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What is a dynamical system?

A DS is any real or artificial or formal system that evolves over time. 

It is impossible not to be a dynamical system! Because, if you are, you

are being in time.
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Examples

• A water molecule, a waterdrop, a river, an ocean
• The Universe
• A calcium channel, a synapse, a dendrite, a neuron, a microcircuit, ... 

a brain, a nervous system, a body 
• Life on earth
• A bitstream, a network of communicating signal sources, a language 

generating program, a society of linguistic agents
• Mathematics (as a growing body of theorems and proofs)
• You
• What you think about you

In sum: 
• Everything that is not dead or boring.

There isn't and there can't be a universal theory of dynamical systems.
We have to face a diversity of methods.
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Basic ingredients

system in 
state x(n)
at time n

x(n)x(n-1)x(n-2). . .

past history

x(n+1) x(n+2) . . .

future

T T T T

T: update operator, 
"system law", 
"transition function"

y(n) y(n+1) y(n+2)y(n-2) y(n-1)
y: observation, 
"measurement", 
"output signal"

u(n) u(n+1) u(n+2)u(n-2) u(n-1)

u: input, "perturbation", 
"input signal"

..., x(n-2), x(n-1), x(n), x(n+1), x(n+2), ... : trajectory
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Part 2: A Zoo of Finite-State Models
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Deterministic finite-state automata (DFA)

A DFA is defined by:
• a finite set of states, e.g. Q = {p, q, r}
• a finite set of input symbols, e.g. 
𝛴 = {A, B}

• a transition function T: Q× 𝛴 → Q, 
can be written as table, e.g. 

p

r

q
A

A A

B

B
B

A B
p q r
q q p
r q r

• A DFA defines input-sequence 
dependent state trajectories

example trajectory:

A   B   B   A   B   
... ...
q     q    p   r   q    p
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DFAs, comments

• deterministic
• can be used e.g. for modeling ion

channel states or an agent's model of
how the world Q reacts on agent's
actions 𝛴

• simplicity is deceptive: a PC can be
considered a DFA, with more-than-
astronomical-sized (but finite)              
Q = {all possible logic gate
state combinations}

• states are "fully observable"
• inferring a DFA from observed

trajectories is easy
• DFAs are standard tool for theoretical

CS, then used only for finite 
sequences ("words")

p

r

q
A

A A

B

B
B

A   B   B   A   B   
... ...
q     q    p   r   q    p
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Moore- and Mealy-Machines 

A Moore Machine is a DFA, equipped 
additionally with 
• a finite set of output symbols, e.g.        

O = {0, 1}
• a translation (observation) function     
ρ: Q → O

p

r

q
A

A A

B

B
B

example Moore trajectory:

A   B   B   A   B   

q     q    p   r   q    p

0

0
1

0   1    0   0    1

A Mealy Machine is similar, except the
observations are "emitted" from
transition arrows: ρ: Q × 𝛴 → O

Both are deterministic. 

Efficient methods to infer Moore / Mealy
machines from input-output data are
known. 
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Literature
There are many textbooks covering finite automata – they form a core 
part of theoretical CS and any theoretical CS textbook will cover them 
(among other topics). A classic is 
Hopcroft, John E. , Motwani, Rajeev, and Ullman, Jeffrey: Introduction 
to Automata Theory, 2nd edition. Addison-Wesley, 2001 

Textbook concentrating on finite automata which covers both the use of 
automata for finite-word languages and for infinite-sequence languages
A. de Vries: Finite Automata: Behavior and Synthesis. Elsevier, 2014

State-of-the-art entrance paper for learning Mealy machines from data: 
Steffen, B., Howar, F., & Merten, M. (2011). Introduction to active 
automata learning from a practical perspective. In Formal Methods for 
Eternal Networked Software Systems (pp. 256-296). Springer Berlin 
Heidelberg. http://ls5-www.cs.tu-
dortmund.de/cms/en/research/papers/introduction-to-automata-
learning-sfm2011.pdf
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q     p    r   r   q    r

Non-deterministic finite-state automata (NFA)

A NFA is defined by:
• a finite set of states, e.g. Q = {p, q, r}
• a finite set of input symbols, e.g. 
𝛴 = {A, B}

• a transition function
T: Q× 𝛴 → Pot(Q), (Pot: power set), 
e.g.

p

r

q
A

A
A,B

B

A,B

A,B

A B
p {q, r} {r}
q {p, q} {p, q, r}
r {q} {p, r}

example trajectories:

A   B   B   A   B   
... ...
q     q    p   r   q    p

B
B

or
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q     q    r   p   q    r

NFAs, comments

• an NFA can yield several (typically, 
infinitely many) different state 
sequences on given input sequence

• no probabilities involved; a given state 
sequence cannot be said to be "more 
probable" than another

• this is called a non-deterministic 
system, as opposed to "deterministic" 
and to "stochastic"

• nondeterministic models capture what 
is possible vs. what is impossible to 
observe

• special case: no input (or equivalently, 
one-element input set)

p

r

q

example trajectory:

special case: no input 
symbols
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Finite-dimensional Markov chains

A (finite-dimensional) Markov chain (MC) is 
defined by:
• a finite set of states, e.g. Q = {q1, q2, q3}
• an initial state distribution p∈ Prob(Q), 

where Prob(Q) is the set of probability 
distributions over Q

• a transition kernel T: Q → Prob(Q)
• T can be written as stochastic transition 

matrix ("Markov matrix"), e.g.  

q1

q3

q2

q1 q2 q3

q1
0.2 0.5 0.3

q2
0.9 0.1 0.0

q3
0.3 0.3 0.4

rows sum to 1

.2

.1

.4

.3
.3 .3

.9

.5

p = 

0.0
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Finite-dimensional MCs, comments 1

• used to describe trajectories that start at 
time n = 0

• probability that a trajectory starts with 
qi0, qi1, ..., qin

is 
q1

q3

q2
.2

.1

.4

.3
.3 .3

.9

.5

p = 

• a MC specifies a stochastic process 

with values in Q

0.0
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Finite-dimensional MCs, comments 2

• the crucial defining property to make a 
finite-valued stochastic process a Markov 
chain: the Markov propertyq1

q3

q2
.2

.1

.4

.3
.3 .3

.9

.5

p = 

0.0

• What is going to happen next
(probabilities to observe qin+1) only
depends on current state qin, not on 
previous state history

• MCs are "memoryless" systems
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Controlled Markov chains
In a controlled MC the transition
probabilities are switched by inputs. 
Components:
• a finite set of states, e.g. Q = {q1, q2, q3}
• a finite set of inputs ("control actions"), 

e.g. A = {a1, a2}
• an initial state distribution p∈ Prob(Q)
• for each a∈ A, a transition kernel

Ta: Q → Prob(Q)

q1

q3

q2

q1 q2 q3

q1 0.2 0.5 0.3

q2 0.9 0.1 0.0

q3 0.3 0.3 0.4

.2|.0

.1|.0

.4|.4

.3|.8

.3|.4
.3|.2

.9|1.0

.5|.2

p = 

q1 q2 q3

q1 0.0 0.2 0.8

q2 1.0 0.0 0.0

q3 0.4 0.2 0.4

Ta1
Ta2

.0|.0

• Update mechanism: switch transition
kernel according to current input symbol
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Literature

A classical monograph on controlled stochastic processes (general 
rigorous mathematical theory, not restricted to controlled MCs):
Gihman, I.I. and Skorohod, A.V., Controlled Stochastic Processes. 
Springer Verlag 1979

Controlling stochastic systems is, of course, also of prime importance in 
control engineering. In this field, the controlled systems often are 
systems that emit observable output, which is then included in the 
analysis and methods. A textbook:
R. F. Stengel, Stochastic optimal control: theory and application. John 
Wiley and Sons, 1986



IK 2018

Hidden Markov models (HMMs)

Defining components:
• a finite set of states, e.g. Q = {p, q, r}
• a finite set of outputs ("observables", 

"visibles"), e.g. O = {0, 1}
• an initial state distribution p∈ Prob(Q)
• a transition kernel T : Q → Prob(Q)
• for every state q∈ Q and observable      

o∈ O , an emission probability P(o|q) to 
observe o when the hidden Markov state 
trajectory passes through q

or, equivalently, 
an emission function ρ : Q → O            
(as shown in example) 

p

r

q.2

.1

.4

.3

.3
.3

.9

.5

0.0

0

0
1

example trajectory:
q    p   r   q    p

0   1    0   0    1

IK 2018

q    p   r   q    p

HMMs, comments 1

• widely and naturally applicable, because
an experimenter often can't directly
observe states q, only make
measurements o of them

• available experimental data are only
trajectories of observables, states are
unobservable

• model inference task: from (empirical) 
measurement data (e.g., 0 1 0 0 1) infer
underlying stochastic state transition
system, that is...

• ... explain data by generative mechanism
• Example: Q = "brain states", O = "uttered

phonemes"
• Example: Q = "state of a neuron", O = 

"spike"

p

r

q.2

.1

.4

.3

.3
.3

.9

.5

0.0

0

0
1

0   1    0   0    1

unobservable states

visible measurements
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p    q   r   p    q

HMMs, comments 2

• The visible trajectories (values of random 
variables Yn) "have memory":

• The observables (Yn)n = 0,1,2,... form a 
stochastic process in their own right, but 
this process does not have the Markov 
property

p

r

q

1.0

1.0

1.0

0

0
1

1   0    0   1    0

hidden states Xn

visible measurements Yn
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Literature

The classical tutorial text on HMMs, very readable (20000+ Google 
cites, boosted the popularity of HMMs in speech processing):
Rabiner, L., A tutorial on hidden Markov models and selected 
applications in speech recognition." Proceedings of the IEEE 77.2 
(1989): 257-286. (many online copies)
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Controlled hidden Markov models, aka POMDPs

• crossover of controlled MCs and HMMs
• also (widely) known as Partially 

Observable Markov Decision Processes 
(POMDPs)

• a basic tool in theory of autonomous 
agents / robotics / reinforcement learning 
in the machine learning sense

• In that context, a POMDP constitutes the 
agent's world model:
• Q: external world states
• A: agent's actions in world
• O: sensory feedback from world

• methods available for learning a POMDP 
from A-O (action – sensor-feedback) 
timeseries data

• seems a natural model class to me also 
for neural dynamics and animal behavior

q1

q3

q2
.2|.0

.1|.0

.4|.4

.3|.8

.3|.4
.3|.2

.9|1.0

.5|.2

.0|.0

0

0
1
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Literature

My favorite tutorial text on POMDPs, set in a context of agent learning 
and reinforcement learning:
Kaelbling, L.P., Littman, M.L., Cassandra, A.R., Planning and acting in 
partially observable stochastic domains. Artificial Intelligence 101 
(1998), 99-134


