated annealing section, pointed out by
Melanie Flöter.

 2

1. Introduction 

1.1 The big picture 

Before the time of computers, a scientific or engineering model of some piece of reality was
either

• mathematically rigorous but small (one or a few equations, for instance an equation of
an electric oscillator), -- OR it was

• informal and text-based but large (thesauri in the wide sense, e.g. Linné's systematic
catalogue of species).

In the time of computers, the concept and the potential of a model has undergone a revolution.
It is now possible to capture complex, large chunks of reality AND put them under rigorous
control of mathematics and algorithms.

Here are some examples of chunks of reality at your keyboard command:

1. Weather simulations, airflow simulations for airplane design.
2. Simulations of mechanical systems (crashing cars, shaking skyscrapers)
3. Simulations of folding proteins and binding atoms
4. Geographic information systems (GIS's)
5. Genome and protein databases
6. Customer databases, a company's SAP database, Jacobs's campus web files
7. Expert systems for airport traffic control, legal advice, power plant fault management

and thousands of other complex everyday systems
8. Manufacturing line control, supervision and management systems
9. Chess computers
10. 3-d voxel models of MRT scans
11. A robot's navigation model of its environment
12. Neural network models that (try to) predict stock markets
13. Autopilots, car steering assistance systems, engine control systems
14. Body and motion models for movie animations and computer games
15. Speech recognition systems, handwritten text recognition systems
16. jpeg, mpeg, midi files (and doc files, too! as models of a text's visual appearance)
17. C programs (are models of algorithms!)

... and tens of thousands more, including, of course, the largest model of all, the Web.

The mathematical / algorithmical challenges presented in these examples are manifold. Here
is an ad hoc list of some of the ubiquituous technical issues in modelling:

1. Dealing with large-sized datasets (ask Prof. Baumann who deals with terabyte
datasets)

2. Integrating models from diverse formats and sources (numerical vs. symbolic, written
in different programming languges, written by different people at different times or
generated automatically, expressed in different mathematical formalisms ...)

 3

3. Speeding up computations (fast low-level vs. slow high-level programming languages,
model simplification, parallelization, finding fast algorithms, resorting to stochastic
algorithms ...)

4. Economizing memory
5. Handling uncertainty (noisy data, probabilistic models, missing data...)
6. Negotiating precision -- high precision is costly (anytime algorithms, ...)
7. Creating models automatically from data (= machine learning) or in interaction with

human experts (= knowledge acquisition, user interfaces)
8. Displaying / visualizing / audiolizing / haptifying models (scientific visualization,

virtual reality, remote presence)
9. Interconnecting databases and models (high-bandwidth networking, synchronization,

data abstraction formats like XML, ...)
10. Detecting model errors and assessing model limitations
11. et cetera

Models are used for many types of purposes:

(2.1) Simulation
(2.2) Prediction and ...
(2.3) ... Retrodiction (yes, sometimes it is hard to know the past, e.g. in earth climate

modelling or rebuilding the evolutionary tree)
(2.4) Analysis ("where am I?" asks the robot and queries a particle filter model...), i.e.

deriving implications from a model – the classical use of rigorous scientific models
(2.5) Documentation, classification, finding ordering systems (the classical use of

encyclopaedic scientific models)
(2.6) Control, signal processing (e.g., image restauration, engine control, data transmission)
(2.7) Classification and decision making
(2.8) Functional design (cars, buildings, pharmaceuticals...)
(2.9) Aesthetical design (buildings, cars, perfumes... and movies and music)
(2.10) Fault detection
(2.11) "New insight", "understanding"
(2.12) et cetera

All in all, the computer and the world reflections inside it have provided us an entirely new of
way of doing science and engineering – and of living our everyday life (or is that not so? are
we the same humans as before? in what sense have we changed?)

It is clear that a single person or a single lecture can capture only a tiny fraction of this grand
world of modeling. What will you see in this lecture?

1.2 The lecture picture 

Many of the themes around modelling are covered by courses that you can take at Jacobs, for
instance:

1. Simulating large-scale physical systems with PDEs (amply covered in the lectures you
find in Computational Science)

2. Machine learning techniques – (come to my ML class if you like to learn to teach
machines to learn)

3. Database topics (Peter Baumann is expecting you)

 4

4. Artificial Intelligence and robotics (Andreas Birk and Andreas Nüchter will tell you
how robots model the world around them, including other robots and you, and how
you should model robots; Michael Kohlhase awaits you to treat you with luxurious
logics for languages and maths modelling)

5. Biosequence and protein modelling (Jacobs has bioinformatics!)
6. Statistics and statistical software packages (in the other school, Adi Wilhelm would be

glad to greet you in his extremely useful courses on statistics)

So you see, (almost) all the Jacobs world next to you does nothing but modelling! and
furthermore you see that there are many ways to approach modelling themes, some more
mathematical, some more application-driven, some more CS oriented.

But now, what will be the purpose of this course?

I have two answers. The first is that you will learn quite a number of practically useful
techniques not covered elsewhere at Jacobs – so this is really going to be an "enabling"
course.

The other answer is the one that really guided me in assembling the materials for this course. I
want to make you aware of the inescapability of the reality gap in all modelling attempts, and
to pave the way for what I think is the most powerful compromise bridging technique that we
possess.

What is the reality gap? If you wish to capture a chunk of reality in a model, your solution
MUST BE IMPERFECT because of the following reasons:

• Clearly you can't model all of reality in a single model. So you must isolate, identify,
carve out some part or aspect of the world – necessarily severing in your model the
ties the original chunk has with the rest of the world.

• You must choose one level of description out of many that would be needed for a total
understanding. It is quite a different thing to describe the brain in terms of chemical
reactions vs. connected neurons vs. the thoughts that the brain thinks. Some of the
most notable and modern results in science lie in methods that describe self-
organization mechanisms to connect (just) two adjacent levels of description (e.g.
Manfred Eigen's hypercycle model of the origins of life – a Nobel prize, or Ilya
Prigogines models of oscillating chemical reactions – another Nobel prize, or Heinrich
Haken's Synergetics model of laser oscillations – almost a Nobel prize).

• You can't measure all the quantities that you would need to determine the starting
conditions for a (dynamical) model. Empirical data are always incomplete, and models
made from them are at best interpolations.

• The very idea of a measurable hides within it a brutal act of ignorance – namely of not
measuring (even not conceptualizing) all the things that you do not measure. A side
note: apparently the sensor signals that our brain gets cannot be well characterized as
reflecting measurable quantities. For instance, a single receptor cell that we have in a
finger joint may respond to vibration or temperature or pressure or joint angle –
depending on temporal context and co-variables.

• Our models are finite but world chunks – arguably – are not. After we have built a
program or formula or database, then that is all we have – but reality chunks can
always be investigated further. This problem is very acutely known in Artificial
Intelligence, where it is called the frame problem; it is one of the toughest obstacles to
building artificial "intelligent" systems.

 5

• Human-made models are co-determined by fashions and historical (even political)
context. You can only think about reality in a way that your peers will acknowledge –
if you try to progress beyond the view of the day, you are either a genius (but even
Einstein's discoveries were well embedded in his day's thinking) or you will be
quickly expelled from "the scientific community".

• Models are prone to be inconsistent, -- which is a polite way to say they are
impossible. This is hard to detect, and if detected, to repair (AI has a subdiscipline
devoted to making the best out of inconsistent knowledge, called nonmonotonic
logics).

• We are very bad, as humans, to understand cyclicity, self-referentialty, or non-
linearity in general. Thus, even when our models capture such aspects of reality, we
have a hard time understanding our own models. Indeed, engineers (typically) prefer
to simply avoid nonlinearity, gaining intuitive grasp but missing reality.

• Et cetera.

I think the single most powerful and generally useful theoretical and algorithmical tool we
have to come to terms with the reality gap is... shhhh!! -

 ... statistics.

With statistical methods (in a very wide sense) you may explicitly reflect that there are gaps
in your model, but still make the best out of it that you can. You can also enter into your
model a model of your own preconceptions, prior assumptions or mere intuitions and reflect –
indeed calculate numerically – the extent by which they influence your model. With statistical
methods you can state clearly (and be aware of it) where your model is blurry, – but you can
also detect the parts where it is razor sharp.

So, I will unfold in this lecture a number of modelling techniques that are all statistical in
nature, spanning an arch from the purest possible statistical models – namely, just probability
distributions – to intricate computationel methods to deal with large networks of statistically
interacting quantities (Bayesian networks). At the time of writing this introduction, the
planned layout for this lecture is the following (subject to change):

1. A refresher on probability and statistics, with an emphasis on comparing "classical"
with "Bayesian" statistics

2. A glimpse on methods to represent probability distributions
mathematically/algorithmically (exponential distributions, mixtures of Gaussians,
Parzen windows), illustrating "parametric" and "non-parametric" methods

3. Sampling methods for probability distributions: sampling by transformation, rejection
sampling, Markov Chain Monte Carlo sampling, Gibbs sampling, Metropolis
algorithm. Application example(s): reconstruction of evolutionary trees from current
DNA data.

4. Optimization by simulated annealing, thermodynamic interpretation of Metropolis
sampler.

5. Bayesian networks and graphical models (diagnostic reasoning, representation and
inference, EM learning algorithm).

6. Fuzzy logic: principles and control applications.

 6

1.3 Supplementary reading 

These lecture notes assemble themes from various areas, and I am not aware of a single
textbook where you can find all of it together. The lecture notes will point out URLs to online
available tutorials and papers at various places. In addition, the following textbooks each
contain one or several relevant chapters:

Mitchell, Tom M.: Machine Learning (McGraw-Hill, 1997) IRC: Q325.5 .M58. Chapter 6
gives a concise intro to Bayesian inference and elementary Bayesian networks.

Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edition (John Wiley, 2001)
IRC: Q327.D83 Chapter 3 presents foundations of Bayesian vs. maximum likelihood
estimation, including intro to hidden Markov models and the EM algorithm – just like chapter
6 from the Mitchell book.

Durbin, R. et al.: Biological sequence analysis : probabalistic models of proteins and nucleic
acids. Cambridge, UK : New York : Cambridge University Press, 1998. IRC: QP620 .B576
1998 Good description of some sampling techniques, interesting applications in biosequence
modelling

Bishop, Christopher M.: Neural Networks for Pattern Recognition. Oxford University Press,
1995. IRC: QA76.87 .B574 1995 Chapter 2 amounts to Chapter 3 of these lecture notes
(basic methods for parametric and nonparametric density representation and estimation)

Bishop, Christopher M. Pattern Recognition and Machine Learning. Springer Verlag, New
York 2006. Online copy available through IRC. A thick book on what its title says, with a
particularly strong and long chapter on Bayesian networks of various shades.

Neal, Radford M. Probabilistic Inference Using Markov Chain Monte Carlo Methods.
Technical Report CRG-TR-93-1, Dpt. of CS, Univ. Toronto, 1993.
ftp://ftp.cs.toronto.edu/pub/radford/review.pdf

S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi (1983) Optimization by Simulated Annealing.
Science, Vol. 220 Nr 4598, 671-680. Classical (by now), very readable paper introducing
simulated annealing. Includes a beautiful demonstration of simulated annealing in a
computer layout optimization task. Here is a local online copy

Ackley, D.H. and Hinton, G.E. and Sejnowski, T.J.: A Learning Algorithm for Boltzmann
Machines. Cognitive Science 9 (1985), 147-169. Another classic, introducing a neural
network model of an associative error-correcting memory, based on the Boltzmann
distribution. Here is a local online copy.

Huang, C., Darwiche, A.: Inference in Belief Networks: A Procedural Guide. Int. J. of
Approximate Reasoning 11 (1994), p. 158ff. this is the tutorial text o which much of the
algorithmic outline of the Bayesian Network chapter in my lecture notes is based. Local copy
at http://www.faculty.jacobs-university.de/hjaeger/courses/AlgMod05/ijar95.pdf

 7

2 A refresher on essential probability theory and statistics – classical and Bayesian 

The aim of this section is to make you acquainted with a number of notions from probability
theory and statistics that constitute a required background for this course.

2.1 A handful of basic concepts

It is possible to become a reasonably good modelling practician without really knowing what
probabilities are – you can use equations like the Bayes formula or decision criteria
"mechanically" – but it is not possible to become a really creative in this field without this
knowledge. Therefore we devote some time to a more rigorous (re-) introduction of the basic
concepts of probability theory and statistics.

A fine webpage is http://www.probability.net – you can find there an online tutorial and a
dictionary of all important definitions.

We will in some detail consider a simple standard task, namely, estimating the probabilities of
symbols from a sample. If the sample is small, this task becomes surprisingly subtle. A typical
situation in bioinformatics is the following. Proteins are sequences of amino acids, of which
there are 20 different that occur in proteins. They are standardly tagged by 20 capital symbols,
as A, G, H, ... all intimately familiar to biologists. Proteins come in families. Some protein in
one species has typically close relatives in other species. Related proteins differ in detail but
generally can be aligned, that is, corresponding sites in the amino acid string can be detected,
put side by side, and compared. For instance, consider the following short section of an
alignment of 7 amino acids from one family1:

 ...GHGK...
 AHGK...
 ...KHGV...
 ...THAN...
 ...WHAE...
 ...AHAG...
 ...ALGA...

Fig. 2.1: Seven aligned protein sniplets from one protein family (here: of globulines).

A basic task that bioinformatics faces is: for each column in such a family alignment, estimate
the probability distribution of the amino acids in this column, as you would expect it to be in
the total population of all proteins belonging to this family. This task is, on the one hand,
important: because such distribution estimates are the basis for deciding whether some newly
found protein belongs into the family. On the other hand, this task is apparently rendered
difficult by the fact that the sample of aligned proteins used to estimate this distribution is
typically quite small – here we have only 7 individuals in the sample. As can be seen in Fig.
2.1, some columns have widely varying entries (e.g. the last column K K V N E G A). In
contrast, the family of related proteins is huge: in every species one would expect at least one
family member; typically many more. So how can one derive "good" estimates for the
distribution of symbols in a large population, from very small samples?

1 Example and some parts of this Section taken from: R. Durbin, S. Eddy, A. Krogh, G. Mitchinson: Biological
sequence analysis: probabilistic models of proteins and nucleic acids. Cambridge University press 2000

 8

For this task of estimating a probability distribution (and all other such tasks) there are two
major types of approaches:

1) The "classical", "frequentist", "objective", where probabilities are defined in terms of

limits of frequency counts. This is the kind of probability theory and statistics that has
dominated mathematics and statistics in the last centuries and it is the approach taught in
most university courses on statistics. In this view, a probability of a symbol in a
population is its frequency in the limit of infinite population size. The probability P(A) of
"amino acid A occurs in the population" is objectively defined – at least in ideal theory
(assuming the population is infinitely large). The classical approach gives a clear picture
of things when one has access to large samples but has difficulties in dealing with small
samples.

2) The "Bayesian", "subjective" approach where a probability is defined as a subjective
degree in belief that a newly observed symbol would be of some particular kind. Here the
probability P(A) need not be defined objectively. But this does not mean Bayesian
statistics is not a rigorous mathematical field. Bayesian theory is not concernd with what
probability is but with how rational people should correctly reason about probabilities.
Bayesian statisticians ask (and answer) questions like: If someone believes some things
about some probabilities in some population, what can this person formally deduce from
his starting assumptions? The Bayesian approach is better suited than the classical one
when it comes to drawing conclusions from small samples. In the words of E.T. Jaynes, a
fierce proponent of Bayesian statistics: "Scientific inference is concerned, necessarily, not
with empty assertions of 'objectivity' but with information processing; how to extract the
best conclusions possible from the incomplete information available to us." Because such
questions have recently found to be of extreme practical relevance – not the least in
bioinformatics and in Artificial Intelligence – Bayesian statistics has seen a surge of
interest in the last two decades, and has become very important for practical machine
learning techniques.

Until recently there was something like a "war of believers" between the two approaches. The
belligerent atmosphere is reflected in the most prominent, original textbook on Bayesian
statistics (4 MB) by E.T. Jaynes, called not very modestly "Probability theory: the Logic of
Science". Click on http://www.quackgrass.com/roots/0796rts.html for a short intro to
Bayesian logic / probability theory. Today the aggressive tone has largely vanished and both
approaches to probability are considered as valid, if alternative, perspectives.

Both approaches share the definitions (but not the interpretation) of some elementary
concepts, which we will now revise.

Event space, probability space. Symbol: Ω. This concept, which is the fundament of
statistics and probability theory, is unfortunately very hard to understand. The reason for this
conceptual difficulty is that Ω has a dual nature: (i) as a real-world entity, which cannot be
formally specified but needs everyday language to be described, and (ii) as a mathematical
object that can be formally specified... Event spaces are, so to speak, the interface between the
real world and mathematical (probabilistic) models. If one looks at some event space from the
real-world side, one sees a real-world thing, which can be described only with real-world
language, i.e. plain English. If one looks at some Ω from the formal side, from maths, one
sees a mathematical object (a set, to be more precise – an object of set theory). Confused? you
should be...

 9

As a real-world entity, a good way to understand event spaces is to start from scientific paper
writing (in the empirical sciences, like physics, biology, experimental psychology etc). Such
papers typically describe an experimental setup where certain measurements are taken, or they
specify (e.g. in the geosciences or botany) a location on this earth where observations have
been made (e.g. a mountain range where rock samples have been taken, or a wildforest area
where plant specimen were collected). The essence of empirical science is that other groups
than the one who first did the experiment / expedition must be enabled to reproduce the
findings. The outcomes of reproducing experiments are comparable to the originally reported
results only to the extent that the reproducing experimenter reconstructs the original
experimental setup (or goes to the same mountains or forests). Only if this similarity is
warranted, the data collected by the second experimenter can be assumed to have the same
"distribution" (we will soon explain that concept, for the time being you intuition must
suffice) as the data sampled in the original investigation. An event space is what is specified
(in a scientific paper, for instance) as a setup / context / location / experimental condition with
respect to its role as a source of potential data. In papers in physics / chemistry / biosciences,
this specification is usually done in a section called "methods". In papers in psychology /
medicine /sociology it would typically be the specification of the population of human
subjects that were investigated ("As subjects for our study we used undergraduate students
from psychology, balanced in gender and with an age between 19 and 23..."). In sum,
specifying an event space amounts to specifying particular conditions for collecting data.

As a formal entity, an event space is just seen as a set – and almost always denoted by Ω. In
the light of what I said before, the elements ω of this set Ω should be considered as all the
potential acts of measurements that could be made in experiments / expeditions of a certain
type. A sometimes used terminology is to speak of ω as realizations of Ω. Each such
realization is a source of measurement data. For example, if (in the real-world perspective)
Ω is "undergraduate students from psychology, balanced in gender and with an age between
19 and 23...", then whenever in some university a particular undergraduate psychology
student Mr. A with age between 19 and 23 is chosen from a gender-balanced sample, this Mr.
A would be considered an ω ∈ Ω. However, mathematicians don't care about this real-world
interpretation of the ω ∈ Ω. What they care about is that once Ω is fixed, the measurement
data that can be obtained from ω ∈ Ω have a well-defined statistical distribution.
Mathematicians, then, care about the mathematical apparatus needed to equip (arbitrary) sets
with the requisite add-on mathematical structure that enables them to handle such statistical
distriubutions of measurement data obtained from ω ∈ Ω.

We will now describe this mathematical structure. Unfortunately, it is not simple (and has
taken mathematics centuries to develop – only completed by the work of Andrey Kolmogorov
in the early 1930's.

Events are subsets A ⊆ Ω. In the simplest case, an event is an elementary event {ω} ⊆ Ω, but
in general an event is a larger subset. In our example, "proteins belonging to a particular
family" would be an event, or "proteins of family X, which have amino acid G in position
110".

σ-algebra, σ-field, event field: The set of all events in Ω. Typical symbol: F or , , ... (if
you have Latex with the AMS package, use \mathfrak font!). We have F ⊆ Pot(Ω). If Ω is
finite, typically F = Pot(Ω). With infinite Ω, F is typically much smaller than Pot(Ω). Not any
subset of Pot(Ω) qualifies as a σ-algebra. A σ-algebra must adhere to certain structural
axioms. Here is the definition of σ-algebras:

 10

Definition (5.1): F ⊆ Pot(Ω) is a σ-algebra if

1) Ω ∈ F,
2) A ∈ F ⇒ AC ∈ F (closure under complement),

3) for every sequence (An)n = 1, 2, ... in F, the set 
∞

=1n
nA is in F (closure under countable

union).

This definition reflects how we would like to be able to reason about events. Condition 1)
says that the "all-event" is an event, that is, the event "we observe some individual from Ω".
Condition 2) requires that if we have some event A, then we can also talk about the event "not
A". Finally, condition 3) fixes that if we have a (countable) number of events An, then the
event "we observe something from one of the An" is also a valid event.

σ-algebras are the fundamental concept of probability theory, of measure theory, and the
theory of (Lebesgue) integration theory.

A measureable space is an event space equipped with some σ-algebra, written (Ω, F).

A probability measure P is defined as follows:

Definition (5.2): Let (Ω, F) be a measurable space. A function P: F → [0, 1] is a probability
measure on (Ω, F), if

(2.1) P(Ω) = 1,
(2.2) for every sequence (An)n = 1, 2, ... of pairwise disjoint events it holds that

∑
∞

=

∞

=

=
11

)()(
n

n
n

n APAP  (σ-additivity)

Remarks:

(2.1) Conditions 1) through 5) are the Kolmogorov axioms of probability theory. In
classical statistics, these axioms are the foundation of probability theory. In Bayesian
statistics, these laws are derived from other axioms.

(2.2) The "Bayesians" often admit in 5) only finite sequences.

(2.3) The triple (Ω, F, P) is called a probability space.

(2.4) Very often it holds that P(ω) = 0 or even P(A) = 0 for nonempty A. Then A is a null
set. For instance, if Ω is the set of all infinite sequences generated by some random
number generator, then P(π) = 0: the chance of obtaining the digit sequence belonging to
π is zero.

(2.5) Here are some elementary properties of probability spaces:
i) A, Β ∈ F ⇒ A ∩ Β ∈ F, A ∪ Β ∈ F, A \ Β ∈ F.

ii) ∅ ∈ F.

iii) For every sequence (An)n = 1, 2, ... of events it holds that 
∞

=1n
nA is in F.

 11

iv) A ⊆ B ⇒ P(A) ≤ P(B).

Conditional probability. Let (Ω, F, P) be a probability space, B ∈ F an event with P(B) > 0.
The function

(2.1) P(⋅ | B): F → [0, 1]

)(
)(

BP
BAPA ∩



is again a probability measure on (Ω, F), the conditional probability under hypothesis B.

Here is a graphical display that explains how to think about conditional probabilities:

Here are some rules for computing with conditional probabilities:

1) P(A ∩ B) =: P(A, Β) = P(A | B) P(B)

2) Let Ω = 
Ii

iB
∈

 with pairwise disjoint Bi. Then for every A ∈ F,

P(A) = ∑

∈Ii
ii BAPBP)|()(,

the formula of total probability.

3) Let Ω = 

Ii
iB

∈

 with pairwise disjoint Bi. Then

∑
∈

==

Ii
ii

nnnn
n BAPBP

BAPBP
AP

BAPBPABP
)|()(
)|()(

)(
)|()()|(,

which is Bayes formula.

Baysian statistics starts from rules like P(A ∩ B) =: P(A, Β) = P(A | B) P(B), which are
justified as "rational", "intuitively correct" laws of reasoning about probabilities. (To be more
precise, a Baysian statistician would write P(A ∩ B | M) =: P(A, Β | M) = P(A | B,M) P(B| M)
instead – Baysians always include a formal reference M to some prior knowledge about the
relevant domain of reality into their formulas, reflecting the fact that all intuitive reasoning

Ω

B

A2 A1

A3 P(A1 | B) = 0
P(A3 | B) = 1

P(A2 | B) =
)(
)(2

BP
BAP ∩

P(B | B) = 1

 12

about probabilities must start from some prior assumptions about the world one is reasoning
about.)

Further elementary concepts...

Measure space. Typical symbol: (E, ). This concept is closely related to, but fundamentally
different from the measurable space (Ω, F). The basic intuition is that the "things" in Ω are
"just there as they are there" (a Kantian philosopher might think of the Ding an und für sich,
the "things as they are for themselves", not being understood or observed by humans). In
order to get access to a thing ω ∈ Ω, one as to observe or measure it. The outcome of the
observation is an object a ∈ E. In our protein example, ω might be a physical gene coding a
protein in a biochemist's sequencing apparatus, and after sequencing the gene, a might be the
formal sequence of amino acid symbols corresponding to the protein. Thus E would be
created from Ω through the measurement operation "run a gene ω through a sequencer,
transform the nucleic acid sequence into an amino acid sequence, and output the sequence of
its symbols". With another observation operation one gets another measure space E. Taking
up our example, with the measurement operation "run a gene ω through a sequencer,
transform the nucleic acid sequence into an amino acid sequence, and output the 110th
symbol that you get", one would only observe genes/proteins at the 110th position. The set of
possible observation outcomes then would be the set E = {A, ..., Y}, which has 20 elements. In
sum, the measure space builds on a set E that contains all possible outcomes of observing
elements ω ∈ Ω under a given observation procedure.

It is very important to keep the measure space apart from the underlying probability space
with its measurable space (Ω, F). In our last example, the event space Ω of the underlying
probability space (Ω, F, P) would have as many elements as there are proteins of the family –
potentially (given the open-endedness of evolution) infinitely many. In contrast, E contains
just 20 elements.

A measure space is also equipped with a σ-algebra, . In our last example, since E is finite,
we would typically take  = Pot(E).

Random variables, typical symbol: X. If you thoroughly understand the concept of a random
variable, nothing can happen to you in the remainder of this lecture! Formally, a random
variable is a mapping X: Ω → E, also written as X: (Ω, F, P) → (E, ). Intuitively, a random
variable describes a measurement or observation procedure. To each elementary event ω ∈ Ω,
a random variable assigns an observation, or measurement outcome, X(ω)= x ∈ E. In our
example, X would assign to every protein the amino acid symbol detected at the 110th
position.

Now comes a subtle and powerful idea. A random variable X: (Ω, F, P) → (E, ) "transports"
the probability measure P from the underlying probability space (Ω, F, P) into the measure
space, creating there another probability measure, the induced measure PX, by the
prescription

(2.2) ∀B ∈ : PX(B) = P(X−1(B))

In our example, for instance, we would have

PX("symbol A is observed") = P("all globulines that show A at position 110")

 13

Instead of PX(B), the notation P(X ∈ B) is also used.

The measure space (E, ) is typically much smaller and has a simpler structure than the
underlying probability space (Ω, F, P). This reflects the loss of information usually incurred
by any measurement process!

Distribution. The induced probability measure PX on the measure space is called the
distribution of the random variable X.

In real-world modelling tasks, the underlying probability space (Ω, F, P) is usually an object
that we cannot directly access or model mathematically (think of how difficult it would be to
model "the set of all globulines in all organisms of past, present and future"). However, the
much simpler measure spaces with their induced probability measures (distributions) can be
analysed. Therefore,

All we have said so far is just the long, hidden story behind the simple distributions that we
are used to work with. It is the story of how axiomatic probability theory tries to come to
terms with the concept of probability. The probabilities we mostly speak of are distributions,
which are "borrowed" from the underlying (but ignored) probability spaces by virtue of Eqn.
(2.2).

A cautionary remark. The distinction between the underlying probability space and
distributions is sometimes obscured in introductory textbooks that try to make life (too) easy
for the reader. In these books, the distinction between Ω and E is not made. For instance, one
may find that the set {1, 2, 3, 4, 5, 6} of possible outcomes of throwing a die is called a
probability space, and the set of probabilities of these outcomes (all 1/6 for a fair die) are
called a probability measure (used interchangeably with distribution). Technically speaking
this is admissible: because the events ω ∈ Ω are not formally defined but represent one's pre-
mathematical choice of the "piece of reality" one wants to model, one is in principle free to
choose anything for Ω, including E. But if the distinction is dropped, the intuitive
interpretation of random variables as measurement/observation operators is lost; furthermore,
some themes of advanced probability theory become impossible to treat (for instance, the
question of whether the zigzag trajectories of Brownian motion can be assumed to be
continuous).

In finite measure spaces, a distribution is most conveniently expressed by a table or a bar
chart giving the values of PX(x) = P(X = x) for all x ∈ E. In continuous-valued measure
spaces, a distribution is often represented by a probability density function (pdf is a much-
used abbreviation). For instance, the normal distribution density function with mean µ and
standard deviation σ is given by

(2.3) 2

2

2
)(

2
1)(σ

µ

σπ

−
−

=
x

exp

the main object of study in probability theory and statistics is distributions.

 14

We use lowercase p to denote pdf's and capital P to denote probability measures or
distributions in general. For the event B = "measurement lies between 0.5 and 1.2" (note B ∈
) we can use (2.3) to calculate a probability

(2.4) ∫=∈

2.1

5.0
)()(dxxpBXP .

Note that B does not refer to a single measurement "action" – it refers to the class of all
individual measurement actions that return a value between 0.5 and 1.2. In probability theory,
when talking about distributions, the concept "event" refers not to individual observation
actions (those would be the measurements X(ω) ∈ E), but to classes of measurements, defined
by ranges of their outcomes, that is, the concept "event" refers to the B ∈ .

When it is clear from the context that one is dealing with distributions (and not with the
underlying probability space), often the induced probability measure PX is simply written as
P. In fact, most "P" symbols that you will encounter in statistics should actually be interpreted
as PX.

Numerical random variables and expectation. A random variable is numerical if the
measure space E is numerical, that is, integer-, real-, or complex-valued. The expectation of a
numerical random variable X is its "average value" and for integer-valued X is given by

(2.5) E[X] = ,)(∑

∞=

−∞=
=

i

i
iXPi

and for the case of real-valued variables with pdf p is given by

(2.6) E[X] = ∫

∞=

−∞=

x

x
dxxpx)(.

Given a numerical random variable X, one obtains a random variable X' that is normalized to
zero mean by putting X' = X – E[X].

Independent and uncorrelated random variables. Two random variables X, Y: (Ω, F, P) →
(E, ) are independent if for all A, B ∈ , it holds that

(2.7) P(X ∈ A, Y ∈ B) := P(X−1(A) ∩ Y−1(A)) = P(X ∈ A) P(Y ∈ B).

X and Y are uncorrelated if

(2.8) E[X Y] = E[X] E[Y],

or equivalently, if their covariance

(2.9) cov(X, Y) = E[(X – E[X]) (Y – E[Y])]

is zero. Only random variables with numerical values can be uncorrelated, but random
variables with values in any arbitrary measure space can be independent. Independent
numerical random variables are always uncorrelated, but uncorrelated numerical random
variables are not necessarily independent. Thus independence is a (much) stronger notion than

 15

uncorrelatedness. Unfortunately, in analytical and computational investigations, independence
is also much more difficult to prove or use.

Side remark. A modern and fashionable field within machine learning is blind source
separation. Given n statistically independent signal sources (e.g., speakers in a room) and n
measurements which each pick up a different mixture of the source signals (e.g. microphones
placed at different positions in the room), one can use the fact that the sources are statistically
independent to learn from a training sequence of the mixed measurements a filtering device
that re-separates the signal mixtures into their independent components. The quality of the
separated signals is sometimes astounding. Applications (besides speech processing): picking
out a unborn baby's heartbeat from the "noise" signals generated inside a mother; detecting
individual signal sources in EEG mixtures of signals. Check
http://web.media.mit.edu/~paris/ica.html for pointers to people, papers, labs and striking
audio-demos. The results obtained from independence analysis with the modern techniques of
blind source separation are often much stronger than results obtained with the more traditional
and easier methods of classical linear signal analysis and filtering, which rely merely on
uncorrelatedness.

Joint and marginal distributions. Often a probability space (Ω, F, P) is observed/described
by several random variables X = (Xi)i = 1, ..., n simultaneously. These variables may take values
in different measure spaces (Ei, i). Think of this as describing a complex piece of reality in
terms of a number of different measurables, observables, concepts. One may glue the
individual random variables together in a single product random variable

nini
XXX ××=⊗

∈
1},...,1{

 that takes values in the product space nini
EEE ××=⊗

∈
1},...,1{

, so the

values taken by the product random variable is an n-tuple of the individual variables' values:

(2.10)),...,())(),...,(())((11},...,1{ nnini

xxXXX =ωω=ω⊗
∈

.

The distribution

ini
XP
},...,1{∈

⊗ of this product random variable is called the joint distribution of the

random variables (Xi)i = 1, ..., n. We also write)(
},...,1{ ini
XP

∈
⊗ or simply P(X) for the joint

distribution. Notice that the joint distribution is likely to be a very unwieldy beast. To see
why, consider the simplest possible case, where all the concerned random variables are binary
(you may conceive them as Boolean observations, indicating the presence or absence of an
observation). Then the distribution P(Xi) of any individual variable is just a histogram over
the values 0 and 1. However, the joint distribution would assign a probability value to each
possible combination of the n binary observations, which makes this a histogram over 2n
arguments. In naive words, joint distributions are "exponentially more complex" than the
individual distributions. If the individual distributions are themselves not as simple as just a
binary distribution, it soon becomes practically impossible even to write down some closed
formula for characterizing the joint distribution – and the computational and computer-based
methods for handling complex distributions that we will learn about in this lecture will be
needed.

The joint distribution of a descriptive ensemble (Xi)i = 1, ..., n.comprises the complete
probabilistic information about the piece of reality that one is modelling by (Xi)i = 1, ..., n. Any
specific question that one might ask about this piece of reality can be derived from

)(
},...,1{ ini
XP

∈
⊗ . For instance, one may wish to ignore some of the descriptors and ask for the

 16

distribution of one or a few selected observables only. Such "ignore the rest" distributions are
called marginal distributions. They can be computed, in principle, by integrating away the
others. For instance, if the joint distribution is characterized by an n-dimensional pdf g, we
could recover the pdf g1 of the marginal distribution of X1 by

(2.11)

€

g1(x1) = g(x1,...,xn) dx2
n−1
∫ dx3 ...dxn ,

or in the discrete case, where each Xi takes values in },...,{ 1

i
m

i
i i

aaE = , the marginal
probabilities of X1 would be obtained by summing over all combinations of the other
variables' values:

(2.12)),...,,(...)(2

2
1

1
1

1
2

2

n
nx

Ea Ea
x aXaXaXPaXP

n
n

===== ∑ ∑
∈ ∈

.

Marginal distributions of more than a single variable can be computed by
integrating/summing away the remaining ones in a similar way. While thus the marginal
distributions can be recovered from the joint distribution, conversely the joint distribution can
be constructed from the marginal distributions only if the (Xi)i = 1, ..., n.are independent. Then
(and only then) it holds that the joint pdf g is

(2.13))(...)(),...,(111 nnn xgxgxxg ⋅⋅=

for distributions with pdf's, and

(2.14) ∏

=

=====
ni

i
i

n
n aXPaXaXaXP

,...,1

2
2

1
1)(),...,,(.

The joint distribution)(

},...,1{ ini
XP

∈
⊗ can be factorized into a product of conditional

distributions by

(2.15)),...,|(),|()|()()(11213121},...,1{ −

∈
=⊗ nnini

XXXPXXXPXXPXPXP … .

The proof is a homework exercise.

Samples. The underlying event space Ω contains all possible individual measurable events ω
(or elementary events). In life's reality, only a small fraction ωi ∈ Ω (where i ∈ I and I is by
life's necessity finite) of all possible measurable events is realized in concrete observations.
Such a set { ωi | i ∈ I } of actually realized measureable events is called a sample. At least,
this is the strict definition of the term.

However, we have noted that statisticians prefer not to talk about measurable events ωi but
rather like to think in terms of their distributions. This is reflected in another, related usage of
the word sample, which also reflects a typical situation in the experimental sciences, namely,
that some experiment or measurement is repeated many times in order to obtain an as precise
as feasible estimate of some quantity of interest (for instance, by taking the mean over
reapeated measurements).

 17

To model this situation the following approach is taken in statistics. The elements ω of the
underlying probability space (Ω, , P) are taken to be the sequences of repeated experiments
– and for mathematical convenience, it is assumed that one such "repeat-experiment-session"
ω comprises infinitely many repetitions of the experiment. Next, a sequence (Xi)i ∈ Õ of
random variables is considered, where Xi(ω) refers to the i-th measurement outcome in the
repeat-experiment session ω. This is of course an idealized picture: in practice, an experiment
cannot be repeated infinitely many times. What one has in real-life, is the outcomes of n many
measurements of one repeat-experiment session ω, that is, the data that one has really
available are comprised in a vector X(ω) = (X1(ω), ..., Xn(ω)) = (x1, ..., xn) ∈ En. Such data
vectors are then called samples.

Although this might appear a bit contrived, it gives a faithful account of how research in the
empirical sciences should be carried out: In some Lab A, some quantity of interest is derived
with an as great as possible precision (implying repeated measurements) – this is, (X1(ω), ...,
Xn(ω)) is used by Lab A's statistician to estimate the quantity of interest. Another Lab B may
want to contest or improve on Lab A's result. They will also carry out a repeat-experiment
session ω', obtain a sample (X1(ω'), ..., Xn' (ω')), and infer something about the quantity of
interest from this sample. Typically, their results will somewhat deviate from Lab A's results.
The question, then, is how the conclusions obtained in Lab A from the sample (X1(ω), ...,
Xn(ω)) can be compared with the conclusions obtained in Lab B from the sample (X1(ω'), ...,
Xn' (ω')) – for instance, if n' > n, to what extent are the conclusions drawn by Lab B's
statistician more reliable than the findings in Lab A? Such considerations lie at the heart of
statistics and the theory of statistical estimation (of quantities of interest from samples).

This strict understanding of a sample as (X1(ω'), ..., Xn' (ω')) is not easy to grasp, especially
because there is also a "naïve" setup of a probability model where one has only a single
random variable X. An example will be helpful to sort these subtle concepts out.

Consider an article in a medical journal where it is stated that patients with a particular form
of cancer have, with a probability of 0.1, a particular antibody A in their blood. The most
natural probability model would introduce the following items:

This natural model contrasts with the model that professional statisticians would use. They
would set up their probability space and random variables as follows:

"Natural" model:

Ω: set of all patients with this type of cancer (suitably restricted, e.g. all patients in

Germany who come to hospital – depends on the data source used for the journal
article)

X: measuring whether a patient carries antibody A. This would typically be effected by a
binary indicator X, i.e. the measure space E is {0,1} and for a patient ω, X(ω) = 1 iff the
patient carries antibody A.

 18

The variables X1, X2, ... of the "professional" model would be assumed to be i.i.d., and they
would have the same distribution as the RV X from the "natural" model. Both the "naïve" and
the "professional" type of model are mathematically correct and conceptually legitimate (and
either of the two could be used for answering exam questions…).

The more complicated (and I admit: somewhat less intuitive) "professional" type of model
becomes a necessity when it comes to build the theory of statistical estimation – that is, to
understand how one can extract an estimate of the distribution PX from a sample (X1(ω), ...,
Xn(ω)) = (x1, ..., xn). This is the core task of statistics (classical and Bayesian):

Parametrized distributions. Concretely, PX is often to be represented by some (few)
parameters. For instance, a normal distribution PX is characterized by its pdf, which in turn is
characterized by its mean µ and its standard deviation σ, that is, by two parameters. In our
amino acid example, the distribution PX of amino acid symbols at location 110 would be
represented by 20 probability values of the various possible symbols, that is, by 20
parameters. A common symbol for the set of parameters characterizing a distribution is θ.
With parametrized distributions, the basic task of statistics then spells out like this:

Note that there are other, "parameter-free" ways of characterizing a distribution – we will
soon meet some.

Estimators. Formally, the task estimating the parameters θ of a distribution from a sample
can be expressed in terms of a function Tn which assigns to each sample (X1(ω), ..., Xn(ω)) of
size n a set θ̂ of parameters. Such functions Tn: (X1(ω), ..., Xn(ω)) θ̂ are called estimators
or estimation functions. Note that Tn(X1(ω), ..., Xn(ω)) is fully determined by ω, so we might
also write Tn(ω) – that is, estimators are themselves random variables.

The art and science of statistics is to find "good" estimators. The art and science of (much of)
algorithmical modelling is to find "good" ways of describing pdf's – an analytic expression
being rather the exception than the rule, because one mostly is confronted with high-

Basic task of statistics. Given a sample (x1, ..., xn), find out something about the
underlying distribution PX – typically, give an estimate of PX.

Basic task of statistics, formulated as parameter estimation task. Given a
sample (x1, ..., xn), give an estimate θ̂ of the parameters of the distribution.

"Professional" model:

Ω: set of all sequences of tests for antibody A that would be carried out for one study (the

original study of the journal, or some confirmation studies, or hypothetical studies of
the same sort that could be done). One ω ∈ Ω would be the suite of all such
measurements done for one study. (Again, suitable restrictions would apply, e.g. to all
such studies in Germany, or studies carried out in a particular year)

Xi: for i = 1, 2, ..., Xi(ω) is the i-th measurement of the sample for the study ω. Again, a
standard choice for the measure space would be the indicator values {0,1}.

 19

dimensional, badly-behaved distributions for which finding an analytic pdf is all but hopeless.
(And the art and science of machine learning is to find good estimators for a kind of pdf
representation that the modellers wish to use, with a little more emphasis than in "ordinary"
statistics on efficient algorithms – T((x1, ..., xn)) must be efficiently computable, that is, one
looks for fast learning algorithm).

While the notion of an estimator typically refers to parametrized distributions, you may also
use it in a more loosely fashion for any method that creates a characterization of a distribution
from a sample.

2.2 Maximum-likelihood estimators

One of the most common approaches to design estimators is the maximum-likelihood
approach. It is conceptually transparent, it is a typical "frequentist" approach, and it works
well when the sample size is not too small. We will explain it with our amino acid example.

We use abbreviation D ("data") for the sample. The distribution estimation (or learning) task
is the following:

Given: a sample D of n observations of amino acids in some location in n representatives of
some protein class. In Fig. 2.1, we would have n = 7 and for instance D = H H H H H H L
(in the location shown in the second column in Fig. 2.1) or D = K K V N E G A (last
column). Another, equivalent way to write D is as a count vector D = (n1, ..., n20) where ni is
the number of counts of the i-th amino acid symbol in the sample.
Wanted: an estimate))(ˆ),...,(ˆ()ˆ,...,ˆ(ˆ

201 VA XX PP=θθ=θ of the 20 parameters describing
the amino acid distribution in some location over all proteins in a family.

Approach: estimate)ˆ,...,ˆ(ˆ

201 θθ=θ such that the P(D | θ) is maximized over all θ, that is,
put

One basic task of (the statistical branch of) algorithmical modelling. Given a piece of
world (POW) that one wishes to capture in a (statistical) model, find a way to represent its
distribution(s) such that

• these distributions are complex enough to capture essential aspects of the POW, and

adapted to the particulars of the POW (e.g., a normal distribution would be incapable to
express the most interesting aspects of a stock market index)

• these distributions are simple enough to be manipulated with efficient algorithms (aspects
of memory demands, "sampling", computing probabilities of events)

• these distributions can be learned from data (the machine learning part of algorithmical
modelling)

Unlike in traditional statistics, you are allowed to use a lot of raw computational power,
heuristics, and borrow ideas from other fields such as physics, neurobiology, psychology,
evolutionary biology, or any other.

 20

(2.16) T(D) = θML = argmaxθ P(D | θ).

P(D | θ) is called the likelihood of θ given D, and often written as (θ). The notion of
likelihood must not be confused with the notion of probability – they are dual concepts. P(D |
θ) is the probability of D given θ, and it is the likelihood of θ given D.

For simple frequency counts as in our example, the ML-estimator θML can be analytically
shown to be

(2.17)),...,(),...,(201ML
20

ML
1

ML

N
n

N
n

=θθ=θ ,

where N is the sample size (here N = 7) and ni is the count number of the i-th amino acid
symbol in the sample.

This is beautifully simple and apparently convincing – but very inadequate for small sample
sizes. Consider D = H H H H H H L. The maximum-likelihood estimator would assign
zero probabilities to all amino acids except H and L. But every geneticist worth his/her salt
would expect that in the protein family at large, every other amino acid would also occur in
this location in some protein, albeit maybe rarely. But if we really assign zero probabilities to
them, we would be forced to exclude every such protein from the family, which is not
something we want to happen.

ML estimators of conditional distributions with Gaussian noise. There exists an intimate
connection between ML estimators and the "method of least mean square (LMS) errors". We
first recapitulate from High School the essentials of the LMS method. It applies in regression
tasks where one wants to recover a deterministic input-output relationship from noisy
observations of the outputs. Assume a situation where a researcher manipulates some
experimental setup by subjecting it to inputs xi ∈ m, where i = 1, ..., N. The researcher
obtains scalar measurements yi as a result. An example would be a psychological experiment
where a graphical pattern is flashed on a screen at position xi = (x1

i, x2
i), and a response time yi

of the subject is measured; an other example would be a medical survey where each xi
describes a patient by a vector of diagnostic variables, and yi would be the remaining lifetime
after diagnosis. Galileo did do the same thing when he let a heavy object fall from different
heights xi (m = 1 in this case) and recorded the falling times yi (I did not check the history
books of modern physics – I just guess that Galileo did something like this). Well, this is just
the most standard situation in the empirical sciences. Now assume that the researcher knows
that there is a law of nature which deterministically establishes a function f: m → , that is,
on input xi the "true" outcome would be yi = f(xi). The researcher even knows the nature of
this function – it comes from a family parametrized by parameters

€

θ ∈ d. So the researcher
knows that f = f(θtrue) for a particular parameter vector θtrue. But, the researcher does not know
θtrue, and wants to estimate these parameters from his experimental data. For example, Galileo
(or later, Newton) might have known that the falling time y is equal to y = sqrt(2 x / g), where
g is the constant of gravitation, which would be the unknown parameter θtrue which he wanted
to estimate from his falling experiments.

In such situations, the LMS method is to estimate the sought-after θtrue as the parameter vector
which minimizes the mean square error of the observations, i.e. to calculate

 21

(2.18)

€

ˆ θ LMS = argminθ (f (θ)(x i) − yi)
2.

i=1

N

∑

As a justification for the LMS method, you may remember from High School statements like,
"we want an estimate that punishes larger deviations from the predicted true outcome more
strongly than smaller deviations" – at least, that was how I was taught the LMS principle.
However, there is a better and more rigorous justification for the LMS method than this. This
runs as follows.

We assume that the measurement process is subject to Gaussian noise, that is, if the effective
parameter is θ, then upon input xi the observation yi will be drawn from a Gaussian
distribution centered on f(θ)(xi):

(2.19) p(y | xi, θ) =

€

1
2πσ 2

exp(− (f (θ)(x i) − y)
2

2σ 2),

where p is the pdf of the distribution of the yi and σ is the standard deviation of the Gaussian
(which we assume is the same for all possible inputs x). Assuming that the observations yi are
independent, and calling the ensemble of all outcomes yi our data D, then

(2.20)

€

p(D |{x i},θ) =
1
2πσ 2

exp(− (f (θ)(x i) − yi)
2

2σ 2)
i=1

N

∏

is the likelihood of θ, or more conveniently,

(2.21) (θ) =

€

N
2πσ 2

−
1
2σ 2 (f (θ)(x i) − yi)

2

i=1

N

∑

its log likelihood. Maximizing the likelihood of θ amounts to finding

(2.22)

€

ˆ θ ML = argmaxθ − (f (θ)(x i) − yi)
2,

i=1

N

∑

which is identical to (2.18). We thus find that under an assumption of Gaussian measurement
noise, the LMS estimate of the true parameters is the maximum likelihood solution. A note on
terminology: When statisticians speak of a "regression problem", they typically refer to
exactly this situation, where the parameters of a regression function f(θ) are computed by a
LMS calculation, with the tacit understanding that this is also the ML estimate to the extent
that a Gaussian measurement noise assumption is valid.

In (very) many cases, one does not know the nature of f(θ). Then, one often resorts to the
least-committing assumption that f is linear, that is, f(x) = f(w)(x) = wT x, where T is
matrix/vector transpose. In this context the parameters θ are typically denoted by w, and
called the (linear) regression weights. The LMS/ML solution

€

ˆ w ML can then be analytically
computed in closed form via the following derivation. First observe that

 22

(2.23)

€

ˆ w ML = argminw (wT x i − yi)
2

i=1

N

∑ = argminw (wT x i)
2 − 2wT x iyi + yi

2 .
i=1

N

∑

At the argmin, the gradient w.r.t. w

(2.24)

€

∇w = (2wTx i x i
T − 2x i

T yi
i=1

N

∑) = 2wT x i x i
T − 2 x i

T yi
i=1

N

∑
i=1

N

∑ = 0T

must be the all-zero row vector. Transposing this equation, and introducing the input data
matrix Φ = (x1 ... xN)T and an output vector y = (y1 ... yN)T, Error! Reference source not
found. can be written as

(2.25)

€

0 =ΦTΦw−ΦTy,

which resolves to w as

(2.26)

€

w = (ΦTΦ)−1ΦTy.

The matrix

€

(ΦTΦ)−1ΦT is known as the (left) pseudo-inverse of Φ. It generalizes the usual
matrix inverse, which is defined only for full-rank square matrices, to full-column-rank
rectangular matrices of size a × b, where a ≥ b. Indeed, it is obvious to check that

€

[(ΦTΦ)−1ΦT]Φ = Ib×b . Formula Error! Reference source not found. indicates one way to
compute solutions to linear regression problems: first compute

€

(ΦTΦ)−1 , then multiply with

€

ΦTy. This is fast but prone to numerical instability when

€

(ΦTΦ)−1 is not well-conditioned. If
you call in Matlab the routine pinv (for pseudo-inverse), another algorithm is used which is
slower but more stable because it avoids to explicitly compute

€

(ΦTΦ)−1 .

2.3 The bias-variance dilemma

We have just seen how a maximum-likelihood estimator can yield clearly unsatisfactory
results. The problem we stumbled across is known as the overfitting problem, or the bias-
variance dilemma. In fact, it is a general problem that always raises its ugly head when it
comes to statistical model estimation. In a nutshell, the best model of a probability
distribution that one can get, given empirical data, is not the model yielded by maximum-
likelihood methods – because ML methods try to come as close as possible to the empirical
distribution represented by the training data; as a result, the model also "models" the purely
random fluctuations of the training data. A thorough treatment of the bias-variance dilemma
has in the last two decades been started in a modern branch of statistics called statistical
learning theory – more about this in my Machine Learning lecture. I will here only give a
traditional account of the problem, which also explains why it is called "bias-variance"
dilemma.

We consider only a special case here, which is enough to demonstrate the concept. Assume
that you possess an estimator Tn: (X1(ω), ..., Xn(ω))

€

 ˆ θ (ω) , where

€

ˆ θ ∈ d. We ask the
question, how much does the estimate)(ˆ ωθ deviate, in the mean square error sense, from the

true value θ? That is, we ask for the value of])ˆ[(2θ−θE . We can compute this as follows:

 23

(2.27)

.)]ˆ[(]])ˆ[ˆ[(

)]]ˆ[])(ˆ[ˆ[(2])]ˆ[[(]])ˆ[ˆ[(

])]ˆ[]ˆ[ˆ[(])ˆ[(

22

22

22

θ−θ+θ−θ=

θ−θθ−θ+θ−θ+θ−θ=

θ−θ+θ−θ=θ−θ

EEE

EEEEEEE

EEEE

The third term in the second line vanishes because

.00)]ˆ[(2]])ˆ[[]ˆ[)(]ˆ[(2])]ˆ[ˆ[()]ˆ[(2 =⋅θ−θ=θ−θθ−θ=θ−θθ−θ EEEEEEEE Among

the remaining two terms, the first term,]])ˆ[ˆ[(2θ−θ EE , gives the variance of the estimates,

and the second, 2)]ˆ[(θ−θE , gives the systematic (averaged) squared amount by which the

estimates deviate from the correct value. The quantity θ−θ]ˆ[E is the bias of the estimator.

Thus we have seen that the error inherent in an estimator can be split into two parts, a
variance part that captures how much the estimates scatter around the mean estimate, and a
bias part that quantifies how much the mean estimate differs from the correct value. The
lessons taught by statistical learning theory is that there is a tension between the two: within a
given class of estimators (say, neural networks) one can tune models either towards a low bias
error (by data (over-)fitting, using larger networks) or towards a low variance error (by
introducing a bias, e.g. small networks), but it is intrinsically impossible to optimize both
simultaneously.

For an elementary demonstration of the bias-variance theme, consider a situation where
θ = (µ1, µ2) is comprised of the two coordinate means of some distribution over 2. That is,
the measure space is E = 2, and measurement values Xi(ω) are vectors xi = (x1, x2)T, where
superscript T denotes transpose. Now consider the following three estimators for θ = (µ1, µ2):

where (m1, m2)T is an informed guess about true (but not precisely known) mean (µ1, µ2)T.
The following figure shows typical outcomes of applying these estimators to samples (x1, ...,
xN). It turns out that the U estimator would fare best in the sense of yielding the lowest
expected error, although it is not unbiased – its estimates will be centered not around (µ1, µ2)T
but around ((m1, m2)T + (µ1, µ2)T) / 2. Intuitively speaking, it is superior because (and if) our
guess (m1, m2)T comes close to the true value. This is a simple instance of a general principle
in designing estimators: whenever one has some prior insight in the nature of the true
parameters θ, and one finds a way to insert this knowledge into the estimator, then one may
reasonably hope that the resulting estimator is better than another estimator where this prior
knowledge has not been inserted. Since this prior knowledge will usually not exactly hit the
correct θ, it will however introduce a bias into the estimator. In the next subsection 2.4, we
will see how one can insert such prior information into an estimator in a principled fashion,

€

S : (x1,...,xN) (x1 + x2) /2

€

T : (x1,...,xN) (x1 +…+ xN) /N

€

U : (x1,...,xN)1/2 ⋅
m1
m2









 + (x1 +…+ xN) /2N

 24

such that prior information in which we only weakly trust has a lower impact than prior
information in which we put much trust.

2.4 An estimator with Bayesian priors

In the ML-approach, the problematic zero probability estimates occurred because the
estimator exclusively used the information given by the sample. The background knowledge
that every protein expert has, namely, that every amino acid may (albeit possibly rarely) occur
at every position, was ignored. This knowledge is crucial for getting an estimator that really
makes sense, and it is the starting point in a Bayesian analysis: start from the assumption
("prior") P(θ | M) about the distribution of parameters.

This needs two bits of explanation.

• The first explanation is simple: M does not refer to a measurable event [like the B in the

"classical" expression P(A | B)] but simply is the Bayesian-style notation to make explicit
that some background knowledge, or model, M is involved. M need not (and usually
cannot) be formalized; it is a pointer to what biologists know a priori about distributions
of amino acids in families of proteins.

• The second explanation is not so simple. The distribution P(θ | M) is a hyperdistribution:
it describes how distributions (which are characterized by the various possible settings of
θ) are distributed. Syntactically, it is just a distribution of numerical values (namely, the
possible values of θ), but semantically, it is a distribution of distributions, because each
possible value of θ represents a distribution. In our protein example, the prior wisdom that
any amino acid might occur at a given site could be reflected in a choice of P(θ | M) which
would assign a relatively high (and nonzero!) pdf value to the distribution parameter θ =
(1/20, ..., 1/20).

With a Bayesion prior information P(θ | M), the biologist's background knowledge enters the
parameter estimation as follows, through Bayes' formula:

(2.28)
)()|(
)()|(

)(
)()|(

)|(
)|(),|(),|(

θθ

θθ
=

θθ
=

θθ
=θ

∫ PdDP
PDP

DP
PDP

MDP
MPMDPMDP ,

 25

where the three rightmost terms are notational variants. P(θ | D, M) is the posterior
distribution (of parameters) and P(θ | M) is the prior distribution (of distributions...) or
simply the prior.

Notice that P(θ | D, M) is a (hyper)distribution over parameters – but the target of model
estimation is some estimate value θ̂ of parameters, not a distribution over candidate values.
Therefore, Bayesian model inference must conclude with a final step where from the
distribution P(θ | D, M) a specific value θ̂ is obtained. The usual approach here is to take the
mean value of θ over this distribution, that is, calculate the mean posterior estimate

(2.29) θθθ=θ=θ ∫ dMDP),|(ˆ PME .

We will now concretely compute (2.29) step by step for our amino acid distribution problem,
where),...,(201 θθ=θ .

To start, we remark that with true),...,(201 θθ=θ the sample statistics for D should follow a
multinomial distribution, that is, the probability to obtain a sample D = (n1, ..., n20) is

(2.30) ∏
=

θ=θ
20

1201 !!
!)|(

i

n
i
i

nn
NDP


.

Next we try to fix how the prior P(θ | M) should look like. This is a subjective decision! For
reasons that will soon become clear we (and most proteinologists) opt for the Dirichlet
distribution P(θ | M) = (θ | α) with parameters α = α1, ..., α20. We identify (θ | α) with its
pdf, which is given by

(2.31) 







−θδ⋅θ⋅

α
=αθ ∑∏

==

−α 1)(
)(

1)|(
20

1

20

1

1

i
i

i
i
i

Z
D .

Some comments will help to make this formula look less frightening. The factor)(/1 αZ is
just there to ensure that the integral over (θ | α) is one, that is it holds that

(2.32) ∫ ∑∏ θ







−θδ⋅θ=α

==

−α)(1)()(
20

1

20

1

1 dZ
i

i
i

i
i .

This integral has an explicit solution

(2.33)
)(
)(

)(
∑

∏
αΓ

αΓ
=α

i i

i iZ ,

where Γ is the gamma function. We don't have to understand Γ because it will later cancel
out. The δ in (2.31) is the Dirac delta function which is defined by

(2.34)




≠

=
=δ

0 if,0
0 if,1

)(
x
x

x and

€

δ(x)
n∫ dx =1.

 26

(Actually, and more correctly, the Dirac delta function is not a function but a distribution in
the sense of the theory of distributions, a branch of functional analysis. Confusingly, in that
theory the notion of a distribution is not the same as the notion of distributions as we know it
from probability theory. See Appendix A for a few notes on the theory of distributions.)
Equipped with (2.30) and (2.31) we return to (2.28), which we now can calculate as a pdf:

(2.35)

)|(
)(
)(

!!
!

)|(
1

1)()(
!!

!
)|(

1
)|(

)|(),|(),|(

201

20

1

20

1

11
20

1201

α+θ
α
α+

=









−θδ⋅θ⋅αθ=

θθ
=θ

∑∏∏
==

−α−

=

D
Z
DZ

nn
N

MDP

Z
nn

N
MDP

MDP
MpMDPMDp

i
i

i
i

i

n
i

ii

D




where D + α = (n1+α1, ..., n20+α20). Because p(θ|D,M) and (θ | D+α) are probability
distribution functions, the first three multiplicative terms in the last line of (2.35) must
evaluate to unity, whereby we find

(2.36) p(θ|D,M) = (θ | D+α).

Thus we have the posterior distribution of θ. In order to arrive at the posterior mean estimator,
we integrate over the posterior distribution (of distributions!):

(2.37)

€

θi
PME = θi∫ D(θ |D+α) dθ

= Z−1(D+α) θi∫ ⋅ θ j
n j +α j −1

j=1

20

∏ ⋅δ (θi
i=1

20

∑) −1








 dθ

=
Z(D+α + ei)
Z(D+α)

=
Γ(n j +α j + ei)j∏

Γ(n j +α j + eij
∑)

⋅
Γ(n j +α jj∑)

Γ(n j +α j)j
∏

=
Γ(n j +α j + ei)
Γ(n j +α j)

⋅
Γ(ni +α ii∑)

Γ(n j +α j + eij
∑)

=
ni +α i

N + A,

where by D + α + ei we mean (n1+α1+e1 , ..., n20+α20+e20); ei(n) = 1 if i = n, else 0; A = α1 +
...+α20 and in the last step we exploit Γ(x+1) = xΓ(x).

We see that the posterior mean estimator
AN

n ii
i +

α+
=θPME is rather similar to the maximum

likelihood estimator
N
ni

i =θ ML , and we can see how the parameters αi of the Dirichlet

 27

distribution can intuitively be interpreted as "pseudo-counts". That is, the prior knowledge is
entered into the game here by augmenting the empirical counts ni with extra pseudo-counts αi.
These pseudo-counts reflect the subjective intuitions of the biologist, and there is no rigorous
rule of how to set them correctly. There are two limiting cases: if we don't add any pseudo
counts, the Bayesian approach reduces the the maximum-likelihood case, that is, only the
empirical information enters the estimation. This would drive us to the "far right" side in the
bias-variance dilemma, that is, we run danger of overfitting. If we add, on the contrary, very
large pseudo-counts, the final "estimate" will just replay the prior information with almost no
influence from the empirical information; this would put us to the far left side in the bias-
variance-dilemma, that is, we would just get our bias (the Bayesian prior) back. So the
Bayesian approach does not solve the bias-variance dilemma; it only makes it transparent and
forces the researcher to take his/her stand.

The outcome of (2.37) can be seen in yet another way, which indicates another way of how
one may work in one's personal bias into a parameter estimation. Assume that according to
your personal insight (before seeing the data) you expect that the parameters

),...,(201 θθ=θ have true values),...,(201
priorpriorprior θθ=θ . This θprior does not incorporate

any information from D and thus marks the extreme left (bias) end of the bias-variance
dilemma. (Note that θprior is not a proper Bayesian prior – a proper Bayesian prior would be a
distribution of distributions θ!). You compute the maximum-likelihood estimator

),...,(),...,(201ML
20

ML
1

ML

N
n

N
n

=θθ=θ from D. θML does not reflect any prior information, fits

the data perfectly and thus marks the extreme right end of the bias-variance-range. Now, in
order to settle at some compromise between the two extremes, construct "blended" estimators

(2.38) θpost = q θprior + (1 – q) θML,

where 0 ≤ q ≤ 1. Writing θprior as),...(201

AA
prior αα

=θ and putting q = A / (N + A) and (1 –

q) = N / (N + A) yields the same result as (2.37). Note however that this procedure of linearly
blending the parameters of a "personally expected" distribution with the parameters of a ML
distribution does not universally work – not all types of parametrizations θ of distributions
allow linear blending.

The biosequence analysis textbook of Durbin et al., from which this example is taken, some
thought is given to how one should properly select the pseudo-counts. The proper exploitation
of such "soft" knowledge makes all the difference in real-life machine learning problems.

Here is a summary of Bayesian approaches to parameter estimation for parametrized
distributions:

 28

2.5 Some general remarks on estimation theory

We have seen that even in a situation as simple as estimating the probabilities of 20 symbols
from a sample, several estimators T: (x1, ..., xn) θ̂ can be considered, which have each
their pro's and con's. This situation is typical and has spurred the development of an important
subbranch of statistics, estimation theory. Estimation theory is concerned in defining general
quality criteria for estimators, thus helping to compare the various estimators one might think
of in a given situation. The field was pioneered by Sir Ronald Aylmer Fischer in the first half
of the 20th century.

The general approach in estimation theory is to investigate the behavior of an estimator T as
the number N of observations grows, that is, consider T as a sequence of related estimators Tn:
(x1, ..., xn) θ̂ . Note that an estimator Tn is a random variable.

Let θ0 denote the true distribution. Here are the most important quality criteria for estimators:

1. Unbiasedness. T is unbiased if for all n, E[Tn] = θ0. In our example, ML

iθ was unbiased
but PME

iθ was not.

2. Asymptotic unbiasedness. T is asymptotically unbiased if limn→∞ E[Tn] = θ0. PME

iθ is an
example.

For the next quality criteria we need to consider a probability space (Ω, F, P) where each
ω ∈ Ω is an "experiment" in which we carry out an infinite sequence
x1, x2,... = X1(ω), X2(ω)... of measurements (so Xi is the random variable "carry out the ith
measurement within such an experiment"). Tn(ω) is then Tn(x1, ..., xn) for ω = x1, x2,....Then
we can define:

3. Strong consistency. T is strongly consistent if Tn converges to θ0 P-almost-surely, that is,
if

1. Carefully choose a prior P(θ | M) which reflects your a-priori expert belief
about how distributions θ should be distributed. If you don't know much
beforehand, P(θ | M) should be close to uniform; if you have strong
preferences for particular θ, make P(θ | M) peak strongly around the
preferred values.

2. Make your measurements and think of a proper type of distribution (here:
polynomial distribution) to obtain P(D |θ , M).

3. Use Bayes formula to obtain the posterior distribution of distributions,
P(θ | D, M).

4. Integrate over P(θ | D, M) to find the final posterior distribution θ̂ .

Always do step 1 before making measurements! If your choice of the prior
would be influenced by what you empirically observe, the Bayesian approach
becomes thoroughly flawed!

 29

(2.39) P(limn→∞ Tn(ω) = θ0) = 1

ML
iθ and PME

iθ are strongly consistent (by the strong law of large numbers). Explanation: The
strong law of large numbers isn't actually a law but a property of a sequence X1, X2, ... of
numerical random variables. Such a sequence obeys the strong law of large numbers if

(2.40) ∑ =∞→
=−

n

i iin
XEX

n 1
0))((1lim P-almost surely.

It holds, for instance, if all Xi are integrable, independent, and identically distributed (a
fundamental theorem of Kolmogorov). For ML

iθ , we can use the law of large numbers to

show(2.39) as follows. For a sample of size N,)(ML
, ωθ Ni = ∑ =

ω
N

j jXN 1
)(1 , where

1)(=ωjX if the j-th protein sequence in our sample has the i-th amino acid symbol in the

location of interest, else 0)(=ωjX . The Xj are integrabel, independent, and identically

distributed, so the strong law applies. The expectation of Xj is θi for all j. So we can conclude:

1

)0))(1((lim

)0))(1((lim

))(1(lim))((lim

1

1

1,

=

=θ−ω=

=θ−ω=

θ=ω=θ=ωθ

∑

∑

∑

=∞→

=∞→

=∞→∞→

i
N

j jN

i
N

j jN

i
N

j jNi
ML
NiN

X
N

P

X
N

P

X
N

PP

where the last equality is justified by the strong law. For PME
iθ a similar argument can be used.

A background note. As we have just seen, the strong law justifies that (and how, namely with

probability 1) we may interpret the limit of relative frequency counts, ∑ =∞→ ω
N

j jN X
N 1

)(1lim ,

as the probability of a discrete observation outcome. This is, on the one hand, the intuitive
foundation of the frequentist approach to probability, but on the other hand, it is also a derived
result within that theory. Therefore, the law of large numbers (especially the fundamental
theorem of Kolmogorov) is a pillar in the frequentist theory of probability.

4. Weak consistency. T is weakly consistent if Tn converges to θ0 in probability, that is, if

(2.41) for all ε > 0, limn→∞ P({ω ∈ Ω | 7 Tn(ω) − θ0 7 > ε}) = 0.

Weak consistency follows from strong consistency, so our two estimators ML

iθ and PME
iθ are

weakly consistent, too. Many estimators of great practical significance in machine learning
have none of the properties 1. – 4. This is likely to happen if the estimator incorporates a
nonlinear optimum finding subroutine, which for instance is the case in most neural network
(widely used in pattern recognition) and hidden Markov model (widely used in speech
recognition) based estimators.

 30

5. Efficiency. These critiera 1. – 4. are all-or-none, that is, an estimator either has that
property or has it not. Another kind of quality criterium asks for the relative efficiency of an
estimator, that is, how efficiently it makes use of the information contained in a sample. The
general idea is that an estimator Tn (which should be unbiased to start with) is efficient if it
has small variance σ2(Tn), that is, if the estimates θ̂ returned by Tn are scattered narrowly
around θ0. An unbiased estimator Sn is more efficient than an unbiased estimator Tn, if σ2(Sn)
< σ2(Tn).

6. Sufficiency. (Here I roughly follow the book from Duda/Hart/Stork, Section 3.6). Yet
another angle on judging the quality of estimators starts from the question whether the choice
θ of parameters is appropriate in the first place. For our amino acid example (distribution of
discrete symbols in classes) the set of class probabilities makes an obviously adequate set of
parameters; when one wants to characterize a normal distribution, one chooses θ = (µ, σ). But
what about cases where one does not have a well-founded intuition about how one should
characterize the unknown distribution with a few parameters? Assume that the unknown
distribution would rightfully be described by parameters θ, but you don't know which kind of
θ. This is a standard situation in practice, where you meet "wild" distributions that cannot be
expected to be of any known, simple kind. So you devise of a vector s of parameters that you
can estimate from data instead of θ, hoping that s contains all the relevant information about
the underlying distribution. Such a set s of parameters that you estimate from data is called a
statistic. Technically, a statistic is just some (possibly vector-valued) function s = ϕ(D). A
statistic is called sufficient if indeed it contains all the relevant information about the
underlying distribution, that is, about θ.

Intuitively, one would define s to be sufficient if

(2.42) P(θ | s, D) = P(θ | s),

that is, if s extracts from the data D all that is relevant for learning about θ. However, this
would imply that θ is taken as a random variable, a perspective not common for "classical"
statisticians, who therefore defined sufficiency in another way: a statistic s is said to be
sufficient for θ if P(D | θ, s) is independent of θ, that is, P(D | θ, s) = P(D | s). The two ways
of defining sufficiency are equivalent. To see this, first assume the classical definition
P(D | θ, s) = P(D | s). Use the Bayesian formula to spell out P(θ | s, D) by

(2.43) P(θ | s, D) =
)|(

)|(),|(
s

ss
DP
PDP θθ

,

where the r.h.s. cancels to P(θ | s) with P(D | θ ,s) = P(D | s), yielding the Bayesian-style
definition. Conversely, if you assume P(θ | s, D) = P(θ | s), you get P(D | θ ,s) = P(D | s) by a
mirrored argument (you need the extra condition P(θ | s) ≠ 0.).

A fundamental theorem characterizes sufficient statistics as those statistics s, where P(D | θ)
can be factorized into a part that depends only on s and θ, and another part that depends only
on D:

 31

Theorem 2.1 (factorization theorem): A statistics s is sufficient for θ if there exist functions g
and h such that P(D | θ) = g(s, θ) h(D).

A proof for the case of discrete distributions can be found in Duda/Hart/Stork (p. 104). The
importance of the factorization theorem lies in the fact that if we want to check whether a
statistics s is sufficient, we can restrict our analysis to the distribution P(D | θ) instead of
having to deal with P(D | θ, s). If D = (x1, ..., xn), and the individual measurements are
statistically independent, P(D | θ) takes the simple form of

(2.44))|()|(
1

θ=θ ∏
=

n

k
kxPDP .

Specifically, the factorization theorem teaches us that a sufficient statistic depends only on the
probabilties P(xk| θ) and not on (inaccessible) assumptions on a prior P(θ).

Exponential distributions. The factorization theorem and Eq. (2.44) can be applied
particularly well if we are dealing with parametric probability distributions from the
exponential familiy. This family includes most of the standard textbook distributions, for
instance the normal, exponential, Poisson, Gamma, Beta, Bernoulli, binomial and multinomial
distributions. Exponential distributions are characterized by a pdf of the form

(2.45) p(x | θ) = α(x) exp [a(θ) + b(θ)T c(x)],

where a, b, c are linear functions.

For exponential distributions, one gets a sufficient statistic by

(2.46) ∑
=

=
n

k
kxn 1

)(1 cs ,

and the two factorizing functions as

(2.47) ∏
=

α=θ+θ=θ
n

k
k

T xDhng
1

)()()],)()((exp[),(sbas .

A table containing an overview of all these expressions for a dozen or so much-used
distributions is shown in Duda/Storck/Hart p. 108-109.

Once one has a sufficient statistic s = ϕ(D) and the factorization functions, given a sample x
= (x1, ..., xn) one can find the maximum likelihood estimator MLθ through

 32

(2.48)

).('

),(maxarg
)(),(maxarg

)|(maxarg)(

ML

ML

s

s
xs

xx

θ=

θ=

θ=

θ=θ

θ

θ

θ

g
hg

P

For the various exponential distributions, the sufficient statistics and the factorization
functions g are significantly simpler than the original formulae for the pdfs. Because very
many distributions of practical relevance are exponential, the tools of sufficient statistics and
factorization are of great practical importance.

 

 33

3 Elementary methods for representing and estimating pdfs 

In this section we will learn about a choice of basic approaches to formally specify pdfs (a
precondition to run algorithms on them) and to estimate such pdfs from sample data.

In parametric methods, a pdf is represented by a closed analytical formula that typically needs
only a few parameters to be fully specified. An example is the univariate normal (= Gaussian)
distribution which is specified by its mean µ and its standard deviation σ. We will treat the
multivariate normal distribution and see how its parameters can be estimated from sample
data.

In nonparametric methods, no assumption is made concerning a specific analytical form of
the pdf. Instead, the sample data themselves determine the shape of the pdf. A simple example
is histograms. We will learn about a more involved approach, Parzen windows.

The distinction between parametric and nonparametric methods is not clear-cut in statistics.
We will learn about a semi-parametric method that has features of both, Gaussian mixtures.
Estimating Gaussian mixture models from data can be effected by a variety of computational
methods (none trivial). We will take a look at gradient-descent methods and the expectation-
maximization algorithm. All of these are general-purpose techniques that can be applied in
many other situations besides Gaussian mixture estimation.

I lean closely on the treatment of this subject given in Chapter 2 of Bishop (1995), quoting
some passages verbatim without stating that in each case.

3.1 Multivariate Gaussians

Univariate Gaussians

You know the one-dimensional (univariate) normal distribution (µ, σ), which is given by
the pdf

(3.1) 2

2

2
)(

2
1)(σ

µ−
−

σπ
=

x

exp ,

is fully specified by its mean µ and standard deviation (square root of variance) σ, has the
famous bell-shape with µ being the location of the maximum and µ ± σ being the locations of
the zeros of the second derivative (Figure 3.1).

Figure 3.1 pdf of a normal distribution
with mean 2 and standard deviation 1.

 34

Make sure you are aware of the distinction between the Gaussian distribution, which is a
function from the Borel σ-field  to [0,1] and denoted by (µ, σ), vs. its pdf, which is a
function from the reals to the non-negative reals and denoted by p (we may also write pµ, σ if
we want to point out the underlying distribution parameters). Disturbingly, this distinction
between distribution and pdf is not made in some textbooks, specifically, not in Bishop
(2006), a source of much confusion.

The normal distribution is so fundamental because by the central limit theorem the mean of
independent numerical random variables X1, ..., Xn converges to a normal distribution. This is
however a sloppy formulation, and you might be curious to learn about a rigorous formulation
of this foundational tool for many applications in statistics.

Definition a.. Let (Xi)i ∈ Õ be a sequence of independent, real-valued, square integrable
random variables with nonzero variances V(Xi) = E[(Xi − E[Xi])

2]. Then we say that the
central limit theorem holds for (Xi)i ∈  Õ if the distributions PSn of the standardized sum
variables

(3.2)
))((

])[(

1

1

∑
∑

=

=

σ

−
= i

j j

i

j jj
n

X

XEX
S

converges weakly to (0, 1).

Explanations.

• A real-valued random variable with pdf p is square integrable if its second moment, that is

the integral

€

E[X 2] = X 2(ω)dP = x 2PX (dx)
∫

Ω
∫ = x 2p(x)dx


∫ is finite. (Notice the

notational variants.)
• If (Pi)i ∈  is a sequence of distributions over , and P a distribution (all over the same

measure space (, )), then (Pi)i ∈  Õ is said to converge weakly to P if

(3.3) ∫∫ =
∞→

)()()()(lim dxPxfdxPxf ii

for all continuous, bounded functions f:  → . Here the σ-field  is the Borel σ-field,
which is the most commonly encountered σ-field over . It is generated by all open
intervals (a,b) ⊂  , that is,  is the smallest σ-field over  which contains all these
intervals.

• The "central limit theorem" is actually not a theorem but a property that some sequence of
random variables may or may not have (just like the "law of large numbers" isn't a law but
a property, see Section 2.5).

A sequence (Xi)i ∈  of random variables (or, equivalently, its associated sequence of
distribution (PXi)i ∈ ) obeys the central limit theorem under rather weak conditions – or in
other words, for many such sequences the central limit theorem holds.

 35

A simple, important class of (Xi)i ∈ Õ for which the central limit theorem holds is obtained
when the Xi are identically distributed (and, of course, are independent, square integrable and
have nonzero variance). Notice that regardless of the shape of the distribution of each Xi, the
distribution of the normalized sums converge to (0, 1)!

However, this simple case does not explain the far-reaching, general importance of the central
limit theorem (rather, property). In textbooks one often finds statements like, "if the outcomes
of some measurement procedure can be conceived to be the combined effect of many
independent causal effects, then the outcomes will be approximately normal distributed". The
"many independent causal effects" that are here referred to are the random variables (Xi)i ∈ Õ;
they will typically not be identically distributed. Still the central limit theorem holds under
mild assumptions. Intuitively, all that one has to require is that none of the individual random
variables Xi dominates all the others – the effects of any single Xi must asymptotically be
"washed out" if an increasing number of other Xi' is entered into the sum variable Sn. In
mathematical textbooks on probability you may find numerous mathematical conditions
which amount to this "washing out". A special case that captures many real-life cases is the
condition that the Xi are uniformly bounded, that is, there exists some b ∈  such that Xi(ω) <
b for all i and ω. However, there exist much more general (nontrivial to state) conditions that
likewise imply the central limit theorem. For our purposes, the take-home message is,

Multivariate Gaussians: geometric properties of the pdf

So much for a recap of the univariate Gaussian distribution. We now turn to the multivariate
case, which describes distributions in d, where d > 1, that is, the distribution of a vector-
valued random variable X: Ω → d, ω # (X1(ω), ..., Xd(ω))T = (x1, ..., xd)T = x with
component variables X1, ..., Xd (superscript T marks vector/matrix transpose). The pdf of a
multivariate Gaussian is of the form

(3.4)

€

p(x) =
1

(2π)d / 2 |Σ |1/ 2
exp − 1

2
(x −µ)TΣ−1(x −µ)









 ,

where the mean µ = E[x] is now a vector, Σ is the d × d covariance matrix

(3.5)

€

Σ = (cov(Xi,X j))i, j=1,...,d = (E[(Xi − E[Xi])(X j − E[X j]])i, j=1,...,d
= E[(x −µ)(x −µ)T],

and |Σ| is the determinant of Σ. From (3.5) we see that Σ is a symmetric matrix, and therefore
has d(d+1)/2 independent components. There are also d independent components in µ , so the
pdf p is specified by d(d+3)/2 parameters. For illustration, here is a surface plot of a bivariate

Gaussian with µ = (0.5, 1)T and Σ = 








21
11

:

if (Xi)i ∈  is a sequence of independent, square integrable, non-zero-variance random
variables, none dominating all others – where the individual Xi may each be individually
arbitrarily distributed –, then the normalized sums converge to a normal distribution.

 36

Figure 3.2: pdf of a bivariate Gaussian
distribution. u1 and u2 are the eigen-
vectors of Σ. They mark the directions
of the principal axes of the contour
ellipsoids. The eigenvectors are
u1 = (0.52, -0.85) and u2 = (-0.85, 0.52),
with inverse eigenvalues 1/λ1 = 0.38 and
1/λ2 = 2.62. Notice that sqrt(1/λ1) = 0.62
and sqrt(1/λ2) = 1.62 – thus the main
axes of the contour ellipsiods will have
relative extensions 0.62 vs. 1.62.

The geometric shape of a multivariate Gaussian can be best understood when one considers
the contour sets c = {x ∈ d | p(x) = c} of arguments where the pdf has some constant value
c. For bivariate Gaussians, the c are ellipses, and in the general case they are d-dimensional
hyperellipsoids. The shape of these ellipsoids is determined by properties of Σ. The key to
understanding Gaussians is to understand the algebraic properties of Σ, which we will now
investigate. Matrices with similar properties as Σ arise frequently in statistics, signal
processing and machine learning, therefore our effort has a far greater benefit than "just"
understanding Gaussians. I follow a similar treatment of correlation matrices2 given in
Farhang-Boroujeny (1999).

Proposition 3.1. If Σ is nonzero, then it is positive definite, that is, for any nonzero vector v ∈
¬d it holds that vHΣv > 0. (Here the superscript H denotes the conjugate transpose of a vector
or matrix).

Proof. We first show that vHΣv is real-valued. This follows from (vHΣv)* = (vHΣv)H =
(vHΣHvHH) = (vHΣv), where * denotes conjugates of complex scalars. To show that vHΣv is
positive, insert (3.5):

(3.6)

€

vHΣv = vHE[(x −µ)(x −µ)T]v = E[vH(x −µ)(x −µ)Tv].

We note that

€

vH(x −µ) and

€

(x −µ)Tv form a pair of complex-conjugate scalars, from which
we conclude

(3.7)

€

vHΣv = E[| vH(x −µ) |2],

which is non-negative for any nonzero vector v. Å

Proposition 3.2. The eigenvalues of Σ are all real and positive. Furthermore, the eigenvectors
of Σ can be chosen to be real.

Proof. Consider an eigenvector u of Σ and its corresponding eigenvalue λ:

2 Be aware of the distinction between covariance matrices E[(x - µ) (x - µ)T] and correlation matrices E[x xT].
Both kinds of matrices share however the algebraic properties presented here.

 37

(3.8) Σ u = λ u.

Premultiplying by uH and noting that λ is a scalar we get

(3.9) uH Σ u = λ uH u.

The quantity uH u on the rhs. is real and positive since it is the squared length of the vector u.
Because Σ is positive definite, uH Σ u is positive and real. Therefore, λ is positive and real.

Let u = v + i w, where v and w are real vectors, be an eigenvector of Σ. Then from

(3.10) Σ v + i Σ w = Σ (v + i w) = λ (v + i w) = λ v + i λ w

it follows that Σ v = λ v, that is, an eigenvector can be chosen to be real. Å

Because the eigenvectors of Σ can be assumed real, their Hermitians equal their transposes,
which we will henceforth use.

Proposition 3.3. If u1 and u2 are two eigenvectors of Σ with eigenvalues λ1 ≠ λ2, (and we can
assume that u1 and u2 are real) then u1

Tu2 = 0, in other words, u1 and u2 are orthogonal.

Proof. We have

(3.11) Σ ui = λi ui for i = 1, 2.

Applying the transpose on both sides and noting that the λi are scalars and that ΣT = Σ, we
obtain

(3.12) ui

T Σ = λi ui
T for i = 1, 2.

Combining (3.11) and (3.12), we get

(3.13) (λ1 − λ2)u1

T u2 = 0,

which implies our claim because (λ1 − λ2) ≠ 0. Å

If there are eigenvectors ui, ..., ui+k with equal eigenvalues λ, they are not unique: each linear
combination of them yields another eigenvector to the same eigenvalue. However, a little
algebra reveals that one may choose them to be orthogonal as well. Therefore, one may find a
matrix U that contains an orthonormal (normalized to norm 1 and orthogonal) set of
eigenvectors of Σ in its columns. Let Λ be the matrix

(3.14)

€

Λ =

λ1 0 0
0 λ2 0



0 λd



















 38

that contains the eigenvalues of the corresponding eigenvectors in U on its diagonal. Then Σ
can be decomposed as

(3.15) Σ = U Λ UT,

which follows from packing together the equations (3.8) into a matrix equation Σ U = U Λ
and observing UT = U -1.

The inverse of Σ is

(3.16) Σ-1 = U Λ -1 UT,

as can be verified by a simple calculation. Thus, the eigenvectors of Σ-1 are identical to the
eigenvectors of Σ, with the eigenvalues of Σ-1 being the inverses 1/λi of the eigenvalues λi of
Σ. The matrix Σ-1 appears in the formula of the multivariate Gaussian in the context of the
quadratic form

(3.17)

€

(x −µ)TΣ−1(x −µ) = vTΣ−1v,

where v is the centered version of the random variable x. Let v = (v1, ..., vd) and notice that
(v'1, ..., v'd) = v' = UTv transforms v into the coordinate system spanned by the eigenvectors
from U. Now consider

(3.18)

€

vTΣ−1v = vTUΛ−1UTv = v'T Λ−1v'= λi
−1v'i

2

i=1

d

∑ .

We find that the quadratic form vv 1−ΣT decomposes into a sum of squares of the components
of v', weighted with 1−λ i . Because the components v'i of v' are the projections of v on the
eigenvectors in U, we can now interpret the shape of vv 1−ΣT geometrically as a paraboloid
opened upwards, with the main axes lying in the directions of the ui, and the corresponding
curvatures being proportional to the inverse eigenvectors 1−λ i .

Finally, for some constant C let us consider Cv ii =λ− 21 ' , which is equivalent to

€

v'i = C λi
−1 .

From this we see that the elliptic contour lines shown in Figure 3.2 will extend in the direction
of an eigenvector ui by amounts proportional to

€

λi
−1 .

Multivariate Gaussians: Model estimation

A multivariate Gaussian is characterized by the parameters contained in µ and Σ, that is, by
the expectations E[X] = (E[X1] ... E[Xd])T and djijjii XEXXEXE ,...,1,])][])([[(=−− . Our task
thus amounts to estimate means and covariances from numerical sample data. These are of
course well-studied basic problems in statistics, and we simply rehearse the solution.

 39

Let D = (x1, ..., xN)T = (xij)i=1,...,N; j = 1,...,d be a sample, written in the customary fashion, that
is, each observation is a d-dimensional row in an obsveration matrix D. Then the maximum-
likelihood estimate of (E[X1] ... E[Xd]) is simply the column mean of D:

(3.19)

€

µML = (E[X1] ... E[Xd])ML = 1/N 1 D,

where 1 denotes the row vector of N ones. The maximum-likelihood estimate of Σ can be
shown to be

(3.20) ΣML =

€

1
N

(xn − ˆ µ)(xn − ˆ µ)T

n=1,...N
∑ = 1/N D'TD',

where D' = (x1

 –

€

ˆ µ , ..., xN
 –

€

ˆ µ)T is the normalized data matrix. However, the maximum-
likelihood estimate is not unbiased (it systematically underestimates covariances). One gets an
unbiased estimate of Σ via

(3.21) Σ̂ = 1/(N – 1) D'TD',

a result that is proven in all elementary textbooks on statistics.

Further properties of multivariate Gaussians

Uncorrelatedness implies independence. A property that distinguishes Gaussians from
generic multivariate distributions is that uncorrelatedness of the component variables
X1, ..., Xd implies their independence. This can be seen as follows. If the variables X1, ..., Xd
are uncorrelated, then Σ−1 is a diagonal matrix with the inverse variances 2/1 iσ of the
variables on the diagonal (easy exercise), and the multivariate Gaussian pdf decomposes as

(3.22)

€

p(x) =
1

(2π)d / 2 |Σ |1/ 2
exp − 1

2
(x −µ)TΣ−1(x −µ)











=
1
2πσ i

i=1...d
∏

exp −
1
2
(xi −µi)

2

σ i
2

i=1...d
∑









 =

1
2πσ ii=1...d

∏ exp − 1
2
(xi −µi)

2

σ i
2











= p(xi)
i=1...d
∏

into a product of distributions (which are again Gaussian) of the component variables.

Invariance under linear transformations. Linear transformations A: d → h transform a
d-dimensional random variable X, which is normal distributed according to (µ , Σ), into a h-
dimensional random variable AX which is normal distributed according to (Aµ , AΣAT). As
we have seen above, an important special case is obtained for A = U: the resulting new
coordinate variables x'i = Ax[i] are uncorrelated and therefore independent. That is, any
multivariate Gaussian distribution can be interpreted, up to a linear coordinate transformation,
as being generated by d independent, univariate Gaussian distributed random variables.

 40

Invariance under marginal and conditional densities. The marginal densities, obtained
from a multivariate Gaussian pdf by integrating away some components, are themselves
normal. Similarly, the conditional densities, obtained by setting some of the components to
fixed values, are normal. (Make sure you have a clear perception of the distinction between
marginal and conditional densities!)

All these pleasant properties taken together with the fact that Gaussians can be understood as
limiting distributions of virtually any sum of distributions, it becomes clear why the normal
distribution plays such a central role in statistics.

3.2 Mixtures of Gaussians

Clearly, assuming a Gaussian distribution – univariate or multivariate – is not always
appropriate. Consider the following univariate distribution, depicting the midterm point
distribution of a bygone IUB course in a coarse barchart graphics:

Figure 3.3 An un-normal distribution.

Cases like this – and vastly more complicated ones – are the rule, not the exception, when
non-trivial real-life systems are statistically modelled. The question arises, how can such
"wild" distributions be approximately represented by a few parameters? One very standard
approach is to cover the observation space by a number of weighted Gaussians. Given the
apparent "two-bump" appearance of the empirical distribution from Figure 3.3., it seems
natural to represent it as a sum of two Gaussians. A pdf made of a mixture of two Gaussians
for the above example might be

(3.23) p(x) = 0.6 * p30,10(x) + 0.4 * p80,10(x),

where p30,10 denotes the pdf of a normal distribution with mean 30 and standard deviation 10.
More generally, a mixture of Gaussians over d is a distribution that has a pdf of the kind

(3.24)),()|()(
1

jPpp
M

j
j∑

=

θ= xx

where

€

θ j = (µ j ,Σ j) are the parameters of a d-dimensional Gaussian with pdf)|(jp θx , and
where the mixture coefficients P(j) satisfy

points

Nr. of
students

 41

(3.25) 1)(0 ≤≤ jP and 1)(
1

=∑
=

M

j
jP .

We often prefer to write)()|()(

...1
jPjpp

Mj∑ =
= xx as a shorthand for (3.24).

Given a mixture model of the kind (3.24), one can construct a generative algorithm that
produces samples xi from that mixture distribution, in a two-step procedure:

1) Randomly choose one of the M component Gaussians according to the mixture

probabilities P(j).
2) If in step 1, the k-th component has been selected, produce a random point from the

Gaussian distribution)|(jp θx . (How this can be implemented will be explained in
Section 4 of these lecture notes).

This two-step routine is an instance of a sampling algorithm. Such algorithms produce data
points which are distributed according to some given distribution (here: mixture of
Gaussians). We will soon see (Section 4) that finding good sampling algorithms can be quite
challenging.

This all seems natural and easy enough, but we immediately find ourselves in the midst of
truly difficult questions:

1. Given a sample D and assuming we want to model it by a mixture of Gaussians, what is

the appropriate number M of mixture components?
2. Given a sample D and assuming we already "know" which M is suitable, how can we find

an estimate (maximum likelihood or Bayesian) of the involved parameters of the
component Gaussians?

It will turn out that the second question is the easier one, and the first is actually so difficult
that we will not present approaches to solving it here3. Instead I will only highlight the deeply
problematic nature of the first question by a brief discussion.

If you look at Figure 3.3., you might be tempted to say, "well, in this case it seems obvious
that we should use two Gaussians because we clearly see two (noisy) humps." But is this
really so? Consider the following two interpretations of the empirical midterm point
distribution through mixtures of Gaussians, one with two and and the other with 8 Gaussians:

Figure 3.4 Two ways of capturing an empirical distribution by a mixture of Gaussians.

3 Visit my lecture on Machine Learning for more on this topic – in fact, this difficulty is an instance of the
fundamental problem of Machine Learning, called the bias-variance dilemma, for which only recently a
satisfactory mathematical theory has started to be developed (namely, statistical learing theory).

 p(x)

0.01

0

(a) (b)

 42

Now, version (a) looks "somehow more reasonable" – but it is not quite clear what that means
– but then again, if you think about it you will find that the likelihood of a model like (b) is
higher than that of (a). So, are maximum-likelihood models not always preferable? The
comment you might get from a machine learning expert would go like this: "Using an
increasing number of mixture components, any distribution can be approximated arbitrarily
well. However, the models become more and more contrived and complicated, and they model
more and more not the true underlying distribution, but the random variations from the
sample (overfitting). Instead, you should bias the model selection towards simpler models –
they are not so prone to overfitting. Read the books by Vapnik, the father of modern statistical
learning theory, to understand what is going on here – but frankly, I don't quite understand
them completely myself and the theoretical findings don't seem to be too helpful in practice –
well if you ask me, I go for Bayesian approaches or if I don't have the time for that, I simply
prefer simple models..."

Another fundamental problem of machine learning that has a bearing on finding an
appropriate number M of mixture components is known as the curse of dimensionality. To
appreciate this problem, you should first notice that in very many practical modelling tasks,
the sample data vectors x1 are high-dimensional – in the sense that they are not of length 3 or
5, but of length 50 or more. For instance, customer profile data typically "measure" a
customer by several dozens of parameters – age, sex, maritial status, income etc. to start with,
followed by many figures describing what products have been bought by the customer in the
past, whether s/he paid the bills swiftly, website clicking profile information, etc. (You would
probably be amazed to learn about your profile at ebay or amazon!). Or consider the large
number of sensors attached to some complex physical, chemical or biochemical experiment,
which result in an equally large size of data vectors. Or consider the wealth of information
that is gathered in the central surveillance unit of a power plant (or even of a modern car
engine).

So, let us consider how an increasing dimension of data vectors affects the estimation of a
distribution. Figure 3.5a shows a 3D histogram of a sample of size 50 that was drawn from a
3-dimensional mixture of M = 3 similar Gaussians with mixture coefficients P(1) = P(2) =
P(3) = 1/3, where the means were µ1 = (0, 0, 0), µ2 = (0.5, 0, 0), µ3 = (1, 0, 0), and the
covariance matrix was diag(0.15, 0.5, 0.5) for all three components. Figure 3.5b shows a
projection of the histogram on the (x, y)-plane, and Figure 3.5c a projection on the x-axis.

The most conspicuous thing you can see in Fig. 3.5a is that you can't see any conspicuous
thing – certainly you can't guess from the histogram that it was sampled from a mixture of
three Gaussians. Similarly, the 2D projection shows no visually discernible structure of being
made from 3 (now 2-dimensional) Gaussians. Only the 1-dimensional projection can visually
be interpreted as being composed from three humps.

 43

a. b.

 c.

Figure 3.5 a. A sample of size 50 from a mixture of three 3D Gaussians. Each little box
represents one data point from the sample. Blue lines indicate position of sample point over z
= 0 surface. b. Projection on (x, y)-plane, c. projection on the x-axis. Height of boxes in a., b.
and c. indicate number of sample points that fell into the cubic (square, linear) interval of side
length 0.1 of d (d = 3, 2, 1; a heigth increment of 0.1 corresponds to one data point).

Roughly speaking, the "curse of dimensionality" refers to the fact that in high-dimensional
data spaces, one cannot locally estimate probability densities by "bin counting". In the 1D
figure above, you get histogram bars of different heights, indicative of different probability
densities along the x-axis. In the 2D histogram, only a few bar locations mark hits of the bins
by more than a single data point. Finally, in the 3D histogram, most bin cells are not hit by a
data point at all; the cells that mark counts all catch only a single data point.

Why is this? If you wish to estimate densities from a sample in (say) the d-dimensional unit
hypercube with a metric resolution (bin side length) of 0.1, then you have to consider 10d
many bins. Now assume that you wish to ascertain a minimal average accuracy of bin
frequency estimates by having (on average) 5 hits per bin (as in the 1D example). This implies
that you need 5 * 10d data points in your sample. In other words, for a given metric resolution
and statistical accuracy, the number of required data points grows exponentially with the data
dimension d. Of course, with 70-dimensional customer profile data you can't ever hope to get
anywhere close to having 1070 customers at your disposal. You feel helpless? Good. Come to
my Machine Learning lecture next year to learn about general coping strategies against the
curse of dimensionality... If you ask a Machine Learning expert for advice, you will hear
something like "The key to the curse of dimensionality is to reduce the dimension of data by a

 44

kind of preprocessing that is called feature extraction. Instead of using the raw, high-
dimensional data you transform each sample point into a low-dimensional feature vector first,
and then do your statistics on those. The catch is, of course, to find good features that don't
lose much information. Please consult the current research literature..." In this example from
Figure 3.5, a good 1-dimensional feature is the x-coordinate of the 3-dimensional distribution.
However, I knew this beforehand because I knew how the 3-dimensional distribution was
specified. This precious knowledge is not available in real-life scenarios – it is the very
purpose of modelling and Machine Learning to find out about an unknown distribution. If I
would have chosen the y-coordinate as a 1-dimensional feature, it would not have revealed
anything about the 3-hump character of the distribution.

This is all that I will remark in this lecture about the fundamental problems of overfitting and
the curse of dimensionality, which taken together render the task of finding a good choice for
the number M of mixture components a formidable challenge. We will simply assume that we
already know an appropriate M.

We now approach the other question, namely, how can we find an estimate of the involved
parameters of the M component Gaussians?

We will constrain ourselves to maximum-likelihood estimators and discuss two elementary
techniques to find ML-estimates of M mixed d-dimensional Gaussians, gradient descent
methods and the EM algorithm.

Gradient descent methods

A Gaussian mixture distribution is characterized by the means

€

µ j , the covariance matrices jΣ
and the mixture coefficients P(j). We collectively refer to all of these parameters as
θ = (θ1,..., θk). For didactic purposes we will restrict ourselves to a special case of the
parameter estimation task, namely, we will assume that each jΣ is equal to djI

2σ , where dI is
the d-dimensional identity matrix4. That is, each of the participating Gaussians j is of radially
symmetric shape, which is characterized by just one parameter 2

jσ . Using this simplification,
the pdf of the j-th component Gaussian is given by

(3.26)

€

p(x | j) =
1

(2πσ j
2)d / 2

exp −
x −µ j

2

2σ j
2














.

The model estimation task is specified as follows. We are given a sample D = (x1, ..., xN)T and
want to find a maximum likelihood estimate θML of θ:

4 A complete treatment can be found in Duda, R. O., Hart, P. E., Stork, D. G., Pattern Classification (second
edition). John Wiley and Sons, 2001, Section 10.4. IRC: Q327 .D83 2001

 45

(3.27)

€

θML = argmax
θ

L(θ) = argmax
θ

p(D |θ) = argmax
θ

p(xn | j)
j=1

M

∑ P(j)
n=1

N

∏

= argmax
θ

1
(2πσ j

2)d / 2
exp −

xn −µ j

2

2σ j
2















j=1

M

∑ P(j)
n=1

N

∏

Maximizing the likelihood function (θ) is equivalent to minimizing the negative log
likelihood – log (θ), which can be regarded as an error function E(θ) = – log (θ). Taking
the negative logarithm of probabilities is a trick that is very common in computational
statistics, because (i) it avoids numerical underflow problems (notice that the product of

probabilities in (3.27) can become extremely small), and (ii) turns the product ∏
=

N

n 1
in (3.27)

into a sum. So we will address the computational task to solve

(3.28)

€

θML = argmin
θ

E(θ)

= argmin
θ

− log
n=1

N

∑ 1
(2πσ j

2)d / 2
exp −

xn −µ j

2

2σ j
2













 j=1

M

∑ P(j)














This is a non-trivial task, because the error function E(θ) is highly nonlinear and may have
(indeed, will typically have) many local minima. You should think of E(θ) as a rugged "error
landscape" over d. We wish to find the global minimum of this landscape, or at least a local
minimum that is not too different from the global one.

Finding the global minimum of an error landscape function is a central problem in
optimization theory and machine learning. In this lecture, we will learn about a generic
technique to search for a global optimum in a later section (on simulated annealing). Here we
will only consider the simpler problem of finding a local minimum. One family of methods to
achieve this objective is to perform a gradient descent on the error landscape, that is, start at
some randomly chosen point θ0 and then "slide downwards" along the error gradient

T)/,...,/(1 kEEE θ∂∂θ∂∂=∇ until one reaches the bottom of the valley, that is, until 0=∇E .
Figure 3.6 illustrates the principle of gradient descent towards a local minimum.

Figure 3.6 Principle of gradient descent for finding a local minimum on the error surface

There are many ways to detail out this basic idea of gradient descent into an iterative
algorithm that approaches a local minimum value θmin asymptotically through a sequence θ0,
θ1, θ2, The simplest such algorithms are obtained by an update rule

θ

E(θ)

θmin ... θ2 θ1 θ0

 46

(3.29)

n
Enn θ+ ∇η−θ=θ 1 ,

that is, at each iteration one takes a step along the negative gradient ("straightly downhill"), of
a length that is weighted by some predetermined, fixed learning rate or stepsize η. Finding a
good learning rate may be tricky; it shouldn't be too small (then convergence is slow) nor too
large (then instability will result through "overshooting" the minimum). There are many
refinements of this basic update rule, for instance by adapting the stepsize dynamically or by
including curvature information ("second-order gradient methods"). You may learn about
such methods in the Machine Learning lecture or by consulting textbooks5, they are not in the
focus of this lecture.

Gradient descent methods are particularly convenient when the gradient E∇ has a closed-
form analytical representation that can be easily evaluated numerically. This is the case with
mixtures of Gaussians. Differentiation of (3.28) w.r.t. to the means µ j gives

(3.30)

€

∂E
∂µ j

= P(j | xn)
µ j − x

n

σ j
2

n=1

N

∑ ,

where

(3.31)
)(
)()|()|(

x
xx
p

jPjpjP =

is the probability that a sample point x was generated by the j-th Gaussian component and
p(x) is given by (3.24). For the standard deviation σj we obtain

(3.32)

€

∂E
∂σ j

= P(j | xn) d
σ j

−
µ j − x

n 2

σ j
3















n=1

N

∑ .

The minimization of the mixing parameters P(j) must carried out observing the constraints
(3.25). This could be effected via Lagrange multipliers, but a simpler way is to adopt a
frequently used trick, namely, represent P(j) through auxiliary variables γj in the softmax
function:

(3.33)
∑
=

γ

γ
=

Mk
k

jjP

,...,1

)exp(
)exp(

)(,

which monotonically transforms any set of M real numbers into M probabilities that sum to 1
and lie in (0,1). We can now perform an unconstrained minimization of E w.r.t. the γj.
Observing

(3.34)),()()()(kPjPjPkP
jk

j

−δ=
γ∂

∂

5 For instance, chapter 7 in Bishop (1999).

 47

which follows from (3.33), and using the chain rule, we find

(3.35) ()∑∑
==

−−=
γ∂

∂

∂

∂
=

γ∂

∂ N

n

n
M

k jj

jPjPkP
kP
EE

11

)()|()(
)(

x .

Equipped with all the derivatives (3.30), (3.32) and (3.35), we now can implement an error
minimizing algorithm for the basic gradient descent method (3.29) or one of the more refined
versions thereof. Notice again that such methods only find the closest-by local minimum
where you arrive by going downhill from the starting point θ0. If you want to chase the global
minimum, some (expensive) search methods must be employed (we will meet one of them in
this lecture).

The Expectation-Minimization (EM) algorithm

Sliding down the gradient is a natural, but by no means the only method to find a (local)
minimum in the error landscape. Another technique is the EM algorithm, which roots in a
quite different intuition. The EM algorithm is widely used in computational statistics when it
comes to estimate model parameters θ from incomplete or partially observable data. What
"incomplete" means depends on the specific case – for instance, it might mean missing data
points in time series measurements, or measurements of physical systems where the available
sensors give only a partial account of the system state, of which some variables are hidden
from observation. In our case it means that we do not know from which of the M Gaussian
components a particular sample point xi was generated. The "hidden" random variable whose
values we ignore is in our case an M-class indicator variable Ycomponent with the distribution
(P(1), …, P(M)). Figure 3.7 demonstrates the difference between complete and incomplete
data in our situation of mixed Gaussians.

Figure 3.7 A sample from a mixture of three 2-dimensional Gaussians. Left: incomplete data
don't include the information which point was "emitted" from which Gaussian. Right:
complete data would contain this information. (Figure copied from a presentation of
Christopher M. Bishop, http://research.microsoft.com/~cmbishop/downloads/Bishop-ECCV-
04-tutorial-B.ppt)

complete
0 0.5 10

0.5

1

(a)
0 0.5 10

0.5

1

(b)

incomplete

 48

We will not embark on the general theory of EM algorithms in this lecture (that is done in my
Machine Learning lectures) but instead only demonstrate its workings, which are intuitive
enough, for mixtures of Gaussians. First, notice that at a minimum of the error landscape, the
derivatives (3.30), (3.32) and (3.35) become zero. That is, maximum-likelihood solutions for
our parameters must satisfy

(3.36)

€

µ j
ML =

P(j | xn)xn
n=1

N

∑

P(j | xn)
n=1

N

∑
,

(3.37)

€

σ j
ML =

1
d

P(j | xn) µ j
ML − xn

2

n=1

N

∑

P(j | xn)
n=1

N

∑
, and

(3.38) ∑
=

=
N

n

njP
N

jP
1

ML)|(1)(x ,

which are derived from putting (3.30), (3.32) and (3.35) to zero. Notice that the terms

)|(njP x =

€

p(xn | j)P(j) / p(xn), which appear abundantly on the rhs of these equations,
depend on the distribution P(j) of the "hidden" variable Ycomponent.

The idea of the EM algorithm is to solve (3.36), (3.37) and (3.38) with an iterated "ping-
pong" procedure, where estimates of the hidden variable distribution lead to updates of
estimates of the observable variables, and vice versa, as follows.

1) Start with an initial guess θ0 =

€

(µ1
0,...,µM

0 ,σ1
0,...,σM

0 ,P 0(1),...,P 0(M)) of parameters.
2) Assume that after the k-th iteration you have a parameter estimate θk =

€

(µ1
k,...,µM

k ,σ1
k,...,σM

k ,Pk (1),...,Pk (M)).
a) Use (3.31) to derive estimates)|(nk jP x for the terms)|(njP x in the rhs's of (3.36),

(3.37) and (3.38). This is, use the current assumed parameters θk and the data to obtain
the expected probability values)|(njP x of the hidden class indicator variable
Ycomponent at the sample points xn.

b) Insert these)|(njP x into the equations (3.36), (3.37) and (3.38), along with replacing
the

€

µ j
ML in those equations by the

€

µ j
k . Compute the left sides of the equations to obtain

a new estimate of the model parameters

€

(µ1
k+1,...,µM

k+1,σ1
k+1,...,σM

k+1,Pk+1(1),...,Pk+1(M)) .
These new parameters maximize the likelihood of the data, given the currently
assumed sample values)|(njP x of the distribution of the hidden variable.

3) Iterate until some stopping criterium is reached (for instance, a predefined number of
iterations is done, or the changes between iterations fall below some threshold).

The step 2a is called the E-step (from Expectation), and step 2b the M-step (from
Maximization). The theory of EM guarantees that the likelihoods of parameters θk grows
monotonically with k. Notice that the EM algorithm aims at a maximum-likelihood solution,
just as the gradient descent method.

 49

Here is a little EM case study (Figures copied from a presentation of Christopher M. Bishop,
http://research.microsoft.com/~cmbishop/downloads/Bishop-ECCV-04-tutorial-B.ppt.) The
sample data come from observations of the Old Faithful geysir in the Yellowstone National
Park (Figure 3.8).

Figure 3.8 A two-dimensional dataset.

Figure 3.9 shows 20 EM iterations, with the first panel showing the initial guess. Color codes
the estimated probabilities)|(njP x .

Figure 3.9 The EM algorithm at work on the Old Faithful dataset.

There is no general rule when the EM algorithm should be preferred over gradient descent
methods in parametric model estimation tasks. Sometimes (although not in our example) no
analytical form of the gradient is available or too expensive to calculate. Then EM is the only

Duration of eruption (minutes)

Time
between
eruptions
(minutes)

 50

way to go (we will see that this is the case for Bayesian networks, see later in this lecture).
The EM algorithm is inherently stable (cannot enter oscillations or worse), which gradient
descent methods are not. EM may converge slower than (advanced versions of) gradient
descent methods. Finally, there exist computationally cheap incremental variants of gradient
descent methods (for instance, stochastic gradient descent – visit the Machine Learning
lecture...) which work well in online situations when data points xn arrive in a stream. By
contrast, EM is not immediately suited for incremental processing6.

A general remark: both gradient descent and EM algorithms work generally very well on low-
dimensional data sets, but may encounter severe problems (bad local minima, instability [in
the case of gradient descent], long time to convergence) when applied to high-dimensional
tasks.

Another general remark: the EM algorithm is actually not an algorithm, but a design scheme
to construct ML-estimation algorithms. How the E- and M-step are to be calculated depends
on the task at hand, and finding exact or approximate solutions to the expectation or
maximization subtasks can be challenging. In spite of these difficulties, the EM "algorithm" is
one of the main workhorses in computational statistics, and its introduction in a super-highly
cited paper7 by Dempster and Laird in 1977 marks a turning point in computational statistics.

 

3.3 Parzen windows 

Parzen windows, a simple representative of the larger class of kernel-based representations,
provide an alternative to mixture models for representing probability distributions. These
representations are non-parametric because no prior assumptions concerning the shape of the
distribution are needed. To introduce Parzen windows, consider the sample of 5 real-valued
points shown in Figure 3.10. Centered at each sample point we place a unit square area on the
x-axis. Weighing them each by 1/5 and summing them gives an intuitively plausible
representation of a pdf.

Figure 3.10 Rectangular Parzen window representation of a distribution given by a sample of
5 real numbers. The sample points are marked by colored circles. Each data point carries a
square "Parzen window", that is, a rectangular pdf centered on the point. Weighted by 1/5
(colored rectangles) and summed (solid staircase line) they give a pdf.

6 For a nontrivial extension of EM to incremental model update see: Neal, R. M. & Hinton, G. E. (1998), A view
of the EM algorithm that justifies incremental, sparse, and other variants, in M. I. Jordan, ed., Learning in
Graphical Models, Kluwer Academic Publishers.

7 Dempster, A.P. and Laird, N.M. and Rubin, D.B. (1977), Maximum likelihood from incomplete data via the
EM-algorithm. Journal of the Royal Statistical Society 39, 1-38

p

 1 2 3 4 5 6 x

1/5
2/5

3/5

 51

To make this example more formal and general, consider d-dimensional data points nx .
Instead of a unit-length square, we wish to make these points the centers of d-dimensional
hypercubes of side length h. We need a function H that indicates which points around nx fall
into the hypercube centered at nx . To this end we introduce a kernel function, also known as
Parzen window,

(3.39)

€

H : d → 

u
1 if | ui | < 1/2 for i =1,...,d
0 else





so that H is the indicator function of a unit hypercube centered at the origin. Using H, we get
the d-dimensional analog (for a sample of size N and hypercubes with sidelength h) of the
"staircase" pdf in Figure 3.10 by

(3.40) ∑
=








 −
=

N

n

n

d h
H

hN
p

1

11)(xxxX ,

observing that the volume of such a cube is hd. The superscript X in)(xXp indicates that the
pdf depends on the sample X. Such a representation is somewhat reminiscent of a histogram,
except that we combine the pdf from as many "bars" (hypercubes) as we have data points.

Clearly, given some sample }{ nx , we do not really believe that such a rugged staircase
reflects the true probability distribution the sample was drawn from. We would rather prefer a
smoother version. This can be easily accomodated if we use other, smoother kernel functions.
A standard choice is to use multivariate Gaussians with diagonal covariance matrix and
uniform standard deviations σ = h for H. This would turn (3.40) into

(3.41) ∑
= 












 −
−

π
=

N

n

n

d hhN
p

1
2

2

2/2 2
exp

)2(
11)(

xx
xX .

It is clear that any nonnegative kernel function H which integrates to unity can be used in
equation (3.40) such that the resulting)(xXp will be a pdf.

The scaling factor h determines the width of the Parzen window and thereby the amount of
smoothing. Figure 3.11 illustrates the effect of varying h.

 52

Figure 3.11: The effect of choosing different widths h in representing a 5-point, 2-
dimensional sample by Gaussian windows. (Taken from the online set of figures of the book
by Duda, Hart & Stork, ftp://ftp.wiley.com/public/sci_tech_med/pattern/)

A valuable insight into the smoothing nature of kernel functions can be obtained by
computing the expectation of the estimated density)(xXp . Using (3.40) we get

(3.42)
')'('1

'111)](['
1

xxxx

xxxxx xx

dp
h

H
h

h
H

h
E

h
H

h
E

N
pE

d

n

d

d

N

n

n

d








 −
=
















 −
=















 −
=

∫

∑

ℜ

=

X

where Ex denotes the expectation taken over varying x and p(x') is the true underlying pdf.
We see from this equation that the expected pdf of a Parzen window model is the convolution
of the kernel function with the true pdf.

Comments

1) Parzen window representations of pdfs are "non-parametric" in the sense that the shape of

such a pdf is determined by a sample (plus, of course, by the shape of the kernel function,
which however mainly serves a smoothing purpose). This fact also can render Parzen
window representations computationally expensive, because if the sample size is large, a
large number of data points have to be stored (and accessed if the pdf is going to be used).

2) The basic Parzen windowing scheme, as introduced here, can be refined in many ways. A
natural way to improve on it is to use different widths h for different sample points xn.
One then makes h narrow in regions of the sample set which are densely populated by
sample points, and wide in regions that are only thinly covered by sample points. One way
of doing that (which I invented while I was writing this – there are many ways to go)
would be to (i) choose a reasonably small integer K; (ii) for each sample point xn
determine its K nearest neighbors x1, ..., xK; (iii) compute the mean squared distance d of
xn from these neighbors, (iv) set h proportional to this d for this sample point xn

3) As the Figure 3.11 demonstrates, the width h has a strong effect on the Parzen pdf. If h is
too large, the smoothing becomes too strong, and information contained in the sample is
smoothed away; in contrast, when h is too small, all that we see in the resulting Parzen pdf
is the individual data points – the pdf then models not a distribution, but just the sample.
Finding a good intermediate value for h in this tradeoff game is not trivial. In fact, this is
another instance of the bias-variance dilemma that we already met when we discussed the
problem of choosing an appropriate number M of Gaussians in mixture models (cf. Figure

 53

3.4). In the Machine Learning lecture next year, you can learn about general strategies for
coping with this problem. Here I mention one very popular (simple but potentially
expensive) approach, cross validation. It goes like follows:

A simple cross validation scheme for finding a good value of h

a) Split the sample X into two parts Y and Z.
b) Choose some h and compute)|(hp xY , that is, the Parzen density w.r.t. width h that

you get from using only the subsample Y.
c) Compute the product density of the subsample Z under this model (or better, the log

probability to avoid underflow problems)

(3.43)

€

log p(Z | h) = log pY (z | h)
z∈Z
∑ .

d) Do this systematically for different h, and pick the h that maximizes (3.43).
e) Once you have a good h, use this for a Parzen model obtained from the complete data

set X.

The idea behind such cross-validation techniques (of which there are more refined
versions) is to pick h such that the obtained model generalizes well to "new" data (here,
the "new" data Z are artifically obtained by separating them from the original sample X).

4) The Parzen-window based distribution (3.41) will easily lead to numerical underflow
problems, especially if h is set to small values. A partial solution is to use log probabilities
instead, i.e. use

(3.44)

€

log(pX (x)) = log 1
N

1
(2πh2)d / 2

exp −
x − xn

2

2h2














n=1

N

∑














instead. Still this will not usually solve your underflow problems, because the exp-sum-
terms within the log still underflow. Here is a trick to circumvent this problem, known as
the "log-sum-exp" trick. Exploit the following:

(3.45)

€

log exp(−A) + exp(−B)() = log exp(−A + C)exp(−C) + exp(−B + C)exp(−C)()
= −C + log exp(−A + C) + exp(−B + C)()

where you use C = max(A, B).

Parzen windowing, unlike mixtures of Gaussians, does not require that some parameters are
estimated – the "modelling" or "learning" task is trivial. In my personal view, Parzen window
estimates of densities – as compared to the more sophisticated mixture models – are "quick
and dirty" methods that one might wish to use when the demands on statistical refinement are
low and sample sizes are not too large. However, if one encounters very "wild" distributions
where there are no reasons to assume that some simple mixture model comes close to reality,
Parzen windowing can be well justified on the grounds that this technique introduces almost
no bias into the model.

 54

4 Sampling techniques 

4.1 Sampling: why it is so important

"Sampling from a pdf" will be the topic for the next lectures. That is, given a pdf for a
distribution of some random variable X, artificially "draw" a sample (x1, ..., xN) from that
distribution. Why should we care?

The universal, and at the same time elementary, type of model of a complex piece of reality is
the joint distribution of all the observables that we employ. This joint distribution (and all the
conditional distributions that arise from it) will often be an immensely high-dimensional
monster. Often we will possess, as the result of a modelling work, a representation of the pdf
of this distribution. The pdf may be available to us, in the one extreme, as an analytic function
that is characterized by a few parameters – this will be the exception rather than the rule. In
the other extreme, the pdf will be represented in a non-parametric way by some generic
blackbox representation that is capable to characterize complicated, high-dimensional
functions. In any case, having the model is rarely enough, we want to be doing something
with it – prediction, classification, etc.

It turns out that a pdf is something that is not very well suited for doing something with.
Imagine you have a pdf that describes a 1000-dimensional, numerical observation space (not
uncommon at all). How would you do something as simple as just computing the expectation
of this distribution? Do you think Matlab or Mathematica could do that? That is, how could a
1000-dimensional function be numerically integrated? I don't think there is a way... Whether
the pdf is an analytical formula or a blackbox model with 1,000,000 parameters – if it is
sufficiently complex – that is, if it is really interesting – then, in a sense the only thing you can
"do" with it is to evaluate it at some point; after all a pdf is a function.

This should leave you with a taste of dissatisfaction. I have argued the pdf is an excellent kind
of model of some piece of reality – but this piece of reality is reflected in the entire pdf,
however, the entire pdf is a mathematical object or data structure that one cannot readily
manipulate – all that one can typically do is evaluate it pointwise. This is why sampling from
a pdf is such an important and recurring task in modelling: Given a pdf, artificially create a
sample from it, that is, a set of artificially re-created "observations", which is a concrete
instantiation of the model which one then may easily manipulate / analyze / measure /
transform – in short, do many things with.

There is a second, equally important reason why sampling is so utterly useful. Namely, often
one will be in a situation where one has modeled a stochastic system by a function π
(analytical or by some blackbox modeling magic) which is nonnegative and has a bounded
integral – that is, a function that looks like a pdf up to a normalization factor. To turn this
function π into a valid pdf, one would have to divide it by its integral value

€

π∫ . However,
evaluating an integral over a sufficiently high-dimensional function is typically infeasible, so
the route to a valid pdf is barred. The good news is that many sampling methods do not
require π to be normalized. Thus, one can operate with π as if it were a proper pdf in all kinds
of ways and for all kinds of purposes which only require sampling. It turns out that this is
enough for most application types, e.g. simulation, prediction, classification.

An intrinsic drawback of sampling-based usages of pdfs (or proto-pdfs π) is the computational
load required by generating (large numbers of) sample points. With the advent of modern

 55

computers however this is becomes an increasingly less painful issue. Many research
directions in modern physics have only become possible by the option to simulate complex
systems by sampling; it is fair to say that "sampling + computers" has become a key to large
branches of physics research. But also in practical engineering and signal processing,
sampling has become indispensable. My favourite example is robot navigation. It is today the
standard approach in autonomous robot navigation to let a robot estimate its position by
sampling from a pdf (rather, from a proto-pdf π) which models the distribution of the current
position given previous sensor input and robot motions. Try Google or Youtube for robot
particle filter!

Overview. We will introduce in this section some of the most widely used sampling
algorithms – besides the elementary transformations from a uniform distribution, these are
rejection sampling, the Gibbs sampler, and the Metropolis algorithm. The latter two are
examples of a greater family of sampling strategies collectively known as Markov Chain
Monte Carlo (MCMC) methods. In addition, I will also present a technique that is closely
related to sampling, although its purpose is optimization: simulated annealing. We will
illustrate the usefulness of sampling techniques by a modelling study taken from the literature
where sampling is pivotal: the determination of the evolutionary tree of descendence from
DNA data of living species.

My presentation of the material owes much (almost all) to two sources. For the elementary
sampling techniques, I heavily lean on the Durbin et al book, Biological Sequence Analysis.
For the MCMC material I also consulted the extensive survey of these techniques in

• Neal, Radford M. Probabilistic Inference Using Markov Chain Monte Carlo Methods.
Technical Report CRG-TR-93-1, Dpt. of CS, Univ. Toronto, 1993.
www.cs.toronto.edu/~radford/ftp/review.pdf

4.2 Sampling: definition

Intuitively, "sampling" means to artificially simulate the process of randomly taking
measurements from a distribution given by a pdf. A "sampler" is an algorithm for doing this.
Of samplers there are many and I have not found a universally agreed definition
(http://mathworld.wolfram.com/search/ does not even have an entry). Here is my own
definition:

Definition 4.1. Let PX be a distribution on a measure space (E, ). A sequence X1, X2, ... of
random variables is a sampler for PX, if for all A ∈  it holds that

(4.1) PX (A) = ∑
=

∞→

N

i
iAN
X

N 1

11lim  P-almost surely8,

where


 ∈

=
else

Axif
xA ,0

,1
)(1 is the indicator function for A.

8 P-almost surely (syn.: "with probability 1", "almost surely", "w.p.1.") means that the equality holds for all
ω ∈ Ω except possibly on a null set.

 56

A sample (as introduced in Section 2) is a much more restrictive notion than a sampler.
Specifically, a sample results from independent random variables X1, ..., Xn that all have the
same distribution as X, the random variable whose distribution PX the sample is drawn from.
In contrast, the random variables X1, X2, ... of a sampler for PX need not individually have the
same distribution as X, and they need not be independent. For instance, let PX be the uniform
distribution on the binary event space E = {0,1}, that is, P(X = 1) = P(X = 0) = 1/2. A sample
would be the values X1(ω), ..., Xn(ω) of some random variables X1, ..., Xn, each of which
would have to satisfy P(Xi = 1) = P(Xi = 0) = 1/2. In contrast, a sampler could be, for
instance, a sequence X1, X2, ... such that P(X2i = 1) = 1 and P(X2i+1 = 1) = 0, that is, the
sampler would deterministically create an alternating sequence of 0's and 1's – which in the
long run would approximate the target distribution of 0's and 1's arbitrarily well. The
individual sample point generators Xn of MCMC samplers are, as we will see, generally not
distributed identically to the source distribution from which they sample.

4.3 Sampling by transformation from the uniform distribution

There is one sampler that you know very well and have often used: the random function that
comes by different names in different programming languages (and is internally implemented
in many different ways). In Matlab it is called rand, which draws a random double-precision
number from the continuous, uniform distribution over the interval [0,1]; in C it's also called
rand but here generates a random integer from the discrete uniform distribution between 0
and some maximal value. At any rate, a pseudo-random number generator of almost
uniformly distributed numbers over some interval is offered by every programming language
that I know, including Microsoft Word... And that's about it; the only sampler you can directly
call in most programming environments is just that, a uniform sampler. (By the way, it is by
no means easy to program a good pseudo-random number generator – in fact, designing such
generators is an active field of research. If you are interested – the practical guide to using
pseudorandom number generators9 by David Jones is fun to read and very illuminating –
thank you Corneliu for pointing this out!)

Assume you have a sampler Zi for the uniform distribution on measure range [0,1], but you
want to sample from another distribution PX on a measure space E = , which has a pdf g(x).
Then you can use the uniform sampler indirectly to sample from PX by a coordinate
transformation, as follows.

First, compute the cumulative density function10 φ:  → [0,1], which is defined by

(4.2) ∫
∞−

=φ
y

duugy)()(,

9 David Jones (2010), Good Practice in (Pseudo) Random Number Generation for Bioinformatics Applications.
A practical guide document, online at http://www.cs.ucl.ac.uk/staff/d.jones/GoodPracticeRNG.pdf , local copy at
http://minds.jacobs-university.de/sites/default/files/uploads/teaching/share/GoodPracticeRNG.pdf
10 Also known as "distribution function" or "probability distribution function".

 57

and its inverse)(1 x−φ [this may be tricky or impossible to do analytically – then, numerical
approximations must be called]. Then obtain a sampler Xi from the sampler Zi by

(4.3))(1 ii ZX −φ= .

This is a sampler for PX, which can be seen as follows. Let A = [a,b] be an interval on the real

line. We have to show that PX (A) = ∑
=

∞→

N

i
iAN
X

N 1

11lim  = ∑
=

−

∞→
φ

N

i
iAN
Z

N 1

1)(11lim  for any such A.

Since the Zi are i.i.d., Zi = Z, it is clearly sufficient to show that PX (A) =)](1[1 ZE A
−φ . This

can be deduced from

€

E[1A φ
−1(Z)]= P(φ−1(Z)∈ A) = P(Z ∈ φ(a)) = P(Z ∈ [φ(a), φ(b)]) =

φ(b) – φ(a) = ∫
b

a

duug)(= PX(A).

Graphically, the situation looks like this:

Figure 4.1. Sampling by transformation from a uniform sampler

Out of mathematical curiosity, I explored a little bit how one can sample from the normal
distribution (0,1). Its inverse cumulative density function is given by

(4.4)

€

φ−1(Z) = 2erf−1(2Z −1),

where erf-1 is a special function (like exp or sin) which is studied by mathematicians in its
own right, called the inverse error function. It has the power series

(4.5)

€

erf−1(Z) =
ck
2k +1

π
2
Z











2k+1

,
k=1

∞

∑

where the coefficients can be computed by the recursion c0 = 1 and

(4.6)

€

ck =
cmck−1−m

(m +1)(2m +1)
.

m= 0

k−1

∑

This series converges slowly (my source, I must confess, is Wikipedia). It seems that practical
implementations for sampling from the normal distribution use special sampling algorithms

1

0

Zi(ω)

φ(y)

))(()(1 ωφ=ω −
ii ZX

 y

g(y)

 58

that exploit the mathematical structure of (0,1). One algorithm (see
http://en.wikipedia.org/wiki/Normal_distribution#Generating_values_for_normal_random_va
riables) which I found very elegant is the Box-Muller algorithm, which produces a (0,1)-
distributed RV C from two independent uniform-[0,1]-distributed variables A and B:

(4.7)

€

C = −2lnA ⋅ cos(2πB).

The computational cost is to compute a logarithm and a cosine. An even (much) faster, but
more involved (and very tricky) method is the Ziggurat algorithm (check Wikipedia for
Ziggurat_algorithm for an article written with tender care). All in all, there exist wonderful
things under the sun.

Sampling by coordinate transformation can be generalized to higher-dimensional
distributions. Here is the case of a 2-dimensional pdf g(y1, y2), from which the general pattern
should become clear:

First, define the cumulative density function in the first dimension as the cumulative density

function of the marginal distribution ∫
∞

∞−

dvvyg),(1 of the first coordinate y1:

(4.8) ∫ ∫
∞−

∞

∞−

=φ
1

)),(()(11

y

dudvvugy

and the conditional cumulative density function of y2 given y1:

(4.9)

∫

∫
∞

∞−

∞−=φ

dvvyg

dvvyg
yy

y

),(

),(
)|(

1

1

122

2

Then, for sampling one value (y1, y2), sample two values x1 and x2 from the uniform sampler
Zi, and transform

(4.10)).|(),(12

1
221

1
11 yxyxy −− φ=φ=

A widely used method for drawing a random vector x from the N-dimensional multivariate
normal distribution with mean vector µ and covariance matrix Σ (required to be symmetric
and positive-definite) works as follows:

 1. Compute the Cholesky decomposition (matrix square root) of Σ, that is, find the unique
lower triangular matrix A such that A AT = Σ.
 2. Let z = (z1, ..., zN)T be a vector whose components are N independent standard normal
variates (which can be generated, for example, by using the Box-Muller transform).
 3. Let x be µ + A z.

 59

4.4 Rejection sampling

Sampling by transformation from the uniform distribution can be difficult or impossible if the
pdf g one wishes to sample from has no simple-to-compute cumulative density function, or
this has no simple-to-compute inverse. If this happens, it is sometimes possible to sample
from a simpler distribution f that is related to the target pdf g and for which sampling by
transformation works, and by a simple trick end up with a sampler for the pdf of interest, g.
To understand this rejection sampling (also known as importance sampling) we first need to
generalize a little bit the notion of a pdf:

Definition 4.2. A proto-pdf on a numerical measure space (n, ) is any nonnegative
function f0: n →  with a finite integral

€

f (x)dx
n∫ .

If one divides a proto-pdf f0 by its integral, one obtains a pdf f. Now assume that g(y) is a pdf
over E =  from which you want to sample, but you can't construct the requisite 1−φ that you
would need for sampling by transformation. However, you find a proto-pdf f0 ≥ g for whose
associated pdf f you succeed in finding a cumulative density function and its inverse. Thus,
you know how to sample from f, that is, you have a sampler Yj for f. With that, you can
construct a sampler Xi for g as follows. In order to assign a value to Xi,

1. Obtain).(~ ω= ji Yy

2. Accept iy~ as the value of)(ωiZ with a probability of g(iy~) / f0(iy~), and with
the complementary probability 1 – g(iy~) / f0(iy~), reject and return to 1 with j =
j + 1.

Rejection sampling becomes immediately clear if you imagine that "sampling from a pdf" as
"piling up the pdf by many grains of sand that you let fall at the various positions y of E with
a frequency proportional to g(y)". Then, looking at the following Figure where f0 and g are
plotted. Think of the f0 curve as a sand dune that you get when sampling for f in this sand
metaphor. Now, when you drop a grain of sand for modelling the f0 "sand curve", imagine
you paint it red with a probability of g(iy~) / f0(iy~) before you let it fall down. I think this
saves you a mathematical proof...

Figure 4.2 The principle of rejection sampling

 y

 f0(y)

g(y)

iy~

"paint red a fraction of
g(iy~) / f0(iy~)"

 60

The computational efficiency of rejection sampling clearly depends on how close f0 is to g. If
the ratio g / f0 is on average small, there will be many rejections which slow down the
algorithm.

4.5 MCMC sampling techniques: general principles

The basic idea of Markov chain Monte Carlo sampling is to construct a random walk x1, x2, ...
through E which in the long run visits the locations of E with a frequency that is proportional
to g. Here are three examples of how such a random walk could be established that visits all
places of the unit interval [0,1] according to the uniform distribution:

1. Define Xi = Rand. Then all the Xi are i.i.d. random variables, each of which is

distributed uniformly over [0,1].
2. Define X0 = 0, Xi+1 = mod (Xi + sqrt(1/2), 1). The resulting sequence x1, x2,... is

deterministic!
3. Define X0 = 0, Xi+1 = mod (Xi + 1/1000 * (Rand – 0.5), 1). The resulting random walk

roughly looks like a Brownian motion that will slowly and erratically "creep" alongside
the unit interval.

These are all MCMC samplers, but they clearly are of different quality – especially the last
one is quite awkward because it would need many, many 1000's of iterations until the unit
interval would be halfway smoothly covered.

We need some basics of Markov chain theory.

Definition 4.3. A Markov chain is a sequence of random variables X1, X2, ... (all taking values
in a measure space (E, )), such that Xn+1 depends only on Xn and is conditionally
independent on all earlier values:

(4.11)).|(),...,|(111 nnnn XXPXXXP ++ =

Intuitively, a Markov chain is a sequence of measurements/observations, where the next
observation only depends on the current one; earlier observations are "forgotten". Markov
chains are examples of stochastic processes; they are the stochastic processes without
memory.

A Markov chain on (E, ) is fully characterized by the initial distribution

1X
P and the

conditional transition distributions

(4.12))|(1 yXXP nn

n =+ for all y ∈ E,

for which we also write

(4.13))|(yxTn .

 61

A more common name for)|(yxTn is a transition kernel. If)|()|(' yxTyxT nn = for all n, n',
the Markov chain's transition law does not itself depend on time; we then call the Markov
chain homogeneous. With homogeneous Markov chains, the index n can then be dropped
from)|(yxTn .

A special case that you might already be familiar with is obtained when E is finite, say, E =
{s1, ..., sk}. Then the transition probabilities)|(1 injnij sXsXPT === + can be collected in a
k × k Markov transition matrix M where M(i,j) =)|(1 injnij sXsXPT === + , which in its i-th
row carries the probability vector of the probabilities by which the process will transit from
state si to the states indexing the columns.

If a Markov chain with finite state set E = {s1, ..., sk} and Markov transition matrix M is
executed m times, the transition probabilities to transit from state si to state sj can be found in
the m-step transition matrix Mm:

(4.14)).,()|(jiMsXsXP m

injmn ===+

We now consider the measure space E = n, and assume that all distributions of interest are
specified by pdf's. We consider a homogeneous Markov chain. Its transition kernel)|(yxT is
represented by the pdf of yy =+ +

==
nn XXnn PXXP |1 1

)|(. The distributions of X1, X2 etc., have
the following pdfs:

(4.15) g1: given (the initial distribution)

yyxyx dTgg
n

nn)|()()(1 ∫ℜ
+ =

Here is the mathematical core concept for MCMC:

Definition 4.4. Let g be the pdf of any distribution P on E = n, and let)|(yxT be the
transition kernel of a homogeneous Markov chain with values in E. Then P is an invariant
distribution of)|(yxT , if

(4.16)

€

g(x) = T(x | y)g(y)dy
n∫ .

Except for "pathological" cases, a transition kernel has generically at least one invariant
distribution.

Furthermore, it is often the case that there exists exactly one invariant distribution g of

)|(yxT , and the sequence of distributions gi converges to g from any initial distribution. We
will call the transition kernel)|(yxT ergodic11 if it has this property. The invariant
distribution g of an ergodic Markov chain is also called its asymptotic distribution or its
stationary distribution or its equilibrium distribution.

11 Warning: there exist several closely related but not fully equivalent definitions of ergodicity in the literature!

 62

The general strategy of MCMC is to construct, for a given distribution with pdf g, some
ergodic Markov chain X1, X2, ... which has g as its invariant distribution. Ergodicity is
important to ensure that asymptotically the distributions of Xn converge to the target
distribution g regardless of the starting state. The three introductory examples suggest that
there will be many possibilities to create such MCMC samplers, but they also warn us that
some of them might be quite inefficient.

Quoting from the Neals survey, "The amount of computational effort required to produce a
good Monte Carlo estimate using the states generated by a Markov chain will depend on three
factors: first, the amount of computation required to simulate each transition; second, the time
for the chain to converge to the equilibrium distribution, which gives the number of states that
must be discarded from the beginning of the chain; third, the number of transitions needed to
move from one state drawn from the equilibrium distribution to another state that is almost
independent, which determines the number of states taken from the chain at equilibrium that
are needed to produce an estimate of a given accuracy. The latter two factors are related..."

If we start from a pdf g for a distribution P and want to create an MCMC sampler X1, X2, ...
for it, we have to make sure that the Markov chain X1, X2, ... has P as its invariant distribution.
This can be achieved by ensuring that the Markov chain has the property of detailed balance
w.r.t. P. Detailed balance connects X1, X2, ... to g in a strong way. It says that if we pick some
state x ∈ E with the probability given by P and multiply it with the transition probability

€

T(y | x) – that is, we consider the kind of "P-T-mixed" probability density of transiting from x
to y – then this is the same as the reverse transiting probability density from y to x:

Definition 4.5. Let P be a distribution on n with pdf g and)|(yxT the transition kernel for
a homogeneous Markov chain on E. Then)|(yxT has the detailed balance property w.r.t. g
if

(4.17) ∀ x, y ∈ n:)|(xyT g(x) =)|(yxT g(y).

If)|(yxT has the detailed balance property w.r.t. g, then g is an invariant distribution of

)|(yxT , because

(4.18))()|()()|()()|()(xyxyxyxyxyyxy gdTgdTgdTg

nnn
=== ∫∫∫ ℜℜℜ

.

Apart from this formal argument, there is also an intuitive argument why detailed balance
implies invariance: if)|(yxT has the detailed balance property w.r.t. g, then "applying" T to
g (in the sense of computing

€

g(y)T(x | y)dy
ℜn∫) will not change g, because the "probability

mass transport" from some point x to another point y will be equal to that in the reverse
direction.

There arise some complications with this definition of detailed balance if P or T place nonzero
probability mass on single elements x ∈ n or single transitions x → y, respectively. These
complications can be overcome by using the following alternative definition of detailed
balance:

 63

Definition 4.6. (= alternative version of Def. 4.5) Let P be a distribution on (E, ) = (n, )
with pdf g and)|(yxT the transition kernel for a Markov chain on E. Then)|(yxT has the
detailed balance property w.r.t. g if

(4.19) ∀ A, B ∈ : ∫ ∫∫ ∫ =

B AA B
ddTgddTg yxyxyxyxyx)|()()|()(,

that is, the probability of a transition from somewhere in A to somewhere in B is the same as
that of the reverse transition.

There is no general recipe to construct efficient MCMC samplers, but there are some standard
approaches that work well in a variety of conditions. We present two of these: the Gibbs
sampler and the Metropolis algorithm. Both rest on constructions of Markov chains that
exhibit detailed balance.

4.6 Gibbs sampling

Let g be a pdf on n. Let

(4.20)
∫ℜ

+− ==
in

n
niiiii dxxxg

xxgxxxxxgg
),...,(
),...,(),...,,,...,|(

1

1
111

be the conditional density function of the coordinate xi given the values on the other
coordinates. Let g1 be an initial distribution on n, and let an initial value x1 =),...,(11

1 nxx be
chosen randomly according to g1. We define a Markov chain X1, X2, ... , through transition
kernels as follows. The idea is to cycle through the n coordinates and at some time νn + i (0 ≤
ν, 1 ≤ i ≤ n) change the previous sample vector x νn + i−1 =),...,(11

1
−+ν−+ν in

n
in xx only in the i-th

coordinate, by sampling from gi. That is, at time νn + i we set

(4.21) x νn + i =),...,(1

in
n

in xx +ν+ν =),....,,,,...,(11
1

1
1

1
1

−+ν−+ν
+

+ν−+ν
−

−+ν in
n

in
i

in
i

in
i

in xxxxx

to the previous value in all coordinates except at dimension i, where we randomly sample

in
ix

+ν from the distribution),....,,,...,|(11
1

1
1

1
1

−+ν−+ν
+

−+ν
−

−+ν in
n

in
i

in
i

in
ii xxxxxg .

This method is known as the Gibbs sampler. It uses n different transition kernels T1, ..., Tn,
where Ti is employed at times νn + i and updates the i-th coordinate only according to

(4.22)
()

()),..,(),...,(),...,,,...,|(
),...,(|),...,(

11111

11

nniniiii

nni

xxyyyyyyyg
xxyyT

−δ=

=

+−

where δi is a version of the Dirac delta that we know from Eq. (2.34). More
specifically,

€

δi (y1,...,yn) − (x1,..,xn)() concentrates the probability mass on the set of points
),..,(1 nyy satisfying),.,,,..,(),...,,,...,(111111 niinii xxxxyyyy +−+− = . More formally, δi is a

measure (not a probability measure!) on n with the defining property that for all hypercubes
A ⊂ n, it holds that

 64

(4.23)

)})0|),...,{(((11)(][11
})0|),...,{((

1

][1

ij
n

n
jiforxxxAA

ii jiforxxxAddA
ij

n
n

≠=ℜ∈∩µ=µ=δ=δ ∫∫
≠=ℜ∈∩

,

where µ1 is the Lebesgue measure on  and subscript [i] denotes the projection of a higher-
dimensional vector on the i-the component.

The Markov chain X1, X2, ... is not homogeneous because we cycle through different
transition kernels. However, we can condense a sequence of n successive updates into a single
update that affects all coordinates by putting

(4.24)

1
TTT n = ,

which yields a homogeneous Markov chain Y1, Y2, ... with transition kernel T whose
observations are

y1 = x1 =),...,(11
1 nxx ,

(4.25) y2= xn+1 =),...,(11
1

++ n
n

n xx ,
y3= x2n+1 =),...,(1212

1
++ n

n
n xx , ...

To understand this abstractly, note that transition kernels may be concatenated through

(4.26) ∫ℜ=

n
dTTTT yxyyzxz)|()|()|)((1212 

-- this is actually nothing but the continuous version of the iterated transition matrix for finite
state sets from Eq. (4.14).

It should be intuitively clear that g is an invariant distribution of this homogeneous Markov
chain, because clearly each transition kernel Ti leaves g invariant: only the i-th component of
the observation vector is affected at all, and it is updated exactly according to the conditional
distribution gi for this component. It even holds that T has detailed balance w.r.t. g (exercise!).

It remains to investigate whether the Markov chain with kernel T is ergodic. This is certainly
the case when the carrier of g in n (that is, the subset of n where g takes positive values) is
n-dimensionally connected (that is, for any points x, y ∈ n, g(x) > 0, g(y) > 0 there exists a
sequence of n-dimensional balls Bi of positive radius, the first containing x and the last
containing y, such that Bi intersects with Bi+1 with positive volume). However, if the carrier
of g is not n-dimensionally connected, then T may or may not be ergodic, and determining
whether it is needs to be done on a case by case basis. For instance, if g is a distribution on 2
whose carrier lies exclusively in the first and third orthant, T would not be ergodic, because
the Gibbs sampler, when started from a point in the third orthant, would be unable to jump
into the first orthant. This situation is depicted in Figure 4.3.

 65

Figure 4.3 A "bipartite" pdf g where the Gibbs sampler would fail

The Gibbs sampler is obviously useful only if one can easily sample from the 1-dimensional
conditional distributions gi. Therefore, the Gibbs sampler is mostly employed in cases where
these gi are parametric, analytical distributions, or in cases where E is finite and the gi thus
become simple probability vectors. The Gibbs sampler is attractive for its simplicity. A
number of extensions and refinements of the basic idea is presented in the Techreport by R.
Neal. The Gibbs sampler is often used in connection with Bayesian networks, which we will
treat later in this course.

4.7 The Metropolis algorithm 

The Metropolis12 algorithm is more sophisticated than the Gibbs sampler and works in a much
larger number of cases. The drawback is that typically it is computationally more expensive.
This algorithm explicitly constructs a Markov chain with detailed balance. Like the Gibbs
algorithm, the Metropolis algorithm can be cyclically applied to the n dimensions of the
observation vectors in turn ("local" Metropolis algorithm) or it can be applied to all
dimensions simultaneously ("global" algorithm). We describe the local version.

Like the Gibbs algorithm, the local Metropolis algorithm updates the sample vector Xνn + i−1 =

),...,(11
1

1 −+ν−+ν−+ν = in
n

inin xxx in the i-th coordinate, yielding Xνn + i =),...,(1
in

n
in xx +ν+ν =

),....,,,,...,(11
1

1
1

1
1

−+ν−+ν
+

+ν−+ν
−

−+ν in
n

in
i

in
i

in
i

in xxxxx . The update in
i

in
i xx +ν−+ν


1 is done in two steps,

which together ensure detailed balance w.r.t. the conditional distribution gi:

Step 1: randomly choose a candidate value *in

ix
+ν for in

ix
+ν . Usually a proposal distribution

Si(x* | x) is used (which may depend on x) which is symmetric in the sense that
() ()),...,,,,...,(|'),...,,',,...,(| 111111 niiiniii xxxxxxSxxxxxxS +−+− = for all

nii xxxx ,...,,,..., 111 +− .
Step 2: Randomly accept or reject *in

ix
+ν as the new value in

ix
+ν , in a fashion that ensures

detailed balance. In case of acceptance, in
ix

+ν is set to *in
ix

+ν ; in case of rejection,

12 Named after the first author of a classical paper: Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller,
A.H. and Teller E. (1953) Equation of state calculations by fast computing machines, J. of Chemical Physics 21,
1087-1092

g

x1

x2

 66

in
ix

+ν is set to 1−+ν in
ix , i.e., the observation vector is not changed at all. The probability

for accepting *in
ix

+ν is determined from an acceptance distribution Ai(x* | x).

Step 1 and 2 together yield a transition kernel

(4.27) ()
()()dyyAySxxyy

xxxxyyyyyAyS
xxyyTT

iinn

niiniiiiii

nnii

∫ℜ
+−+−

−−δ+

−δ=

==

)|()|(1),...,(),...,(

),.,,,..,(),...,,,...,()|()|(
)),...,(|),...,(()|(

11

111111

11

xx

xx
xy

The first term is the probability of proposing a change in component i from xi to yi and then
accepting the proposed change. The second term integrates up the probability mass that was
not used for the first term and concentrates it in xi = yi, reflecting the rejection cases where the
state was not changed.

The proposal and acceptance distribution must be designed to warrant detailed balance, that
is, to ensure

(4.28) ∀ x, y ∈ n: g(x))|(xyiT = g(y))|(yxiT .

There are many ways to solve this problem. For instance, it is not difficult to see (exercise)!)
that if Si(x* | x) is symmetric, using Ai(x* | x) =

()),...,(),...,*,,,...,(/),...,*,,,...,(1111111 nniinii xxgxxxxxgxxxxxg ++−+− yields detailed balance.
This is called the Boltzmann acceptance function. However, the Metropolis algorithm
standardly uses another acceptance distribution, namely the Metropolis acceptance
distribution

(4.29) Ai(x* | x) = ()),...,(/),...,*,,,...,(,1min 1111 nnii xxgxxxxxg +− .

That is, whenever),...,(),...,*,,,...,(1111 nnii xxgxxxxxg ≥+− , -- that is, the proposed
observation has no lower probability than the current one --, accept with certainty; else accept
with probability),...,(/),...,*,,,...,(1111 nnii xxgxxxxxg +− .

For symmetric proposal distributions, this strategy implies detailed balance. It is clear that in
the rejection case, where the current observation is not changed, that is, x = y, the detailed
balance condition (4.28) trivially holds. In the acceptance case we verify (4.28) as follows:

 67

(4.30)

()
()

() ()
() ()

()
()

)|()(
...)),...,(|()),...,(|(),...,(

...)),...,,,,...,(|(
)),...,,,,...,(|(),...,,,,...,(

...),...,(,),...,,,,...,(min)),...,,,,...,(|(
...),...,,,,...,(,),...,(min)|(

),...,,...,(),...,,,...,()|()|(),...,(
),...,(|),...,(),...,(

)|()(

111

111

111111

1111111

1111

1111111

111

yxy

x
xx

xyx

i

niiniin

niiiii

niiiiiniii

nniiiniiiii

niiinii

niiniiiiiin

nnin

i

Tg
yyxAyyxSyyg

xxyxxxA
xxyxxxSxxyxxg

xxgxxyxxgxxyxxxS
xxyxxgxxgyS

xxxxyyyyyAySxxg
xxyyTxxg

Tg

=

δ=

δ⋅

⋅=

δ=

δ=

−δ=

=

=

+−

+−+−

+−+−

+−

+−+−

Notes:

1. Like the Gibbs sampler, this local Metropolis algorithm can be turned into a global one,

then having a homogeneous Markov chain with transition kernel T, by condensing one n-
cycle through the component updates into a single observation update, in analogy to
(4.25).

2. Detailed balance guarantees that g is an invariant distribution of the homogeneous Markov
chain with transition kernel T. Before a Metropolis sampler Y1, Y2, ... can be used for
sampling, it must in addition be shown that this Markov chain is ergodic. The same
caveats that we met with the Gibbs sampler apply.

3. The Metropolis algorithm is more widely applicable than the Gibbs sampler because it
obviates the need to sample from a marginal distribution. The price one has to pay is a
higher computational cost for the same level of sampling quality, because the rejection
events lead to duplicate sample points which obviously leads to an undesirable
"granularity" in the sample that has to be washed away by a larger sample size.

4. In statistical physics, the term "Monte Carlo Simulation" is almost synonomous with this
Metropolis algorithm (claims Neal – I am no physicist and couldn't check).

5. The quality of Metropolis sampling depends very much on the used proposal distribution.
Specifically, its variance should neither be too small (then exploration of new states is
confined to a narrow neighborhood of the current state, implying that the Markov chain
traverses the distribution very slowly) nor too large (then one will often be propelled far
out in the regions of g where it almost vanishes, leading to numerous futile rejection
events). A standard choice is a normal distribution centered on the current state (and for a
discrete distribution with finite E, a uniform distribution on E).

6. The Metropolis algorithm (and the Gibbs sampler, too) works best if the n state
components are statistically maximally independent. Then the state space exploration in
each dimension is independent from the exploration in the other dimensions, whereas if
the components are statistically coupled, a fast exploration in one dimension is hindered
by the fact that moving about in this dimension necessitates a synchronized moving about
in the other dimensions, thus larger changes in one dimension have to "wait" for the
correlated changes in the other dimensions. Thus if possible one should coordinate-
transform the distribution before sampling with the aim to decorrelate the dimensions
(which in principle does not imply making them independent but in practice is the best
one can do). Standard methods from linear systems theory can be employed for this
purpose (introduced in the Machine Learning companion lecture offered in alternating
years).

7. We presented the Metropolis algorithm in the special case of sampling from a distribution
over (a subset of) n. This made the "cylce through dimensions" scheme natural which we

 68

also described for the Gibbs sampler. However, the Metropolis algorithm works also on
observation spaces E which do not have the nice vector space structure of n; proposal
distributions then have to be designed as the individual case requires. The phylogenetic
tree example from the next section 4.8 is an example.

4.8 Application example: determining evolutionary trees

This section is a condensed version of a paper by Mau, B., Newton, M.A., Larget, B. (1999),
Bayesian Phylogenetic Inference via Markov Chain Monte Carlo Methods, Biometrics 55, 1-
12, online (preprint ps version) at http://www.genome.wisc.edu/pub/reprints/biometrics.ps; I
put a pdf version at http://minds.jacobs-
university.de/sites/default/files/uploads/teaching/share/1748_Mauetal99.pdf. It is a beautiful
demonstration of how various modelling techniques are combined to characterize a highly
complex pdf (namely, the conditional distribution of all possible evolutionary pasts, given
DNA data from living species!), and how the Metropolis algorithm is used to sample from it.
This paper was cited 148 times by other papers according to the Science Citation Index, as of
October 2007, which is quite a lot. Chapter 8 of the Durbin et al. book gives a more extensive
treatment of phylogenetic modelling and briefly discusses the Mau et al. paper.

Data. DNA strings from related l living species, each string of length N, have been aligned
without gaps. In the reported paper, l = 32 African fish species (cichlids from central African
lakes except one cichlid species from America that served as control) were represented by
DNA sequences of length 1044. 567 of these 1044 sites were identical across all considered
species and thus carried no information about phylogeny. The remaining N = 477 sites
represented the data D that was entered into the analysis. Reminder: the DNA symbol
alphabet is Σ = {A, C, G, T}.

Task. infer from data D the most likely phylogenetic tree, assuming that the considered living
species have a common ancestor from which they all descended.

Modelling assumptions. Mutations act on all sites independently. Mutations occur randomly
according to a "molecular clock", i.e. a probability distribution of the form

(4.31) P(y | x, t, β)

specifing the probability that the symbol y ∈ {A, C, G, T} occurs at a given site where t years
earlier the symbol x occurred. β is a set of control parameters specifying further modelling
assumptions about the clock mechanism. Mau et al. used a molecular clock model proposed in
Hasegawa et al. (1985)13 which uses two parameters β = (φ, κ), the first quantifying an overall
rate of mutation, and the second a difference of rates between the more frequent mutations
that leave the type of nucleic acid (purine or pyrmidine) unchanged ("transitions") vs. change
it ("transversions"). All that we need to know here is that (4.31) can be efficiently computed.
Note that β is not assumed to be known beforehand but has to be estimated/optimized in the
modelling process, starting from the mere data D.

Representing phylogenetic trees. A phylogenetic tree is a binary tree Ψ. The nodes represent
taxa (species); leaves are living taxa, internal nodes are extinct taxa, the root node is the

13 Hasegawa, M., Kishino, H., Yano, T. (1985), Dating the human-ape splitting by a molecular clock of
mitochondrial DNA. J. of Molecular Evolution 22, 160-174

 69

assumed common ancestor. Mau et al plot their trees bottom-up, root node at the bottom.
Vertical distance between nodes metrically represents the evolutionary timespans t between
nodes. Clades are subsets of the leaves that are children of a shared internal node. Figure 3.4
shows a schematic phylogenetic tree and some clades.

Figure 4.4 An examplary phylogenetic tree (from the Mau et al paper). {4,7}, {1 4 7}, {2, 3,
6} are examples of clades in this tree.

A given evolutionary history can be represented by trees in 2n-1 different but equivalent ways
(where n is the number of living species), through permuting the two child branches of an
internal node. For computational purposes a more convenient representation than a tree graph
is

(2.1) a specification of a left-to-right order σ of leaves (in Fig. 3.4, σ = (1,4,7,2,3,6,5)), plus
(2.2) a specification of the graph distances a between to successive leaves.

The graph distance is the length of the connecting path between the two leaves. In the
example tree from Fig. 3.4, the distances between leaves make the distance vector a =
2(t1+t2+ t3+ t4, t1, t1+t2+ t3+ t4+ t5, t1+t2+ t3, t1+t2, t1+t2+ t3+ t4+ t5+ t6). A pair (σ, a) is a
compact representation for a phylogenetic tree.

Likelihood of a phylogenetic tree. One subtask that must be solved in order to find the most
probable evolutionary tree is to devise a fast method for computing the likelihood of a
particular tree Ψ and molecular clock parameters β, given the sequence data:

(4.32) L(Ψ,β) = P(D | Ψ,β).

Because the mutation processes at different sites are assumed to be independent, P(D | Ψ,β)
splits into a product of single-site probabilities P(Di | Ψ,β), where Di are the symbols found in
the sequences from D at site i – thus Di is a vector of length l. Therefore, we only must find a
way to compute

(4.33) Li(Ψ,β) = P(Di | Ψ,β).

We approach this task sideways, assuming first that we know the symbols yν at the i-th site of
the internal nodes ν of Ψ. Let ρ be the root node and π0 a reasonable assumed distribution of

 70

symbols in ρ (e.g., the global distribution of all symbols in all sites of all sequences in D).
Then we get the probability of these hypothetical data Di ∪ (yν)ν is internal node by

(4.34) P(Di ∪ (yν)ν is internal node | Ψ,β) = ∏

ρ≠ν
Ψν

νννρ βπ
ofnodeis

par tyyPy),,|()()(0 ,

where par(ν) is the parent node of ν and tν is the timespan between par(ν) and ν. From (4.34)
we could obtain (4.33) by summing over all possible assignments of symbols to internal
nodes, which is clearly infeasible. Fortunately there is a cheap recursive way to obtain (4.33),
which works top-down from the leaves, inductively assigning conditional likelihoods
Lν(y) = P(Di C ν | Ψ,β, node ν = y) to nodes ν, where y ∈ Σ and Di C ν is the subset of the Di
which are siblings of node ν, as follows:

case 1: ν is a leaf: Lν(y) =


 = ν

else
yyif

,0
,1

case 2: ν is an internal node: Lν(y) = 







β








β ∑∑

Σ∈
µµ

Σ∈
λλ

zz
tyzPzLtyzPzL),,|()(),,|()(,

where λ, µ are the two children of node ν, tλ is the timespan from ν to λ, and tµ is the
timespan from ν to µ. Then (4.33) is obtained via

(4.35) Li(Ψ,β) = ∑

Σ∈
ρπ

z
zLz)()(0 ,

from which (4.32) is obtained by

(4.36) L(Ψ,β) = ∏ βΨ

Dinsiteisi
iL),(.

O(N |Σ| l) flops are needed to compute L(Ψ,β) – in our example, N = 477, |Σ| = 4, l = 32.

The posteriori distribution of trees and mutation parameters. We are actually not
interested in the likelihoods L(Ψ,β) but rather in the distribution of Ψ,β (a Bayesian
hyperdistribution!) given D. Bayes theorem informs us that this desired distribution is
proportional to the likelihood times the prior (hyper-)distribution of Ψ,β:

(4.37) P(Ψ,β | D) ∼ P(D | Ψ,β) P(Ψ,β) = L(Ψ,β) P(Ψ,β).

Lacking a profound theoretical insight, Mau et al. assume for P(Ψ,β) a very simple, uniform-
like distribution (such uninformedness is perfectly compatible with the Bayesian approach!).
Specifically:

1. They bound the total hight of trees by some arbitrary maximum value, that is, all trees
Ψ with a greater hight are assigned P(Ψ,β) = 0.

2. All trees of lesser hight are assigned the same probability. Note that this does not
imply that all topologies are assigned equal prior probabilities. Figure 3.5 shows two
topologies, where the one shown in a. will get a prior twice as large as the one shown
in b. Reason: the two internal nodes of the first topology can be shifted up- and

 71

downwards independently, whereas this is not the case in the tree b., thus there are
twice as many trees of the topology a. than of b. Note that for evolutionary biologists
it is the tree topology (which species derives from which species) rather than the tree
metrics (how long took what) which is of prime interest!

3. The mutation parameters β are assigned a prior distribution that is uniform on a range
interval chosen generously large to make sure that all biologically halfway plausible
possibilities are contained in it.

Figure 4.5. Two tree topologies that get different priors. Topologies are defined by the
parenthesis patterns needed to describe a tree. For instance, the tree a. would be characterized
by a pattern ((x x)(x x)) and the tree b. by ((x (x x)) x).

The stage is now set... After all these preparations, we possess a pdf g (up to an unknown
scaling factor) of P(Ψ,β | D), which can be evaluated with a small computational effort for a
given Ψ,β. (Of course, it would rather be the log of g which would be actually computed,
avoiding underflow problems).

What is the structure and dimensionality of the observation space E in which Ψ,β lie?
Remember that a tree Ψ can be specified by (σ, a), where σ is a permutation vector of (1,...,l)
and a is a numerical vector of length l – 1. Noticing that there are l! permutations, a pair (σ, a)
reflects a point in a product space {1,...,l!} × l-1; together with the two real-valued
parameters comprised in β brings us to a space {1,...,l!} × l+1. However, there may be some
constraints within the parameters of a that reduce the effective degrees of freedom to a
number smaller than l – 1. This is hard to analyze (Mau et al. don't do it), and if the DOFs are
less than l – 1, we would not necessarily find a useful lower-dimensional representation. Be
this as it may, all in all the carrier domain of our pdf for P(Ψ,β | D) has a dimension in the
order of l – in our example, 32 –, and a heterogeneous, complicated structure.

The target question that biologists want to get answered: what tree topology is the most
probable, given DNA sequences D of living species?

The strategy to find out about the answer is brutally simple: sample a large number of trees
Ψi from g, sort these sampled trees into sets defined by tree topology, then interpret the
relative sizes of these sets as probability estimates.

The Metropolis-algorithm at work. Mau et al. use the Metropolis algorithm (in a global
version) to sample trees from g. A crucial design task is to find a good proposal distribution
S((Ψ*,β*) | (Ψ,β)). It should lead from any plausible (Ψ,β) [i.d., g((Ψ,β)) is not very small] to
another plausible (Ψ*,β*), which should be however as distinct from (Ψ,β) as possible. The
way how Mau et al. go about this task is one of the core contributions of their work.

a. b.

 72

The authors alternate between updating only β and only Ψ. Updating β to β* is done in a
straightforward way: the new *-parameters are randomly drawn from a rectangular
distribution centered on the current settings β.

The tricky part is to generate an as different as possible, yet "plausibility-preserving" new tree
Ψ* from Ψ. Mau et al. transform Ψ = (σ, a) into Ψ* = (σ*, a*) in two steps:

(2.2) The current tree Ψ is transformed into one of its 2n-1 equivalent topological versions

by randomly reversing with 0.5 probability every of its internal branches, getting Ψ' = (σ',
a').

(2.3) In Ψ' the evolutionary inter-species time spans t are randomly varied by changing the
old values by a random increment drawn from the uniform distribution over [−δ, δ], where
δ is a fixed bound (see Fig. 4.6). This gives Ψ* = (σ', a*).

Figure 4.6. Candidate trees, attainable from the current tree, are characterized by intervals of
size 2δ, centered at the current internal nodes, that constrain the repositioning of the internal
nodes. (Taken from the Mau et al paper). Note that if the two rightmost internal nodes are
shifted such that their relative heightes become reversed (dashed blue circles), the topology of
the tree would change (dashed blue lines).

Mau et al show that this method yields a symmetric proposal distribution, and that every tree
Ψ' can be reached from every other tree Ψ in a bounded number of such transformations – the
Markov chain is thus ergodic.

Concretely, the Metropolis algorithm was run for 1,100,000 steps (20 hours CPU time on a
1998 Pentium 200 PC), the first 100,000 steps were discarded to wash out possible distortions
resulting from the arbitrary starting tree, the remaining 1,000,000 trees were subsampled by
200 (reflecting the finding that after every 200 steps, trees were empirically independent [zero
empirical cross-correlation at 200 step distance]), resulting in a final tree sample of size 5000.

Final findings. The 600 (!) most frequent topologies make up for 90% of the total probability
mass. This high variability however is almost entirely due to minute variations within 6 clades
(labelled A, ..., F) that are stable across different topologies. Figure 4.7. shows the two most

 73

frequently found topologies resolved at the clade level, with a very strong posterior
probability indication for the first of the two.

Figure 4.7. The two clade tree structures of highest posterior probability found by Mau et al.

For quality control, this was repeated 10 times – with no change of the final outcome, which
makes the authors confident of their work's statistical reliability.

A B E C D F 32 25 A B E C D F 32 25

posterior
probability:
0.645

posterior
probability:
0.102

 74

5 Simulated Annealing and Energy‐Based Representations of Distributions 

"Simulated annealing" (SA) is a general-purpose stochastic optimization method that shares
much with the Metropolis algorithm, both historically and technically. Like this algorithm, it
was first introduced within the conceptual framework of statistical physics, and again like the
Metropolis algorithm, it shows a novel way of how the power of modern computational
machinery can be used to answer questions concerning very complex systems – that is,
systems with hundreds or even Millions of free parameters, where there is no hope
whatsoever of an analytical approach. SA has been introduced in one of these very classical
landmark papers in 198314. Very classical landmark paper means: this paper has been cited
more than 6,000 times.

Simulated annealing rests on an insight that every physical system, under certain idealized
conditions, gives rise to a statistical distribution of its state energies; and vice versa, every
statistical distribution over a measure space leads to a notion of energy defined for the
elements of the measure space. This bi-directional translation from thermodynamics to
statistics and back has been, and will continue to be, extremely fruitful for both parties,
theoretical physics and algorithmical and statistical modelling. With this section I want to
provide a first introduction of the basic concepts of this field, and present some important
application examples.

5.1 Physical background 

Generally, SA is used to search a large space of potential solutions s (called microstates) of
some combinatorial problem, in order to find a solution that is close to the global minimum
w.r.t. some real-valued target function (objective function) E(s) ≥ 0. The two example
applications treated in the original paper are representative for the flavour of simulated
annealing problems:

1. The first problem concerned the optimization of computer hardware layout, specifically

the distribution of functional units to microchips, and the spatial placement of units on a
chip. Each possible design is a microstate. Several objective functions are considered in
that article, e.g. number of pins of chips (to be minimized) or total wiring length
(minimize it, too). Given that there are many thousands of functional units to place and
wire, which are moreover heterogeneous, this is clearly a task without an analytical
solution (and exhaustive search is clearly also precluded!).

2. The second problem is the classical traveling salesman problem, that is, the problem of
finding the shortest itinerary through a map with N cities. This problem is known to be
NP-complete (I assume this is known to you – if not, consult Wikipedia, or if you are
ashamed of that, any textbook on computational complexity). Here the microstates are the
possible traveling routes, and the objective function is the total route length.

To understand the method (and the maths) of SA, we must introduce some concepts from
statistical thermodynamics. Consider a vessel containing a liquid, kept at a constant
temperature T. Statistical thermodynamics is the branch of physics that explains macroscopic
measurable quantities from the statistics of microscopic states s, also called microstates. For
our liquid-in-a-vessel system, macroscopic quantities would be for instance volume,

14 S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi (1983) Optimization by Simulated Annealing. Science, Vol. 220 Nr
4598, 671-680. A copy is available from the course homepage.

 75

temperature, pressure – things you can measure with everyday devices. The microstates of our
system would be exact specifications of the current positions and velocities of all of the
individual liquid molecules in the vessel. It is clear that there are very many (try to imagine
how many...) possible microstates! Every microstate has an assigned energy E(s). How this
energy is defined depends on the physics of the particular model system – for a liquid in a
vessel, the energy of a microstate would depend, among other things, on the potential energy
of each of the molecules (the higher in the vessel, the greater its potential energy), on their
kinetic energies (the faster the molecule, the greater its kinetic energy), but also on inter-
molecular forces (the closer together a pair of mutually repellant molecules, the greater the
energy contribution from this pairwise force), etc.

Due to molecular motion and maybe quantum-physical effects, the liquid in the vessel is
incessantly and randomly changing its microstate. Assuming that the vessel is allowed to
exchange heat – that is, energy – with its environment (called a heat bath), different
microstates may have different energy (this would be prohibited in a perfectly isolated
system).

Now one may ask the question, what is the probability distribution of the microstates? (This
is a crucial question for thermodynamics, because macroscopic states are derived from
averaging over microstates. For instance, temperature is related to the average velocity of
molecules).

A fundamental fact of thermodynamics is the insight that the probability distribution of
microstates is fully determined by the energy E(s) of microstates. Specifically, the pdf over
microstates is given by the Boltzmann distribution

(5.1))/)(exp(1)(TsE
Z

sp −=

where Z is the normalizing factor that ensures that p integrates to unity:

(5.2) dsTsEZ

S

)/)(exp(∫ −=

Note that both p and Z depend on the temperature T, so we sometimes write p(s,T) and Z(T). Z
is called the partition function.

In order to understand SA, we should get a good intuitive grasp on the Boltzmann
distribution, especially how it changes with T. Figure 5.1 shows plots of p(s) for four different
temperatures T = 1, 0.1, 0.01, 0.001 (red lines). I constructed the energy function E(s)
arbitrarily. There are 100 different microstates (points on the x-axis); the energy E(s) is
plotted into all panels (dotted blue line). The plots clearly reveal the fundamental two
properties of the Boltzmann distribution:

1. As T grows, the distribution becomes more and more uniform. In the limit of T → ∞ , p(s)
develops into the uniform distribution. Intuitively speaking15, at high temperatures the overall

15 The correct intuitions are not really easy to come by in statistical thermodynamics. The treatment given here is
extremely simplified, to the extend where it is misleading, so don't take it as an introduction to statistical
thermodynamics. For one, the considerations are true only in the limit of an infinitely large heat bath – which
implies that the subsystem must have microstates of arbitrarily large energy (so Figure 4.1 is misleading). A

 76

energy of the combined system "vessel plus heat bath" is so abundant that the vessel
subsystem gets "kicked around" through its states regardless of their (relatively minor) energy
differences.

2. As T decreases toward zero, the Boltzmann distribution concentrates more and more on the
low-energy microstates. In the limit of T → 0 , the distribution develops into the Dirac δ-peak
at the global minimum of E (if there is a single global minimum). The state(s) where E is
globally minimal is (are) called the ground state(s).

Figure 5.1. The Boltzmann distribution for four different temperatures. For explanation see
text.

5.2 From physics to a search algorithm 

The fact that when T is lowered, the Boltzmann distribution homes in on the global minimum
of the energy function, is the key to SA for finding (almost) globally optimal solutions in
combinatorial search tasks. Here are the core ideas:

1. Identify the points of the combinatorial search space with microstates s of an artificial

"thermodynamic" system.

more correct interpretation of the convergence of the Boltzmann distribution to the uniform distribution with
increasing temperature would go like this: "As temperature increases – which means that the total energy of the
combined vessel-heatbath-system grows –, the number of microstates of the combined vessel-heat bath system
increases, and the ratio of numbers N and N' of microstates where the vessel subsystem has relatively small
energies E or E' tends more and more to 1". Second, microstates should be defined in terms of quantum
mechanical states.

 77

2. Identify the objective function, of which an (almost) global minimum has to be found,
with the energy function E(s).

3. Start with some medium or high temperature T0 and consider the Boltzmann distribution
p(s, T0), which will be close to uniform (as in the first panel of Fig. 5.1). Start sampling
from this distribution (using the Metropolis algorithm would be the classical choice). The
sequence of created samples will cover the search space almost uniformly.

4. Now lower the temperature gradually, thereby obtaining a sequence of Boltzmann
distributions p(s, T0), p(s, T1), p(s, T2), ... that more and more concentrates on the points in
search space (microstates) that have low values of the objective functions. Continue
sampling all the time. The sequence of samples should thus concentrate more and more on
microstates with low values of the objective function.

5. Continue until Tn ≈ 0. The hope is that then the cooling process has guided you toward the
global minimum and that the samples that you now get are closely scattered around the
optimum.

A natural question at this point is, why not start immediately at low temperatures (e.g. in a
situation like that shown in the 4th panel of Fig. 5.1), wouldn't that just save the time of
"hovering aimlessly" about the search space at high temperatures, and instead directly lead
you to the desired minimum, which is well pronounced at low temperatures? The answer is, if
one starts at low temperatures, -- or, for that matter, if one cools to rapidly --, one is likely to
get "frozen" in a very suboptimal local minimum from which one cannot escape. This
becomes intuitively clearer if we re-interpret the Metropolis sampling of p(s, Ti) in physical
terms of "jumping around" in the energy landscape E(s) directly.

Recall from (4.29) that the Metropolis acceptance function certainly accepts a jump to a new,
proposed sample s* from a current sample s if g(s*) > g(s); if g(s*) ≤ g(s), the new s* is
accepted with a probability of Paccept = g(s*) / g(s) [where g was the pdf of the distribution

from which one samples]. In the context of SA, g(s) = p(s, T) =)/)(exp(1 TsE
Z

− . Taking the

log of p, one obtains

(5.3) log(p(s, T)) = TsE
Z

/)()1log(−

or equivalently

(5.4)

€

E(s) = −T log(p(s,T))+ T log(1
Z
) ,

which expresses the energy of a microstate s in terms of the temperature and the Boltzmann
distribution value at s. We now consider the two cases when (a) the Metropolis algorithm
certainly accepts, and (b) when it accepts with probability Paccept = g(s*) / g(s), and see how
we can translate this into energies.

Case (a): if g(s*) > g(s), that is, p(s*, T) > p(s, T), then from (5.4) we see that this is

equivalent to E(s*) < E(s). In other words, when the energy of the newly proposed
sample / microstate is lower than the current one's, it is accepted with certainty.

Case (b): if g(s*) ≤ g(s), that is, the acceptance probability is Paccept = g(s*) / g(s) = p(s*, T) /
p(s, T), then

 78

(5.5)

*))()((1

/)()1log(/*)()1log(

)),(log()*,(log()
),(
)*,(log()log(accept

sEsE
T

TsE
Z

TsE
Z

TspTsp
Tsp
TspP

−=

+−−=

−==

from which by exponentiation we get

(5.6))/exp()/*))()(exp((accept TETsEsEP Δ=−= ,

where EΔ is the (negative in sign!) energy "uphill" jump from state s to state s*.

Summarizing we see that in terms of energy, a new proposed microstate is accepted with
certainty if its corresponding energy jump goes "downhill", and if it goes uphill, it is accepted
with probability)/exp(accept TEP Δ= . That is, the greater the energy increase, the
(exponentially) more unlikely is such a step taken; however, this may be compensated by a
proportional increase in temperature. In other words, on the average, at higher temperatures
we may take higher jumps uphill.

Equipped with this re-interpretation of the Metropolis algorithm in terms of an energy-based
acceptance function (incidentally, this is the perspective taken in the original paper from
Kirkpatrick et al), we can better understand why slow cooling is important for a final landing
in a good local minimum of the energy landscape. We can now intuitively interpret the SA
search process as a random jump sequence of a "ball" in the energy landscape E(s), where the
temperature determines the ability of the ball to (randomly) climb uphill and in this way
overcome "energy barriers". Consider the following energy landscape, with a ball bouncing
around at high (left) and low (right) temperature:

Fig. 5.2: SA seen as an energetic ball game. For explanation see text.

We see that at low temperatures, the search may get trapped in non-optimal regions of the
search space that are surrounded by "energy barriers".

E

S S

T high T low

 79

Incidentally, this is a danger for the original Metropolis algorithm, too. The pdf g(s) from
which one wishes to sample can be converted into an equivalent energy E(s) by putting T = Z
= 1 and

(5.7)))(log()(sgsE −= ,

which – for the sake of checking – gives us a valid Boltzmann probability distribution:

(5.8)

€

p(s) =
1
Z
exp(−E(s) /T) = exp(−E(s)) = exp(log(g(s))) = g(s) .

For the case that g*(s) < g(s), the original Metropolis acceptance probability
Paccept = g*(s) / g(s) can be expressed in terms of energy by

(5.9)

€

Paccept =
g* (s)
g(s)

=
exp(−E * (s))
exp(−E(s))

= exp(E(s) − E(s*)) = exp(ΔE)

(where E(s*) > E(s)). Again, the "jumping ball" metaphor makes it clear that the Metropolis
algorithm, too, may get trapped in regions surrounded by "energy barriers", that is,
(translating back to probabilities) by barriers of low probability.

Returning to the SA, we are now aware that the cooling process is important for the success of
running an SA algorithm. A widely used, "quick and dirty" cooling scheme is exponential
cooling: Put Tn+1 = k Tn for some k < 1 (but close to 1). Update T after every single sample.
Clearly the size of k is important – a typical way to determine it would be just to experiment.

However, such simple cooling schemes, although widely used, may yield unsatisfactory
results. During a SA search run, one may encounter periods where a particularly slow cooling
is required, while at other periods, one may cool faster. I will first explain this fact intuitively
and then give a mathematical and algorithmical account.

Here are two intuitive approaches to understand the necessity for slower-than-others cooling
periods.

The original physical metaphor: simulated annealing. In metallurgy and chemistry,

"annealing" refers to a process of carefully cooling a liquid into crystallisation. A general
observation is that if a liquid is cooled very quickly, the resulting solid will consist of
many fine-granular microcrystals; by contrast, if the cooling is done slowly, large crystals
or even a single solitary crystal result. Specifically, the cooling must be slow (heat being
withdrawn from the liquid at a low rate) at the solidification temperature, because it is at
this temperature that the final crystal structure is determined. You might know from own
experience with deep-freezing condiments or producing ice-cream that fast cooling across
the solidification temperature produces a substrate structured into many small crystals,
whereas slow cooling results in fewer and larger crystals. This is important in both ways
in many applications: for instance, when deep-freezing biological specimens (seeds, live
cells) it is crucial to "shock-freeze" the material very rapidly, avoiding the growth of
larger ice crystals which would destroy the cell membranes; or in producing honey, one
way (besides stirring for a long time) to assure that the end-product has a fine crystal-
structure is to freeze the freshly harvested, liquid honey (note that it solidifies even above
room temperature, albeit slowly). In terms of energy landscape: large crystals corresponds

 80

to microstates of low energy (with solitary crystals corresponding to globally minimal-
energetic ground states). Therefore, slow cooling around the critical solidification
temperature is a prerequisite for low-energy final products. This correspondence between
metallurgy and combinatorial search has given this method its name, simulated annealing.

Naive human problem solving. When solving some magazine puzzle question or a math
homework, you will probably have experienced something similar to a phase transition.
After an initial thinking phase where you have no clue of how to solve the problem and
think of many possible approaches (= a high temperature search phase), the inklings of a
solution appear on the horizon (= close to the phase transition), and suddenly! you adopt a
particular approach (= beyond the transition) from which it would require quite some
effort (= mental re-heating) to escape... If you cooled to quickly (=decided for a solution
strategy too early, too quickly) your approach is likely to fail (= lead to a quite suboptimal
minimum); if you spent time to consider different solution options (= hover around the
critical temperature) and then sloooowly decided, your chances of hitting a good solution
strategy are much higher.

There is a physical / mathematical indicator of such phase transition temperatures (like at the
freezing temperature of water) when it is important to cool very slowly. The free energy of a
system at temperature T is

(5.10) F(T) = E[E(s)] – T S(T)

where E[E(s)] is the average energy at temperature T,

(5.11) E[E(s)] = dsTsE
Z

sE
S

)/)(exp(1)(−∫

and S(T) is the entropy of the system at temperature T,

(5.12) dsTspTspTS

S∫−=)),(log(),()(.

Thus the free energy relates the average energy at temperature T with the entropy. Intuitively,
the free energy of a system is the "useful" part of its energy, energy that could be exploited at
a macroscopic scale (for example, the free energy of a volume of gas would be the energy that
one could exploit by expanding the gas in a piston, plus the energy that one might gain from
cooling the volume). Phase transitions are defined in physics16 as discontinuities in the free
energy (or one of its derivatives) as temperature (or another macroscopic variable) passes a
critical value. For instance, as a volume of water is cooled from some ε value above zero to
some ε value below, such that it freezes, one has to extract a certain amount of energy (the
melting heat) from that volume – one may in fact exploit this energy; it is part of the free
energy of the volume of water. Therefore, the free energy of the volume of water just above
zero jumps discontinuously to a lower value as the water is cooled to any T just below
freezing.

Similarly, when running SA for a combinatorial search problem, one can in principle
compute, at every step n, the free energy Fn of the system, and make the cooling rate depend
on the development of the free energy – cool slowly if Fn shows signs of changing rapidly, or
in other words, cool in a fashion such Fn decreases smoothly.

16 http://en.wikipedia.org/wiki/Phase_transition for a very good intro

 81

The free energy can be computed from the partition function Z by observing that

(5.13) F(T) =))(log(TZT− ,

which is a homework exercise. So the question is, how can one compute the integral

dsTsETZ
S

)/)(exp()(∫ −= ? The brutal answer is: use sampling!17 for an approximate

evaluation of this integral! However, this advice apparently is very expensive: within an SA
run (which may have millions of steps!), we repeatedly have to squeeze in complete sampling
runs. In the Neal thesis, a number of special-purpose sampling techniques for the partition
function are surveyed, none of them cheap and none without problems (Section 6.2, "free
energy estimation"). This is an area of active research, because free energy estimation has
many other important applications in physics and computational modelling besides steering
SA.

Here is a summary of the SA method:

Given: a search space with (very many) microstates s and an objective function E(s), for

which a good minimum is sought.
Initialization: Choose a starting temperature T0 and randomly pick an initial microstate s0.
Update cycle: Input: Tn and sn. Output: Tn+1 and sn+1.

1. Randomly choose a candidate s*n+1 according to some proposal distribution, as
known from the Metropolis algorithm (similar considerations apply).

2. Determine Tn+1, either by a predefined (e.g., exponential) cooling scheme, or by
monitoring the free energy. Note: very often in applications of SA, T is left
unchanged in most cycles and is only sometimes re-set to a lower value.

3. Compute E(s*n+1). If this is lower than E(sn), accept and put sn+1 = s*n+1. If
E(s*n+1) > E(sn), compute)/))()(exp((1

*
1accept ++−= nnn TsEsEP and accept s*n+1

with this probability, else reject and put sn+1 = sn.
Termination: stop when a predefined (low) stopping temperature is reached, or when the

sequence of sn does not significantly change any more, or when some other
suitable termination criterium is met. The last created microstate sn is the desired
result and should have an objective function value close to the global minimum.

17 See chapter 6.2, "Free Energy Estimation", of the Neal survey for a good intro. Actually, sampling does not
lend itself directly to evaluate integrals; rather, it can only easily be used to determine the ratio of two integrals.
However, it is such ratios that we need for monitoring the development of free energy over time. If the proper
value of an integral is sought, only rejection sampling can be used, and the proper value of the integral of the
proto-pdf must be known.

 82

5.3 Examples, and a connection to spin glasses 

I give a brief review of two of the optimization applications presented in the original article
from Kirkpatrick et al: the travelling salesman problem (TSP), and partitioning circuits
between microelectronic chips. In addition I provide some background on the Ising model and
spin glasses. These are model systems investigated in statistical physics that have a direct
bearing on our themes. I rely mostly on the Kirkpatrick article, working in material from the
Neal tutorial and the Web. The Kirkpatrick article is very readable and has lots of interesting
detail, so my account should be regarded as an appetizer to read the original.

5.3.1 The travelling salesman problem

We start with the TSP. The instance of TSP documented in the original article features 400
cities which were randomly placed in a course structure made from 9 square subblocks on the
unit square, as becomes apparent from Fig. 5.3. Intercity distance was Euclidean distance on
the plane. The microstates s were circular routes connecting all 400 cities, visiting each one
once – formally, these microstates can be regarded as permutations of {2,...,400} (the starting
city with index 1 can be fixed w.l.o.g.). The objective function E(s) is the total length of a
route. The proposal mechanism, that is, a method to obtain a next microstate s* from the
current s (called a "move" in that article), was to reverse the direction in which a randomly
chosen subsection of the tour s was traversed (more on this in the exercise sheet...). Figure 5.3
shows typical tours that were obtained at four temperatures. The effects of cooling become
nicely visible, and the microstate sample recorded at the coldest temperature looks intuitively
rather optimal – which is about what one can say, because computing the exact global
minimum is out of the question here.

Fig. 5.3. Typical TSP routes obtained by simulated annealing at temperatures T = 1.2 (a), 0.8
(b), 0.4 (c), 0.0 (d). (Taken from the original SA article by Kirkpatrick et al.)

 83

5.3.2 Ising systems and spin glasses

Before we turn to the computer layout application, we will briefly introduce a simple
thermodynamical model system that has been extensively analysed in statistical physics – the
Ising model of magnetic solids, and a special case, spin glasses. Many lessons learnt from
spin glasses have been applied to computational optimization and machine learning, and we
will see below that theoretical insights gained from spin glasses can guide the layout of
computer hardware!

The (2-dimensional) Ising model is a simplified model of a 2-dimensional solid consisting of
atoms arranged on a regular grid. Each atom can be in one of two "spin" states, denoted "up"
and "down" (or "+" and "-", or "1" and "0"). You should think of the spin states as
orientations of elementary magnets – this is the physical origin of the Ising model. A
microstate of an Ising system is an assignment of spins to all atoms; thus an Ising model of N
× N atoms has 2N2

 microstates.

Let the atoms be indexed with i, j, and let µi(s) ∈ {−1, +1} be the spin of the i-th atom in a
microstate s. In a basic version of the Ising model, the energy of a microstate s is given by

(5.14) E(s) = ∑∑ µ−µµ−

∈ i
i

ji
ji HJ

N),(

where  is the set of index pairs of directly adjacent atoms (an atom that lies not at the
boundary of the N × N region has four directly adjacent neighbors, left/right/above/below), J
is a coupling strength constant, and H is the strength of an external magnetic field of "+"
orientation. If J > 0, states where neighboring atoms have the same orientation are
energetically preferred (have lower energy); one then speaks of ferromagnetic materials. If J
< 0, anti-alignment of neighboring atoms is preferred: the case of anti-ferromagnetic
materials. The second term accounts for a decrease in energy if atoms are aligned with an
external magnetic field of "+" orientation.

The overall magnetization of a microstate is defined by

(5.15) M(s) = ∑µ

i
i .

Ising models have been investigated intensely and in many variations: for different
dimensions, different grid topologies, mixtures of ferromagnetic and anti-ferromagnetic
effects, etc. Their importance for physics roots in the fact that they are about the simplest
models in which fundamental phenomena of statistical thermodynamics arise: phase
transitions, percolations, scaling invariances, and many more. Lessons learnt from Ising
models have been fruitfully applied in many domains outside physics, for instance image
processing (a B/W image can be seen as an Ising model!), machine learning and theoretical
neuroscience (the Boltzmann machine is a generalization of the Ising model which serves as a
model for an associative memory), and many more. We will see below that the Ising model
helps to understand problems of computer hardware layout.

 84

One of the first facts discovered (and proven18) for the 2D Ising model was a phase transition
at a critical temperature: For large N, when a ferromagnetic Ising system (without external
field) is cooled, the mean magnetization (that is, the expectation of |M(s)|/N under the
Boltzmann distribution at temperature T) quickly rises from zero to one, with the slope being
infinite at the critical temperature T = 2.269. Intuitively, at higher temperatures, disordered
states with little alignment (and hence no global magnetization) are exceedingly probable,
while at lower temperatures, the Boltzmann distribution concentrates on ordered states – at T
= 0, only the two totally aligned states have nonzero probability.

A nice Java applet for sampling such ferromagnetic Ising states at different temperatures,
using the Metropolis algorithm, has been written by Evgeny Demidov. Click at
http://www.ibiblio.org/e-notes/Perc/ising.htm and experiment... Figure 5.4 shows snapshots
from that simulator, displaying typical Ising states at different temperatures. At low
temperatures (left panel), the overwhelming majority of sampled microstates exhibit a
dominant orientation (in the example shown, the "+" [= "white"] orientation). At high
temperatures (right panel), states are very "noisy" and globally totally disordered. Around the
critical temperature (middle), states exhibit scale invariance: the spatial patterns formed by
the "+" and "-" oriented atoms appear the same at different levels of magnification.

Fig. 5.4. Typical microstates, as sampled with the Metropolis algorithm from a 200 × 200
atom Ising system at temperatures 1.3, 2.269 (critical T), and 3.0 (from left to right).
(Obtained with E. Demidov's online simulator). For details compare text.

In real magnetic materials, often a mixture of ferromagnetic and anti-ferromagnetic
phenomena is observed. In iron, for instance, on a small scale quantum-mechanical rules
favour ferromagnetic alignment of neighboring iron atoms. However, on a larger scale (some
thousands of atoms), the familiar tendency of magnetic dipoles to anti-align starts to
dominate. In iron there are thus two counter-acting tendencies, which could be expressed by
splitting in Eqn. (5.14) the first term into two, one with a positive J and one with a negative J
– these two terms would of course have to be defined for different spatial scales. An important
consequence of these two conflicting tendencies is that there exists no single (or a small
number) of ground states in a block of iron – the lowest-energy states all are "compromise"
states consisting of local regions with a high degree of internal alignment, but counter-
alignment between these regions. Systems where conflicting energy-minimizing mechanisms
lead to a large number of compromise ground states are called frustrated systems in general,
and in the context of Ising models and magnetism they are called spin glasses (see

18 By later Nobel laureate Lars Onsager, http://en.wikipedia.org/wiki/Lars_Onsager for a nice intro see
http://en.wikipedia.org/wiki/Ising_model

 85

http://en.wikipedia.org/wiki/Spin_glass, http://en.wikipedia.org/wiki/Ferromagnetism for
good intros).

5.3.3 Computer hardware layout: circuit partitioning subtask

According to Kirkpatrick et al., whose paper I follow in this subsection sometimes verbatim,
in computer hardware layout one is confronted with a number of subproblems that build and
depend on each other, with partitioning being the most elementary (the article also treats
metrical placement and wiring). The partitioning task, in this paper, is to distribute a set of
about 5000 circuits (forming a complete CPU architecture) over two microchips such that (i)
the number of pins is low and (ii) the circuits are distributed approximately in equal numbers
across the microchips.

Formally, this task can be specified very much in the spirit of Ising models through
microstates s, where each microstates s assigns a value µi(s) ∈ {−1, +1} to the i-th circuit (i =
1, ..., 5000), depending on which chip the circuit becomes assigned to. The objective function
must reflect the two requirements (i) and (ii). Expanding on the treatment in the original
article (it provides no detail), this can be done as follows, always in a true Ising spirit:

For (i), consider a 5000 × 5000 matrix (aij) with 0-1 entries, a value of aij = 1 indicating that
circuits i and j directly exchange a signal (and hence, if placed on different chips, require a pin
at each chip). The number of signals that must cross a chip boundary is

€

(aij /4)(µi −
i> j
∑ µ j)

2 = − (aij /2)µi
i> j
∑ µ j + (aij /2)

i> j
∑ .

The second sum term is independent of the circuit placement and can be dropped from the
energy function, because it does not affect the location of its minima.

For (ii), the objective function should grow with the degree of imbalance of circuits assigned

to the two chips. The squared imbalance score

€

µi
i
∑










2

 is equal to

€

2 µi
i> j
∑ µ j + µi

2 .
i
∑

Again, the second sum term is independent of the placement and can be dropped.

Assembling these two contributions and replacing the constant 2 by a weighting factor λ, one
gets an objective function of the form

(5.16) E(s) =

€

λµi
i> j
∑ µ j j

ji
iija µµ−∑

>

,

which reveals that the partitioning problem is an instance of a frustrated (spin glass like)
system (the first sum term codes a global interaction contribution to the energy, the second
one that is "local" with respect to the connection topology induced by the nonzero aij) This
has important consequences for the optimization through simulated annealing (here I cite
almost verbatim from Kirkpatrick et al):

1. Because spin glasses have many ground states, there will be many good near-optimal

solutions, so a stochastic search like SA should find some.

 86

2. No one of the ground states is significantly better than the others, so it is not very fruitful
to search for the absolute optimum.

The SA scheme used by Kirkpatrick et al. involved a proposal scheme that simply flipped the
assignment of a randomly chosen circuit. The temperature was lowered with a factor of 0.9
from one temperature to the next lower one. Starting at T = 10, at each temperature in the
order of 500,000 flips were executed, until a temperature of 0.1 was reached (from which I
infer a total runlength of about 20,000,000 updates). Figure 5.5 summarizes the distributions
of number of pins obtained at different temperatures. As expected, the average number of pins
sampled at decreasing temperatures decreases, as does the variance of that number. At the
lowest temperature, the sampling has frozen into apparently a single (or very few) solution(s).

Fig. 5.5: Distributions of total number of pins at various temperatures. The arrow indicates
the average number of pins obtained by a greedy search algorithm (Metropolis sampling with
T = 0). (From the Kirkpatrick et al article)

5.4 The Boltzmann Machine  

The Boltzmann Machine (BM), introduced in 1985 by Ackley, Hinton and Sejnowski19, is not
actually a machine but an abstract "neural network" model for a representation of complex
distributions – or, stated in the terms of cognitive science which is the appropriate
background: a model of a contents-addressable, associative memory.

Before going into the technical aspects, I want to explain the background intuitions and the
intended use of BMs. A good way to approach BMs is to see them as an abstract model of
human memory, including mechanisms for storing, retrieving, associating between stored
items, and completing corrupted inputs. Let's consider the question what is the nature of a
human's (long-term) memory of the written digit pattern for the number "four" (in the Times
bold font: 4). Numerous and diverse answers to this question have been given in the fields of
cognitive science and neuroscience, for instance:

(2.1) The "digit-pattern-4-memory" is a stored prototype, that is, we have a

conceptual/neural representation of some ideal, prototypical pattern, -- let's say,
something very clean and clear that looks like this:

19 Ackley, D.H. and Hinton, G.E. and Sejnowski, T.J.: A Learning Algorithm for Boltzmann Machines.
Cognitive Science 9 (1985), 147-169. Electronic copy for this course at http://minds.jacobs-
university.de/sites/default/files/uploads/teaching/share/1385_Ackleyetal85.pdf

 87

4
In order to recognize new incoming instances of the digit "four", like this one:

the stored prototype is matched against the new input, which is classified as "four" if the
match is close enough. The prototype view is one of the classical models of memory in
cognitive science.

(2.2) The "digit-pattern-4-memory" is a set of processing rules, which specify how low-
level features which are extracted from a visual input can (and must) be combined in order
to be recognized as a "four" pattern. This is another classical model, especially in AI and
pattern recognition.

(2.3) The "digit-pattern-4-memory" is a huge set of contextual expectations (or
anticipations or affordances) which specify in which contexts one should expect the
pattern "four" to appear, and when it appears, which further actions or perceptions are
likely to occur. This would be the approach of the rather recent and flourishing school of
thought of anticipatory representations.

This is only a selection among numerous other models of the nature of long-term memory.
The most confusing part of this picture is that for each kind of model there is good empirical
evidence from psychological or neurophysiological studies.

The BM should be seen on this background of a multitude of models of long-term memory
(LTM), because it adds another such model. The fundamental assumption of the BM is that
memory is a generative model of a probability distribution. Coming back to the pattern "four"
example, our memory of this pattern should be seen as a distribution over possible variations
of that pattern. A sample from this distribution might look like in figure 5.6.

Figure 5.6. A sample from a distribution of the pattern "four". (Taken from the widely used
MNIST digit benchmark dataset, www.cvl.isy.liu.se/ImageDB/images/external_ima-
ges/MNIST_digits/index.html)

The BM model of memory is generative. In technical terms this means that the BM comes
complete with a sampling algorithm, which allows to produce sample items from the
memorized distribution. In more intuitive terms one could say that the BM can be run in a
mode of "hallucination" or "dreaming" – the term that is mostly used is to say that the BM can
confabulate pattern samples.

 88

The mathematical format of a BM is closely related to Ising models, and the generating
algorithm will be the Metropolis sampler. We now describe the BM in detail.

In its elementary version, a BM describes a probability distribution over N-dimensional binary
patterns v = (v1, ..., vN)T, where now vi ∈ {0, 1} (think of V as a black-and-white image and
the vi as pixels). In line with the neural networks background of BMs, the pixel cells are
called "neurons" or "units" (and the entire set of N units can be thought of as a "retina").
Similarly, the values 0 and 1 are called "activations"20.

To augment the representational capacity of a BM, it is usually equipped with additional
hidden units h = (h1, ..., hM)T. These are binary units too, i.e. hi ∈ {0, 1}. If we want to refer to
both types of units without distinguishing between them, we write s = (s1, ..., sN+M)T ∈
{0,1}N+M to denote complete BM states (these are the microstates in the Boltzmann sense).

In a BM, there is an undirected link between any two visible and/or hidden units si, sj (in the
neural networks metaphor, think of this link as a "synaptic connection" between two neurons.)
Each link is characterized by some real number wij ∈ , its weight. Special case: setting the
weight to zero amounts to cancelling the link altogether. Figure 5.7 gives an impression of a
BM set up with two types of visible units, the ones in the retinal "input" layer where
geometric patterns are inputted (or confabulated), and a "classification" layer where there is
one visible unit for each class of patterns (i.e., there is one unit for the class of all "one"
patterns, one for all "two" patterns, etc.). Only a few of the pairwise links between units have
been indicated by lines for clarity.

Figure 5.7. Schematic of a BM
architecture for memorizing and
classifying digits and letter patterns.
For explanation see text.

The energy of a microstate in a BM is defined by

20 I follow the original work of Ackely, Hinton and Sejnowski here. In a number of textbooks one will find a
version of the BM which has activations {-1, +1} as in the Ising model. It's a matter of taste.

visible visible hidden

 89

(5.17)

€

E(s) = − wijsis j
i< j
∑ .

That is, each particular fixed setting of the weights defines a particular energy landscape over
the microstates.

One sometimes adds a third type of unit, a bias input unit. There is only one such unit and its
activation is unchangeably fixed at a value of 1. If such a bias unit is used, the energy function
changes to

(5.18)

€

E(s) = − wijsis j
i< j
∑ + θisi,

i
∑

where θi is the connection weight between the i-th unit and the bias input unit. A bias input is
a convenience feature that is often used in neural network architectures; it has several
practical and mathematical merits that we do not discuss here. We will work without a bias
input in the sequel.

If a temperature T is fixed, a BM defines a probability distribution over the visible units, as
their marginal distribution of the resulting Boltzmann distribution:

(5.19)

€

P(s) =
1
Z
exp(−E(s) /T)

P(v) = P(s)
s:(s1 ...sN)= v
∑

According to the energy function (5.17), if the k-th unit has an activation of zero (i.e. sk = 0),
all sum terms in which sk appears are zero: inactive units contribute nothing to the energy of
the current microstate. If sk jumps from 0 to 1, while all other units stay in their activation
states, the energy (5.17) changes by adding the amount

(5.20)

€

−ΔEk = − wkjs j
j
∑ .

Sampling from a BM is done with the Gibbs sampler. The dimensions along which this
sampler cycles along are the units si. Assume that at some point in the sampling cycle we are
visiting the dimension (unit) sk. In order to carry out the sampling at this dimension, we need
to know the conditional distribution of sk given the current state of the other sj. Let s' be the
microstate where sk = 1 and s the microstate where sk = 0. Now compute the ratio

(5.21)

€

P(sk =1 | all other states)
P(sk = 0 | all other states)

=
P(s')
P(s)

=
exp(−E(s') /T)
exp(−E(s) /T)

=
exp(−(E(s) −ΔEk) /T)

exp(−E(s) /T)
= exp(ΔEk /T).

From

€

P(sk = 0 | all other states) =1− P(sk =1 | all other states)

it then follows that

 90

(5.22)

€

Pk := P(sk =1 | all other states) =
1

1+ exp(−ΔEk /T)
..

To create a next sample s' from a previous sample with Gibbs sampling, while working at
dimension sk, thus means to set sk to a value of 1 (regardless of its previous value) with this
probability Pk.

A beautiful movie demonstration of a digit-confabulator can be found at Geoffrey Hinton's
webpage at http://www.cs.toronto.edu/~hinton/digits.html. This architecture has two more
hidden "layers" than sketched out in figure 5.7 but is otherwise similar. The gray level
rendering of the retinal visible units in this online movie and in figure 5.7 is obtained by not
plotting states (which would be binary B/W), but instead a suitably normalized version of the
unit's energy contribution

€

ΔEk .

This is the first half of the BM story. The second, and more intriguing, half concerns the
question how the weights wij are learnt from training data. The scenario is as follows:

• A finite training set of samples D ={v1, …, vn} of visible states from an unknown

distribution P is all that is available to start with. For example, the MNIST training set
(available at Yann LeCun's website http://yann.lecun.com/exdb/mnist/) is a collection of
tens of thousands of handwritten digits; figure 5.6 gives a small subset.

• From these training examples, BM weights wij have to be learnt such that the resulting
Boltzmann distribution

€

ˆ P (at some predetermined fixed temperature T) is as similar as
possible to P.

• One common way to measure the similarity of two (discrete) distributions P and

€

ˆ P is to
use their Kullback-Leibler distance

(5.23)

€

KL(P, ˆ P) = P(s)
s
∑ log P(s)

ˆ P (s)
.

The KL distance is not actually a true distance (it is not symmetric). It is always
nonnegative and is zero if and only if the distributions P and

€

ˆ P are identical.
• Not knowing P, only having available the sample set D, one uses instead of the true

distribution P the empirical distribution P0 which is given simply by the "histogram" of
the training samples. Notice that due to the high dimensionality of pixel image vectors, we
should expect to encounter the curse of dimensionality here: the empirical distribution
given by databases like MNIST will typically have singleton "counts" at best and should
be imagined to be something like is shown in figure 3.5a. I will ask in class why this case
is less quite hopeless after all than it first appears… (Hint: the N-dimensional pixel space
is populated by training instances in a very uneven way; all samples will be concentrated
in a small, low-dimensional submanifold of the N-dimensional hypercube)

• Use gradient descent to minimize

€

KL(P0, ˆ P) .

The beauty of BMs lies in the circumstance that actually the last point is easy: a little non-
deep maths21 reveals that

21 This derivation can be found in the appendix of the Ackley/Hinton/Sejnowski paper.

 91

(5.24)

€

∂KL(P0, ˆ P)
∂wij

= −
1
T

(pij − ˆ p ij),

where

€

pij is the average (over training samples) probability that the units i and j are both
active (that is, si = 1 and sj = 1) when the visible units are set externally to the training
samples, and where

€

ˆ p ij is the probability that these two units are simultaneously active in a
"free-running" sampling mode with no external constraints. This yields the following update
rule for weights:

(5.25)

€

wij (n +1) = wij (n) + ε(pij − ˆ p ij),

where

€

wij (n) is the value of the weight wij at the n-th learning step and ε is a (small) learning
rate. Notice that a BM is operated (trained and used) at a fixed temperature, so the learning
rule (5.25) does not depend on T. A single weight update step

€

wij (n)→ wij (n +1) involves the
following operations:

1. Estimation of

€

pij : for each training sample vα, "clamp" (that's a technical term in the
neural networks world) the visible units to the values of vα. While the visible units
remain clamped to vα, run the sampling algorithm until a reasonably representative
sample of states of the equilibrium dynamics has been obtained. Use this sample to
estimate

€

pij
α , the probability of units i and j being co-active under clamping by vα. Do

this for all α = 1, ..., n. Finally, set

€

pij to the average of all of these

€

pij
α . All of this is

sometimes called the "wake" phase of the BM learning algorithm.
2. Estimation of

€

ˆ p ij : Similar to one of the substeps of estimating

€

pij
α in the previous step,

only without clamping the visible units. This is sometimes called the "sleep" phase.
3. Weight update: apply (5.25).

It is clear where the catch with this procedure lies: for a single weight update step, one has to
run as many complete sampling runs as there are training patterns! At face value, this is
simply prohibitive.

In their original paper, Ackley, Hinton and Sejnowski introduce a number of simplifications
which allow them to learn some demo examples, even with the slower computers of the early
80'ies. The main simplifications are the following:

1. Instead of (5.25), use

€

wij (n +1) = wij (n) + c sign(pij − ˆ p ij), where c is a constant weight
increment and sign is the signum function. This reduces computational load because
determining the sign of

€

(pij − ˆ p ij) needs a less accurate sampling than estimating the
size of this quantity.

2. For each sampling run in steps 1 or 2 above, use a two-phase procedure. In the first
phase, start from a higher temperature than the agreed T and carry out a simulated-
annealing like cooling from the higher temperature to T. In the second phase, sample
at the standard temperature T. The initial annealing phase is intended to prevent that
the (randomly generated) starting state is stuck in some narrow, untypical local energy
minimum.

 92

Despite these simplifications and tricks (of which the second is dubious if you ask me), the
intrinsic computational challenge of a very large number of sampling runs needed to
determine weight updates is not dissolved. This is probably a good enough reason to explain
that Boltzmann Machines never were used in practical applications. However, the underlying
idea is both so simple and so potentially powerful that Geoffrey Hinton and other academic
researchers continued to research BM architectures in the decades since. I probably wouldn't
have elected BMs as suitable for a lecture nonetheless, if not recently many researchers in
machine learning (including myself) have freshly become excited about BMs. This stir was
triggered by a Science paper by Hinton and R. R. Salakhutdinov22, where several
developments which started from BMs were combined into a strikingly powerful architecture,
now often dubbed deep belief networks (DBNs), for learning complex distributions:

• DBNs are layered neural networks, where each layer corresponds to one BM. The
hidden units of one such BM make the visible units of the next-higher BM.

• The connectivity of the participating BMs is very much reduced: there are no in-layer
connections, only connections between adjacent layers. This type of BM has been
called "restricted Boltzmann Machine (RBM)"

• The learning is done in a divide-and-conquer fashion layer by layer.
• Each sampling subroutine is condensed to only two state updates of one layer BM,

using a shortcut approximate algorithm called contrastive divergence.

These innovations together have brought BMs back on stage with a flourish, under the name
of RBMs or DBNs. I can't possibly describe DBNs better (nor more concisely) than Hinton &
Salakhutinov did in their Science paper, so the latter is mandatory reading at this point. I
insert a TIFF version for convenience; if you want high-resolution pdf, you will have to
download the paper from http://www.sciencemag.org/cgi/content/abstract/313/5786/504 .

22 G. E. Hinton and R. R. Salakhutdinov, Reducing the Dimensionality of Data with Neural Networks. Science
313 (July 28, 2006), 504-507. Online at http://www.sciencemag.org/cgi/content/abstract/313/5786/504 Due to
copyright reasons I cannot make this paper electronically available in a publicly accessible way, but Jacobs
members should be able to download it directly from the indicated URL.

 93

 94

 95

 96

 97

6. Bayesian networks and graphical models 

6.1 Introduction23 

A Bayesian network is "just" an orderly, graph-based way of representing the statistical
dependencies between a number of random variables. For a very first impression, we consider
a (classical) example. Let X1, ..., X5 be five discrete random variables, indicating the
following observations:

X1: indicates the season of the year, has values from {Winter, Spring, Summer, Fall}
X2: indicates whether it rains, has values {0, 1}
X3: indicates whether the lawn sprinkler is on, has values {0, 1}
X4: indicates whether the pavement (close to the lawn) is wet, values from {0,1}
X5: indicates whether the pavement is slippery, values from {0,1}

There are certain causal influences between some of these random variables. For instance, the
season co-determines the probabilities for rain; the sprinkler state co-determines whether the
pavement is wet (but one would not say that the wetness of the pavement has a causal
influence on the sprinkler state), etc. Such influences can conveniently be expressed by
arranging the Xi in a directed, acyclic (! – why?) graph (a DAG), such that each random
variable becomes a node, with a link (i, j) denoting that the fact measured by Xi has some
causal influence on the fact measured by Xj. Of course there will be some subjective
judgement involved in claiming a causal influence between two observables, and denying it
for other pairs – such dependency graphs are not objectively "true", they are designed to
represent one's view of a part of the world. Here is the DAG for our example which serves as
standard example in many introductions to Bayesian nets:

23 In this introduction I lean mostly on two BN tutorial texts: a. Judea Pearl, Stuart Russell. Bayesian Networks,
in M. A. Arbib (Ed.), Handbook of Brain Theory and Neural Networks, pp. 157–160, Cambridge, MA: MIT
Press, 2003. Online version at http://www.kddresearch.org/Resources/Papers/Intro/pearl-bbn2000.pdf , mirrored
at http://minds.jacobs-university.de/sites/default/files/uploads/teaching/share/1921_PearlRussell03.pdf b. K. P.
Murphy (2001), An Introduction to Graphical Models. Obtainable at
http://www.cs.ubc.ca/~murphyk/Bayes/bayes.html, mirrored at http://minds.jacobs-
university.de/sites/default/files/uploads/teaching/share/2078_Murphy98.pdf

 98

Fig. 6.1: A simple Bayesian network24.
The intuitive interpretation of arrows in a Bayesian network as "causal influence" is
mathematically captured by the following formal, semantic constraint that a DAG must satisfy
in order to qualify as a Bayesian network:

Definition 6.1: A directed acyclic graph with nodes X = {X1, ..., Xn} (random variables,
which may take values in different measure spaces) is a Bayesian network (BN) for the joint
distribution P(X) if every Xi is conditionally independent of its non-descendants in the graph
given its parents.

Note that the independence relations expressed in a BN in terms of parents and non-
descendants need not be the only independence relations that are actually true in the joint
distribution. In our example, for instance, it may be the case that the pavement is always
slippery (because it was made from polished marble...). Then X5 would be unconditionally
independent from any of the other variables. The complete independence relations between
the variables figuring in a BN depend on the particulars of the joint distribution and need not
all be represented in the graph structure. A BN is only a partial model of the independence
relations that may be present in the concerned variables.

For convenience of notation we often identify the nodes Xi of a BN with their indices i. The
descendants of a node i in a DAG G are all nodes j that can be reached from i on a forward
path in G. For example, in our example network the nodes 4 and 5 are the descendants of
node 2. The parents of a node i in G are all the direct graph predecessors of i. For instance,
the parents of node 4 are the nodes 2 and 3; the node 1 has no parents. In our example, the
condition of Def. 6.1 would imply that X4 is independent of X1 given X2 and X3:

(6.1) P(X4 | X1, X2, X3) = P(X4 | X2, X3)

In words, if we know whether the sprinkler is on and whether it rains, then we don't gain any
additional information about the wetness of the lawn if we additionally know the season.

Let's squeeze in a short note on notation here. By P(X4 | X2, X3) we denote the conditional
distribution of X4 given X2 and X3. For discrete random variables, as in our example, this can
be specified by a table:

(6.2)

For continuous-valued random variables, such conditional distributions cannot in general be
specified in a closed form (one would have to specify pdf's for each possible combination of
values of the conditioning variables), except in certain special cases, notably Gaussian
distributions.

24 Taken from the Pearl/Russell tutorial.

X2 X3 P(X4 = 0) P(X4 = 1)
0 0 1.0 0.0
0 1 0.1 0.9
1 0 0.1 0.9
1 1 0.01 0.99

 99

In contrast, we use lowercase P(x4 | x2, x3) as a shorthand for P(X4 = x4 | X2 = x2, X3 = x3).
This denotes a single probability number for particular values x4, x2, x3 of our random
variables. – End of the note on notation.

A Bayesian net can be used for reasoning about uncertain causes and consequences in many
ways. Here are three kinds of arguments that are frequently made, and for which BNs offer
algorithmic support:

• Prediction. "If the sprinkler is on, the pavement is wet with a probability
P(X4 = 1 | X3 = 1)": reasoning from causes to effects, along the arrows of the BN.

• Abduction. "If the pavement is wet, it is more probable that the season is spring than
that it is summer, by a factor of y percent": reasoning from effects to causes, that is,
diagnostic reasoning, backwards along the network links. [By the way, for turning the
reasoning direction around you need Bayes formula, which is what gave Bayesian
networks their name].

• Explaining away, and the rest. "If the pavement is wet and we don't know whether
the sprinkler is on, and then observe that it is raining, the probability of the sprinkler
being on, too, drops low": reasoning "sideways", of which there are many variants.
The common treat in "explaining away" phenomena is that if there are several possible
causes C1, …, Ck for some observed effect E, and we learn that actually cause Ci holds
true, then the probabilities drop that the other causes are likewise true in the current
situation.

Bayesian networks offer inference algorithms to carry out such arguments and compute the
correct probabilities, ratios of probabilities, etc. These inference algorithms are not trivial at
all, and Bayesian networks have only begun to make their way into applications since
efficient inference algorithms had been discovered in the mid-80'ies. We will learn about the
historical first of these algorithms in this course; it is still one of the most widely used such
algorithms.

To get a first inkling of the complexity of inference in BNs, imagine that the Space Shuttle is
being modelled as a BN (which indeed it is), and during the launch countdown a sensor
reading A wanders towards its red line, [with thousands of sensors, one or two are almost
bound to behave like that, typically just because of sensor failure] while another sensor B that
monitors the same device as A with a different measureable shows only a slight tendency
above normal. Now try to put yourself into the position of the chief launch responsible
engineer, – imagine how reeeally eager this person would be to learn about "by which factor
is the probability of a launch failure increased if A goes toward red line while B practically
shows no effect" – and to learn about this within a few seconds?? This is a (real) example of a
BN used for decision support systems. The decision support algorithms must be able to
combine the interactions of thousands of random variables quickly and with extreme
flexibility. Decision support is always needed when complex systems have to be mastered in
moments of crisis – power grids, nuclear power plants, space shuttles are examples; tactical
warfare decision-making is another (of which we learn little because military research is
rarely documented to the public). BN algorithms and fast computers have become
indispensible for decision support because humans are simply quite bad at correctly
combining pieces of evidence in uncertain systems. They tend to make gross, systematic
prediction errors even in simple diagnostic tasks involving only two observables (which is
why in good universities future doctors must take courses in diagnostic reasoning), let alone
be capable of dealing with complex systems involving hundreds of observables – and acting
under time pressure.

 100

BNs of this flavour – representing complex situations from everyday life or technology – have
been systematically explored in Artificial Intelligence since the early 80'ies. The most
prominent BN researcher in this field was Judea Pearl – just to drop the name. He developed
the first computationally feasible inference algorithms and explored many variants of the
basic BN architecture we have sketched. The main types of applications of such BNs are

• expert systems: representations of complex pieces of reality, typically for diagnosis,
for instance medical diagnosis or car fault diagnosis;

• decision support systems25: helping humans to assess the consequences of actions
and choose optimal actions (like in the space shuttle example, but also for economical
or political and military decision making);

• user modelling for intelligent computer interfaces and Web applications – the
(in)famous paperclip guy plaguing Microsoft Word is actually controlled by a BN that
learns to represent and predict a user's weaknesses and preferences26.

In a sense, the most natural (the only?) thing you can do when it comes to handle the
interaction between many random variables, is to arrange them in a graph. So it is no surprise
that similar formalisms have been invented independently in several fields, comprising
besides Artificial Intelligence physics, genetics, statistics, and image processing. However,
the most important developments have been seen in Artificial Intelligence and Machine
Learning, where feasible inference algorithms for large-scale BNs have first been
investigated.

Methods of Bayesian networks have been generalized and ramified in many ways. A good
overview is given in the Pearl/Russell tutorial. The generalizations comprise the following.

• Use undirected graphs (we'll visit them in this lecture) instead of directed ones, with
a different graph-based semantics of statistical independance. Such undirected BNs
were actually used in physics before (e.g., the Ising model can be seen as an
undirected BN), or in image processing (random Markov field models of images), or
in neural computation (the Boltzmann machine).

• Introduce dynamics, that is, let BNs evolve over time. This is done by introducing a
structural copy of a basic BN for each (discrete) time point, and connecting these
copies by temporal arrows that are themselves equipped with a statistical
(in)dependence relation. Such models were used since long in speech processing under
the name of hidden Markov models (HMMs) and in robot control under the name of
partially observable Markov decision processes (POMDPs).

• Introduce hidden and "meta" nodes into BNs, which correspond to unobserved
quantities and to model-switching control quantities, respectively. The general theory

25 See the intro slides from a BN course of Kathryn Laskey, originally retrieved from
http://ite.gmu.edu/~klaskey/CompProb/CompProb_Intro.pdf, now at http://minds.jacobs-
university.de/sites/default/files/uploads/teaching/share/KlaskeySlides.zip. She has a professional background in
decision support and motivates BNs from that perspective.
26 See a survey paper of one of Microsoft's head engineers about perspectives of Bayesian user modelling for the
future of human computer interaction, E. Horvitz, C. M. Kadie, T. Paek, D. Hovel. Models of Attention in
Computing and Communications: From Principles to Applications, Communications of the ACM 46(3):52-59,
March 2003 http://research.microsoft.com/~horvitz/cacm-attention.pdf, mirrored at http://minds.jacobs-
university.de/sites/default/files/uploads/teaching/share/Howrwitz.cacm-attention.pdf. A popular description of
Microsoft's plans to revolutionize user interfaces with Bayesian Network methods can be found in a NY Times
article http://partners.nytimes.com/library/tech/00/07/biztech/articles/17lab.html, mirrored at http://minds.jacobs-
university.de/sites/default/files/uploads/teaching/share/NYTimesHorvitzBayesMicrosoft.pdf

 101

of such generalized BNs comprises all the models mentioned so far and some more
(notably, the classical statistical techniques of principal component analysis (PCA)
and independent component analysis, ICA) and has been promoted by the neural
computation / machine learning superpower27 Michael I. Jordan in recent years under
the name of graphical models.

In the algorithmic and mathematical world of BNs there exist two fundamental tasks:

• Inference: find algorithms that exploit the graph structure as ingeneously as possible
to yield fast algorithms for computing all the quantities asked for in prediction,
abduction and "sideways reasoning" tasks. This is non-trivial because the exact
inference task is NP-hard. The breakthrough of BNs as a practical tool came about
when the first feasible inference algorithms were found by Judea Pearl in the early
80'ies. They have been much improved since, and we will learn about one of the
modern versions of the core inference algorithm in this lecture.

• Learning: find algorithms to construct a BN from observed empirical data (inference
algorithms use a BN that is already in place!). All learning algorithms need inference
algorithms as a subroutine, so we will naturally first treat the latter. Depending on the
available time, we will present a simple learning algorithm (case of all nodes
corresponding to observables) or a more complicated, more powerful one (case when
there are also "hidden" nodes).

All in all, you are in for an intense experience of advanced, applied algorithmics, beautiful
and powerful (and not easy – can't be denied), where the combination of graph-manipulation
algorithms with statistical inference methods is the key to success.

6.2 Brute-force inference in BNs

A Bayesian network is a probabilistic representation of a piece of reality – that piece which
we observe through the random variables that appear in the BN. We have argued earlier in
this lecture (Section 2, Eqn. (2.10) ff.) that the joint distribution of all observables of interest
is the most comprehensive model of a piece of reality that one may obtain. In fact, any other
kind of formal model is "just" some partial view of that most comprehensive model. Now, if
one models a fairly complex chunk of reality, one will need many observables, that is, many
random variables. One of the saddest facts about life, mathematics, engineering and
everything else is that the joint distribution of many random variables is an exponentially
complex object, inaccessible in general to an analytical or algorithmical treatment. For
instance, the joint distribution of our mere five, very simple random variables would be a
histogram over the set

(6.3) {Winter, Spring, Summer, Fall} × {0,1} × {0,1} × {0,1} × {0,1},

which has 4 * 2 * 2 * 2 * 2 = 64 elements, so you would need 63 parameters to specify it (one
is redundant because all parameters must sum to 1). It is clear that, for real-life modelling
tasks involving hundreds or even thousands of random variables, this number explodes. The
power of BNs results from the fact that in the presence of independence relations, the joint
distribution can be represented, computed, or otherwise manipulated in a much more

27 Take a look at http://www.cs.berkeley.edu/~jordan/ -- the list of his former students is an awe-inspiring Who is
Who of today's machine learning community!

 102

economical way, because only the local dependencies between random variables linked by
arrows in the BN have to be taken into account. We will investigate brute-force methods for
elementary inference in this subsection and see how the graph structure leads to a dramatic
reduction in computational complexity (which however still is much too high for practical
applications – more refined algorithms will be presented in subsequent subsections).

By the factorization formula (2.15), the joint distribution of our five random variables is

(6.4)
).,,,|(),,|(),|()|()(

)()(

432153214213121

}5,...,1{

XXXXXPXXXXPXXXPXXPXP

PXP ii

=

==⊗
∈

X

Exploiting the conditional independencies expressed in the BN graph, this reduces to

(6.5)).|(),|()|()|()()(4532413121 XXPXXXPXXPXXPXPP =X

For representing the factors on the r.h.s. by tables like (6.2), one would need tables of sizes
1×4, 4×2, 4×2, 4×2, and 2×2, respectively. Because the entries per row in each of these tables
must sum to 1, one entry per row is redundant, so these tables are specified by 3, 4, 4, 4 and 2
parameters, respectively. All in all, this makes 17 parameters needed to specify)(XP , as
opposed to the 63 parameters needed for the general product distribution of X1, ..., X5.
Generally speaking, the number of parameters required to specify the joint distribution of n
discrete random variables with maximally v values each arranged in a BN with a maximum
fan-in of k is O(n vk) as opposed to the "raw" number of parameters O(vn) needed for a naive
characterization of the joint distribution. This is a reduction from a space complexity that is
exponential in n, to a space complexity that is linear in n! This simple fact has motivated
many a researcher to devote his/her life to Bayesian networks (and we can guess that the fan-
in in BNs will have an important impact on representational efficiency gains).

Any reasoning on BNs (predictive, abductive, "sidestepping" or others) boils down to
evaluate some conditional probability expressions. For instance, the abductive question, "If
the pavement is wet, by which factor y is it more probable that the season is spring than that it
is summer", asks for

(6.6)
)1|(
)1|(

41

41

==

==
=

XsummerXP
XspringXPy .

Such ratios of probabilities are very often sought in diagnostic reasoning (consider the
questions, "by which factor is it more probable that my symptoms are due to cancer, than that
they are due to a harmless cause").

Any conditional probability P(y1, ..., ym | z1, ..., zl), where the Yi and Zj are among the random
variables represented in the BN, can be computed from the joint distribution (6.5) of all
variables in the BN by first transforming P(y1, ..., ym | z1, ..., zl) into a fraction of two marginal
probabilities,

(6.7)
),..,(

),..,,,..,(),..,|,..,(
1

11
11

l

lm
lm zzP

zzyyPzzyyP =

 103

and then computing the denominator and the enumerator by marginalization (see Eqns. (2.11)
and (2.12)), exploiting the efficient BN representation of the kind exemplified in Eqn. (6.5).

The probability)1|(41 == XspringXP , for instance, can be computed by

(6.8)

.
)1|(),|1()|()|()(

)1|(),|1()|()|()(

),1,,,(

),1,,,(
)1(

)1,(
)1|(

4532413121
,,,

4532413121
,,

54321
,,,

54321
,,

4

41

41

5321

532

5321

532

==

=====

=

=

==

=

=

==
=

===

∑

∑

∑

∑

XxPxxXPxxPxxPxP

XxPxxXPspringXxPspringXxPspringXP

xXxxxP

xXxxspringXP
XP

XspringXP
XspringXP

xxxx

xxx

xxxx

xxx

This could be done by a brute-force evaluation of the concerned summations. The sum to be
taken in the denominator would run over 4×2×2×2 = 32 terms. It is apparent that this
approach generally incurs a number of multiplications that is exponential in the size of the
BN.

In fact, the task of computing exact inferences in a BN is NP-hard. This can be seen as
follows, by reducing the satisfiability problem for Boolean logic28 to computing inferences in
a BN. Let φ be a Boolean expression with the Boolean variables a1, ..., an. We design a BN
with binary random variables Xi where for some node XK it holds that P(XK = 1) > 0 iff φ is
satisfiable. First observe that φ is constructed from the elementary Boolean expressions a1, ...,
an by iterated applications of ∧ and ¬, yielding a directed, acyclic graph G of subexpressions
(known as a Boolean circuit) with initial nodes a1, ..., an and a common maximal node
corresponding to φ. Label each node with a binary random variable Xi, where the n parent-less
nodes corresponding to the elementary expressions a1, ..., an are labelled with X1, ..., Xn, and
the unique terminal node corresponding to φ by XK. For each starting node X1, ..., Xn, declare
an unconditional probability distribution P(Xi = 1) = P(Xi = 0) = 1/2. For each other node Xi,
if it corresponds to a subformula φi = φm ∧ φk, specify its conditional distribution by
P(Xi = 1 | Xm = xm, Xk = xk) = 1 if xm = 1 and xk = 1, P(Xi = 1 | Xm = xm, Xk = xk) = 0, else. If Xi
corresponds to a subformula φi = ¬ φm, set P(Xi = 1 | Xm = 0) = 1 and P(Xi = 1 | Xm = 1) = 0.
Then prove by induction over the structure of φ that for every node Xi, P(Xi = 1) is the fraction
of the possible 2n truth assignments to a1, ..., an which satisfy the Boolean expression
corresponding to that node. Hence, P(XK = 1) > 0 iff φ is satisfiable.

This argument shows that computing marginals in BNs is in general intractable. In this
situation, computer scientists can essentially choose between three options:

28 See chapters 11 and 12 in my lecture notes on Computability and Complexity for an introduction to NP-
hardness, NP-completeness, and the satisfiability problem of Boolean expressions (online at http://minds.jacobs-
university.de/sites/default/files/uploads/teaching/lectureNotes/scriptCC.pdf)

 104

1. Restrict the problem by suitable constraints, earning a tractable problem. For BNs, this

was the first strategy that was used with success: early (now classical) inference
algorithms were defined (and were tractable) only for BNs with tree graphs.

2. Use randomized algorithms, i.e. algorithms that invoke random decisions at some point.
Such "guessing" algorithms need not always terminate; if they do, their result is perfectly
accurate. The goal is to create randomized algorithms which, if they terminate, they do so
quickly, thus being fast almost all of the time and failing (running too long so they need to
be abandoned) only rarely. In practice, algorithms that involve some human intervention
in the form of "heuristics" can be seen as randomized algorithms. The BN inference "join
tree" algorithm which we will study in this lecture contains heuristic elements.

3. Use approximate algorithms, i.e. algorithms that yield results always and fast, but with an
error margin (which should be controllable). For BN inference, a much-used class of
approximate algorithms is based on sampling. In order to obtain an estimate of some
marginal probability, one samples from the distribution defined by the BN and uses the
sample as a basis to estimate the desired marginal. There is an obvious tradeoff between
runtime and precision.

There are numerous toolboxes, commercial and free, for building and using BNs. In the
practical exercises / miniprojects of this course we use the Matlab-based toolbox written by
Kevin Murphy, available at https://code.google.com/p/bnt/.

The fact that BN inference is NP-hard should however not generally discourage you. In
practice one can often exploit the structure of the BN to speed up computations in a simple
way, without resorting to advanced randomized or approximate algorithms. One evident
method works by pulling the sum into the product as far as possible, and evaluate the resulting
formula from the inside of bracketing levels. This is called the method of variable
elimination. An equivalent formula for the sum in the denominator of (6.8), for example,
would be

(6.9) .)1|(),|1()|()|()(
1 32 5,

4532413121∑ ∑ ∑ 

































==

x xx x
XxPxxXPxxPxxPxP

This would need only 2+2×2+0 = 6 summations (the sum over x5 is 1 and need not be
explicitly calculated!). However, finding a summation order where this pulling-in leads to the
minimal number of summations is again NP-hard, although greedy algorithms for that
purpose are claimed to work well in practice.

We will not further pursue the variable elimination method however, but instead we will
present a more powerful, more widely used, but also significantly more complex algorithm in
the next subsections. To use this algorithm, the BN is first transformed from its directed graph
representation into another, undirected graph representation. Because such undirected graph
representations of (in)dependency relationships between RVs are of great interest in their own
right, we will devote an entire subsection to them, before we proceed with the join tree
inference algorithm for BNs.

6.3 Undirected graphical models  

 105

The power of BNs is that (in)dependency relationships between RVs are captured by suitable
graph structures, which in turn guide efficient inference algorithms. So far, we have seen how
directed graphs can be used to this end. But it is also possible to use undirected graphs. This
leads to undirected graphical models (UGMs), which have a markedly different "flavour"
than the directed BNs. UGMs originated in statistical physics and image processing, while
BNs were first explored in Artificial Intelligence. Depending on the field, UGMs are called by
different names29:

• Markov random fields: the word used in statistics and image processing,
• Ising models, Boltzmann machines: widely investigated in statistical physics and

machine learning, -- we have already met them but have so far not discussed aspects
of independence of RVs and efficient inference algorithms,

• undirected graphical models, or undirected probabilistic independence networks:
terms used in the BN community proper.

We have seen in the preceding subsection that statistical independence can be exploited for
efficient inference computations. We will use the following handy notation for statistical,
conditional independence between two sets Y and Z of random variables, given a set S of
random variables:

Definition 6.2: two sets Y, Z of random variables are independent given S, written SZY |⊥ ,
if

€

P(Y,Z |S) = P(Y |S)P(Z |S) .

Remark. It is easy to see that if SZY |⊥ , then for any subsets ZZYY ⊆⊆ ',' it holds that

)|'()|'()|','(SZSYSZY PPP = .

In an UGM, independence relations between sets of random variables are defined in terms of
a graph separation property:

Definition 6.3: Let G = (V, R) be an undirected graph with nodes V and links R ⊆ V × V. Let
Y, Z, S ⊆ V be disjoint, nonempty subsets. Then Y is separated from Z by S if every path
from some node in Y to any node in Z contains a node from S. S is called a separator for Y
and Z.

Here is the definition of undirected graph models, which declares how statistical
independence is reflected in the graph's separation properties:

Definition 6.4: An undirected graph with nodes X = {X1, ..., Xn} is an undirected graphical
model (UGM) for P(X) if for all Y, Z, S ⊆ X it holds that if Y is separated from Z by S, then

SZY |⊥ .

29 Overview with references in Smyth, P., Heckerman, D., Jordan, M.I.: Probabilistic Independence Networks for
Hidden Markov Probability Models. Neural Computation 9(2), 1997, 227-270 Online at
http://www.faculty.jacobs-university.de/hjaeger/SharedMaterials/1403_Smythetal97.pdf. A highly readable non-
technical overview and comparison of directed and undirected models is given in Smyth, P.: Belief networks,
hidden Markov models, and Markov random fields: a unifying view. Pattern Recognition Letters 18 (11-13),
1997, 1261 – 1268. Copy in http://www.faculty.jacobs-
university.de/hjaeger/SharedMaterials/2117_Smyth97.pdf

 106

Like with BNs, an UGM need not reflect all the independence relations that govern the joint
distribution. An UGM is called a perfect model for P(X) if all independence relations of P(X)
are reflected in separation properties. A given P(X) need not possess a perfect UGM.
Furthermore, an UGM is a minimal model for P(X) if the removal of any link would create an
independance relation (by separation) not present in P(X). A given P(X) may possess
different minimal UGMs. Note finally that a fully connected undirected graph with nodes X =
{X1, ..., Xn} is trivially an UGM for any P(X) because no separators exist.

UGMs are sometimes defined in a slightly different but equivalent way. We formulate this
other definition as a proposition:

Proposition 6.1 An undirected graph with nodes X = {X1, ..., Xn} is an UGM for P(X) iff for
all i = 1, …, n it holds that P(Xi | (Xj)j ≠ i) = P(Xi | (Xj)j ∈ Ni), where Ni ⊆ {X1, ..., Xn} is the set
of all direct neighbors of Xi in the graph.

In plain English, Xi is independent of all other variables in the system given all graph-
neighbor variables of Xi. Proving this proposition is a straightforward exercise.

The characterization of UGMs through the direct graph neighbors reveals how UGMs can be
seen as a spatial generalization of Markov processes. Recall that a stochastic process X1, X2,
... is defined to possess the Markov property if Xi is independent of all earlier X1, ..., Xi-2 given
Xi-1. The variable Xi-1 is the direct neighbor of Xi in the "timeline graph" that connects each Xi
to Xi+1. In a similar way, the spatial direct neighbors Ni of Xi make Xi independent from the
other nodes in the graph. This is the reason why UGMs are often called Markov Random
Fields (MRF) – this is the standard terminology in statistical physics and signal engineering
applications, especially in image processing.

We will restrict the remainder of this subsection to MRFs where the participating random
variables {X1, ..., Xn} are all nominal, that is, each Xi takes values in a finite set which for
simplicity we assume to be Ei = {1, 2, …, mi}.

For reasons that will become clear later, Markov Random Fields are usually defined to have
one additional property that makes them more special than generic UGMs, namely strict
positivity of P. We will adhere to this convention and formally define MRFs as follows:

Definition 6.5: An UGM is a Markov Random Field if P(nxx ,...,1) > 0 for all

(nxx ,...,1) ∈

€

i=1

n

⊗Ei .

For a first exposure to MRFs, let us see how a 1-dimensional Ising model can be understood
as an MRF. For concreteness, consider the Ising model with just 4 atoms whose magnetic spin
states are described by X1, ..., X4, which take values in {-1,1}. The microstates are the 4-tuples
over {-1,1}. At temperature T, the joint (Boltzmann) distribution over the microstates is given
by

(6.10) P(X1, ..., X4) = .

)/exp(
1

)/exp(
11)/exp(1

3
1

1
1 TXJXZTXJXZ

TXJX
Z jiij

ij
jiij

ji ∏∏∑
+=

+=
+=

==−

 107

We see that the joint distribution factorizes into three factors, whose values depend on X1, X2
and X2, X3 and X3, X4, respectively. A valid undirected graph representation for this
distribution would be obtained by connecting subsequent atoms, as in Fig. 6.2:

Fig. 6.2: An MRF for a 4-atom Ising model.

To see that this MRF is a model for (6.10), it suffices to take into account that (6.10)
factorizes in the general format

(6.11) P(X1, ..., X4) = ϕ1(X1, X2) ϕ2(X2, X3) ϕ3(X3, X4),

with some functions ϕi. The specific form of these functions is not relevant, but notice that
they are strictly positive. We have to check that the independence relations prescribed by the
UGM are satisfied by P(X1, ..., X4). For illustration, we just check that },{| 3241 XXXX ⊥ :

(6.12)),|(),|(
),(
),,(

),(
),,(

),(),(),(

),(),(),(

),(),(),(

),(),(),(

),(),(),(

),(),(),(

),(),(),(

),(),(),(

)),(),(),((

),(),(),(),(),(),(

),(),(),(
),(),(),(

),(),(),(
),(),(),(

),(
),,,(),|,(

324321
32

324

32

321

,
433211322

433322211

,
433211322

433322211

,
433211322

211433322

,
433211322

433322211(*)

,

2
433211322

,
433211322433322211

,
433211322

433322211

,
433322211

433322211

32

3241
3241

41

1

41

4

41

1

41

4

41

41

41

41

xxxPxxxP
xxP
xxxP

xxP
xxxP

xxxxxx

xxxxxx

xxxxxx

xxxxxx

xxxxxx

xxxxxx

xxxxxx

xxxxxx

xxxxxx

xxxxxxxxxxxx

xxxxxx
xxxxxx

xxxxxx
xxxxxx

xxP
xxxxPxxxxP

xx

x

xx

x

xx

x

xx

x

xx

xx

xx

xx

==

ϕϕϕ

ϕϕϕ

ϕϕϕ

ϕϕϕ

=

ϕϕϕ

ϕϕϕ

ϕϕϕ

ϕϕϕ

=

ϕϕϕ

ϕϕϕϕϕϕ

=

ϕϕϕ

ϕϕϕ
=

ϕϕϕ

ϕϕϕ
==

∑

∑

∑

∑

∑

∑

∑

∑

∑

∑

∑

∑

,

where in step (*) we used 









ϕ










ϕ=ϕϕ ∑∑∑

4141

),(),(),(),(433211
,

433211
xxxx

xxxxxxxx .

Generalizing from this finding (without proof) we see that an n-dimensional Ising model on a
rectangular grid can be represented by a UGM where the grid connections between atoms
form the graph structure of the UGM.

The connection between a factorized representation of a joint distribution P(X) as in (6.11)
and the graph structure of an associated UGM can be expressed in a very general way. Recall
that a clique in an undirected graph is a completely connected subset of nodes. A maximal

X1 X2 X3 X4

 108

clique is a clique to which no node can be added without losing the clique property. Joint
distributions of random variables which can be factorized similar to (6.11) are of general
interest and are given a name:

Definition 6.6 Let X = {X1, ..., Xn} be a set of RVs. A distribution P(X) is a Gibbs
distribution if the Xi can be are arranged as nodes in an undirected graph G whose cliques C
⊆ Pot(X) allow to factorize P(X) by

(6.13))(),...,(1 c

Cc
cnxxP x∏

∈

ϕ= ,

where xc is the subset of the values nxx ,...,1 belonging to nodes in clique c and for each clique
c, ϕc is a clique function that assigns a real number to each of the possible combinations of
values that the random variables occurring in that clique can take.

The Boltzmann distribution for our simple 4-atom Ising system is a Gibbs distribution, as is
witnessed by (6.11).

Gibbs distributions and Markov Random Fields are closely connected – in fact, they are
identical. We show that (i) every Gibbs distribution defines a MRF (easy), and (ii) conversely,
every MRF is a Gibbs distribution (not so easy, famous landmark theorem)30.

Proposition 6.2 With the notation and assumptions from Def. 6.6, a Gibbs distribution (6.13)
is a Markov Random Field.

Proof. Using the characterization of Proposition 6.1, without loss of generality it suffices to
show that

€

P(X1 = x1 | X2 = x2,...,Xn = xn) = P(X1 = x1 | X2 = x2,...,Xk = xk), where for
notational simplicity we assume N1 = {

€

x2,...,xk}. Writing out the first probability, we get

€

P(X1 = x1 | X2 = x2,...,Xn = xn)

=
P(X1 = x1,X2 = x2,...,Xn = xn)

P(X2 = x2,...,Xn = xn)

=

ϕc (x1,x2,...,xn ↓c)
c∈C
∏

ϕc (e,x2,...,xn ↓c)
c∈C
∏

e∈E1

∑
.

The notation

€

x1,x2,...,xn ↓c is to be understood as "all of the

€

x1,...,xn which lie in c". Let i >
k, that is, xi is neither x1 nor any of its graph neighbors. Let c* be a clique containing xi. Then
c* cannot also contain x1, because if it did, then there would be a graph link between x1 and xi,
contradicting i > k. Then

€

ϕc*(x1,x2,...,xn ↓c*) =ϕc*(e,x2,...,xn ↓c*) , thus the c* terms cancel
from the ratio. In other words, the ratio (and thus,

€

P(X1 = x1 | X2 = x2,...,Xn = xn)) depends
only on cliques that are identical to or contained in {x1} ∪ N1. ·

The reverse direction has first been proven by John M. Hammersfield and Peter Clifford in
1971. They did not publish their result because they felt that the positivity constraint on P was

30 For both (i) and (ii) I follow (sometimes verbatim) David Pollard, a Yale statistician who has provided
particularly simple proofs; my source is an online manuscript
http://www.stat.yale.edu/~pollard/Courses/251.spring04/Handouts/Hammersley-Clifford.pdf . A copy is also at
http://www.faculty.jacobs-university.de/hjaeger/SharedMaterials/Hammersley-Clifford.pdf .

 109

unnatural, and wanted to relax it. Thus it happened that their result was proven independently,
and published, by Julian Besag in 197231; in 1974 it was shown32 that the positivity condition
is indeed necessary. The theorem is nonetheless known today as the Hammersley-Clifford
theorem.

Proposition 6.3 (Hammersley-Clifford) Let C be the set of cliques of a MRF for

)(
,...,1 ini
XP

=
⊗ , where the Xi are nominal. Then)(

,...,1 ini
XP

=
⊗ can be factorized by

(6.14))(),...,(1 c

Cc
cnxxP x∏

∈

ϕ= ,

where xc is the subset of the values nxx ,...,1 belonging to nodes in clique c and for each clique
c, ϕc is a clique function that assigns a positive real number to each of the possible
combinations of values that the random variables occurring in that clique can take.

We do not present a proof here. A relatively simple proof, provided by Dave Pollard, is online
at http://www.stat.yale.edu/~pollard/251.spring04/Handouts/Hammersley-Clifford.pdf (a
copy is also at http://www.faculty.jacobs-university.de/hjaeger/SharedMaterials/Hammersley-
Clifford.pdf).

Note. Because the product of clique functions of subcliques of a maximal clique is a function
of the maximal clique, one can restrict the formulation of Definition 6.6 and of the
Hammersley-Clifford theorem to maximal cliques. We will denote the set of all maximal
cliques in an undirected graph by

€

C .

In our little Ising example, the maximal cliques in the UGM depicted in Fig. 6.2 are just the
sets {1, 2}, {2, 3} and {3, 4}, and the clique function of the clique {i, i+1} is

.
)/exp(

1
3 TXJXZ ji

Due to the strict positivity of the clique functions ϕc, one can write them as exponential
functions:

(6.15)

€

P(x1,...,xn) = ϕc
c∈C
∏ (x c) = exp(−(−log(ϕc

c∈C
∏ (x c))))

=: exp(−Ec
c∈C
∏ (x c))

= exp(− Ec (x c)
c∈C
∑)

Here we introduced energy functions

€

Ec (x c) = −log(ϕc (x c)) on the maximal cliques, thereby
establishing a connection between the formalisms of Gibbs distributions and Boltzmann
distributions. In a Gibbs distribution, the (Boltzmann) energy (at a unit temperature) is the
sum of all maximal clique energies. Due to this connection to statistical physics, the clique
functions

€

ϕc are often called clique potentials or (local) potential functions.

31 Julian Besag (1972): Nearest-neighbour Systems and the Auto-logistic Model for Binary data. Journal of the
Royal Statistical Society, Series B, 34, pp. 75–83.
32 John Moussouris (1974): Gibbs and Markov Random Systems with Constraints. Journal of Statistical Physics,
10, pp. 11-33

 110

Summing up, we find that UGMs / Gibbs distributions / MRFs admit a local characterization
of the global joint distribution through the clique potentials. The largest sets of RVs that have
to be modelled together are the clique sets. Similarly, in BNs based on DAGs, the global joint
distribution can be characterized locally through the conditional probability tables that we
may store with each node. An important difference between directed BNs and undirected
MRFs is that the conditional probability tables of BNs are interpretable in terms of
probability, whereas potential functions are arbitrary functions which generally have no direct
interpretation in terms of probabilities.

A major field of applications of MRFs is image processing (denoising, reconstruction). I wrap
up this subsection with a simple tutorial example from this field. In the remainder of this
subsection I quote almost verbatim from Section 8.3.3. of "the new Bishop book"33, adapting
the notation and adding a few explanations.

(Quasi-quote begins)

We can illustrate the application of undirected graphs using an example of noise removal
from a binary image. Although a very simple example, this is typical of more sophisticated
applications. Let the observed noisy image be described by an array of binary pixel values yi
∈ {−1, +1}, where the index i = 1, . . . , n runs over all pixels. We shall suppose that the
image is obtained by taking an unknown noise-free image, described by binary pixel values xi
∈ {−1, +1} and randomly flipping the sign of pixels with some small probability. An example
binary image, together with a noise corrupted image obtained by flipping the sign of the
pixels with probability 10%, is shown in Figure 6.3. Given the noisy image, our goal is to
recover the original noise-free image.

33 Christoper M. Bishop, Pattern Recognition and Machine Learning. Springer Verlag 2006

 111

Figure 6.3 Illustration of image de-noising using a Markov random field. The top row shows
the original binary image on the left and the corrupted image after randomly changing 10% of
the pixels on the right. The bottom row shows the restored images obtained using iterated
conditional models (ICM) on the left and using the graph-cut algorithm on the right. ICM
produces an image where 96% of the pixels agree with the original image, whereas the
corresponding number for graph-cut is 99%.

Because the noise level is small, we know that there will be a strong correlation between xi
and yi. We also know that neighbouring pixels xi and xj in an image are strongly correlated.
This prior knowledge can be captured using the Markov random field model whose
undirected graph is shown in Figure 6.4. This graph has two types of cliques, each of which
contains two variables. The cliques of the form {xi, yi} have an associated energy function
that expresses the correlation between these variables. We choose a very simple energy
function for these cliques of the form −η xi yi where η is a positive constant. This has the
desired effect of giving a lower energy (thus encouraging a higher probability) when xi and yi
have the same sign and a higher energy when they have the opposite sign.

 112

Figure 6.4 An undirected graphical model representing a Markov random field for image de-
noising, in which xi is a binary variable denoting the state of pixel i in the unknown noise-free
image, and yi denotes the corresponding value of pixel i in the observed noisy image.

The remaining cliques comprise pairs of variables {xi, xj} where i and j are indices of
neighbouring pixels. Again, we want the energy to be lower when the pixels have the same
sign than when they have the opposite sign, and so we choose an energy given by −β xi xj
where β is a positive constant.

Because a potential function is an arbitrary, nonnegative function over a maximal clique, we
can multiply it by any nonnegative functions of subsets of the clique, or equivalently we can
add the corresponding energies. In this example, this allows us to add an extra term h xi for
each pixel i in the noise-free image. Such a term has the effect of biasing the model towards
pixel values that have one particular sign in preference to the other.

The complete energy function for the model then takes the form

(6.16)

€

E(x,y) = h xi −β
i
∑ xix j

i, j
∑ −η xiyi

i
∑

which defines a joint distribution over x and y given by

(6.17)

€

P(x,y) =
1
Z
exp(−E(x,y)).

We now fix the elements of y to the observed values given by the pixels of the noisy image,
which implicitly defines a conditional distribution P(x | y) over noise-free images. This is an
example of the Ising model. For the purposes of image restoration, we wish to find an image x
having a high probability (ideally the maximum probability). To do this we shall use a simple
iterative technique called iterated conditional modes, or ICM, which is simply an application
of coordinate-wise gradient ascent. The idea is first to initialize the variables {xi}, which we
do by simply setting xi = yi for all i. Then we take one node xj at a time and we evaluate the
total energy for the two possible states xj = +1 and xj = −1, keeping all other node variables
fixed, and set xj to whichever state has the lower energy. This will either leave the probability
unchanged, if xj is unchanged, or will increase it. Because only one variable is changed, this is
a simple local computation that can be performed efficiently. We then repeat the update for

 113

another site, and so on, until some suitable stopping criterion is satisfied. The nodes may be
updated in a systematic way, for instance by repeatedly raster scanning through the image, or
by choosing nodes at random.

If we have a sequence of updates in which every site is visited at least once, and in which no
changes to the variables are made, then by definition the algorithm will have converged to a
local maximum of the probability. This need not, however, correspond to the global
maximum.

For the purposes of this simple illustration, we have fixed the parameters to be β = 1.0, η = 2.1
and h = 0. Note that leaving h = 0 simply means that the prior probabilities of the two states of
xi are equal. Starting with the observed noisy image as the initial configuration, we run ICM
until convergence, leading to the de-noised image shown in the lower left panel of Figure 6.3.
Note that if we set β = 0, which effectively removes the links between neighbouring pixels,
then the global most probable solution is given by xi = yi for all i, corresponding to the
observed noisy image.

For certain classes of model, including the one given by (6.16), there exist efficient algorithms
based on graph cuts that are guaranteed to find the global maximum34. The lower right panel
of Figure 6.3 shows the result of applying a graph-cut algorithm to the de-noising problem.

(Here the quasi-quote from the Bishop book ends.)

6.4 The first steps of the join tree inference algorithm for BNs 

After this excursion into the land of undirected graphical models, we resume our treatment of
BNs based on directed acyclical graphs. We will develop the classical inference algorithm
that can compute conditional and absolute probabilities on BNs. This algorithm, often referred
to as join tree algorithm, is exact (i.e., it computes exact, not approximate values of the
desired probabilities), and avoids simultaneous marginalization over all RVs which one wants
to ignore.

To run this efficient algorithm, the original DAG must be transformed into an auxiliary graph
structure, called a join tree35, by a rather involved process. This has to be done only once for a
given BN however; the same join tree can be re-used for all subsequent inference calls. The
transformation from a DAG to a join tree runs through 4 stages36:

Given: A BN d with nodes X = {X1, ..., Xn}.

34 Here the Bishop book supplies the following references: (1) Greig, D., Porteous, B., Seheult, A.: Exact
maximum a-posteriori estimation for binary images. Journal of the Royal Statistical Society, Series B 51(2),
1989, 271-279. (2) Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts.
IEEE Trans. On Pattern Analysis and Machine Intelligence 21(11), 2001, 1222-1239. (3) Kolmogorov, V.,
Zabih, R.: What energy functions can be minimized via graph cuts? IEEE Trans. On Pattern Analysis and
Machine Intelligence 26(2), 2004, 147-159.
35 Also called junction trees in the literature.
36 In the description of the algorithms I closely follow: Huang, C., Darwiche, A.: Inference in Belief Networks:
A Procedural Guide. Int. J. of Approximate Reasoning 11 (1994), p. 158ff. http://www.faculty.iu-
bremen.de/hjaeger/courses/AlgMod05/ijar95.pdf If you want to implement BNs yourself, you should inspect this
paper first.

 114

Step 1: Transform d to an undirected graph m, called the moral undirected graphical
model, (moral UGM) which is essentially an equivalent way of expressing the
independencies expressed in d, but using the UGM "graph separation semantics" for
expressing conditional independencies.

Step 2: Add some further undirected edges to m which triangulate m, obtaining t. This
may destroy some of the original independence relations between {X1, ..., Xn} but
will not introduce new ones.

Step 3: Detect all cliques Ci in t (while this is NP-complete for general undirected graphs, it
can be done efficiently for triangulated undirected graphs).

Step 4: Build an undirected join tree  with nodes Ci. This is the desired target structure. It
represents an elegant factorization of the joint probability P(X) which in turn can be
processed with a fast, local inference algorithm known as message passing.

We will go through these steps in an informal manner mostly. The purpose of this
presentation is not to provide you with a recipe for building executable code – because, first,
nobody would today re-build BN tools from scratch because there exist numerous convenient
toolboxes. The other reason for not presenting a specific algorithm in detail is that steps 2 and
4 have non-unique solutions, and you need to utilize some special heuristic algorithm of your
liking (many are discussed in the literature). The purpose of our treatment here is just to
provide you with a navigation guide to gain an overview of the general picture.

6.4.1 The moral UGN

We first turn to the task of transforming a BN for P(X) into an UGM for P(X). This can be
done in many ways. The simplest would be to create a fully connected UGM. The art lies
however in transforming a BN into an UGM such that as few as possible of the valuable
independence relations expressed in the BN get lost. The other extreme would be to turn a BN
for P(X) into an UGM for P(X) simply by re-declaring all directed links from the BN as
undirected. This works only rarely. For instance, if we would change the BN from Fig. 6.1
into an UGM without further ado, in the new UGM model we would earn the independence
relation },{| 4132 XXXX ⊥ not present in the original BN.

The method that we will use adds only a minimal number of links to the BN, creating the
following UGM associated with an BN for P(X):

Definition 6.7: From a BN d with nodes X = {X1, ..., Xn} construct an UGM m in two
steps:

(7.1)Create a copy m
0 of d. Convert all directed edges in m

0 to undirected ones,
obtaining m

1.
(7.2)If a node Xi had two parents Xj and Xk in d, add the undirected edge (j, k) to m

1,
obtaining the moral UGM m.

This peculiar name comes from the act of "marrying" previously unmarried parents. The
moral UGM m of a BN d does not imply any independence relations that were not already
implied in the BN (proof omitted here). Figure 6.5 gives an example of moralizing a BN.

 d m

 115

Figure 6.5 A BN and its associated moral UGM (from the Huang & Darwiche paper).

6.4.2 Triangulation

Definition 6.8. An undirected graph is triangulated if every cycle of length at least 4 contains
two nodes not adjacent in the cycle which are connected by an edge.

Any undirected graph can be triangulated by adding edges. There are in general many ways of
doing so. For best efficiency of the inference algorithms, one should aim at triangulating in a
way that minimizes the size of cliques of the triangulated graph. This is (again) an NP-
complete problem. However there are numerous heuristic algorithms (each one amounting to,
say, a master thesis project) which yield close to optimal triangulations in (low) polynomial
time. One of them is sketched in the Huang/Darwiche guideline for BN inference design.

After triangulation, we have an UGM t. Figure 6.6 shows a possible triangulation of the
UGM from Fig. 6.5.

Figure 6.6 Left: A triangulated version t of the moral UGM m from Fig. 6.3 (from the
Huang & Darwiche paper). Right: the 6 cliques in t.

 116

Triangulation only adds edges. Therefore, no new separation triples Z, Y, S may appear (only
some previously found in m might get lost). An inspection of Def. 6.4 reveals that if m was
an UGM for P(X), then t will be one, too.

The reason for triangulating is that triangulated graphs can be decomposed into junction trees
in step 4.

6.4.3 Finding the cliques

Step 3 is to find all cliques Ci in t. For a change, finding all cliques in a triangulated graph is
not NP-complete – efficient general-purpose algorithms for finding all cliques in a
triangulated graph have been discovered. In the Huang & Darwiche guideline, a special
method is instead suggested that determines the cliques already during the triangulation
process, with no extra cost involved. In our running example, we get 6 cliques, namely all the
"triangles" ABD, ACE, ADE, DEF, CGE, and EGH (our example conveys maybe a wrong
impression that we always get cliques of size 3 in triangulated graphs -- in general, one may
find cliques of any size greater 1 in such graphs). Figure 6.4 (right) illustrates these.

6.4.4 Building the join tree

This is again a more interesting and involved step. After BNs and UGMs, join trees are our
third graph-based representation of independence relations governing a set X of random
variables. We will discuss join trees in their own right first, and then consider how a join tree
can be obtained from the cliques of a triangulated UGM.

Definition 6.9. Let X = {X1, ..., Xn} be a set of discrete random variables with joint
distribution P(X). A join tree for P(X) is an undirected tree whose nodes are labelled with
subsets Ci ⊆ X (called clusters) and whose links are labelled with subsets Sj ⊆ X (called the
separator sets or sepsets). Furthermore, each cluster C = },...,{ 1 kYY is associated with a belief
potential

€

ϕC :Y1 × ...×Yk → ≥0, and each sepset S = },...,{ 1 lSS with a belief potential

€

ϕS : S1 × ...× Sl → ≥0, such that the following conditions are satisfied:

2. The graph has the running intersection property, that is, given two nodes labelled with
C and C', all labels C* of nodes on the path between C and C' must have labels
containing C ∩ C'.

3. Each edge between two nodes labelled by C and C' is labelled by S = C ∩ C'.
4. For each cluster C = },...,{ 1 kYY and neighboring sepset S = },...,{ 1 lYY , where l ≤ k

(note that S ⊆ C), it holds that Cϕ is consistent with Sϕ in the following sense

(6.18)),...,(),...,(1

,...,
1

1

l
yy

k yyyy
kl

SC ϕ=ϕ∑
+

,

 that is, Sϕ can be obtained by marginalization from Cϕ .
5. The joint distribution P(X) is factorized by the belief potentials according to

 117

(6.19)
∏
∏

ϕ

ϕ
=

j

i

j

iP
S

CX)(.

Figure 6.7 shows the graph structure an example of a join tree (which was incidentally
derived from our running example t).

Figure 6.7 A join tree (from the Huang & Darwiche paper)

We defined BNs and UGMs through the statistical independence relations they assert through
their graph structure. From these independence relations we could infer factorizations of the
joint distribution. In our treatment of join trees we have conversely used a factorization
property to define join trees. For completeness, I mention without proof how statistical
independence relations are reflected in a join tree:

Proposition 6.4. Let  be a join tree for P(X) and Y, Z, S ⊆ X. Re-interpret the link labels as
nodes (so the join tree from Fig. 6.7 would become an undirected tree with 11 nodes and
unlabelled links), obtaining a "homogenized" tree  '. If for all Y ∈ Y, Z ∈ Z, the path from
any node in  ' containing X to any node containing Y passes through a node labelled with S,
then SZY |⊥ .

An important property of join trees is that the belief potentials are the marginal distributions
of their variables:

Proposition 6.5. Let  be a join tree for P(X), and let K = {X1, ..., Xk} ⊆ X = {X1, ..., Xk,
Xk+1, ..., Xn} be a clique or sepset label set. Then for any value instantiation x1, ..., xk of the
variables from K, it holds that

(6.20)),...,(),...,(1

,...,
1

1

k
xx

n xxxxP
nk

Kϕ=∑
+

,

that is, Kϕ is the marginal distribution of the variables K.

A proof this this proposition amounts to a medium difficult exercise. We will from now on
use the shorthand notation

(6.21) K

KX
X ϕ=∑

\

)(P

to denote marginalization.

 118

For every triangulated UGM t of P(X) there exist join trees for P(X) whose nodes are the
maximal cliques of t. We will illustrate this with a simple example before giving the
construction algorithm. Consider the UGM from Fig. 6.8 (left).

Figure 6.8 A simple UGM (left) and one of its join trees

It should be clear that the joint distribution of X = {X1, X2, X3, X4} can be written in the
following form, exploiting the obvious independence relations asserted by the UGM:

(6.22)

)()(
),(),(),(
)()()(

),(),(),()(
)|()|()|()(

),,|(),|()|()(),,,(

44

434241

444

4342414

4342414

21431424144321

xPxP
xxPxxPxxP
xPxPxP

xxPxxPxxPxP
xxPxxPxxPxP

xxxxPxxxPxxPxPxxxxP

=

=

=

=

in which we recognize the factorization (6.19). This example also demonstrates that the join
tree obtained from an UGM is not unique (there are obvious variants of the join tree resulting
from the symmetry of the UGM) and that a given sepset may appear several times in a join
tree.

The general recipe for constructing a join tree from a triangulated UGM for P(X) is simple
enough37:

1. Begin with an empty set S, and a completely unconnected graph whose nodes are the
m maximal cliques Ci ⊆ X of the UGM t.

2. For each distinct pair of cliques Ci, Cj create a candidate sepset Sij = Ci ∩ Cj, and put
it into S. S will then contain m(m – 1)/2 such Sij (some of which may be the empty
set).

3. From S iteratively choose m – 1 sepsets and use them to create connections in the node
graph, such that each newly chosen sepset connects two subgraphs that were
previously unconnected.

This general recipe leaves you with much liberty in choosing the sepsets from S. Not all
choices will result in a valid join tree. In order to ensure the join tree properties, we choose, at
every step from 3., the candidate sepset that has the largest mass (among all those which

37 I rephrase the recipe given in the Huang/Darwiche paper.

X1 X2

X3

X4

X1 X4 X3 X4 X2 X4 X4 X4

 119

connect two previously unconnected subgraphs). The mass of a sepset is the number of
variables it contains.

This is not the only possible way of constructing a join tree, and it is still underspecified
(there may be several maximal mass sepsets at our disposal in a step from 3.) Huang and
Darwiche propose a full specification that heuristically optimizes the join tree w.r.t. the
ensuing inference algorithms. Note: if the original BN was not fully connected, some of the
sepsets used in the join tree will be empty; we actually get a join forest then.

6.5 Computing conditional probabilities on join trees 

All this work of transforming a BN into a join tree was done in order to enable efficient
inference algorithms for calculating conditional distributions of the kind P(Y | Z1 = z1, ..., Zk =
zk) = P(Y | z1, ..., zk), which we saw in Subsection 6.2. is the basic operation needed for (and
sufficient for) all kinds of statistical inferences that one might wish to carry out over P(X).
This entire approach was pioneered by Lauritzen an Spiegelhalter in a celebrated paper38, who
in turn built on a diversity of earlier results of a more restricted nature (inference on BNs with
a tree structure) due to Pearl and others. In my rendering I again follow closely (sometimes
verbatim) the paper by Huang and Darwiche, filling in some gaps.

We will describe how to compute P(Y | z1, ..., zk) in three subsections:

1. Given the graph of a join tree  (obtained from a BN with the methods previously
described) we show how to construct belief potentials such that Eqns. (6.18) and
(6.19) are satisfied, that is, complete the construction of the join tree .

2. We describe how from  unconditional distributions P(Y) can be computed.
3. We describe how P(Y | z1, ..., zk) can be computed.

Notice that in practice one most often wants not only a single probability value P(y | z1, ..., zk)
but the entire distribution P(Y | z1, ..., zk). For instance, in a medical diagnosis situation the
values of Y might be a set of different causes for observed symptoms z1, ..., zk. A doctor will
want to guide his/her treatment decisions on the full spectrum of probabilities for the different
possible causes.

6.5.1 Computing belief potentials

Belief potentials accounting for (6.18) and (6.19) are constructed in two steps. First, the
potentials are initialized in a way such that (6.19) holds. Second, by a sequence of message
passes that are globally propagated, local consistency (6.18) is achieved.

6.5.1.1 Initialization

38 Landmark article: Local Computations with Probabilities on Graphical Structures and Their Application
to Expert Systems. S. L. Lauritzen; D. J. Spiegelhalter, Journal of the Royal Statistical Society. Series B
(Methodological), Vol. 50, No. 2. (1988), pp. 157-224. Online at http://www.jstor.org/cgi-
bin/jstor/printpage/00359246/di993224/99p0299j/0.pdf?backcontext=page&dowhat=Acrobat&config=jstor&use
rID=d4c92cf9@iu-bremen.de/01cc99333c0050190c661&0.pdf

 120

Initialization works in two steps:

(2.2) For each clique or sepset K (we use symbol K for cliques C or sepsets S), set Kϕ to

the unit function:

(6.23) 1≡ϕK .

(2.3) For each variable Xk, do the following. Assign to Xk a clique CXk that contains Xk and

its parents ΠXk w.r.t. the original directed graph from the starting BN. Note: due to the
moralizing, such a clique must exist. Multiply

kXC
ϕ by P(Xk | ΠXk):

(6.24)

kXC
ϕ =

kXC
ϕ P(Xk | ΠXk).

Make sure that you understand the operation expressed in (6.24) (interpret P(Xk | ΠXk) as a
function of all variables contained in CXk). After this initialization, the conditional
distributions P(Xk | ΠXk) of all variables (and hence the information from the BN) have been
multiplied into the clique potentials, and (6.19) is satisfied:

(6.25)

€

ϕC ii
∏

ϕS jj∏
=

P(Xk |CXk
)

k=1,...,n∏
1

=
P(Xk |ΠXk

)
k=1,...,n∏

1
= P(X),

where i ranges over all cliques, j over all sepsets, and k over all variables.

After having initialized the join tree potentials, we make them locally consistent by
propagating the information that has been locally multiplied in across the entire join tree. This
is done through a suite of local message passing operations, each of which renders one
clique/sepset pair consistent. We first describe a single message pass operation and then show
how they can be scheduled such that a message pass does not destroy consistency of
clique/sepset pairs that have been made consistent in an earlier message passing.

6.5.1.2 A single message pass

Consider two adjacent cliques C and D with an intervening sepset S (as in Figure 6.9), and
their associated belief potentials Cϕ , Dϕ , and Sϕ . A message pass from C to D occurs in two
steps:

1. "Projection": create a copy old
Sϕ of Sϕ for later use, then recompute Sϕ by

marginalization from C:

(6.26) ∑ϕ=ϕϕ=ϕ

SC
CSSS

\

,old .

 121

This obviously makes Sϕ consistent with Cϕ according to Eqn. (6.18). The joint
distribution P(X) becomes changed through this operation by a factor of SS ϕϕ /old
(notice that Sϕ appears in the denominator of (6.19)!)

2. "Absorption": multiply the belief potential of D by the inverse of SS ϕϕ /old in order to
restore the joint distribution:

(6.27) old
S

S
DD ϕ

ϕ
ϕ=ϕ .

A technical detail: if 0)(=ϕ sS

old , then it can been shown that also 0)(=ϕ sS ; in this
case set 00/0)(/)(==ϕϕ ss SS

old .

After this step, C is consistent with S in the sense of (6.18). To also make D consistent with S,
a message passing in the reverse direction must be carried out. An obvious condition is that
this reverse-direction pass must preserve the consistency of C with S. This is warrented if a
certain order of passes is observed, to which we now turn our attention.

6.5.1.3 Coordinating all message passes

In order to achieve local consistency (6.18) for all neighboring clique-sepset pairs in the join
tree, as many message passes as there are such pairs must be executed, one for each pair. In
order to avoid that local consistency for a pair C, S achieved by a message pass from C to D
(where S is a sepset between C and D) is not destroyed by a subsequent message pass in the
reverse direction, the global order of these passes is crucial. We will motivate a global
propagation scheme by considering some connection C – S – D within the tree (where S is a
sepset between C and D), as depicted in Figure 6.9:

Figure 6.9 A connection C – S – D within the tree.

This connection will be hit twice by a message pass, one in each direction. Assume that the
first of the two passes went from C to D. After this pass, we have potentials 0

Cϕ , 0
Dϕ , and 0

Sϕ ,
and S is consistent with C:

(6.28) ∑ϕ=ϕ

SC
CS

\

00 .

At some later time, a message pass sweeps back from D to C. Before this happens, the
potential of D might have been affected by some other passes, so it is 1

Dϕ when the pass from
D to C occurs. After this pass, we have

C . . . S D . . .

 122

(6.29) 0

1
01

\

11 and
S

S
CC

SD
DS ϕ

ϕ
ϕ=ϕϕ=ϕ ∑ .

It turns out that still S is consistent with C:

(6.30) ∑∑∑ ϕ=
ϕ

ϕ
ϕ=

ϕ

ϕ
ϕ=

ϕ

ϕ
ϕ=ϕ

SC
C

S

S

SC
C

S

S

SC
C

S

S
SS

\

1
0

1

\

0
0

1

\

0
0

1
01)()(.

In sum, we see that if a connection C – S – D is hit by two passes, one for each direction, S
will be consistent with C and D. In order to ensure consistency for all connections in the tree,
we must make sure that after some connection C – S – D has been passed back and forth,
neither C nor D take part in any further passes, as this might again disrupt the already
achieved consistency. The following global scheduling scheme assures this condition:

1. To start, single out any clique C and call it the "center".
2. In a first phase ("collect evidence" in the Huang/Darwiche paper), carry out all passes

that are oriented towards the center. Carry out these passes in any order such that a
pass "leaves" some node on some connection only after all other "incoming"
connections have been used for passes.

3. In a second phase ("distribute evidence"), carry out all passes that are oriented away
from the center. Observe the same order constraint as in the first phase.

Figure 6.10 shows a possible global scheduling for our example join tree.

Figure 6.10 A scheduling for the global propagation of message passing. The center is ACE.
(Figure taken from the Huang/Darwiche paper)

6.5.2 Computing P(X)

Having a join tree  for P(X), computing the marginal distribution P(X) of any of the
variables is a simple two-step procedure:

1. Identify a clique or sepset K that contains X.
2. Obtain P(X) by marginalization:

(6.31) ∑ϕ=

}{\

)(
X

XP
K

K .

 123

This directly follows from (6.20).

6.5.3 Computing P(Z | e1, ..., ek)

We have now arrived, after a long algorithmic journey, in the destination harbour: computing
those quantities which really interest us, namely, conditional distributions of the kind P(Z | e1,
..., ek). Here Z, E1, ..., Ek ∈ X, and e1, ..., ek = e are particular values for E1, ..., Ek = E. We call
the set of concrete observations e evidence.

Let e1, ..., ek = e be an evidence, that is, values e1, ..., ek have been observed, measured ore
otherwise been ascertained. To feed in this information into , we introduce a new kind of
belief potentials called (in this context) likelihoods. For each E ∈ E, we define the likelihood
ΛE: image(E) → {0,1} of E as

(6.32) 1)(=Λ eE if e is the observed value of E

0)(=Λ eE for all other)(image Ee∈

That is, the likelihood is a single-point distribution in the observed value e.

In order to compute P(Z | e1, ..., ek) = P(Z | e), we have to go through the routine of initializing
 and making it consistent via global message propagation again, using an augmented version
of the method described in Subsection 6.5.1. Here is how:

1. Initialization: exactly like in Subsection 6.5.1.1. This yields belief potentials Cϕ , Sϕ
for all cliques and sepsets.

2. Observation entry: for each E ∈ E, do the following:

(a) Identify a clique CE that contains E.
(b) Update EEE

Λϕ=ϕ CC .

Note that (b) simply resets
EC

ϕ to zero for all arguments that have a different value for
E than the observed one. It is easy to see that with the new potentials, the tree globally
encodes P(X) 1e, where 1e: }1,0{→⊗ iX is the indicator function of the set

},...,1,for |)(),...,{(1 kjEXexXimagexx jijiin ===⊗⊆ .

(6.33)

€

ϕC ii
∏

ϕS jj∏
= P(X)ΛE1

ΛEk
= P(X)1e =:P(X,e)

Note furthermore that

€

P(X,e)
X \E∑ = P(e) .

3. Global propagation: exactly like in Subsections 6.5.1.2 and 6.5.1.3, but starting from

the updated potentials obtained by observation entry. After this is completed, the join
tree is locally consistent, that is, (6.18) holds. Furthermore, each clique or sepset K has
a potential satisfying

 124

(6.34) eK 1KeK)(),(PP ==ϕ .

4. Normalization: In order to compute P(Z | e), determine a clique CZ that contains Z.
When we marginalize this clique's potential to Z, we obtain the probability of Z and e:

(6.35)),(

}{\
e

C C ZP
ZZ Z

=ϕ∑ .

Our goal is to compute P(Z | e), the distribution of Z given e. We obtain this by
normalizing P(Z, e) as follows:

(6.36)
∑

==

Z
ZP
ZP

P
ZPZP

),(
),(

)(
),()|(

e
e

e
ee .

6.6 Creating BNs in the first place... where do the probabilities come from? 

We have seen how we can calculate statistical inferences on a given BN. But who gives it to
us, and how?

A common approach, especially in AI, is to simply distil the conditional probability tables
from your intuition – or by interviewing an expert of the target domain about which values
s/he finds appropriate in the light of professional experience. This is a very valuable approach,
because domain experts typically have quite clear conceptions about local conditional
probabilities that connect a few variables. You might ask, why use a BN if such experts are
available in the first place? The answer is that while humans might have a good insight on
local interdependencies between a few variables, they are psychologically and intellectually
poorly equipped to use this local knowledge for drawing statistically sound inference that
connect variables that are further apart in the independence network. In fact, humans tend to
make gross, systematic errors in such tasks, and BN-based decision support systems are in
practice extremely useful even if they are constructed solely from "local intuitions".

In other cases, empirical observations are available that allow one to estimate the conditional
probability tables from data. For instance, the table (6.2) could have been estimated from
counts # of observed outcomes in the following, obvious way:

Figure 6.11 Example of estimating a probability table from frequency counts.

X2 X3 #(X4 = 0) #(X4 = 1)
0 0 7 0
0 1 2 18
1 0 1 9
1 1 2 198

X2 X3 P(X4 = 0) P(X4 = 1)
0 0 1.0 0.0
0 1 0.1 0.9
1 0 0.1 0.9
1 1 0.01 0.99

frequency counts

maximum likelihood probability
estimates

 125

Notice that each row in such a table is estimated independently from the other rows. The task
of estimating such a row is technically the same as estimating a discrete distribution from
data. We have discussed maximum likelihood and Bayesian mean posterior estimators for this
task in Section 2. The latter approach is often important in practice because firstly, often the
empirical sample sizes are small and second, high-quality expert opinion is available that
serves as a valuable Bayesian prior information, greatly enhancing the quality of the final
model.

A situation that is also common in practice arises when a BN is ready and in place, but
additional information comes in at a later point and should somehow be used to modify the
existing BN. We have already encountered an extreme case of such "later information",
namely, the evidence e resulting from some observation. It was used to modify the belief
potentials of the join tree. "Later information" can take other forms, for instance noisy
observations. Such soft evidence can be fed into an existing BN, or rather its join tree
representation, by exactly the same mechanism described in Subsection 6.5.2 for the "hard"
observation evidence, if instead of a point distribution ΛE: image(E) → {0,1} a general
distribution ΛE: image(E) → [0,1] is employed.

However we have only scratched the surface yet. It is very often the case that for some of the
variables, neither empirical observations nor an expert's opinion is available, either because
simply the observations have not been attempted or because these quantities are in principle
unobservable. Such unobservable variables are called hidden variables. To get an impression
of the nature and virtues of hidden variables, consider the following BN:

Figure 6.12 A BN for use by a social worker (apologies to professionals in the field)

Now, the maritial status is hardly causal for political preferences. According to some (folk)
psychology, the following BN would more appropriately capture the causal logics connecting
our variables:

employment
status

maritial
status

money
savings

preferred
political party

does body-
building

alcohol
problem

employment
status

maritial
status

money
savings

preferred
political party

does body-
building

alcohol
problem

self-confidence

 126

Figure 6.13 A BN for use by a psychologically and statistically enlightened social worker

However, nobody has yet found a convincing way to directly measure self-confidence – it is
an explanatory concept, and becomes a hidden variable in a statistical context. While all other
variables in this BN can be readily measured, self-confidence can't. Yet the augmented BN is
in an intuitive sense more valuable as a model of a piece of reality than the first one, because
it tries to reveal a causal mechanism whereas the former one only superficially connects
variables by arrows that can hardly be understood.

Besides being intellectually more pleasing, the second BN offers substantial computational
savings: its join tree (construct it!) is much more leightweight than the first BN's, so statistical
inference algorithms will run much faster.

Generalizing from this simplistic example, it should be clear that hidden variables are a great
asset in modelling reality. But – they are hidden, which means that the requisite probability
tables cannot be directly estimated from empirical data.

Fortunately, there exists a powerful, general-purpose algorithm that allows one to estimate the
probability tables for hidden variables from the observation statistics of the observable
variables. This is the "expectation-maximization" (EM) algorithm, whose discovery in 1977
by Dempster, Laird and Rubin39 marks a breakthrough in statistics and machine learning.
More precisely, this algorithm achieves the following. Let θ denote the parameters necessary
to specify all the tables that make up a BN. For discrete-valued variables, θ is the set of all
probability values in the conditional probability tables – including the tables of the hidden
variables. Let D denote the available empirical data (of course, D says nothing about the
hidden variables). Then the EM algorithm finds a (locally optimal) solution to the problem

(6.37))|(maxarg θ=θ

θ
DPopt ,

that is, a maximum likelihood estimate of θ. Other algorithms serving the same purpose are
not known. The EM algorithm is computationally demanding and not trivial to set up, but
opens a door to the unobservable. Here I only want to avert you to the existence of this
algorithm40, which is of fundamental importance for learning BNs and many other statistical
models, notably hidden Markov models, the backbone of much of automated speech
processing and biosequence analysis.

6.7 Concluding remarks 

This completes our brief sightseeing tour in the land of Bayesian Networks. Here is a
summary of the ab-so-lu-te-ly not-to-forget basic messages:

39 Dempster, A.P. , Laird, N.M. and Rubin, D.B. (1977). Maximum likelihood from incomplete data via the EM
algorithm (with discussion). Journal of the Royal Statistical Society series B 39, 1-38
40 I treat this algorithm in some of my Machine Learning lectures.

 127

1. One approach (arguably the most powerful and general) to model complex real-
world systems is to describe them by a set X of observables and investigate the
joint distribution P(X).

2. P(X) is typically an ultra-complex entity whose complexity exponentially
explodes with the number of observables. One way to reduce this complexity41
is to exploit statistical independence relationships between the variables. Such
independence relations can conveniently be expressed in directed or undirected
graphs, that is, BNs or UGMs, which are collectively called graphical models.

3. Most tasks of reasoning about P(X) reduce to calculating conditional
probabilities P(Y | e).

4. The most common way to calculate precise values P(Y | e) is the join tree
method. Here from a given BN or UGM first a join tree graph is constructed,
from which P(Y | e) is obtained by an initialization / observation entry /
propagation / normalization algorithm.

5. The probabilities constituting the local tables of a BN are often set by hand on
an intuitive basis. Equally often they are estimated from empirical data. Hand-
setting and estimation from data can be mixed, using Bayesian methods. For
more advanced BNs incorporating hidden variables, the EM algorithm has to be
used.

Graphical models constitute a major, modern field of research in Artificial Intelligence /
knowledge representation and machine learning, and a one-year full-scale graduate course (or
an entire academic or engineering carreer, for that matter) could easily be filled with them. I
hope that you have gotten a fair first impression nonetheless.

41 Another fundamental way to reduce complexity, particularly popular in physics and neural modelling, is to
take a mean field approach, exploiting that in many physical systems, some variable Y approximately depends
just on the average value of other variables Z. Incidentally, mean field methods can sometimes be exploited for
inference in BNs.

 128

7 Fuzzy Logic

7.1 Introduction 

Fuzzy logic (FL) is an approach to cast imprecise expert knowledge into a mathematical
format that lies somewhere between propositional logic (to enable chains of inference),
Bayesian statistics (to enable "soft" interaction between concepts), and neural networks (some
of which can be seen as special cases of FL systems and vice versa). In contrast to either of
these three, FL is refreshingly simple and easy to work with. The approach dates back to a
paper by Lotfi Zadeh42, who worked in control theory. The area of control is still the
dominant application arena for FL, and FL controllers are at work in devices as costly as the
space shuttle (for docking control) or as mundane as camera autofocus controllers. FL based
algorithms are also used in time series prediction, scheduling and optimization, and signal
processing. For a long time, FL was considered by engineering snobs as disreputable – it has
definitely a boorish "hands-on" flavour and lacks an elegant mathematical underpinning. But,
especially Japanese high-tech firms that didn't care about academic attitudes and used FL very
successfully. After some time, even the stronghold of traditional electrical engineering, the
IEEE, had to establish a FL society (now immersed in the IEEE Computational Intelligence
Society, http://ieee-cis.org/) and a journal (the IEEE Transactions on Fuzzy Systems,
http://ieee-cis.org/pubs/tfs/), and sponsored a series of FL conferences.

There are a number of FL tutorials on the Web. I will rely on one written by J. M. Mendel43,
which is quite detailed and easy to read. An even easier to read tutorial, albeit with a smaller
coverage, has been supplied by J. Jantzen44. I really would not need to write my own account
of the material, but I will do so nonetheless, because I find that the original FL literature
(including the tutorials) suffers too much from the desire to make the field respectable,
leading to unneccessary (in my view) efforts to connect FL to logics proper, which obscures
the simplicity of the approach.

In order to understand the original motivation for FL, we must briefly dive into the world of
control engineering. "Control" is a broad concept and generally refers to the task to compute
time-dependent input u(t) to a system such that some objective for the system output y(t) is
reached or maintained. For instance, u(t) may be the voltage applied to an electric motor such
that the rpm y(t) is kept at a constant target level even in the presence of varying loads. The
algorithm/device that actually computes and administers the control input u(t) is called the
controller, and the system that one wishes to control is customarily called the plant. There are
various types of objectives that one may wish to achieve. The most important ones are listed
here in order of increasing difficulty:

• stabilize the plant's output y(t) at a constant reference value r0 (the controller is then

called a stabilizer);
• let the plant's output y(t) track a time-dependent reference trajectory r(t) – you are doing

this when steering a car!;
• optimize the integral or max of some cost function c(y(t)) within a certain time horizon –

for instance, buy and sell stock such that the expected profit in the next two years is

42 L. A. Zadeh, Fuzzy Sets, Information and Control 8, 338-353, 1965
43 Jerry M. Mendel, Fuzzy Logic Systems for Engineering: a Tutorial. IEEE Proc., vol. 83, no. 2, pp. 345-377,
March 1995. http://sipi.usc.edu/~mendel/publications/FLS_Engr_Tutorial_Errata.pdf
44 Jan Jantzen, Tutorial on Fuzzy Logic. http://www.iau.dtu.dk/~jj/pubs/logic.pdf

 129

maximized, or turn the knobs and valves of a chemical reaction plant such that the quality
of the output product is best. This is the field of optimal control.

There are two major classes of control strategies. In feedback (or closed-loop) control, the
controller is guided by information it gets from monitoring the plant's output y(t). In its
classical simplest form, all that a feedback controller gets as input is the current error
ε(t) = y(t) – r(t). Figure 6.1 a shows an elementary feedback controller. In direct (or open-
loop) control, the controller receives (only) the reference signal r(t) as its input (Fig. 6.1 b).
Both approaches have complementary merits. Feedback control is never able to achieve its
(tracking) objective perfectly, because a feedback controller always needs some error to build
up before it can adapt the control u(t). On the positive side, a feedback controller is able to
compensate disturbances (e.g., if you externally brage an electric motor, the error will grow
and the feedback controller will increase voltage input to make the motor return to the desired
rpm). A direct controller can, in principle, achieve 100% perfect control – that is, zero error;
but only as long as there are no disturbances. Therefore it is not surprising that in practice one
often combines aspects of open-loop and closed-loop control. This is however never trivial to
achieve, and there is a plethora of different control architectures whose block diagrams may
contain a host of "boxes".

Figure 7.1 An elementary feedback controller (a) and a direct controller (b), shown for the
case of tracking control.

Now consider a sequence of plants of increasing complexity: a thermostat – an electric motor
– a robot arm – a legged robot – a chemical reaction with dozens of substances involved – an
assembly line – a power plant – a nationwide power distribution system – an economical
system. Classical (linear) control theory has been developed for well over a hundred years and
today offers rigorous methods to design controllers for plants up the complexity of, say, a
robot arm. Making a legged robot walk is something for which classical control methods so
far offer only marginally satisfactory solutions, and for anything beyond that there exists only
one class of controllers that is up to the respective task – human operators. To be more
precise, highly experienced human operators.

So, what makes the task of controlling, say, a chemical destillation process, so difficult for an
algorithm, and apparently feasible for a human expert? There are many reasons, for instance

controller

-
r(t)

u(t) y(t)

ε(t)

plant
 a.

controller u(t) y(t) plant

r(t)

b.

 130

• There are many different "knobs" to turn – the input u(t) is actually a high-dimensional
vector u(t), and to make matters worse, the different knobs may be of mathematically
different nature. Some may be continuous, others discrete numerical, yet others symbolic
("add catalyst A" vs. "add catalyst B"). Generally, mathematics has difficulties with
heterogeneous data structures. Humans somehow can do it quite well.

• There are delays involved. If the heating energy in a chemical reactor is increased, then
the actual increase in temperature will lag behind, and the influence of the increased
temperature on the chemical products forming will even lag further. Controlling systems
with various delays is mathematically very challenging. Human experts acquire a
"feeling" for delays, they are able to predict the delayed effects of current input. In fact,
the ability of humans to instinctively learn predictive models is breathtaking, and human
experts are distinguished from human novices very much by virtue of the former's better
predictive models.

• Many of the variables that one would wish to know for improving control are
unobservable. For instance, in order to tune an ongoing chemical reaction, it would clearly
help to monitor the various by-products that are forming in the reactor – but this is often
infeasible because a chemical analysis would be too slow or too expensive. Human
experts can typically quite nicely estimate the current values of "hidden" variables.

All in all, it seems a clever idea to investigate the way how human experts determine their
control actions, and mimick this if possible. This is how fuzzy logic came into being. FL is an
attempt to copy the reasoning processes of human experts into an algorithmical framework.

You may say, also the classical logic-based methods approaches of Artificial Intelligence, or
Bayesian statistics are attempts to cast human, intelligent reasoning into a formalism. But
there is an important philosophical difference between classical AI and Bayesian statistics on
the one side, and FL on the other. The former two are normative: they cast into formalism
ways of how humans should reason, namely, reason correctly with respect to the rigorous
laws of logics or statistics. In contrast, FL is descriptive: this approach "simply" wishes to
mimick what humans actually do, regardless of whether these actions are mathematically
sound in any sense or can be derived from some stringent set of axioms. So it comes as no
surprise that FL has no set of axioms and lacks a mathematical theory. This in turn makes that
FL comes in a huge number of different variants because each FL developer is essentially free
to redefine FL concepts according to his/her intuitions and objectives.

The latter point makes teaching and learning FL a bit difficult. There is no standard FL system
on the market. I will simply adhere to the FL flavour(s) used in the tutorials cited earlier,
pointing out alternatives here and there.

7.2 Fuzzy sets  

The starting point for FL is the observation that human control engineers, when asked about
why they do what, typically come up with answers like this:

(7.1) "If the pressure is too low, I turn the pressure valve a bit left."

Zadeh started out from sentences like this one and thought out a way of how they can be cast
into formal terms. His first observation was that humans use linguistic terms (that is, everyday
language expressions) instead of numerical values. The engineer would not say, "If the

 131

pressure is 2.43, I turn the pressure valve by –13 degrees". The engineer, according to FL,
treats pressure as a linguistic variable, not a numerical variable. A numerical variable has
numbers as possible values; a linguistic variable has linguistic terms as possible values. What
these possible values are depends on the particular engineer and is essentially an arbirtrary
choice. For instance, the linguistic variable pressure might have possible values (=
linguistic terms) {dangerously low, much too low, too low, OK, too high,
much too high, dangerously high}.

Now, the control engineer of course has access to real numbers. In a situation where s/he says
(7.1), s/he might just be reading a numerical value of x = 2.43 from a pressure meter. And of
course s/he knows that pressure might range from 0 to 12 (after which the plant would
explode...). But whenever a numerical value is observed, the first thing done by the human
expert is a classification and naming by one of the linguistic terms reserved for pressure. This
assignment depends on the numerical value in a fuzzy way. The numerical range of too low
might be anything between x = 2.1 and x = 3.5, with x = 2.43 at the low end of this category.
Assuming that the category much too low spans numerical values from 1.1 to 2.5, the
value of 2.43 might also be regarded as a case of much too low, – but rather, it is just too
low, isn't it? So we see, following Zadeh and FL, that assigning a numerical value to a
linguistic term is a matter of degree. We might say, a value of 2.43 is too low by a degree
of 0.6, whereas it is much too low by a degree of only 0.2. Such degrees are typically
measured by a membership function which ranges from 0 to 1. For instance, the membership
function µtoo low could look like in Figure 7.2:

Figure 7.2 A membership function for the linguistic term too low.

A value of µtoo low(x) = 1 indicates that x is, one might say, "maximally typical" for the
linguistic term too low. A value of µtoo low(x) = 0 means that x is not considered as too
low at all. The x-range where µtoo low(x) > 0 is called the support of the linguistic term too
low. In our example, the support of too low is [2.1, 3.5].

If µA is a membership function of some linguistic term A with support SA ⊆ , (almost always
SA is a finite interval), then the graph set {(x, µA(x) | x ∈ SA} is called the fuzzy set associated
with A. Fuzzy logic adepts spend a lot of time explaining that this generalizes the notion of a
standard (sub-)set, which would be obtained if µA is binary with values either 0 or 1. In
classical set theory, a value x either belongs to A (then µA(x) = 1) or doesn't (then µA(x) = 0).
Thus fuzzy sets can be seen as "sets with gradual membership".

In Figure 7.3, the complete account of the linguistic variable pressure is given, by plotting
the fuzzy sets for all its linguistic terms.

µtoo low

x 0 2 4 6 8 10 12

1

 132

Figure 7.3 All the fuzzy sets associated with the linguistic variable pressure.

Importantly, the action taken by the engineer depends on which of the possible linguistic
terms the numerical value is assigned to – likely, if 2.43 would be considered (and named)
much too low, a more decisive action than turning the valve "a bit left" would have been
taken.

There is another linguistic variable and linguistic term involved in (7.1), which I mention for
completeness. Namely, the linguistic variable valve action – you may give it another
name – is assigned to a value of a bit left. Other linguistic terms for this variable might
include fully open or don't change. The numerical range for valve action
would presumably differ from that of pressure, say, it is [-1,1].

It might appear at first sight that the gradual membership function is related to a probability –
after all, both range between 0 and 1 and somehow describe certainty of judgement. A nice
example in the Mendel tutorial highlights that probability and fuzzyness are quite different
things. Imagine that a hiker in a desert, almost dried out and short of dying, finds two bottles.
Bottle A is labelled, "the contents of this bottle is drinkable with a probability of 0.9", the
other bottle B is labelled "µdrinkable(contents of this bottle) = 0.9". Which bottle would you
drink from? So take these lecture notes along on your next desert hike...

Let's orderly summarize the basic concepts of fuzzy sets, and introduce the FL terminology in
a summary fashion:

• A physical/numerical quantity x, like pressure, can take in a given (control) context a

range of possible values. In our example x ∈ [0,12]. This range of possible numerical
realizations is called the universe of discourse. A given control task may involve different
quantitites of interest and thus different universes of discourse. The universe of discourse
is a classical set. We consider only universes of discourse which are subsets of the reals;
FL can also accomodate universes of discourses that are arbitrary classical sets, but this is
rarely seen in control applications and we will ignore this possibility.

• When a human expert reasons/talks about such a quantity, s/he treats it not as a numerical
variable but as a linguistic variable that can take a few linguistic terms as values.

• A particular numerical value x is gradually assigned to one or more linguistic terms by
virtue of the membership functions in whose domains x happens to fall. In the example
from Figure 7.3, a value of x = 2.43 would be assigned to much too low with a
membership degree of µmuch too low(2.43) = 0.2 and to too low with a membership
degree of µtoo low(2.43) = 0.6. Standardly, membership functions have a maximum value
of 1.0, however this is not required.

x

µtoo low

0 2 4 6 8 10 12

1
µmuch too low

µdang. low
µOK

µtoo high
µmuch too high

µdang.high

 133

• A fuzzy set of a linguistic term A is identified with the set {(x, µA(x) | x ∈ SA}, where SA is
the support of µA. If the membership function µA is binary, a fuzzy set can be seen as a
classical set.

There are interesting and useful things one can do with fuzzy sets. Consider the following
variant of (7.1):

(7.2) "If the pressure is really too low, I turn the pressure valve about a quarter

left."

Here the value too low of the linguistic variable pressure has been modified by "really",
and the value a quarter left of valve action has been modified by "about". Such
linguistic modifications play a formidable role in human reasoning. They can be accomodated
in FL by the use of operators that are applied to membership functions. Sometimes such
operators are called hedges. For instance, the modification "really" concentrates the
membership function µtoo low around its maximum. A membership function
µreally too low, compared to µtoo low, should assign to x's at the outskirts of the support of
µtoo low a lower value than in the original µtoo low. Conversely, a modification by "about"
makes a linguistic term even more fuzzy than it originally is – it should act as a dilation. The
standard way to implement concentration and dilation hedges is to use exponentiation by 2
and 1/2:

(7.3) concentrated(µA) = µA

2, diluted(µA) = µA
1/2.

Concentration becomes manifest by words like "very", "strongly", "really" etc., dilution by
works like "somehow", "about", "more or less", etc. Other powers than 2 or 1/2 can also be
used – it is up to the FL modeller to choose.

In FL, essentially everything can be decided by the modelling engineer – it appears to me that
only the terminology is about fixed (see how I use a dilation here?), but not what the
terminology refers to. Specifically, the shape of membership functions is not restricted by any
theoretical constraints. The most commonly used format appears to be triangles (because they
are the simplest to program and fastest to calculate), followed by Gaussians (because they are
smooth) which are set to 0 outside a certain interval to yield a finite support. More recently,
B-splines are apparently gaining in favour, especially in certain high-precision applications of
FL in the area of time series prediction. I take this opportunity to explain B-splines, because
they are generally very useful for interpolation and function approximation.

B-splines are generalization of Bézier curves (hence the "B"), which you probably know from
drawing programs. B-splines are used to create smooth interpolation curves between control
points in n. Check out http://mathworld.wolfram.com/B-Spline.html for a concise intro.
Here we are interested not in the B-splines themselves but only in the 1-dimensional basis
functions j

kN :  →  they are made of, where j refers to the placement of the basis function
on the real line and k determines the order of the function.

In order to create j

kN , one first has to fix k + 1 knots λ0 < λ1 < ... < λk on the real line. Define
the j-th interval Ij = [λj-1, λj). Then j

kN is defined recursively by

 134

(7.4)
)()()(

 else,0
 if,1

)(

1
1

1
1

1

1

xN
x

xN
x

xN

Ix
xN

j
k

kjj

jj
k

kjj

kjj
k

jj

−
+−

−
−

−−

−












λ−λ

−λ
+











λ−λ

λ−
=



 ∈

=

An inspection of (7.4) reveals that jN1 is a zero-th order polynomial (namely, a constant) on
each interval Ij'. Because in the recursion equation, a k-th order basis function is essentially
created by multiplying x into k-1-th order basis functions with some coefficients, it is clear
that a B-spline basis function j

kN of order k is piecewise polynomial of order k – 1 on its
support. Figure 7.3 shows some B-spline basis functions of different order.

Figure 7.3 B-spline basis functions of orders 1 to 4, with equidistant knots λj placed at the
integers45.

B-spline basis functions have a number of pleasant properties which explain why they are so
often used:

• They are fast to compute, using the regression equations (7.4).
• k-th order basis functions are k-2 times differentiable.
• For a sequence of knots ... λi < λi+1 < ... and a fixed order k, the i

kN form a partition of

unity, that is, for any x, 1)(=∑
∞

−∞=i

i
k xN .

So far we have considered continuous-valued unverses of discourse. The membership
functions are then continuous functions µ :  →  . In many practical applications, one also
meets discrete universes , either because the "piece of world" one is modelling is inherently
discrete (for instance, the customers in a customer database) or because one prefers to
discretize a continuous domain for reasons of computational efficiency. A membership
function on a discrete universe  = {x1, ..., xN} of size N is then simply an N-dimensional
vector

45 Figure taken (and redrawn with corrections) from: Zhang, J., Knoll, A., Renners, I., Efficient Learning of Non-Uniform B-
Splines for Modelling and Control. Proc. Int. Conf. of Computational Intelligence for Modelling, Control and Automation,
Vienna 1999.

3
1N

3
2N

4
2N

 5
3N

 135

(7.5))).(),...,((1 Nxx µµ≅µ 46

Discrete membership functions are also mostly normalized by convention to a range of [0,1],
but it makes no sense to require smoothness or any other geometric property for the shape of
the function – discrete membership functions typically are not intended to be "bell-shaped" or
"triangular".

7.3 Fuzzy logic basics  

Human experts can combine concepts into new ones. In the classical world of logics and set
theory, this is reflected on the syntactical side by applying the logical connectives ∧, ∨, ¬ to
propositions, and on the semantic side by applying the corresponding set-theoretic operations
∩, ∪, c (the latter denoting the complement operation). For instance, the concept expressed by
the first-order logic formula "Car x ∧ Expensive x" is semantically interpreted (in the
extensional semantics that has become standard for logic) by Car ∩ Expensive, where
X
 denotes the set by which a predicate X is interpreted in a model  -- in plain English, here

this refers to the set of all expensive cars.

Now let us consider two linguistic terms A and B represented by membership functions µA
and µB on a shared universe of discourse. For instance, think of A as the value OK for the
linguistic variable pressure over the universe [0,12] and of B as the value high of the
linguistic variable mechanical strain over the same universe (assuming that pressure
determines mechanical strain). Then an engineer might mumble something like, "If the
pressure is OK and the strain is high, I would suggest to tune down the pressure valve a bit".
Just like in classical logic, the "and" operation creates a new predicate from two which is
semantically represented by the set-theoretic cut, we desire a "fuzzy and" operation that
defines a new linguistic term OK pressure and high strain through a new
membership function µOK pressure and high strain.= : µOK ∩ high. One design constraint
that has guided fuzzy logicians for coming up with a recipe to define µA ∩ B from µA and µB
is that in the limiting case of binary (= classical) membership functions µA and µB, the fuzzy
definition should coincide with the classical one, that is, for binary µA and µB it should hold
that

(7.6)


 =µ=µ

=µ ∩ casesother all0,
1)()(if,1

)(
xx

x BA
BA

Fuzzy sets with binary membership functions, which thus can be regarded as classical sets,
are called crisp sets in FL.

Now it turns out that the requirement (7.6) vastly underspecifies admissible "fuzzy and"
operations. There are arbitrarily many, more or less reasonable numerical operators on
membership functions that in the limiting binary case behave like (7.6). The two most
commonly employed instantiations of a "fuzzy and" are

(7.7)))(),(min()(xxx BABA µµ=µ ∩ and

46 In the tutorial paper by Mendel, for such objects the rather weird notation ∑ µ∈

µ≅µ
)suppport(

/)(
x

xx is used.

 136

(7.8)).()()(xxx BABA µµ=µ ∩

Both are examples of a larger family of "fuzzy and" operations that have become known as t-
norm operators47, and which often are generically denoted by the star symbol :

(7.9))()(xx ABA µ=µ ∩ )(xBµ .

T-norm operators are all operators that conform to the following definition:

Definition 7.1. An operator T: [0, 1] × [0, 1] → [0, 1] is a T-norm operator if it satisfies the
following conditions:

1) T(0, 0) = 0; T(a, 1) = a ("boundary" condition)
2)

€

a ≤ c and b ≤ d⇒ T(a,b) ≤ T(c,d) (monotonicity)
3) T(a, b) = T(b, a) (communtativity)
4) T(a, T(b, c)) = T(T(a, b), c) (associativity)

We encounter here for the first time a most disturbing fact about FL: the almost complete
freedom to design concrete specs for even the most elementary operations. This results from
the fact that the limiting, crisp set case imposes too weak restrictions to guide the design, and
that no axiomatic "master theory" exists that could replace the "distant mirror", classical logic.

Likewise, for the classical "or / set union" operation, the limiting constraint for crisp sets

(7.10)


 =µ=µ

=µ ∪ casesother all0,
1)(or 1)(if,1

)(
xx

x BA
BA

admits many fuzzy versions. Common examples are

(7.11)))(),(max()(xxx BABA µµ=µ ∪ and
(7.12)).()()()()(xxxxx BABABA µµ−µ+µ=µ ∪

The second is the operator originally proposed by Zadeh. Again, some requirements on
reasonable "fuzzy or" operations have been distilled into the concept of t-conorm operators
(also known as s-norm operators); if one wishes to refer to any such operation generically, the
symbol ⊕ is often used:

(7.13))()()(xxx BABA µ⊕µ=µ ∪ .

T-conorm-operators are defined exactly like T-norm operators except for the boundary
condition, which here becomes

1') T(1, 1) = 1; T(a, 0) = a ("boundary" condition for T-conorms)

47 The "t" comes from "triangular". Introduced in a paper by R. R. Yager and D. P. Filev: Template-based fuzzy
systems modeling. J. Intell. and Fuzzy Systems 2, 1994, 39-54.

 137

The logical "not / set complement" operation is however more standardized; in all texts I saw
its fuzzy version is implemented by

(7.14)).(1)(c xx AA

µ−=µ

What about an engineer's statement like the following?

(7.15) "If the pressure is too high and the temperature is far above norm, then I turn the

heating rigorously down"

Here the antecedent apparently refers to two different universes of discourse, one of pressure
(ranging in our example in [0,12]) and another of temperature (which might range in [0,100]).
In order to connect the FL modelling of such statements back to classical logic, it is
convenient to work with a variant of classical logic known as many-sorted logic or simply
sorted logic. In the ACS 1 lecture we treated only one-sorted or unsorted predicate logic. In
one-sorted logic, interpretations  have a single carrier A, such that written they look like 
= (A, ...), where the "..." should be filled by the symbols from the respective symbol set. By
contrast, sorted predicate logic has interpretations that have several sets as carriers and in
writing look like  = (A, B, ..., Z, ...), where the carrier sets A, B, ..., Z are called the sorts of
the interpretation. Many-sorted logics are useful if a piece of world is to be modelled that
clearly contains things of different type, for instance, people, animals, and fruit. In one-sorted
logics, there would only be one category of elements of the world (you might call it
"objects"), and the fact that indeed there are people, animals and fruit would be captured by
introducing unary predicates people, animal and fruit. Instead, one can immediately
agree on the convention that the world is made from different (disjoint) sets P, A, and F; then
if p ∈ P it is immediately clear that p is a person and not an animal. The predicates people,
animal and fruit become superfluous. This convenience is however bought at a price: the
predicate and function symbols that one wishes to use must be sorted, that is, together with
each predicate it must be specified of which sort are its arguments. For instance, a unary
predicate grows_on_trees x could only accept arguments of sort F (from the fruit set). By
and large, unsorted and sorted logics can express the same things: the sorts of a sorted logic
can be captured in an unsorted logic by unary predicates, and an unsorted logic is simply a
special case of a sorted logic.
Returning to the statement (7.15), the "and" in the antecedent connects two linguistic terms
over different universes, or as the classical logician would say, predications of different sort.
Our original "fuzzy and" definitions (7.7) and (7.8) do not capture this case. They can be
extended as follows. Let A be a linguistic term over a universe of discourse X, B be a
linguistic term over a universe of discourse Y, and µA and µB be two associated membership
functions. The the statement template,

(7.16) "x is A and y is B"

has pairs (x, y) ∈ X × Y as arguments. The membership function for the statement (7.16) is
therefore defined over X × Y, and in analogy with (7.7) and (7.8) reads

(7.17)))(),(min(),(yxyx BABA µµ=µ ∩ or
(7.18)).()(),(yxyx BABA µµ=µ ∩

 138

The "fuzzy or" generalizes to the multiple-sorted case in the same way. It should also be clear
how the "fuzzy and" and "fuzzy or" generalize to a larger number of arguments, e.g., "x is A
and y is B and z is C" etc (exercise on homework sheet).

Another elementary item from classical logics that has been imported into FL is relations. We
treat only binary relations; n-ary relations can be treated in an obvious way. In classical
unsorted logic, a binary relational expression like smaller x y is semantically represented in
an interpretation  = (A, smaller) by a subset of A × A:

(7.19) smaller

 ⊆ A × A,

or in classical sorted logic, a binary relation like drives (were elements of sort P [for
person] drive elements of sort V [for vehicle]) would be a subset of P × V:

(7.20) drives

 ⊆ P × V.

Note that subset relations of the kind X ⊆ Y × Z can be expressed by the indicator function

(7.21)




∉

∈
→×

Xzy
Xzy

zyZYX),(if ,0
),(if ,1

),(},1,0{: 1

Now, a fuzzy binary relation simply generalizes the binary indicator function to a membership
function with values in [0,1], that is, pairs (x, y) can belong to the relation by varying degree.
For example, a fuzzy binary relation on a shared universe A would be represented by

(7.22) µsmaller: A × A → [0,1];

a fuzzy binary relation on pairs that come from different universes would be exemplified by

(7.23) µdrives: P × V → [0,1].

Finally, we turn to implications. They are of particular interest to the FL community because
control engineers typically describe their precious know-how in IF-THEN clauses – as in our
examples (7.1), (7.2), (7.15). The most natural way to handle implications would be to copy
the classical definition of "→" in terms of ∧, ∨, ¬:

(7.24) ψ∨ϕ¬⇔ψ→ϕ : .

Since we already know how to implement "fuzzy or" and "fuzzy negation", this would
straightforwardly lead to

(7.25))())(1(),(),(yxyxyx BABABA c µ⊕µ−=µ=µ

∪→ .

Concretely, if we use the max operator for ⊕, this would spell out as

(7.26)))(),(1max(),(yxyx BABA µµ−=µ → .

Unfortunately, this apparently obvious way to proceed has proven to be a stumbling block for
FL. An implication defined as in (7.25), (7.26) does not satisfy some simple logical

 139

tautological laws which are valid for two-valued logic and that fuzzycists wanted to keep. For
instance, the Boolean tautology ψ→ϕ∧ψ)(is not a tautology in FL under (7.26). It is, e.g.,
easily checked that 5.0)5.0,5.0(=µ →∧ AB)(A , while an outcome of 1.0 would be wanted from a
tautology. The desire to keep as many as possible of the classical laws of logic intact has
spurred fuzziologists to find other definitions for implication than (7.25). One example from a
multitude of proposed constructions48 is the Gödel implication ψ∨ψ≤ϕ⇔ψ→ϕ)(: . It
is easy to check (homework exercise) that this implication indeed makes ψ→ϕ∧ψ)(a
tautology, and preserves some other classical tautologies as such. However, no fuzzy
implication found so far preserves all the classical tautologies.

Now let us consider when and how IF-THEN rules are actually "fired" in a control context.
Consider again the statement (7.1), here repeated for convenience:

(7.1) "If the pressure is too low, I turn the pressure valve a bit left."

This rule lies dormant in the brain of the control engineer and nothing happens until the
pressure gauge shows a value that can be classified as too low – then the rule becomes
triggered, and the engineer will turn the valve a bit left. However, how much exactly the valve
is turned left depends on by which degree, exactly, the pressure can be judged as too low.
Here we come to the heart of FL: it allows us to fine-tune the output of (fuzzy-)logical
reasoning. We will consider a number of different cases before we present the general rule of
computing the action consequence of fuzzy rules.

• Example 1: Assume that the gauge shows a value of 2.2. According to the membership

function µtoo low from Figure 7.2, a pressure of x = 2.2 would only be marginally
judged "too low", because µtoo low(2.2) is only slightly above zero (let's say, µtoo
low(2.2) = 0.1). Somehow this should make the rule (7.1) fire only weakly, resulting in
only a slight activation of the desire to turn the valve a bit left. (µmuch too low (2.2) >
µtoo low(2.2), so we would expect that another rule, not given here, for the case of much
too low pressure fires more strongly than (7.1), presumably yielding a stronger left-turn of
the valve).

• Example 2: Assume that the gauge shows a value of 3.0, right in the center of the µtoo
low. Now the rule (7.1) should fire with maximal strength, fully commanding the action
taken by the engineer (assuming there are no other rules with an antecedent using µtoo
low).

• Example 3: Assume that the engineer does not read the pressure gauge, but his apprentice
tells him in words, "the pressure is too low". Then again, the rule (7.1) should become
activated – although it is not intuitively quite clear whether it should take command with
the same strength as in the second case, or with more or with less strength.

• Example 4: Assume the apprentice says, "the pressure is much too low". Then presumably
there is some rule in the engineer's brain that has the antecedent "IF the pressure is much
too low, ...", and this rule would very much determine the action taken. But, the rule (7.1)
would also be activated a little bit, because the membership functions µtoo low and µmuch
too low have overlapping support, and a much too low pressure is at the same time also a
too low pressure, albeit to a small degree only.

48 A paper by Kiszka, Kochanska and Sliwinska (The Influence of Some Fuzzy Implication Operators on the
Accuracy of a Fuzzy Model, Fuzzy Sets and Systems 15, 111-128 and 223-240, 1985) lists 72 alternative
implication definitions to choose from [cited after the Jantzen tutorial)

 140

• Example 5: Assume that the engineer knows also the following rule:

(7.27) "If the temperature is less then 40°, then the pressure is likely to be much too low,"

and assume further that he reads a temperature of 35° from the temperature meter. Then
the temperature reading will trigger rule (7.27), which in turn will trigger our old rule
(7.1), because the consequence of (7.27) matches (to the degree that too low and much
too low overlap). Here we see a chaining of rules.

In all examples, there is some empirical information provided that triggers the rule(s). In cases
3 and 4, this information is just µtoo low and µmuch too low, respectively. The observations x
= 2.2 and x = 3.0 from the first two cases can likewise be coded by singleton membership
functions

(7.28)




≠

=
µ

0

0

 if ,0
 if ,1

)(
0 xx

 xx
xx 

that is, in our case by 2.2µ and 0.3µ ; in the last case, 35µ will be the initial trigger information.

FL has a generic way to accomodate all these examples and many more. To motivate it, notice
that the IF-THEN rule (7.1) is represented by a membership function of the kind),(yxBA→µ ,
that is, the membership function of a binary fuzzy relation – regardless of which concrete
instantiation we use for the implication. Likewise, the triggering information (µtoo low,
µmuch too low, 2.2µ , 0.3µ , or 35µ) is the membership function of a unary fuzzy relation (that
is, a fuzzy predicate, that is, a linguistic term). Notice furthermore that in all cases 1—5 we
saw a chaining of arguments happen. This is clear in case 5, where the consequence of one
rule triggers another rule whose antecedent it matches. In the other examples, we have a
chaining of an empirical observation which "fires" a rule whose antecedent it matches. In all
cases we thus witness a chaining of membership functions, which we will denote by °
(following the Jantzen tutorial). The format of the chaining is

• Example 3:),(yxBAA →µµ  – here the trigger A = µtoo low is identical to the
antecedent of the implication (7.1).

• Examples 1, 2, 4:),(yxBAA' →µµ  – here the triggers A' = 2.2µ , 0.3µ , µtoo low are
not identical to the antecedent A = µtoo low of the rule, but they are related to it by
sharing the same universe of discourse.

• Example 5: here we see the chaining pattern),(),(' zyyx CBBAA' →→ µµµ  .

Chaining of membership functions of relations (unary, binary or n-ary) is the general-purpose
mechanism of FL to combine information in, one might say, "chains of reasoning". I will
present the definition of two special cases here, (a) chaining membership functions of two
binary relations that share the "middle" universe of discourse and (b) chaining a unary with a
binary membership function where the universe of discourse of the unary relation coincides
with the first universe of discourse of the binary one:

Definition 7.2. (a) Let µR: X × Y → [0,1] and µS: Y × Z → [0,1] be two membership functions
of binary relations R and S, where the second universe of discourse Y of the first relation is
the same as the first universe of discourse of the second relation. Then

 141

(7.29)),(sup),(],1,0[: RSR yxzxZX

Yy
µ→×µ

∈



),(S zyµ

defines the composition (chaining) of µR with µS.
(b) Let µA: X → [0,1] and µS: X × Y → [0,1] be a unary and a binary membership function.
Then

(7.30))(sup)(],1,0[: ASA xyY

Xx
µ→µ

∈



),(S yxµ

defines the composition of µA with µS.

Notice that this definition is open w.r.t. the concrete choice of t-norm  – the min and the
algebraic product t-norm are mostly used. Notice furthermore that the "sup" can be replaced
by "max" for discrete membership functions. Definition 7.2 can be generalized to arbitrary n-
and m-ary relations R and S, with no further constraints on the "middle" universes of
discourse (homework exercise).

For discrete membership functions µR and µS the composition (7.29) can be implemented in a
way that resembles matrix multiplication. If |X| = k, |Y| = m, |Z| = n, then µR is represented by
a k × m table (R) = (µR(i,j))i=1,...,k; j=1,...,m and µS by a similar m × n table (S). The result table
(R°S) = (µR°S(i,j))i=1,...,k; j=1,...,n is then obtained by computing the "matrix product" of (R) and
(S), where the ordinary multiplication is replaced by  and the ordinary summation by the
max operator. Likewise, the composition (7.30) can be implemented by a "vector-matrix
product" of a 1 × m matrix (A) with an m × n matrix (S), resulting in a 1 × n matrix (A°S).
Computing (7.30) becomes particularly simple when µA is a singleton membership function,
with a value of 1 in the j th position of the row vector (A). Then the "vector-matrix
multiplication" (A°S) boils down to an element-wise application of the max operation to the j-
th row in (S).

Now the stage is prepared for demonstrating what computations would be used in FL to
compute a membership function for the target term "valve action" of our examples 1
through 5. Let us first consider example 1. Using (7.30) with the singleton 2.2µ for the trigger
which is composed with µtoo low, the min for , and (7.26) for

€

µtoo low→a bit left , we obtain

(7.31)
))(,9.0max())(),2.2(1max(

),2.2()),(),(min(sup)(

leftbit a leftbit a low too

leftbit a low tooleftbit a low too2.2
]12,0[

)leftbit a low (too2.2

yy

yyxxy
x

µ=µµ−=

µ=µµ=µ →→
∈

→

OOOps!!! something seems to have gone wrong here, because))(,9.0max(leftbit a yµ is
certainly always at least 0.9! For a grahical representation of this disturbing finding, assume
that the universe of discourse for valve action is Y = [-180, 180] degrees, and that

)(leftbit a yµ is centered at –13 degrees. Figure 7.4 illustrates leftbit a µ and)leftbit a low (too2.2 →µ


.

 142

Figure 7.4 A somewhat unsatisfactory computation of a control command)leftbit a low (too2.2 →µ



upon an input of pressure p = 2.2.

The membership function)leftbit a low (too2.2 →µ


, which should represent the linguistic term for the

desired control action after an input of 2.2µ , is equal to 0.9 everywhere except for a slight
bump at the crest of leftbit a µ . Thus the control system would suggest, if it could speak, an
advice that goes like this: "oh my, doesn't really matter what action you take – turn the valve
by – 180 degrees or by + 180, looks both very good to me, maybe you should try –13, that
looks a little bit better even, but really, it doesn't make a difference...."

This effect would not vanish if we would be using a different choice than max and min for 
and ⊕ , and it also doesn't go away if we use the inputs from the other examples in our list. If
you analyse where it comes from, you will see that the undesired, everywhere high values of
the command output membership function are due to the nature of (classical) logical
implication. The truth table of ψ→ϕ assigns a 1 to almost every input combination,
especially also to those where the truth value of ϕ is 0:

(7.32)

Since we tried to model the fuzzy implication after the classical one, we also inherited this
"almost everywhere high output value" behaviour. In control applications, the IF-THEN
statements of engineers are simply not the classical logical implications! A control engineer
does not intend to "fire" the THEN part if there is no IF-input, but this is what classical
implication does.

In this situation, fuzzy control engineers do a very wild thing: they discard the guidance from
classical logic and define their own implication (indeed called "engineering implication" in
the Mendel tutorial!), which is as simple as can be:

(7.33))(),(xyx ABA µ=µ → )(B yµ ,

that is, they use the "fuzzy and" for the implication. If the min t-norm is used for , then

ϕ ψ ψ→ϕ
0 0 1
0 1 1
1 0 0
1 1 1

leftbit a µ
)leftbit a low (too2.2 →µ



 y -180 0 180

1
0.9

 143

(7.34)))(),(min(),(yxyx BABA µµ=µ →

is called the Mamdani implication after the person who first dared to propose this trick. But
honestly, didn't you secretly always think that

(7.35)

is the proper interpretation of the intuitive "IF-THEN"? and isn't this also the way how IF-
THEN is handled in programming languages? After all, if the IF-premise of an IF-THEN
statement in a computer program is not matched, nothing happens. If there is no cause, there
should be no effect... So, in a sense, the engineering implication only puts our naive
understanding into effect again.

As a final twist, consider the case of IF-THEN rules with several antecedents connected by
the word "and" and a single consequence, as in (7.15). The generic format of such rules is

(7.36) "If y1 = Y1 and ... and ym = Ym, then u = U."

Here Y1, ..., Ym, U are linguistic terms of linguistic variables y1 , ..., ym and u; we assume
they have universes of discourse Y1, ..., Y m, U, respectively. Note that if we wish to have
several consequences in a rule, we can simply create several single-consequence rules which
taken together are equivalent to the single multiple-consequence rule.

A rule of this kind is represented by an m+1-ary membership function

(7.37)]1,0[...: 1)...(1

→×××µ →∩∩ UYY mm UYY .

If the engineering implication is used, then UYY →∩∩µ)...(1 m

 is obtained from the membership
functions of the occurring linguistic terms by

(7.38)

11
()...(YUYY µ=µ →∩∩ m

...)
mY

µ  Uµ =
1Y

µ ...
mY

µ  Uµ .

If convenient, the antecedent arguments can be lumped into cartesian product linguistic
variables y = y1 × ... × ym, Y = Y1 × ... × Ym on a universe of discourse Y = Y1 × ... × Ym,
obtaining the notation

(7.39) =µ →UY Yµ  Uµ .

7.4 Fuzzy Control 

Now we can assemble everything together to obtain a complete FL control "box", which
receives as input (numerical) measurements y = (y1, ..., yn), processes these inputs by applying

ϕ ψ ψ→ϕ
0 0 0
0 1 0
1 0 0
1 1 1

 144

some FL operations on them, and returns a numerical output vector u = (u1, ..., uk) which
contains the control actions that are administered to the plant. Figure 7.5 shows a block
diagram of such a FL control box.

Figure 7.5 Schema of a FL control box.

We now describe the components of such a control box in turn.

7.4.1 The FL rule set

The rule set is a collection of rules of the form (7.39) =µ →UY Yµ  Uµ . These rules represent
the "knowledge base" of the controller. There are two major ways of how such a rule set can
be created:

1. Interview a human expert how s/he goes about a particular control task and code this

expert's statement in FL rules. This approach reflects the original intentions behind FL.
2. Learn the rules from data. To achieve this, the actions of a (human or mechanical)

controller are monitored over time and rules are extracted by methods of machine
learning. We will not further consider this option here, but I want to note that this
approach of learning rules (and membership functions!) from observed data is popular and
widely treated in the FL literature.

Both approaches can be combined in various ways, for instance by first extracting knowledge
from an expert, yielding a coarse first version of a control system, which is then refined by
automated learning methods whereby the numerical parameters of the rule base (e.g., support
and shape of membership functions) are optimized.

The rule base is the core of a FL control system, and we have learnt in the previous sections
the most important things we need to know about a rule base. I will round off the picture by
going through a standard example, which is often used in the control literature as a benchmark
control problem, not only for FL based control systems but for nonlinear control methods in
general – the truck backing up (TBU) control task.

In one of its simplest forms,the TBU task refers to a truck that has to be maneuvred
backwards into a driving lane. The objective is to steer it such that it drives along the center
line of the lane. The initial position of the truck can be as awkward as you can imagine

Fuzzyfier Defuzzyfier

FL rule set

FL inference
algorithm

FL control
box

crisp input
 y

crisp output
 u

fuzzy input sets
 y

fuzzy output sets
 u

 145

(possibly requiring difficult initial maneuvres with a lot of back-and-forth driving), but is
often constrained to a more harmless initial configuration from which it is possible to achieve
a tracking of the centerline without changing into forward gear.

Figure 7.6 shows the relevant variables for this task, featuring a rather easy starting position.
The lane x-position x has a numerical range from 0 to 20, with 10 being the target value of
driving in the middle of the lane. Angles ϕ and θ denote the truck heading and wheel steering
angle, which range in [-90, 270] and [-45,45] degrees, respectively. The control task is to
produce a time series θ(t) such that the truck backs up the lane on the centerline, that is, to
stabilize the system at a state of x = 10, ϕ = 90°. The input to the controller is the current state
(x(t), ϕ(t)).

Figure 7.6 Setup of the truck backing up task (adapted from the Mendel tutorial)

Here is a short account of one possible way to design a rule set that covers the essential
maneuvres (I follow the Mendel tutorial). The linguistic variables x and heading ϕ are
modelled by linguistic terms as detailed out in Figure 7.7.

 x
 0 10 20

 front

target
backing
up
direction

current
driving
direction

 x

 ϕ

 θ

 146

Figure 7.7 Membership functions for the truck backing up problem. (Taken from the Mendel
tutorial). S, CE, B stand for Small, Center, Big. Membership functions for steering angle (not
shown) use 7 triangles similar to the ones shown here for ϕ.

In order to create rules, the truck driving expert is asked what steering angle he would use for
any of the reasonable value combinations of the state variables x and heading. One such rule
(corresponding to the situation shown in Fig. 7.6) might read like this:

(7.40) "If the lane position is a bit bigger than on target [B1], and if the heading is also a bit

 bigger than 90° [B1], I would steer by a small positive angle [B1]."

Not all combinations of state variable values would be expected to occur in practice. The
driver might choose the 27 combinations shown in Figure 7.8, which gives a condensed
account of the entire rule base (cells show rule consequences).

Figure 7.8 The entire rule base in a table representation. Each filled cell contains a rule
consequence and corresponds to one rule. The cells enclosed in a heavier square indicate rules
that at some time might be fired together, when the input is ϕ(t) = 140 and x(t) = 6 (compare
highlighted triangles in Figure 7.7).

 147

Notice that this example is rather special in some respects. First, a compact table
representation as in Figure 7.8 is only possible with one or two input variables. Second, this
control problem is quite "homogeneous" in the sense that the rules nicely cover a two-
dimensional region of possible input value combinations. In more involved control tasks with
dozens of inputs, the space of input value combinations necessarily will be filled only very
sparsely with rules, because (i) only a small subset of input combinations will be deemed
relevant by the expert, (ii) the number of possible input combinations explodes with the
number of input variables, so it is simply not feasible to cover all combinations.

7.4.2 The fuzzyfier

A fuzzy rule needs a fuzzy set as an empirical input in order to be "fired" according to the
composition mechanism exemplified in (7.31). However, the real-life input to a control box is
not a fuzzy set but a "crisp" numerical input vector y(t) This must be translated into a fuzzy
set first by assigning to it a membership function)(tyµ . This is called fuzzyfication.

The standard choice is to use the singleton membership function

(7.41)


 =

=µ
 else. ,0
)(if ,1

)()(

yy
yy

t
t

If the observation/measurement process that produces the numerical input y is considered
noisy, another common choice for the fuzzyfication is to create)(tyµ as a truncated multi-
dimensional Gaussian centered on y(t). Its covariance matrix should reflect the noise model
that one assumes.

7.4.3 The inference algorithm

After fuzzyfication, for each input value y(t) a membership function)(tYµ is available inside

the control box. If =µ
→ ii UY iY

µ  iU
µ is the i-th rule of the rule set, where Yi = Yi

1 × ... × Yi
m

with domains of discourse Yi
1 × ... × Yi

m, then this rule can use the input membership
functions)()(

,...,
1 tt i

m
i YY

µµ to fire according to

(7.42)
)()(

))...(())(...)(()()(11
uu ii

m
ii

m
iiii ttt UYYYYU →∩∩∩∩→

µ=µ
 YY

)(sup 1)(
,..., 1

11

yt
YyYy

i
i
mm

i Y
µ=

∈∈

...)(
)(mt yi

mY
µ )(1

1
yiY

µ ...)(myi
mY

µ )(uiU
µ

)(:
)(
utiUµ= ,

yielding an output membership function)(tiUµ on the universe of discourse Ui.

Now our rule base will typically contain several rules κκ →→

µµ iiii UU YY
,...,11 with output terms

κii UU ,...,1 on a shared universe of discourse U. In our trucker back upper task, for instance, all

 148

rules share the same output universe. Most of the rules sharing a particular output universe
will typically yield an all-zero membership function)(tiUµ , because this already happens if

one of the starred terms in (7.42) is zero, which is more likely than not. However, a small
number of rules sharing an output universe U will yield non-zero)(tiUµ . For instance, in the

input situation highlighted in Figs. 7.7 and 7.8 there are 3 (out of 27) rules that yield a
nonzero output)(tiUµ . How is the information from these combined?

Again, there is nothing by way of theory which guides us to find the "right" way to combine
the outputs of several rules that fired with nonzero output. According to the Mendel tutorial,
one of the following methods is often used:

1. In order to combine the nonzero outputs

)()(
,...,1 tt ii κµµ

UU
 into a single joint membership

function)(tUµ , use the t-conorm:

(7.43))(tUµ =
)()(

...1 tt ii κµ⊕⊕µ
UU

.

2. Or, simply use straightforward algebraic addition:

(7.44))(tUµ =
)()(

...1 tt ii κµ++µ
UU

3. Or, use a weighted algebraic summation:

(7.45))(tUµ =
)()(1 ...1 tt ii aa κµ++µ κ UU
,

where the weights are either set by hand, reflecting different degrees of confidence in the
concerned rules, or else are trained from data with methods borrowed from neural network
learning49.

In the second and third case, notice that the resultant)(tUµ does not range in [0,1] – the
subsequent defuzzyfication must take care of that anomaly.

The combination method for joining the contributions from several fired rules is the core of
the inference algorithm. In whatever way this is realized, the result is a single output
membership function)(tUµ for every output variable.

7.4.4 The defuzzifier

The final output of the control box cannot be membership functions)(tUµ but must be "crisp"
values u(t) for the output variables, because only such values can be fed into the plant. This
requires a defuzzification mechanism that transforms a 1-dimensional membership function

)(tUµ into a single real number u(t). Again, we are confronted with a number of options. The
following methods are often used:

49 There are some control architectures that use a combination of a FL part, as outlined here, and a trainable
neural network superstructure – these are fuzzy neural networks, on which some literature exists.

 149

1. Maximum defuzzifier:)(max)()(utu tUu Uµ=

∈
. This is a simple and natural choice, but it fails

if)(tUµ has no single maximum. This is likely to happen if some of the membership
functions used in the rule base have trapezoid shape (like S2 in Fig. 7.7 b). An alternative
that avoids this pitfall is the

2. Mean of Maxima defuzzifier:)},(max|{)()(vuUumeantu tUv Uµ=∈=
∈

 or the

3. Centroid defuzzifier, which returns the center of gravity of)(tUµ :

(7.46)
dvv

dvvv
tu

U
t

U
t

∫

∫
µ

µ

=
)(

)(
)(

)(

)(

U

U

The Mendel tutorial describes some more defuzzifiers.

7.5 Concluding remarks 

We have gone through a condensed presentation of the essentials of FL. I would like to point
out some omissions:

• FL is used in other contexts besides control engineering. One is the representation and

learning of nonlinear input-output mappings for purposes of time series prediction. Here
the methods resemble very much what we have seen in our little tutorial. Another field for
FL is expert system like applications. Then the rules contained in the rule set of a
"knowledge base" form more complicated interdependence patterns that are best described
by (chaining) graphs, very much like what we have seen in Bayesian networks. The
inference algorithms become more involved. It seems to me however that such
applications are no longer pursued with the vigour that was originally applied to this field
in the 1980'ies.

• Sometimes it is claimed that FL is useful for "reverse engineering" from numerical control
systems or nonlinear functions back into a format that can be understood by humans.
Consider some nonlinear function that can be empirically observed but is unintelligible to
humans. One example would be to monitor a human control expert's actions, without
interviewing him. Using machine learning methods, from the observed input-output data a
FL representation with synthetically created membership functions can be distilled. These
membership functions can then (hopefully) be interpreted in retrospect by a human
looker-on. This is not as silly as it might at first appear because it is very difficult for the
human expert (who produced the observable control action in the first place) to give a
clear linguistic account of why he does what and when. Circumventing the interviewing
stage by machine learning techniques is an interesting approach to the knowledge
acquisition problem. It is also claimed that control (or other) systems based on FL rules
are more easily checked for soundness, and are better maintainable, than purely "black
box" numerical systems.

• An interesting field of investigations that receives constant (but not overwhelming)
attention is the combination of FL rules with neural networks – fuzzy neural networks.

I would like to conclude with some take-home messages:

 150

• FL is a method for formalizing "soft" expert knowledge and make it amenable to
algorithmic inferences, mostly in control engineering applications.

• Fuzzy logicians spend considerable effort on justifying FL as a generalization of
classical logic (and classical set theory). However, the classical theories enormously
underspecify FL approaches, and there is currently no axiomatic basis for FL that can
fill the justification gap. Thus FL has a very heuristic flavour.

• The most important concepts of FL are linguistic variables, linguistic terms,
membership functions, rules, and the composition of relations, the latter giving rise to
a mechanism to chain rules or "fire" them through observed input.

• Virtually all concrete instantiations of the basic FL concepts admit a host of
alternatives. Thus there is no such thing as the FL system. In the Mendel tutorial, a
quick estimate informs us that even if only the most common choices for the single
operations are taken into account, by their combination one can easily create as many
as 215 different "fuzzy logic systems".

 151

Appendix A. The Dirac delta function 

We have used the Dirac delta δ variously in this lecture. It is a strange beast and has to be
used carefully. It was originally introduced in physics in the early 20th century as a symbolic
aid to come to terms with probability "point" distributions that concentrate the entire
probability mass in the origin. Physicists are reckless warriors and they worked with the Dirac
delta function as if it were a pdf. From this perspective, the defining property of δ is that

(A.1))()()(0xxx fdf

n
=δ∫ℜ .

However, this is a riddlesome definition, because it cannot be identified with any "classical"
function δ: n → , which is what other pdfs can. Therefore, one has to be careful when
handling δ as a pdf; not everything that one can do with standard pdfs works with δ.

There appear two rigorous accounts of what type of mathematical thing δ actually is.

For mathematicians, the world is clear: they simply don't use δ. When mathematicians want to
deal with probability distributions that are concentrated in the origin (or some other single
point x0), they use a particular probability measure, the point measure, which is often denoted
by εx0. It has the defining property that for all A ∈ , where  is the Borel σ-field on n, it
holds that εx0(A) = 1 iff x0 ∈ A, else εx0(A) = 0. Quoting (and translating) from my favourite
textbook on mathematical probability theory, Heinz Bauer's Measure and Integration Theory
(IRC QC20.7.M43 B4813 2001):

"Physicists occasionally work with such a "symbolic density" δx and call it the Dirac-function
at x. The correct mathematical object however is εx."

The price that mathematicians pay for their aristocratic attitude is that they can't tap from the
notational conveniences of using pdfs, nor from the intuitions that are connected to pdfs
(remark: in equation A.1, the Dirac delta appears like a pdf).

The other rigorous account is to view δ as a distribution. Here we meet a deplorable double
use of a technical term. In probability theory, a distribution is the induced probability measure
of a random variable in its measure space. Another (related but mathematically quite
different) usage of the term has emerged in theoretical physics, mathematics and engineering
in the last century, where in the theory of distributions the term distribution refers to
mathematical objects that can be understood likewise as generalizations of (ordinary)
functions and (ordinary) pdfs. A very good introduction to distributions in this sense is given
in the Wikipedia article on DISTRIBUTIONS (MATHEMATICS). For simplicity, I copy here from
that article (the remainder of this appendix is taken almost verbatim from Wikipedia).

In mathematical analysis, distributions (also known as generalized functions) are objects
which generalize functions and probability distributions. They extend the concept of
derivative to all integrable functions and beyond, and are used to formulate generalized
solutions of partial differential equations. They are important in physics and engineering
where many non-continuous problems naturally lead to differential equations whose solutions
are distributions, such as the Dirac delta distribution.

 152

The basic idea is to identify functions with abstract linear functionals on a space of
unproblematic test functions (conventional and well-behaved functions). Operators on
distributions can be understood by moving them to the test function.

For example, if

 f :  → 

is a locally integrable function, and

 ϕ :  → 

is a smooth (that is, infinitely differentiable) function with compact support (so, identically
zero outside of some bounded set), then we set

€

f ,ϕ = fϕ dx
ℜ

∫ .

This is a real number which linearly and continuously depends on ϕ. One can therefore think
of the function f as a continuous linear functional on the space which consists of all the "test
functions" ϕ.

Similarly, if P is a probability distribution on the reals and ϕ is a test function, then

€

P,ϕ = ϕ dP
ℜ

∫

is a real number that continuously and linearly depends on ϕ: probability distributions can
thus also be viewed as continuous linear functionals on the space of test functions. This notion
of "continuous linear functional on the space of test functions" is therefore used as the
definition of a distribution. Such distributions may be multiplied with real numbers and can be
added together, so they form a real vector space.

To define the derivative of a distribution, we first consider the case of a differentiable and
integrable function f :  → . If ϕ is a test function, then we have

€

f 'ϕ dx
ℜ

∫ = − fϕ 'dx
ℜ

∫ ,

using integration by parts (note that ϕ is zero outside of a bounded set and that therefore no
boundary values have to be taken into account). This suggests that if S is a distribution, we
should define its derivative S' by

€

S',ϕ = − S,ϕ' .

It turns out that this is the proper definition; it extends the ordinary definition of derivative,
every distribution becomes infinitely differentiable and the usual properties of derivatives
hold.

Example: The Dirac delta (so-called Dirac delta function) is the distribution defined by

 153

€

δ,ϕ =ϕ(0).

It is the derivative of the Heaviside step function: For any test function ϕ,

€

H ',ϕ = − H,ϕ' = − H(x)ϕ '(x)dx =
−∞

∞

∫ − ϕ '(x)dx =
0

∞

∫ ϕ(0) = δ,ϕ ,

so H' = δ.

 154

References 

Bishop, Christopher M. (1995): Neural Networks for Pattern Recognition. Oxford Univ.
Press, 1995. IRC: QA76.87 .B574 1995

Bishop, Christopher M. (2006): Pattern Recognition and Machine Learning. Springer Verlag,
New York 2006

Farhang-Boroujeny, B. (1999): Adaptive Filters: Theory and Applications. Wiley and Sons
1999 (IRC: TK7872.F5 F37 1998)

